Science.gov

Sample records for bind e-4-hydroxynon-2-enal hne

  1. Investigating the role of H₂S in 4-HNE scavenging.

    PubMed

    Laggner, Hilde; Gmeiner, Bernhard M K

    2015-01-01

    4-HNE (4-hydroxy-2-nonenal) is a highly reactive α,β-unsaturated aldehyde generated from oxidation of polyunsaturated fatty acids and has been suggested to play a role in the pathogenesis of several diseases. 4-HNE can bind to amino acids, proteins, polynucleotides, and lipids and exert cytotoxicity. 4-HNE forms adducts (Michael adducts) with cysteine, lysine, as well as histidine on proteins with the thiol function as the most reactive nucleophilic moiety. Thus, detoxification strategies by 4-HNE scavenging compounds might be of interest. Recently, hydrogen sulfide (H2S) has been identified as an endogenous vascular gasotransmitter and neuromodulator. Assuming that the low-molecular thiol H2S may react with 4-HNE, methods to monitor the ability of H2S to counteract the protein-modifying and cytotoxic activity of 4-HNE are described in this chapter. PMID:25747472

  2. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  3. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    PubMed Central

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-01-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway. PMID:26177797

  4. Immunochemical studies on HNE-modified HSA: Anti-HNE-HSA antibodies as a probe for HNE damaged albumin in SLE.

    PubMed

    Khan, Farzana; Moinuddin; Mir, Abdul Rouf; Islam, Sidra; Alam, Khursheed; Ali, Asif

    2016-05-01

    Non-enzymatic lipid peroxidation of cellular membranes occurs during periods of sustained oxidative stress. 4-Hydroxynonenal (HNE), the most reactive lipid peroxidation product, is capable of modifying and/or cross-linking proteins leading to impaired physiological functions. The formation of protein adducts produce structural modifications which generate neo-antigens and induce auto-antibodies. Enhanced oxidative stress and accumulation of HNE-modified proteins are associated with systemic lupus erythematosus (SLE) and other autoimmune diseases. This study has probed the role of lipid peroxidation derived aldehydes in SLE. We report the structural perturbations in human serum albumin (HSA) upon modification with HNE and the consequential enhanced immunogenicity. The induced antibodies were found to be highly specific for the immunogen and exhibited cross-reactivity with HNE-modified epitopes on proteins, amino acids and nucleic acid. The experimentally induced anti-HNE-HSA antibodies appreciably recognized HNE modified epitopes on the HSA obtained from SLE patients. These antibodies, therefore, form a good immunochemical probe to detect such damages in lupus patients. Possible role of anti-HNE-HSA antibodies as a marker for detection/progression of SLE has been discussed. PMID:26800898

  5. Land mine detection applying holographic neural technology (HNeT)

    NASA Astrophysics Data System (ADS)

    Sutherland, John G.; Radzelovage, William C.

    2007-04-01

    Provided is a summary of Holographic Neural Technology (HNeT) and its application in detecting land mines using airborne Synthetic Aperture Radar (SAR) imagery. Tests were performed for three surface mine classes (small metallic, large metallic, and medium-sized plastic) located within variable indigenous background clutter (bare dirt, short/tall grass). This work has been performed as part of the Wide Area Airborne Minefield Detection (WAAMD) Program at the U. S. Army Night Vision Labs and Electronic Sensors Directorate in Fort Belvoir, VA. The ATR algorithm applied was Holographic Neural Technology (HNeT); a neuromorphic model based upon non-linear phase coherence/de-coherence principles. The HNeT technology provides rapid learning capabilities and an advanced capability in learning and generalization of non-linear relationships. Described is a summary of the underlying HNeT technology and the methodologies applied in the training of the neuromorphic system for mine detection using target images (land mines) and back ground clutter images. Provided also is a summary description of the software tools applied in the development of the mine detection capability. Performance testing of the mine detection algorithm separated training and testing sensor image sets by airborne sensor depression angle and surface ground condition indigenous to site location (Countermine Alpha, Yellow Sands). Detection performance was compared in the analysis of complex versus magnitude sensor data. Performance results from independent test imagery indicated a reasonable level of clutter rejection, providing > 50% probability of detection at a false detection rate < 10 -3/m2. A description of the test scenarios applied and performance results for these scenarios are summarized in this report.

  6. Glutathione level regulates HNE-induced genotoxicity in human erythroleukemia cells

    SciTech Connect

    Yadav, Umesh C.S.; Ramana, Kota V.; Awasthi, Yogesh C.; Srivastava, Satish K.

    2008-03-01

    4-Hydroxy-trans-2-nonenal (HNE) is one of the most abundant and toxic lipid aldehydes formed during lipid peroxidation by reactive oxygen species. We have investigated the genotoxic effects of HNE and its regulation by cellular glutathione (GSH) levels in human erythroleukemia (K562) cells. Incubation of K562 cells with HNE (5-10 {mu}M) significantly elicited a 3- to 5-fold increased DNA damage in a time- and dose-dependent manner as measured by comet assay. Depletion of GSH in cells by L-buthionine-[S,R]-sulfoximine (BSO) significantly increased HNE-induced DNA damage, whereas supplementation of GSH by incubating the cells with GSH-ethyl ester significantly decreased HNE-induced genotoxicity. Further, overexpression of mGSTA4-4, a HNE-detoxifying GST isozyme, significantly prevented HNE-induced DNA damage in cells, and ablation of GSTA4-4 and aldose reductase with respective siRNAs further augmented HNE-induced DNA damage. These results suggest that the genotoxicity of HNE is highly dependent on cellular GSH/GST/AR levels and favorable modulation of the aldehyde detoxification system may help in controlling the oxidative stress-induced complications.

  7. 4-HNE Adduct Stability Characterized by Collision-Induced Dissociation and Electron Transfer Dissociation Mass Spectrometry

    PubMed Central

    Fritz, Kristofer S.; Kellersberger, Katherine A.; Gomez, Jose D.; Petersen, Dennis R.

    2012-01-01

    4-hydroxynonenal (4-HNE) alters numerous proteomic and genomic processes. Understanding chemical mechanisms of 4-HNE interactions with biomolecules and their respective stabilities may lead to new discoveries in biomarkers for numerous diseases of oxidative stress. Collision-induced dissociation (CID) and electron transfer dissociation (ETD) MS/MS were utilized to examine the stability of a 4-HNE-Cys Michael adduct. CID conditions resulted in the neutral loss of 4-HNE, also known as a retro-Michael addition reaction (RMA). Consequently, performing ETD fragmentation on this same adduct did not result in RMA. Interestingly, 4-HNE adduct reduction via sodium borohydride (NaBH4) treatment stabilized against the CID induced RMA. In a direct comparison of three forms of 4-HNE adducts, computational modeling revealed sizeable shifts in the shape and orientation of the lowest unoccupied molecular orbital (LUMO) density around the 4-HNE-Cys moiety. These findings demonstrate that ETD MS/MS analysis can be used to improve the detection of 4-HNE-protein modifications by preventing RMA reactions from occurring. PMID:22404378

  8. M-30 and 4HNE are sequestered in different aggresomes in the same hepatocytes.

    PubMed

    Amidi, Fataneh; French, Barbara A; Chung, David; Halsted, Charles H; Medici, Valentina; French, Samuel W

    2007-12-01

    M-30 and 4HNE adducts are two markers of active liver disease. M-30 is a serologic marker and 4HNE adducts are histologic markers. M-30 is a marker for apoptosis because it is a fragment of cytokeratin-18 left over from proteolysis by caspase 3. 4HNE is a marker of oxidative stress because it results from lipid peroxidation. Both markers are commonly found in nonalcoholic steatohepatitis and in alcoholic hepatitis. Liver biopsies from patients with steatohepatitis, 11 alcoholic and 11 non-alcoholics were stained for 4HNE and M-30. Almost all of the biopsies in both groups showed 4HNE- and M-30-positive aggresomes in hepatocytes. Mallory Denk bodies (MDB) stained variably positive for M-30, whereas 4HNE was present in aggresomes independent of MDBs. However, they were sometimes located in hepatocytes which also contained MDBs as shown by confocal microscopy of double stained biopsies. The results indicate that the formation of M-30 and 4HNE aggresomes occurs through different pathways of liver cell injury in both types of steatohepatitis. PMID:17963745

  9. Anti-cancer effects of celecoxib on nasopharyngeal carcinoma HNE-1 cells expressing COX-2 oncoprotein

    PubMed Central

    Chen, Jiongyu; Ran, Yonggang; Hong, Chaoqun; Chen, Zhijian

    2010-01-01

    Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor with antitumor and antiangiogenic activities. To investigate the effects of celecoxib on nasopharyngeal carcinoma (NPC), HNE-1 cells were treated with celecoxib at various concentrations. MTT assay, migration assay and invasion assay were performed to observe the inhibitory activity of celecoxib on HNE-1 cells. Additionally, VEGF-A expression and radiation survival of NPC cell were also examined after treatment with celecoxib. Celecoxib treatment presented an anti-proliferation function in a time and dose-dependent manner on HNE-1 cells which highly express COX-2 protein. Celecoxib also displayed an obvious inhibitory activity on invasive capacity of NPC cells. Moreover, the celecoxib’s effects to suppress VEGF-A expression and enhance radiosensitivity were detected in HNE-1 cells. These findings implicate that application of celecoxib may be an effective strategy for NPC therapy. PMID:20809260

  10. Cell death and diseases related to oxidative stress:4-hydroxynonenal (HNE) in the balance

    PubMed Central

    Dalleau, S; Baradat, M; Guéraud, F; Huc, L

    2013-01-01

    During the last three decades, 4-hydroxy-2-nonenal (HNE), a major α,β-unsaturated aldehyde product of n-6 fatty acid oxidation, has been shown to be involved in a great number of pathologies such as metabolic diseases, neurodegenerative diseases and cancers. These multiple pathologies can be explained by the fact that HNE is a potent modulator of numerous cell processes such as oxidative stress signaling, cell proliferation, transformation or cell death. The main objective of this review is to focus on the different aspects of HNE-induced cell death, with a particular emphasis on apoptosis. HNE is a special apoptotic inducer because of its abilities to form protein adducts and to propagate oxidative stress. It can stimulate intrinsic and extrinsic apoptotic pathways and interact with typical actors such as tumor protein 53, JNK, Fas or mitochondrial regulators. At the same time, due to its oxidant status, it can also induce some cellular defense mechanisms against oxidative stress, thus being involved in its own detoxification. These processes in turn limit the apoptotic potential of HNE. These dualities can imbalance cell fate, either toward cell death or toward survival, depending on the cell type, the metabolic state and the ability to detoxify. PMID:24096871

  11. Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule?

    PubMed

    Foucaud, L; Goulaouic, S; Bennasroune, A; Laval-Gilly, P; Brown, D; Stone, V; Falla, J

    2010-09-01

    The aim of this study was to investigate whether carbon black (CB) nanoparticles might induce toxicity to monocytic cells in vitro via an oxidative stress mechanism involving formation of the lipid peroxidation product 4-hydroxynonenal (4-HNE) and the subsequent role of 4-HNE in inducing further cytotoxic effects. ROS production in cells by CB nanoparticles was shown by the oxidation of DCFH after a short time exposure. These particles induced the formation of 4-HNE-protein adducts and significant modification of glutathione content corresponding to an increase of oxidized glutathione form (GSSG) and a decrease of total glutathione (GSX) content. These results attest to an oxidative stress induced by the carbon black nanoparticles, although no induction of HO-1 protein expression was detected. Concerning the effects of a direct exposure to 4-HNE, our results showed that 4-HNE is not cytotoxic for concentrations lower than 12.5 microM. By contrast, it provokes a very high cytotoxicity for concentrations above 25 microM. An induction of HO-1 expression was observed from concentrations above 5 microM of 4-HNE. Finally, glutathione content decreased significantly from 5 microM of 4-HNE but no modification was observed under this concentration. The discrepancy between effects of carbon black nanoparticles and 4-HNE on the intracellular markers of oxidative stress suggests that 4-HNE is not directly implied in the signalling of oxidative toxicity of nanoparticles but is an effective biomarker of oxidative effects of nanoparticles. PMID:20638469

  12. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain☆

    PubMed Central

    Hardas, Sarita S.; Sultana, Rukhsana; Clark, Amy M.; Beckett, Tina L.; Szweda, Luke I.; Murphy, M. Paul; Butterfield, D. Allan

    2013-01-01

    Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE). HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH) were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder. PMID:24024140

  13. Nucleosynthesis in Hot Bubbles of SNe-Origin of EMP Stars: HNe or SNe ?

    SciTech Connect

    Izutani, Natsuko; Umeda, Hideyuki; Yoshida, Takashi

    2010-08-12

    The observational trends of extremely metal-poor (EMP) stars reflect SN nucleosynthesis of Population III, or almost metal-free stars. The observation of EMP stars can be reproduced by HNe, not by normal SNe. However, if the innermost neutron-rich or proton-rich matter is ejected, the abundance patterns of ejected matter are changed, and there is a possibility that normal SNe can also reproduce the observations of EMP stars. In this paper, we calculate nucleosynthesis with various Y{sub e} and entropy taking into account neutrino processes. We investigate whether normal SNe with this innermost matter can reproduce the observations of EMP stars. We find that neutron-rich (Y{sub e} = 0.45-0.50) and proton-rich (Y{sub e} = 0.51-0.55) matters can improve Zn and Co, but tend to overproduce other Fe-peak elements. On the other hand, HNe can naturally reproduce the observations of EMP stars.

  14. Demonstration of HNE-related aldehyde formation via lipoxygenase-catalyzed synthesis of a bis-allylic dihydroperoxide intermediate

    PubMed Central

    Jin, Jing; Zheng, Yuxiang; Brash, Alan R.

    2013-01-01

    One of the proposed pathways to the synthesis of 4-hydroxy-nonenal (HNE) and related aldehydes entails formation of an intermediate bis-allylic fatty acid dihydroperoxide. As a first direct demonstration of such a pathway and proof of principle, herein we show that 8R-lipoxygenase (8R-LOX) catalyzes the enzymatic production of the HNE-like product (11-oxo-8-hydroperoxy-undeca-5,9-dienoic acid) via synthesis of 8,11-dihydroperoxy-eicosa-5,9,12,14-tetraenoic acid intermediate. Incubation of arachidonic acid with 8R-LOX formed initially 8R-hydroperoxyeicosatetraenoic acid (8R-HPETE) which was further converted to a mixture of products including a prominent HPNE-like enone. A new bis-allylic dihydroperoxide was trapped when the incubation was repeated on ice. Re-incubation of this intermediate with 8R-LOX successfully demonstrated its conversion to the enone products, and this reaction was greatly accelerated by co-incubation with NDGA, a reductant of the LOX iron. These findings identify a plausible mechanism that could contribute to the production of 4-hydroxy-alkenals in vivo. PMID:23668325

  15. Human neutrophils contain and bind high molecular weight kininogen.

    PubMed Central

    Gustafson, E J; Schmaier, A H; Wachtfogel, Y T; Kaufman, N; Kucich, U; Colman, R W

    1989-01-01

    Because plasma kallikrein activates human neutrophils, and in plasma prekallikrein (PK) circulates complexed with high molecular weight kininogen (HMWK), we determined whether HMWK could mediate kallikrein's association with neutrophils. HMWK antigen (237 +/- 61 ng HMWK/10(8) neutrophils) was present in lysates of washed human neutrophils. Little if any plasma HMWK was tightly bound and nonexchangeable with the neutrophil surface. Human neutrophils were found to possess surface membrane-binding sites for HMWK but no internalization was detected at 37 degrees C. 125I-HMWK binding to neutrophils was dependent upon Zn2+. Binding of 125I-HMWK to neutrophils was specific and 90% reversible. 125I-HMWK binding to neutrophils was saturable with an apparent Kd of 9-18 nM and 40,000-70,000 sites per cell. Upon binding to neutrophils, 125I-HMWK was proteolyzed by human neutrophil elastase (HNE) into lower relative molecular mass derivatives. Furthermore, HMWK found in neutrophils also served as a cofactor for HNE secretion because neutrophils deficient in HMWK have reduced HNE secretion when stimulated in plasma deficient in HMWK or with purified kallikrein. These studies indicate that human neutrophils contain a binding site for HMWK that could serve to localize plasma or neutrophil HMWK on their surface to possibly serve as a receptor for kallikrein and to participate in HNE secretion by this enzyme. Images PMID:2738152

  16. The expression and function of vascular endothelial growth factor in retinal pigment epithelial (RPE) cells is regulated by 4-hydroxynonenal (HNE) and glutathione S-transferaseA4-4

    SciTech Connect

    Vatsyayan, Rit; Lelsani, Poorna Chandra Rao; Chaudhary, Pankaj; Kumar, Sushil; Awasthi, Sanjay; Awasthi, Yogesh C.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Low concentration of HNE (0.1-1.0 {mu}M) induced secretion of VEGF in RPE cells. Black-Right-Pointing-Pointer VEGF secreted medium of RPE cells promoted proliferation of endothelial cells. Black-Right-Pointing-Pointer VEGFR2 expression was attenuated with increasing concentrations of HNE. Black-Right-Pointing-Pointer These effects of HNE could be blocked by the over expression of GSTA4-4 in cells. -- Abstract: It is well established that 4-hydroxynonenal (HNE) plays a major role in oxidative stress-induced signaling and the toxicity of oxidants. Surprisingly our recent studies also demonstrate that low levels of HNE generated during oxidative stress promote cell survival mechanisms and proliferation. Since the expression and secretion of VEGF is known to be affected by Oxidative stress, during present studies, we have examined dose dependent effect of HNE on VEGF expression and secretion in a model of retinal pigment epithelial (RPE) cells in culture. Results of these studies showed that while inclusion of 0.1 {mu}M HNE in the medium caused increased secretion of VEGF, its secretion and expression was significantly suppressed in the presence of >5 {mu}M HNE in the media. These concentration dependent hormetic effects of HNE on VEGF secretion could be blocked by the over expression of GSTA4-4 indicating that these effects were specifically attributed to HNE and regulated by GSTA4-4. VEGF secreted into the media showed angiogenic properties as indicated by increased migration and tube formation of HUVEC in matrigel when grown in media from RPE cells treated with 1 {mu}M HNE. The corresponding media from GSTA4-4 over expressing RPE cells had no effect on migration and tube formation of HUVEC in matrigel. These results are consistent with earlier studies showing that at low concentrations, HNE promotes proliferative mechanisms and suggest that HNE induces VEGF secretion from RPE cells that acts in a paracrine fashion to induce

  17. Formation of reactive aldehydes (MDA, HHE, HNE) during the digestion of cod liver oil: comparison of human and porcine in vitro digestion models.

    PubMed

    Tullberg, Cecilia; Larsson, Karin; Carlsson, Nils-Gunnar; Comi, Irene; Scheers, Nathalie; Vegarud, Gerd; Undeland, Ingrid

    2016-03-01

    In this work, we investigated lipid oxidation of cod liver oil during gastrointestinal (GI) digestion using two types of in vitro digestion models. In the first type of model, we used human GI juices, while we used digestive enzymes and bile from porcine origin in the second type of model. Human and porcine models were matched with respect to factors important for lipolysis, using a standardized digestion protocol. The digests were analysed for reactive oxidation products: malondialdehyde (MDA), 4-hydroxy-trans-2-nonenal (HNE), and 4-hydroxy-trans-2-hexenal (HHE) by liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS), and for free fatty acids (FFA) obtained during the digestion by gas chromatography-mass spectrometry (GC-MS). The formation of the oxidation products MDA, HHE, and HNE was low during the gastric digestion, however, it increased during the duodenal digestion. The formation of the oxidation products reached higher levels when digestive juices of human origin were used (60 μM of MDA, 0.96 μM of HHE, and 1.6 μM of HNE) compared to when using enzymes and bile of porcine origin (9.8, and 0.36 μM of MDA; 0.16, and 0.026 μM of HHE; 0.23, and 0.005 μM of HNE, respectively, in porcine models I and II). In all models, FFA release was only detected during the intestinal step, and reached up to 31% of total fatty acids (FA). The findings in this work may be of importance when designing oxidation oriented lipid digestion studies. PMID:26838473

  18. Effect of 4-hydroxy-2-nonenal treatment on the IgE binding capacity and structure of shrimp (Metapenaeus ensis) tropomyosin.

    PubMed

    Lv, Liangtao; Lin, Hong; Li, Zhenxing; Yuan, Fangzhou; Gao, Qing; Ma, Jiaju

    2016-12-01

    Lipid peroxidation can react with free amines of proteins and induce modification of structural and functional properties. This study presents the IgE binding capacity and structural changes of shrimp tropomyosin (TM) under oxidative stress with 4-hydroxy-2-nonenal (HNE). IgE binding capacity was evaluated with the dot-blot assay and inhibition enzyme-linked immunosorbent assay. A decrease in IgE binding capacity of TM was found with 0.01mM HNE treatment, which was more significant when the HNE concentration was increased to 0.5mM. The conformational changes of TM, as characterized by fluorescence spectroscopy, circular dichroism spectroscopy and ultraviolet absorption spectroscopy, correlated well with IgE binding capacity changes. Further LC-ESI-MS/MS analyses showed that the side-chain groups of alanine, leucine, lysine and histidine had been modified by HNE. These results suggested that the HNE-induced conformational changes of TM significantly influenced its allergenicity and that these changes were caused by the modification of specific amino acids residues. PMID:27374538

  19. Detection of Catalase as a major protein target of the lipid peroxidation product 4-HNE and the lack of its genetic association as a risk factor in SLE

    PubMed Central

    D'souza, Anil; Kurien, Biji T; Rodgers, Rosalie; Shenoi, Jaideep; Kurono, Sadamu; Matsumoto, Hiroyuki; Hensley, Kenneth; Nath, Swapan K; Scofield, R Hal

    2008-01-01

    Background Systemic lupus erythematosus (SLE) is a multifactorial disorder characterized by the presence of autoantibodies. We and others have implicated free radical mediated peroxidative damage in the pathogenesis of SLE. Since harmful free radical products are formed during this oxidative process, including 4-hydroxy 2-nonenol (4-HNE) and malondialdehyde (MDA), we hypothesized that specific HNE-protein adducts would be present in SLE red blood cell (RBC) membranes. Catalase is located on chromosome 11p13 where linkage analysis has revealed a marker in the same region of the genome among families with thrombocytopenia, a clinical manifestation associated with severe lupus in SLE affected pedigrees. Moreover, SLE afflicts African-Americans three times more frequently than their European-American counterparts. Hence we investigated the effects of a genetic polymorphism of catalase on risk and severity of SLE in 48 pedigrees with African American ancestry. Methods Tryptic digestion followed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis was used to identify the protein modified by HNE, following Coomassie staining to visualize the bands on the acrylamide gels. Genotyping analysis for the C → T, -262 bp polymorphism in the promoter region of catalase was performed by PCR-RFLP and direct PCR-sequencing. We used a "pedigree disequilibrium test" for the family based association analysis, implemented in the PDT program to analyze the genotyping results. Results We found two proteins to be HNE-modified, migrating around 80 and 50 kD respectively. Tryptic digestion followed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of the Coomassie stained 80 kD band revealed that the target of HNE modification was catalase, a protein shown to associate with RBC membrane proteins. All the test statistics carried out on the genotyping analysis for the C → T, -262 bp

  20. Formation of malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) in fish and fish oil during dynamic gastrointestinal in vitro digestion.

    PubMed

    Larsson, Karin; Harrysson, Hanna; Havenaar, Robert; Alminger, Marie; Undeland, Ingrid

    2016-02-01

    Marine lipids contain a high proportion of polyunsaturated fatty acids (PUFA), including the characteristic long chain (LC) n-3 PUFA. Upon peroxidation these lipids generate reactive products, such as malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE), which can form covalent adducts with biomolecules and thus are regarded as genotoxic and cytotoxic. PUFA peroxidation can occur both before and after ingestion. The aim of this study was to determine what levels of MDA, HHE and HNE can evolve in the gastric and intestinal lumen after ingesting meals containing fish or fish oil using a dynamic gastrointestinal (GI) model (TIM). The impact of the fish muscle matrix, lipid content, fish species, and oven baking on GI oxidation was evaluated. MDA and HHE concentrations in gastric lumen increased for all meals during digestion, with the highest level found with herring mince; ∼ 25 μM MDA and ∼ 850 nM HHE. Aldehyde concentrations reached in intestinal lumen during digestion of fish containing meals were generally lower than in gastric lumen, while isolated herring oils (bulk and emulsified) generated higher MDA and HHE values in intestinal lumen compared to gastric lumen. Based on aldehyde levels in gastric lumen, meals containing herring lipids were ranked: raw herring (17% lipid) = baked herring (4% lipid) > raw herring (4% lipid) ≫ herring oil emulsion > herring oil. Herring developed higher concentrations of MDA and HHE during gastric digestion compared to salmon, which initially contained lower levels of oxidation products. Cooked salmon generated higher MDA concentrations during digestion than raw salmon. Low levels of HNE were observed during digestion of all test meals, in accordance with the low content of n-6 PUFA in fish lipids. PMID:26824872

  1. Label-free proteomics assisted by affinity enrichment for elucidating the chemical reactivity of the liver mitochondrial proteome toward adduction by the lipid electrophile 4-hydroxy-2-nonenal (HNE)

    NASA Astrophysics Data System (ADS)

    Maier, Claudia

    2016-03-01

    The analysis of oxidative stress-induced post-translational modifications remains challenging due to the chemical diversity of these modifications, the possibility of the presence of positional isomers and the low stoichiometry of the modified proteins present in a cell or tissue proteome. Alcoholic liver disease (ALD) is a multifactorial disease in which mitochondrial dysfunction and oxidative stress have been identified as being critically involved in the progression of the disease from steatosis to cirrhosis. Ethanol metabolism leads to increased levels of reactive oxygen species (ROS), glutathione depletion and lipid peroxidation. Posttranslational modification of proteins by electrophilic products of lipid peroxidation has been associated with governing redox-associated signaling mechanisms, but also as contributing to protein dysfunction leading to organelle and liver injury. In particular the prototypical α,β-unsaturated aldehyde, 4-hydroxy-2-nonenal (HNE), has been extensively studied as marker of increased oxidative stress in hepatocytes. In this study, we combined a LC-MS label-free quantification method and affinity enrichment to assess the dose-dependent insult by HNE on the proteome of rat liver mitochondria. We used a carbonyl-selective probe, the ARP probe, to label HNE-protein adducts and to perform affinity capture at the protein level. Using LC-MS to obtain protein abundance estimates, a list of protein targets was obtained with increasing concentration of HNE used in the exposure studies. In parallel, we performed affinity capture at the peptide level to acquire site-specific information. Examining the concentration-dependence of the protein modifications, we observed distinct reactivity profiles for HNE-protein adduction. Pathway analysis indicated that proteins associated with metabolic processes, including amino acid, fatty acid and glyoxylate and dicarboxylate metabolism, bile acid synthesis and TCA cycle, showed enhanced reactivity to HNE

  2. Label-Free Proteomics Assisted by Affinity Enrichment for Elucidating the Chemical Reactivity of the Liver Mitochondrial Proteome toward Adduction by the Lipid Electrophile 4-hydroxy-2-nonenal (HNE).

    PubMed

    Tzeng, Shin-Cheng; Maier, Claudia S

    2016-01-01

    The analysis of oxidative stress-induced post-translational modifications remains challenging due to the chemical diversity of these modifications, the possibility of the presence of positional isomers and the low stoichiometry of the modified proteins present in a cell or tissue proteome. Alcoholic liver disease (ALD) is a multifactorial disease in which mitochondrial dysfunction and oxidative stress have been identified as being critically involved in the progression of the disease from steatosis to cirrhosis. Ethanol metabolism leads to increased levels of reactive oxygen species (ROS), glutathione depletion and lipid peroxidation. Posttranslational modification of proteins by electrophilic products of lipid peroxidation has been associated with governing redox-associated signaling mechanisms, but also as contributing to protein dysfunction leading to organelle and liver injury. In particular the prototypical α,β-unsaturated aldehyde, 4-hydroxy-2-nonenal (HNE), has been extensively studied as marker of increased oxidative stress in hepatocytes. In this study, we combined a LC-MS label-free quantification method and affinity enrichment to assess the dose-dependent insult by HNE on the proteome of rat liver mitochondria. We used a carbonyl-selective probe, the ARP probe, to label HNE-protein adducts and to perform affinity capture at the protein level. Using LC-MS to obtain protein abundance estimates, a list of protein targets was obtained with increasing concentration of HNE used in the exposure studies. In parallel, we performed affinity capture at the peptide level to acquire site-specific information. Examining the concentration-dependence of the protein modifications, we observed distinct reactivity profiles for HNE-protein adduction. Pathway analysis indicated that proteins associated with metabolic processes, including amino acid, fatty acid, and glyoxylate and dicarboxylate metabolism, bile acid synthesis and TCA cycle, showed enhanced reactivity to HNE

  3. Label-Free Proteomics Assisted by Affinity Enrichment for Elucidating the Chemical Reactivity of the Liver Mitochondrial Proteome toward Adduction by the Lipid Electrophile 4-hydroxy-2-nonenal (HNE)

    PubMed Central

    Tzeng, Shin-Cheng; Maier, Claudia S.

    2016-01-01

    The analysis of oxidative stress-induced post-translational modifications remains challenging due to the chemical diversity of these modifications, the possibility of the presence of positional isomers and the low stoichiometry of the modified proteins present in a cell or tissue proteome. Alcoholic liver disease (ALD) is a multifactorial disease in which mitochondrial dysfunction and oxidative stress have been identified as being critically involved in the progression of the disease from steatosis to cirrhosis. Ethanol metabolism leads to increased levels of reactive oxygen species (ROS), glutathione depletion and lipid peroxidation. Posttranslational modification of proteins by electrophilic products of lipid peroxidation has been associated with governing redox-associated signaling mechanisms, but also as contributing to protein dysfunction leading to organelle and liver injury. In particular the prototypical α,β-unsaturated aldehyde, 4-hydroxy-2-nonenal (HNE), has been extensively studied as marker of increased oxidative stress in hepatocytes. In this study, we combined a LC-MS label-free quantification method and affinity enrichment to assess the dose-dependent insult by HNE on the proteome of rat liver mitochondria. We used a carbonyl-selective probe, the ARP probe, to label HNE-protein adducts and to perform affinity capture at the protein level. Using LC-MS to obtain protein abundance estimates, a list of protein targets was obtained with increasing concentration of HNE used in the exposure studies. In parallel, we performed affinity capture at the peptide level to acquire site-specific information. Examining the concentration-dependence of the protein modifications, we observed distinct reactivity profiles for HNE-protein adduction. Pathway analysis indicated that proteins associated with metabolic processes, including amino acid, fatty acid, and glyoxylate and dicarboxylate metabolism, bile acid synthesis and TCA cycle, showed enhanced reactivity to HNE

  4. Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Lp metric distances, MLP NN, and HNeT) algorithms for SAR imagery

    NASA Astrophysics Data System (ADS)

    Sandirasegaram, Nicholas; English, Ryan

    2005-05-01

    The performance of several combinations of feature extraction and target classification algorithms is analyzed for Synthetic Aperture Radar (SAR) imagery using the standard Moving and Stationary Target Acquisition and Recognition (MSTAR) evaluation method. For feature extraction, 2D Fast Fourier Transform (FFT) is used to extract Fourier coefficients (frequency information) while 2D wavelet decomposition is used to extract wavelet coefficients (time-frequency information), from which subsets of characteristic in-class "invariant" coefficients are developed. Confusion matrices and Receiver Operating Characteristic (ROC) curves are used to evaluate and compare combinations of these characteristic coefficients with several classification methods, including Lp metric distances, a Multi Layer Perceptron (MLP) Neural Network (NN) and AND Corporation's Holographic Neural Technology (HNeT) classifier. The evaluation method examines the trade-off between correct detection rate and false alarm rate for each combination of feature-classifier systems. It also measures correct classification, misclassification and rejection rates for a 90% detection rate. Our analysis demonstrates the importance of feature and classifier selection in accurately classifying new target images.

  5. Involvement of peroxisome proliferator-activated receptor β/δ (PPAR β/δ) in BDNF signaling during aging and in Alzheimer disease: possible role of 4-hydroxynonenal (4-HNE).

    PubMed

    Benedetti, Elisabetta; D'Angelo, Barbara; Cristiano, Loredana; Di Giacomo, Erica; Fanelli, Francesca; Moreno, Sandra; Cecconi, Francesco; Fidoamore, Alessia; Antonosante, Andrea; Falcone, Roberta; Ippoliti, Rodolfo; Giordano, Antonio; Cimini, Annamaria

    2014-01-01

    Aging and many neurological disorders, such as AD, are linked to oxidative stress, which is considered the common effector of the cascade of degenerative events. In this phenomenon, reactive oxygen species play a fundamental role in the oxidative decomposition of polyunsaturated fatty acids, resulting in the formation of a complex mixture of aldehydic end products, such as malondialdehyde, 4-hydroxynonenal, and other alkenals. Interestingly, 4-HNE has been indicated as an intracellular agonist of peroxisome proliferator-activated receptor β/δ. In this study, we examined, at early and advanced AD stages (3, 9, and 18 months), the pattern of 4-HNE and its catabolic enzyme glutathione S-transferase P1 in relation to the expression of PPARβ/δ, BDNF signaling, as mRNA and protein, as well as on their pathological forms (i.e., precursors or truncated forms). The data obtained indicate a novel detrimental age-dependent role of PPAR β/δ in AD by increasing pro-BDNF and decreasing BDNF/TrkB survival pathways, thus pointing toward the possibility that a specific PPARβ/δ antagonist may be used to counteract the disease progression. PMID:24621497

  6. Binding Procurement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  7. Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice.

    PubMed

    Zhang, Qian; Bian, Ganlan; Chen, Peng; Liu, Ling; Yu, Caiyong; Liu, Fangfang; Xue, Qian; Chung, Sookja K; Song, Bing; Ju, Gong; Wang, Jian

    2016-01-01

    Inflammatory reactions are the most critical pathological processes occurring after spinal cord injury (SCI). Activated microglia/macrophages have either detrimental or beneficial effects on neural regeneration based on their functional polarized M1/M2 subsets. However, the mechanism of microglia/macrophage polarization to M1/M2 at the injured spinal cord environment remains unknown. In this study, wild-type (WT) or aldose reductase (AR)-knockout (KO) mice were subjected to SCI by a spinal crush injury model. The expression pattern of AR, behavior tests for locomotor activity, and lesion size were assessed at between 4 h and 28 days after SCI. We found that the expression of AR is upregulated in microglia/macrophages after SCI in WT mice. In AR KO mice, SCI led to smaller injury lesion areas compared to WT. AR deficiency-induced microglia/macrophages induce the M2 rather than the M1 response and promote locomotion recovery after SCI in mice. In the in vitro experiments, microglia cell lines (N9 or BV2) were treated with the AR inhibitor (ARI) fidarestat. AR inhibition caused 4-hydroxynonenal (HNE) accumulation, which induced the phosphorylation of the cAMP response element-binding protein (CREB) to promote Arg1 expression. KG501, the specific inhibitor of phosphorylated CREB, could cancel the upregulation of Arg1 by ARI or HNE stimulation. Our results suggest that AR works as a switch which can regulate microglia by polarizing cells to either the M1 or the M2 phenotype under M1 stimulation based on its states of activity. We suggest that inhibiting AR may be a promising therapeutic method for SCI in the future. PMID:25520004

  8. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  9. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  10. Melanin-binding radiopharmaceuticals

    SciTech Connect

    Packer, S; Fairchild, R G; Watts, K P; Greenberg, D; Hannon, S J

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  11. Positron binding to molecules

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.

    2011-05-01

    While there is theoretical evidence that positrons can bind to atoms, calculations for molecules are much less precise. Unfortunately, there have been no measurements of positron-atom binding, due primarily to the difficulty in forming positron-atom bound states in two-body collisions. In contrast, positrons attach to molecules via Feshbach resonances (VFR) in which a vibrational mode absorbs the excess energy. Using a high-resolution positron beam, this VFR process has been studied to measure binding energies for more than 40 molecules. New measurements will be described in two areas: positron binding to relatively simple molecules, for which theoretical calculations appear to be possible; and positron binding to molecules with large permanent dipole moments, which can be compared to analogous, weakly bound electron-molecule (negative-ion) states. Binding energies range from 75 meV for CS2 (no dipole moment) to 180 meV for acetonitrile (CH3CN). Other species studied include aldehydes and ketones, which have permanent dipole moments in the range 2.5 - 3.0 debye. The measured binding energies are surprisingly large (by a factor of 10 to 100) compared to those for the analogous negative ions, and these differences will be discussed. New theoretical calculations for positron-molecule binding are in progress, and a recent result for acetonitrile will be discussed. This ability to compare theory and experiment represents a significant step in attempts to understand positron binding to matter. In collaboration with A. C. L. Jones, J. J. Gosselin, and C. M. Surko, and supported by NSF grant PHY 07-55809.

  12. Metallochaperones: bind and deliver

    SciTech Connect

    Rosenzweig, A.C.

    2010-03-08

    Metallochaperones deliver metal ions directly to target proteins via specific protein-protein interactions. Recent research has led to a molecular picture of how some metallochaperones bind metal ions, recognize their partner proteins, and accomplish metal ion transfer.

  13. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    1999-01-01

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  14. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Carolyn

    1999-10-05

    This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.

  15. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    2001-10-09

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  16. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  17. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis. PMID:26806306

  19. Sequential memory: Binding dynamics

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories—episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  20. Sequential memory: Binding dynamics.

    PubMed

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories-episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities. PMID:26520084

  1. Library Binding Manual. Revised Edition.

    ERIC Educational Resources Information Center

    Lakhanpal, S. K.

    This procedural manual is designed to be used in bindery sections in public, university and special libraries. It briefly discusses these general matters: administrative control; selection of a binder; when and what to bind; conventional binding; routines; missing issues; schedule for shipments; temporary binding; rare books, maps and newspapers;…

  2. Alcohol binding to liposomes by 2H NMR and radiolabel binding assays: does partitioning describe binding?

    PubMed Central

    Dubey, A K; Eryomin, V A; Taraschi, T F; Janes, N

    1996-01-01

    Implicit within the concept of membrane-buffer partition coefficients of solutes is a nonspecific solvation mechanism of solute binding. However, (2)H NMR studies of the binding of (2)H(6)-ethanol and [1-(2)H(2)] n-hexanol to phosphatidylcholine vesicles have been interpreted as evidence for two distinct alcohol binding modes. One binding mode was reported to be at the membrane surface. The second mode was reported to be within the bilayer interior. An examination of the (2)H NMR binding studies, together with direct radiolabel binding assays, shows that other interpretations of the data are more plausible. The results are entirely consistent with partitioning (nonspecific binding) as the sole mode of alcohol binding to liposomes, in accord with our previous thermodynamic interpretation of alcohol action in phosphatidylcholine liposomes. PMID:9172754

  3. Carboplatin binding to histidine

    SciTech Connect

    Tanley, Simon W. M.; Diederichs, Kay; Kroon-Batenburg, Loes M. J.; Levy, Colin; Schreurs, Antoine M. M.; Helliwell, John R.

    2014-08-29

    An X-ray crystal structure showing the binding of purely carboplatin to histidine in a model protein has finally been obtained. This required extensive crystallization trials and various novel crystal structure analyses. Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.

  4. Cold Spots in Protein Binding.

    PubMed

    Shirian, Jason; Sharabi, Oz; Shifman, Julia M

    2016-09-01

    Understanding the energetics and architecture of protein-binding interfaces is important for basic research and could potentially facilitate the design of novel binding domains for biotechnological applications. It is well accepted that a few key residues at binding interfaces (binding hot spots) are responsible for contributing most to the free energy of binding. In this opinion article, we introduce a new concept of 'binding cold spots', or interface positions occupied by suboptimal amino acids. Such positions exhibit a potential for affinity enhancement through various mutations. We give several examples of cold spots from different protein-engineering studies and argue that identification of such positions is crucial for studies of protein evolution and protein design. PMID:27477052

  5. Quarkonium binding and entropic force

    NASA Astrophysics Data System (ADS)

    Satz, Helmut

    2015-05-01

    A bound state represents a balance between repulsive kinetic and attractive potential energy. In a hot quark-gluon plasma, the interaction potential experiences medium effects. Color screening modifies the attractive binding force between the quarks, while the increase of entropy with separation gives rise to a growing repulsion. We study the role of these phenomena for in-medium binding and dissociation. It is found that the relevant potential for binding is the free energy ; with increasing separation, further binding through the internal energy is compensated by repulsive entropic effects.

  6. Identification of consensus binding sites clarifies FMRP binding determinants.

    PubMed

    Anderson, Bart R; Chopra, Pankaj; Suhl, Joshua A; Warren, Stephen T; Bassell, Gary J

    2016-08-19

    Fragile X mental retardation protein (FMRP) is a multifunctional RNA-binding protein with crucial roles in neuronal development and function. Efforts aimed at elucidating how FMRP target mRNAs are selected have produced divergent sets of target mRNA and putative FMRP-bound motifs, and a clear understanding of FMRP's binding determinants has been lacking. To clarify FMRP's binding to its target mRNAs, we produced a shared dataset of FMRP consensus binding sequences (FCBS), which were reproducibly identified in two published FMRP CLIP sequencing datasets. This comparative dataset revealed that of the various sequence and structural motifs that have been proposed to specify FMRP binding, the short sequence motifs TGGA and GAC were corroborated, and a novel TAY motif was identified. In addition, the distribution of the FCBS set demonstrates that FMRP preferentially binds to the coding region of its targets but also revealed binding along 3' UTRs in a subset of target mRNAs. Beyond probing these putative motifs, the FCBS dataset of reproducibly identified FMRP binding sites is a valuable tool for investigating FMRP targets and function. PMID:27378784

  7. Reversible calcitonin binding to solubilized sheep brain binding sites.

    PubMed Central

    Sexton, P M; Schneider, H G; D'Santos, C S; Mendelsohn, F A; Kemp, B E; Moseley, J M; Martin, T J; Findlay, D M

    1991-01-01

    In this study we have solubilized and characterized binding sites for calcitonin (CT) from sheep brainstem. Autoradiography of 125I-labelled salmon CT (125I-sCT) binding to sheep diencephalon revealed a similar pattern of binding to that seen in other species, although the extent of distribution was greater in the sheep. CT binding activity could be extracted from membranes with either CHAPS or digitonin, but not with beta-octyl glucoside, 125I-sCT binding was saturable, with a dissociation constant for CHAPS-solubilized membranes of 2.8 +/- 0.5 nM and a maximum binding site concentration of 6.2 +/- 1.6 pmol/mg of protein. In competition binding studies, various CTs and their analogues demonstrated a similar rank order of potency to that seen in other CT receptor systems, Optimal binding occurred in the pH range 6.5-7.5, and was decreased in the presence of NaCl concentrations greater than 200 mM. In contrast with most other CT receptor binding systems, in which binding is poorly reversible, the binding of 125I-sCT to sheep brain binding sites underwent substantial dissociation upon addition of excess unlabelled sCT, with 40% and 46% dissociation after 2 h at 4 degree C in particulate and solubilized membranes respectively. Photoaffinity labelling of the binding site with the biologically active analogue 125I-[Arg11,18,4-azidobenzoyl-Lys14]sCT and analysis on SDS/PAGE under reducing conditions revealed a specific protein band of Mr approximately solubilized and particulate brain membranes. This is in accordance with the molecular size of CT receptors in other tissues where two species of receptor have been identified. one of Mr approximately 71,000 and another of Mr approximately 88,000. These results demonstrate the presence of high concentrations of CT binding sites in sheep brain which display different kinetic properties to those of CT receptors found in other tissues. Images Fig. 1. Fig. 6. PMID:1846527

  8. Binding Energy and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Hansen, David E.; Raines, Ronald T.

    1990-01-01

    Discussed is the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis. The principle that all of the catalytic factors discussed are realized by the use of this binding energy is reviewed. (CW)

  9. Cholinergic influences on feature binding.

    PubMed

    Botly, Leigh C P; De Rosa, Eve

    2007-04-01

    The binding problem refers to the fundamental challenge of the central nervous system to integrate sensory information registered by multiple brain regions to form a unified neural representation of a stimulus. Human behavioral, neuropsychological, and functional neuroimaging evidence suggests a fundamental role for attention in feature binding; however, its neurochemical basis is currently unknown. This study examined whether acetylcholine (ACh), a neuromodulator that has been implicated in attentional processes, plays a critical role in feature binding. Using a within-subjects pharmacological design and the cholinergic muscarinic antagonist scopolamine, the present experiments demonstrate, in a rat model, a critical role for the cortical muscarinic cholinergic system in feature binding. Specifically, ACh and the attentional resources that it supports are essential for the initial feature binding process but are not required to maintain neural representations of bound stimuli. PMID:17469916

  10. Different modes of dipeptidyl peptidase IV (CD26) inhibition by oligopeptides derived from the N-terminus of HIV-1 Tat indicate at least two inhibitor binding sites.

    PubMed

    Lorey, Susan; Stöckel-Maschek, Angela; Faust, Jürgen; Brandt, Wolfgang; Stiebitz, Beate; Gorrell, Mark D; Kähne, Thilo; Mrestani-Klaus, Carmen; Wrenger, Sabine; Reinhold, Dirk; Ansorge, Siegfried; Neubert, Klaus

    2003-05-01

    Dipeptidyl peptidase IV (DP IV, CD26) plays an essential role in the activation and proliferation of lymphocytes, which is shown by the immunosuppressive effects of synthetic DP IV inhibitors. Similarly, both human immunodeficiency virus-1 (HIV-1) Tat protein and the N-terminal peptide Tat(1-9) inhibit DP IV activity and T cell proliferation. Therefore, the N-terminal amino acid sequence of HIV-1 Tat is important for the inhibition of DP IV. Recently, we characterized the thromboxane A2 receptor peptide TXA2-R(1-9), bearing the N-terminal MWP sequence motif, as a potent DP IV inhibitor possibly playing a functional role during antigen presentation by inhibiting T cell-expressed DP IV [Wrenger, S., Faust, J., Mrestani-Klaus, C., Fengler, A., Stöckel-Maschek, A., Lorey, S., Kähne, T., Brandt, W., Neubert, K., Ansorge, S. & Reinhold, D. (2000) J. Biol. Chem.275, 22180-22186]. Here, we demonstrate that amino acid substitutions at different positions of Tat(1-9) can result in a change of the inhibition type. Certain Tat(1-9)-related peptides are found to be competitive, and others linear mixed-type or parabolic mixed-type inhibitors indicating different inhibitor binding sites on DP IV, at the active site and out of the active site. The parabolic mixed-type mechanism, attributed to both non-mutually exclusive inhibitor binding sites of the enzyme, is described in detail. From the kinetic investigations and molecular modeling experiments, possible interactions of the oligopeptides with specified amino acids of DP IV are suggested. These findings give new insights for the development of more potent and specific peptide-based DP IV inhibitors. Such inhibitors could be useful for the treatment of autoimmune and inflammatory diseases. PMID:12752434

  11. 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on G alpha(q/11).

    PubMed

    Blanc, E M; Kelly, J F; Mark, R J; Waeg, G; Mattson, M P

    1997-08-01

    Considerable data indicate that oxidative stress and membrane lipid peroxidation contribute to neuronal degeneration in an array of age-related neurodegenerative disorders. In contrast, the impact of subtoxic levels of membrane lipid peroxidation on neuronal function is largely unknown. We now report that 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, disrupts coupling of muscarinic cholinergic receptors and metabotropic glutamate receptors to phospholipase C-linked GTP-binding proteins in cultured rat cerebrocortical neurons. At subtoxic concentrations, HNE markedly inhibited GTPase activity, inositol phosphate release, and elevation of intracellular calcium levels induced by carbachol (muscarinic agonist) and (RS)-3,5-dihydroxyphenyl glycine (metabotropic glutamate receptor agonist). Maximal impairment of agonist-induced responses occurred within 30 min of exposure to HNE. Other aldehydes, including malondialdehyde, had little effect on agonist-induced responses. Antioxidants that suppress lipid peroxidation did not prevent impairment of agonist-induced responses by HNE, whereas glutathione, which is known to bind and detoxify HNE, did prevent impairment of agonist-induced responses. HNE itself did not induce oxidative stress. Immunoprecipitation-western blot analysis using an antibody to HNE-protein conjugates showed that HNE can bind to G alpha(q/11). HNE also significantly suppressed inositol phosphate release induced by aluminum fluoride. Collectively, our data suggest that HNE plays a role in altering receptor-G protein coupling in neurons under conditions of oxidative stress that may occur both normally, and before cell degeneration and death in pathological settings. PMID:9231714

  12. Cooperative binding: a multiple personality.

    PubMed

    Martini, Johannes W R; Diambra, Luis; Habeck, Michael

    2016-06-01

    Cooperative binding has been described in many publications and has been related to or defined by several different properties of the binding behavior of the ligand to the target molecule. In addition to the commonly used Hill coefficient, other characteristics such as a sigmoidal shape of the overall titration curve in a linear plot, a change of ligand affinity of the other binding sites when a site of the target molecule becomes occupied, or complex roots of the binding polynomial have been used to define or to quantify cooperative binding. In this work, we analyze how the different properties are related in the most general model for binding curves based on the grand canonical partition function and present several examples which highlight differences between the cooperativity characterizing properties which are discussed. Our results mainly show that among the presented definitions there are not two which fully coincide. Moreover, this work poses the question whether it can make sense to distinguish between positive and negative cooperativity based on the macroscopic binding isotherm only. This article shall emphasize that scientists who investigate cooperative effects in biological systems could help avoiding misunderstandings by stating clearly which kind of cooperativity they discuss. PMID:26319983

  13. (/sup 3/)tetrahydrotrazodone binding. Association with serotonin binding sites

    SciTech Connect

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-05-01

    High (17 nM) and low (603 nM) affinity binding sites for (/sup 3/)tetrahydrotrazodone ((/sup 3/) THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of (/sup 3/)THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, (/sup 3/) THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that (/sup 3/)THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors.

  14. Benzodiazepine binding to bovine retina.

    PubMed

    Osborne, N N

    1980-02-01

    [3H]Diazepam binds to membrane preparations of the retina, suggesting that benzodiazepine receptors exist in this tissue. The binding characteristics are similar to those known to occur in the brain, with affinity constants in the same range. Unlike the finding in the brain, [3H]diazepam binding in the retina is not stimulated by GABA and other GABA agonists. These findings indicate that benzodiazepine receptors may have a more general function and not only be associated with anxiety or emotional behaviour. PMID:6302572

  15. Mercury binding on activated carbon

    SciTech Connect

    Bihter Padak; Michael Brunetti; Amanda Lewis; Jennifer Wilcox

    2006-11-15

    Density functional theory has been employed for the modeling of activated carbon (AC) using a fused-benzene ring cluster approach. Oxygen functional groups have been investigated for their promotion of effective elemental mercury binding on AC surface sites. Lactone and carbonyl functional groups yield the highest mercury binding energies. Further, the addition of halogen atoms has been considered to the modeled surface, and has been found to increase the AC's mercury adsorption capacity. The mercury binding energies increase with the addition of the following halogen atoms, F {gt} Cl {gt} Br {gt} I, with the fluorine addition being the most promising halogen for increasing mercury adsorption.

  16. Superresolution microscopy with transient binding.

    PubMed

    Molle, Julia; Raab, Mario; Holzmeister, Susanne; Schmitt-Monreal, Daniel; Grohmann, Dina; He, Zhike; Tinnefeld, Philip

    2016-06-01

    For single-molecule localization based superresolution, the concentration of fluorescent labels has to be thinned out. This is commonly achieved by photophysically or photochemically deactivating subsets of molecules. Alternatively, apparent switching of molecules can be achieved by transient binding of fluorescent labels. Here, a diffusing dye yields bright fluorescent spots when binding to the structure of interest. As the binding interaction is weak, the labeling is reversible and the dye ligand construct diffuses back into solution. This approach of achieving superresolution by transient binding (STB) is reviewed in this manuscript. Different realizations of STB are discussed and compared to other localization-based superresolution modalities. We propose the development of labeling strategies that will make STB a highly versatile tool for superresolution microscopy at highest resolution. PMID:26773299

  17. When is protein binding important?

    PubMed

    Heuberger, Jules; Schmidt, Stephan; Derendorf, Hartmut

    2013-09-01

    The present paper is an ode to a classic citation by Benet and Hoener (2002. Clin Pharm Ther 71(3):115-121). The now classic paper had a huge impact on drug development and the way the issue of protein binding is perceived and interpreted. Although the authors very clearly pointed out the limitations and underlying assumptions for their delineations, these are too often overlooked and the classic paper's message is misinterpreted by broadening to cases that were not intended. Some members of the scientific community concluded from the paper that protein binding is not important. This was clearly not intended by the authors, as they finished their paper with a paragraph entitled: "When is protein binding important?" Misinterpretation of the underlying assumptions in the classic work can result in major pitfalls in drug development. Therefore, we revisit the topic of protein binding with the intention of clarifying when clinically relevant changes should be considered during drug development. PMID:23650013

  18. Cholesterol binding to ion channels

    PubMed Central

    Levitan, Irena; Singh, Dev K.; Rosenhouse-Dantsker, Avia

    2014-01-01

    Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions. PMID:24616704

  19. Water binding in legume seeds

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    The physical status of water in seeds has a pivotal role in determining the physiological reactions that can take place in the dry state. Using water sorption isotherms from cotyledon and axis tissue of five leguminous seeds, the strength of water binding and the numbers of binding sites have been estimated using van't Hoff analyses and the D'Arcy/Watt equation. These parameters of water sorption are calculated for each of the three regions of water binding and for a range of temperatures. Water sorption characteristics are reflective of the chemical composition of the biological materials as well as the temperature at which hydration takes place. Changes in the sorption characteristics with temperature and hydration level may suggest hydration-induced structural changes in cellular components.

  20. Computational Prediction of RNA-Binding Proteins and Binding Sites

    PubMed Central

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions. PMID:26540053

  1. Unusual monoclonal DNA binding immunoglobulin.

    PubMed

    Sawada, S; Iijima, S; Kuwana, K; Nishinarita, S; Takeuchi, J; Shida, M; Karasaki, M; Amaki, I

    1983-03-01

    The monoclonal antibodies directed against DNA were produced by somatic cell hybridization with parental cells (SP-2) and spleen cells from nonimmunized autoimmune MRL/lpr mice. The immunoglobulins were recovered from the culture supernatant from hybridoma by a solid immunoadsorbent and antibody immunoprecipitation. The results from the specificities of DNA binding monoclonal immunoglobulins suggest that the antibodies to DNA have the antibody combining sites for both epitope of double stranded helix and base of DNA and support the concept of the multiple antigen binding potentials of the hybridoma autoantibodies. PMID:6857646

  2. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.

    PubMed

    Lambert, Nicole J; Robertson, Alex D; Burge, Christopher B

    2015-01-01

    RNA-binding proteins (RBPs) coordinate post-transcriptional control of gene expression, often through sequence-specific recognition of primary transcripts or mature messenger RNAs. Hundreds of RBPs are encoded in the human genome, most with undefined or incompletely defined biological roles. Understanding the function of these factors will require the identification of each RBP's distinct RNA binding specificity. RNA Bind-n-Seq (RBNS) is a high-throughput, cost-effective in vitro method capable of resolving sequence and secondary structure preferences of RBPs. Dissociation constants can also be inferred from RBNS data when provided with additional experimental information. Here, we describe the experimental procedures to perform RBNS and discuss important parameters of the method and ways that the experiment can be tailored to the specific RBP under study. Additionally, we present the conceptual framework and execution of the freely available RBNS computational pipeline and describe the outputs of the pipeline. Different approaches to quantify binding specificity, quality control metrics, and estimation of binding constants are also covered. PMID:26068750

  3. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  4. Positive Emotion Facilitates Audiovisual Binding

    PubMed Central

    Kitamura, Miho S.; Watanabe, Katsumi; Kitagawa, Norimichi

    2016-01-01

    It has been shown that positive emotions can facilitate integrative and associative information processing in cognitive functions. The present study examined whether emotions in observers can also enhance perceptual integrative processes. We tested 125 participants in total for revealing the effects of emotional states and traits in observers on the multisensory binding between auditory and visual signals. Participants in Experiment 1 observed two identical visual disks moving toward each other, coinciding, and moving away, presented with a brief sound. We found that for participants with lower depressive tendency, induced happy moods increased the width of the temporal binding window of the sound-induced bounce percept in the stream/bounce display, while no effect was found for the participants with higher depressive tendency. In contrast, no effect of mood was observed for a simple audiovisual simultaneity discrimination task in Experiment 2. These results provide the first empirical evidence of a dependency of multisensory binding upon emotional states and traits, revealing that positive emotions can facilitate the multisensory binding processes at a perceptual level. PMID:26834585

  5. Hebrew as a Binding Force.

    ERIC Educational Resources Information Center

    Fischler, Ben-Zion

    1990-01-01

    The role of the Hebrew language as a cohesive force and the history of modern Hebrew instruction are chronicled. It is proposed that despite the scattering of its speakers and periods of use only as a literary or business language, Hebrew has been a binding force for the Jewish people. It was with considerable struggle that Hebrew gained…

  6. Al(+)-ligand binding energies

    NASA Technical Reports Server (NTRS)

    Sodupe, M.; Bauschlicher, Charles W., Jr.

    1991-01-01

    Ab initio calculations are used to optimize the structure and determine the binding energies of Al(+) to a series of ligands. For Al(+)-CN, the bonding was found to have a large covalent component. For the remaining ligands, the bonding is shown to be electrostatic in origin. The results obtained for Al(+) are compared with those previously reported for Mg(+).

  7. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  8. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  9. Protein binding assay for hyaluronate

    SciTech Connect

    Lacy, B.E.; Underhill, C.B.

    1986-11-01

    A relatively quick and simple assay for hyaluronate was developed using the specific binding protein, hyaluronectin. The hyaluronectin was obtained by homogenizing the brains of Sprague-Dawley rats, and then centrifuging the homogenate. The resulting supernatant was used as a source of crude hyaluronectin. In the binding assay, the hyaluronectin was mixed with (/sup 3/H)hyaluronate, followed by an equal volume of saturated (NH/sub 4/)/sub 2/SO/sub 4/, which precipitated the hyaluronectin and any (/sup 3/H)hyaluronate associated with it, but left free (/sup 3/H)hyaluronate in solution. The mixture was then centrifuged, and the amount of bound (/sup 3/H)hyaluronate in the precipitate was determined. Using this assay, the authors found that hyaluronectin specifically bound hyaluronate, since other glycosaminoglycans failed to compete for the binding protein. In addition, the interaction between hyaluronectin and hyaluronate was of relatively high affinity, and the size of the hyaluronate did not appear to substantially alter the amount of binding. To determine the amount of hyaluronate in an unknown sample, they used a competition assay in which the binding of a set amount of (/sup 3/H)hyaluronate was blocked by the addition of unlabeled hyaluronate. By comparing the degree of competition of the unknown samples with that of known amounts of hyaluronate, it was possible to determine the amount of hyaluronate in the unknowns. They have found that this method is sensitive to 1 ..mu..g or less of hyaluronate, and is unaffected by the presence of proteins.

  10. The prion protein binds thiamine.

    PubMed

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction. PMID:21848803

  11. Mg(+)-ligand binding energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry

    1991-01-01

    Ab initio calculations are used to optimize the structures and determine the binding energies of Mg(+) to a series of ligands. Mg(+) bonds electrostatically with benzene, acetone, H2, CO, and NH3 and a self-consistent-field treatment gives a good description of the bonding. The bonding in MgCN(+) and MgCH3(+) is largely covalent and a correlated treatment is required.

  12. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  13. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  14. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  15. Feature-Based Binding and Phase Theory

    ERIC Educational Resources Information Center

    Antonenko, Andrei

    2012-01-01

    Current theories of binding cannot provide a uniform account for many facts associated with the distribution of anaphors, such as long-distance binding effects and the subject-orientation of monomorphemic anaphors. Further, traditional binding theory is incompatible with minimalist assumptions. In this dissertation I propose an analysis of…

  16. Evolution of Protein-binding DNA Sequences through Competitive Binding

    NASA Astrophysics Data System (ADS)

    Peng, Weiqun; Gerland, Ulrich; Hwa, Terence; Levine, Herbert

    2002-03-01

    The dynamics of in vitro DNA evolution controlled via competitive binding of DNA sequences to proteins has been explored in a recent serial transfer experiment footnote B. Dubertret, S.Liu, Q. Ouyang, A. Libchaber, Phys. Rev. Lett. 86, 6022 (2001).. Motivated by the experiment, we investigate a continuum model for this evolution process in various parameter regimes. We establish a self-consistent mean-field evolution equation, determine its dynamical properties and finite population size corrections. In addition, we discuss the experimental implications of our results.

  17. Synthetic heparin-binding factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul O.; Lin, Xinhua; Glass, John D.

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  18. Localization of the chaperone binding site

    NASA Technical Reports Server (NTRS)

    Boyle, D.; Gopalakrishnan, S.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The hypothesis derived from models of the multi-oligomeric chaperone complex suggests that partially denatured proteins bind in a central cavity in the aggregate. To test this hypothesis, the molecular chaperone, alpha crystallin, was bound to partially denatured forms of gamma crystallin, and the binding site was visualized by immunogold localization. In an alternative approach, gold particles were directly complexed with gamma crystallin, followed by binding to the alpha crystallin aggregate. In both cases, binding was localized to the central region of the aggregate, confirming for the first time that partially denatured proteins do indeed bind to a central region of the molecular chaperone aggregate.

  19. Unraveling determinants of transcription factor binding outside the core binding site.

    PubMed

    Levo, Michal; Zalckvar, Einat; Sharon, Eilon; Dantas Machado, Ana Carolina; Kalma, Yael; Lotam-Pompan, Maya; Weinberger, Adina; Yakhini, Zohar; Rohs, Remo; Segal, Eran

    2015-07-01

    Binding of transcription factors (TFs) to regulatory sequences is a pivotal step in the control of gene expression. Despite many advances in the characterization of sequence motifs recognized by TFs, our ability to quantitatively predict TF binding to different regulatory sequences is still limited. Here, we present a novel experimental assay termed BunDLE-seq that provides quantitative measurements of TF binding to thousands of fully designed sequences of 200 bp in length within a single experiment. Applying this binding assay to two yeast TFs, we demonstrate that sequences outside the core TF binding site profoundly affect TF binding. We show that TF-specific models based on the sequence or DNA shape of the regions flanking the core binding site are highly predictive of the measured differential TF binding. We further characterize the dependence of TF binding, accounting for measurements of single and co-occurring binding events, on the number and location of binding sites and on the TF concentration. Finally, by coupling our in vitro TF binding measurements, and another application of our method probing nucleosome formation, to in vivo expression measurements carried out with the same template sequences serving as promoters, we offer insights into mechanisms that may determine the different expression outcomes observed. Our assay thus paves the way to a more comprehensive understanding of TF binding to regulatory sequences and allows the characterization of TF binding determinants within and outside of core binding sites. PMID:25762553

  20. Infinite sets and double binds.

    PubMed

    Arden, M

    1984-01-01

    There have been many attempts to bring psychoanalytical theory up to date. This paper approaches the problem by discussing the work of Gregory Bateson and Ignacio Matte-Blanco, with particular reference to the use made by these authors of Russell's theory of logical types. Bateson's theory of the double bind and Matte-Blanco's bilogic are both based on concepts of logical typing. It is argued that the two theories can be linked by the idea that neurotic symptoms are based on category errors in thinking. Clinical material is presented from the analysis of a middle-aged woman. The intention is to demonstrate that the process of making interpretations can be thought of as revealing errors in thinking. Changes in the patient's inner world are then seen to be the result of clarifying childhood experiences based on category errors. Matte-Blanco's theory of bilogic and infinite experiences is a re-evaluation of the place of the primary process in mental life. It is suggested that a combination of bilogic and double bind theory provides a possibility of reformulating psychoanalytical theory. PMID:6544755

  1. Comparing binding site information to binding affinity reveals that Crp/DNA complexes have several distinct binding conformers

    PubMed Central

    Holmquist, Peter C.; Holmquist, Gerald P.; Summers, Michael L.

    2011-01-01

    We show that the cAMP receptor protein (Crp) binds to DNA as several different conformers. This situation has precluded discovering a high correlation between any sequence property and binding affinity for proteins that bend DNA. Experimentally quantified affinities of Synechocystis sp. PCC 6803 cAMP receptor protein (SyCrp1), the Escherichia coli Crp (EcCrp, also CAP) and DNA were analyzed to mathematically describe, and make human-readable, the relationship of DNA sequence and binding affinity in a given system. Here, sequence logos and weight matrices were built to model SyCrp1 binding sequences. Comparing the weight matrix model to binding affinity revealed several distinct binding conformations. These Crp/DNA conformations were asymmetrical (non-palindromic). PMID:21586590

  2. Nucleotide-binding mechanisms in pseudokinases

    PubMed Central

    Hammarén, Henrik M.; Virtanen, Anniina T.; Silvennoinen, Olli

    2015-01-01

    Pseudokinases are classified by the lack of one or several of the highly conserved motifs involved in nucleotide (nt) binding or catalytic activity of protein kinases (PKs). Pseudokinases represent ∼10% of the human kinome and they are found in all evolutionary classes of kinases. It has become evident that pseudokinases, which were initially considered somewhat peculiar dead kinases, are important components in several signalling cascades. Furthermore, several pseudokinases have been linked to human diseases, particularly cancer, which is raising interest for therapeutic approaches towards these proteins. The ATP-binding pocket is a well-established drug target and elucidation of the mechanism and properties of nt binding in pseudokinases is of significant interest and importance. Recent studies have demonstrated that members of the pseudokinase family are very diverse in structure as well as in their ability and mechanism to bind nts or perform phosphoryl transfer reactions. This diversity also precludes prediction of pseudokinase function, or the importance of nt binding for said function, based on primary sequence alone. Currently available data indicate that ∼40% of pseudokinases are able to bind nts, whereas only few are able to catalyse occasional phosphoryl transfer. Pseudokinases employ diverse mechanisms to bind nts, which usually occurs at low, but physiological, affinity. ATP binding serves often a structural role but in most cases the functional roles are not precisely known. In the present review, we discuss the various mechanisms that pseudokinases employ for nt binding and how this often low-affinity binding can be accurately analysed. PMID:26589967

  3. Receptor-binding sites: bioinformatic approaches.

    PubMed

    Flower, Darren R

    2006-01-01

    It is increasingly clear that both transient and long-lasting interactions between biomacromolecules and their molecular partners are the most fundamental of all biological mechanisms and lie at the conceptual heart of protein function. In particular, the protein-binding site is the most fascinating and important mechanistic arbiter of protein function. In this review, I examine the nature of protein-binding sites found in both ligand-binding receptors and substrate-binding enzymes. I highlight two important concepts underlying the identification and analysis of binding sites. The first is based on knowledge: when one knows the location of a binding site in one protein, one can "inherit" the site from one protein to another. The second approach involves the a priori prediction of a binding site from a sequence or a structure. The full and complete analysis of binding sites will necessarily involve the full range of informatic techniques ranging from sequence-based bioinformatic analysis through structural bioinformatics to computational chemistry and molecular physics. Integration of both diverse experimental and diverse theoretical approaches is thus a mandatory requirement in the evaluation of binding sites and the binding events that occur within them. PMID:16671408

  4. Synthetic LPS-Binding Polymer Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Tian

    Lipopolysaccharide (LPS), one of the principal components of most gram-negative bacteria's outer membrane, is a type of contaminant that can be frequently found in recombinant DNA products. Because of its strong and even lethal biological effects, selective LPS removal from bioproducts solution is of particular importance in the pharmaceutical and health care industries. In this thesis, for the first time, a proof-of-concept study on preparing LPS-binding hydrogel-like NPs through facile one-step free-radical polymerization was presented. With the incorporation of various hydrophobic (TBAm), cationic (APM, GUA) monomers and cross-linkers (BIS, PEG), a small library of NPs was constructed. Their FITC-LPS binding behaviors were investigated and compared with those of commercially available LPS-binding products. Moreover, the LPS binding selectivity of the NPs was also explored by studying the NPs-BSA interactions. The results showed that all NPs obtained generally presented higher FITC-LPS binding capacity in lower ionic strength buffer than higher ionic strength. However, unlike commercial poly-lysine cellulose and polymyxin B agarose beads' nearly linear increase of FITC-LPS binding with particle concentration, NPs exhibited serious aggregation and the binding quickly saturated or even decreased at high particle concentration. Among various types of NPs, higher FITC-LPS binding capacity was observed for those containing more hydrophobic monomers (TBAm). However, surprisingly, more cationic NPs with higher content of APM exhibited decreased FITC-LPS binding in high ionic strength conditions. Additionally, when new cationic monomer and cross-linker, GUA and PEG, were applied to replace APM and BIS, the obtained NPs showed improved FITC-LPS binding capacity at low NP concentration. But compared with APM- and BIS-containing NPs, the FITC-LPS binding capacity of GUA- and PEG-containing NPs saturated earlier. To investigate the NPs' binding to proteins, we tested the NPs

  5. DNA Binding Hydroxyl Radical Probes

    PubMed Central

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2011-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA. PMID:22125376

  6. Hemoglobin binding to deglycosylated haptoglobin.

    PubMed

    Kaartinen, V; Mononen, I

    1988-04-14

    The carbohydrate portion of polymeric haptoglobin was gradually removed by exoglycosidases in order to investigate its role in complex formation between haptoglobin and hemoglobin. Total removal of sialic acid diminished the haptoglobin-hemoglobin complex formation 15%. Removal of about 25% of the galactose residues from asialohaptoglobin, i.e., about 40% of the total weight of the carbohydrate moiety, totally inhibited the ability of haptoglobin to form complex with hemoglobin and react with haptoglobin-specific antibodies. Liberation of further galactose residues resulted in slow precipitation of the protein. Removal of a similar part of the carbohydrate moiety from haptoglobin-hemoglobin complex did not liberate hemoglobin from it, and the complex reacted with haptoglobin antibodies. The combined data indicate that the carbohydrate portion is essential for the functionally active form of polymeric haptoglobin to complex with hemoglobin, but it hardly has any direct role in the binding event, and other factors are responsible for the stability of the complex. PMID:3128331

  7. Secretin: specific binding to rat brain membranes

    SciTech Connect

    Fremeau, R.T. Jr.; Jensen, R.T.; Charlton, C.G.; Miller, R.L.; O'Donohue, T.L.; Moody, T.W.

    1983-08-01

    The binding of (/sup 125/I)secretin to rat brain membranes was investigated. Radiolabeled secretin bound with high affinity (KD . 0.2 nM) to a single class of noninteracting sites. Binding was specific, saturable, and reversible. Regional distribution studies indicated that the specific binding was greatest in the cerebellum, intermediate in the cortex, thalamus, striatum, hippocampus, and hypothalamus, and lowest in the midbrain and medulla/pons. Pharmacological studies indicated that only secretin, but not other peptides, inhibits binding of (/sup 125/I)secretin with high affinity. Also, certain guanine nucleotides inhibited high affinity binding. These data indicate that rat brain membranes possess high affinity binding sites specific for secretin and that with the use of (/sup 125/I) secretin the kinetics, stoichiometry, specificity, and distribution of secretin receptors can be directly investigated.

  8. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  9. Binding of TH-iloprost to rat gastric mucosa: a pitfall in performing radioligand binding assays

    SciTech Connect

    Beinborn, M.; Kromer, W.; Staar, U.; Sewing, K.F.

    1985-09-01

    Binding of TH-iloprost was studied in a 20,000 x g sediment of the rat gastric mucosa. When pH in both test tubes for total and non-specific binding was kept identical, no displaceable binding of iloprost could be detected. When no care was taken to keep the pH identical in corresponding test tubes of the binding assay, changes in pH simulated specific and displaceable binding of iloprost. Therefore it is concluded that - in contrast to earlier reports - it is not possible to demonstrate specific iloprost binding using the given method.

  10. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  11. Binding Efficiency of Protein-Protein Complexes

    PubMed Central

    Day, Eric S.; Cote, Shaun M.; Whitty, Adrian

    2012-01-01

    We examine the relationship between binding affinity and interface size for reversible protein-protein interactions (PPI), using cytokines from the tumor necrosis factor (TNF) superfamily and their receptors as a test case. Using surface plasmon resonance, we measured single-site binding affinities for the large receptor TNFR1 binding to its ligands TNFα (KD = 1.4 ± 0.4 nM) and lymphotoxin-α (KD = 50 ± 10 nM), and also for the small receptor Fn14 binding to TWEAK (KD = 70 ± 10 nM). We additionally assembled data for all other TNF/TNFR family complexes for which reliable single site binding affinities have been reported. We used these values to calculate the binding efficiency – defined as binding energy per Å2 of surface area buried at the contact interface – for the nine of these complexes for which co-crystal structures are available, and compared the results to those for a set of 144 protein-protein complexes with published affinity values. The results show that the most efficient PPI complexes generate ~20 cal.mol−1/Å2 of binding energy. A minimum contact area of ~500 Å2 is required for a stable complex, required to generate sufficient interaction energy to pay the entropic cost of co-localizing two proteins from 1 M solution. The most compact and efficient TNF/TNFR complex was BAFF/BR3, which achieved ~80% of the maximum achievable binding efficiency. Other small receptors also gave high binding efficiencies, while the larger receptors generated only 44-49% of this limit despite interacting primarily through just a single small domain. The results provide new insight into how much binding energy can be generated by a PPI interface of a given size, and establish a quantitative method to predict how large a natural or engineered contact interface must be to achieve a given level of binding affinity. PMID:23088250

  12. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin

    PubMed Central

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units. PMID:26714191

  13. Radiation abolishes inducer binding to lactose repressor.

    PubMed

    Gillard, Nathalie; Spotheim-Maurizot, Mélanie; Charlier, Michel

    2005-04-01

    The lactose operon functions under the control of the repressor-operator system. Binding of the repressor to the operator prevents the expression of the structural genes. This interaction can be destroyed by the binding of an inducer to the repressor. If ionizing radiations damage the partners, a dramatic dysfunction of the regulation system may be expected. We showed previously that gamma irradiation hinders repressor-operator binding through protein damage. Here we show that irradiation of the repressor abolishes the binding of the gratuitous inducer isopropyl-1-beta-D-thiogalactoside (IPTG) to the repressor. The observed lack of release of the repressor from the complex results from the loss of the ability of the inducer to bind to the repressor due to the destruction of the IPTG binding site. Fluorescence measurements show that both tryptophan residues located in or near the IPTG binding site are damaged. Since tryptophan damage is strongly correlated with the loss of IPTG binding ability, we conclude that it plays a critical role in the effect. A model was built that takes into account the kinetic analysis of damage production and the observed protection of its binding site by IPTG. This model satisfactorily accounts for the experimental results and allows us to understand the radiation-induced effects. PMID:15799700

  14. Evolution of Protein Binding Modes in Homooligomers

    PubMed Central

    Dayhoff, Judith E.; Shoemaker, Benjamin A.; Bryant, Stephen H.; Panchenko, Anna R.

    2009-01-01

    The evolution of protein interactions cannot be deciphered without a detailed analysis of interaction interfaces and binding modes. We performed a large-scale study of protein homooligomers in terms of their symmetry, interface sizes, and conservation of binding modes. We also focused specifically on the evolution of protein binding modes from nine families of homooligomers and mapped 60 different binding modes and oligomerization states onto the phylogenetic trees of these families. We observed a significant tendency for the same binding modes to be clustered together and conserved within clades on phylogenetic trees; this trend is especially pronounced for close homologs with 70% sequence identity or higher. Some binding modes are conserved among very distant homologs, pointing to their ancient evolutionary origin, while others are very specific for a certain phylogenetic group. Moreover, we found that the most ancient binding modes have a tendency to involve symmetrical (isologous) homodimer binding arrangements with larger interfaces, while recently evolved binding modes more often exhibit asymmetrical arrangements and smaller interfaces. PMID:19879880

  15. Fundamental considerations in ski binding analysis.

    PubMed

    Mote, C D; Hull, M L

    1976-01-01

    1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier

  16. Lack of [3H]quinuclidinyl benzylate binding to biologically relevant binding sites on mononuclear cells.

    PubMed

    Adams, E M; Lubrano, T M; Gordon, J; Fields, J Z

    1992-09-01

    We analyzed the binding characteristics of [3H]quinuclidinyl benzylate ([3H]QNB), a muscarinic cholinergic ligand, to rat and human mononuclear cells (MNC). Under various assay conditions, atropine-sensitive, saturable binding occurred with an apparent Kd of 10 nM. Conditions which disrupted the MNC membrane reduced total binding and eliminated specific binding. Muscarinic agonists were unable to inhibit [3H]QNB binding to MNC at concentrations up to 10(-2) M. Stereoisomers dexetimide and levetimide were equipotent inhibitors of binding (IC50 2 x 10(-5) M). We conclude that, although atropine-sensitive binding of [3H]QNB to MNC occurs, the binding is not consistent with the presence of a biologically relevant muscarinic cholinergic receptor. PMID:1392105

  17. New DNA-binding radioprotectors

    NASA Astrophysics Data System (ADS)

    Martin, Roger

    The normal tissue damage associated with cancer radiotherapy has motivated the development at Peter Mac of a new class of DNA-binding radioprotecting drugs that could be applied top-ically to normal tissues at risk. Methylproamine (MP), the lead compound, reduces radiation induced cell kill at low concentrations. For example, experiments comparing the clonogenic survival of transformed human keratinocytes treated with 30 micromolar MP before and dur-ing various doses of ionising radiation, with the radiation dose response for untreated cells, indicate a dose reduction factor (DRF) of 2. Similar survival curve experiments using various concentrations of MP, with parallel measurements of uptake of MP into cell nuclei, have en-abled the relationship between drug uptake and extent of radioprotection to be established. Radioprotection has also been demonstrated after systemic administration to mice, for three different endpoints, namely lung, jejunum and bone marrow (survival at 30 days post-TBI). The results of pulse radiolysis studies indicated that the drugs act by reduction of transient radiation-induced oxidative species on DNA. This hypothesis was substantiated by the results of experiments in which MP radioprotection of radiation-induced DNA double-strand breaks, assessed as -H2AX foci, in the human keratinocyte cell line. For both endpoints, the extent of radioprotection increased with MP concentration up to a maximal value. These results are consistent with the hypothesis that radioprotection by MP is mediated by attenuation of the extent of initial DNA damage. However, although MP is a potent radioprotector, it becomes cytotoxic at higher concentrations. This limitation has been addressed in an extensive program of lead optimisation and some promising analogues have emerged from which the next lead will be selected. Given the clinical potential of topical radioprotection, the new analogues are being assessed in terms of delivery to mouse oral mucosa. This is

  18. Methods for Improving Aptamer Binding Affinity.

    PubMed

    Hasegawa, Hijiri; Savory, Nasa; Abe, Koichi; Ikebukuro, Kazunori

    2016-01-01

    Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of aptamers. In particular, sequence optimization using combined in silico sequence recombinations and in vitro functional evaluations is effective for the improvement of binding affinities, however, the binding affinities of aptamers are limited by the low hydrophobicity of nucleic acids. Accordingly, introduction of hydrophobic moieties into aptamers expands the diversity of interactions between aptamers and targets. Moreover, construction of multivalent aptamers by connecting aptamers that recognize distinct epitopes is an attractive approach to substantial increases in binding affinity. In addition, binding affinities can be tuned by optimizing the scaffolds of multivalent constructs. In this review, we summarize the various techniques for improving the binding affinities of aptamers. PMID:27043498

  19. Multiple instance learning of Calmodulin binding sites

    PubMed Central

    Minhas, Fayyaz ul Amir Afsar; Ben-Hur, Asa

    2012-01-01

    Motivation: Calmodulin (CaM) is a ubiquitously conserved protein that acts as a calcium sensor, and interacts with a large number of proteins. Detection of CaM binding proteins and their interaction sites experimentally requires a significant effort, so accurate methods for their prediction are important. Results: We present a novel algorithm (MI-1 SVM) for binding site prediction and evaluate its performance on a set of CaM-binding proteins extracted from the Calmodulin Target Database. Our approach directly models the problem of binding site prediction as a large-margin classification problem, and is able to take into account uncertainty in binding site location. We show that the proposed algorithm performs better than the standard SVM formulation, and illustrate its ability to recover known CaM binding motifs. A highly accurate cascaded classification approach using the proposed binding site prediction method to predict CaM binding proteins in Arabidopsis thaliana is also presented. Availability: Matlab code for training MI-1 SVM and the cascaded classification approach is available on request. Contact: fayyazafsar@gmail.com or asa@cs.colostate.edu PMID:22962461

  20. Backbone Dynamics Of Intracellular Lipid Binding Proteins

    NASA Astrophysics Data System (ADS)

    Gutiérrez-González, Luis H.

    2005-04-01

    The family of intracellular lipid binding proteins (iLBPs) comprises a group of homologous 14-15 kDa proteins that specifically bind and facilitate the transport of fatty acids, bile acids, retinoids or eicosanoids. Members of this family include several types of fatty acid binding proteins (FABPs), ileal lipid binding protein, cellular retinoic acid binding proteins and cellular retinoid binding proteins. As a contribution to understanding the structure-function relationship in this protein family, the solution structure and backbone dynamics of human epidermal-type FABP (E-FABP) determined by NMR spectroscopy are reported. Moreover, hydrogen/deuterium exchange experiments indicated a direct correlation between the stability of the hydrogen-bonding network in the β-sheet structure and the conformational exchange in the millisecond-to-microsecond time range. The features of E-FABP backbone dynamics discussed in the present study are compared with those obtained for other phylogenetically related proteins. A strong interdependence with the overall protein stability and possibly also with the ligand-binding affinity for members of the lipid-binding protein family is shown.

  1. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  2. Haptenation: Chemical Reactivity and Protein Binding

    PubMed Central

    Chipinda, Itai; Hettick, Justin M.; Siegel, Paul D.

    2011-01-01

    Low molecular weight chemical (LMW) allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed. PMID:21785613

  3. Nonphysiological binding of ethylene by plants.

    PubMed

    Abeles, F B

    1984-03-01

    Ethylene binding to seedling tissue of Vicia faba, Phaseolus vulgaris, Glycine max, and Triticum aestivum was demonstrated by determining transit time required for ethylene to move through a glass tube filled with seedling tissue. Transit time for ethylene was greater than that for methane indicating that these tissues had an affinity for ethylene. However, the following observations suggest that the binding was not physiological. Inhibitors of ethylene action such as Ag(+) ions and CO(2) did not decrease binding. Mushrooms which have no known sites of ethylene action also demonstrated ethylene binding. The binding of acetylene, propylene, ethylene, propane, and ethane more closely followed their solubility in water than any known physiological activity. PMID:16663455

  4. Nonphysiological Binding of Ethylene by Plants

    PubMed Central

    Abeles, Fred B.

    1984-01-01

    Ethylene binding to seedling tissue of Vicia faba, Phaseolus vulgaris, Glycine max, and Triticum aestivum was demonstrated by determining transit time required for ethylene to move through a glass tube filled with seedling tissue. Transit time for ethylene was greater than that for methane indicating that these tissues had an affinity for ethylene. However, the following observations suggest that the binding was not physiological. Inhibitors of ethylene action such as Ag+ ions and CO2 did not decrease binding. Mushrooms which have no known sites of ethylene action also demonstrated ethylene binding. The binding of acetylene, propylene, ethylene, propane, and ethane more closely followed their solubility in water than any known physiological activity. PMID:16663455

  5. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  6. Follitropin receptors contain cryptic ligand binding sites.

    PubMed

    Lin, Win; Bernard, Michael P; Cao, Donghui; Myers, Rebecca V; Kerrigan, John E; Moyle, William R

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with different regions of an FSHR/LHR chimera having only two unique LHR residues and that binds both hormones with high affinity. hCG and hFSH analogs dock with this receptor chimera in a manner similar to that in which they bind LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  7. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.

    PubMed

    Tinberg, Christine E; Khare, Sagar D

    2016-01-01

    The ability to de novo design proteins that can bind small molecules has wide implications for synthetic biology and medicine. Combining computational protein design with the high-throughput screening of mutagenic libraries of computationally designed proteins is emerging as a general approach for creating binding proteins with programmable binding modes, affinities, and selectivities. The computational step enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended ligand, and targeted mutagenic screening allows for validation and refinement of the computational model as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic libraries can provide insights into the mutagenic binding landscape and enable further affinity improvements. Moreover, in such a combined computational-experimental approach where the binding mode is preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the experimental aspects of a combined computational-experimental approach for designing-using the software suite Rosetta-proteins that bind a small molecule of choice and engineering, using fluorescence-activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structurally related steroids. PMID:27094290

  8. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  9. The TRPV5/6 calcium channels contain multiple calmodulin binding sites with differential binding properties.

    PubMed

    Kovalevskaya, Nadezda V; Bokhovchuk, Fedir M; Vuister, Geerten W

    2012-06-01

    The epithelial Ca(2+) channels TRPV5/6 (transient receptor potential vanilloid 5/6) are thoroughly regulated in order to fine-tune the amount of Ca(2+) reabsorption. Calmodulin has been shown to be involved into calcium-dependent inactivation of TRPV5/6 channels by binding directly to the distal C-terminal fragment of the channels (de Groot et al. in Mol Cell Biol 31:2845-2853, 12). Here, we investigate this binding in detail and find significant differences between TRPV5 and TRPV6. We also identify and characterize in vitro four other CaM binding fragments of TRPV5/6, which likely are also involved in TRPV5/6 channel regulation. The five CaM binding sites display diversity in binding modes, binding stoichiometries and binding affinities, which may fine-tune the response of the channels to varying Ca(2+)-concentrations. PMID:22354706

  10. Calmodulin Binding Proteins and Alzheimer's Disease.

    PubMed

    O'Day, Danton H; Eshak, Kristeen; Myre, Michael A

    2015-01-01

    The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  11. Human liver aldehyde dehydrogenase: coenzyme binding

    SciTech Connect

    Kosley, L.L.; Pietruszko, R.

    1987-05-01

    The binding of (U-/sup 14/C) NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of (U-/sup 14/C) NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction.

  12. Transcription factor binding energy vs. biological function

    NASA Astrophysics Data System (ADS)

    Djordjevic, M.; Grotewold, E.

    2007-03-01

    Transcription factors (TFs) are proteins that bind to DNA and regulate expression of genes. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of gene regulatory networks. Recent theoretical advances that we developed [1,2], allow us to infer TF-DNA interaction parameters from in-vitro selection experiments [3]. We use more than 6000 binding sequences [3], assembled under controlled conditions, to obtain protein-DNA interaction parameters for a mammalian TF with up to now unprecedented accuracy. Can one accurately identify biologically functional TF binding sites (i.e. the binding sites that regulate gene expression), even with the best possible protein-DNA interaction parameters? To address this issue we i) compare our prediction of protein binding with gene expression data, ii) use evolutionary comparison between related mammalian genomes. Our results strongly suggest that in a genome there exists a large number of randomly occurring high energy binding sites that are not biologically functional. [1] M Djordjevic, submitted to Biomol. Eng. [2] M. Djordjevic and A. M. Sengupta, Phys. Biol. 3: 13, 2006. [3] E. Roulet et al., Nature Biotech. 20: 831, 2002.

  13. DNA Triplexes That Bind Several Cofactor Molecules.

    PubMed

    Vollmer, Sven; Richert, Clemens

    2015-12-14

    Cofactors are critical for energy-consuming processes in the cell. Harnessing such processes for practical applications requires control over the concentration of cofactors. We have recently shown that DNA triplex motifs with a designed binding site can be used to capture and release nucleotides with low micromolar dissociation constants. In order to increase the storage capacity of such triplex motifs, we have explored the limits of ligand binding through designed cavities in the oligopurine tract. Oligonucleotides with up to six non-nucleotide bridges between purines were synthesized and their ability to bind ATP, cAMP or FAD was measured. Triplex motifs with several single-nucleotide binding sites were found to bind purines more tightly than triplexes with one large binding site. The optimized triplex consists of 59 residues and four C3-bridges. It can bind up to four equivalents of ligand with apparent Kd values of 52 µM for ATP, 9 µM for FAD, and 2 µM for cAMP. An immobilized version fuels bioluminescence via release of ATP at body temperature. These results show that motifs for high-density capture, storage and release of energy-rich biomolecules can be constructed from synthetic DNA. PMID:26561335

  14. Copper(II) binding properties of hepcidin.

    PubMed

    Kulprachakarn, Kanokwan; Chen, Yu-Lin; Kong, Xiaole; Arno, Maria C; Hider, Robert C; Srichairatanakool, Somdet; Bansal, Sukhvinder S

    2016-06-01

    Hepcidin is a peptide hormone that regulates the homeostasis of iron metabolism. The N-terminal domain of hepcidin is conserved amongst a range of species and is capable of binding Cu(II) and Ni(II) through the amino terminal copper-nickel binding motif (ATCUN). It has been suggested that the binding of copper to hepcidin may have biological relevance. In this study we have investigated the binding of Cu(II) with model peptides containing the ATCUN motif, fluorescently labelled hepcidin and hepcidin using MALDI-TOF mass spectrometry. As with albumin, it was found that tetrapeptide models of hepcidin possessed a higher affinity for Cu(II) than that of native hepcidin. The log K 1 value of hepcidin for Cu(II) was determined as 7.7. Cu(II) binds to albumin more tightly than hepcidin (log K 1 = 12) and in view of the serum concentration difference of albumin and hepcidin, the bulk of kinetically labile Cu(II) present in blood will be bound to albumin. It is estimated that the concentration of Cu(II)-hepcidin will be less than one femtomolar in normal serum and thus the binding of copper to hepcidin is unlikely to play a role in iron homeostasis. As with albumin, small tri and tetra peptides are poor models for the metal binding properties of hepcidin. PMID:26883683

  15. Binding of perlecan to transthyretin in vitro.

    PubMed Central

    Smeland, S; Kolset, S O; Lyon, M; Norum, K R; Blomhoff, R

    1997-01-01

    Transthyretin is one of two specific proteins involved in the transport of thyroid hormones in plasma; it possesses two binding sites for serum retinol-binding protein. In the present study we demonstrate that transthyretin also interacts in vitro with [35S]sulphate-labelled material from the medium of HepG2 cells. By using the same strategy as for purifying serum retinol-binding protein, [35S]sulphate-labelled medium was specifically eluted from a transthyretin-affinity column. Ion-exchange chromatography showed that the material was highly polyanionic, and its size and alkali susceptibility suggested that it was a proteoglycan. Structural analyses with chondroitinase ABC lyase and nitrous acid revealed that approx. 20% was chondroitin sulphate and 80% heparan sulphate. Immunoprecipitation showed that the [35S]sulphate-labelled material contained perlecan. Further analysis by binding studies revealed specific and saturable binding of 125I-transthyretin to perlecan-enriched Matrigel. Because inhibition of sulphation by treating HepG2 cells with sodium chlorate increased the affinity of the perlecan for transthyretin, and [3H]heparin was not retained by the transthyretin affinity column, the binding is probably mediated by the core protein and is not a protein-glycosaminoglycan interaction. Because perlecan is released from transthyretin in water, the binding might be due to hydrophobic interactions. PMID:9307034

  16. Thermodynamic binding constants for gallium transferrin

    SciTech Connect

    Harris, W.R.; Pecoraro, V.L.

    1983-01-18

    Gallium-67 is widely used as an imaging agent for tumors and inflammatory abscesses. It is well stablished that Ga/sup 3 +/ travels through the circulatory system bound to the serum iron transport protein transferrin and that this protein binding is an essential step in tumor localization. However, there have been conflicting reports on the magnitude of the gallium-transferrin binding constants. Therefore, thermodynamic binding constants for gallium complexation at the two specific metal binding sites of human serum transferrin at pH 7.4 and 5 mM NaHCO/sub 3/ have been determined by UV difference spectroscopy. The conditional constants calculated for 27 mM NaHCO/sub 3/ are log K/sub 1/* = 20.3 and log K/sub 2/* = 19.3. These results are discussed in relation to the thermodynamics of transferrin binding of Fe/sup 3 +/ and to previous reports on gallium binding. The strength of transferrin complexation is also compared to that of a series of low molecular weight ligands by using calculated pM values (pM = -log (Ga(H/sub 2/O)/sub 6/)) to express the effective binding strength at pH 7.4.

  17. Improved flow cytometer measurement of binding assays

    DOEpatents

    Saunders, G.C.

    1984-05-30

    The invention relates to a method of measuring binding assays carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also a known quantity of smaller particles with a coating of binder reactant. The binding reactant is the same as the binding reactant present in the sample. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number and strength of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating. (LEW)

  18. Lipopolysaccharides of Actinobacillus pleuropneumoniae bind pig hemoglobin.

    PubMed Central

    Bélanger, M; Bégin, C; Jacques, M

    1995-01-01

    A previous study indicated that lipopolysaccharides (LPS) extracted from Actinobacillus pleuropneumoniae bind two low-molecular-mass proteins, of approximately 10 and 11 kDa, present in porcine respiratory tract secretions (M. Bélanger, D. Dubreuil, and M. Jacques, Infect. Immun. 62:868-873, 1994). In the present study, we determined the N-terminal amino acid sequences of these two proteins, which revealed high homology with the alpha and beta chains of pig hemoglobin. Some isolates of A. pleuropneumoniae were able to use hemoglobin from various animal species as well as other heme compounds as sole sources of iron for growth, while other isolates were unable to use them. Immunoelectron microscopy showed binding of pig hemoglobin at the surface of all A. pleuropneumoniae isolates as well as labeling of outer membrane blebs. We observed, using Western blotting (immunoblotting), that the lipid A-core region of LPS of all isolates was binding pig hemoglobin. Furthermore, lipid A obtained after acid hydrolysis of LPS extracted from A. pleuropneumoniae was able to bind pig hemoglobin and this binding was completely abolished by preincubation of lipid A with polymyxin B but was not inhibited by preincubation with glucosamines. Fatty acids constituting the lipid A of A. pleuropneumoniae, namely, dodecanoic acid, tetradecanoic acid, 3-hydroxytetradecanoic acid, hexadecanoic acid, and octadecanoic acid, were also binding pig hemoglobin. Our results indicate that LPS of all A. pleuropneumoniae isolates tested bind pig hemoglobin and that lipid A is involved in this binding. Our results also indicate that some A. pleuropneumoniae isolates are, in addition, able to use hemoglobin for growth. Binding of hemoglobin to LPS might represent an important means by which A. pleuropneumoniae acquires iron in vivo from hemoglobin released from erythrocytes lysed by the action of its hemolysins. PMID:7822035

  19. α-Enolase binds to RNA.

    PubMed

    Hernández-Pérez, Liliana; Depardón, Francisco; Fernández-Ramírez, Fernando; Sánchez-Trujillo, Alejandra; Bermúdez-Crúz, Rosa María; Dangott, Lawrence; Montañez, Cecilia

    2011-09-01

    To detect proteins binding to CUG triplet repeats, we performed magnetic bead affinity assays and North-Western analysis using a (CUG)(10) ssRNA probe and either nuclear or total extracts from rat L6 myoblasts. We report the isolation and identification by mass spectrometry and immunodetection of α-enolase, as a novel (CUG)n triplet repeat binding protein. To confirm our findings, rat recombinant α-enolase was cloned, expressed and purified; the RNA binding activity was verified by electrophoretic mobility shift assays using radiolabeled RNA probes. Enolase may play other roles in addition to its well described function in glycolysis. PMID:21621582

  20. Muscarine binding sites in bovine adrenal medulla.

    PubMed

    Barron, B A; Murrin, L C; Hexum, T D

    1986-03-18

    The presence of muscarinic binding sites in the bovine adrenal medulla was investigated using [3H]QNB and the bovine adrenal medulla. Scatchard analysis combined with computer analysis yielded data consistent with a two binding site configuration. KDs of 0.15 and 14 nM and Bmax s of 29 and 210 fmol/mg protein, respectively, were observed. Displacement of [3H]QNB by various cholinergic agents is, in order of decreasing potency: QNB, dexetimide, atropine, scopolamine, imipramine, desipramine, oxotremorine, pilocarpine, acetylcholine, methacholine and carbachol. These results demonstrate the presence of more than one muscarine binding site in the bovine adrenal gland. PMID:3709656

  1. Relativistic corrections to the triton binding energy

    SciTech Connect

    Sammarruca, F.; Xu, D.P.; Machleidt, R. )

    1992-11-01

    The influence of relativity on the triton binding energy is investigated. The relativistic three-dimensional version of the Bethe-Salpeter equation proposed by Blankenbecler and Sugar (BbS) is used. Relativistic (nonseparable) one-boson-exchange potentials (constructed in the BbS framework) are employed for the two-nucleon interaction. In a 34-channel Faddeev calculation, it is found that relativistic effects increase the triton binding energy by about 0.2 MeV. Including charge dependence (besides relativity), the final triton binding energy predictions are 8.33 and 8.16 MeV for the Bonn A and B potentials, respectively.

  2. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  3. Two nucleotide binding sites modulate ( sup 3 H) glyburide binding to rat cortex membranes

    SciTech Connect

    Johnson, D.E.; Gopalakrishnan, M.; Triggle, D.J.; Janis, R.A. State Univ. of New York, Buffalo )

    1991-03-11

    The effects of nucleotides on the binding of the ATP-dependent K{sup +}-channel antagonist ({sup 3}H)glyburide (GLB) to rat cortex membranes were examined. Nucleotide triphosphates (NTPs) and nucleotide diphosphate (NDPs) inhibited the binding of GLB. This effect was dependent on the presence of dithiothreitol (DTT). Inhibition of binding by NTPs, with the exception of ATP{gamma}S, was dependent on the presence of Mg{sup 2+}. GLB binding showed a biphasic response to ADP: up to 3 mM, ADP inhibited binding, and above this concentration GLB binding increased rapidly, and was restored to normal levels by 10 mM ADP. In the presence of Mg{sup 2+}, ADP did not stimulate binding. Saturation analysis in the presence of Mg{sup 2+} and increasing concentrations of ADP showed that ADP results primarily in a change of the B{sub max} for GLB binding. The differential effects of NTPS and NDPs indicate that two nucleotide binding sites regulate GLB binding.

  4. Ligand Binding to Macromolecules: Allosteric and Sequential Models of Cooperativity.

    ERIC Educational Resources Information Center

    Hess, V. L.; Szabo, Attila

    1979-01-01

    A simple model is described for the binding of ligands to macromolecules. The model is applied to the cooperative binding by hemoglobin and aspartate transcarbamylase. The sequential and allosteric models of cooperative binding are considered. (BB)

  5. Structure and Function of Lipopolysaccharide Binding Protein

    NASA Astrophysics Data System (ADS)

    Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.

    1990-09-01

    The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.

  6. Human Frataxin: Iron And Ferrochelatase Binding Surface

    SciTech Connect

    Bencze, K.Z.; Yoon, T.; Millan-Pacheco, C.; Bradley, P.B.; Pastor, N.; Cowan, J.A.; Stemmler, T.L.

    2009-06-02

    The coordinated iron structure and ferrochelatase binding surface of human frataxin have been characterized to provide insight into the protein's ability to serve as the iron chaperone during heme biosynthesis.

  7. Lamin-Binding Proteins in Caenorhabditis elegans.

    PubMed

    Dobrzynska, Agnieszka; Askjaer, Peter; Gruenbaum, Yosef

    2016-01-01

    The nuclear lamina, composed of lamins and numerous lamin-associated proteins, is required for mechanical stability, mechanosensing, chromatin organization, developmental gene regulation, mRNA transcription, DNA replication, nuclear assembly, and nuclear positioning. Mutations in lamins or lamin-binding proteins cause at least 18 distinct human diseases that affect specific tissues such as muscle, adipose, bone, nerve, or skin, and range from muscular dystrophies to lipodystrophy, peripheral neuropathy, or accelerated aging. Caenorhabditis elegans has unique advantages in studying lamin-binding proteins. These advantages include the low complexity of genes encoding lamin and lamin-binding proteins, advanced transgenic techniques, simple application of RNA interference, sophisticated genetic strategies, and a large collection of mutant lines. This chapter provides detailed and comprehensive protocols for the genetic and phenotypic analysis of lamin-binding proteins in C. elegans. PMID:26778571

  8. Binding of ATP to the progesterone receptor.

    PubMed Central

    Moudgil, V K; Toft, D O

    1975-01-01

    The possible interaction of progesterone--receptor complexes with nucleotides was tested by affinity chromatography. The cytosol progesterone receptor from hen oviduct was partially purified by ammonium sulfate precipitation before use. When progesterone was bound to the receptor, the resulting complex could be selectively adsorbed onto columns of ATP-Sepharose. This interaction was reversible and of an ionic nature since it could be disrupted by high-salt conditions. A competitive binding assay was used to test the specificity of receptor binding to several other nucleotides, including ADP, AMP, and cAMP. A clear specificity for binding ATP was evident from these studies. When ATP was added to receptor preparations, the nucleotide did not affect the sedimentation properties or hormone binding characteristics of the receptor. Although the function of ATP remains unknown, these studies indicate a role of this nucleotide in some aspect of hormone receptor activity. PMID:165493

  9. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1981-01-01

    Scaling relations which map metallic adhesive binding energy onto a single universal binding energy curve are discussed in relation to adhesion, friction, and wear in metals. The scaling involved normalizing the energy to the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. The universal curve was found to be accurately represented by E*(A*)= -(1+beta A) exp (-Beta A*) where E* is the normalized binding energy, A* is the normalized separation, and beta is the normalized decay constant. The calculated cohesive energies of potassium, barium, copper, molybdenum, and samarium were also found to scale by similar relations, suggesting that the universal relation may be more general than for the simple free electron metals.

  10. Hardware device binding and mutual authentication

    SciTech Connect

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  11. Exciton Binding Energy of Monolayer WS2

    PubMed Central

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-01-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 ± 0.01 eV around K valley in the Brillouin zone. PMID:25783023

  12. Bilirubin Binding Capacity in the Preterm Neonate.

    PubMed

    Amin, Sanjiv B

    2016-06-01

    Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed. PMID:27235205

  13. Molecular design of substrate binding sites

    SciTech Connect

    Shelnutt, J.A.; Hobbs, J.D.

    1991-12-31

    Computer-aided molecular design methods were used to tailor binding sites for small substrate molecules, including CO{sub 2} and methane. The goal is to design a cavity, adjacent to a catalytic metal center, into which the substrate will selectively bind through only non-bonding interactions with the groups lining the binding pocket. Porphyrins are used as a basic molecular structure, with various substituents added to construct the binding pocket. The conformations of these highly-substituted porphyrins are predicted using molecular mechanics calculations with a force field that gives accurate predictions for metalloporhyrins. Dynamics and energy-minimization calculations of substrate molecules bound to the cavity indicate high substrate binding affinity. The size, shape and charge-distribution of groups surrounding the cavity provide molecular selectivity. Specifically, calculated binding energies of methane, benzene, dichloromethane, CO{sub 2} and chloroform vary by about 10 kcal/mol for metal octaethyl-tetraphenylporphyrins (OETPPs) with chloroform, dichloromethane, and CO{sub 2} having the lowest. Significantly, a solvent molecule is found in the cavity in the X-ray structures of Co- and CuOETPP crystals obtained from dichloromethane. 5 refs., 3 figs., 3 tabs.

  14. Molecular design of substrate binding sites

    SciTech Connect

    Shelnutt, J.A.; Hobbs, J.D.

    1991-01-01

    Computer-aided molecular design methods were used to tailor binding sites for small substrate molecules, including CO{sub 2} and methane. The goal is to design a cavity, adjacent to a catalytic metal center, into which the substrate will selectively bind through only non-bonding interactions with the groups lining the binding pocket. Porphyrins are used as a basic molecular structure, with various substituents added to construct the binding pocket. The conformations of these highly-substituted porphyrins are predicted using molecular mechanics calculations with a force field that gives accurate predictions for metalloporhyrins. Dynamics and energy-minimization calculations of substrate molecules bound to the cavity indicate high substrate binding affinity. The size, shape and charge-distribution of groups surrounding the cavity provide molecular selectivity. Specifically, calculated binding energies of methane, benzene, dichloromethane, CO{sub 2} and chloroform vary by about 10 kcal/mol for metal octaethyl-tetraphenylporphyrins (OETPPs) with chloroform, dichloromethane, and CO{sub 2} having the lowest. Significantly, a solvent molecule is found in the cavity in the X-ray structures of Co- and CuOETPP crystals obtained from dichloromethane. 5 refs., 3 figs., 3 tabs.

  15. DNA-aptamers binding aminoglycoside antibiotics.

    PubMed

    Nikolaus, Nadia; Strehlitz, Beate

    2014-01-01

    Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given. PMID:24566637

  16. Anion binding to the ubiquitin molecule.

    PubMed Central

    Makhatadze, G. I.; Lopez, M. M.; Richardson, J. M.; Thomas, S. T.

    1998-01-01

    Effects of different salts (NaCl, MgCl2, CaCl2, GdmCl, NaBr, NaClO4, NaH2PO4, Na2SO4) on the stability of the ubiquitin molecule at pH 2.0 have been studied by differential scanning calorimetry, circular dichroism, and Tyr fluorescence spectroscopies. It is shown that all of the salts studied significantly increase the thermostability of the ubiquitin molecule, and that this stabilization can be interpreted in terms of anion binding. Estimated thermodynamic parameters of binding for Cl- show that this binding is relatively weak (Kd = 0.15 M) and is characterized by a negative enthalpy of -15 kJ/mol per site. Particularly surprising was the observed stabilizing effect of GdmCl through the entire concentration range studied (0.01-2 M), however, to a lesser extent than stabilization by NaCl. This stabilizing effect of GdmCl appears to arise from the binding of Cl- ions. Analysis of the observed changes in the stability of the ubiquitin molecule in the presence of GdmCl can be adequately described by combining the thermodynamic model of denaturant binding with Cl- binding effects. PMID:9541401

  17. Theoretical studies of binding of mannose-binding protein to monosaccharides

    NASA Astrophysics Data System (ADS)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  18. Folding and binding energy of a calmodulin-binding cell antiproliferative peptide.

    PubMed

    Almudallal, Ahmad M; Saika-Voivod, Ivan; Stewart, John M

    2015-09-01

    We carry out a computational study of a calmodulin-binding peptide shown to be effective in reducing cell proliferation. We find several folded states for two short variants of different length of the peptide and determine the location of the binding site on calmodulin, the binding free energy for the different conformers and structural details that play a role in optimal binding. Binding to a hydrophobic pocket in calmodulin occurs via an anchoring phenylalanine residue of the natively disordered peptide, and is enhanced when a neighbouring hydrophobic residue acts as a co-anchor. The shorter sequence possesses better binding to calmodulin, which is encouraging in terms of the development of non-peptide analogues as therapeutic agents. PMID:26310499

  19. Fucose-binding Lotus tetragonolobus lectin binds to human polymorphonuclear leukocytes and induces a chemotactic response.

    PubMed

    VanEpps, D E; Tung, K S

    1977-09-01

    Fucose-binding L. tetragonolobus lectin to the surface of human polymorphonuclear leukocytes (PMN) and induces a chemotactic response. Both surface binding and chemotaxis are inhibited by free fucose but not by fructose, mannose, or galactose. The lectin-binding sites on PMN are unrelated to the A, B, or O blood group antigen. Utilization of this lectin should be a useful tool in isolating PMN membrane components and in analyzing the mechanism of neutrophil chemotaxis. PMID:330752

  20. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins

    PubMed Central

    Thomas, Marshall P.; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-01-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. Here we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein (RBP) targets, while adding RNA to recombinant RBP substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Pre-incubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G (CATG). During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps (NETs), which bind NE and CATG. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and NETs in a DNA-dependent manner. Thus, high affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation. PMID:24771851

  1. Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures.

    PubMed

    Ahmed, Aqeel; Smith, Richard D; Clark, Jordan J; Dunbar, James B; Carlson, Heather A

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein-ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23,269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330

  2. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    SciTech Connect

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C.

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  3. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  4. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  5. Radiation inactivation reveals discrete cation binding sites that modulate dihydropyridine binding sites

    SciTech Connect

    Bolger, G.T.; Skolnick, P.; Kempner, E.S. )

    1989-08-01

    In low ionic strength buffer (5 mM Tris.HCl), the binding of (3H) nitrendipine to dihydropyridine calcium antagonist binding sites of mouse forebrain membranes is increased by both Na{sup +} and Ca{sup 2+}. Radiation inactivation was used to determine the target size of ({sup 3}H)nitrendipine binding sites in 5 mM Tris.HCl buffer, in the presence and absence of these cations. After irradiation, ({sup 3}H) nitrendipine binding in buffer with or without Na+ was diminished, due to a loss of binding sites and also to an increase in Kd. After accounting for radiation effects on the dissociation constant, the target size for the nitrendipine binding site in buffer was 160-170 kDa and was 170-180 kDa in the presence of sodium. In the presence of calcium ions, ({sup 3}H)nitrendipine binding showed no radiation effects on Kd and yielded a target size of 150-170 kDa. These findings suggest, as in the case of opioid receptors, the presence of high molecular weight membrane components that modulate cation-induced alterations in radioligand binding to dihydropyridine binding sites.

  6. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  7. Protection from oxidative and electrophilic stress in the Gsta4-null mouse heart

    PubMed Central

    Beneš, Helen; Vuong, Mai K.; Boerma, Marjan; McElhanon, Kevin E.; Siegel, Eric R.; Singh, Sharda P.

    2013-01-01

    4-hydroxynonenal (4-HNE) mediates many pathological effects of oxidative and electrophilic stress and signals to activate cytoprotective gene expression regulated by NF-E2-related factor 2 (Nrf2). By exhibiting very high levels of 4-HNE-conjugating activity, the murine glutathione transferase alpha 4 (GSTA4-4) helps regulate cellular 4-HNE levels. To examine the role of 4-HNE in vivo, we disrupted the murine Gsta4 gene. Gsta4-null mice exhibited no cardiac phenotype under normal conditions and no difference in cardiac 4-HNE level as compared to wild-type (WT) mice. We hypothesized that the Nrf2 pathway might contribute an important compensatory mechanism to remove excess cardiac 4-HNE in Gsta4-null mice. Cardiac nuclear extracts from Gsta4-null mice exhibited significantly higher Nrf2 binding to antioxidant-response elements (AREs). We also observed responses in critical Nrf2 target gene products: elevated Sod2, Cat, and Akr1b7 mRNA levels and significant increases in both cardiac anti-oxidant and anti-electrophile enzyme activities. Gsta4-null mice were less sensitive and maintained normal cardiac function following chronic doxorubicin (DOX) treatment, known to increase cardiac 4-HNE levels. Hence, in the absence of GSTA4-4 to modulate both physiological and pathological 4-HNE levels, the adaptive Nrf2 pathway may be primed to contribute to a preconditioned cardiac phenotype in the Gsta4-null mouse. PMID:23690225

  8. Cinnoline derivatives as human neutrophil elastase inhibitors.

    PubMed

    Giovannoni, Maria Paola; Schepetkin, Igor A; Crocetti, Letizia; Ciciani, Giovanna; Cilibrizzi, Agostino; Guerrini, Gabriella; Khlebnikov, Andrei I; Quinn, Mark T; Vergelli, Claudia

    2016-08-01

    Compounds that can effectively inhibit the proteolytic activity of human neutrophil elastase (HNE) represent promising therapeutics for treatment of inflammatory diseases. We present here the synthesis, structure-activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with a cinnoline scaffold. These compounds exhibited HNE inhibitory activity but had lower potency compared to N-benzoylindazoles previously reported by us. On the other hand, they exhibited increased stability in aqueous solution. The most potent compound, 18a, had a good balance between HNE inhibitory activity (IC50 value = 56 nM) and chemical stability (t1/2 = 114 min). Analysis of reaction kinetics revealed that these cinnoline derivatives were reversible competitive inhibitors of HNE. Furthermore, molecular docking studies of the active products into the HNE binding site revealed two types of HNE inhibitors: molecules with cinnolin-4(1H)-one scaffold, which were attacked by the HNE Ser195 hydroxyl group at the amido moiety, and cinnoline derivatives containing an ester function at C-4, which is the point of attack of Ser195. PMID:26194018

  9. Mannose-binding geometry of pradimicin A.

    PubMed

    Nakagawa, Yu; Doi, Takashi; Taketani, Takara; Takegoshi, K; Igarashi, Yasuhiro; Ito, Yukishige

    2013-08-01

    Pradimicins (PRMs) and benanomicins are the only family of non-peptidic natural products with lectin-like properties, that is, they recognize D-mannopyranoside (Man) in the presence of Ca(2+) ions. Coupled with their unique Man binding ability, they exhibit antifungal and anti-HIV activities through binding to Man-containing glycans of pathogens. Notwithstanding the great potential of PRMs as the lectin mimics and therapeutic leads, their molecular basis of Man recognition has yet to be established. Their aggregate-forming propensity has impeded conventional interaction analysis in solution, and the analytical difficulty is exacerbated by the existence of two Man binding sites in PRMs. In this work, we investigated the geometry of the primary Man binding of PRM-A, an original member of PRMs, by the recently developed analytical strategy using the solid aggregate composed of the 1:1 complex of PRM-A and Man. Evaluation of intermolecular distances by solid-state NMR spectroscopy revealed that the C2-C4 region of Man is in close contact with the primary binding site of PRM-A, while the C1 and C6 positions of Man are relatively distant. The binding geometry was further validated by co-precipitation experiments using deoxy-Man derivatives, leading to the proposal that PRM-A binds not only to terminal Man residues at the non-reducing end of glycans, but also to internal 6-substituted Man residues. The present study provides new insights into the molecular basis of Man recognition and glycan specificity of PRM-A. PMID:23832850

  10. Predicting Ca(2+)-binding sites in proteins.

    PubMed Central

    Nayal, M; Di Cera, E

    1994-01-01

    The coordination shell of Ca2+ ions in proteins contains almost exclusively oxygen atoms supported by an outer shell of carbon atoms. The bond-strength contribution of each ligating oxygen in the inner shell can be evaluated by using an empirical expression successfully applied in the analysis of crystals of metal oxides. The sum of such contributions closely approximates the valence of the bound cation. When a protein is embedded in a very fine grid of points and an algorithm is used to calculate the valence of each point representing a potential Ca(2+)-binding site, a typical distribution of valence values peaked around 0.4 is obtained. In 32 documented Ca(2+)-binding proteins, containing a total of 62 Ca(2+)-binding sites, a very small fraction of points in the distribution has a valence close to that of Ca2+. Only 0.06% of the points have a valence > or = 1.4. These points share the remarkable tendency to cluster around documented Ca2+ ions. A high enough value of the valence is both necessary (58 out of 62 Ca(2+)-binding sites have a valence > or = 1.4) and sufficient (87% of the grid points with a valence > or = 1.4 are within 1.0 A from a documented Ca2+ ion) to predict the location of bound Ca2+ ions. The algorithm can also be used for the analysis of other cations and predicts the location of Mg(2+)- and Na(+)-binding sites in a number of proteins. The valence is, therefore, a tool of pinpoint accuracy for locating cation-binding sites, which can also be exploited in engineering high-affinity binding sites and characterizing the linkage between structural components and functional energetics for molecular recognition of metal ions by proteins. Images Fig. 4 PMID:8290605

  11. Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer.

    PubMed Central

    Zimmermann, G R; Wick, C L; Shields, T P; Jenison, R D; Pardi, A

    2000-01-01

    An RNA aptamer containing a 15-nt binding site shows high affinity and specificity for the bronchodilator theophylline. A variety of base modifications or 2' deoxyribose substitutions in binding-site residues were tested for theophyllinebinding affinity and the results were compared with the previously determined three-dimensional structure of the RNA-theophylline complex. The RNA-theophylline complex contains a U6-A28-U23 base triple, and disruption of this A28-U23 Hoogsteen-pair by a 7-deaza, 2'-deoxy A28 mutant reduces theophylline binding >45-fold at 25 degrees C. U24 is part of a U-turn in the core of the RNA, and disruption of this U-turn motif by a 2'-deoxy substitution of U24 also reduces theophylline binding by >90-fold. Several mutations outside the "conserved core" of the RNA aptamer showed reduced binding affinity, and these effects could be rationalized by comparison with the three-dimensional structure of the complex. Divalent ions are absolutely required for high-affinity theophylline binding. High-affinity binding was observed with 5 mM Mg2+, Mn2+, or Co2+ ions, whereas little or no significant binding was observed for other divalent or lanthanide ions. A metal-binding site in the core of the complex was revealed by paramagnetic Mn2+-induced broadening of specific RNA resonances in the NMR spectra. When caffeine is added to the aptamer in tenfold excess, the NMR spectra show no evidence for binding in the conserved core and instead the drug stacks on the terminal helix. The lack of interaction between caffeine and the theophylline-binding site emphasizes the extreme molecular discrimination of this RNA aptamer. PMID:10836787

  12. Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites

    PubMed Central

    Pineda-Molina, Estela; Reyes-Darias, José-Antonio; Lacal, Jesús; Ramos, Juan L.; García-Ruiz, Juan Manuel; Gavira, Jose A.; Krell, Tino

    2012-01-01

    Chemoreceptor-based signaling is a central mechanism in bacterial signal transduction. Receptors are classified according to the size of their ligand-binding region. The well-studied cluster I proteins have a 100- to 150-residue ligand-binding region that contains a single site for chemoattractant recognition. Cluster II receptors, which contain a 220- to 300-residue ligand-binding region and which are almost as abundant as cluster I receptors, remain largely uncharacterized. Here, we report high-resolution structures of the ligand-binding region of the cluster II McpS chemotaxis receptor (McpS-LBR) of Pseudomonas putida KT2440 in complex with different chemoattractants. The structure of McpS-LBR represents a small-molecule binding domain composed of two modules, each able to bind different signal molecules. Malate and succinate were found to bind to the membrane-proximal module, whereas acetate binds to the membrane-distal module. A structural alignment of the two modules revealed that the ligand-binding sites could be superimposed and that amino acids involved in ligand recognition are conserved in both binding sites. Ligand binding to both modules was shown to trigger chemotactic responses. Further analysis showed that McpS-like receptors were found in different classes of proteobacteria, indicating that this mode of response to different carbon sources may be universally distributed. The physiological relevance of the McpS architecture may lie in its capacity to respond with high sensitivity to the preferred carbon sources malate and succinate and, at the same time, mediate lower sensitivity responses to the less preferred but very abundant carbon source acetate. PMID:23112148

  13. Promoter-distal RNA polymerase II binding discriminates active from inactive CCAAT/ enhancer-binding protein beta binding sites

    PubMed Central

    Savic, Daniel; Roberts, Brian S.; Carleton, Julia B.; Partridge, E. Christopher; White, Michael A.; Cohen, Barak A.; Cooper, Gregory M.; Gertz, Jason; Myers, Richard M.

    2015-01-01

    Transcription factors (TFs) bind to thousands of DNA sequences in mammalian genomes, but most of these binding events appear to have no direct effect on gene expression. It is unclear why only a subset of TF bound sites are actively involved in transcriptional regulation. Moreover, the key genomic features that accurately discriminate between active and inactive TF binding events remain ambiguous. Recent studies have identified promoter-distal RNA polymerase II (RNAP2) binding at enhancer elements, suggesting that these interactions may serve as a marker for active regulatory sequences. Despite these correlative analyses, a thorough functional validation of these genomic co-occupancies is still lacking. To characterize the gene regulatory activity of DNA sequences underlying promoter-distal TF binding events that co-occur with RNAP2 and TF sites devoid of RNAP2 occupancy using a functional reporter assay, we performed cis-regulatory element sequencing (CRE-seq). We tested more than 1000 promoter-distal CCAAT/enhancer-binding protein beta (CEBPB)-bound sites in HepG2 and K562 cells, and found that CEBPB-bound sites co-occurring with RNAP2 were more likely to exhibit enhancer activity. CEBPB-bound sites further maintained substantial cell-type specificity, indicating that local DNA sequence can accurately convey cell-type–specific regulatory information. By comparing our CRE-seq results to a comprehensive set of genome annotations, we identified a variety of genomic features that are strong predictors of regulatory element activity and cell-type–specific activity. Collectively, our functional assay results indicate that RNAP2 occupancy can be used as a key genomic marker that can distinguish active from inactive TF bound sites. PMID:26486725

  14. Ag(I)-binding to phytochelatins.

    PubMed

    Mehra, R K; Tran, K; Scott, G W; Mulchandani, P; Saini, S S

    1996-02-01

    Phytochelatins (PCs) are glutathione-derived peptides with the general structure (gamma-Glu-Cys)nGly, where n varies from 2 to 11. A variety of metal ions such as Cu(II), Cd(II), Pb(II), Zn(II), and Ag(I) induce PC synthesis in plants and some yeasts. It has generally been assumed that the inducer metals also bind PCs. However, very little information is available on the binding of metals other than Cu(I) and Cd(II) to PCs. In this paper, we describe the Ag(I)-binding characteristics of PCs with the structure (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly, and (gamma-Glu-Cys)4Gly. The Ag(I)-binding stoichiometries of these three peptides were determined by (i) UV/VIS spectrophotometry, (ii) luminescence spectroscopy at 77 K, and (iii) reverse-phase HPLC. The three techniques yielded similar results. ApoPCs exhibit featureless absorption in the 220-340 nm range. The binding of Ag(I) to PCs induced the appearance of specific absorption shoulders. The titration end point was indicated by the flattening of the characteristic absorption shoulders. Similarly, luminescence at 77 K due to Ag(I)-thiolate clusters increased with the addition of graded Ag(I) equivalents. The luminescence declined when Ag(I) equivalents in excess of the saturating amounts were added to the peptides. At neutral pH, (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly, and (gamma-Glu-Cys)4Gly bind 1.0, 1.5, and 4.0 equivalents of Ag(I), respectively. The Ag(I)-binding capacity of (gamma-Glu-Cys)2Gly and (gamma-Glu-Cys)3Gly was increased at pH 5.0 and below so that Ag(I)/-SH ratio approached 1.0. A similar pH-dependent binding of Ag(I) to glutathione was also observed. The increased Ag(I)-binding to PCs at lower pH is of physiological significance as these peptides accumulate in acidic vacuoles. We also report lifetime data on Ag(I)-PCs. The relatively long decay-times (approximately 0.1-0.3 msec) accompanied with a large Stokes shift in the emission band are indicative of spin-forbidden phosphorescence. PMID

  15. DNA Binding to the Silica Surface.

    PubMed

    Shi, Bobo; Shin, Yun Kyung; Hassanali, Ali A; Singer, Sherwin J

    2015-08-27

    We investigate the DNA-silica binding mechanism using molecular dynamics simulations. This system is of technological importance, and also of interest to explore how negatively charged DNA can bind to a silica surface, which is also negatively charged at pH values above its isoelectric point near pH 3. We find that the two major binding mechanisms are attractive interactions between DNA phosphate and surface silanol groups and hydrophobic bonding between DNA base and silica hydrophobic region. Umbrella sampling and the weighted histogram analysis method (WHAM) are used to calculate the free energy surface for detachment of DNA from a binding configuration to a location far from the silica surface. Several factors explain why single-stranded DNA (ssDNA) has been observed to be more strongly attracted to silica than double-stranded (dsDNA): (1) ssDNA is more flexible and therefore able to maximize the number of binding interactions. (2) ssDNA has free unpaired bases to form hydrophobic attachment to silica while dsDNA has to break hydrogen bonds with base partners to get free bases. (3) The linear charge density of dsDNA is twice that of ssDNA. We devise a procedure to approximate the atomic forces between biomolecules and amorphous silica to enable large-scale biomolecule-silica simulations as reported here. PMID:25966319

  16. Peptide binding at the GLP-1 receptor.

    PubMed

    Mann, R; Nasr, N; Hadden, D; Sinfield, J; Abidi, F; Al-Sabah, S; de Maturana, R López; Treece-Birch, J; Willshaw, A; Donnelly, D

    2007-08-01

    The receptor for GLP-1 [glucagon-like peptide-1-(7-36)-amide] is a member of the 'Family B' of GPCRs (G-protein-coupled receptors) comprising an extracellular N-terminal domain containing six conserved cysteine residues (the N-domain) and a core domain (or J-domain) comprising the seven transmembrane helices and interconnecting loop regions. According to the two-domain model for peptide binding, the N-domain is primarily responsible for providing most of the peptide binding energy, whereas the core domain is responsible for binding the N-terminal region of the peptide agonists and transmitting the signal to the intracellular G-protein. Two interesting differences between the binding properties of two GLP-1 receptor agonists, GLP-1 and EX-4 (exendin-4), can be observed. First, while GLP-1 requires its full length to maintain high affinity, the eight N-terminal residues of EX-4 can be removed with little reduction in affinity. Secondly, EX-4 (but not GLP-1) can bind to the fully isolated N-domain of the receptor with an affinity matching that of the full-length receptor. In order to better understand these differences, we have studied the interaction between combinations of full-length or truncated ligands with full-length or truncated receptors. PMID:17635131

  17. Binding of Dissolved Strontium by Micrococcus luteus

    PubMed Central

    Faison, Brendlyn D.; Cancel, Carmen A.; Lewis, Susan N.; Adler, Howard I.

    1990-01-01

    Resting cells of Micrococcus luteus have been shown to remove strontium (Sr) from dilute aqueous solutions of SrCl2 at pH 7. Loadings of 25 mg of Sr per g of cell dry weight were achieved by cells exposed to a solution containing 50 ppm (mg/liter) of Sr. Sr binding occurred in the absence of nutrients and did not require metabolic activity. Initial binding was quite rapid (<0.5 h), although a slow, spontaneous release of Sr was observed over time. Sr binding was inhibited in the presence of polyvalent cations but not monovalent cations. Ca and Sr were bound preferentially over all other cations tested. Sr-binding activity was localized on the cell envelope and was sensitive to various chemical and physical pretreatments. Bound Sr was displaced by divalent ions or by H+. Other monovalent ions were less effective. Bound Sr was also removed by various chelating agents. It was concluded that Sr binding by M. luteus is a reversible equilibrium process. Both ion exchange mediated by acidic cell surface components and intracellular uptake may be involved in this activity. PMID:16348370

  18. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  19. C60 fullerene binding to DNA

    NASA Astrophysics Data System (ADS)

    Alshehri, Mansoor H.; Cox, Barry J.; Hill, James M.

    2014-09-01

    Fullerenes have attracted considerable attention in various areas of science and technology. Owing to their exceptional physical, chemical, and biological properties, they have many applications, particularly in cosmetic and medical products. Using the Lennard-Jones 6-12 potential function and the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic surface densities, we determine the binding energies of a C60 fullerene with respect to both single-strand and double-strand DNA molecules. We assume that all configurations are in a vacuum and that the C60 fullerene is initially at rest. Double integrals are performed to determine the interaction energy of the system. We find that the C60 fullerene binds to the double-strand DNA molecule, at either the major or minor grooves, with binding energies of -4.7 eV or -2.3 eV, respectively, and that the C60 molecule binds to the single-strand DNA molecule with a binding energy of -1.6 eV. Our results suggest that the C60 molecule is most likely to be linked to the major groove of the dsDNA molecule.

  20. Conformational heterogeneity of the calmodulin binding interface

    PubMed Central

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-01-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention. PMID:27040077

  1. Improved flow cytometer measurement of binding assays

    NASA Astrophysics Data System (ADS)

    Saunders, G. C.

    1984-05-01

    A method of measuring binding assays is carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also known quantity of smaller particles with a coating of binder reactant. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating.

  2. Stretching DNA to quantify nonspecific protein binding

    NASA Astrophysics Data System (ADS)

    Goyal, Sachin; Fountain, Chandler; Dunlap, David; Family, Fereydoon; Finzi, Laura

    2012-07-01

    Nonspecific binding of regulatory proteins to DNA can be an important mechanism for target search and storage. This seems to be the case for the lambda repressor protein (CI), which maintains lysogeny after infection of E. coli. CI binds specifically at two distant regions along the viral genome and induces the formation of a repressive DNA loop. However, single-molecule imaging as well as thermodynamic and kinetic measurements of CI-mediated looping show that CI also binds to DNA nonspecifically and that this mode of binding may play an important role in maintaining lysogeny. This paper presents a robust phenomenological approach using a recently developed method based on the partition function, which allows calculation of the number of proteins bound nonspecific to DNA from measurements of the DNA extension as a function of applied force. This approach was used to analyze several cycles of extension and relaxation of λ DNA performed at several CI concentrations to measure the dissociation constant for nonspecific binding of CI (˜100 nM), and to obtain a measurement of the induced DNA compaction (˜10%) by CI.

  3. Binding of dissolved strontium by Micrococcus luteus

    SciTech Connect

    Faison, B.D.; Cancel, C.A.; Lewis, S.N.; Adler, H.I. )

    1990-12-01

    Resting cells of Micrococcus luteus have been shown to remove strontium (Sr) from dilute aqueous solutions of SrCl{sub 2} at pH 7. Loadings of 25 mg of Sr per g of cell dry weight were achieved by cells exposed to a solution containing 50 ppm (mg/liter) of Sr. Sr binding occurred in the absence of nutrients and did not require metabolic activity. Initial binding was quite rapid (<0.5 h), although a slow, spontaneous release of Sr was observed over time. Sr binding was inhibited in the presence of polyvalent cations but not monovalent cations. Ca and Sr were bound preferentially over all other cations tested. Sr-binding activity was localized on the cell envelope and was sensitive to various chemical and physical pretreatments. Bound Sr was displaced by divalent ions or by H{sup +}. Other monovalent ions were less effective. Bound Sr was also removed by various chelating agents. It was concluded that Sr binding by M. luteus is a reversible equilibrium process. Both ion exchange mediated by acidic cell surface components and intracellular uptake may be involved in this activity.

  4. Aminoglycoside binding to Oxytricha Nova Telomeric DNA

    PubMed Central

    Ranjan, Nihar; Andreasen, Katrine F.; Kumar, Sunil; Hyde-volpe, David; Arya, Dev P.

    2012-01-01

    Telomeric DNA sequences have been at the center stage of drug design for cancer treatment in recent years. The ability of these DNA structures to form four stranded nucleic acid structures, called G-quadruplexes, has been perceived as target for inhibiting telomerase activity vital for the longevity of cancer cells. Being highly diverse in structural forms, these G-quadruplexes are subjects of detailed studies of ligand–DNA interactions of different classes, which will pave the way for logical design of more potent ligands in future. The binding of aminoglycosides were investigated with Oxytricha Nova quadruplex forming DNA sequence (GGGGTTTTGGGG)2. Isothermal Titration calorimetry (ITC) determined ligand to quadruplex binding ratio shows 1:1 neomycin:quadruplex binding with association constants (Ka ) ~ 105M−1 while paromomycin was found to have a two-fold weaker affinity than neomycin. The CD titration experiments with neomycin resulted in minimal changes in the CD signal. FID assays, performed to determine the minimum concentration required to displace half of the fluorescent probe bound, showed neomycin as the best of the all aminoglycosides studied for quadruplex binding. Initial NMR footprint suggests that ligand-DNA interactions occur in the wide groove of the quadruplex. Computational docking studies also indicate that aminoglycosides bind in the wide groove of the quadruplex. PMID:20886815

  5. Conformational heterogeneity of the calmodulin binding interface

    NASA Astrophysics Data System (ADS)

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-04-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention.

  6. Binding dynamics and energetic insight into the molecular forces driving nucleotide binding by guanylate kinase.

    PubMed

    Kandeel, Mahmoud; Kitade, Yukio

    2011-01-01

    Plasmodium deoxyguanylate pathways are an attractive area of investigation for future metabolic and drug discovery studies due to their unique substrate specificities. We investigated the energetic contribution to guanylate kinase substrate binding and the forces underlying ligand recognition. In the range from 20 to 35°C, the thermodynamic profiles displayed marked decrease in binding enthalpy, while the free energy of binding showed little changes. GMP produced a large binding heat capacity change of -356 cal mol(-1) K(-1), indicating considerable conformational changes upon ligand binding. Interestingly, the calculated ΔCp was -32 cal mol(-1) K(-1), indicating that the accessible surface area is not the central change in substrate binding, and that other entropic forces, including conformational changes, are more predominant. The thermodynamic signature for GMP is inconsistent with rigid-body association, while dGMP showed more or less rigid-body association. These binding profiles explain the poor catalytic efficiency and low affinity for dGMP compared with GMP. At low temperature, the ligands bind to the receptor site under the effect of hydrophobic forces. Interestingly, by increasing the temperature, the entropic forces gradually vanish and proceed to a nonfavorable contribution, and the interaction occurs mainly through bonding, electrostatic forces, and van der Waals interactions. PMID:21360614

  7. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    PubMed

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity. PMID:26853627

  8. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models.

    PubMed

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-05-01

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. PMID:26912662

  9. Binding of the Ah receptor to receptor binding factors in chromatin.

    PubMed

    Dunn, R T; Ruh, T S; Ruh, M F

    1993-03-01

    Dioxin induces biological responses through interaction with a specific intracellular receptor, the Ah receptor, and the subsequent interaction of the Ah receptor with chromatin. We report the binding of the Ah receptor, partially purified from rabbit liver, to receptor binding factors in chromatin. Rabbit liver chromatin proteins (CP) were isolated by adsorption of chromatin to hydroxylapatite followed by sequential extraction with 1-8 M GdnHCl. To assay for receptor binding a portion of each CP fraction was reconstituted to rabbit double-stranded DNA using a reverse gradient dialysis of 7.5 to 0 M GdnHCl. These reconstituted nucleoacidic proteins were then examined for binding to [3H]-2,3,7,8-tetrachlorodibenzo-p-dioxin ([3H]TCDD)-receptor complexes by the streptomycin filter assay. Prior to the binding assay, [3H]TCDD-receptor complexes were partially purified by step elution from DEAE-cellulose columns. CP fractions 2, 5, and 7 were found to bind to the Ah receptor with high affinity. Scatchard analysis yielded Kd values in the nanomolar range. Competition with 2-fold excess unlabeled TCDD-receptor complexes was demonstrated, and binding was reduced markedly when the receptor was prepared in the presence of 10 mM molybdate. Such chromatin receptor binding factors (RBFs) may participate in the interaction of receptor with specific DNA sequences resulting in modulation of specific gene expression. PMID:8384852

  10. Selective polyamine-binding proteins. Spermine binding by an androgen-sensitive phosphoprotein.

    PubMed

    Liang, T; Mezzetti, G; Chen, C; Liao, S

    1978-09-01

    Rat ventral prostate contains an acidic protein which can bind spermine selectively. The relative binding affinities of various aliphatic amines for the protein are, in decreasing order, spermine greater than thermine greater than greater than putrecine greater than 1,10-diaminodecane, cadaverine and 1,12-diaminododecane. The binding protein has an isoelectric point at pH 4.3 and a sedimentation coefficient of 3 S. Its molecular weight is approx. 30 000. Histones and nuclear chromatin preparations of the prostate can interact with the binding protein. The spermine-binding activity of the purified prostate protein can be inactivated by treatment with intestinal alkaline phosphatases. The phosphatase treated preparation can then be reactivated by beef heart protein kinase in the presence of cyclic AMP and ATP. The spermine-binding activity of the prostate cytosol protein fraction decreases after castration, but increases very rapidly after the castrated rats are injected with 5alpha-dihydrotestosterone. This finding raises the possibility that, in the postate, certain androgen actions may be dependent on the androgen-induced increase in the acidic protein binding of polyamines and their translocation to a functional cellular site such as nuclear chromatin. In the prostate cytosol, spermine also binds to 4-S tRNAs and to a unique RNA which has a sedimentation coefficient of 1.5 S. PMID:28786

  11. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    NASA Astrophysics Data System (ADS)

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.

    1991-05-01

    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  12. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models*

    PubMed Central

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-01-01

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. PMID:26912662

  13. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    PubMed

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  14. Estrophilin immunoreactivity versus estrogen receptor binding activity in meningiomas: evidence for multiple estrogen binding sites

    SciTech Connect

    Lesch, K.P.; Schott, W.; Gross, S.

    1987-09-01

    The existence of estrogen receptors in human meningiomas has long been a controversial issue. This may be explained, in part, by apparent heterogeneity of estrogen binding sites in meningioma tissue. In this study, estrogen receptors were determined in 58 meningiomas with an enzyme immunoassay using monoclonal antibodies against human estrogen receptor protein (estrophilin) and with a sensitive radioligand binding assay using /sup 125/I-labeled estradiol (/sup 125/I-estradiol) as radioligand. Low levels of estrophilin immunoreactivity were found in tumors from 62% of patients, whereas radioligand binding activity was demonstrated in about 46% of the meningiomas examined. In eight (14%) tissue samples multiple binding sites for estradiol were observed. The immunoreactive binding sites correspond to the classical, high affinity estrogen receptors: the Kd for /sup 125/I-estradiol binding to the receptor was approximately 0.2 nM and the binding was specific for estrogens. The second, low affinity class of binding sites considerably influenced measurement of the classical receptor even at low ligand concentrations. The epidemiological and clinical data from patients with meningiomas, and the existence of specific estrogen receptors confirmed by immunochemical detection, may be important factors in a theory of oncogenesis.

  15. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    SciTech Connect

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. )

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  16. Presence of a highly efficient binding to bacterial contamination can distort data from binding studies

    SciTech Connect

    Balcar, V.J. )

    1990-12-01

    {sup 3}HGABA at low concentrations (5-10 nM) was bound by what appeared to be a GABA receptor binding site in bacterial contamination originating from a batch of distilled water. Under experimental conditions similar to those usually employed in {sup 3}HGABA binding studies, the apparent binding displayed a very high specific component and a high efficiency in terms of {sup 3}HGABA bound per mg of protein. The binding was blocked by muscimol but not by isoguvacine, SR95531 and nipecotic acid. These characteristics suggest that the presence of such spurious binding in the experiments using 3H-labeled ligands in brain homogenates may not always be very obvious and, moreover, it can result in subtle, but serious, distortions of data from such studies, which may not be immediately recognized.

  17. The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides.

    PubMed

    Zhang, Yanfeng; Varnum, Susan M

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD(50) of ∼1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a "dual receptor" mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro domain. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides in both assays. Interactions with phosphoinositides may facilitate tighter binding between neuronal membranes and BoNT/C. PMID:22120109

  18. DNA Origami Seesaws as Comparative Binding Assay.

    PubMed

    Nickels, Philipp C; Høiberg, Hans C; Simmel, Stephanie S; Holzmeister, Phil; Tinnefeld, Philip; Liedl, Tim

    2016-06-16

    The application of commonly used force spectroscopy in biological systems is often limited by the need for an invasive tether connecting the molecules of interest to a bead or cantilever tip. Here we present a DNA origami-based prototype in a comparative binding assay. It has the advantage of in situ readout without any physical connection to the macroscopic world. The seesaw-like structure has a lever that is able to move freely relative to its base. Binding partners on each side force the structure into discrete and distinguishable conformations. Model experiments with competing DNA hybridisation reactions yielded a drastic shift towards the conformation with the stronger binding interaction. With reference DNA duplexes of tuneable length on one side, this device can be used to measure ligand interactions in comparative assays. PMID:27038073

  19. Conformation-controlled binding kinetics of antibodies

    NASA Astrophysics Data System (ADS)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.

  20. Druggability of methyl-lysine binding sites.

    PubMed

    Santiago, C; Nguyen, K; Schapira, M

    2011-12-01

    Structural modules that specifically recognize--or read--methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions. PMID:22146969

  1. Conformation-controlled binding kinetics of antibodies.

    PubMed

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines. PMID:26755272

  2. Mercury-binding proteins of Mytilus edulis

    SciTech Connect

    Roesijadi, G.; Morris, J.E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  3. Binding kinetics of lock and key colloids.

    PubMed

    Colón-Meléndez, Laura; Beltran-Villegas, Daniel J; van Anders, Greg; Liu, Jun; Spellings, Matthew; Sacanna, Stefano; Pine, David J; Glotzer, Sharon C; Larson, Ronald G; Solomon, Michael J

    2015-05-01

    Using confocal microscopy and first passage time analysis, we measure and predict the rates of formation and breakage of polymer-depletion-induced bonds between lock-and-key colloidal particles and find that an indirect route to bond formation is accessed at a rate comparable to that of the direct formation of these bonds. In the indirect route, the pocket of the lock particle is accessed by nonspecific bonding of the key particle with the lock surface, followed by surface diffusion leading to specific binding in the pocket of the lock. The surprisingly high rate of indirect binding is facilitated by its high entropy relative to that of the pocket. Rate constants for forward and reverse transitions among free, nonspecific, and specific bonds are reported, compared to theoretical values, and used to determine the free energy difference between the nonspecific and specific binding states. PMID:25956122

  4. Binding in short-term visual memory.

    PubMed

    Wheeler, Mary E; Treisman, Anne M

    2002-03-01

    The integration of complex information in working memory, and its effect on capacity, shape the limits of conscious cognition. The literature conflicts on whether short-term visual memory represents information as integrated objects. A change-detection paradigm using objects defined by color with location or shape was used to investigate binding in short-term visual memory. Results showed that features from the same dimension compete for capacity, whereas features from different dimensions can be stored in parallel. Binding between these features can occur, but focused attention is required to create and maintain the binding over time, and this integrated format is vulnerable to interference. In the proposed model, working memory capacity is limited both by the independent capacity of simple feature stores and by demands on attention networks that integrate this distributed information into complex but unified thought objects. PMID:11900102

  5. Binding of calcium and carbonate to polyacrylates.

    PubMed

    Tribello, Gareth A; Liew, CheeChin; Parrinello, Michele

    2009-05-21

    Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion. PMID:19400592

  6. Flow cytometer measurement of binding assays

    DOEpatents

    Saunders, George C.

    1987-01-01

    A method of measuring the result of a binding assay that does not require separation of fluorescent smaller particles is disclosed. In a competitive binding assay the smaller fluorescent particles coated with antigen compete with antigen in the sample being analyzed for available binding sites on larger particles. In a sandwich assay, the smaller, fluorescent spheres coated with antibody attach themselves to molecules containing antigen that are attached to larger spheres coated with the same antibody. The separation of unattached, fluorescent smaller particles is made unnecessary by only counting the fluorescent events triggered by the laser of a flow cytometer when the event is caused by a particle with a light scatter measurement within a certain range corresponding to the presence of larger particles.

  7. Conformation-controlled binding kinetics of antibodies

    PubMed Central

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines. PMID:26755272

  8. How Trp repressor binds to its operator.

    PubMed Central

    Staacke, D; Walter, B; Kisters-Woike, B; von Wilcken-Bergmann, B; Müller-Hill, B

    1990-01-01

    We propose that the generally accepted model of a single Trp repressor dimer binding to a center of symmetry in the natural trp operator (Otwinowski et al., 1988) is wrong. We show here that the Trp repressor binds to a sequence whose center is located four base pairs either to the right or to the left of the central axis of symmetry that was previously identified. We show that: (i) the oligonucleotide used by Otwinowski et al. is not retarded by the Trp repressor in a mobility shift assay under conditions wherein a shorter oligonucleotide carrying our consensus sequence is retarded, (ii) that methylation protection experiments on the full natural operator sequence and the short oligonucleotide protect similar patterns and (iii) that by varying every base in the shorter oligonucleotide, we can demonstrate an optimal sequence for Trp repressor binding. Images Fig. 3. Fig. 4. PMID:2189726

  9. [Water binding of adsorptive immobilized lipases].

    PubMed

    Loose, S; Meusel, D; Muschter, A; Ruthe, B

    1990-01-01

    It is supposed that not only the total water content of lipase preparations but more their state of water binding is of technological importance in enzymatic interesterification reactions in systems nearly free from water. The isotherms at 65 degrees C of two microbial lipases immobilized on various adsorbents as well as different adsorbents themselves are shown. The water binding capacity in the range of water content of technological interest decreases from the anion exchange resin Amberlyst A 21 via nonpolar adsorbent Amberlite XAD-2 to kieselguhr Celite 545. It is demonstrated that water binding by lipases is depending on temperature but is also affected by adsorptive immobilization. Adsorptive immobilized lipases show hysteresis, which is very important for preparing a definite water content of the enzyme preparations. PMID:2325750

  10. Calcium binding in pigmented and albino eyes.

    PubMed Central

    Dräger, U C

    1985-01-01

    The localization of calcium binding sites in eyes was determined autoradiographically after extracting endogenous Ca from tissue sections and replacing it with 45Ca. The strongest labeling was associated with pigmented tissues due to the high concentration of melanin, which was shown to bind Ca effectively and in a pH-dependent fashion. The second strongest binding was over the tapetum lucidum of the cat eye, and moderate labeling was associated with eye muscles and epithelium and endothelium of the cornea. The neural retina was generally more lightly labeled than the surrounding tissue of the eye; here the plexiform layers stood out in comparison to the nuclear layers, as did a band located internal to the photoreceptor outer segments. The possibility that the Ca buffering capacity of melanin may represent the common denominator for the various neurological defects found in hypopigmentation mutants is discussed. Images PMID:3863122

  11. BINOCh: binding inference from nucleosome occupancy changes

    PubMed Central

    Meyer, Clifford A.; He, Housheng H.; Brown, Myles; Liu, X. Shirley

    2011-01-01

    Summary: Transcription factor binding events are frequently associated with a pattern of nucleosome occupancy changes in which nucleosomes flanking the binding site increase in occupancy, while those in the vicinity of the binding site itself are displaced. Genome-wide information on enhancer proximal nucleosome occupancy can be readily acquired using ChIP-seq targeting enhancer-related histone modifications such as H3K4me2. Here, we present a software package, BINOCh that allows biologists to use such data to infer the identity of key transcription factors that regulate the response of a cell to a stimulus or determine a program of differentiation. Availability: The BINOCh open source Python package is freely available at http://liulab.dfci.harvard.edu/BINOCh under the FreeBSD license. Contact: cliff@jimmy.harvard.edu; xsliu@jimmy.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21551136

  12. Mucin Binding Reduces Colistin Antimicrobial Activity

    PubMed Central

    Huang, Johnny X.; Blaskovich, Mark A. T.; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G.; Butler, Mark S.

    2015-01-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance. PMID:26169405

  13. Oxygen binding by single crystals of hemoglobin.

    PubMed

    Rivetti, C; Mozzarelli, A; Rossi, G L; Henry, E R; Eaton, W A

    1993-03-23

    Reversible oxygen binding curves for single crystals of hemoglobin in the T quaternary structure have been measured using microspectrophotometry. Saturations were determined from complete visible spectra measured with light linearly polarized parallel to the a and c crystal axes. Striking differences were observed between the binding properties of hemoglobin in the crystal and those of hemoglobin in solution. Oxygen binding to the crystal is effectively noncooperative, the Bohr effect is absent, and there is no effect of chloride ion. Also, the oxygen affinity is lower than that of the T quaternary structure in solution. The absence of the Bohr effect supports Perutz's hypothesis on the key role of the salt bridges, which are known from X-ray crystallography to remain intact upon oxygenation. The low affinity and absence of the Bohr effect can be explained by a generalization of the MWC-PSK model (Monod, Wyman, & Changeux, 1965; Perutz, 1970; Szabo & Karplus, 1972) in which both high- and low-affinity tertiary conformations, with broken and unbroken salt bridges, respectively, are populated in the T quaternary structure. Because the alpha and beta hemes make different projections onto the two crystal axes, separate binding curves for the alpha and beta subunits could be calculated from the two measured binding curves. The approximately 5-fold difference between the oxygen affinities of the alpha and beta subunits is much smaller than that predicted from the crystallographic study of Dodson, Liddington, and co-workers, which suggested that oxygen binds only to the alpha hemes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8457555

  14. Astaxanthin binding protein in Atlantic salmon.

    PubMed

    Matthews, Sarah J; Ross, Neil W; Lall, Santosh P; Gill, Tom A

    2006-06-01

    The rubicund pigmentation in salmon and trout flesh is unique and is due to the deposition of dietary carotenoids, astaxanthin and canthaxanthin in the muscle. The present study was undertaken to determine which protein was responsible for pigment binding. Salmon muscle proteins were solubilized by sequential extractions with non-denaturing, low ionic strength aqueous solutions and segregated as such into six different fractions. Approximately 91% of the salmon myofibrillar proteins were solubilized under non-denaturing conditions using a protocol modified from a method described by Krishnamurthy et al. [Krishnamurthy, G., Chang, H.S., Hultin, H.O., Feng, Y., Srinivasan, S., Kelleher. S.D., 1996. Solubility of chicken breast muscle proteins in solutions of low ionic strength. J. Agric. Food Chem. 44: 408-415.] for the dissolution of avian muscle. To our knowledge, this is the first time this solubilization approach has been applied to the study of molecular interactions in myofibrillar proteins. Astaxanthin binding in each fraction was determined using an in vitro binding assay. In addition, SDS-PAGE and quantitative densitometry were used to separate and determine the relative amounts of each of the proteins in the six fractions. The results showed that alpha-actinin was the only myofibrillar protein correlating significantly (P<0.05) with astaxanthin binding. Alpha-actinin was positively identified using electrophoretic techniques and confirmed by tandem mass spectroscopy. Purified salmon alpha-actinin bound synthetic astaxanthin in a molar ratio of 1.11:1.00. The study was repeated using halibut alpha-actinin, which was found to have a molar binding ratio of astaxanthin to alpha-actinin of 0.893:1. These results suggest that the difference in pigmentation between white fish and Atlantic salmon is not due to binding capacity in the muscle, but rather differences in the metabolism or transport of pigment. PMID:16644255

  15. Lipid binding capacity of spider hemocyanin.

    PubMed

    Cunningham, M; Gómez, C; Pollero, R

    1999-09-01

    The spider hemocyanin capacity to bind different lipid classes was evaluated by measuring some binding kinetic parameters. A very high lipoprotein (VHDL) which contains hemocyanin, was isolated from Polybetes pythagoricus hemolymph plasma and delipidated. Hemocyanin was bound separately to labelled palmitic acid, phosphatidylcholine, cholesterol, and triolein resulting in several artificial lipoprotein structures. It was possible to corroborate in vitro the lipid-hemocyanin interactions which had been previously observed and, consequently, the apolipoprotein role played by the respiratory pigment of spiders. Lipoproteins were analysed by gel filtration chromatography, and three subfractions with different hemocyanin structures were obtained. The four lipid classes were only bound to the hexameric structure (420 Kda), possibly to low polarity sites. Upon radioactivity measurements of the protein-associated lipids, maximal binding ratios (Mr), dissociation constants (Kd), and the maximal binding effectiveness at low lipid concentrations (Eo) were calculated. Lipid/protein ratios were increased proportionally to each available lipid concentration, following a hyperbolic binding model. Values of saturation, affinity, and maximal binding efficiency to hemocyanin were found to be different for each lipid class assayed. The highest lipid/protein ratio (41.5) was obtained with the free fatty acid and the lowest (7.2) with triolein. Phosphatidylcholine and cholesterol showed the highest relative affinities for hemocyanin (Kd = 63 x 10(-5) M and 74 x 10(-5) M, respectively). Phosphatidylcholine at low concentrations, similar to the physiological ones, presented the highest Eo value. Maximal lipid/protein ratios reached in vitro, were greater than those in P. pythagoricus VHDL, pointing out that hemocyanin could play the apolipoprotein role even under physiological conditions with a very high plasma lipid concentration. J. Exp. Zool. 284:368-373, 1999. PMID:10451413

  16. Dendrimers bind antioxidant polyphenols and cisplatin drug.

    PubMed

    Abderrezak, Amine; Bourassa, Philippe; Mandeville, Jean-Sebastian; Sedaghat-Herati, Reza; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Synthetic polymers of a specific shape and size play major role in drug delivery systems. Dendrimers are unique synthetic macromolecules of nanometer dimensions with a highly branched structure and globular shape with potential applications in gene and drug delivery. We examine the interaction of several dendrimers of different compositions mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4) with hydrophilic and hydrophobic drugs cisplatin, resveratrol, genistein and curcumin at physiological conditions. FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyse drug binding mode, the binding constant and the effects of drug complexation on dendrimer stability and conformation. Structural analysis showed that cisplatin binds dendrimers in hydrophilic mode via Pt cation and polymer terminal NH(2) groups, while curcumin, genistein and resveratrol are located mainly in the cavities binding through both hydrophobic and hydrophilic contacts. The overall binding constants of durg-dendrimers are ranging from 10(2) M(-1) to 10(3) M(-1). The affinity of dendrimer binding was PAMAM-G4>mPEG-PAMAM-G4>mPEG-PAMAM-G3, while the order of drug-polymer stability was curcumin>cisplatin>genistein>resveratrol. Molecular modeling showed larger stability for genisten-PAMAM-G4 (ΔG = -4.75 kcal/mol) than curcumin-PAMAM-G4 ((ΔG = -4.53 kcal/mol) and resveratrol-PAMAM-G4 ((ΔG = -4.39 kcal/mol). Dendrimers might act as carriers to transport hydrophobic and hydrophilic drugs. PMID:22427960

  17. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  18. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    PubMed Central

    Root-Bernstein, Robert; Podufaly, Abigail; Dillon, Patrick F.

    2014-01-01

    Rationale: Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. Objectives: To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. Methods: Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. Measurements: Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. Main Results: Estradiol bound to INS with a Kd of 12 × 10−9 M and to the IR with a Kd of 24 × 10−9 M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. Conclusion: Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance. PMID:25101056

  19. Structural stabilization of GTP-binding domains in circularly permuted GTPases: Implications for RNA binding

    PubMed Central

    Anand, Baskaran; Verma, Sunil Kumar; Prakash, Balaji

    2006-01-01

    GTP hydrolysis by GTPases requires crucial residues embedded in a conserved G-domain as sequence motifs G1–G5. However, in some of the recently identified GTPases, the motif order is circularly permuted. All possible circular permutations were identified after artificially permuting the classical GTPases and subjecting them to profile Hidden Markov Model searches. This revealed G4–G5–G1–G2–G3 as the only possible circular permutation that can exist in nature. It was also possible to recognize a structural rationale for the absence of other permutations, which either destabilize the invariant GTPase fold or disrupt regions that provide critical residues for GTP binding and hydrolysis, such as Switch-I and Switch-II. The circular permutation relocates Switch-II to the C-terminus and leaves it unfastened, thus affecting GTP binding and hydrolysis. Stabilizing this region would require the presence of an additional domain following Switch-II. Circularly permuted GTPases (cpGTPases) conform to such a requirement and always possess an ‘anchoring’ C-terminal domain. There are four sub-families of cpGTPases, of which three possess an additional domain N-terminal to the G-domain. The biochemical function of these domains, based on available experimental reports and domain recognition analysis carried out here, are suggestive of RNA binding. The features that dictate RNA binding are unique to each subfamily. It is possible that RNA-binding modulates GTP binding or vice versa. In addition, phylogenetic analysis indicates a closer evolutionary relationship between cpGTPases and a set of universally conserved bacterial GTPases that bind the ribosome. It appears that cpGTPases are RNA-binding proteins possessing a means to relate GTP binding to RNA binding. PMID:16648363

  20. Free-radical-mediated DNA binding.

    PubMed Central

    O'Brien, P J

    1985-01-01

    Free-radical metabolites can be generated metabolically by a one-electron reductase-catalyzed reaction or a "peroxidase" catalyzed oxidation or by photoactivation of a wide variety of aromatic xenobiotics. Radicals may also be generated during lipid peroxidation. Some radicals can react with DNA or bind covalently or noncovalently as a dismutation product or as a dimer, trimer or polymeric product. Modification to the DNA can result in single-strand breaks, loss of template activity, and crosslinking. The binding can prevent enzymic digestion. In some cases, the radicals react with oxygen, resulting before conversion to DNA reactive oxygen species. Most radicals probably do not interact with DNA. PMID:3007090

  1. Ice-Binding Proteins and Their Function.

    PubMed

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-01

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities. PMID:27145844

  2. Binding energies of hypernuclei and hypernuclear interactions

    SciTech Connect

    Bodmer, A.R. |; Murali, S.; Usmani, Q.N.

    1996-05-01

    In part 1 the effect of nuclear core dynamics on the binding energies of {Lambda} hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the {Lambda} single-particle energy in terms of basic {Lambda}-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body {Lambda}NN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei.

  3. Binding of actin to lens alpha crystallins

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Actin has been coupled to a cyanogen bromide-activated Sepharose 4B column, then tested for binding to alpha, beta, and gamma crystallin preparations from the bovine lens. Alpha, but not beta or gamma, crystallins bound to the actin affinity column in a time dependent and saturable manner. Subfractionation of the alpha crystallin preparation into the alpha-A and alpha-B species, followed by incubation with the affinity column, demonstrated that both species bound approximately the same. Together, these studies demonstrate a specific and saturable binding of lens alpha-A and alpha-B with actin.

  4. Partial characterization of a proacrosin binding protein.

    PubMed

    Yi, L S; Runion, C M; Willand, J L; Polakoski, K L

    1992-01-01

    All of the acid (pH 4.0) extracted proacrosin from porcine epididymal spermatozoa was found to be tightly associated with a specific protein referred to as the binding protein. A combination of gel filterations and gel electrophoresis revealed that the binding protein is composed of a major 28 kd and a minor 29 kd protein. Both of the proteins were shown to be nonproteolytic by gelatin SDS-PAGE analysis and the amino acid composition analysis of the purified 28 kd protein revealed that it is not related to the proteolytic component of the proacrosinacrosin system. PMID:1519775

  5. Photoswitchable precision glycooligomers and their lectin binding

    PubMed Central

    Ponader, Daniela; Igde, Sinaida; Wehle, Marko; Märker, Katharina; Santer, Mark

    2014-01-01

    Summary The synthesis of photoswitchable glycooligomers is presented by applying solid-phase polymer synthesis and functional building blocks. The obtained glycoligands are monodisperse and present azobenzene moieties as well as sugar ligands at defined positions within the oligomeric backbone and side chains, respectively. We show that the combination of molecular precision together with the photoswitchable properties of the azobenzene unit allows for the photosensitive control of glycoligand binding to protein receptors. These stimuli-sensitive glycoligands promote the understanding of multivalent binding and will be further developed as novel biosensors. PMID:25161717

  6. Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation.

    PubMed

    Mentes, Ahmet; Deng, Nan-Jie; Vijayan, R S K; Xia, Junchao; Gallicchio, Emilio; Levy, Ronald M

    2016-05-10

    Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein-ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2-3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable. PMID:27070865

  7. Can cofactor-binding sites in proteins be flexible? Desulfovibrio desulfuricans flavodoxin binds FMN dimer.

    PubMed

    Muralidhara, B K; Wittung-Stafshede, Pernilla

    2003-11-11

    Flavodoxins catalyze redox reactions using the isoalloxazine moiety of the flavin mononucleotide (FMN) cofactor stacked between two aromatic residues located in two peptide loops. At high FMN concentrations that favor stacked FMN dimers in solution, isothermal titration calorimetric studies show that these dimers bind strongly to apo-flavodoxin from Desulfovibrio desulfuricans (30 degrees C, 20 mM Hepes, pH 7, K(D) = 5.8 microM). Upon increasing the temperature so the FMN dimers dissociate (as shown by (1)H NMR), only one-to-one (FMN-to-protein) binding is observed. Calorimetric titrations result in one-to-one binding also in the presence of phosphate or sulfate (30 degrees C, 13 mM anion, pH 7, K(D) = 0.4 microM). FMN remains dimeric in the presence of phosphate and sulfate, suggesting that specific binding of a divalent anion to the phosphate-binding site triggers ordering of the peptide loops so only one isoalloxazine can fit. Although the physiological relevance of FMN and other nucleotides as dimers has not been explored, our study shows that high-affinity binding to proteins of such dimers can occur in vitro. This emphasizes that the cofactor-binding site in flavodoxin is more flexible than previously expected. PMID:14596623

  8. Coenzyme Q10-Binding/Transfer Protein Saposin B also Binds gamma-Tocopherol.

    PubMed

    Jin, Guangzhi; Horinouchi, Ryo; Sagawa, Tomofumi; Orimo, Nobutsune; Kubo, Hiroshi; Yoshimura, Shinichi; Fujisawa, Akio; Kashiba, Misato; Yamamoto, Yorihiro

    2008-09-01

    gamma-Tocopherol, the major form of dietary vitamin E, is absorbed in the intestine and is secreted in chylomicrons, which are then transferred to liver lysosomes. Most gamma-tocopherol is transferred to liver microsomes and is catabolized by cytochrome p450. Due to the hydrophobicity of gamma-tocopherol, a binding and transfer protein is plausible, but none have yet been isolated and characterized. We recently found that a ubiquitous cytosolic protein, saposin B, binds and transfers coenzyme Q10 (CoQ10), which is an essential factor for ATP production and an important antioxidant. Here, we report that saposin B also binds gamma-tocopherol, but not alpha-tocopherol, as efficiently as CoQ10 at pH 7.4. At acidic pH, saposin B binds gamma-tocopherol preferentially to CoQ10 and alpha-tocopherol. Furthermore, we confirmed that saposin B selectively binds gamma-tocopherol instead of CoQ10 and alpha-tocopherol at every pH between 5.4 and 8.0 when all three lipids are competing for binding. We detected gamma-tocopherol in human saposin B monoclonal antibody-induced immunoprecipitates from human urine, although the amount of gamma-tocopherol was much smaller than that of CoQ10. These results suggest that saposin B binds and transports gamma-tocopherol in human cells. PMID:18818759

  9. Solution structure and binding specificity of the p63 DNA binding domain.

    PubMed

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  10. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics

    PubMed Central

    Chaikuad, Apirat; Tacconi, Eliana; Zimmer, Jutta; Liang, Yanke; Gray, Nathanael S.; Tarsounas, Madalena; Knapp, Stefan

    2014-01-01

    Activation of the ERK pathway is a hallmark of cancer and targeting of upstream signalling partners led to the development of approved drugs. Recently SCH772984 has been shown to be a selective and potent ERK1/2 inhibitor. Here we report the structural mechanism for its remarkable selectivity. In ERK1/2, SCH772984 induced a so far unknown binding pocket that accommodated the piperazine-phenyl-pyrimidine decoration. This novel binding pocket was created by an inactive conformation of the phosphate binding loop and an outward tilt of helix αC. In contrast, structure determination of SCH772984 with the off-target haspin and JNK1 revealed canonical but two distinct type-I binding modes. Intriguingly, the novel binding mode with ERK1/2 was associated with slow binding kinetics in vitro as well as in cell based assay systems. The described binding mode of SCH772984 with ERK1/2 enables the design of a new type of specific kinase inhibitors with prolonged on-target activity. PMID:25195011

  11. Solution structure and binding specificity of the p63 DNA binding domain

    PubMed Central

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  12. Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis

    PubMed Central

    Khushi, Matloob; Liddle, Christopher; Clarke, Christine L.; Graham, J. Dinny

    2014-01-01

    Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net PMID:24533055

  13. Non-binding relationship between visual features.

    PubMed

    Rangelov, Dragan; Zeki, Semir

    2014-01-01

    The answer as to how visual attributes processed in different brain loci at different speeds are bound together to give us our unitary experience of the visual world remains unknown. In this study we investigated whether bound representations arise, as commonly assumed, through physiological interactions between cells in the visual areas. In a focal attentional task in which correct responses from either bound or unbound representations were possible, participants discriminated the color or orientation of briefly presented single bars. On the assumption that representations of the two attributes are bound, the accuracy of reporting the color and orientation should co-vary. By contrast, if the attributes are not mandatorily bound, the accuracy of reporting the two attributes should be independent. The results of our psychophysical studies reported here supported the latter, non-binding, relationship between visual features, suggesting that binding does not necessarily occur even under focal attention. We propose a task-contingent binding mechanism, postulating that binding occurs at late, post-perceptual (PP), stages through the intervention of memory. PMID:25339879

  14. Inhibition of histone binding by supramolecular hosts

    PubMed Central

    Allen, Hillary F.; Daze, Kevin D.; Shimbo, Takashi; Lai, Anne; Musselman, Catherine A.; Sims, Jennifer K.; Wade, Paul A.; Hof†, Fraser; Kutateladze, Tatiana G.

    2015-01-01

    The tandem PHD (plant homeodomain) fingers of the CHD4 (chromodomain helicase DNA-binding protein 4) ATPase are epigenetic readers that bind either unmodified histone H3 tails or H3K9me3 (histone H3 trimethylated at Lys9). This dual function is necessary for the transcriptional and chromatin remodelling activities of the NuRD (nucleosome remodelling and deacetylase) complex. In the present paper, we show that calixarene-based supramolecular hosts disrupt binding of the CHD4 PHD2 finger to H3K9me3, but do not affect the interaction of this protein with the H3K9me0 (unmodified histone H3) tail. A similar inhibitory effect, observed for the association of chromodomain of HP1γ (heterochromatin protein 1γ) with H3K9me3, points to a general mechanism of methyl-lysine caging by calixarenes and suggests a high potential for these compounds in biochemical applications. Immunofluorescence analysis reveals that the supramolecular agents induce changes in chromatin organization that are consistent with their binding to and disruption of H3K9me3 sites in living cells. The results of the present study suggest that the aromatic macrocyclic hosts can be used as a powerful new tool for characterizing methylation-driven epigenetic mechanisms. PMID:24576085

  15. The Cultural Bind on the American Male

    ERIC Educational Resources Information Center

    Chenoweth, Gene

    2012-01-01

    In this article, the author talks about the cultural bind on the American male. The process starts with conception. If the spermatozoid that fertilizes the egg contains only X chromosomes a girl will be produced. If a single Y chromosome out of the 24 produced by the father is included, the baby will be a boy. From this point on the girls have a…

  16. The complex binding of PRDM9

    PubMed Central

    2013-01-01

    A recent study investigates the in vitro DNA binding behavior of PRDM9, a zinc finger protein involved in the localization of recombination hotspots in mammals. Please see related research article: http://genomebiology.com/2013/14/4/R35 PMID:23651476

  17. [Carbohydrate-binding proteins of marine invertebrates].

    PubMed

    Luk'ianov, P A; Chernikov, O V; Kobelev, S S; Chikalovets, I V; Molchanova, V I; Li, W

    2007-01-01

    The information on the carbohydrate specificity and molecular organization of some carbohydrate-binding proteins (lectins) of marine invertebrates is reported. Antiviral activity of some of the lectins against human immunodeficiency virus has been studied. Lectins of marine invertebrates are promising tools for studying natural glycoconjugates and cell effectors in vitro. PMID:17375673

  18. The Binding Properties of Quechua Suffixes.

    ERIC Educational Resources Information Center

    Weber, David

    This paper sketches an explicitly non-lexicalist application of grammatical theory to Huallaga (Huanuco) Quechua (HgQ). The advantages of applying binding theory to many suffixes that have previously been treated only as objects of the morphology are demonstrated. After an introduction, section 2 outlines basic assumptions about the nature of HgQ…

  19. Dynamics of Transcription Factor Binding Site Evolution

    PubMed Central

    Tuğrul, Murat; Paixão, Tiago; Barton, Nicholas H.; Tkačik, Gašper

    2015-01-01

    Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics. PMID:26545200

  20. Metal binding components in human amniotic fluid

    SciTech Connect

    Paterson, P.G.; Zlotkin, S.H.; Sarkar, B. )

    1990-02-26

    Amniotic fluid is a potential source of both nutritionally essential and toxic metals for the fetus. As the binding pattern of these metals in amniotic fluid may be one of the determining factors in their availability to the fetus, the objective of this study was to investigate metal binding in vitro. The binding of six trace metals, Mn(II), Ni(II), Zn(II), Cu(II), Cd(II), and Fe(III), to components of human amniotic fluid was studied by Sephadex G-100 gel filtration at physiological pH, using radioisotopes as tracers and 50 mM TRIS/HCl as the elution buffer. The amniotic fluid was collected at 16-16.5 weeks gestation by amniocentesis and pooled for analysis. Extensive amounts of Fe, Cu, Zn, and Cd and small amounts of Mn and Ni were bound to high molecular weight proteins with elution patterns similar to those seen for the binding of these metals in serum. In addition, large amounts of Fe, Mn, Ni and Cd and small amounts of Zn and Cu were associated with low molecular weight component(s). The identity of these latter components is unknown, but they play an important biological role in amniotic fluid.

  1. The Double Bind: The next Generation

    ERIC Educational Resources Information Center

    Malcom, Lindsey E.; Malcom, Shirley M.

    2011-01-01

    In this foreword, Shirley Malcom and Lindsey Malcom speak to the history and current status of women of color in science, technology, engineering, and mathematics (STEM) fields. As the author of the seminal report "The Double Bind: The Price of Being a Minority Woman in Science", Shirley Malcom is uniquely poised to give us an insightful…

  2. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  4. Nebulin binding impedes mutant desmin filament assembly

    PubMed Central

    Baker, Laura K.; Gillis, David C.; Sharma, Sarika; Ambrus, Andy; Herrmann, Harald; Conover, Gloria M.

    2013-01-01

    Desmin intermediate filaments (DIFs) form an intricate meshwork that organizes myofibers within striated muscle cells. The mechanisms that regulate the association of desmin to sarcomeres and their role in desminopathy are incompletely understood. Here we compare the effect nebulin binding has on the assembly kinetics of desmin and three desminopathy-causing mutant desmin variants carrying mutations in the head, rod, or tail domains of desmin (S46F, E245D, and T453I). These mutants were chosen because the mutated residues are located within the nebulin-binding regions of desmin. We discovered that, although nebulin M160–164 bound to both desmin tetrameric complexes and mature filaments, all three mutants exhibited significantly delayed filament assembly kinetics when bound to nebulin. Correspondingly, all three mutants displayed enhanced binding affinities and capacities for nebulin relative to wild-type desmin. Electron micrographs showed that nebulin associates with elongated normal and mutant DIFs assembled in vitro. Moreover, we measured significantly delayed dynamics for the mutant desmin E245D relative to wild-type desmin in fluorescence recovery after photobleaching in live-cell imaging experiments. We propose a mechanism by which mutant desmin slows desmin remodeling in myocytes by retaining nebulin near the Z-discs. On the basis of these data, we suggest that for some filament-forming desmin mutants, the molecular etiology of desminopathy results from subtle deficiencies in their association with nebulin, a major actin-binding filament protein of striated muscle. PMID:23615443

  5. Cross-Modal Binding in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Jones, Manon W.; Branigan, Holly P.; Parra, Mario A.; Logie, Robert H.

    2013-01-01

    The ability to learn visual-phonological associations is a unique predictor of word reading, and individuals with developmental dyslexia show impaired ability in learning these associations. In this study, we compared developmentally dyslexic and nondyslexic adults on their ability to form cross-modal associations (or "bindings") based…

  6. Stabilized sulfur binding using activated fillers

    DOEpatents

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  7. Oxytocin binding sites in bovine mammary tissue

    SciTech Connect

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  8. Binding of NAD+ to pertussis toxin.

    PubMed

    Lobban, M D; Irons, L I; van Heyningen, S

    1991-06-24

    The equilibrium dissociation constant of NAD+ and pertussis toxin was determined by equilibrium dialysis and by the quenching of the protein's intrinsic fluorescence on titration with NAD+. A binding constant, Kd, of 24 +/- 2 microM at 30 degrees C was obtained from equilibrium dialysis, consistent with the previously determined value for the Michaelis constant, Km, of 30 +/- 5 microM for NAD+ (when the toxin is catalysing the ADP-ribosylation of water and of dithiothreitol). The intrinsic fluorescence of pertussis toxin was quenched by up to 60% on titration with NAD+, and after correction for dilution and inner filter effects, a Kd value of 27 microM at 30 degrees C was obtained, agreeing well with that found by equilibrium dialysis. The binding constants were measured at a number of temperatures using both techniques, and from this the enthalpy of binding of NAD+ to toxin was determined to be 30 kJ.mol-1, a typical value for a protein-ligand interaction. There is one binding site for NAD+ per toxin molecule. PMID:1648404

  9. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. J.

    1984-01-01

    Rose, Smith, and Ferrante have discovered scaling relations which map the adhesive binding energy calculated by Ferrante and Smith onto a single universal binding energy curve. These binding energies are calculated for all combinations of Al(111), Zn(0001), Mg(0001), and Na(110) in contact. The scaling involves normalizing the energy by the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. Rose et al. have also found that the calculated cohesive energies of K, Ba, Cu, Mo, and Sm scale by similar simple relations, suggesting the universal relation may be more general than for the simple free electron metals for which it was derived. In addition, the scaling length was defined more generally in order to relate it to measurable physical properties. Further this universality can be extended to chemisorption. A simple and yet quite accurate prediction of a zero temperature equation of state (volume as a function of pressure for metals and alloys) is presented. Thermal expansion coefficients and melting temperatures are predicted by simple, analytic expressions, and results compare favorably with experiment for a broad range of metals.

  10. The Case against Binding Interest Arbitration.

    ERIC Educational Resources Information Center

    Ecker, Charles I.

    1984-01-01

    The author contends that districts should reject binding interest arbitration as a means of resolving an impasse in contract negotiations, charging that it hampers good faith bargaining, adversely affects fiscal and operational management of the school system, and diminishes the governing role of the board of education. (MJL)

  11. Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site

    PubMed Central

    Boyce, Sarah E.; Mobley, David L.; Rocklin, Gabriel; Graves, Alan P.

    2009-01-01

    We present a combined experimental and modeling study of organic ligand molecules binding to a slightly polar engineered cavity site in T4 lysozyme (L99A/M102Q). For modeling, we computed alchemical absolute binding free energies. These were blind tests performed prospectively on 13 diverse, previously untested candidate ligand molecules. We predicted that eight compounds would bind to the cavity and five would not; 11 of 13 predictions were correct at this level. The RMS error to the measurable absolute binding energies was 1.8 kcal/mol. In addition, we computed relative binding free energies for six phenol derivatives starting from two known ligands: phenol and catechol. The average RMS error in the relative free energy prediction was 2.5 (phenol) and 1.1 (catechol) kcal/mol. To understand these results at atomic resolution, we obtained x-ray co-complex structures for nine of the diverse ligands and for all six phenol analogs. The average RMSD of the predicted pose to the experiment was 2.0Å (diverse set), 1.8Å (phenol derived predictions) and 1.2Å (catechol derived predictions). We found that to predict accurate affinities and rank-orderings required near-native starting orientations of the ligand in the binding site. Unanticipated binding modes, multiple ligand binding, and protein conformational change all proved challenging for the free energy methods. We believe these results can help guide future improvements in physics-based absolute binding free energy methods. PMID:19782087

  12. Exploration of dimensions of estrogen potency: parsing ligand binding and coactivator binding affinities.

    PubMed

    Jeyakumar, M; Carlson, Kathryn E; Gunther, Jillian R; Katzenellenbogen, John A

    2011-04-15

    The estrogen receptors, ERα and ERβ, are ligand-regulated transcription factors that control gene expression programs in target tissues. The molecular events underlying estrogen action involve minimally two steps, hormone binding to the ER ligand-binding domain followed by coactivator recruitment to the ER·ligand complex; this ligand·receptor·coactivator triple complex then alters gene expression. Conceptually, the potency of an estrogen in activating a cellular response should reflect the affinities that characterize both steps involved in the assembly of the active ligand·receptor·coactivator complex. Thus, to better understand the molecular basis of estrogen potency, we developed a completely in vitro system (using radiometric and time-resolved FRET assays) to quantify independently three parameters: (a) the affinity of ligand binding to ER, (b) the affinity of coactivator binding to the ER·ligand complex, and (c) the potency of ligand recruitment of coactivator. We used this system to characterize the binding and potency of 12 estrogens with both ERα and ERβ. Some ligands showed good correlations between ligand binding affinity, coactivator binding affinity, and coactivator recruitment potency with both ERs, whereas others showed correlations with only one ER subtype or displayed discordant coactivator recruitment potencies. When ligands with low receptor binding affinity but high coactivator recruitment potencies to ERβ were evaluated in cell-based assays, elevation of cellular coactivator levels significantly and selectively improved their potency. Collectively, our results indicate that some low affinity estrogens may elicit greater cellular responses in those target cells that express higher levels of specific coactivators capable of binding to their ER complexes with high affinity. PMID:21321128

  13. Binding Site Graphs: A New Graph Theoretical Framework for Prediction of Transcription Factor Binding Sites

    PubMed Central

    Reddy, Timothy E; DeLisi, Charles; Shakhnovich, Boris E

    2007-01-01

    Computational prediction of nucleotide binding specificity for transcription factors remains a fundamental and largely unsolved problem. Determination of binding positions is a prerequisite for research in gene regulation, a major mechanism controlling phenotypic diversity. Furthermore, an accurate determination of binding specificities from high-throughput data sources is necessary to realize the full potential of systems biology. Unfortunately, recently performed independent evaluation showed that more than half the predictions from most widely used algorithms are false. We introduce a graph-theoretical framework to describe local sequence similarity as the pair-wise distances between nucleotides in promoter sequences, and hypothesize that densely connected subgraphs are indicative of transcription factor binding sites. Using a well-established sampling algorithm coupled with simple clustering and scoring schemes, we identify sets of closely related nucleotides and test those for known TF binding activity. Using an independent benchmark, we find our algorithm predicts yeast binding motifs considerably better than currently available techniques and without manual curation. Importantly, we reduce the number of false positive predictions in yeast to less than 30%. We also develop a framework to evaluate the statistical significance of our motif predictions. We show that our approach is robust to the choice of input promoters, and thus can be used in the context of predicting binding positions from noisy experimental data. We apply our method to identify binding sites using data from genome scale ChIP–chip experiments. Results from these experiments are publicly available at http://cagt10.bu.edu/BSG. The graphical framework developed here may be useful when combining predictions from numerous computational and experimental measures. Finally, we discuss how our algorithm can be used to improve the sensitivity of computational predictions of transcription factor

  14. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    PubMed

    Khan, Waqasuddin; Duffy, Fergal; Pollastri, Gianluca; Shields, Denis C; Mooney, Catherine

    2013-01-01

    Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif) containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58).Next, we trained a bidirectional recurrent neural network (BRNN) using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72) showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods) clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors. PMID:24019881

  15. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.

    PubMed

    Kokh, Daria B; Czodrowski, Paul; Rippmann, Friedrich; Wade, Rebecca C

    2016-08-01

    Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design. PMID:27399277

  16. Detergent binding as a sensor of hydrophobicity and polar interactions in the binding cavities of proteins.

    PubMed

    Peyre, Véronique; Lair, Virginie; André, Virginie; le Maire, Guerric; Kragh-Hansen, Ulrich; le Maire, Marc; Møller, Jesper V

    2005-09-13

    To evaluate the role of hydrophobic and electrostatic or other polar interactions for protein-ligand binding, we studied the interaction of human serum albumin (HSA) and beta-lactoglobulin with various aliphatic (C10-C14) cationic and zwitterionic detergents. We find that cationic detergents, at levels that do not cause unfolding, interact with a single site on beta-lactoglobulin and with two primary and five to six secondary sites on HSA with an affinity that is approximately the same as that with which zwitterionic (dimethylamineoxide) detergents interact, suggesting the absence of significant electrostatic interactions in the high-affinity binding of these compounds. The binding affinity for all of the groups of compounds was dependent upon hydrocarbon chain length, suggesting the predominant role of hydrophobic forces, supported by polar interactions at the protein surface. A distinct correlation between the binding energy and the propensity for micelle formation within the group of cationic or noncharged (nonionic and zwitterionic) detergents indicated that the critical micellar concentration (CMC) for each of these detergent groups, rather than the absolute length of the hydrocarbon chain, can be used to compare their hydrophobicities during their interaction with protein. Intrinsic fluorescence data suggest that the two primary binding sites on serum albumin for the zwitterionic and cationic compounds are located in the C-terminal part of the albumin molecule, possibly in the Sudlow II binding region. Comparisons with previous binding data on anionic amphiphiles emphasize the important contribution of ion bond formation and other polar interactions in the binding of fatty acids and dodecyl sulfate (SDS) by HSA but not by beta-lactoglobulin. Electrostatic interactions by cationic detergents played a significant role in destabilizing the protein structure at high binding levels, with beta-lactoglobulin being more susceptible to unfolding than HSA. Zwitterionic

  17. CD36 Binds Oxidized Low Density Lipoprotein (LDL) in a Mechanism Dependent upon Fatty Acid Binding*

    PubMed Central

    Jay, Anthony G.; Chen, Alexander N.; Paz, Miguel A.; Hung, Justin P.; Hamilton, James A.

    2015-01-01

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes. PMID:25555908

  18. Nucleolin is a calcium-binding protein.

    PubMed

    Gilchrist, James S C; Abrenica, Bernard; DiMario, Patrick J; Czubryt, Michael P; Pierce, Grant N

    2002-01-01

    We have purified a prominent 110-kDa protein (p110) from 1.6 M NaCl extracts of rat liver nuclei that appears to bind Ca2+. p110 was originally identified by prominent blue staining with 'Stains-All' in sodium dodecyl sulfate-polyacrylamide gels and was observed to specifically bind ruthenium red and 45Ca2+ in nitrocellulose blot overlays. In spin-dialysis studies, purified p110 saturably bound approximately 75 nmol Ca2+/mg protein at a concentration of 1 mM total Ca2+ with half-maximal binding observed at 105 microM Ca2+. With purification, p110 became increasingly susceptible to proteolytic (likely autolytic) fragmentation, although most intermediary peptides between 40 and 90 kDa retained "Stains-All", ruthenium red, and 45Ca2+ binding. N-terminal sequencing of intact p110 and a 70-kDa autolytic peptide fragment revealed a strong homology to nucleolin. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/IEF revealed autolysis produced increasingly acidic peptide fragments ranging in apparent pI's from 5.5 for intact p110 to 3.5 for a 40 kDa peptide fragment. Intact p110 and several peptide fragments were immunostained with a highly specific anti-nucleolin antibody, R2D2, thus confirming the identity of this protein with nucleolin. These annexin-like Ca2+-binding characteristics of nucleolin are likely contributed by its highly acidic argyrophilic N-terminus with autolysis apparently resulting in largely selective removal of its basic C-terminal domain. Although the Ca2+-dependent functions of nucleolin are unknown, we discuss the possibility that like the structurally analogous HMG-1, its Ca2+-dependent actions may regulate chromatin structure, possibly during apoptosis. PMID:11948683

  19. Molecular anatomy of the antibody binding site.

    PubMed

    Novotný, J; Bruccoleri, R; Newell, J; Murphy, D; Haber, E; Karplus, M

    1983-12-10

    The binding region of immunoglobulins, which includes the portion of the molecule having the most variability in its amino acid sequence, is shown to have a surprisingly constant structure that can be characterized in terms of a simple, well-defined model. The binding region is composed of the antigen combining site plus its immediate vicinity and arises by noncovalent association of the light and heavy chain variable domains (VL and VH, respectively). The antigen combining site itself consists of six polypeptide chain segments ("hypervariable loops") which comprise some 80 amino acid residues and are attached to a framework of VL and VH beta-sheet bilayers. Having analyzed refined x-ray crystallographic coordinates for three antigen-binding fragments (Fab KOL (Marquart, M., Deisenhofer, J., and Huber, R. (1980) J. Mol. Biol. 141, 369-391), MCPC 603 (Segal, D., Padlan, E. A., Cohen, G. H., Rudikoff, S., Potter, M., and Davies, D. R. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 4298-4302), and NEW (Saul, F. A., Amzel, L. M., and Poljak, R. J. (1978) J. Biol. Chem. 253, 585-597] we use the results to introduce a general model for the VL-VH interface forming the binding region. The region consists of two closely packed beta-sheets, and its geometry corresponds to a 9-stranded, cylindrical barrel of average radius 0.84 nm with an average angle of -53 degrees between its two constituent beta-sheets. The barrel forms the bottom and sides of the antigen combining site. The model demonstrates that the structural variability of the binding region is considerably less than was thought previously. Amino acid residues which are part of the domain-domain interface and appear not to be accessible to solvent or antigen contribute to antibody specificity. PMID:6643494

  20. Metal binding stoichiometry and isotherm choice in biosorption

    SciTech Connect

    Schiewer, S.; Wong, M.H.

    1999-11-01

    Seaweeds that possess a high metal binding capacity may be used as biosorbents for the removal of toxic heavy metals from wastewater. The binding of Cu and Ni by three brown algae (Sargassum, Colpomenia, Petalonia) and one green alga (Ulva) was investigated at pH 4.0 and pH 3.0. The greater binding strength of Cu is reflected in a binding constant that is about 10 times as high as that of Ni. The extent of metal binding followed the order Petalonia {approximately} Sargassum > Colpomenia > Ulva. This was caused by a decreasing number of binding sites and by much lower metal binding constants for Ulva as compared to the brown algae. Three different stoichiometric assumptions are compared for describing the metal binding, which assume either that each metal ion M binds to one binding site B forming a BM complex or that a divalent metal ion M binds to two monovalent sites B forming BM{sub 0.5} or B{sub 2}M complexes, respectively. Stoichiometry plots are proposed as tools to discern the relevant binding stoichiometry. The pH effect in metal binding and the change in proton binding were well predicted for the B{sub 2}M or BM{sub 0.5} stoichiometries with the former being better for Cu and the latter preferable for Ni. Overall, the BM{sub 0.5} model is recommended because it avoids iterations.

  1. Multiple Binding Poses in the Hydrophobic Cavity of Bee Odorant Binding Protein AmelOBP14.

    PubMed

    Pechlaner, Maria; Oostenbrink, Chris

    2015-12-28

    In the first step of olfaction, odorants are bound and solubilized by small globular odorant binding proteins (OBPs) which shuttle them to the membrane of a sensory neuron. Low ligand affinity and selectivity at this step enable the recognition of a wide range of chemicals. Honey bee Apis mellifera's OBP14 (AmelOBP14) binds different plant odorants in a largely hydrophobic cavity. In long molecular dynamics simulations in the presence and absence of ligand eugenol, we observe a highly dynamic C-terminal region which forms one side of the ligand-binding cavity, and the ligand drifts away from its crystallized orientation. Hamiltonian replica exchange simulations, allowing exchanges of conformations sampled by the real ligand with those sampled by a noninteracting dummy molecule and several intermediates, suggest an alternative, quite different ligand pose which is adopted immediately and which is stable in long simulations. Thermodynamic integration yields binding free energies which are in reasonable agreement with experimental data. PMID:26633245

  2. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4)

    PubMed Central

    González, Javier M.; Fisher, S. Zoë

    2015-01-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments. PMID:25664790

  3. Structure of the RNA-Binding Domain of Telomerase: Implications For RNA Recognition and Binding

    SciTech Connect

    Rouda,S.; Skordalakes, E.

    2007-01-01

    Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the 'end of replication problem.' TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.

  4. Binding of transition metals to S100 proteins.

    PubMed

    Gilston, Benjamin A; Skaar, Eric P; Chazin, Walter J

    2016-08-01

    The S100 proteins are a unique class of EF-hand Ca(2+) binding proteins distributed in a cell-specific, tissue-specific, and cell cycle-specific manner in humans and other vertebrates. These proteins are distinguished by their distinctive homodimeric structure, both intracellular and extracellular functions, and the ability to bind transition metals at the dimer interface. Here we summarize current knowledge of S100 protein binding of Zn(2+), Cu(2+) and Mn(2+) ions, focusing on binding affinities, conformational changes that arise from metal binding, and the roles of transition metal binding in S100 protein function. PMID:27430886

  5. Evidence for an intrinsic binding force between dodecaborate dianions and receptors with hydrophobic binding pockets.

    PubMed

    Warneke, Jonas; Jenne, Carsten; Bernarding, Johannes; Azov, Vladimir A; Plaumann, Markus

    2016-05-01

    A gas phase binding study revealed strong intrinsic intermolecular interactions between dianionic halogenated closo-dodecaborates [B12X12](2-) and several neutral organic receptors. Oxidation of a tetrathiafulvalene host allowed switching between two host-guest binding modes in a supramolecular complex. Complexes of β-cyclodextrin with [B12F12](2-) show remarkable stability in the gas phase and were successfully tested as carriers for the delivery of boron clusters into cancer cells. PMID:27087168

  6. Binding of fluorescent lanthanides to rat liver mitochondrial membranes and calcium ion-binding proteins.

    PubMed

    Mikkelsen, R B; Wallach, D F

    1976-05-21

    (1) Tb3+ binding to mitochondrial membranes can be monitored by enhanced ion fluorescence at 545 nm with excitation at 285 nm. At low protein concentrations (less than 30 mug/ml) no inner filter effects are observed. (2) This binding is localized at the external surface of the inner membrane and is unaffected by inhibitors of respiration or oxidative phosphorylation. (3) A soluble Ca2+ binding protein isolated according to Lehninger, A.L. ((1971) Biochem. Biophys. Res. Commun. 42, 312-317) also binds Tb3+ with enhanced ion fluorescence upon excitation at 285 nm. The excitation spectrum of the isolated protein and of the intact mitochondria are indicative of an aromatic amino acid at the cation binding site. (4) Further characterization of the Tb3+-protein interaction revealed that there is more than one binding site per protein molecule and that these sites are clustered (less than 20 A). Neuraminidase treatment or organic solvent extraction of the protein did not affect fluorescent Tb3+ binding. (5) pH dependency studies of Tb3+ binding to the isolated protein or intact mitochondria demonstrated the importance of an ionizable group of pK greater than 6. At pH less than 7.5 the amount of Tb3+ bound to the isolated protein decreased with increase in pH as monitored by Tb3+ fluorescence. With intact mitochondria the opposite occurred with a large increase in Tb3+ fluorescence at higher pH. This increase was not observed when the mitochondria were preincubated with antimycin A and rotenone. PMID:6061

  7. Chloramphenicol binding to human serum albumin: Determination of binding constants and binding sites by steady-state fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Zhao, Guangyu; Chen, Shoucong; Liu, Feng; Sun, Ying; Zhang, Li

    2009-07-01

    The interaction between chloramphenicol and human serum albumin (HSA) was studied by fluorescence, UV/vis, circular dichroism (CD) and three-dimensional fluorescence spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by chloramphenicol was the result of the formation of drug-HSA complex, and the effective quenching constants ( Ka) were 2.852 × 10 4, 2.765 × 10 4, 2.638 × 10 4 and 2.542 × 10 4 M -1 at 287, 295, 303 and 311 K, respectively. The thermodynamic parameters, enthalpy change (Δ H) and entropy change (Δ S) for the reaction were calculated to be -3.634 kJ mol -1 and 72.66 J mol -1 K -1 according to van't Hoff equation. The results indicated that the hydrophobic and electrostatic interactions played a major role in the binding of drug to HSA. The distance r between donor and acceptor was obtained to be 3.63 nm according to Förster's theory. Site marker competitive experiments indicated that the binding of drug to HSA primarily took place in subdomain IIA. The alterations of HSA secondary structure in the presence of chloramphenicol were confirmed by the evidences from synchronous fluorescence, CD and three-dimensional fluorescence spectra. In addition, the effect of common ions on the binding constants of drug-HSA complex was also discussed.

  8. Biogenic and synthetic polyamines bind cationic dendrimers.

    PubMed

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of K(spm-mPEG-G3) = 7.6 × 10(4) M(-1), K(spm-mPEG-PAMAM-G4) = 4.6 × 10(4) M(-1), K(spm-PAMAM-G4) = 6.6 × 10(4) M(-1), K(spmd-mPEG-G3) = 1.0 × 10(5) M(-1), K(spmd-mPEG-PAMAM-G4) = 5.5 × 10(4) M(-1), K(spmd-PAMAM-G4) = 9.2 × 10(4) M(-1), K(BE-333-mPEG-G3) = 4.2 × 10(4) M(-1), K(Be-333-mPEG-PAMAM-G4) = 3.2 × 10(4) M(-1), K(BE-333-PAMAM-G4) = 3.6 × 10(4) M(-1), K(BE-3333-mPEG-G3) = 2.2 × 10(4) M(-1), K(Be-3333-mPEG-PAMAM-G4) = 2.4 × 10(4) M(-1), K(BE-3333-PAMAM-G4) = 2.3 × 10(4) M(-1). Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: -3.2 (spermine), -3.5 (spermidine) and -3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues

  9. Binding of TATA Binding Protein to a Naturally Positioned Nucleosome Is Facilitated by Histone Acetylation

    PubMed Central

    Sewack, Gerald F.; Ellis, Thomas W.; Hansen, Ulla

    2001-01-01

    The TATA sequence of the human, estrogen-responsive pS2 promoter is complexed in vivo with a rotationally and translationally positioned nucleosome (NUC T). Using a chromatin immunoprecipitation assay, we demonstrate that TATA binding protein (TBP) does not detectably interact with this genomic binding site in MCF-7 cells in the absence of transcriptional stimuli. Estrogen stimulation of these cells results in hyperacetylation of both histones H3 and H4 within the pS2 chromatin encompassing NUC T and the TATA sequence. Concurrently, TBP becomes associated with the pS2 promoter region. The relationship between histone hyperacetylation and the binding of TBP was assayed in vitro using an in vivo-assembled nucleosomal array over the pS2 promoter. With chromatin in its basal state, the binding of TBP to the pS2 TATA sequence at the edge of NUC T was severely restricted, consistent with our in vivo data. Acetylation of the core histones facilitated the binding of TBP to this nucleosomal TATA sequence. Therefore, we demonstrate that one specific, functional consequence of induced histone acetylation at a native promoter is the alleviation of nucleosome-mediated repression of the binding of TBP. Our data support a fundamental role for histone acetylation at genomic promoters in transcriptional activation by nuclear receptors and provide a general mechanism for rapid and reversible transcriptional activation from a chromatin template. PMID:11158325

  10. How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels.

    PubMed

    Tagliazucchi, Mario; Szleifer, Igal

    2015-10-01

    We present systematic studies for the binding of small model proteins to ligands attached to the inner walls of long nanochannels and short nanopores by polymeric tethers. Binding of proteins to specific ligands inside nanometric channels and pores leads to changes in their ionic conductance, which have been exploited in sensors that quantify the concentration of the proteins in solution. The theoretical predictions presented in this work are aimed to provide a fundamental understanding of protein binding under geometrically confined environments and to guide the design of this kind of nanochannel-based sensors. The theory predicts that the fraction of the channel volume filled by bound proteins is a nonmonotonic function of the channel radius, the length of the tethers, the surface density of the ligands and the size of the proteins. Notably, increasing the density of ligands, decreasing the size of the channel or increasing the size of the protein may lead to a decrease of the fraction of the channel volume filled by bound proteins. These results are explained from the incomplete binding of proteins to the ligands due to repulsive protein-protein and protein-ligand steric interactions. Our work suggests strategies to optimize the change in conductance due to protein binding, for example: (i) proteins much smaller than the radius of the channel may effectively block the channel if tethers of appropriate length are used, and (ii) a large decrease in conductance upon protein binding can be achieved if the channel and the protein are oppositely charged. PMID:26368839

  11. Being a binding site: characterizing residue composition of binding sites on proteins.

    PubMed

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2007-01-01

    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs. PMID:18305831

  12. Granzyme A binding to target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro.

    PubMed

    Pasternack, M S; Bleier, K J; McInerney, T N

    1991-08-01

    The physiologic substrates of cytotoxic T lymphocyte granule-associated serine esterases (referred to hereafter as proteases or "granzymes"), and the role of these enzymes in cell-mediated activity remain unclear. We have developed an assay for possible ligands of the trypsin-like dimeric serine protease granzyme A based on Western immunoblotting techniques. This protein-binding assay demonstrates the selective binding of granzyme A to several proteins present in the target cell P815. The binding specificity is preserved when enzyme binding is performed in the presence of excess competing proteins, including such cationic species as lysozyme and RNase. Enzyme binding is inhibited, however, by heat or detergent inactivation of granzyme A. Subcellular fractionation of target cells shows that the nuclear fraction contains most granzyme A binding reactivity, which is recovered in the nuclear salt wash fraction. A protein with Mr = 100,000 and two closely migrating proteins with Mr = 35,000 and 38,000 are the predominant reactive moieties, and the N-terminal sequence of the 100-kDa protein confirmed that this protein was murine nucleolin. Incubation of granzyme A with nucleolin generates a discrete proteolytic cleavage product of Mr = 88,000. Since nucleolin is known to shuttle between nucleus and cytoplasm, the interaction of granzyme A and nucleolin may be important in the process of apoptosis which accompanies cytotoxic T lymphocyte-mediated lysis of target cells. PMID:1860869

  13. Amphetamine binding to synthetic melanin and scatchard analysis of binding data.

    PubMed

    Gautam, Lata; Scott, Karen S; Cole, Michael D

    2005-01-01

    Previous research into drug-hair binding shows that hair color affects drug-hair binding. There are no structural disparities in hair of different colors other than the type and content of melanin present. For this reason, this investigation focuses on synthetic eumelanin as a site for drug interaction using amphetamine as the candidate drug. The binding study was carried out at room temperature. The interaction between synthetic eumelanin and amphetamine was monitored using UV-Vis spectrophotometry at 257.2 nm. As the molecular weight of melanin is unknown, the number of binding sites could not be calculated directly. Hence the ratio of the number of mumoles of drug bound and the dry weight of melanin in mug was considered. Equilibrium was reached when approximately 32% of the drug was bound to melanin. Hence this study proves that amphetamine binds to synthetic eumelanin in vitro. Data interpretation using Scatchard analysis yielded a curvilinear plot with upward concavity indicating multiple binding sites on melanin and negative cooperativity. PMID:16105258

  14. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins

    PubMed Central

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements. PMID:21087992

  15. Mapping the Ligand-Binding Region of Borrelia hermsii Fibronectin-Binding Protein

    PubMed Central

    Brenner, Christiane; Bomans, Katharina; Habicht, Jüri; Simon, Markus M.; Wallich, Reinhard

    2013-01-01

    Many pathogenic microorganisms express fibronectin-binding molecules that facilitate their adherence to the extracellular matrix and/or entry into mammalian cells. We have previously described a Borrelia recurrentis gene, cihC that encodes a 40-kDa surface receptor for both, fibronectin and the complement inhibitors C4bp and C1-Inh. We now provide evidence for the expression of a group of highly homologues surface proteins, termed FbpA, in three B. hermsii isolates and two tick-borne relapsing fever spirochetes, B. parkeri and B. turicatae. When expressed in Escherichia coli or B. burgdorferi, four out of five proteins were shown to selectively bind fibronectin, whereas none of five proteins were able to bind the human complement regulators, C4bp and C1-Inh. By applying deletion mutants of the B. hermsii fibronectin-binding proteins a putative high-affinity binding site for fibronectin was mapped to its central region. In addition, the fibronectin-binding proteins of B. hermsii were found to share sequence homology with BBK32 of the Lyme disease spirochete B. burgdorferi with similar function suggesting its involvement in persistence and/or virulence of relapsing fever spirochetes. PMID:23658828

  16. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    PubMed Central

    2011-01-01

    Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC). A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans. PMID:22122911

  17. Simultaneous optimal experimental design for in vitro binding parameter estimation.

    PubMed

    Ernest, C Steven; Karlsson, Mats O; Hooker, Andrew C

    2013-10-01

    Simultaneous optimization of in vitro ligand binding studies using an optimal design software package that can incorporate multiple design variables through non-linear mixed effect models and provide a general optimized design regardless of the binding site capacity and relative binding rates for a two binding system. Experimental design optimization was employed with D- and ED-optimality using PopED 2.8 including commonly encountered factors during experimentation (residual error, between experiment variability and non-specific binding) for in vitro ligand binding experiments: association, dissociation, equilibrium and non-specific binding experiments. Moreover, a method for optimizing several design parameters (ligand concentrations, measurement times and total number of samples) was examined. With changes in relative binding site density and relative binding rates, different measurement times and ligand concentrations were needed to provide precise estimation of binding parameters. However, using optimized design variables, significant reductions in number of samples provided as good or better precision of the parameter estimates compared to the original extensive sampling design. Employing ED-optimality led to a general experimental design regardless of the relative binding site density and relative binding rates. Precision of the parameter estimates were as good as the extensive sampling design for most parameters and better for the poorly estimated parameters. Optimized designs for in vitro ligand binding studies provided robust parameter estimation while allowing more efficient and cost effective experimentation by reducing the measurement times and separate ligand concentrations required and in some cases, the total number of samples. PMID:23943088

  18. A thermodynamic signature for drug-DNA binding mode.

    PubMed

    Chaires, Jonathan B

    2006-09-01

    A number of small molecules bind directly and selectively to DNA, acting as chemotherapeutic agents by inhibiting replication, transcription or topoisomerase activity. Two common binding modes for these small molecules are intercalation or groove-binding. Intercalation results from insertion of a planar aromatic substituent between DNA base pairs, with concomitant unwinding and lengthening of the DNA helix. Groove binding, in contrast, does not perturb the duplex structure to any great extent. Groove-binders are typically crescent-shaped, and fit snugly into the minor groove with little distortion of the DNA structure. Recent calorimetric studies have determined the enthalpic and entropic contributions to the DNA binding of representative DNA binding compounds. Analysis of such thermodynamic data culled from the literature reveals distinctive thermodynamic signatures for groove-binding and intercalating compounds. Plots of the binding enthalpy (DeltaH) against binding entropy (-TDeltaS) for 26 drug-DNA interactions reveal that groove-binding interactions are clustered in a region of the graph with favorable entropy contributions to the free energy, while intercalators are clustered in a region with unfavorable entropy but favorable enthalpy contributions. Groove-binding is predominantly entropically driven, while intercalation in enthalpically driven. The molecular basis of the contrasting thermodynamic signatures for the two binding modes is by no means clear, but the pattern should be of use in categorizing new DNA binding agents. PMID:16730635

  19. Copper binding in the prion protein.

    PubMed

    Millhauser, Glenn L

    2004-02-01

    A conformational change of the prion protein is responsible for a class of neurodegenerative diseases called the transmissible spongiform encephalopathies that include mad cow disease and the human afflictions kuru and Creutzfeldt-Jakob disease. Despite the attention given to these diseases, the normal function of the prion protein in healthy tissue is unknown. Research over the past few years, however, demonstrates that the prion protein is a copper binding protein with high selectivity for Cu(2+). The structural features of the Cu(2+) binding sites have now been characterized and are providing important clues about the normal function of the prion protein and perhaps how metals or loss of protein function play a role in disease. The link between prion protein and copper may provide insight into the general, and recently appreciated, role of metals in neurodegenerative disease. PMID:14967054

  20. Competitive protein binding assay for piritrexim

    SciTech Connect

    Woolley, J.L. Jr.; Ringstad, J.L.; Sigel, C.W. )

    1989-09-01

    A competitive protein binding assay for piritrexim (PTX, 1) that makes use of a commercially available radioassay kit for methotrexate has been developed. After it is selectively extracted from plasma, PTX competes with ({sup 125}I)methotrexate for binding to dihydrofolate reductase isolated from Lactobacillus casei. Free drug is separated from bound drug by adsorption to dextran-coated charcoal. Piritrexim is measurable over a range of 0.01 to 10.0 micrograms/mL in plasma with a coefficient of variation less than 15%. The limit of sensitivity of the assay is approximately 2 ng/mL. An excellent correlation between this assay and a previously published HPLC method was found.

  1. The Sunscreen Octyl Methoxycinnamate Binds to DNA

    NASA Astrophysics Data System (ADS)

    Norrell, Johannes; Vohra, Shikhar; Nordlund, T. M.

    2000-03-01

    Sunscreens are designed to prevent skin cancer by absorbing ultraviolet radiation from the sun before it gets to the DNA in skin cells. The purpose of this work is to determine whether or not octyl methoxycinnamate, an active ingredient in many sunscreens, will bind to DNA. If so, the sunscreen could transfer the energy it absorbed from the sun to the DNA and cause damage. To determine this, we prepared samples with varying concentrations of cinnamate added to herring sperm DNA, sonicating the mixture to disperse the hydrophobic sunscreen into solution. Absorption and fluorescence spectra of the mixtures showed (i) much more sunscreen was dispersed into solution when DNA was present, and (ii) the spectra of both DNA and sunscreen differed from those of the separate solutions. We conclude that the octyl methoxycinnamate can indeed bind to DNA in aqueous solution. Energy transfer experiments from DNA to sunscreen and from sunscreen to 2-aminopurine- (a fluorescent DNA base) labeled DNA will be presented.

  2. Triazatriangulene as binding group for molecular electronics.

    PubMed

    Wei, Zhongming; Wang, Xintai; Borges, Anders; Santella, Marco; Li, Tao; Sørensen, Jakob Kryger; Vanin, Marco; Hu, Wenping; Liu, Yunqi; Ulstrup, Jens; Solomon, Gemma C; Chi, Qijin; Bjørnholm, Thomas; Nørgaard, Kasper; Laursen, Bo W

    2014-12-16

    The triazatriangulene (TATA) ring system was investigated as a binding group for tunnel junctions of molecular wires on gold surfaces. Self-assembled monolayers (SAMs) of TATA platforms with three different lengths of phenylene wires were fabricated, and their electrical conductance was recorded by both conducting probe-atomic force microscopy (CP-AFM) and scanning tunneling microscopy (STM). Similar measurements were performed for phenylene SAMs with thiol anchoring groups as references. It was found that, despite the presence of a sp(3) hybridized carbon atom in the conduction path, the TATA platform displays a contact resistance only slightly larger than the thiols. This surprising finding has not been reported before and was analyzed by theoretical computations of the transmission functions of the TATA anchored molecular wires. The relatively low contact resistance of the TATA platform along with its high stability and directionality make this binding group very attractive for molecular electronic measurements and devices. PMID:25426950

  3. Programmable DNA-binding Small Molecules

    PubMed Central

    Blackledge, Meghan S.; Melander, Christian

    2013-01-01

    Aberrant gene expression is responsible for a myriad of human diseases from infectious diseases to cancer. Precise regulation of these genes via specific interactions with the DNA double helix could pave the way for novel therapeutics. Pyrrole-imidazole polyamides are small molecules capable of binding to pre-determined DNA sequences up to 16 base pairs with affinity and specificity comparable to natural transcription factors. In the three decades since their development, great strides have been made relating to synthetic accessibility and improved sequence specificity and binding affinity. This perspective presents a brief history of early seminal developments in the field and highlights recent reports of the utility of polyamides as both genetic modulators and molecular probes. PMID:23665141

  4. Odorant-binding proteins in insects.

    PubMed

    Zhou, Jing-Jiang

    2010-01-01

    Our understanding of the molecular and biochemical mechanisms that mediate chemoreception in insects has been greatly improved after the discovery of olfactory and taste receptor proteins. However, after 50 years of the discovery of first insect sex pheromone from the silkmoth Bombyx mori, it is still unclear how hydrophobic compounds reach the dendrites of sensory neurons in vivo across aqueous space and interact with the sensory receptors. The presence of soluble polypeptides in high concentration in the lymph of chemosensilla still poses unanswered questions. More than two decades after their discovery and despite the wealth of structural and biochemical information available, the physiological function of odorant-binding proteins (OBPs) is not well understood. Here, I review the structural properties of different subclasses of insect OBPs and their binding to pheromones and other small ligands. Finally, I discuss current ideas and models on the role of such proteins in insect chemoreception. PMID:20831949

  5. Quantifying drug-protein binding in vivo.

    SciTech Connect

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-02-17

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS.

  6. Preferred Metal Binding Site of Aniline

    NASA Astrophysics Data System (ADS)

    Kumari, Sudesh; Sohnlein, Brad; Yang, Dong-Sheng

    2012-06-01

    Group III metal-aniline complexes, M-aniline (M = Sc, Y, and La), were produced by interactions between laser-vaporized metal atoms and aniline vapor in a pulsed molecular beam source, identified by photoionization time-of-flight mass spectrometry, and studied by pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy and density functional theory calculations. Adiabatic ionization energies and several vibrational intervals were measured from the ZEKE spectra. Metal binding sites and electronic states were determined by combining the ZEKE measurements and theoretical calculations. Although aniline has various possible sites for metal coordination, the preferred site was determined to be phenyl ring. The metal binding with the phenyl ring yields syn and anti conformers. In these conformers, the neutral complexes are in doublet ground states and the corresponding singly charged cations in singlet states.

  7. DNA Triplexes That Bind Several Cofactor Molecules.

    PubMed

    Vollmer, Sven; Richert, Clemens

    2015-12-14

    Invited for the cover of this issue are Sven Vollmer and Clemens Richert of the University of Stuttgart. The cover image hints at the analogy between a honey comb, as a macroscopic storage device, and DNA triplexes with designed binding sites, as molecular storage motifs that can release ATP to fuel a bioluminescence reaction. Read the full text of the article at 10.1002/chem.201503220. PMID:26534779

  8. Cadmium-binding protein (metallothionein) in carp.

    PubMed Central

    Kito, H; Ose, Y; Sato, T

    1986-01-01

    When carp (Cyprinus carpio) were exposed to 5 and 30 ppm Cd in the water, the contents of Cd-binding protein, which has low molecular weight, increased in the hepatopancreas, kidney, gills and gastrointestinal tract with the duration of exposure. This Cd-binding protein was purified from hepatopancreas, kidney, gills, and spleen of carp administered 2 mg/kg Cd (as CdCl2), intraperitoneally for 6 days. Two Cd-binding proteins were separated by DEAE-Sephadex A-25 column chromatography. These proteins had Cd-mercaptide bond, high cysteine contents (ca. 29-34%), but no aromatic amino acids or histidine. From these characteristics the Cd-binding proteins were identified as metallothionein. By using antiserum obtained from a rabbit to which carp hepatopancreas MT-II had been administered, immunological characteristics between hepatopancreas MT-I, II and kidney MT-II were studied, and a slight difference in antigenic determinant was observed among them. By immunological staining techniques with horseradish peroxidase, the localization of metallothionein was investigated. In the nontreated group, metallothionein was present in the acinar cells of hepatopancreas and renal convoluted tubules. In the Cd-treated group (2 mg/kg IP daily for 3 days), metallothionein was present in the nuclei, sinusoids, and extracellular space of hepatopancreas, in addition to the acinar cells. Carp were bred in 1 ppm Cd, 5 ppm Zn solution, and tap water for 14 days, following transfer to 15 ppm Cd solution, respectively. The survival ratio was the highest in the Zn group followed by Cd-treated and control groups. The metallothionein contents increased in hepatopancreas and kidney in the order: Zn greater than Cd greater than control group. Images FIGURE 5. FIGURE 6. PMID:3519201

  9. Tight Binding Models in Cold Atoms Physics

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.

    2007-05-01

    Cold atomic gases placed in optical lattice potentials offer a unique tool to study simple tight binding models. Both the standard cases known from the condensed matter theory as well as novel situations may be addressed. Cold atoms setting allows for a precise control of parameters of the systems discussed, stimulating new questions and problems. The attempts to treat disorder in a controlled fashion are addressed in detail.

  10. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, J.D.; Scott-Craig, J.S.

    1999-10-26

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is presented. The deduced amino acid sequence is provided. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with vectors and seeds from the plants.

  11. Shiga toxin binds to activated platelets.

    PubMed

    Ghosh, S A; Polanowska-Grabowska, R K; Fujii, J; Obrig, T; Gear, A R L

    2004-03-01

    Hemolytic uremic syndrome (HUS) is associated with acute renal failure in children and can be caused by Shiga toxin (Stx)-producing Escherichia coli. Thrombocytopenia and formation of renal thrombi are characteristic of HUS, suggesting that platelet activation is involved in its pathogenesis. However, whether Shiga toxin directly activates platelets is controversial. The present study evaluates if potential platelet sensitization during isolation by different procedures influences platelet interaction with Shiga toxin. Platelets isolated from sodium citrate anticoagulated blood were exposed during washing to EDTA and higher g forces than platelets prepared from acid-citrate-dextrose (ACD) plasma. Platelet binding of Stx was significantly higher in EDTA-washed preparations relative to ACD-derived platelets. Binding of Stx was also increased with ACD-derived platelets when activated with thrombin (1 U mL-1) and exposure of the Gb3 Stx receptor was detected only on platelets subjected to EDTA, higher g forces or thrombin. EDTA-exposed platelets lost their normal discoid shape and were larger. P-selectin (CD62P) exposure was significantly increased in EDTA-washed preparations relative to ACD-derived platelets, suggesting platelet activation. Taken together, these results suggest that direct binding of Stx occurs only on 'activated' platelets rather than on resting platelets. The ability of Stx to interact with previously activated platelets may be an important element in understanding the pathogenesis of HUS. PMID:15009469

  12. Cellulose-binding domains: biotechnological applications.

    PubMed

    Levy, Ilan; Shoseyov, Oded

    2002-11-01

    Many researchers have acknowledged the fact that there exists an immense potential for the application of the cellulose-binding domains (CBDs) in the field of biotechnology. This becomes apparent when the phrase "cellulose-binding domain" is used as the key word for a computerized patent search; more then 150 hits are retrieved. Cellulose is an ideal matrix for large-scale affinity purification procedures. This chemically inert matrix has excellent physical properties as well as low affinity for nonspecific protein binding. It is available in a diverse range of forms and sizes, is pharmaceutically safe, and relatively inexpensive. Present studies into the application of CBDs in industry have established that they can be applied in the modification of physical and chemical properties of composite materials and the development of modified materials with improved properties. In agro-biotechnology, CBDs can be used to modify polysaccharide materials both in vivo and in vitro. The CBDs exert nonhydrolytic fiber disruption on cellulose-containing materials. The potential applications of "CBD technology" range from modulating the architecture of individual cells to the modification of an entire organism. Expressing these genes under specific promoters and using appropriate trafficking signals, can be used to alter the nutritional value and texture of agricultural crops and their final products. PMID:14550028

  13. The aesthetic experience of 'contour binding'.

    PubMed

    Casco, Clara; Guzzon, Daniela

    2008-01-01

    To find the diagnostic spatial frequency information in different painting styles (cubism, impressionism and realism), we have compared sensitivity (d') in distinguishing signal (subject of the painting) from noise with normal, high-pass and low-pass filtered images at long (150 ms) and short (30 ms) exposure. We found that for cubist-style images, d' increases with high-pass filtering compared with normal and low-pass filtered images, but decreases with low-pass filtering compared with normal images. These results indicate that channels with high spatial resolution provide the diagnostic information to solve the binding problem. Sensitivity for images in impressionist style was instead reduced by both low- and high-pass filtering. This indicates that both high and low spatial frequency channels play a role in solving the binding problem, suggesting the involvement of large collator units that group the response of small channels tuned to the same orientation. The difference between realism, which shows higher sensitivity for low-frequency filtering at short durations and cubism in which the binding problem is solved by high spatial frequency channels, has a corresponding difference in aesthetic judgment: the probability of judging a painting as 'intriguing' is larger with low-pass filtering than with high-pass filtering in realism, while the opposite is true for cubism. This suggests that the aesthetic experience is available during early processing of an image, and could preferentially influence high-level categorization of the subject of a painting. PMID:18534105

  14. Cooperative substrate binding by a diguanylate cyclase.

    PubMed

    Oliveira, Maycon C; Teixeira, Raphael D; Andrade, Maxuel O; Pinheiro, Glaucia M S; Ramos, Carlos H I; Farah, Chuck S

    2015-01-30

    XAC0610, from Xanthomonas citri subsp. citri, is a large multi-domain protein containing one GAF (cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA) domain, four PAS (Per-Arnt-Sim) domains and one GGDEF domain. This protein has a demonstrable in vivo and in vitro diguanylate cyclase (DGC) activity that leads to the production of cyclic di-GMP (c-di-GMP), a ubiquitous bacterial signaling molecule. Analysis of a XacΔ0610 knockout strain revealed that XAC0610 plays a role in the regulation of Xac motility and resistance to H2O2. Site-directed mutagenesis of a conserved DGC lysine residue (Lys759 in XAC0610) resulted in a severe reduction in XAC0610 DGC activity. Furthermore, experimental and in silico analyses suggest that XAC0610 is not subject to allosteric product inhibition, a common regulatory mechanism for DGC activity control. Instead, steady-state kinetics of XAC0610 DGC activity revealed a positive cooperative effect of the GTP substrate with a dissociation constant for the binding of the first GTP molecule (K1) approximately 5× greater than the dissociation constant for the binding of the second GTP molecule (K2). We present a general kinetics scheme that should be used when analyzing DGC kinetics data and propose that cooperative GTP binding could be a common, though up to now overlooked, feature of these enzymes that may in some cases offer a physiologically relevant mechanism for regulation of DGC activity in vivo. PMID:25463434

  15. Ligand binding and hexacoordination in synechocystis hemoglobin.

    PubMed

    Hvitved, A N; Trent, J T; Premer, S A; Hargrove, M S

    2001-09-14

    A large and phylogenetically diverse group of organisms contain truncated hemoglobins, including the unicellular cyanobacterium Synechocystis (Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., and Bolognesi, M. (2000) EMBO J. 19, 2424-2434). Synechocystis hemoglobin is also hexacoordinate, with a heme pocket histidine that reversibly coordinates the ligand binding site. Hexacoordinate hemoglobins are ubiquitous in plants and are now being identified in a diverse array of organisms including humans (Arredondo-Peter, R., Hargrove, M. S., Moran, J. F., Sarath, G., and Klucas, R. V. (1998) Plant Physiol. 118, 1121-1125; Trent, J. T., III, Watts, R. A., and Hargrove, M. S. (2001) J. Biol. Chem. 276, 30106-30110). Rate constants for association and dissociation of the hexacoordinating amino acid side chain in Synechocystis hemoglobin have been measured along with bimolecular rate constants for association of oxygen and carbon monoxide following laser flash photolysis. These values were compared with ligand binding initiated by rapid mixing. Site-directed mutagenesis was used to determine the roles of several heme pocket amino acids in facilitating hexacoordination and stabilizing bound oxygen. It is demonstrated that Synechocystis hemoglobin contains a very reactive binding site and that ligand migration through the protein is rapid. Rate constants for hexacoordination by His(46) are also large and facilitated by other heme pocket amino acids including Gln(43). PMID:11438545

  16. Stabilized Interleukin-6 receptor binding RNA aptamers

    PubMed Central

    Meyer, Cindy; Berg, Katharina; Eydeler-Haeder, Katja; Lorenzen, Inken; Grötzinger, Joachim; Rose-John, Stefan; Hahn, Ulrich

    2014-01-01

    Interleukin-6 (IL-6) is a multifunctional cytokine that is involved in the progression of various inflammatory diseases, such as rheumatoid arthritis and certain cancers; for example, multiple myeloma or hepatocellular carcinoma. To interfere with IL-6-dependent diseases, targeting IL-6 receptor (IL-6R)-presenting tumor cells using aptamers might be a valuable strategy to broaden established IL-6- or IL-6R-directed treatment regimens. Recently, we reported on the in vitro selection of RNA aptamers binding to the human IL-6 receptor (IL-6R) with nanomolar affinity. One aptamer, namely AIR-3A, was 19 nt in size and able to deliver bulky cargos into IL-6R-presenting cells. As AIR-3A is a natural RNA molecule, its use for in vivo applications might be limited due to its susceptibility to ubiquitous ribonucleases. Aiming at more robust RNA aptamers targeting IL-6R, we now report on the generation of stabilized RNA aptamers for potential in vivo applications. The new 2'-F-modified RNA aptamers bind to IL-6R via its extracellular portion with low nanomolar affinity comparable to the previously identified unmodified counterpart. Aptamers do not interfere with the IL-6 receptor complex formation. The work described here represents one further step to potentially apply stabilized IL-6R-binding RNA aptamers in IL-6R-connected diseases, like multiple myeloma and hepatocellular carcinoma. PMID:24440854

  17. Specific RNA binding to ordered phospholipid bilayers

    PubMed Central

    Janas, Tadeusz; Janas, Teresa; Yarus, Michael

    2006-01-01

    We have studied RNA binding to vesicles bounded by ordered and disordered phospholipid membranes. A positive correlation exists between bilayer order and RNA affinity. In particular, structure-dependent RNA binding appears for rafted (liquid-ordered) domains in sphingomyelin-cholesterol-1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. Binding to more highly ordered gel phase membranes is stronger, but much less RNA structure-dependent. All modes of RNA-membrane association seem to be electrostatic and headgroup directed. Fluorometry on 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes indicates that bound RNA broadens the gel-fluid melting transition, and reduces lipid headgroup order, as detected via fluorometric measurement of intramembrane electric fields. RNA preference for rafted lipid was visualized and confirmed using multiple fluorophores that allow fluorescence and fluorescence resonance energy transfer microscopy on RNA molecules closely associated with ordered lipid patches within giant vesicles. Accordingly, both RNA structure and membrane order could modulate biological RNA–membrane interactions. PMID:16641318

  18. Ligand configurational entropy and protein binding.

    PubMed

    Chang, Chia-en A; Chen, Wei; Gilson, Michael K

    2007-01-30

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing approximately 25 kcal/mol (4.184 kJ/kcal) to DeltaG degrees. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  19. Ligand configurational entropy and protein binding

    PubMed Central

    Chang, Chia-en A.; Chen, Wei; Gilson, Michael K.

    2007-01-01

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing ∼25 kcal/mol (4.184 kJ/kcal) to ΔG°. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  20. Alternative polyadenylation and RNA-binding proteins.

    PubMed

    Erson-Bensan, Ayse Elif

    2016-08-01

    Our understanding of the extent of microRNA-based gene regulation has expanded in an impressive pace over the past decade. Now, we are beginning to better appreciate the role of 3'-UTR (untranslated region) cis-elements which harbor not only microRNA but also RNA-binding protein (RBP) binding sites that have significant effect on the stability and translational rate of mRNAs. To add further complexity, alternative polyadenylation (APA) emerges as a widespread mechanism to regulate gene expression by producing shorter or longer mRNA isoforms that differ in the length of their 3'-UTRs or even coding sequences. Resulting shorter mRNA isoforms generally lack cis-elements where trans-acting factors bind, and hence are differentially regulated compared with the longer isoforms. This review focuses on the RBPs involved in APA regulation and their action mechanisms on APA-generated isoforms. A better understanding of the complex interactions between APA and RBPs is promising for mechanistic and clinical implications including biomarker discovery and new therapeutic approaches. PMID:27208003

  1. The binding of ethyl isocyanide to ferroperoxidase

    PubMed Central

    Phelps, Charles; Antonini, Eraldo; Brunori, Maurizio

    1972-01-01

    The equilibrium and kinetics of ethyl isocyanide binding to ferroperoxidase were studied. At pH9.1 the results of both studies are consistent with a single-process model with an affinity constant of 95m−1 and combination and dissociation constants of 2.2×103m−1·s−1 and 23s−1 respectively. Ethyl isocyanide is not bound significantly at pH values lower than 6.0, and in this behaviour and the pH-dependence of the affinity constant, similarities exist between isocyanide and cyanide binding. The enthalpy of the process measured by equilibrium methods is −59kJ/mol (−14kcal/mol). At pH values below 9, the ethyl isocyanide adduct changes in a slow time-dependent manner, giving rise to a new species. These changes are reversible on increasing the pH. The results are discussed in relation to other known information about ligand binding to ferroperoxidase and to myoglobin. PMID:5084796

  2. Genetics Home Reference: corticosteroid-binding globulin deficiency

    MedlinePlus

    ... Ray DW, Lightman SL, Hammond GL, Trainer PJ. Novel corticosteroid-binding globulin variant that lacks steroid binding ... JG, Scott HS, Mericq V. CBG Santiago: a novel CBG mutation. J Clin Endocrinol Metab. 2012 Jan; ...

  3. Genetics Home Reference: core binding factor acute myeloid leukemia

    MedlinePlus

    ... acute myeloid leukemia core binding factor acute myeloid leukemia Enable Javascript to view the expand/collapse boxes. ... Close All Description Core binding factor acute myeloid leukemia (CBF-AML) is one form of a cancer ...

  4. Streptococcal IgA-binding proteins bind in the Calpha 2-Calpha 3 interdomain region and inhibit binding of IgA to human CD89.

    PubMed

    Pleass, R J; Areschoug, T; Lindahl, G; Woof, J M

    2001-03-16

    Certain pathogenic bacteria express surface proteins that bind to the Fc part of human IgA or IgG. These bacterial proteins are important as immunochemical tools and model systems, but their biological function is still unclear. Here, we describe studies of three streptococcal proteins that bind IgA: the Sir22 and Arp4 proteins of Streptococcus pyogenes and the unrelated beta protein of group B streptococcus. Analysis of IgA domain swap and point mutants indicated that two loops at the Calpha2/Calpha3 domain interface are critical for binding of the streptococcal proteins. This region is also used in binding the human IgA receptor CD89, an important mediator of IgA effector function. In agreement with this finding, the three IgA-binding proteins and a 50-residue IgA-binding peptide derived from Sir22 blocked the ability of IgA to bind CD89. Further, the Arp4 protein inhibited the ability of IgA to trigger a neutrophil respiratory burst via CD89. Thus, we have identified residues on IgA-Fc that play a key role in binding of different streptococcal IgA-binding proteins, and we have identified a mechanism by which a bacterial IgA-binding protein may interfere with IgA effector function. PMID:11096107

  5. Evidence for Steric Regulation of Fibrinogen Binding to Staphylococcus aureus Fibronectin-binding Protein A (FnBPA)*

    PubMed Central

    Stemberk, Vaclav; Jones, Richard P. O.; Moroz, Olga; Atkin, Kate E.; Edwards, Andrew M.; Turkenburg, Johan P.; Leech, Andrew P.; Massey, Ruth C.; Potts, Jennifer R.

    2014-01-01

    The adjacent fibrinogen (Fg)- and fibronectin (Fn)-binding sites on Fn-binding protein A (FnBPA), a cell surface protein from Staphylococcus aureus, are implicated in the initiation and persistence of infection. FnBPA contains a single Fg-binding site (that also binds elastin) and multiple Fn-binding sites. Here, we solved the structure of the N2N3 domains containing the Fg-binding site of FnBPA in the apo form and in complex with a Fg peptide. The Fg binding mechanism is similar to that of homologous bacterial proteins but without the requirement for “latch” strand residues. We show that the Fg-binding sites and the most N-terminal Fn-binding sites are nonoverlapping but in close proximity. Although Fg and a subdomain of Fn can form a ternary complex on an FnBPA protein construct containing a Fg-binding site and single Fn-binding site, binding of intact Fn appears to inhibit Fg binding, suggesting steric regulation. Given the concentrations of Fn and Fg in the plasma, this mechanism might result in targeting of S. aureus to fibrin-rich thrombi or elastin-rich tissues. PMID:24627488

  6. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation.

    PubMed

    Weidmann, Chase A; Raynard, Nathan A; Blewett, Nathan H; Van Etten, Jamie; Goldstrohm, Aaron C

    2014-08-01

    PUF proteins are potent repressors that serve important roles in stem cell maintenance, neurological processes, and embryonic development. These functions are driven by PUF protein recognition of specific binding sites within the 3' untranslated regions of target mRNAs. In this study, we investigated mechanisms of repression by the founding PUF, Drosophila Pumilio, and its human orthologs. Here, we evaluated a previously proposed model wherein the Pumilio RNA binding domain (RBD) binds Argonaute, which in turn blocks the translational activity of the eukaryotic elongation factor 1A. Surprisingly, we found that Argonautes are not necessary for repression elicited by Drosophila and human PUFs in vivo. A second model proposed that the RBD of Pumilio represses by recruiting deadenylases to shorten the mRNA's polyadenosine tail. Indeed, the RBD binds to the Pop2 deadenylase and accelerates deadenylation; however, this activity is not crucial for regulation. Rather, we determined that the poly(A) is necessary for repression by the RBD. Our results reveal that poly(A)-dependent repression by the RBD requires the poly(A) binding protein, pAbp. Furthermore, we show that repression by the human PUM2 RBD requires the pAbp ortholog, PABPC1. Pumilio associates with pAbp but does not disrupt binding of pAbp to the mRNA. Taken together, our data support a model wherein the Pumilio RBD antagonizes the ability of pAbp to promote translation. Thus, the conserved function of the PUF RBD is to bind specific mRNAs, antagonize pAbp function, and promote deadenylation. PMID:24942623

  7. Binding of drugs in milk: the role of casein in milk protein binding.

    PubMed

    Stebler, T; Guentert, T W

    1990-06-01

    Unbound fractions of 14C-labeled diazepam and tenoxicam in skimmed milk of various species (man, horse, goat, cow, sheep, dog, rabbit) with different milk compositions were determined. Furthermore, the protein binding of five 14C-labeled benzodiazepines differing in their lipophilicity (bromazepam, clonazepam, diazepam, flumazenil, and flunitrazepam) were measured in human milk and in artificially prepared solutions of individual milk proteins (lactoferrin, 2.4 g/liter; alpha-lactalbumin, 2.1 g/liter; albumin, 0.4 g/liter; and casein--2.1, 3.4, and 13.3 g/liter). The extent of binding was determined by equilibrium dialysis of protein solution against 1/15 M phosphate buffer, made isocryoscopic with lactose. The results showed that the casein fraction is a major binding component in milk for all tested drugs. The extent of binding of diazepam and tenoxicam in the milk of various species was independent of the whey protein concentration. In human milk the fraction of bromazepam, clonazepam, diazepam, and flunitrazepam bound to casein was higher than that bound to any other of the milk proteins tested. Albumin contributed little to the overall binding of these benzodiazepines, and lactoferrin and alpha-lactalbumin did not account for significant binding. The benzodiazepine antagonist flumazenil showed the lowest overall binding in milk and in casein solution. As the casein concentration is highest in colostral milk and drops during the course of lactation, it is expected that M/P ratios of drugs strongly bound to casein are higher during the first days postpartum than in later phases of lactation. PMID:2367331

  8. AB-Bind: Antibody binding mutational database for computational affinity predictions.

    PubMed

    Sirin, Sarah; Apgar, James R; Bennett, Eric M; Keating, Amy E

    2016-02-01

    Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody-Bind (AB-Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB-Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16-0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < -1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction. PMID:26473627

  9. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site

    PubMed Central

    Sage, Jay M.; Cura, Anthony J.; Lloyd, Kenneth P.

    2015-01-01

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites—the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis. PMID:25715702

  10. Oxidized cellulose binding to allergens with a carbohydrate-binding module attenuates allergic reactions.

    PubMed

    Shani, Nir; Shani, Ziv; Shoseyov, Oded; Mruwat, Rufayda; Shoseyov, David

    2011-01-15

    Grass and mite allergens are of the main causes of allergy and asthma. A carbohydrate-binding module (CBM) represents a common motif to groups I (β-expansin) and II/III (expansin-like) grass allergens and is suggested to mediate allergen-IgE binding. House dust mite group II allergen (Der p 2 and Der f 2) structures bear strong similarity to expansin's CBM, suggesting their ability to bind carbohydrates. Thus, this study proposes the design of a carbohydrate-based treatment in which allergen binding to carbohydrate particles will promote allergen airway clearance and prevent allergic reactions. The aim of the study was to identify a polysaccharide with high allergen-binding capacities and to explore its ability to prevent allergy. Oxidized cellulose (OC) demonstrated allergen-binding capacities toward grass and mite allergens that surpassed those of any other polysaccharide examined in this study. Furthermore, inhalant preparations of OC microparticles attenuated allergic lung inflammation in rye grass-sensitized Brown Norway rats and OVA-sensitized BALB/c mice. Fluorescently labeled OC efficiently cleared from the mouse airways and body organs. Moreover, long-term administration of OC inhalant to Wistar rats did not result in toxicity. In conclusion, many allergens, such as grass and dust mite, contain a common CBM motif. OC demonstrates a strong and relatively specific allergen-binding capacity to CBM-containing allergens. OC's ability to attenuate allergic inflammation, together with its documented safety record, forms a firm basis for its application as an alternative treatment for prevention and relief of allergy and asthma. PMID:21169552

  11. Identification of Novel Anionic Phospholipid Binding Domains in Neutral Sphingomyelinase 2 with Selective Binding Preference*

    PubMed Central

    Wu, Bill X.; Clarke, Christopher J.; Matmati, Nabil; Montefusco, David; Bartke, Nana; Hannun, Yusuf A.

    2011-01-01

    Sphingolipids such as ceramide are recognized as vital regulators of many biological processes. Neutral sphingomyelinase 2 (nSMase2) is one of the key enzymes regulating ceramide production. It was previously shown that the enzymatic activity of nSMase2 was dependent on anionic phospholipids (APLs). In this study, the structural requirements for APL-selective binding of nSMase2 were determined and characterized. Using lipid-protein overlay assays, nSMase2 interacted specifically and directly with several APLs, including phosphatidylserine and phosphatidic acid. Lipid-protein binding studies of deletion mutants identified two discrete APL binding domains in the N terminus of nSMase2. Further, mutagenesis experiments pinpointed the core sequences and major cationic amino acids in the domains that are necessary for the cooperative activation of nSMase2 by APLs. The first domain included the first amino-terminal hydrophobic segment and Arg-33, which were essential for nSMase2 to interact with APLs. The second binding domain was comprised of the second hydrophobic segment and Arg-92 and Arg-93. Moreover, mutation of one or both domains decreased APL binding and APL-dependent catalytic activity of nSMase2. Further, mutation of both domains in nSMase2 reduced its plasma membrane localization. Finally, these binding domains are also important for the capability of nSMase2 to rescue the defects of yeast lacking the nSMase homologue, ISC1. In conclusion, these data have identified the APL binding domains of nSMase2 for the first time. The analysis of interactions between nSMase2 and APLs will contribute to our understanding of signaling pathways mediated by sphingolipid metabolites. PMID:21550973

  12. Gcn1 and Actin Binding to Yih1

    PubMed Central

    Sattlegger, Evelyn; Barbosa, João A. R. G.; Moraes, Maria Carolina S.; Martins, Rafael M.; Hinnebusch, Alan G.; Castilho, Beatriz A.

    2011-01-01

    Yeast Yih1 protein and its mammalian ortholog IMPACT, abundant in neurons, are inhibitors of Gcn2, a kinase involved in amino acid homeostasis, stress response, and memory formation. Like Gcn2, Yih1/IMPACT harbors an N-terminal RWD domain that mediates binding to the Gcn2 activator Gcn1. Yih1 competes with Gcn2 for Gcn1 binding, thus inhibiting Gcn2. Yih1 also binds G-actin. Here, we show that Yih1-actin interaction is independent of Gcn1 and that Yih1-Gcn1 binding does not require actin. The Yih1 RWD (residues 1–132) was sufficient for Gcn2 inhibition and Gcn1 binding, but not for actin binding, showing that actin binding is dispensable for inhibiting Gcn2. Actin binding required Yih1 residues 68–258, encompassing part of the RWD and the C-terminal “ancient domain”; however, residues Asp-102 and Glu-106 in helix3 of the RWD were essential for Gcn1 binding and Gcn2 inhibition but dispensable for actin binding. Thus, the Gcn1- and actin-binding sites overlap in the RWD but have distinct binding determinants. Unexpectedly, Yih1 segment 68–258 was defective for inhibiting Gcn2 even though it binds Gcn1 at higher levels than does full-length Yih1. This and other results suggest that Yih1 binds with different requirements to distinct populations of Gcn1 molecules, and its ability to disrupt Gcn1-Gcn2 complexes is dependent on a complete RWD and hindered by actin binding. Modeling of the ancient domain on the bacterial protein YigZ showed peculiarities to the eukaryotic and prokaryotic lineages, suggesting binding sites for conserved cellular components. Our results support a role for Yih1 in a cross-talk between the cytoskeleton and translation. PMID:21239490

  13. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site. [R

    SciTech Connect

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  14. The binding interactions of imidacloprid with earthworm fibrinolytic enzyme

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Qing; Zhang, Hong-Mei; Chen, Tao

    2014-08-01

    In this paper, several studies were conducted to elucidate the binding mechanism of earthworm fibrinolytic enzyme (EFE) with imidocloprid (IMI) by using theoretical calculation, fluorescence, UV-vis, circular dichroism spectroscopy and an enzymatic inhibition assay. The spectral data showed that the binding interactions existed between IMI and EFE. The binding constants, binding site, thermodynamic parameters and binding forces were analyzed in detail. The results indicate a single class of binding sites for IMI in EFE and that this binding interaction is a spontaneous process with the estimated enthalpy and entropy changes being 2.195 kJ mol-1 and 94.480 J mol-1 K-1, respectively. A single class of binding site existed for IMI in EFE. The tertiary or secondary structure of EFE was partly destroyed by IMI. The visualized binding details were also exhibited by the theoretical calculation and the results indicated that the interaction between IMI and Phe (Tyr, or Trp) or EFE occurred. Combining the experimental data with the theoretical calculation data, we showed that the binding forces between IMI and EFE were mainly hydrophobic force accompanied by hydrogen binding, and π-π stacking. In addition, IMI did not obviously influence the activity of EFE. In a word, the above analysis offered insights into the binding mechanism of IMI with EFE and could provide some important information for the molecular toxicity of IMI for earthworms.

  15. Fractionating the Binding Process: Neuropsychological Evidence from Reversed Search Efficiencies

    ERIC Educational Resources Information Center

    Humphreys, Glyn W.; Hodsoll, John; Riddoch, M. Jane

    2009-01-01

    The authors present neuropsychological evidence distinguishing binding between form, color, and size (cross-domain binding) and binding between form elements. They contrasted conjunctive search with difficult feature search using control participants and patients with unilateral parietal or fronto/temporal lesions. To rule out effects of task…

  16. Landscape of protein-small ligand binding modes.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  17. Binding of Intrinsic and Extrinsic Features in Working Memory

    ERIC Educational Resources Information Center

    Ecker, Ullrich K. H.; Maybery, Murray; Zimmer, Hubert D.

    2013-01-01

    There is ongoing debate concerning the mechanisms of feature binding in working memory. In particular, there is controversy regarding the extent to which these binding processes are automatic. The present article demonstrates that binding mechanisms differ depending on whether the to-be-integrated features are perceived as forming a coherent…

  18. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  19. Identification of DNA-binding and protein-binding proteins using enhanced graph wavelet features.

    PubMed

    Zhu, Yuan; Zhou, Weiqiang; Dai, Dao-Qing; Yan, Hong

    2013-01-01

    Interactions between biomolecules play an essential role in various biological processes. For predicting DNA-binding or protein-binding proteins, many machine-learning-based techniques have used various types of features to represent the interface of the complexes, but they only deal with the properties of a single atom in the interface and do not take into account the information of neighborhood atoms directly. This paper proposes a new feature representation method for biomolecular interfaces based on the theory of graph wavelet. The enhanced graph wavelet features (EGWF) provides an effective way to characterize interface feature through adding physicochemical features and exploiting a graph wavelet formulation. Particularly, graph wavelet condenses the information around the center atom, and thus enhances the discrimination of features of biomolecule binding proteins in the feature space. Experiment results show that EGWF performs effectively for predicting DNA-binding and protein-binding proteins in terms of Matthew's correlation coefficient (MCC) score and the area value under the receiver operating characteristic curve (AUC). PMID:24334394

  20. Behind the scenes of vitamin D binding protein: more than vitamin D binding.

    PubMed

    Delanghe, Joris R; Speeckaert, Reinhart; Speeckaert, Marijn M

    2015-10-01

    Although being discovered in 1959, the number of published papers in recent years reveals that vitamin D binding protein (DBP), a member of the albuminoid superfamily, is a hot research topic. Besides the three major phenotypes (DBP1F, DBP1S and DBP2), more than 120 unique variants have been described of this polymorphic protein. The presence of DBP has been demonstrated in different body fluids (serum, urine, breast milk, ascitic fluid, cerebrospinal fluid, saliva and seminal fluid) and organs (brain, heart, lungs, kidneys, placenta, spleen, testes and uterus). Although the major function is binding, solubilization and transport of vitamin D and its metabolites, the name of this glycoprotein hides numerous other important biological functions. In this review, we will focus on the analytical aspects of the determination of DBP and discuss in detail the multifunctional capacity [actin scavenging, binding of fatty acids, chemotaxis, binding of endotoxins, influence on T cell response and influence of vitamin D binding protein-macrophage activating factor (DBP-MAF) on bone metabolism and cancer] of this abundant plasma protein. PMID:26522461

  1. Modelling the binding affinity of steroids to zebrafish sex hormone-binding globulin.

    PubMed

    Saxena, A K; Devillers, J; Pery, A R R; Beaudouin, R; Balaramnavar, V M; Ahmed, S

    2014-01-01

    The circulating endogenous steroids are transported in the bloodstream. These are bound to a highly specific sex hormone-binding globulin (SHBG) and in lower affinity to proteins such as the corticosteroid-binding protein and albumin in vertebrates, including fish. It is generally believed that the glycoprotein SHBG protects these steroids from rapid metabolic degradation and thus intervenes in its availability at the target tissues. Endocrine disrupters binding to SHBG affect the normal activity of natural steroids. Since xenobiotics are primarily released in the aquatic environment, there is a need to evaluate the binding affinity of xenosteroid mimics on fish SHBG, especially in zebrafish (Danio rerio), a small freshwater fish originating in India and widely employed in ecotoxicology, toxicology, and genetics. In this context, a zebrafish SHBG (zfSHBG) homology model was developed using the human SHBG (hSHBG) receptor structure as template. It was shown that interactions with amino acids Ser-36, Asp-59 and Thr-54 were important for binding affinity. A ligand-based pharmacophore model was also developed for both zfSHBG and hSHBG inhibitors that differentiated binders from non-binders, but also demonstrated structural requirements for zfSHBG and hSHBG ligands. The study provides insights into the mechanism of action of endocrine disruptors in zebrafish as well as providing a useful tool for identifying anthropogenic compounds inhibiting zfSHBG. PMID:24874994

  2. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    SciTech Connect

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  3. Characterization of Kinetic Binding Properties of Unlabeled Ligands via a Preincubation Endpoint Binding Approach.

    PubMed

    Shimizu, Yuji; Ogawa, Kazumasa; Nakayama, Masaharu

    2016-08-01

    The dissociation rates of unlabeled drugs have been well studied by kinetic binding analyses. Since kinetic assays are laborious, we developed a simple method to determine the kinetic binding parameters of unlabeled competitors by a preincubation endpoint assay. The probe binding after preincubation of a competitor can be described by a single equation as a function of time. Simulations using the equation revealed the degree of IC50 change induced by preincubation of a competitor depended on the dissociation rate koff of the competitor but not on the association rate kon To validate the model, an in vitro binding assay was performed using a smoothened receptor (SMO) and [(3)H]TAK-441, a SMO antagonist. The equilibrium dissociation constants (KI) and koff of SMO antagonists determined by globally fitting the model to the concentration-response curves obtained with and without 24 h preincubation correlated well with those determined by other methods. This approach could be useful for early-stage optimization of drug candidates by enabling determination of binding kinetics in a high-throughput manner because it does not require kinetic measurements, an intermediate washout step during the reaction, or prior determination of competitors' KI values. PMID:27270099

  4. Tetrapyrrole binding affinity of the murine and human p22HBP heme-binding proteins.

    PubMed

    Micaelo, Nuno M; Macedo, Anjos L; Goodfellow, Brian J; Félix, Vítor

    2010-11-01

    We present the first systematic molecular modeling study of the binding properties of murine (mHBP) and human (hHBP) p22HBP protein (heme-binding protein) with four tetrapyrrole ring systems belonging to the heme biosynthetic pathway: iron protoporphyrin IX (HEMIN), protoporphyrin IX (PPIX), coproporphyrin III (CPIII), coproporphyrin I (CPI). The relative binding affinities predicted by our computational study were found to be similar to those observed experimentally, providing a first rational structural analysis of the molecular recognition mechanism, by p22HBP, toward a number of different tetrapyrrole ligands. To probe the structure of these p22HBP protein complexes, docking, molecular dynamics and MM-PBSA methodologies supported by experimental NMR ring current shift data have been employed. The tetrapyrroles studied were found to bind murine p22HBP with the following binding affinity order: HEMIN> PPIX> CPIII> CPI, which ranged from -22.2 to -6.1 kcal/mol. In general, the protein-tetrapyrrole complexes are stabilized by non-bonded interactions between the tetrapyrrole propionate groups and basic residues of the protein, and by the preferential solvation of the complex compared to the unbound components. PMID:20800521

  5. Binding of sodium and potassium to the sodium pump of pig kidney evaluated from nucleotide-binding behaviour.

    PubMed Central

    Jensen, J; Nørby, J G; Ottolenghi, P

    1984-01-01

    Using a rate-dialysis technique at 0-2 degrees C, the affinities of Na+ and K+ for the sodium pump of pig kidney outer medulla were determined from their effects on the binding of ADP to the enzyme. Since all experiments were carried out in the presence of Tris, the enzyme in absence of its specific ligands was assumed to be in a 'sodium-like' conformation. The model used in the analysis of the results assumed the enzyme to be a dimeric structure with two identical high-affinity nucleotide-binding sites. It is concluded from the data that the effects of Na+ and K+ on the binding of nucleotide to either subunit of a nucleotide-free enzyme are identical. The two subunits, taken together, have five identical and non-interacting K+-binding sites (Kdiss = 0.5 mM) whose occupation antagonizes nucleotide binding. The binding of a nucleotide molecule to a nucleotide-free enzyme results in the abolition of K+ binding to two of the five K+-binding sites. The binding of the second molecule of nucleotide prevents the binding of three more K+ ions to the enzyme. These results can explain the K+-induced curvature observed in nucleotide-binding isotherms in Scatchard plots. The two subunits, taken together, have five identical and non-interacting Na+-binding sites (Kdiss = 0.5 mM) whose occupation antagonizes the effects of K+ on nucleotide binding, but does not affect nucleotide binding directly. A few experiments carried out at 18 degrees C indicate that the model applies also at this temperature. It is likely that the cation sites investigated are intracellular ones and it is concluded that the binding of each cation to its site induces a specific conformational change in the neighbourhood of the site itself without affecting the regions around the remaining cation binding sites. PMID:6321716

  6. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain.

    PubMed

    Berger, Allan L; Ikuma, Mutsuhiro; Welsh, Michael J

    2005-01-11

    ATP interacts with the two nucleotide-binding domains (NBDs) of CFTR to control gating. However, it is unclear whether gating involves ATP binding alone, or also involves hydrolysis at each NBD. We introduced phenylalanine residues into nonconserved positions of each NBD Walker A motif to sterically prevent ATP binding. These mutations blocked [alpha-(32)P]8-N(3)-ATP labeling of the mutated NBD and reduced channel opening rate without changing burst duration. Introducing cysteine residues at these positions and modifying with N-ethylmaleimide produced the same gating behavior. These results indicate that normal gating requires ATP binding to both NBDs, but ATP interaction with one NBD is sufficient to support some activity. We also studied mutations of the conserved Walker A lysine residues (K464A and K1250A) that prevent hydrolysis. By combining substitutions that block ATP binding with Walker A lysine mutations, we could differentiate the role of ATP binding vs. hydrolysis at each NBD. The K1250A mutation prolonged burst duration; however, blocking ATP binding prevented the long bursts. These data indicate that ATP binding to NBD2 allowed channel opening and that closing was delayed in the absence of hydrolysis. The corresponding NBD1 mutations showed relatively little effect of preventing ATP hydrolysis but a large inhibition of blocking ATP binding. These data suggest that ATP binding to NBD1 is required for normal activity but that hydrolysis has little effect. Our results suggest that both NBDs contribute to channel gating, NBD1 binds ATP but supports little hydrolysis, and ATP binding and hydrolysis at NBD2 are key for normal gating. PMID:15623556

  7. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain

    PubMed Central

    Berger, Allan L.; Ikuma, Mutsuhiro; Welsh, Michael J.

    2005-01-01

    ATP interacts with the two nucleotide-binding domains (NBDs) of CFTR to control gating. However, it is unclear whether gating involves ATP binding alone, or also involves hydrolysis at each NBD. We introduced phenylalanine residues into nonconserved positions of each NBD Walker A motif to sterically prevent ATP binding. These mutations blocked [α-32P]8-N3-ATP labeling of the mutated NBD and reduced channel opening rate without changing burst duration. Introducing cysteine residues at these positions and modifying with N-ethylmaleimide produced the same gating behavior. These results indicate that normal gating requires ATP binding to both NBDs, but ATP interaction with one NBD is sufficient to support some activity. We also studied mutations of the conserved Walker A lysine residues (K464A and K1250A) that prevent hydrolysis. By combining substitutions that block ATP binding with Walker A lysine mutations, we could differentiate the role of ATP binding vs. hydrolysis at each NBD. The K1250A mutation prolonged burst duration; however, blocking ATP binding prevented the long bursts. These data indicate that ATP binding to NBD2 allowed channel opening and that closing was delayed in the absence of hydrolysis. The corresponding NBD1 mutations showed relatively little effect of preventing ATP hydrolysis but a large inhibition of blocking ATP binding. These data suggest that ATP binding to NBD1 is required for normal activity but that hydrolysis has little effect. Our results suggest that both NBDs contribute to channel gating, NBD1 binds ATP but supports little hydrolysis, and ATP binding and hydrolysis at NBD2 are key for normal gating. PMID:15623556

  8. Structural evidence for asymmetric ligand binding to transthyretin.

    PubMed

    Cianci, Michele; Folli, Claudia; Zonta, Francesco; Florio, Paola; Berni, Rodolfo; Zanotti, Giuseppe

    2015-08-01

    Human transthyretin (TTR) represents a notable example of an amyloidogenic protein, and several compounds that are able to stabilize its native state have been proposed as effective drugs in the therapy of TTR amyloidosis. The two thyroxine (T4) binding sites present in the TTR tetramer display negative binding cooperativity. Here, structures of TTR in complex with three natural polyphenols (pterostilbene, quercetin and apigenin) have been determined, in which this asymmetry manifests itself as the presence of a main binding site with clear ligand occupancy and related electron density and a second minor site with a much lower ligand occupancy. The results of an analysis of the structural differences between the two binding sites are consistent with such a binding asymmetry. The different ability of TTR ligands to saturate the two T4 binding sites of the tetrameric protein can be ascribed to the different affinity of ligands for the weaker binding site. In comparison, the high-affinity ligand tafamidis, co-crystallized under the same experimental conditions, was able to fully saturate the two T4 binding sites. This asymmetry is characterized by the presence of small but significant differences in the conformation of the cavity of the two binding sites. Molecular-dynamics simulations suggest the presence of even larger differences in solution. Competition binding assays carried out in solution revealed the presence of a preferential binding site in TTR for the polyphenols pterostilbene and quercetin that was different from the preferential binding site for T4. The TTR binding asymmetry could possibly be exploited for the therapy of TTR amyloidosis by using a cocktail of two drugs, each of which exhibits preferential binding for a distinct binding site, thus favouring saturation of the tetrameric protein and consequently its stabilization. PMID:26249340

  9. Relationship between binding affinities to cellular retinoic acid-binding protein and biological potency of a new series of retinoids.

    PubMed

    Sani, B P; Dawson, M I; Hobbs, P D; Chan, R L; Schiff, L J

    1984-01-01

    Binding affinities of a new and unusual series of retinoic acid analogues to cellular retinoic acid-binding protein, a possible mediator of their biological function in the control of differentiation and tumorigenesis, and to serum albumin, their plasma transport protein, were determined. Also, biological activity of these retinoids in the reversal of keratinization in hamster tracheal organ cultures was assessed and compared with their binding affinities. Analogues that possessed high biological activity showed high binding efficiency to cellular retinoic acid-binding protein. Those that were biologically less active were poor binders to the binding protein. Three retinoids, 4657-57, 3920-59, and 4445-75, which showed 90 to 100% binding efficiency of that of retinoic acid for cellular retinoic acid-binding protein expressed high biological activity detectable in the range of 10(-10) M as against 10(-11) M for retinoic acid. The correlation noticed in these two activities not only enhances the confidence in the two assay procedures but also paves the way for design and development of potential chemopreventive agents. No apparent differences were observed in the binding affinities of the retinoids to binding proteins of a normal tissue or a tumor tissue. No correlation existed between the binding affinities of these retinoids to serum albumin and their biological activity. Structure-activity relationships of the retinoids in relation to their binding affinities and biological activities have been discussed. PMID:6317169

  10. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.

    PubMed

    Ma, Xin; Guo, Jing; Xiao, Ke; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is an incredibly challenging problem in computational biology. Although great progress has been made using various machine learning approaches with numerous features, the problem is still far from being solved. In this study, we attempt to predict RNA-binding proteins directly from amino acid sequences. A novel approach, PRBP predicts RNA-binding proteins using the information of predicted RNA-binding residues in conjunction with a random forest based method. For a given protein, we first predict its RNA-binding residues and then judge whether the protein binds RNA or not based on information from that prediction. If the protein cannot be identified by the information associated with its predicted RNA-binding residues, then a novel random forest predictor is used to determine if the query protein is a RNA-binding protein. We incorporated features of evolutionary information combined with physicochemical features (EIPP) and amino acid composition feature to establish the random forest predictor. Feature analysis showed that EIPP contributed the most to the prediction of RNA-binding proteins. The results also showed that the information from the RNA-binding residue prediction improved the overall performance of our RNA-binding protein prediction. It is anticipated that the PRBP method will become a useful tool for identifying RNA-binding proteins. A PRBP Web server implementation is freely available at http://www.cbi.seu.edu.cn/PRBP/. PMID:26671809

  11. Spatial analysis and quantification of the thermodynamic driving forces in protein-ligand binding: binding site variability.

    PubMed

    Raman, E Prabhu; MacKerell, Alexander D

    2015-02-25

    The thermodynamic driving forces behind small molecule-protein binding are still not well-understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provide an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both nonpolar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the "hydrophobic effect". Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. It is notable to have the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  12. Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability

    PubMed Central

    Raman, E. Prabhu; MacKerell, Alexander D.

    2015-01-01

    The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  13. Rapid characterization of sugar-binding specificity by in-solution proximity binding with photosensitizers.

    PubMed

    Chang, Chuan-Fa; Pan, Jia-Fu; Lin, Chun-Nan; Wu, I-Lin; Wong, Chi-Huey; Lin, Chun-Hung

    2011-07-01

    Cell-surface carbohydrates are known to participate in many important physiological and pathological activities by interacting with their corresponding proteins or receptors. Although several methods have been developed for studying carbohydrate-protein interactions, one major problem originates from the weak bindings of carbohydrates/proteins that are often lost during repeating wash steps. Herein, we established a homogeneous solution carbohydrate array in which polyacrylamide-based glycans are used for offering a multivalent environment. The method requires no wash step and can be carried out in a high-throughput manner. We characterized the carbohydrate-binding specificities of 11 lectins and 7 antibodies, the majority of which displayed the binding patterns in consistence with previous reports. These results demonstrate that our developed solution carbohydrate array provides a useful alternative that is better than or comparable with the current available methods. PMID:21325337

  14. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    SciTech Connect

    Hu, Xiaohu; Norris, Adrianne; Baudry, Jerome Y; Serpersu, Engin H

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  15. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  16. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  17. Trypsin-Ligand Binding Free Energy Calculation with AMOEBA

    PubMed Central

    Shi, Yue; Jiao, Dian; Schnieders, Michael J.; Ren, Pengyu

    2010-01-01

    The binding free energies of several benzamidine-like inhibitors to trypsin were examined using a polarizable potential. All the computed binding free energies are in good agreement with the experimental data. From free energy decomposition, electrostatic interaction was found to be the driving force for the binding. Structural analysis shows that the ligands form hydrogen bonds with residues and water molecules nearby in a competitive fashion. The dependence of binding free energy on molecular dipole moment and polarizability was also studied. While the binding free energy is independent on the dipole moment, it shows a negative correlation with the polarizability. PMID:19965178

  18. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  19. Glycan Masking of Plasmodium vivax Duffy Binding Protein for Probing Protein Binding Function and Vaccine Development

    PubMed Central

    Janes, Joel; Gurumoorthy, Sairam; Gibson, Claire; Melcher, Martin; Chitnis, Chetan E.; Wang, Ruobing; Schief, William R.; Smith, Joseph D.

    2013-01-01

    Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP) and the Duffy Antigen Receptor for Chemokines (DARC) and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s) lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development. PMID:23853575

  20. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes. PMID:19754879

  1. Oligomerization of Mannan-binding Lectin Dictates Binding Properties and Complement Activation.

    PubMed

    Kjaer, T R; Jensen, L; Hansen, A; Dani, R; Jensenius, J C; Dobó, J; Gál, P; Thiel, S

    2016-07-01

    The complement system is a part of the innate immune system and is involved in recognition and clearance of pathogens and altered-self structures. The lectin pathway of the complement system is initiated when soluble pattern recognition molecules (PRMs) with collagen-like regions bind to foreign or altered self-surfaces. Associated with the collagen-like stems of these PRMs are three mannan-binding lectin (MBL)-associated serine proteases (MASPs) and two MBL-associated proteins (MAps). The most studied of the PRMs, MBL, is present in serum mainly as trimeric and tetrameric oligomers of the structural subunit. We hypothesized that oligomerization of MBL may influence both the potential to bind to micro organisms and the interaction with the MASPs and MAps, thus influencing the ability to initiate complement activation. When testing binding at 37 °C, we found higher binding of tetrameric MBL to Staphylococcus aureus (S. aureus) than trimeric and dimeric MBL. In serum, we found that tetrameric MBL was the main oligomeric form present in complexes with the MASPs and MAp44. Such preference was confirmed using purified forms of recombinant MBL (rMBL) oligomers, where tetrameric rMBL interacted stronger with all of the MASPs and MAp44, compared to trimeric MBL. As a direct consequence of the weaker interaction with the MASPs, we found that trimeric rMBL was inferior to tetrameric rMBL in activating the complement system. Our data suggest that the oligomeric state of MBL is crucial both for the binding properties and the effector function of MBL. PMID:27104295

  2. Liver fatty acid-binding protein binds monoacylglycerol in vitro and in mouse liver cytosol.

    PubMed

    Lagakos, William S; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E; Storch, Judith

    2013-07-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803-G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP(-/-) mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  3. Liver Fatty Acid-binding Protein Binds Monoacylglycerol in Vitro and in Mouse Liver Cytosol*

    PubMed Central

    Lagakos, William S.; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E.; Storch, Judith

    2013-01-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803–G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP−/− mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  4. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  5. DNA and RNA Quadruplex-Binding Proteins

    PubMed Central

    Brázda, Václav; Hároníková, Lucia; Liao, Jack C. C.; Fojta, Miroslav

    2014-01-01

    Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc.), the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGG)n, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2) and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development. PMID:25268620

  6. Structural basis for PECAM-1 homophilic binding.

    PubMed

    Paddock, Cathy; Zhou, Dongwen; Lertkiatmongkol, Panida; Newman, Peter J; Zhu, Jieqing

    2016-02-25

    Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kDa member of the immunoglobulin gene superfamily (IgSF) that is present on the surface of circulating platelets and leukocytes, and highly expressed at the junctions of confluent endothelial cell monolayers. PECAM-1-mediated homophilic interactions, known to be mediated by its 2 amino-terminal immunoglobulin homology domains, are essential for concentrating PECAM-1 at endothelial cell intercellular junctions, where it functions to facilitate diapedesis, maintain vascular integrity, and transmit survival signals into the cell. Given the importance of PECAM-1-mediated homophilic interactions in mediating each of these cell physiological events, and to reveal the nature and orientation of the PECAM-1-PECAM-1 homophilic-binding interface, we undertook studies aimed at determining the crystal structure of the PECAM-1 homophilic-binding domain, which is composed of amino-terminal immunoglobulin homology domains 1 and 2 (IgD1 and IgD2). The crystal structure revealed that both IgD1 and IgD2 exhibit a classical IgSF fold, having a β-sandwich topology formed by 2 sheets of antiparallel β strands stabilized by the hallmark disulfide bond between the B and F strands. Interestingly, despite previous assignment to the C2 class of immunoglobulin-like domains, the structure of IgD1 reveals that it actually belongs to the I2 set of IgSF folds. Both IgD1 and IgD2 participate importantly in the formation of the trans homophilic-binding interface, with a total buried interface area of >2300 Å(2). These and other unique structural features of PECAM-1 allow for the development of an atomic-level model of the interactions that PECAM-1 forms during assembly of endothelial cell intercellular junctions. PMID:26702061

  7. DNA and RNA quadruplex-binding proteins.

    PubMed

    Brázda, Václav; Hároníková, Lucia; Liao, Jack C C; Fojta, Miroslav

    2014-01-01

    Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc.), the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGG)n, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2) and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development. PMID:25268620

  8. A Crayfish Insulin-like-binding Protein

    PubMed Central

    Rosen, Ohad; Weil, Simy; Manor, Rivka; Roth, Ziv; Khalaila, Isam; Sagi, Amir

    2013-01-01

    Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a “pulldown” methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23–38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development. PMID:23775079

  9. Effects of contamination on radioligand binding parameters.

    PubMed

    Lazareno, S; Birdsall, N J

    2000-02-01

    Radioligand binding studies are used to provide quantitative estimates of parameters such as the receptor density of a tissue and the affinity values of labelled and unlabelled ligands. The presence of an unlabelled competing contaminant, which might be present because of actual contamination, inadequate radioligand purification or the breakdown of the radioligand to an active species, has surprising effects on these estimates: the apparent affinity of the radioligand is increased but the Ki values of unlabelled ligands are unaffected. The most striking and sensitive effects are on radioligand association kinetics, which become independent of radioligand concentration at high radioligand concentrations. PMID:10664609

  10. Regulation of Pluripotency by RNA Binding Proteins

    PubMed Central

    Ye, Julia; Blelloch, Robert

    2015-01-01

    Establishment, maintenance, and exit from pluripotency require precise coordination of a cell’s molecular machinery. Substantial headway has been made in deciphering many aspects of this elaborate system, particularly with respect to epigenetics, transcription, and noncoding RNAs. Less attention has been paid to posttranscriptional regulatory processes such as alternative splicing, RNA processing and modification, nuclear export, regulation of transcript stability, and translation. Here, we introduce the RNA binding proteins that enable the posttranscriptional regulation of gene expression, summarizing current and ongoing research on their roles at different regulatory points and discussing how they help script the fate of pluripotent stem cells. PMID:25192462

  11. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, Jonathan D.; Scott-Craig, John S.

    1999-01-01

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is set forth in FIG. 5 and SEQ ID No. 1. The deduced amino acid sequence is provided in FIG. 5 and SEQ ID No. 2. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors and seeds from said plants.

  12. Collective binding properties of receptor arrays.

    PubMed Central

    Agmon, N; Edelstein, A L

    1997-01-01

    Binding kinetics of receptor arrays can differ dramatically from that of the isolated receptor. We simulate synaptic transmission using a microscopically accurate Brownian dynamics routine. We study the factors governing the rise and decay of the activation probability as a function of the number of transmitter molecules released. Using a realistic receptor array geometry, the simulation reproduces the time course of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated excitatory postsynaptic currents. A consistent interpretation of experimentally observed synaptic currents in terms of rebinding and spatial correlations is discussed. Images FIGURE 1 FIGURE 4 FIGURE 5 PMID:9083663

  13. Polynucleotides encoding TRF1 binding proteins

    DOEpatents

    Campisi, Judith; Kim, Sahn-Ho

    2002-01-01

    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  14. Binding characterization, synthesis and biological evaluation of RXRα antagonists targeting the coactivator binding site.

    PubMed

    Xu, Dingyu; Guo, Shangjie; Chen, Ziwen; Bao, Yuzhou; Huang, Fengyu; Xu, Dan; Zhang, Xindao; Zeng, Zhiping; Zhou, Hu; Zhang, Xiaokun; Su, Ying

    2016-08-15

    Previously we identified the first retinoid X receptor-alpha (RXRα) modulators that regulate the RXRα biological function via binding to the coregulator-binding site. Here we report the characterization of the interactions between the hit molecule and RXRα through computational modeling, mutagenesis, SAR and biological evaluation. In addition, we reported studies of additional new compounds and identified a molecule that mediated the NF-κB pathway by inhibiting the TNFα-induced IκBα degradation and p65 nuclear translocation. PMID:27450787

  15. Specific albumin binding to microvascular endothelium in culture

    SciTech Connect

    Schnitzer, J.E.; Carley, W.W.; Palade, G.E. )

    1988-03-01

    The specific binding of rat serum albumin (RSA) to confluent microvascular endothelial cells in culture derived from the vasculature of the rat epididymal fat pad was studied at 4{degree}C by radioassay and immunocytochemistry. Radioiodinated RSA ({sup 125}I-RSA) binding to the cells reached equilibrium at {approximately} 20 min incubation. Albumin binding was a slowly saturating function over concentrations ranging from 0.01 to 50 mg/ml. Specific RSA binding with a moderate apparent affinity constant of 1.0 mg/ml and with a maximum binding concentration of 90 ng/cm{sup 2} was immunolocalized with anti-RSA antibody to the outer (free) side of the enothelium. Scatchard analysis of the binding yielded a nonlinear binding curve with a concave-upward shape. Dissociation rate analysis supports negative cooperativity of albumin binding, but multiple binding sites may also be present. Albumin binding fulfilled many requirements for ligand specificity including saturability, reversibility, competibility, and dependence on both cell type and cell number. The results are discussed in terms of past in situ investigations on the localization of albumin binding to vascular endothelium and its effect on transendothelial molecular transport.

  16. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  17. High molecular weight kininogen binds to unstimulated platelets.

    PubMed Central

    Gustafson, E J; Schutsky, D; Knight, L C; Schmaier, A H

    1986-01-01

    Studies were performed to determine if the unstimulated platelet membrane has a site for high molecular weight kininogen (HMWK) binding. 125I-HMWK bound to unstimulated platelets. Zn++ was required for 125I-HMWK binding to unstimulated platelets and binding was maximal at 50 microM Zn++. Neither Mg++ nor Ca++ substituted for Zn++ in supporting 125I-HMWK binding to unstimulated platelets, and neither ion potentiated binding in the presence of 50 microM zinc. 125I-HMWK competed with equal affinity with HMWK for binding, and excess HMWK inhibited 125I-HMWK-platelet binding. Only HMWK, not prekallikrein, Factor XII, Factor XI, Factor V, fibrinogen, or fibronectin inhibited 125I-HMWK-platelet binding. 125I-HMWK binding to unstimulated platelets was 89% reversible within 10 min with a 50-fold molar excess of HMWK. Unstimulated platelets contained a single set of saturable, high affinity binding sites for 125I-HMWK with an apparent dissociation constant of 0.99 nM +/- 0.35 and 3,313 molecules/platelet +/- 843. These studies indicate that the unstimulated external platelet membrane has a binding site for HMWK that could serve as a surface to modulate contact phase activation. Images PMID:3722381

  18. Detection of secondary binding sites in proteins using fragment screening

    PubMed Central

    Ludlow, R. Frederick; Verdonk, Marcel L.; Saini, Harpreet K.; Tickle, Ian J.; Jhoti, Harren

    2015-01-01

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets. PMID:26655740

  19. Structure-function relationship of monocot mannose-binding lectins.

    PubMed Central

    Barre, A; Van Damme, E J; Peumans, W J; Rougé, P

    1996-01-01

    The monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Orchidaceae, and Liliaceae. To explain the obvious differences in biological activities, the structure-function relationships of the monocot mannose-binding lectins were studied by a combination of glycan-binding studies and molecular modeling using the deduced amino acid sequences of the currently known lectins. Molecular modeling indicated that the number of active mannose-binding sites per monomer varies between three and zero. Since the number of binding sites is fairly well correlated with the binding activity measured by surface plasmon resonance, and is also in good agreement with the results of previous studies of the biological activities of the mannose-binding lectins, molecular modeling is of great value for predicting which lectins are best suited for a particular application. PMID:8972598

  20. Autoradiographic localization of endothelin-1 binding sites in porcine skin

    SciTech Connect

    Zhao, Y.D.; Springall, D.R.; Wharton, J.; Polak, J.M. )

    1991-01-01

    Autoradiographic techniques and {sup 125}I-labeled endothelin-1 were used to study the distribution of endothelin-1 binding sites in porcine skin. Specific endothelin-1 binding sites were localized to blood vessels (capillaries, deep cutaneous vascular plexus, arteries, and arterioles), the deep dermal and connective tissue sheath of hair follicles, sebaceous and sweat glands, and arrector pili muscle. Specific binding was inhibited by endothelin-2 and endothelin-3 as well as endothelin-1. Non-specific binding was found in the epidermis and the medulla of hair follicles. No binding was found in connective tissue or fat. These vascular binding sites may represent endothelin receptors, in keeping with the known cutaneous vasoconstrictor actions of the peptide. If all binding sites are receptors, the results suggest that endothelin could also regulate the function of sweat glands and may have trophic effects in the skin.

  1. The DNA-binding network of Mycobacterium tuberculosis

    PubMed Central

    Minch, Kyle J.; Rustad, Tige R.; Peterson, Eliza J. R.; Winkler, Jessica; Reiss, David J.; Ma, Shuyi; Hickey, Mark; Brabant, William; Morrison, Bob; Turkarslan, Serdar; Mawhinney, Chris; Galagan, James E.; Price, Nathan D.; Baliga, Nitin S.; Sherman, David R.

    2015-01-01

    Mycobacterium tuberculosis (MTB) infects 30% of all humans and kills someone every 20–30 s. Here we report genome-wide binding for ~80% of all predicted MTB transcription factors (TFs), and assayed global expression following induction of each TF. The MTB DNA-binding network consists of ~16,000 binding events from 154 TFs. We identify >50 TF-DNA consensus motifs and >1,150 promoter-binding events directly associated with proximal gene regulation. An additional ~4,200 binding events are in promoter windows and represent strong candidates for direct transcriptional regulation under appropriate environmental conditions. However, we also identify >10,000 ‘dormant’ DNA-binding events that cannot be linked directly with proximal transcriptional control, suggesting that widespread DNA binding may be a common feature that should be considered when developing global models of coordinated gene expression. PMID:25581030

  2. CAP binding to B and Z forms of DNA.

    PubMed Central

    Fried, M G; Wu, H M; Crothers, D M

    1983-01-01

    We have examined the interaction between the cyclic AMP receptor protein (CAP) and a small DNA fragment containing its specific recognition sequence by circular dichroism spectroscopy. The binding of CAP to this fragment induces a B to "C-like" change in the CD spectrum, which is different from that observed for non-specific binding. A one-to-one (CAP dimer to DNA) binding stoichiometry was deduced from spectroscopic titration data, as was a non-specific binding site size of 17 bp/dimer. In addition, we have compared the non-specific binding affinity of CAP for the B and Z forms of synthetic DNA copolymers. A slight preference for the B form was found. These results do not support the recent specific suggestion that CAP binds to a left-handed form of DNA (1), but indicate more generally that an optically detectable conformational change takes place in DNA on binding CAP. Images PMID:6344018

  3. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  4. The molecular architecture of protein-protein binding sites.

    PubMed

    Reichmann, Dana; Rahat, Ofer; Cohen, Mati; Neuvirth, Hani; Schreiber, Gideon

    2007-02-01

    The formation of specific protein interactions plays a crucial role in most, if not all, biological processes, including signal transduction, cell regulation, the immune response and others. Recent advances in our understanding of the molecular architecture of protein-protein binding sites, which facilitates such diversity in binding affinity and specificity, are enabling us to address key questions. What is the amino acid composition of binding sites? What are interface hotspots? How are binding sites organized? What are the differences between tight and weak interacting complexes? How does water contribute to binding? Can the knowledge gained be translated into protein design? And does a universal code for binding exist, or is it the architecture and chemistry of the interface that enable diverse but specific binding solutions? PMID:17239579

  5. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    SciTech Connect

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-04-01

    Autoradiography using /sup 125/I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat.

  6. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    SciTech Connect

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  7. Ab initio prediction of transcription factor binding sites.

    PubMed

    Liu, L Angela; Bader, Joel S

    2007-01-01

    Transcription factors are DNA-binding proteins that control gene transcription by binding specific short DNA sequences. Experiments that identify transcription factor binding sites are often laborious and expensive, and the binding sites of many transcription factors remain unknown. We present a computational scheme to predict the binding sites directly from transcription factor sequence using all-atom molecular simulations. This method is a computational counterpart to recent high-throughput experimental technologies that identify transcription factor binding sites (ChIP-chip and protein-dsDNA binding microarrays). The only requirement of our method is an accurate 3D structural model of a transcription factor-DNA complex. We apply free energy calculations by thermodynamic integration to compute the change in binding energy of the complex due to a single base pair mutation. By calculating the binding free energy differences for all possible single mutations, we construct a position weight matrix for the predicted binding sites that can be directly compared with experimental data. As water-bridged hydrogen bonds between the transcription factor and DNA often contribute to the binding specificity, we include explicit solvent in our simulations. We present successful predictions for the yeast MAT-alpha2 homeodomain and GCN4 bZIP proteins. Water-bridged hydrogen bonds are found to be more prevalent than direct protein-DNA hydrogen bonds at the binding interfaces, indicating why empirical potentials with implicit water may be less successful in predicting binding. Our methodology can be applied to a variety of DNA-binding proteins. PMID:17990512

  8. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    NASA Astrophysics Data System (ADS)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  9. An aprotinin binding site localized in the hormone binding domain of the estrogen receptor from calf uterus.

    PubMed

    Nigro, V; Medici, N; Abbondanza, C; Minucci, S; Moncharmont, B; Molinari, A M; Puca, G A

    1990-07-31

    It has been proposed that the estrogen receptor bears proteolytic activity responsible for its own transformation. This activity was inhibited by aprotinin. Incubation of transformed ER with aprotinin modified the proteolytic digestion of the hormone binding subunit by proteinase K. The smallest hormone-binding fragment of the ER, obtained by tryptic digestion, was still able to bind to aprotinin. These results suggest that aprotinin interacts with ER and the hormone-binding domain of ER is endowed with a specific aprotinin-binding site. PMID:1696480

  10. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    PubMed

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  11. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    PubMed Central

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  12. Reflection-Based Python-C++ Bindings

    SciTech Connect

    Generowicz, Jacek; Lavrijsen, Wim T.L.P.; Marino, Massimo; Mato, Pere

    2004-10-14

    Python is a flexible, powerful, high-level language with excellent interactive and introspective capabilities and a very clean syntax. As such, it can be a very effective tool for driving physics analysis. Python is designed to be extensible in low-level C-like languages, and its use as a scientific steering language has become quite widespread. To this end, existing and custom-written C or C++ libraries are bound to the Python environment as so-called extension modules. A number of tools for easing the process of creating such bindings exist, such as SWIG and Boost. Python. Yet, the process still requires a considerable amount of effort and expertise. The C++ language has few built-in introspective capabilities, but tools such as LCGDict and CINT add this by providing so-called dictionaries: libraries that contain information about the names, entry points, argument types, etc. of other libraries. The reflection information from these dictionaries can be used for the creation of bindings and so the process can be fully automated, as dictionaries are already provided for many end-user libraries for other purposes, such as object persistency. PyLCGDict is a Python extension module that uses LCG dictionaries, as PyROOT uses CINT reflection information, to allow /cwPython users to access C++ libraries with essentially no preparation on the users' behalf. In addition, and in a similar way, PyROOT gives ROOT users access to Python libraries.

  13. Peptide Binding for Bio-Based Nanomaterials.

    PubMed

    Bedford, N M; Munro, C J; Knecht, M R

    2016-01-01

    Peptide-based strategies represent transformative approaches to fabricate functional inorganic materials under sustainable conditions by modeling the methods exploited in biology. In general, peptides with inorganic affinity and specificity have been isolated from organisms and through biocombinatorial selection techniques (ie, phage and cell surface display). These peptides recognize and bind the inorganic surface through a series of noncovalent interactions, driven by both enthalpic and entropic contributions, wherein the biomolecules wrap the metallic nanoparticle structure. Through these interactions, modification of the inorganic surface can be accessed to drive the incorporation of significantly disordered surface metal atoms, which have been found to be highly catalytically active for a variety of chemical transformations. We have employed synthetic, site-directed mutagenesis studies to reveal localized binding effects of the peptide at the metallic nanoparticle structure to begin to identify the biological basis of control over biomimetic nanoparticle catalytic activity. The protocols described herein were used to fabricate and characterize peptide-capped nanoparticles in atomic resolution to identify peptide sequence effects on the surface structure of the materials, which can then be directly correlated to the catalytic activity to identify structure/function relationships. PMID:27586350

  14. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  15. Complement binding to Leishmania donovani promastigotes (LD)

    SciTech Connect

    Puentes, S.M.; Bates, P.A.; Dwyer, D.M.; Joiner, K.A.

    1986-03-01

    To study the binding and processing of C3 on LD, parasites in various phases of growth were incubated in human serum deficient in complement component 8 containing /sup 125/I-C3. Uptake of /sup 125/I-C3 is rapid, peaking at 1.7-2.1 x 10/sup 6/ C3 molecules bound per parasite at 15 minutes for all growth phases, and decreases thereafter with continued incubation. One half of total C3 bound is spontaneously released by 90 minutes of incubation with all LD phases and occurs at a similar rate for LD washed free of serum and incubated at 37/sup 0/ C in buffer. As assessed by SDS-PAGE autoradiography, C3 on the surface of LD is present as C3b (36 to 50%) and iC3b (50 to 65%), linked covalently via a bond resistant to hydroxylamine treatment, presumably an amide linkage. Immunoblot analysis of purified membranes from serum-incubated LD, using rabbit antibody to C3 and LD surface constituents, strongly suggests that a major C3 acceptor is the LD acid phosphatase (AP). These results, in conjunction with recent studies, suggest a previously unrecognized role of AP as a C3 acceptor and, thus, as a molecule potentially involved in parasite binding and uptake.

  16. Knowledge-based fragment binding prediction.

    PubMed

    Tang, Grace W; Altman, Russ B

    2014-04-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971

  17. RNA-binding protein nucleolin in disease.

    PubMed

    Abdelmohsen, Kotb; Gorospe, Myriam

    2012-06-01

    Nucleolin is a multifunctional protein localized primarily in the nucleolus, but also found in the nucleoplasm, cytoplasm and cell membrane. It is involved in several aspects of DNA metabolism, and participates extensively in RNA regulatory mechanisms, including transcription, ribosome assembly, mRNA stability and translation, and microRNA processing. Nucleolin's implication in disease is linked to its ability to associate with target RNAs via its four RNA-binding domains and its arginine/glycin-rich domain. By modulating the post-transcriptional fate of target mRNAs, which typically bear AU-rich and/or G-rich elements, nucleolin has been linked to cellular events that influence disease, notably cell proliferation and protection against apoptotic death. Through its diverse RNA functions, nucleolin is increasingly implicated in pathological processes, particularly cancer and viral infection. Here, we review the RNA-binding activities of nucleolin, its influence on gene expression patterns, and its impact upon diseases. We also discuss the rising interest in targeting nucleolin therapeutically. PMID:22617883

  18. Xylanase inhibitors bind to nonstarch polysaccharides.

    PubMed

    Fierens, Ellen; Gebruers, Kurt; Courtin, Christophe M; Delcour, Jan A

    2008-01-23

    This study is an in-depth investigation of the interaction between polysaccharides and the proteinaceous xylanase inhibitors, Triticum aestivum xylanase inhibitor (TAXI), xylanase inhibitor protein (XIP), and thaumatin-like xylanase inhibitor (TLXI). The binding affinities of all three known types of xylanase inhibitors from wheat are studied by measuring the residual xylanase inhibition activity after incubation of the inhibitors in the presence of different polysaccharides, such as beta-glucans and (arabino)xylans. The binding affinities of all three xylanase inhibitors for (arabino)xylans increased with a decreasing arabinose/xylose ratio (A/X ratio). This phenomenon was observed both with water-extractable and water-unextractable (arabino)xylans. The inhibitors also interacted with different soluble and insoluble beta-glucans. None of the inhibitors tested had the ability to hydrolyze the polysaccharides investigated. The present findings contribute to the unraveling of the function of xylanase inhibitors in nature and to the prediction of the effect of added xylanases in cereal-based biotechnological processes, such as bread making and gluten-starch separation. PMID:18092758

  19. Prednisolone protein binding in renal transplant patients.

    PubMed Central

    Reece, P A; Disney, A P; Stafford, I; Shastry, J C

    1985-01-01

    Prednisolone pharmacokinetics and protein binding characteristics were studied in 10 renal transplant patients with various degrees of renal function (serum creatinine: 80-380 mumol/l) who received their usual oral maintenance dose of prednisolone (0.18 +/- 0.04 mg/kg). Plasma was assayed for prednisolone and hydrocortisone by h.p.l.c. and free prednisolone concentrations were determined in each sample by a rapid ultrafiltration technique. Free prednisolone area under curve (AUCu) ranged from 101 to 436 ng ml-1 h and was 6.3 to 15.0% of total prednisolone AUC. The fraction AUCu/AUC was closely related to serum albumin and creatinine concentrations determined at the time of study (multilinear regression correlation coefficient r2 = 0.830, P less than 0.0001); elevated serum creatinine and low albumin concentrations were associated with a higher % free. These results suggest that much of the variability in prednisolone protein binding could be attributed to inter-patient variability in serum albumin and creatinine concentrations. Total prednisolone concentrations would be potentially misleading in any comparisons made between patient groups with different renal function. PMID:3899153

  20. RNA-binding protein nucleolin in disease

    PubMed Central

    Abdelmohsen, Kotb; Gorospe, Myriam

    2012-01-01

    Nucleolin is a multifunctional protein localized primarily in the nucleolus, but also found in the nucleoplasm, cytoplasm and cell membrane. It is involved in several aspects of DNA metabolism, and participates extensively in RNA regulatory mechanisms, including transcription, ribosome assembly, mRNA stability and translation, and microRNA processing. Nucleolin’s implication in disease is linked to its ability to associate with target RNAs via its four RNA-binding domains and its arginine/glycin-rich domain. By modulating the post-transcriptional fate of target mRNAs, which typically bear AU-rich and/or G-rich elements, nucleolin has been linked to cellular events that influence disease, notably cell proliferation and protection against apoptotic death. Through its diverse RNA functions, nucleolin is increasingly implicated in pathological processes, particularly cancer and viral infection. Here, we review the RNA-binding activities of nucleolin, its influence on gene expression patterns, and its impact upon diseases. We also discuss the rising interest in targeting nucleolin therapeutically. PMID:22617883

  1. Latent TGF-β-binding proteins

    PubMed Central

    Robertson, Ian B.; Horiguchi, Masahito; Zilberberg, Lior; Dabovic, Branka; Hadjiolova, Krassimira; Rifkin, Daniel B.

    2016-01-01

    The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, -2, -3, and -4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here. The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly. PMID:25960419

  2. Cofactor binding protects flavodoxin against oxidative stress.

    PubMed

    Lindhoud, Simon; van den Berg, Willy A M; van den Heuvel, Robert H H; Heck, Albert J R; van Mierlo, Carlo P M; van Berkel, Willem J H

    2012-01-01

    In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification. PMID:22829943

  3. Characterizing the morphology of protein binding patches.

    PubMed

    Malod-Dognin, Noël; Bansal, Achin; Cazals, Frédéric

    2012-12-01

    Let the patch of a partner in a protein complex be the collection of atoms accounting for the interaction. To improve our understanding of the structure-function relationship, we present a patch model decoupling the topological and geometric properties. While the geometry is classically encoded by the atomic positions, the topology is recorded in a graph encoding the relative position of concentric shells partitioning the interface atoms. The topological-geometric duality provides the basis of a generic dynamic programming-based algorithm comparing patches at the shell level, which may favor topological or geometric features. On the biological side, we address four questions, using 249 cocrystallized heterodimers organized in biological families. First, we dissect the morphology of binding patches and show that Nature enjoyed the topological and geometric degrees of freedom independently while retaining a finite set of qualitatively distinct topological signatures. Second, we argue that our shell-based comparison is effective to perform atomic-level comparisons and show that topological similarity is a less stringent than geometric similarity. We also use the topological versus geometric duality to exhibit topo-rigid patches, whose topology (but not geometry) remains stable upon docking. Third, we use our comparison algorithms to infer specificity-related information amidst a database of complexes. Finally, we exhibit a descriptor outperforming its contenders to predict the binding affinities of the affinity benchmark. The softwares developed with this article are availablefrom http://team.inria.fr/abs/vorpatch_compatch/. PMID:22806945

  4. Binding of episodic memories in the rat

    PubMed Central

    Crystal, Jonathon D.; Smith, Alexandra E.

    2014-01-01

    Summary People remember an event as a coherent scene [1-4]. Memory of such an episode is thought to reflect binding of a fully integrated representation, rather than memory of unconnected features [4-7]. However, it is not known if rodents form bound representations. Here we show that rats remember episodes as bound representations. Rats were presented with multiple features of unique episodes at memory encoding: what (food flavor), where (maze location), source (self-generated food seeking–running to the food site– or experimenter-generated food seeking –placement by the experimenter at the food site), and context (spatial cues in the room where the event occurred). After a delay, the trial continued with a memory assessment in which one flavor replenished at the self-generated- but not at experimenter-generated-locations. We presented rats with multiple overlapping features, in rapid succession, to ensure that successful memory retrieval required them to disambiguate multiple study episodes (using two rooms). We found that binding is resistant to interference from highly similar episodes and survives long retention intervals (~1 week). Our results suggest that multiple episodic memories are each structured as bound representations, which suggests that nonhumans represent episodic memories using a structure similar to that of people. This finding enhances the translational potential for utilizing animal models of episodic memory to explore the biological mechanisms of memory and validate therapeutic approaches for treating disorders of memory. PMID:25466681

  5. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins.

    PubMed

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-07-01

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner. PMID:27198220

  6. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate

    SciTech Connect

    Marks, M.J.; Collins, A.C.

    1982-11-01

    The binding of (/sup 3/H)nicotine to mouse brain has been measured and subsequently compared with the binding of (/sup 125/I)alpha-bungarotoxin (alpha-BTX) and L-(/sup 3/H)quinuclidinyl benzilate (QNB). The binding of nicotine was saturable, reversible, and stereospecific. The average KD and Bmax were 59 nM and 88 fmoles/mg of protein, respectively. Although the rates of association and dissociation of nicotine were temperature-dependent, the incubation temperature had no effect on either KD or Bmax. When measured at 20 degrees or 37 degrees, nicotine appeared to bind to a single class of binding sites, but a second, very low-affinity, binding site was observed at 4 degrees. Nicotine binding was unaffected by the addition of NaCl, KCl, CaCl/sub 2/, or MgSO/sub 4/ to the incubation medium. Nicotinic cholinergic agonists were potent inhibitors of nicotine binding; however, nicotinic antagonists were poor inhibitors. The regional distribution of binding was not uniform: midbrain and striatum contained the highest number of receptors, whereas cerebellum had the fewest. Differences in site densities, regional distribution, inhibitor potencies, and thermal denaturation indicated that nicotine binding was not the same as either QNB or alpha-BTX binding, and therefore that receptors for nicotine may represent a unique population of cholinergic receptors.

  7. Analysis of Binding at a Single Spatially Localized Cluster of Binding Sites by Fluorescence Recovery after Photobleaching

    PubMed Central

    Sprague, Brian L.; Müller, Florian; Pego, Robert L.; Bungay, Peter M.; Stavreva, Diana A.; McNally, James G.

    2006-01-01

    Cells contain many subcellular structures in which specialized proteins locally cluster. Binding interactions within such clusters may be analyzed in live cells using models for fluorescence recovery after photobleaching (FRAP). Here we analyze a three-dimensional FRAP model that accounts for a single spatially localized cluster of binding sites in the presence of both diffusion and impermeable boundaries. We demonstrate that models completely ignoring the spatial localization of binding yield poor estimates for the binding parameters within the binding site cluster. In contrast, we find that ignoring only the restricted axial height of the binding-site cluster is far less detrimental, thereby enabling the use of computationally less expensive models. We also identify simplified solutions to the FRAP model for limiting behaviors where either diffusion or binding dominate. We show how ignoring a role for diffusion can sometimes produce serious errors in binding parameter estimation. We illustrate application of the method by analyzing binding of a transcription factor, the glucocorticoid receptor, to a tandem array of mouse mammary tumor virus promoter sites in live cells, obtaining an estimate for an in vivo binding constant (10−7 M), and a first approximation of an upper bound on the transcription-factor residence time at the promoter (∼170 ms). These FRAP analysis tools will be important for measuring key cellular binding parameters necessary for a complete and accurate description of the networks that regulate cellular behavior. PMID:16679358

  8. Characterization of PROPPIN-Phosphoinositide Binding and Role of Loop 6CD in PROPPIN-Membrane Binding

    PubMed Central

    Busse, Ricarda A.; Scacioc, Andreea; Krick, Roswitha; Pérez-Lara, Ángel; Thumm, Michael; Kühnel, Karin

    2015-01-01

    PROPPINs (β-propellers that bind polyphosphoinositides) are a family of PtdIns3P- and PtdIns(3,5)P2-binding proteins that play an important role in autophagy. We analyzed PROPPIN-membrane binding through isothermal titration calorimetry (ITC), stopped-flow measurements, mutagenesis studies, and molecular dynamics (MD) simulations. ITC measurements showed that the yeast PROPPIN family members Atg18, Atg21, and Hsv2 bind PtdIns3P and PtdIns(3,5)P2 with high affinities in the nanomolar to low-micromolar range and have two phosphoinositide (PIP)-binding sites. Single PIP-binding site mutants have a 15- to 30-fold reduced affinity, which explains the requirement of two PIP-binding sites in PROPPINs. Hsv2 bound small unilamellar vesicles with a higher affinity than it bound large unilamellar vesicles in stopped-flow measurements. Thus, we conclude that PROPPIN membrane binding is curvature dependent. MD simulations revealed that loop 6CD is an anchor for membrane binding, as it is the region of the protein that inserts most deeply into the lipid bilayer. Mutagenesis studies showed that both hydrophobic and electrostatic interactions are required for membrane insertion of loop 6CD. We propose a model for PROPPIN-membrane binding in which PROPPINs are initially targeted to membranes through nonspecific electrostatic interactions and are then retained at the membrane through PIP binding. PMID:25954880

  9. CD46 short consensus repeats III and IV enhance measles virus binding but impair soluble hemagglutinin binding.

    PubMed Central

    Devaux, P; Buchholz, C J; Schneider, U; Escoffier, C; Cattaneo, R; Gerlier, D

    1997-01-01

    The binding of a recombinant soluble form of the measles virus (MV) hemagglutinin (sH) to cells expressing hybrid CD46/CD4 proteins was compared to that of purified virus. For binding of both ligands, both CD46 external short consensus repeats I and II (SCR I and II) in the natural order were essential. The addition of SCR III and IV enhanced virus binding but inhibited sH binding. Accordingly, this lowered the ability of sH to compete with MV binding. Antihemagglutinin monoclonal antibodies selectively inhibited the binding of either sH or MV. Thus, sH and MV share a common binding site in SCR I and II but differ in their apparent avidity to CD46 under the influence of SCR III and IV. PMID:9094700

  10. Binding modes of thrombin binding aptamers investigated by simulations and experiments

    NASA Astrophysics Data System (ADS)

    Trapaidze, A.; Bancaud, A.; Brut, M.

    2015-01-01

    Thrombin binding aptamers HD1 and HD22 are the most studied aptamers, both for therapeutic and sensing purposes. Yet, there is still no commercialized aptamer-based sensor device for thrombin detection, suggesting that the binding modes of these aptamers remain to be precisely described. Here, we investigate thrombin-aptamer interactions with molecular dynamics simulations, and show that the different solved structures of HD1-thrombin complex are energetically similar and consequently possibly co-existing. Conversely, HD22 folding is much more stable, and its binding energy with thrombin is significantly larger than that of HD1 complexes. These results are confronted to experiments, which consist in monitoring aggregation of aptamer-functionalized gold nanoparticles triggered by thrombin. HD1 alone, but not HD22, can trigger aggregation, meaning that this aptamer has multiple sites of interactions with thrombin. Furthermore, pre-incubation of HD22 with thrombin impedes HD1 aggregation, suggesting that HD1 and HD22 have competing affinities for the same binding site. Altogether, this study shows that the characterization of aptamer-thrombin interactions by structural and kinetic experiments joined to simulations is necessary for the development of biosensors.

  11. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  12. Binding of topotecan to chromatin: Insights into cooperative binding and comparison with DNA.

    PubMed

    Babaei, Masoome; Rabbani-Chadegani, Azra; Ghadam, Parinaz

    2015-09-01

    Topotecan (TPT) is an anticancer drug widely used in cancer therapy. Although the interaction of TPT with DNA is a subject of few reports, no work has been reported on the binding affinity of TPT to DNA-histone complex in chromatin structure. In the present study we have focused on the effect of TPT on chromatin employing various types of spectroscopy and equilibrium dialysis techniques. The results showed that TPT quenched with chromatin chromophores and decreased fluorescence emission intensity corresponding to aromatic residues of histone proteins. The UV absorbance at 260 and 210 nm in decreased in a dose dependent manner. Upon binding of the drug, ellipticity at 222 nm in the circular dichroism profile became more positive implying reduction of α-helix content of histones. The binding is positive cooperative with association constant (Ka) of 2.65×10(2) M(-1) and 1.11×10(2) M(-1) for chromatin and DNA respectively indicating higher affinity of TPT to chromatin compared to DNA. From the results it is concluded that in the cell nucleus, TPT, as a potent anticancer drug, exerts its biological action through binding to chromatin and in this process not only DNA but also histone proteins play a fundamental role. PMID:26092169

  13. Multiple Binding Poses in the Hydrophobic Cavity of Bee Odorant Binding Protein AmelOBP14

    PubMed Central

    2015-01-01

    In the first step of olfaction, odorants are bound and solubilized by small globular odorant binding proteins (OBPs) which shuttle them to the membrane of a sensory neuron. Low ligand affinity and selectivity at this step enable the recognition of a wide range of chemicals. Honey bee Apis mellifera’s OBP14 (AmelOBP14) binds different plant odorants in a largely hydrophobic cavity. In long molecular dynamics simulations in the presence and absence of ligand eugenol, we observe a highly dynamic C-terminal region which forms one side of the ligand-binding cavity, and the ligand drifts away from its crystallized orientation. Hamiltonian replica exchange simulations, allowing exchanges of conformations sampled by the real ligand with those sampled by a noninteracting dummy molecule and several intermediates, suggest an alternative, quite different ligand pose which is adopted immediately and which is stable in long simulations. Thermodynamic integration yields binding free energies which are in reasonable agreement with experimental data. PMID:26633245

  14. Species differences in the binding kinetics of 25-hydroxyvitamin D3 to vitamin D binding protein.

    PubMed

    Vieth, R; Kessler, M J; Pritzker, K P

    1990-10-01

    The specific binding of 25-hydroxyvitamin D3 to its binding protein was studied in serum of the human, rhesus monkey, cow, horse, and rat. The free fraction of 25-hydroxyvitamin D3 in the rat was 0.34 +/- 0.15 pmol free/nmol total (+/- SD) and this was lower than in any of the other species (p less than 0.01). In the human, the free fraction was 1.5 +/- 0.32 pmol free/nmol total, which was higher than in any of the other species (p less than 0.001). The differences in the free fraction were mainly due to differences in dissociation constant. The relative levels of free 25-hydroxyvitamin D should be taken into account when extrapolating findings about vitamin D metabolism in animals to the human. A technical outcome of this study is that of the species tested, vitamin D binding protein from rat serum is the most suitable as a reagent component for methods used to measure total 25-hydroxyvitamin D by competitive protein binding assay. PMID:2078829

  15. T antigen origin-binding domain of simian virus 40: determinants of specific DNA binding.

    PubMed

    Bradshaw, Elizabeth M; Sanford, David G; Luo, Xuelian; Sudmeier, James L; Gurard-Levin, Zachary A; Bullock, Peter A; Bachovchin, William W

    2004-06-01

    To better understand origin recognition and initiation of DNA replication, we have examined by NMR complexes formed between the origin-binding domain of SV40 T antigen (T-ag-obd), the initiator protein of the SV40 virus, and cognate and noncognate DNA oligomers. The results reveal two structural effects associated with "origin-specific" binding that are absent in nonspecific DNA binding. The first is the formation of a hydrogen bond (H-bond) involving His 203, a residue that genetic studies have previously identified as crucial to both specific and nonspecific DNA binding in full-length T antigen. In free T-ag-obd, the side chain of His 203 has a pK(a) value of approximately 5, titrating to the N(epsilon)(1)H tautomer at neutral pH (Sudmeier, J. L., et al. (1996) J. Magn. Reson., Ser. B 113, 236-247). In complexes with origin DNA, His 203 N(delta)(1) becomes protonated and remains nontitrating as the imidazolium cation at all pH values from 4 to 8. The H-bonded N(delta1)H resonates at 15.9 ppm, an unusually large N-H proton chemical shift, of a magnitude previously observed only in the catalytic triad of serine proteases at low pH. The formation of this H-bond requires the middle G/C base pair of the recognition pentanucleotide, GAGGC. The second structural effect is a selective distortion of the A/T base pair characterized by a large (0.6 ppm) upfield chemical-shift change of its Watson-Crick proton, while nearby H-bonded protons remain relatively unaffected. The results indicate that T antigen, like many other DNA-binding proteins, may employ "catalytic" or "transition-state-like" interactions in binding its cognate DNA (Jen-Jacobson, L. (1997) Biopolymers 44, 153-180), which may be the solution to the well-known paradox between the relatively modest DNA-binding specificity exhibited by initiator proteins and the high specificity of initiation. PMID:15170330

  16. Structural Basis of Rnd1 Binding to Plexin Rho GTPase Binding Domains (RBDs)

    SciTech Connect

    Wang, Hui; Hota, Prasanta K.; Tong, Yufeng; Li, Buren; Shen, Limin; Nedyalkova, Lyudmila; Borthakur, Susmita; Kim, SoonJeung; Tempel, Wolfram; Buck, Matthias; Park, Hee-Won

    2011-09-20

    Plexin receptors regulate cell adhesion, migration, and guidance. The Rho GTPase binding domain (RBD) of plexin-A1 and -B1 can bind GTPases, including Rnd1. By contrast, plexin-C1 and -D1 reportedly bind Rnd2 but associate with Rnd1 only weakly. The structural basis of this differential Rnd1 GTPase binding to plexin RBDs remains unclear. Here, we solved the structure of the plexin-A2 RBD in complex with Rnd1 and the structures of the plexin-C1 and plexin-D1 RBDs alone, also compared with the previously determined plexin-B1 RBD.Rnd1 complex structure. The plexin-A2 RBD {center_dot} Rnd1 complex is a heterodimer, whereas plexin-B1 and -A2 RBDs homodimerize at high concentration in solution, consistent with a proposed model for plexin activation. Plexin-C1 and -D1 RBDs are monomeric, consistent with major residue changes in the homodimerization loop. In plexin-A2 and -B1, the RBD {beta}3-{beta}4 loop adjusts its conformation to allow Rnd1 binding, whereas minimal structural changes occur in Rnd1. The plexin-C1 and -D1 RBDs lack several key non-polar residues at the corresponding GTPase binding surface and do not significantly interact with Rnd1. Isothermal titration calorimetry measurements on plexin-C1 and -D1 mutants reveal that the introduction of non-polar residues in this loop generates affinity for Rnd1. Structure and sequence comparisons suggest a similar mode of Rnd1 binding to the RBDs, whereas mutagenesis suggests that the interface with the highly homologous Rnd2 GTPase is different in detail. Our results confirm, from a structural perspective, that Rnd1 does not play a role in the activation of plexin-C1 and -D1. Plexin functions appear to be regulated by subfamily-specific mechanisms, some of which involve different Rho family GTPases.

  17. Thermodynamics of nucleotide binding to actomyosin V and VI: a positive heat capacity change accompanies strong ADP binding.

    PubMed

    Robblee, James P; Cao, Wenxiang; Henn, Arnon; Hannemann, Diane E; De La Cruz, Enrique M

    2005-08-01

    We have measured the energetics of ATP and ADP binding to single-headed actomyosin V and VI from the temperature dependence of the rate and equilibrium binding constants. Nucleotide binding to actomyosin V and VI can be modeled as two-step binding mechanisms involving the formation of collision complexes followed by isomerization to states with high nucleotide affinity. Formation of the actomyosin VI-ATP collision complex is much weaker and slower than for actomyosin V. A three-step binding mechanism where actomyosin VI isomerizes between two conformations, one competent to bind ATP and one not, followed by rapid ATP binding best accounts for the data. ADP binds to actomyosin V more tightly than actomyosin VI. At 25 degrees C, the strong ADP-binding equilibria are comparable for actomyosin V and VI, and the different overall ADP affinities arise from differences in the ADP collision complex affinity. The actomyosin-ADP isomerization leading to strong ADP binding is entropy driven at >15 degrees C and occurs with a large, positive change in heat capacity (DeltaC(P) degrees ) for both actomyosin V and VI. Sucrose slows ADP binding and dissociation from actomyosin V and VI but not the overall equilibrium constants for strong ADP binding, indicating that solvent viscosity dampens ADP-dependent kinetic transitions, presumably a tail swing that occurs with ADP binding and release. We favor a mechanism where strong ADP binding increases the dynamics and flexibility of the actomyosin complex. The heat capacity (DeltaC(P) degrees ) and entropy (DeltaS degrees ) changes are greater for actomyosin VI than actomyosin V, suggesting different extents of ADP-induced structural rearrangement. PMID:16042401

  18. Cooperativity in Binding Processes: New Insights from Phenomenological Modeling

    PubMed Central

    Cattoni, Diego I.; Chara, Osvaldo; Kaufman, Sergio B.; González Flecha, F. Luis

    2015-01-01

    Cooperative binding is one of the most interesting and not fully understood phenomena involved in control and regulation of biological processes. Here we analyze the simplest phenomenological model that can account for cooperativity (i.e. ligand binding to a macromolecule with two binding sites) by generating equilibrium binding isotherms from deterministically simulated binding time courses. We show that the Hill coefficients determined for cooperative binding, provide a good measure of the Gibbs free energy of interaction among binding sites, and that their values are independent of the free energy of association for empty sites. We also conclude that although negative cooperativity and different classes of binding sites cannot be distinguished at equilibrium, they can be kinetically differentiated. This feature highlights the usefulness of pre-equilibrium time-resolved strategies to explore binding models as a key complement of equilibrium experiments. Furthermore, our analysis shows that under conditions of strong negative cooperativity, the existence of some binding sites can be overlooked, and experiments at very high ligand concentrations can be a valuable tool to unmask such sites. PMID:26717487

  19. Tryptophan-binding sites on nuclear envelopes of rat liver

    SciTech Connect

    Kurl, R.; Verney, E.; Sidransky, H.

    1986-03-05

    Tryptophan (TRP), an essential amino acid, has been demonstrated to affect certain cellular processes including transcriptional and translational events in the liver. These events are presumed to be mediated at the nuclear level possibly via binding of TRP to nuclei. In an effort to delineate the role of TRP on these metabolic processes, the nuclear location of these binding sites was investigated. Incubation of isolated, intact, hepatic nuclei with (/sup 3/H)TRP followed by fractionation revealed the presence of about 60% of specific TRP binding to nuclear membranes. This binding reached equilibrium by 2 hours after incubation at room temperature. Scatchard analysis revealed two classes of binding sites: (1) high affinity (K/sub D/ of about 10/sup -10/M) and (2) low affinity (K/sub D/ of about 10/sup -8/M). The inhibition of binding by treatment with either ..beta..-galactosidase or concanavalin A suggested that the binding entity was a glycoprotein. However, treatment with neuraminidase resulted in an increase in binding which suggested that terminal sialic acid residues play a role, possibly an inhibitory one, on TRP binding. The function of these binding sites on the mechanism of TRP action is being investigated.

  20. Kinetics characterization of c-Src binding to lipid membranes: Switching from labile to persistent binding.

    PubMed

    Le Roux, Anabel-Lise; Busquets, Maria Antònia; Sagués, Francesc; Pons, Miquel

    2016-02-01

    Cell signaling by the c-Src proto-oncogen requires the attachment of the protein to the inner side of the plasma membrane through the myristoylated N-terminal region, known as the SH4 domain. Additional binding regions of lower affinity are located in the neighbor intrinsically disordered Unique domain and the structured SH3 domain. Here we present a surface plasmon resonance study of the binding of a myristoylated protein including the SH4, Unique and SH3 domains of c-Src to immobilized liposomes. Two distinct binding processes were observed: a fast and a slow one. The second process lead to a persistently bound form (PB) with a slower binding and a much slower dissociation rate than the first one. The association and dissociation of the PB form could be detected using an anti-SH4 antibody. The kinetic analysis revealed that binding of the PB form follows a second order rate law suggesting that it involves the formation of c-Src dimers on the membrane surface. A kinetically equivalent PB form is observed in a myristoylated peptide containing only the SH4 domain but not in a construct including the three domains but with a 12-carbon lauroyl substituent instead of the 14-carbon myristoyl group. The PB form is observed with neutral lipids but its population increases when the immobilized liposomes contain negatively charged lipids. We suggest that the PB form may represent the active signaling form of c-Src while the labile form provides the capacity for fast 2D search of the target signaling site on the membrane surface. PMID:26638178

  1. Family 42 carbohydrate-binding modules display multiple arabinoxylan-binding interfaces presenting different ligand affinities.

    PubMed

    Ribeiro, Teresa; Santos-Silva, Teresa; Alves, Victor D; Dias, Fernando M V; Luís, Ana S; Prates, José A M; Ferreira, Luís M A; Romão, Maria J; Fontes, Carlos M G A

    2010-10-01

    Enzymes that degrade plant cell wall polysaccharides display a modular architecture comprising a catalytic domain bound to one or more non-catalytic carbohydrate-binding modules (CBMs). CBMs display considerable variation in primary structure and are grouped into 59 sequence-based families organized in the Carbohydrate-Active enZYme (CAZy) database. Here we report the crystal structure of CtCBM42A together with the biochemical characterization of two other members of family 42 CBMs from Clostridium thermocellum. CtCBM42A, CtCBM42B and CtCBM42C bind specifically to the arabinose side-chains of arabinoxylans and arabinan, suggesting that various cellulosomal components are targeted to these regions of the plant cell wall. The structure of CtCBM42A displays a beta-trefoil fold, which comprises 3 sub-domains designated as alpha, beta and gamma. Each one of the three sub-domains presents a putative carbohydrate-binding pocket where an aspartate residue located in a central position dominates ligand recognition. Intriguingly, the gamma sub-domain of CtCBM42A is pivotal for arabinoxylan binding, while the concerted action of beta and gamma sub-domains of CtCBM42B and CtCBM42C is apparently required for ligand sequestration. Thus, this work reveals that the binding mechanism of CBM42 members is in contrast with that of homologous CBM13s where recognition of complex polysaccharides results from the cooperative action of three protein sub-domains presenting similar affinities. PMID:20637315

  2. Distinct binding and immunogenic properties of the gonococcal homologue of meningococcal factor h binding protein.

    PubMed

    Jongerius, Ilse; Lavender, Hayley; Tan, Lionel; Ruivo, Nicola; Exley, Rachel M; Caesar, Joseph J E; Lea, Susan M; Johnson, Steven; Tang, Christoph M

    2013-01-01

    Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups. PMID:23935503

  3. Binding biological motion and visual features in working memory.

    PubMed

    Ding, Xiaowei; Zhao, Yangfan; Wu, Fan; Lu, Xiqian; Gao, Zaifeng; Shen, Mowei

    2015-06-01

    Working memory mechanisms for binding have been examined extensively in the last decade, yet few studies have explored bindings relating to human biological motion (BM). Human BM is the most salient and biologically significant kinetic information encountered in everyday life and is stored independently from other visual features (e.g., colors). The current study explored 3 critical issues of BM-related binding in working memory: (a) how many BM binding units can be retained in working memory, (b) whether involuntarily object-based binding occurs during BM binding, and (c) whether the maintenance of BM bindings in working memory requires attention above and beyond that needed to maintain the constituent dimensions. We isolated motion signals of human BM from non-BM sources by using point-light displays as to-be-memorized BM and presented the participants colored BM in a change detection task. We found that working memory capacity for BM-color bindings is rather low; only 1 or 2 BM-color bindings could be retained in working memory regardless of the presentation manners (Experiments 1-3). Furthermore, no object-based encoding took place for colored BM stimuli regardless of the processed dimensions (Experiments 4 and 5). Central executive attention contributes to the maintenance of BM-color bindings, yet maintaining BM bindings in working memory did not require more central attention than did maintaining the constituent dimensions in working memory (Experiment 6). Overall, these results suggest that keeping BM bindings in working memory is a fairly resource-demanding process, yet central executive attention does not play a special role in this cross-module binding. PMID:25893683

  4. Memory binding and white matter integrity in familial Alzheimer's disease.

    PubMed

    Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-05-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to

  5. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  6. An Electrostatic Funnel in the GABA-Binding Pathway.

    PubMed

    Carpenter, Timothy S; Lightstone, Felice C

    2016-04-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a 'funnel' that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  7. Time-resolved binding of azithromycin to Escherichia coli ribosomes.

    PubMed

    Petropoulos, Alexandros D; Kouvela, Ekaterini C; Starosta, Agata L; Wilson, Daniel N; Dinos, George P; Kalpaxis, Dimitrios L

    2009-01-30

    Azithromycin is a semisynthetic derivative of erythromycin that inhibits bacterial protein synthesis by binding within the peptide exit tunnel of the 50S ribosomal subunit. Nevertheless, there is still debate over what localization is primarily responsible for azithromycin binding and as to how many molecules of the drug actually bind per ribosome. In the present study, kinetic methods and footprinting analysis are coupled together to provide time-resolved details of the azithromycin binding process. It is shown that azithromycin binds to Escherichia coli ribosomes in a two-step process: The first-step involves recognition of azithromycin by the ribosomal machinery and places the drug in a low-affinity site located in the upper part of the exit tunnel. The second step corresponds to the slow formation of a final complex that is both much tighter and more potent in hindering the progression of the nascent peptide through the exit tunnel. Substitution of uracil by cytosine at nucleoside 2609 of 23S rRNA, a base implicated in the high-affinity site, facilitates the shift of azithromycin to this site. In contrast, mutation U754A hardly affects the binding process. Binding of azithromycin to both sites is hindered by high concentrations of Mg(2+) ions. Unlike Mg(2+) ions, polyamines do not significantly affect drug binding to the low-affinity site but attenuate the formation of the final complex. The low- and high-affinity sites of azithromycin binding are mutually exclusive, which means that one molecule of the drug binds per E. coli ribosome at a time. In contrast, kinetic and binding data indicate that in Deinococcus radiodurans, two molecules of azithromycin bind cooperatively to the ribosome. This finding confirms previous crystallographic results and supports the notion that species-specific structural differences may primarily account for the apparent discrepancies between the antibiotic binding modes obtained for different organisms. PMID:19071138

  8. Binding Strength of Methylmercury to Aquatic NOM

    SciTech Connect

    Khwaja, A.; Bloom, P; Brezonik, P

    2010-01-01

    A competitive-ligand, equilibrium-dialysis technique using bromide measured methylmercury (MeHg{sup +}) binding to Suwannee River fulvic acid (SRFA) and NOM from a lake and a bog in Minnesota. Distribution coefficients (K{sub OC}) and stability constants (K{prime}) varied only slightly over a range of [Br{sup -}] and ratios of MeHg{sup +} to reduced sulfur, S{sub re}, the putative NOM binding site. For SRFA at pH 3.0, K{sub OC} ranged from 10{sup 7.7} to 10{sup 8.2} and K{prime} ranged from 10{sup 15.5} to 10{sup 16.0} over MeHg{sup +}:S{sub re} ratios from 1:1220 to 1:12200 (well below S{sub re} saturation). The importance of pH depends on the calculation model for binding constants. Over pH 2.98-7.62, K{sub OC} had little pH dependence (slope = 0.2; r{sup 2} = 0.4; range 10{sup 7.7}-10{sup 9.1}), but K{prime} calculated using thiol ligands with pK{sub a} = 9.96 had an inverse relationship (slope = -0.8; r{sup 2} = 0.9; range 10{sup 15.6}-10{sup 12.3}). A pH-independent model was obtained only with thiol pK{sub a} {le} 4. The mean K{prime}{sub 4} for SRFA (K{prime} with thiol pK{sub a} = 4.2) was 10{sup 9.8} (range 10{sup 9.11}-10{sup 10.27}) and small slope (0.02). Similar values were found for Spring Lake NOM; bog S2 NOM had values one-tenth as large. These constants are generally similar to published values; differences reflect variations in methods, pH, types of NOM, and calculation models.

  9. Method and apparatus for detecting chemical binding

    DOEpatents

    Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Wells, Cyndi A.

    2007-07-10

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  10. Method And Apparatus For Detecting Chemical Binding

    DOEpatents

    Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Wells, Cyndi A.

    2005-02-22

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  11. Dynamic Coupling between Folding, Binding and Function

    NASA Astrophysics Data System (ADS)

    Wolynes, Peter G.

    2003-03-01

    Elementary presentations of biophysics suggest a clear separation between the events of protein folding and function. The situation is much more interesting and complex. Many proteins in the cell are unfolded until called upon to interact with targets. Why? Energy landscape theory suggest some interesting kinetic advantages and possible explanations concerning the promiscuity of protein-protein interactions. This will be discussed in the context of protein DNA recognition. The energy landscapes for binding surfaces show interesting systematic differences from those of protein interiors. Energy landscape ideas also raise the prospect that folded proteins partially unfold during their function. I will illustrate this with a specific example of large scale conformation change in a kinase.

  12. Cation specific binding with protein surface charges.

    PubMed

    Hess, Berk; van der Vegt, Nico F A

    2009-08-11

    Biological organization depends on a sensitive balance of noncovalent interactions, in particular also those involving interactions between ions. Ion-pairing is qualitatively described by the law of "matching water affinities." This law predicts that cations and anions (with equal valence) form stable contact ion pairs if their sizes match. We show that this simple physical model fails to describe the interaction of cations with (molecular) anions of weak carboxylic acids, which are present on the surfaces of many intra- and extracellular proteins. We performed molecular simulations with quantitatively accurate models and observed that the order K(+) < Na(+) < Li(+) of increasing binding affinity with carboxylate ions is caused by a stronger preference for forming weak solvent-shared ion pairs. The relative insignificance of contact pair interactions with protein surfaces indicates that thermodynamic stability and interactions between proteins in alkali salt solutions is governed by interactions mediated through hydration water molecules. PMID:19666545

  13. Copper-binding protein in Mimulus guttatus

    SciTech Connect

    Robinson, N.J.; Thurman, D.A.

    1985-01-01

    A Cu-binding protein has been purified from the roots of Mimulus guttatus using gel permeation chromatography on Sephadex G-75 and anion exchange chromatography on DEAE Biogel A. The protein has similar properties to putative metallothioneins (MTS) purified from other angiosperms. Putative MT was estimated by measuring the relative percentage incorporation of (/sup 35/S) into fractions containing the protein after HPLC on SW 3000-gel. In the roots of both Cu-tolerant and non tolerant plants synthesis of putative MT is induced by increased Cu concentration in the nutrient solution. The relative percentage incorporation of (/sup 35/S) into putative MT is significantly higher in extracts from the roots of Cu-tolerant than non tolerant M. guttatus after growth in 1 ..mu..M Cu suggesting involvement in the mechanism of tolerance. 22 refs., 2 figs., 1 tab.

  14. Lactation-induced cadmium-binding proteins

    SciTech Connect

    Bhattacharyya, M.H.; Solaiman, D.; Garvey, J.S.; Miyazaki, W.Y.

    1987-01-01

    Previously we have demonstrated an increase during midlactation in /sup 109/Cd adsorption and increased retention by the duodenum, kidney, and mammary tissue of mouse dams receiving environmental levels of cadmium//sup 109/Cd via drinking water, with little change in /sup 109/Cd retention in liver and jejunum compared to nonpregnant controls. Results are reported here of a study of cadmium deposition during midlactation as associated with induction of metallothionein (MT). A cadmium/hemoglobin (Cd/Hb) assay and radioimmunoassay for MT which measures heat-stable cadmium binding capacity in tissues was used to determine MT concentrations in fractions of kidney, liver, duodenum, and jejunum from female mice. Both assays demonstrated clear lactation-induced increases in MT concentrations in liver, kidney, and duodenum, with MT concentrations falling rapidly to control levels after weaning. 4 refs., 1 tab.

  15. Hafnium binding to rat serum transferrin

    NASA Astrophysics Data System (ADS)

    Then, G.; Zell, I.; Appel, H.; Thies, W.-G.; Duffield, J.; Taylor, D. M.

    1983-12-01

    Using the TDPAC-technique binding parameters for Hf were determined after in vivo uptake of181Hf in rat plasma. As much as 98.5% of the metal ions proved to be bound to protein, essentially to transferrin. The main fraction of the181Hf ions experiences a well defined electric quadrupole perturbation frequency (vQ1=(1516 ± 15)MHz, δ1=(5.3 ± 0.8)%) connected with a marked relaxation damping (λ = (46 ± 8)MHz). The remaining Hf nuclei are subject to a fairly broad distribution of electric field gradients (vQ2=(1014 ± 37)MHz, δ2=(16±3)%). The results are compared with data obtained with in vitro 181Hf-labeled human transferrin.

  16. Calcium binding chaperones of the endoplasmic reticulum.

    PubMed

    Coe, Helen; Michalak, Marek

    2009-01-01

    The endoplasmic reticulum is a major Ca(2+) store of the cell that impacts many cellular processes within the cell. The endoplasmic reticulum has roles in lipid and sterol synthesis, protein folding, post-translational modification and secretion and these functions are affected by intraluminal endoplasmic reticulum Ca(2+). In the endoplasmic reticulum there are several Ca(2+) buffering chaperones including calreticulin, Grp94, BiP and protein disulfide isomerase. Calreticulin is one of the major Ca(2+) binding/buffering chaperones in the endoplasmic reticulum. It has a critical role in Ca(2+) signalling in the endoplasmic reticulum lumen and this has significant impacts on many Ca(2+)-dependent pathways including control of transcription during embryonic development. In addition to Ca(2+) buffering, calreticulin plays important role in the correct folding and quality control of newly synthesized glycoproteins. PMID:20093733

  17. Common Envelope and the Binding Energy Consideration

    NASA Astrophysics Data System (ADS)

    Irawati, P.; Mahasena, P.

    2014-08-01

    We report the results of our study on the common-envelope phase of the cataclysmic variables. We are investigating the role of additional energies, such as recombination energy and internal energy, in expelling the envelope of the primary star. In this work, we use the TWIN stellar evolution code which can evolve both stars in binary simultaneously. We analysed the energies involved by considering the binding energy of the core at the onset of the common envelope phase. The core of the primary is calculated using the hydrogen-exhausted layer with 10% hydrogen fraction. Our preliminary result shows that the internal energy plays a significant role while the recombination energy has only a small contribution to the energy budget of the cataclysmic variable evolution.

  18. Variations of nuclear binding with quark masses

    NASA Astrophysics Data System (ADS)

    Carrillo-Serrano, M. E.; Cloët, I. C.; Tsushima, K.; Thomas, A. W.; Afnan, I. R.

    2013-01-01

    We investigate the variation with light quark mass of the mass of the nucleon as well as the masses of the mesons commonly used in a one-boson-exchange model of the nucleon-nucleon force. Care is taken to evaluate the meson mass shifts at the kinematic point relevant to that problem. Using these results, we evaluate the corresponding changes in the energy of the 1S0 antibound state and the binding energies of the deuteron, triton, and selected finite nuclei by using a one-boson exchange model. The results are discussed in the context of possible corrections to the standard scenario for Big Bang nucleosynthesis in the case where, as suggested by recent observations of quasar absorption spectra, the quark masses may have changed over the age of the Universe.

  19. Calcium binding properties of gamma-crystallin: calcium ion binds at the Greek key beta gamma-crystallin fold.

    PubMed

    Rajini, B; Shridas, P; Sundari, C S; Muralidhar, D; Chandani, S; Thomas, F; Sharma, Y

    2001-10-19

    The beta- and gamma-crystallins are closely related lens proteins that are members of the betagamma-crystallin superfamily, which also include many non-lens members. Although beta-crystallin is known to be a calcium-binding protein, this property has not been reported in gamma-crystallin. We have studied the calcium binding properties of gamma-crystallin, and we show that it binds 4 mol eq of calcium with a dissociation constant of 90 microm. It also binds the calcium-mimic spectral probes, terbium and Stains-all. Calcium binding does not significantly influence protein secondary and tertiary structures. We present evidence that the Greek key crystallin fold is the site for calcium ion binding in gamma-crystallin. Peptides corresponding to Greek key motif of gamma-crystallin (42 residues) and their mutants were synthesized and studied for calcium binding. These peptides adopt beta-sheet conformation and form aggregates producing beta-sandwich. Our results with peptides show that, in Greek key motif, the amino acid adjacent to the conserved aromatic corner in the "a" strand and three amino acids of the "d" strand participate in calcium binding. We suggest that the betagamma superfamily represents a novel class of calcium-binding proteins with the Greek key betagamma-crystallin fold as potential calcium-binding sites. These results are of significance in understanding the mechanism of calcium homeostasis in the lens. PMID:11502736

  20. Cellular retinol-binding protein and retinoic acid-binding protein in rat testes: effect of retinol depletion.

    PubMed

    Ong, D E; Tsai, C H; Chytil, F

    1976-02-01

    Testes of rats contain two cellular binding proteins of interest in vitamin A metabolism. One protein binds retinoic acid with high specificity; the other binds retinol with high specificity. When the cellular retinol-binding protein was partially purified from rat testes, it exhibited fluorescence excitation and emission spectra similar to that of all-trans-retinol in hexane. Exposure of this preparation to UV light destroyed this fluorescence but spectra identical to the original were obtained after addition of retinol. Hexane extracts of the binding protein had fluorescence spectra identical to all-trans-retinol, suggesting that this compound is bound to the protein in vivo. Extracts of testes from retinol depleted rats were submitted to gel filtration but failed to show a retinol-like fluorescence at the elution position of retinol binding protein. This fluorescence was observed in the preparations from pair fed control animals. However, after addition of all-trans-retinol to the extracts from the depleted rats, fluorescence at that elution position was observed. This indicates that in testes of retinol depleted rats the cellular retinol binding protein is present but without bound retinol, in contrast to the non-depleted rats where 30-43% of the binding protein had bound retinol. The amounts of cellular retinol binding protein and retinoic acid binding protein in testes, as determined by sucrose gradient centrifugation, were found to be similar for retinol depleted and pair fed control rats. PMID:942996

  1. Diazepam binding inhibitor and the endocrine pancreas.

    PubMed

    Ostenson, C G; Ahrén, B; Johansson, O; Karlsson, S; Hilliges, M; Efendic, S

    1991-12-01

    Regulation of blood glucose homeostasis is complex. Its major hormonal regulators include insulin, glucagon and somatostatin from the endocrine pancreas. Secretion of these hormones is controlled predominantly by the supply of nutrients in the circulation but also by nerve signals and other peptides. Thus, it is likely that peptides, released from cells of the gut or endocrine pancreas or from peptidergic nerves, affect glucose homeostasis by modulating the secretion of insulin, glucagon and somatostatin. When searching for novel gut peptides with such effects, diazepam binding inhibitor (DBI) was isolated from the porcine small intestine. By immunocytochemistry, DBI has been demonstrated to occur not only in the gut but also in endocrine cells of the pancreatic islets, namely in the somatostatin-producing D-cells in pig and man, and in the glucagon-producing A-cells in rat. Porcine DBI (pDBI; 10(-8)-10(-7) M) has been shown to suppress glucose-stimulated release of insulin from both isolated islets and perfused pancreas of the rat. Furthermore, secretion of insulin stimulated by either the sulfonylurea glibenclamide or the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), was inhibited by the peptide. In contrast, arginine-induced release of insulin was unaffected by pDBI. Moreover, pDBI decreased arginine-induced release of glucagon from the perfused rat pancreas, whereas release of somatostatin was unchanged. Notably, rat DBI, structurally identical with rat acyl-CoA-binding protein, has also been demonstrated to inhibit glucose-stimulated release of insulin in the rat, both in vivo and in vitro. Long-term exposure of cultured fetal rat islets to pDBI (10(-8) M) significantly decreased the synthesis of DNA in islet cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1780037

  2. Signal transduction by guanine nucleotide binding proteins.

    PubMed

    Spiegel, A M

    1987-01-01

    High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Subsets of this family include cytosolic initiation and elongation factors involved in protein synthesis, and cytoskeletal proteins such as tubulin (Hughes, S.M. (1983) FEBS Lett. 164, 1-8). A distinct subset of guanine nucleotide binding proteins is membrane-associated; members of this subset include the ras gene products (Ellis, R.W. et al. (1981) Nature 292, 506-511) and the heterotrimeric G-proteins (also termed N-proteins) (Gilman, A.G. (1984) Cell 36, 577-579). Substantial evidence indicates that G-proteins act as signal transducers by coupling receptors (R) to effectors (E). A similar function has been suggested but not proven for the ras gene products. Known G-proteins include Gs and Gi, the G-proteins associated with stimulation and inhibition, respectively, of adenylate cyclase; transducin (TD), the G-protein coupling rhodopsin to cGMP phosphodiesterase in rod photoreceptors (Bitensky, M.W. et al. (1981) Curr. Top. Membr. Transp. 15, 237-271; Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87-119), and Go, a G-protein of unknown function that is highly abundant in brain (Sternweis, P.C. and Robishaw, J.D. (1984) J. Biol. Chem. 259, 13806-13813; Neer, E.J. et al. (1984) J. Biol. Chem. 259, 14222-14229). G-proteins also participate in other signal transduction pathways, notably that involving phosphoinositide breakdown. In this review, I highlight recent progress in our understanding of the structure, function, and diversity of G-proteins. PMID:2435586

  3. Sugared biomaterial binding lectins: achievements and perspectives.

    PubMed

    Bojarová, P; Křen, V

    2016-07-19

    Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants. PMID:27075026

  4. NMDA receptor binding in focal epilepsies

    PubMed Central

    McGinnity, C J; Koepp, M J; Hammers, A; Riaño Barros, D A; Pressler, R M; Luthra, S; Jones, P A; Trigg, W; Micallef, C; Symms, M R; Brooks, D J; Duncan, J S

    2015-01-01

    Objective To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [18F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. Methods Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [18F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [18F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. Results Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [18F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [18F]GE-179 VT (−29%; p<0.002). There were no focal abnormalities common to the epilepsy group. Conclusions In patients with focal epilepsies, we detected primarily global increases of [18F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [18F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy. PMID:25991402

  5. Partial characterization of GTP-binding proteins in Neurospora

    SciTech Connect

    Hasunuma, K.; Miyamoto-Shinohara, Y.; Furukawa, K.

    1987-08-14

    Six fractions of GTP-binding proteins separated by gel filtration of a mycelial extract containing membrane components of Neurospora crassa were partially characterized. (/sup 35/S)GTP gamma S bound to GTP-binding protein was assayed by repeated treatments with a Norit solution and centrifugation. The binding of (/sup 35/S)GTP gamma S to GTP-binding proteins was competitively prevented in the presence of 0.1 to 1 mM GTP but not in the presence of ATP. These GTP-binding proteins fractionated by the gel column had Km values of 20, 7, 4, 4, 80 and 2 nM. All six fractions of these GTP-binding proteins showed the capacity to be ADP-ribosylated by pertussis toxin.

  6. Metal binding to porcine pancreatic elastase: calcium or not calcium.

    PubMed

    Weiss, Manfred S; Panjikar, Santosh; Nowak, Elzbieta; Tucker, Paul A

    2002-09-01

    Porcine pancreatic elastase has been crystallized at slightly acidic pH under two similar but slightly different conditions. Diffraction data were collected at a wavelength of 1.5 A to a maximum resolution of 1.7 A. Both difference electron-density maps and anomalous difference electron-density maps suggest that in crystals grown from a sodium sulfate solution PPE binds Na(+) in its metal-binding site. In contrast, PPE binds Ca(2+) in crystals grown from a solution containing sodium citrate and calcium chloride. This observation is in contradiction to most PPE structures reported in the PDB. In addition to the metal-binding site, up to three other binding sites, which appear to be anion-binding sites, could be identified based on the observed anomalous intensity differences. PMID:12198296

  7. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  8. Somatostatin binding to dissociated cells from rat cerebral cortex

    SciTech Connect

    Colas, B.; Prieto, J.C.; Arilla, E. )

    1990-11-01

    A method has been developed for the study of somatostatin (SS) binding to dissociated cells from rat cerebral cortex. Binding of {sup 125}I (Tyr11)SS to cells obtained by mechanical dissociation of rat cerebral cortex was dependent on time and temperature, saturable, reversible and highly specific. Under conditions of equilibrium, i.e., 60 min at 25 degrees C, native SS inhibited tracer binding in a dose-dependent manner. The Scatchard analysis of binding data was linear and yielded a dissociation constant of 0.60 +/- 0.08 nM with a maximal binding capacity of 160 +/- 16 fmol/mg protein. The binding of {sup 125}I (Tyr11)SS was specific as shown in experiments on tracer displacement by the native peptides, SS analogues, and unrelated peptides.

  9. Studies on the spermatogenic sulfogalactolipid binding protein SLIP 1

    SciTech Connect

    Lingwood, C.; Nutikka, A. )

    1991-02-01

    We have purified the testicular sulfogalactolipid binding protein SLIP 1 and shown by photoaffinity labeling that it contains an ATP binding site. Purified SLIP 1 was fluorescently labeled and shown to retain specific sulfogalactolipid binding function. This probe was used to investigate the topology of SLIP 1 binding sites on testicular germ cells. The binding pattern precisely coincided with the previously demonstrated asymmetric surface domains of sulfogalactoglycerolipid (SGG). Occasionally these SGG-containing, SLIP 1-binding cell surface domains exactly coincided with structural features on the cell surface as detected by differential interference contrast microscopy. These results demonstrate that SLIP 1/SGG interactions could provide an effective intercellular communication network between testicular germ cells within the seminiferous tubule.

  10. DNA binding studies of Vinca alkaloids: experimental and computational evidence.

    PubMed

    Pandya, Prateek; Gupta, Surendra P; Pandav, Kumud; Barthwal, Ritu; Jayaram, B; Kumar, Surat

    2012-03-01

    Fluorescence studies on the indole alkaloids vinblastine sulfate, vincristine sulfate, vincamine and catharanthine have demonstrated the DNA binding ability of these molecules. The binding mode of these molecules in the minor groove of DNA is non-specific. A new parameter of the purine-pyrimidine base sequence specificty was observed in order to define the non-specific DNA binding of ligands. Catharanthine had shown 'same' pattern of 'Pu-Py' specificity while evaluating its DNA binding profile. The proton resonances of a DNA decamer duplex were assigned. The models of the drug:DNA complexes were analyzed for DNA binding features. The effect of temperature on the DNA binding was also evaluated. PMID:22545401

  11. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    PubMed Central

    Shi, Yanbo; Harvey, Ian; Campopiano, Dominic; Sadler, Peter J.

    2010-01-01

    Ferric ion binding proteins (Fbps) transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed. PMID:20445753

  12. Positron Binding Properties of Glycine and Its Aqueous Complexes.

    PubMed

    Nummela, Mikko; Raebiger, Hannes; Yoshida, Daisuke; Tachikawa, Masanori

    2016-06-16

    We investigate positron binding to glycine and its aqueous complexes by first-principles calculation. We show that while glycine in its ground state (Gly) does not bind positrons, several of its strongly polar conformers do, and in particular, its zwitterion form (GlyZI) binds positrons strongly. Aqueous complexes Gly·nH2O and GlyZI·nH2O also bind positrons, if their dipole moment μ > μcr. However, μ is not a sufficient quantity to describe positron binding to these complexes. We show that in addition to μ, positron binding strongly depends on the intramolecular bonding of glycine. In Gly·nH2O, positrons are weakly bound to the nitrogen in Gly, whereas in GlyZI·nH2O, the ionic oxygen in GlyZI is a strong "positron attractor". PMID:27232201

  13. Aging neuromodulation impairs associative binding: a neurocomputational account.

    PubMed

    Li, Shu-Chen; Naveh-Benjamin, Moshe; Lindenberger, Ulman

    2005-06-01

    Relative to young adults, older adults are particularly impaired in episodic memory tasks requiring associative binding of separate components into compound episodes, such as tasks requiring item-context and item-item binding. This associative-binding deficit has been attributed to senescent changes in frontal-hippocampal circuitry but has not been formally linked to impaired neuromodulation involving this circuitry. Previous neurocomputational work showed that impaired neuromodulation could result in less distinct neurocognitive representations. Here we extend this computational principle to simulate aging-related deficits in associative binding. As expected, networks with simulated deficiency in neuromodulation resulted in less distinct internal representations than did networks simulating the processing and performance of young adults, and were also more impaired under task conditions that required associative binding. The findings suggest that senescent changes in neuromodulatory mechanisms may play a basic role in aging-related impairment in associative binding by reducing the efficacy of distributed conjunctive coding. PMID:15943670

  14. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  15. Specific binding of beta-endorphin to normal human erythrocytes

    SciTech Connect

    Chenet, B.; Hollis, V. Jr.; Kang, Y.; Simpkins, C.

    1986-03-05

    Beta-endorphin (BE) exhibits peripheral functions which may not be mediated by interactions with receptors in the brain. Recent studies have demonstrated binding of BE to both opioid and non-opioid receptors on lymphocytes and monocytes. Abood has reported specific binding of /sup 3/H-dihydromorphine in erythrocytes. Using 5 x 10/sup -11/M /sup 125/I-beta-endorphin and 10/sup -5/M unlabeled BE, they have detected 50% specific binding to human erythrocytes. This finding is supported by results from immunoelectron microscopy using rabbit anti-BE antibody and biotinylated secondary antibody with avidin-biotin complexes horseradish peroxidase. Binding is clearly observed and is confined to only one side of the cells. Conclusions: (1) BE binding to human erythrocytes was demonstrated by radioreceptor assay and immunoelectron microscopy, and (2) BE binding sites exist on only one side of the cells.

  16. Dot-blot assay for heparin-binding proteins

    SciTech Connect

    Hirose, N.; Krivanek, M.; Jackson, R.L.; Cardin, A.D.

    1986-08-01

    A method for the detection and quantitation of picomole amounts of heparin-binding proteins is described. Proteins are first spotted on nitrocellulose and then incubated with /sup 125/I-heparin. Binding of heparin to the proteins is detected by radioautography and quantitated by scanning densitometry; proteins are quantitated by densitometric analysis of the amido black stained nitrocellulose. Heparin-binding was time-dependent and sensitive to the presence of metal ions, urea, and detergents (anionic, nonionic, and zwitterionic). The divalent cations Ca/sup 2 +/ and Mg/sup 2 +/ and the zwitterionic detergent 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate increased heparin binding whereas NaCl, urea, sodium dodecylsulfate, and La3+ decreased binding. This assay is applicable to the identification and characterization of a variety of heparin-binding proteins.

  17. Hardware device to physical structure binding and authentication

    SciTech Connect

    Hamlet, Jason R.; Stein, David J.; Bauer, Todd M.

    2013-08-20

    Detection and deterrence of device tampering and subversion may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a binding of the hardware device and a physical structure. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generate an internal PUF value. Binding logic is coupled to receive the internal PUF value, as well as an external PUF value associated with the physical structure, and generates a binding PUF value, which represents the binding of the hardware device and the physical structure. The cryptographic fingerprint unit also includes a cryptographic unit that uses the binding PUF value to allow a challenger to authenticate the binding.

  18. Unexpected binding of an octapeptide to the angiotensin II receptor

    SciTech Connect

    Soffer, R.L.; Bandyopadhyay, S.; Rosenberg, E.; Hoeprich, P.; Teitelbaum, A.; Brunck, T.; Colby, C.B.; Gloff, C.

    1987-12-01

    An octapeptide, TBI-22 (Lys-Gly-Val-Tyr-Ile, His-Ala-Leu), inhibited binding of angiotensin II by a solubilized angiotensin receptor partially purified from rabbit liver. This inhibition appears to result from competition for binding to the same receptor. Radioiodinated TBI-22, like angiotensin II, bound to the solubilized receptor with an affinity such that the binding was inhibited 50% by unlabeled TBI-22 or angiotensin II at nanomolar concentrations. The binding reaction, like that for angiotensin II, required p-chloromercuriphenylsulfonic acid and was reversed in the presence of dithiothreitol. TBI-22 and angiotensin II share the sequence Val-Tyr-Ile-His; this tetrapeptide alone, however, did not inhibit binding of angiotensin II. Replacement of the tyrosine residue by aspartic acid in TBI-22 greatly reduced the ability of the peptide to compete with angiotensin II for binding, suggesting an important contribution of this residue to the configuration required for recognition by the receptor.

  19. Binding of dapsone and its analogues to human serum albumin.

    PubMed

    Karp, W B; Subramanyam, S B; Robertson, A F

    1985-06-01

    The binding of dapsone, 4,4'-sulfonylbis(aniline)(1), and its diacetylated derivative, 4,4"'-sulfonylbis(acetanilide)(2), to human serum albumin is reported. To assess the ability of these compounds to displace 4'-[(4-aminophenyl)sulfonyl]acetanilide (3) from albumin, a dialysis rate technique was used. Competition for the bilirubin binding site on albumin was measured with the peroxidase assay. Compounds 1 and 2 strongly displaced both 3 and bilirubin from human serum albumin. The association constants for 1 and 2 with respect to bilirubin binding were 1.29 X 10(3) and 1.15 X 10(4) M-1, respectively. These results suggest that the binding site for 3 and the bilirubin binding site are similar with respect to 1 and 2 and that the binding of dapsone and its derivatives probably does not involve the amino function. PMID:4020658

  20. Heavy metal binding to heparin disaccharides. I. Iduronic acid is the main binding site.

    PubMed

    Whitfield, D M; Choay, J; Sarkar, B

    1992-06-01

    As model compounds for Ni(II)-binding heparin-like compounds isolated from human kidneys (Templeton, D.M. & Sarkar, B. (1985) Biochem. J. 230 35-42.), we investigated two disaccharides--4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-2,5-anhydro- D-mannitol, disodium salt (1a), and 4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-6-O- sulfo-2,5-anhydro-D-mannitol, trisodium salt (1b)--that were isolated from heparin after nitrous acid hydrolysis and reduction. The monosulfate (1a) was active whereas the disulfate (1b) was inactive in a high-performance liquid chromatography (HPLC) binding assay with the tracer ions 63Ni(II) 54Mn(II), 65Zn(II), and 109Cd(II). This result is in accord with the isolation of two 67Cu(II) and 63Ni(II) binding fractions from a complete pool of nitrous-acid-derived heparin disaccharides using sulfate gradients and a MonoQ anion exchange column on an FPLC system. One was identified as compound (1a) and the other as a tetrasulfated trisaccharide by high resolution FAB-MS, NMR and HPLC-PAD. Similarly, two synthetic disaccharides-methyl, 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-alpha-D-glucosamine, trisodium salt [IdopA2S(alpha 1,4)GlcNS alpha Me, 2a], and 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-6-O-sulfo- alpha-D-glucosamine, tetrasodium salt [IdopA2S (alpha 1,4)GlcNS6S alpha Me, 2b]--were shown to bind tracer amounts of 63Ni and 67Cu using chromatographic assays. Subsequently, 1H NMR titrations of 1a, 1b, 2a, and 2b with Zn (OAc)2 were analyzed to yield 1:1 Zn(II)-binding constants of 472 +/- 59, 698 +/- 120, 8,758 +/- 2,237 and 20,100 +/- 5,598 M-1, respectively. The values for 2a and 2b suggest chelation. It is suggested that the idopyranosiduronic acid residue is the major metal binding site. NMR evidence for this hypothesis comes from marked 1H and 13C chemical shift changes to the iduronic acid resonances after addition of diamagnetic Zn(II) ions. PMID:1643264

  1. Serum prostacyclin binding defects in thrombotic thrombocytopenic purpura.

    PubMed Central

    Wu, K K; Hall, E R; Rossi, E C; Papp, A C

    1985-01-01

    To understand the pathophysiologic significance of abnormal serum prostacyclin (PGI2) binding activities in thrombotic thrombocytopenic purpura (TTP), we evaluated the PGI2 binding characteristics in three chronic TTP sera and 19 normal sera. PGI2 binding by serum was rapid and reversible. The binding activity in TTP sera (22.1 +/- SD, 4.4%) was significantly lower than that of normal sera (42.2 +/- 6.2%). Moreover, the antiaggregating activity and 6-keto-prostaglandin F1 alpha (6KPGF1 alpha) content in the gel filtrates representing the binding peak was proportionally lower in a TTP serum than normal serum. Although normal and TTP sera bound [14C]arachidonate with similar activity, and neither bound [3H]6KPGF1 alpha, there was a difference in prostaglandin E1 (PGE1) binding. Binding of [3H]PGE1 was subnormal in two TTP sera (W.J. and T.G.) and normal in the third (H.S.). Normal serum corrected the binding defects of TTP serum. Interestingly, the mixture of two TTP sera (W.J. and H.S.) mutually corrected their PGI2 binding defects. In addition, although in vivo plasma transfusions improved the PGI2 binding activity of W.J. and H.S., there existed a striking difference in the nature of their response. These observations indicate that there is at least two types of PGI2 binding defects in TTP. Our data indicate that TTP is associated with diminished serum binding of PGI2. This defect may reduce the availability of PGI2 to damaged vascular sites and decrease an important modulator of platelet thrombus formation at times of severe vascular insult. Images PMID:3880771

  2. Polypharmacology within CXCR4: Multiple binding sites and allosteric behavior

    NASA Astrophysics Data System (ADS)

    Planesas, Jesús M.; Pérez-Nueno, Violeta I.; Borrell, José I.; Teixidó, Jordi

    2014-10-01

    CXCR4 is a promiscuous receptor, which binds multiple diverse ligands. As usual in promiscuous proteins, CXCR4 has a large binding site, with multiple subsites, and high flexibility. Hence, it is not surprising that it is involved in the phenomenon of allosteric modulation. However, incomplete knowledge of allosteric ligand-binding sites has hampered an in-depth molecular understanding of how these inhibitors work. For example, it is known that lipidated fragments of intracellular GPCR loops, so called pepducins, such as pepducin ATI-2341, modulate CXCR4 activity using an agonist allosteric mechanism. Nevertheless, there are also examples of small organic molecules, such as AMD11070 and GSK812397, which may act as antagonist allosteric modulators. Here, we give new insights into this issue by proposing the binding interactions between the CXCR4 receptor and the above-mentioned allosteric modulators. We propose that CXCR4 has minimum two topographically different allosteric binding sites. One allosteric site would be in the intracellular loop 1 (ICL1) where pepducin ATI-2341 would bind to CXCR4, and the second one, in the extracellular side of CXCR4 in a subsite into the main orthosteric binding pocket, delimited by extracellular loops n° 1, 2, and the N-terminal end, where antagonists AMD11070 and GSK812397 would bind. Prediction of allosteric interactions between CXCR4 and pepducin ATI-2341 were studied first by rotational blind docking to determine the main binding region and a subsequent refinement of the best pose was performed using flexible docking methods and molecular dynamics. For the antagonists AMD11070 and GSK812397, the entire CXCR4 protein surface was explored by blind docking to define the binding region. A second docking analysis by subsites of the identified binding region was performed to refine the allosteric interactions. Finally, we identified the binding residues that appear to be essential for CXCR4 (agonists and antagonists) allosteric

  3. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms.

    PubMed

    Chou, Shan-Ho; Galperin, Michael Y

    2016-01-01

    Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  4. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms

    PubMed Central

    2015-01-01

    ABSTRACT Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  5. Binding of ATP by pertussis toxin and isolated toxin subunits

    SciTech Connect

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. )

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  6. Fused protein domains inhibit DNA binding by LexA.

    PubMed Central

    Golemis, E A; Brent, R

    1992-01-01

    Many studies of transcription activation employ fusions of activation domains to DNA binding domains derived from the bacterial repressor LexA and the yeast activator GAL4. Such studies often implicitly assume that DNA binding by the chimeric proteins is equivalent to that of the protein donating the DNA binding moiety. To directly investigate this issue, we compared operator binding by a series of LexA-derivative proteins to operator binding by native LexA, by using both in vivo and in vitro assays. We show that operator binding by many proteins such as LexA-Myc, LexA-Fos, and LexA-Bicoid is severely impaired, while binding of other LexA-derivative proteins, such as those that carry bacterially encoded acidic sequences ("acid blobs"), is not. Our results also show that DNA binding by LexA derivatives that contain the LexA carboxy-terminal dimerization domain (amino acids 88 to 202) is considerably stronger than binding by fusions that lack it and that heterologous dimerization motifs cannot substitute for the LexA88-202 function. These results suggest the need to reevaluate some previous studies of activation that employed LexA derivatives and modifications to recent experimental approaches that use LexA and GAL4 derivatives to detect and study protein-protein interactions. Images PMID:1620111

  7. Microwave effect on camphor binding to rat olfactory epithelium

    SciTech Connect

    Philippova, T.M.; Novoselov, V.I.; Bystrova, M.F.; Alekseev, S.I.

    1988-01-01

    Microwave radiation decreased specific camphor binding to a membrane fraction of rat epithelium but not to a Triton X-100 extract of this fraction. Inhibition of the ligand binding did not depend on the modulation frequency of the microwave field in the region 1-100 Hz and was not a linear function of specific absorption rate (SAR). The decreased ligand binding was due to a shedding or release of the specific camphor-binding protein from the membrane into solution. It is highly probable that several other membrane proteins may be shed into solution during microwave exposure.

  8. Plasmon resonance enhanced mechanical detection of ligand binding

    SciTech Connect

    Ariyaratne, Amila; Zocchi, Giovanni

    2015-01-05

    Small molecule binding to the active site of enzymes typically modifies the mechanical stiffness of the enzyme. We exploit this effect, in a setup which combines nano-mechanics and surface plasmon resonance (SPR) enhanced optics, for the label free detection of ligand binding to an enzyme. The large dynamic range of the signal allows to easily obtain binding curves for small ligands, in contrast to traditional SPR methods which rely on small changes in index of refraction. Enzyme mechanics, assessed by nano-rheology, thus emerges as an alternative to electronic and spin resonances, assessed by traditional spectroscopies, for detecting ligand binding.

  9. Torsional sensing of small-molecule binding using magnetic tweezers.

    PubMed

    Lipfert, Jan; Klijnhout, Sven; Dekker, Nynke H

    2010-11-01

    DNA-binding small molecules are widespread in the cell and heavily used in biological applications. Here, we use magnetic tweezers, which control the force and torque applied to single DNAs, to study three small molecules: ethidium bromide (EtBr), a well-known intercalator; netropsin, a minor-groove binding anti-microbial drug; and topotecan, a clinically used anti-tumor drug. In the low-force limit in which biologically relevant torques can be accessed (<10 pN), we show that ethidium intercalation lengthens DNA ∼1.5-fold and decreases the persistence length, from which we extract binding constants. Using our control of supercoiling, we measure the decrease in DNA twist per intercalation to be 27.3±1° and demonstrate that ethidium binding delays the accumulation of torsional stress in DNA, likely via direct reduction of the torsional modulus and torque-dependent binding. Furthermore, we observe that EtBr stabilizes the DNA duplex in regimes where bare DNA undergoes structural transitions. In contrast, minor groove binding by netropsin affects neither the contour nor persistence length significantly, yet increases the twist per base of DNA. Finally, we show that topotecan binding has consequences similar to those of EtBr, providing evidence for an intercalative binding mode. These insights into the torsional consequences of ligand binding can help elucidate the effects of small-molecule drugs in the cellular environment. PMID:20624816

  10. Odorant-Binding Protein: Localization to Nasal Glands and Secretions

    NASA Astrophysics Data System (ADS)

    Pevsner, Jonathan; Sklar, Pamela B.; Snyder, Solomon H.

    1986-07-01

    An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants.

  11. Bladder endothelin-1 receptor binding of bosentan and ambrisentan.

    PubMed

    Osano, Ayaka; Yokoyama, Yoshinari; Hayashi, Hideki; Itoh, Kunihiko; Okura, Takashi; Deguchi, Yoshiharu; Ito, Yoshihiko; Yamada, Shizuo

    2014-01-01

    The present study aimed to characterize bladder endothelin-1 (ET-1) receptor binding of clinically used ET-1 receptor antagonists by using [(125)I]ET-1. The inhibition of specific [(125)I]ET-1 binding was measured in the presence of ET-1 and its receptor antagonists. Specific binding of [(125)I]ET-1 in rat bladder was saturable and of high affinity, which characterized selective labeling of bladder ET-1 receptors. ET-1, bosentan, ambrisentan, and CI-1020 inhibited specific [(125)I]ET-1 binding in a concentration-dependent manner at nanomolar ranges of IC50. Nonlinear least squares regression analysis revealed the presence of high- and low-affinity ET-1 receptor sites for ambrisentan and CI-1020. Bosentan and ambrisentan significantly increased the dissociation constant for bladder [(125)I]ET-1 binding without affecting maximal number of binding sites (Bmax). Thus, bosentan and ambrisentan seem to bind to bladder ET-1 receptor in a competitive and reversible manner. Oral administration of bosentan caused a dose-dependent decrease in Bmax for bladder [(125)I]ET-1 binding, suggesting significant binding of bladder ET-1 receptors in vivo. A significant amount of pharmacologically relevant ET-1 receptors may exist in the bladder. These receptors may be implicated in the pathogenesis of lower urinary tract symptoms and may also be promising targets for the development of therapeutic agents. PMID:24389822

  12. Antigen binding and capping by lymphocytes of genetic nonresponder mice.

    PubMed

    Dunham, E K; Unanue, E R; Benacerraf, B

    1972-08-01

    Radioautographic study of the binding of GAT-(125)I to spleen cells of genetic responder and nonresponder mice demonstrates that among mice not injected with antigen all strains have approximately the same number of antigen-binding cells; after injection with antigen the number of antigen-binding cells increases in responders but not in nonresponders. Nonresponders are shown to make antibody after injection with GAT complexed with an immunogenic carrier, demonstrating the presence of potentially functional B cells in responders and nonresponders alike. When incubated in the warm, antigen-binding cells of both responders and nonresponders concentrate antigen at one pole of the cell, forming caps. PMID:5043419

  13. Penicillin-binding site on the Escherichia coli cell envelope

    SciTech Connect

    Amaral, L.; Lee, Y.; Schwarz, U.; Lorian, V.

    1986-08-01

    The binding of /sup 35/S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin.

  14. DNA Shape versus Sequence Variations in the Protein Binding Process.

    PubMed

    Chen, Chuanying; Pettitt, B Montgomery

    2016-02-01

    The binding process of a protein with a DNA involves three stages: approach, encounter, and association. It has been known that the complexation of protein and DNA involves mutual conformational changes, especially for a specific sequence association. However, it is still unclear how the conformation and the information in the DNA sequences affects the binding process. What is the extent to which the DNA structure adopted in the complex is induced by protein binding, or is instead intrinsic to the DNA sequence? In this study, we used the multiscale simulation method to explore the binding process of a protein with DNA in terms of DNA sequence, conformation, and interactions. We found that in the approach stage the protein can bind both the major and minor groove of the DNA, but uses different features to locate the binding site. The intrinsic conformational properties of the DNA play a significant role in this binding stage. By comparing the specific DNA with the nonspecific in unbound, intermediate, and associated states, we found that for a specific DNA sequence, ∼40% of the bending in the association forms is intrinsic and that ∼60% is induced by the protein. The protein does not induce appreciable bending of nonspecific DNA. In addition, we proposed that the DNA shape variations induced by protein binding are required in the early stage of the binding process, so that the protein is able to approach, encounter, and form an intermediate at the correct site on DNA. PMID:26840719

  15. In Situ Quantification of Protein Binding to the Plasma Membrane

    PubMed Central

    Smith, Elizabeth M.; Hennen, Jared; Chen, Yan; Mueller, Joachim D.

    2015-01-01

    This study presents a fluorescence-based assay that allows for direct measurement of protein binding to the plasma membrane inside living cells. An axial scan through the cell generates a fluorescence intensity profile that is analyzed to determine the membrane-bound and cytoplasmic concentrations of a peripheral membrane protein labeled by the enhanced green fluorescent protein (EGFP). The membrane binding curve is constructed by mapping those concentrations for a population of cells with a wide range of protein expression levels, and a fit of the binding curve determines the number of binding sites and the dissociation coefficient. We experimentally verified the technique, using myosin-1C-EGFP as a model system and fit its binding curve. Furthermore, we studied the protein-lipid interactions of the membrane binding domains from lactadherin and phospholipase C-δ1 to evaluate the feasibility of using competition binding experiments to identify specific lipid-protein interactions in living cells. Finally, we applied the technique to determine the lipid specificity, the number of binding sites, and the dissociation coefficient of membrane binding for the Gag matrix domain of human T-lymphotropic virus type 1, which provides insight into early assembly steps of the retrovirus. PMID:26039166

  16. Temperature and pressure adaptation of the binding site of acetylcholinesterase.

    PubMed

    Hochachka, P W

    1974-12-01

    1. Studies with a carbon substrate analogue, 3,3-dimethylbutyl acetate, indicate that the hydrophobic contribution to binding at the anionic site of acetylcholinesterase is strongly disrupted at low temperatures and high pressures. 2. Animals living in different physical environments circumvent this problem by adjusting the enthalpic and entropic contributions to binding. 3. An extreme example of this adaptational strategy is supplied by brain acetylcholinesterase extracted from an abyssal fish living at 2 degrees C and up to several hundred atmospheres of pressure. This acetylcholinesterase appears to have a smaller hydrophobic binding region in the anionic site, playing a measurably decreased role in ligand binding. PMID:4462739

  17. Drugs That Bind to α-Synuclein: Neuroprotective or Neurotoxic?

    PubMed

    Kakish, Joe; Lee, Dongsoo; Lee, Jeremy S

    2015-12-16

    The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinson's disease. Drugs that bind to α-synuclein and form a loop structure between the N- and C-terminus tend to be neuroprotective, whereas others that cause a more compact structure tend to be neurotoxic. The binding of several natural products and other drugs that are involved in dopamine metabolism were investigated by nanopore analysis and isothermal titration calorimetry. The antinausea drugs, cinnarizine and metoclopramide, do not bind to α-synuclein, whereas amphetamine and the herbicides, paraquat and rotenone, bind tightly and cause α-synuclein to adopt a more compact conformation. The recreational drug, cocaine, binds to α-synuclein, whereas heroin and methadone do not. Metformin, which is prescribed for diabetes and is neuroprotective, binds well without causing α-synuclein to adopt a more compact conformation. Methylphenidate (ritalin) binds to sites in both the N- and C-terminus and causes α-synuclein to adopt a loop conformation. In contrast, amphetamine only binds to the N-terminus. Except for cinnarizine and metoclopramide, there is a good correlation between the mode of binding to α-synuclein and whether a drug is neuroprotective or neurotoxic. PMID:26378986

  18. Binding-activated localization microscopy of DNA structures.

    PubMed

    Schoen, Ingmar; Ries, Jonas; Klotzsch, Enrico; Ewers, Helge; Vogel, Viola

    2011-09-14

    Many nucleic acid stains show a strong fluorescence enhancement upon binding to double-stranded DNA. Here we exploit this property to perform superresolution microscopy based on the localization of individual binding events. The dynamic labeling scheme and the optimization of fluorophore brightness yielded a resolution of ∼14 nm (fwhm) and a spatial sampling of 1/nm. We illustrate our approach with two different DNA-binding dyes and apply it to visualize the organization of the bacterial chromosome in fixed Escherichia coli cells. In general, the principle of binding-activated localization microscopy (BALM) can be extended to other dyes and targets such as protein structures. PMID:21838238

  19. Mu opioid receptor binding sites in human brain

    SciTech Connect

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand (/sup 3/H)DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of (/sup 3/H)DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas.

  20. Binding of bile salts to fibre-enriched wheat fibre.

    PubMed

    Florén, C H; Nilsson, A

    1987-01-01

    A commercial product of fibre-enriched wheat fibre (Fiberform R) was tested for its binding of bile salts in vitro. The wheat fibre preparation was standardized and through enzymatic digestion of protein and starch contained 78 per cent fibre (w/w). Fibre-enriched wheat fibre bound with high capacity both conjugated and unconjugated bile salts. Binding was saturable, reversible and showed no specificity towards tauro- or glycine-conjugated bile salts. Binding was rapid, dependent on pH, was enhanced by the presence of high salt concentrations and partially inhibited by 6 M urea. This indicated that binding was a combination of hydrophobic and hydrophilic interactions. PMID:2820035

  1. Reconstitution into liposomes of membrane proteins involved in ribosome binding on rough endoplasmic reticulum. Ribosome-binding capacity.

    PubMed Central

    Yamaguchi, M; Sakai, M; Horigome, T; Omata, S; Sugano, H

    1981-01-01

    A membrane protein fraction having a high affinity for polyribosomes was isolated from microsomal membranes of rat liver and was incorporated into liposomes made from microsomal lipids to evaluate the polyribosome-binding capacity of the reconstituted liposomes, with the following results. (1) The polyribosome binding to the reconstituted liposomes depended on the amounts of polyribosomes added to the binding mixture. (2) Liposomes made from lipids alone did not bind any polyribosomes. (3) The polyribosome-binding capacity of the reconstituted liposomes was very sensitive to proteolytic enzyme and strongly inhibited by addition of 0.1 mM-aurintricarboxylic acid or by increasing KCl concentration. These results suggest that the binding mechanism of polyribosomes to the reconstituted liposomes is much like that for rough microsomal membrane stripped of endogenous polyribosomes. PMID:7306032

  2. Effects of nucleoside analog incorporation on DNA binding to the DNA binding domain of the GATA-1 erythroid transcription factor.

    PubMed

    Foti, M; Omichinski, J G; Stahl, S; Maloney, D; West, J; Schweitzer, B I

    1999-02-01

    We investigate here the effects of the incorporation of the nucleoside analogs araC (1-beta-D-arabinofuranosylcytosine) and ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl] guanine) into the DNA binding recognition sequence for the GATA-1 erythroid transcription factor. A 10-fold decrease in binding affinity was observed for the ganciclovir-substituted DNA complex in comparison to an unmodified DNA of the same sequence composition. AraC substitution did not result in any changes in binding affinity. 1H-15N HSQC and NOESY NMR experiments revealed a number of chemical shift changes in both DNA and protein in the ganciclovir-modified DNA-protein complex when compared to the unmodified DNA-protein complex. These changes in chemical shift and binding affinity suggest a change in the binding mode of the complex when ganciclovir is incorporated into the GATA DNA binding site. PMID:10037146

  3. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    SciTech Connect

    Harada, Y.; Li, H.; Li, Hua; Lennarz, W. J.

    2009-04-28

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.

  4. FAD binding, cobinamide binding and active site communication in the corrin reductase (CobR)

    PubMed Central

    Lawrence, Andrew D.; Taylor, Samantha L.; Scott, Alan; Rowe, Michelle L.; Johnson, Christopher M.; Rigby, Stephen E. J.; Geeves, Michael A.; Pickersgill, Richard W.; Howard, Mark J.; Warren, Martin J.

    2014-01-01

    Adenosylcobalamin, the coenzyme form of vitamin B12, is one Nature's most complex coenzyme whose de novo biogenesis proceeds along either an anaerobic or aerobic metabolic pathway. The aerobic synthesis involves reduction of the centrally chelated cobalt metal ion of the corrin ring from Co(II) to Co(I) before adenosylation can take place. A corrin reductase (CobR) enzyme has been identified as the likely agent to catalyse this reduction of the metal ion. Herein, we reveal how Brucella melitensis CobR binds its coenzyme FAD (flavin dinucleotide) and we also show that the enzyme can bind a corrin substrate consistent with its role in reduction of the cobalt of the corrin ring. Stopped-flow kinetics and EPR reveal a mechanistic asymmetry in CobR dimer that provides a potential link between the two electron reduction by NADH to the single electron reduction of Co(II) to Co(I). PMID:24909839

  5. Pseudomonas aeruginosa elastase disrupts the cortisol-binding activity of corticosteroid-binding globulin.

    PubMed

    Simard, Marc; Hill, Lesley A; Underhill, Caroline M; Keller, Bernd O; Villanueva, Ivan; Hancock, Robert E W; Hammond, Geoffrey L

    2014-08-01

    The serine protease inhibitor (SERPIN) family member corticosteroid-binding globulin (CBG) is the main carrier of glucocorticoids in plasma. Human CBG mediates the targeted release of cortisol at sites of inflammation through cleavage of its reactive center loop (RCL) by neutrophil elastase. The RCLs of SERPIN family members are targeted by diverse endogenous and exogenous proteases, including several bacterial proteases. We tested different bacteria for their ability to secrete proteases that disrupt CBG cortisol-binding activity, and characterized the responsible protease and site of CBG cleavage. Serum CBG integrity was assessed by Western blotting and cortisol-binding capacity assay. Effects of time, pH, temperature, and protease inhibitors were tested. Proteolytically active proteins from bacterial media were purified by fast protein liquid chromatography, and the active protease and CBG cleavage sites were identified by mass spectrometry. Among the bacteria tested, medium from Pseudomonas aeruginosa actively disrupted the cortisol-binding activity of CBG. This proteolytic activity was inhibited by zinc chelators and occurred most efficiently at pH 7 and elevated physiological temperature (ie, 41°C). Mass spectrometric analysis of a semi-purified fraction of P. aeruginosa media identified the virulence factor LasB as the responsible protease, and this was confirmed by assaying media from LasB-deficient P. aeruginosa. This metalloprotease cleaves the CBG RCL at a major site, distinct from that targeted by neutrophil elastase. Our results suggest that humoral responses to P. aeruginosa infection are influenced by this pathogen's ability to secrete a protease that promotes the release of the anti-inflammatory steroid, cortisol, from its plasma transport protein. PMID:24848868

  6. NMR Solution Structure and DNA Binding Model of the DNA Binding Domain of Competence Protein A

    PubMed Central

    Hobbs, Carey A.; Bobay, Benjamin G.; Thompson, Richele J.; Perego, Marta; Cavanagh, John

    2010-01-01

    Competence protein A (ComA) is a response regulator protein involved in the development of genetic competence in the Gram-positive spore forming bacterium Bacillus subtilis, as well as the regulation of the production of degradative enzymes and antibiotic synthesis. ComA belongs to the NarL family of proteins which are characterized by a C-terminal transcriptional activator domain that consists of a bundle of four helices, where the second and third helices (α8 and α9) form a helix-turn-helix DNA binding domain. Using NMR spectroscopy, the high resolution three-dimensional solution structure of the C-terminal DNA-binding domain of ComA (ComAC) has been determined. In addition, surface plasmon resonance and NMR protein-DNA titration experiments allowed for the analysis of the interaction of ComAC with its target DNA sequences. Combining the solution structure and biochemical data, a model of ComAC bound to the ComA recognition sequences on the srfA promoter has been developed. The model shows that for DNA binding, ComA uses the conserved helix-turn-helix motif present in other NarL family members. However, the model also reveals that ComA may use a slightly different part of the helix-turn-helix motif and there appears to be some associated domain re-orientation. These observations suggest a basis for DNA binding specificity within the NarL family. PMID:20302877

  7. Cation binding at the node of Ranvier: II. Redistribution of binding sites during electrical stimulation.

    PubMed

    Zagoren, J C; Arezzo, J C

    1982-06-17

    The nodal and paranodal areas of mature myelinated axons are known to bind cations. To examine whether the cation binding substance may play a role in saltatory conduction, a combined electrophysiological and histochemical study was undertaken. The sciatic nerve of anesthetized or unanesthetized adult C57B1 mice was exposed and not stimulated (control) or stimulated with constant square-wave pulses at one of the following rates: 10/sec, 30/sec, 100/sec or 500/sec. Phosphate-buffered 2.5% glutaraldehyde was either dropped onto the nerve during stimulation until cessation of the compound action potential or the nerve was fixed after discontinuing stimulation. The nerve was excised and processed for the histochemical reaction of copper sulfate/potassium ferrocyanide (which forms an electron dense precipitate at areas of cation binding), dehydrated and infiltrated with SpurrR epoxy resin. Individual nerve fibers were microdissected and counts made of the numbers of paranodal and nodal areas exhibiting the reaction product. The percentage of nodes stained, with respect to the total numbers of nodes and paranodes stained, was calculated. There was no significant difference in percent of nodes stained between the simultaneously fixed, non-stimulated, anesthetized (43.1%), the non-stimulated unanesthetized (45.3%), the animals stimulated at 10/sec (45.9%) and the animals stimulated at 30/sec (50.2%) and 100/sec(46.0%), and fixed post-stimulation. However, all values at the higher frequencies and fixed during stimulation were significantly different both from the control and from each other (30/sec-59.3%; 100/sec-70.5%; and 500/sec-76.4%). The location of cation binding appears to change in response to electrical stimulation and correlates with the increased frequency of the inward movement of sodium ions. PMID:7104729

  8. Platelet-derived growth factor binds specifically to receptors on vascular smooth muscle cells and the binding becomes nondissociable.

    PubMed Central

    Williams, L T; Tremble, P; Antoniades, H N

    1982-01-01

    Radioiodinated platelet-derived growth factor (125I-PDGF) was used in studies of PDGF binding sites on vascular smooth muscle cells. There was an excellent correlation between the ability of 125I-PDGF to stimulate cell proliferation and to bind specifically to cultured vascular smooth muscle cells. The half-maximal concentration for both processes was 0.1 nM. There were 50,000 binding sites per cell. Reduced PDGF, prepared by treatment of PDGF with 20 mM dithiothreitol, had neither the ability to bind to smooth muscle cells nor to stimulate cellular proliferation. Epidermal growth factor, nerve growth factor, fibroblast growth factor, and histone B did not compete for the binding sites at a concentration of 10 nM. 125I-PDGF binding was slowly reversible at 4 degrees C and was rapidly and totally reversible after a 1-min incubation at 37 degrees C. After continued incubation at 37 degrees C, the binding became irreversible. The half-time for formation of the nondissociable state of 125I-PDGF binding was approximately equal to 5 min at 37 degrees C. The nondissociable state of binding was not formed at 4 degrees C even after 1 hr of incubation. These data suggest that the sites we labeled are the PDGF receptors that mediate PDGF's mitogenic action and that a nondissociable state of PDGF binding is formed at 37 degrees C. It is likely that nondissociable PDGF represents internalized ligand or binding to sites that are converted to a high-affinity state after the ligand binds. PMID:6310551

  9. GATA1 Binding Kinetics on Conformation-Specific Binding Sites Elicit Differential Transcriptional Regulation.

    PubMed

    Hasegawa, Atsushi; Kaneko, Hiroshi; Ishihara, Daishi; Nakamura, Masahiro; Watanabe, Akira; Yamamoto, Masayuki; Trainor, Cecelia D; Shimizu, Ritsuko

    2016-08-15

    GATA1 organizes erythroid and megakaryocytic differentiation by orchestrating the expression of multiple genes that show diversified expression profiles. Here, we demonstrate that GATA1 monovalently binds to a single GATA motif (Single-GATA) while a monomeric GATA1 and a homodimeric GATA1 bivalently bind to two GATA motifs in palindromic (Pal-GATA) and direct-repeat (Tandem-GATA) arrangements, respectively, and form higher stoichiometric complexes on respective elements. The amino-terminal zinc (N) finger of GATA1 critically contributes to high occupancy of GATA1 on Pal-GATA. GATA1 lacking the N finger-DNA association fails to trigger a rate of target gene expression comparable to that seen with the wild-type GATA1, especially when expressed at low level. This study revealed that Pal-GATA and Tandem-GATA generate transcriptional responses from GATA1 target genes distinct from the response of Single-GATA. Our results support the notion that the distinct alignments in binding motifs are part of a critical regulatory strategy that diversifies and modulates transcriptional regulation by GATA1. PMID:27215385

  10. Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome.

    PubMed

    Vockley, Christopher M; D'Ippolito, Anthony M; McDowell, Ian C; Majoros, William H; Safi, Alexias; Song, Lingyun; Crawford, Gregory E; Reddy, Timothy E

    2016-08-25

    The glucocorticoid receptor (GR) binds the human genome at >10,000 sites but only regulates the expression of hundreds of genes. To determine the functional effect of each site, we measured the glucocorticoid (GC) responsive activity of nearly all GR binding sites (GBSs) captured using chromatin immunoprecipitation (ChIP) in A549 cells. 13% of GBSs assayed had GC-induced activity. The responsive sites were defined by direct GR binding via a GC response element (GRE) and exclusively increased reporter-gene expression. Meanwhile, most GBSs lacked GC-induced reporter activity. The non-responsive sites had epigenetic features of steady-state enhancers and clustered around direct GBSs. Together, our data support a model in which clusters of GBSs observed with ChIP-seq reflect interactions between direct and tethered GBSs over tens of kilobases. We further show that those interactions can synergistically modulate the activity of direct GBSs and may therefore play a major role in driving gene activation in response to GCs. PMID:27565349

  11. Estimating binding properties of transcription factors from genome-wide binding profiles.

    PubMed

    Zabet, Nicolae Radu; Adryan, Boris

    2015-01-01

    The binding of transcription factors (TFs) is essential for gene expression. One important characteristic is the actual occupancy of a putative binding site in the genome. In this study, we propose an analytical model to predict genomic occupancy that incorporates the preferred target sequence of a TF in the form of a position weight matrix (PWM), DNA accessibility data (in the case of eukaryotes), the number of TF molecules expected to be bound specifically to the DNA and a parameter that modulates the specificity of the TF. Given actual occupancy data in the form of ChIP-seq profiles, we backwards inferred copy number and specificity for five Drosophila TFs during early embryonic development: Bicoid, Caudal, Giant, Hunchback and Kruppel. Our results suggest that these TFs display thousands of molecules that are specifically bound to the DNA and that whilst Bicoid and Caudal display a higher specificity, the other three TFs (Giant, Hunchback and Kruppel) display lower specificity in their binding (despite having PWMs with higher information content). This study gives further weight to earlier investigations into TF copy numbers that suggest a significant proportion of molecules are not bound specifically to the DNA. PMID:25432957

  12. Entamoeba histolytica TATA-box binding protein binds to different TATA variants in vitro.

    PubMed

    de Dios-Bravo, Guadalupe; Luna-Arias, Juan Pedro; Riverón, Ana María; Olivares-Trejo, José J; López-Camarillo, César; Orozco, Esther

    2005-03-01

    The ability of Entamoeba histolytica TATA binding protein (EhTBP) to interact with different TATA boxes in gene promoters may be one of the key factors to perform an efficient transcription in this human parasite. In this paper we used several TATA variants to study the in vitro EhTBP DNA-binding activity and to determine the TATA-EhTBP dissociation constants. The presence of EhTBP in complexes formed by nuclear extracts (NE) and the TATTTAAA oligonucleotide, which corresponds to the canonical TATA box for E. histolytica, was demonstrated by gel-shift assays. In these experiments a single NE-TATTTAAA oligonucleotide complex was detected. Complex was retarded by anti-EhTBP Igs in supershift experiments and antibodies also recognized the cross-linked complex in Western blot assays. Recombinant EhTBP formed specific complexes with TATA variants found in E. histolytica gene promoters and other TATA variants generated by mutation of TATTTAAA sequence. The dissociation constants of recombinant EhTBP for TATA variants ranged between 1.04 (+/-0.39) x 10(-11) and 1.60 (+/-0.37) x 10(-10) m. TATTTAAA and TAT_ _AAA motifs presented the lowest KD values. Intriguingly, the recombinant EhTBP affinity for TATA variants is stronger than other TBPs reported. In addition, EhTBP is more promiscuous than human and yeast TBPs, probably due to modifications in amino acids involved in TBP-DNA binding. PMID:15752353

  13. Monoclonal antibodies recognizing the Enterococcus faecalis collagen-binding MSCRAMM Ace: conditional expression and binding analysis.

    PubMed

    Hall, Andrea E; Gorovits, Elena L; Syribeys, Peter J; Domanski, Paul J; Ames, Brenda R; Chang, Cathy Y; Vernachio, John H; Patti, Joseph M; Hutchins, Jeff T

    2007-01-01

    Enterococci are opportunistic pathogens known to cause numerous clinical infections and complications in humans. Adhesin-mediated binding to extracellular matrix (ECM) proteins of the host is thought to be a crucial step in the pathogenesis of these bacterial infections. Adhesin of collagen from Enterococcus faecalis (Ace) is a cell-wall anchored protein of E. faecalis that has been shown to be important for bacterial binding to the ECM. In this report, we characterize the conditions for Ace expression and demonstrate Ace binding to mammalian epithelial and endothelial cells as well as to collagens found in the ECM. To further characterize Ace expression and function, we report the generation of a panel of monoclonal antibodies (mAbs) directed against this important E. faecalis virulence factor. Through the use of multiple in vitro assays, surface plasmon resonance and flow cytometry, we have characterized this panel of mAbs which may prove to be not only beneficial in studies that address the precise biological role of adhesion of E. faecalis, but may also serve as beneficial therapeutic agents against E. faecalis infections. PMID:17521860

  14. Pheromone Binding to General Odorant-binding Proteins from the Navel Orangeworm

    PubMed Central

    Liu, Zhao; Vidal, Diogo M.; Syed, Zainulabeuddin; Ishida, Yuko

    2010-01-01

    General odorant-binding proteins (GOBPs) of moths are postulated to be involved in the reception of semiochemicals other than sex pheromones, the so-called “general odorants.” We have expressed two GOBPs, AtraGOBP1 and AtraGOBP2, which were previously isolated from the antennae of the navel orangeworm, Amyelois transitella. Surprisingly, these two proteins did not bind compounds that are known to attract adult moths, particularly females. The proper folding and functionality of the recombinant proteins was inferred from circular dichroism analysis and demonstration that both GOBPs bound nonanal in a pH-dependent manner. EAG experiments demonstrated that female attractants (1-phenylethanol, propionic acid phenyl ester, and isobutyric acid phenyl ester) are detected with high sensitivity by the antennae of day-0 to day-4 adult females, with response declining in older moths. The same age-dependence was shown for male antennae responding to constituents of the sex pheromone. Interestingly, AtraGOBP2 bound the major constituent of the sex pheromone, Z11Z13-16Ald, with affinity comparable to that shown by a pheromone-binding protein, AtraPBP1. The related alcohol bound to AtraPBP1 with higher affinity than to AtraGOBP2. AtraGOBP1 bound both ligands with low but nearly the same affinity. PMID:20535533

  15. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection

    PubMed Central

    Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek

    2015-01-01

    The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744

  16. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  17. Plasma binding proteins for platelet-derived growth factor that inhibit its binding to cell-surface receptors.

    PubMed Central

    Raines, E W; Bowen-Pope, D F; Ross, R

    1984-01-01

    Evidence is presented that the binding of platelet-derived growth factor (PDGF) to plasma constituents inhibits the binding of PDGF to its cell-surface mitogen receptor. Approximately equivalent amounts of PDGF-binding activity were found in plasma from a number of different species known by radioreceptor assay to contain PDGF homologues in their clotted blood. Activation of the coagulation cascade did not significantly alter the PDGF-binding activity of the plasma components. Three molecular weight classes of plasma fractions that inhibit PDGF binding to its cell-surface receptor were defined by gel filtration: approximately equal to 40,000, 150,000, and greater than 500,000. Specific binding of 125I-labeled PDGF to the highest molecular weight plasma fraction could also be demonstrated by gel filtration. The binding of PDGF to these plasma components was reversible under conditions of low pH or with guanidine X HCl, and active PDGF could be recovered from the higher molecular weight fractions. Immunologic and functional evidence is presented that the highest molecular weight plasma fraction may be alpha 2-macroglobulin. A model is proposed in which the activity of PDGF released in vivo may be regulated by association with these plasma binding components and by high-affinity binding to cell-surface PDGF receptors. PMID:6203121

  18. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins.

    PubMed

    Rowland, Andrew; Hallifax, David; Nussio, Matthew R; Shapter, Joseph G; Mackenzie, Peter I; Brian Houston, J; Knights, Kathleen M; Miners, John O

    2015-01-01

    1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP. PMID:25801059

  19. Binding of bisbenzylisoquinoline alkaloids to phosphatidylcholine vesicles and alveolar macrophages: relationship between binding affinity and antifibrogenic potential of these drugs.

    PubMed

    Ma, J K; Mo, C G; Malanga, C J; Ma, J Y; Castranova, V

    1991-01-01

    A group of bisbenzylisoquinoline alkaloids has been shown to exhibit various degrees of effectiveness in preventing silica-induced fibrosis in animal models. The objective of the present study was to characterize the binding of several of these alkaloids to phosphatidylcholine vesicles and rat alveolar macrophages using fluorometric and equilibrium dialysis methods, respectively. The lipid binding affinity of these alkaloids was found to depend upon several structural factors including hydrophobic substitutions, chiral configurations, and double oxygen bridge-restricted confirmation of the benzylisoquinoline moieties. Tetrandrine, which is a highly effective agent in preventing fibrosis, showed strong binding to both lipid vesicles and alveolar macrophages. In contrast, certain analogues of tetrandrine such as curine and tubocurine, which have little or no effect on silicosis, exhibited only weak binding to lipid vesicles and almost no binding to cells. The moderate binding affinity of fangchinoline to vesicles and cells corresponded to a moderate effectiveness of the compound as an antifibrogenic agent. Methoxyadiantifoline, an alkaloid of unknown antifibrogenic potential, also exhibited high binding affinities for lipid and cells. In conclusion, the results of these studies indicate that alveolar macrophages exhibit large binding capacities for certain members of this class of bisbenzylisoquinoline alkaloids. A positive correlation was observed between binding affinity to alveolar macrophages and the reported antifibrotic potency of these compounds. These data also suggest that the ability of these drugs to interact with alveolar macrophages may be a key step in inhibition of the progression of silica-induced pulmonary disease. PMID:1663032

  20. Dynamics of biomolecules, ligand binding & biological functions

    NASA Astrophysics Data System (ADS)

    Yi, Myunggi

    Proteins are flexible and dynamic. One static structure alone does not often completely explain biological functions of the protein, and some proteins do not even have high resolution structures. In order to provide better understanding to the biological functions of nicotinic acetylcholine receptor, Diphtheria toxin repressor and M2 proton channel, the dynamics of these proteins are investigated using molecular modeling and molecular dynamics (MD) simulations. With absence of high resolution structure of alpha7 receptor, the homology models of apo and cobra toxin bound forms have been built. From the MD simulations of these model structures, we observed one subunit of apo simulation moved away from other four subunits. With local movement of flexible loop regions, the whole subunit tilted clockwise. These conformational changes occurred spontaneously, and were strongly correlated with the conformational change when the channel is activated by agonists. Unlike other computational studies, we directly compared our model of open conformation with the experimental data. However, the subunits of toxin bound form were stable, and conformational change is restricted by the bound cobra toxin. These results provide activation and inhibition mechanisms of alpha7 receptors and a possible explanation for intermediate conductance of the channel. Intramolecular complex of SH3-like domain with a proline-rich (Pr) peptide segment in Diphtheria toxin repressor (DtxR) is stabilized in inactive state. Upon activation of DtxR by transition metal binding, this intramolecular complex should be dissociated. The dynamics of this intramolecular complex is investigated using MD simulations and NMR spectroscopy. We observed spontaneous opening and closing motions of the Pr segment binding pockets in both Pr-SH3 and SH3 simulations. The MD simulation results and NMR relaxation data suggest that the Pr segment exhibits a binding ↔ unbinding equilibrium. Despite a wealth of experimental

  1. Characterization of C1 inhibitor binding to neutrophils.

    PubMed Central

    Chang, N S; Boackle, R J; Leu, R W

    1991-01-01

    In a previous study we have isolated neutrophil membrane proteins that non-covalently bind to native C1-INH (105,000 MW) and a non-functional, degraded C1-INH (88,000 MW; C1-INH-88). To further characterize the binding nature, we have designed a novel kinetic C1 titration assay which enables not only a quantification of the removal of fluid-phase C1-INH by neutrophils, but also a concomitant measure of residual C1-INH function. Native C1-INH, when adsorbed to EDTA-pretreated neutrophils, lost its function in the inhibition of fluid-phase C1. The non-functional C1-INH-88, which is probably devoid of a reactive centre, was found to block the binding of native C1-INH to neutrophils. Pretreatment of neutrophils with serine esterase inhibitors did not abrogate binding capacity of the cells for C1-INH, whereas the binding affinity for C1-INH was lost when the cells were pretreated with trypsin. An array of human peripheral blood leucocytes and several lymphoid cell lines has surface binding sites for C1-INH, but not on human erythrocytes and U937 cells. Binding was further confirmed using (i) C1-INH-microsphere beads to neutrophils, in which the binding was blocked when pretreating neutrophils with excess C1-INH or with trypsin, and (ii) radiolabelled C1-INH to neutrophils, which was competitively blocked by unlabelled non-functional C1-INH-88. Desialylation of C1-INH significantly reduced its binding affinity for neutrophils, indicating that the membrane receptor sites on neutrophils could be specific for the binding of sialic acid residues on C1-INH. Overall, our studies indicate that neutrophils or other leucocytes possess specific surface binding sites for the sialic acid-containing portion of C1-INH. PMID:2045131

  2. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    SciTech Connect

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  3. Binding of the extracellular matrix component entactin to Candida albicans.

    PubMed Central

    López-Ribot, J L; Chaffin, W L

    1994-01-01

    We have investigated the interaction between Candida albicans and entactin, a recently characterized glycoprotein present in the extracellular matrix, especially in the basement membrane. Organisms of both the yeast and the hyphal morphologies of the fungus had the ability to bind recombinant entactin, as detected by an indirect immunofluorescence assay. Material present in the 2-mercaptoethanol cell wall extracts from both C. albicans growth forms was capable of binding to immobilized recombinant entactin in a dose-dependent manner. Binding to entactin was approximately twice that observed for laminin. Binding of an extract component(s) to entactin was partially inhibited by an Arg-Gly-Asp-Ser peptide. A polyclonal antientactin antiserum, as well as a pooled antiserum preparation raised against components present in different C. albicans cell wall extracts, completely or almost completely abolished binding. The existence of morphology-specific receptor-like molecules which bind to different domains of the entactin molecule was ruled out in a competition binding assay. The entactin-binding material(s) in the cell wall also displayed some ability to bind laminin and fibronectin, since preadsorption in the presence of these extracellular matrix components resulted in reduction of binding to entactin. Moieties with a molecular mass of approximately 25, 44, and 65 kDa present in the 2-mercaptoethanol cell wall extracts from both blastoconidia and germ tubes were detected in a ligand affinity blotting experiment as having the ability to bind entactin. Interactions between C. albicans and entactin could be important in mediating adhesion of the fungus to the host tissues and may play a role in the establishment of the disseminated form of the disease. Images PMID:7927722

  4. Kinetic and thermodynamic assessment of binding of serotonin transporter inhibitors.

    PubMed

    Martin, Renee S; Henningsen, Robert A; Suen, Alexander; Apparsundaram, Subbu; Leung, Becky; Jia, Zhongjiang; Kondru, Rama K; Milla, Marcos E

    2008-12-01

    Several serotonin reuptake inhibitors are in clinical use for treatment of depression and anxiety disorders. However, to date, reported pharmacological differentiation of these ligands has focused mainly on their equilibrium binding affinities for the serotonin transporter. This study takes a new look at antidepressant binding modes using radioligand binding assays with [(3)H]S-citalopram to determine equilibrium and kinetic rate constants across multiple temperatures. The observed dissociation rate constants at 26 degrees C fall into a narrow range for all molecules. Conversely, association rate constants generally decreased with increasing equilibrium binding affinities. Consistent with this, the measured activation energy for S-citalopram association was relatively large (19.5 kcal . mol(-1)), suggesting conformational change upon ligand binding. For most of the drugs, including citalopram, the enthalpy (DeltaH(O)) and entropy (-TDeltaS(O)) contributions to reaction energetics were determined by van't Hoff analyses to be roughly equivalent (25-75% DeltaG(O)) and to correlate (positively for enthalpy) with the polar surface area of the drug. However, the binding of the drug fluvoxamine was predominantly entropically driven. When these data are considered in the context of the physicochemical properties of these ligands, two distinct binding modes can be proposed. The citalopram-type binding mode probably uses a polar binding pocket that allows charged or polar interactions between ligand and receptor with comparatively small loss in enthalpy due to dehydration. The fluvoxamine-type binding mode is fueled by energy released upon burying hydrophobic ligand moieties into a binding pocket that is flexible enough to suffer minimal loss in entropy from conformational constraint. PMID:18801948

  5. Effects of heparin on insulin binding and biological activity

    SciTech Connect

    Kriauciunas, K.M.; Grigorescu, F.; Kahn, C.R.

    1987-02-01

    The effect of heparin, a polyanionic glycosaminoglycan known to alter the function of many proteins, on insulin binding and bioactivity was studied. Cultured human lymphocytes (IM-9) were incubated with varying concentrations of heparin, then extensively washed, and /sup 125/I-labeled insulin binding was measured. Heparin at concentrations used clinically for anticoagulation (1-50 U/ml) inhibited binding in a dose-dependent manner; 50% inhibition of binding occurred with 5-10 U/ml. Scatchard analysis indicated that the decrease in binding was due to a decrease in both the affinity and the apparent number of available insulin receptors. The effect occurred within 10 min at 22 degrees C and persisted even after the cells were extensively washed. Inhibition of insulin binding also occurred when cells were preincubated with heparinized plasma or heparinized serum but not when cells were incubated with normal serum or plasma from blood anticoagulated with EDTA. By contrast, other polyanions and polycations, e.g., poly-L-glutamic acid, poly-L-lysine, succinylated poly-L-lysine, and histone, did not inhibit binding. Heparin also inhibited insulin binding in Epstein-Barr (EB) virus-transformed lymphocytes but had no effect on insulin binding to isolated adipocytes, human erythrocytes, or intact hepatoma cells. When isolated adipocytes were incubated with heparin, there was a dose-dependent inhibition of insulin-stimulated glucose oxidation and, to a lesser extent, of basal glucose oxidation. Although heparin has no effect on insulin binding to intact hepatoma cells, heparin inhibited both insulin binding and insulin-stimulated autophosphorylation in receptors solubilized from these cells.

  6. Heterogeneity of binding subunits of the human 150K insulin-like growth factor binding protein.

    PubMed

    Gelato, M C; Gaynes, L A; Greenstein, L A; Nissley, S P

    1990-04-01

    Models for the structure of the GH-dependent 150K insulin-like growth factor-binding protein (IGF-BP) complex include 1) a binding subunit of 40-60K mol wt associated with a larger nonbinding component, and 2) an oligomeric structure simply made up of six 25-28K monomeric IGF-BP complexes. To evaluate these alternative models we examined the IGF-binding characteristics and behavior on an SP-Sephadex ion exchange column of BP species identified by chemically cross-linking [125I]IGF-I and [125I]IGF-II. In addition, human serum was gel filtered on Sephadex G-200 in 0.05 M NH4HCO3, pH 8.0, and the 150K BP identified by binding of [125I]IGF-II to column fractions. When [125I]IGF-I or [125I]IGF-II was cross-linked to the 150K BP with disuccinimidyl suberate and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (10-15%) and autoradiography, four specifically labeled complexes of 20K, 24K, 33K, and 47K mol wt were identified. We examined the IGF-binding characteristics of these species by cross-linking [125I]IGF-I and [125I]IGF-II after incubation in the presence of increasing concentrations of unlabeled IGF-I or IGF-II. Formation of the 24K complex was inhibited more potently by IGF-II than IGF-I, whereas the relative potency of IGF-I vs. IGF-II for inhibition of the formation of the other complexes depended upon whether [125I]IGF-II or [125I]IGF-I was used. When the 150K BP complex generated from gel filtration on Sephadex G-200 was acid stripped, the only species seen with chemical cross-linking of either [125I]IGF-I or [125I]IGF-II was the 47K complex. By both conventional competitive binding studies and cross-linking [125I]IGF-I and [125I]IGF-II after incubation with increasing concentrations of unlabeled IGF-I or IGF-II, the formation of the 47K complex was usually more potently inhibited by IGF-I than IGF-II. When Cohn fraction IV extract was chromatographed on a SP-Sephadex column (pH 3) and cross-linking performed on the flow-through, the 47K

  7. Human DC-SIGN Binds Specific Human Milk Glycans

    PubMed Central

    Noll, Alexander J.; Yu, Ying; Lasanajak, Yi; Duska-McEwen, Geralyn; Buck, Rachael H.; Smith, David F.; Cummings, Richard D.

    2016-01-01

    Human milk glycans (HMGs) are prebiotics, pathogen receptor decoys, and regulators of host physiology and immune responses. Mechanistically, human lectins (glycan-binding proteins, hGBPs) expressed by dendritic cells (DC) are of major interest, as these cells directly contact HMGs. To explore such interactions, we screened many C-type lectins and Siglecs expressed by DC for glycan binding on microarrays presenting over 200 HMGs. Unexpectedly, DC-SIGN showed robust binding to many HMGs, whereas other C-type lectins failed to bind, and Siglecs-5 and -9 showed weak binding to a few glycans. By contrast, most hGBPs bound to multiple glycans on other microarrays lacking HMGs. An α-linked fucose residue was characteristic of HMGs bound by DC-SIGN. Binding of DC-SIGN to the simple HMGs 2′-fucosyllactose (2′-FL) and 3-fucosyllactose (3-FL) was confirmed by flow cytometry to beads conjugated with 2′-FL or 3-FL, as well as the ability of the free glycans to inhibit DC-SIGN binding. 2′-FL had an IC50 of ~1 mM for DC-SIGN, which is within the physiological concentration of 2′-FL in human milk. These results demonstrate that DC-SIGN among the many hGBPs expressed by DC binds to α-fucosylated HMGs, and suggest that such interactions may be important in influencing immune responses in the developing infant. PMID:26976925

  8. Molecular forces for the binding and condensation of DNA molecules.

    PubMed Central

    Cai, Xian-E; Yang, Jie

    2002-01-01

    Atomic force microscopy has been used to investigate the binding between a double-stranded DNA and bilayers of cationic lipids and zwitterionic lipids in low ionic-strength solutions. The binding of a DNA molecule to freshly cleaved mica surface in solution has also been measured. The binding of DNA molecules to cationic lipid bilayers has a minimal strength of approximately 45 pN. On zwitterionic lipid bilayers and mica surface, the minimal binding strength is approximately twice that value. The binding also has a dynamic nature, with only a certain percentage of recorded force curves containing the binding characteristics. Divalent Mg(2+) ions enhance the binding by increasing that percentage without any effect on the binding strength. We have also observed a long-range attraction between DNA molecules and cationic lipid bilayers with a strength much larger than the minimum force and a range well over 50 nm, possibly related to the driving force responsible for the two-dimensional condensation of DNA. PMID:11751322

  9. Time, the Forgotten Dimension of Ligand Binding Teaching

    ERIC Educational Resources Information Center

    Corzo, Javier

    2006-01-01

    Ligand binding is generally explained in terms of the equilibrium constant K[subscript d] for the protein-ligand complex dissociation. However, both theoretical considerations and experimental data point to the life span of the protein-ligand complex as an important, but generally overlooked, aspect of ligand binding by macromolecules. Short-lived…

  10. Binding Phenomena within a Reductionist Theory of Grammatical Dependencies

    ERIC Educational Resources Information Center

    Drummond, Alex

    2011-01-01

    This thesis investigates the implications of binding phenomena for the development of a reductionist theory of grammatical dependencies. The starting point is the analysis of binding and control in Hornstein (2001, 2009). A number of revisions are made to this framework in order to develop a simpler and empirically more successful account of…

  11. Problems with nonspecific binding in radioimmunoassay for fibrinogen fragment D

    SciTech Connect

    Thornton, R.D.; Kulkarni, P.; Wilson, J.E.

    1982-07-01

    Because of problems associated with non-specific binding in the competetive inhibition radioimmunoassay, the author, in a letter, recommends running a blank (without the first antibody) for each dilution of the antigen. He adds, further, that normal human plasma can be used a diluent when preparing standard curves if non-specific binding is found. (JMT)

  12. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  13. Photoaffinity labeling of retinoic acid-binding proteins.

    PubMed Central

    Bernstein, P S; Choi, S Y; Ho, Y C; Rando, R R

    1995-01-01

    Retinoid-binding proteins are essential mediators of vitamin A function in vertebrate organisms. They solubilize and stabilize retinoids, and they direct the intercellular and intracellular trafficking, transport, and metabolic function of vitamin A compounds in vision and in growth and development. Although many soluble retinoid-binding proteins and receptors have been purified and extensively characterized, relatively few membrane-associated enzymes and other proteins that interact with retinoids have been isolated and studied, due primarily to their inherent instabilities during purification. In an effort to identify and purify previously uncharacterized retinoid-binding proteins, it is shown that radioactively labeled all-trans-retinoic acid can be used as a photoaffinity labeling reagent to specifically tag two known retinoic acid-binding proteins, cellular retinoic acid-binding protein and albumin, in complex mixtures of cytosolic proteins. Additionally, a number of other soluble and membrane-associated proteins that bind all-trans-[11,12-3H]retinoic acid with high specificity are labeled utilizing the same photoaffinity techniques. Most of these labeled proteins have molecular weights that do not correspond to any known retinoid-binding proteins. Thus, photoaffinity labeling with all-trans-retinoic acid and related photoactivatable retinoids is a method that should prove extremely useful in the identification and purification of novel soluble and membrane-associated retinoid-binding proteins from ocular and nonocular tissues. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7846032

  14. Comprehensive Identification of RNA-Binding Domains in Human Cells.

    PubMed

    Castello, Alfredo; Fischer, Bernd; Frese, Christian K; Horos, Rastislav; Alleaume, Anne-Marie; Foehr, Sophia; Curk, Tomaz; Krijgsveld, Jeroen; Hentze, Matthias W

    2016-08-18

    Mammalian cells harbor more than a thousand RNA-binding proteins (RBPs), with half of these employing unknown modes of RNA binding. We developed RBDmap to determine the RNA-binding sites of native RBPs on a proteome-wide scale. We identified 1,174 binding sites within 529 HeLa cell RBPs, discovering numerous RNA-binding domains (RBDs). Catalytic centers or protein-protein interaction domains are in close relationship with RNA-binding sites, invoking possible effector roles of RNA in the control of protein function. Nearly half of the RNA-binding sites map to intrinsically disordered regions, uncovering unstructured domains as prevalent partners in protein-RNA interactions. RNA-binding sites represent hot spots for defined posttranslational modifications such as lysine acetylation and tyrosine phosphorylation, suggesting metabolic and signal-dependent regulation of RBP function. RBDs display a high degree of evolutionary conservation and incidence of Mendelian mutations, suggestive of important functional roles. RBDmap thus yields profound insights into native protein-RNA interactions in living cells. PMID:27453046

  15. Quantitative analysis of pheromone-binding protein specificity

    PubMed Central

    Katti, S.; Lokhande, N.; González, D.; Cassill, A.; Renthal, R.

    2012-01-01

    Many pheromones have very low water solubility, posing experimental difficulties for quantitative binding measurements. A new method is presented for determining thermodynamically valid dissociation constants for ligands binding to pheromone-binding proteins (OBPs), using β-cyclodextrin as a solubilizer and transfer agent. The method is applied to LUSH, a Drosophila OBP that binds the pheromone 11-cis vaccenyl acetate (cVA). Refolding of LUSH expressed in E. coli was assessed by measuring N-phenyl-1-naphthylamine (NPN) binding and Förster resonance energy transfer between LUSH tryptophan 123 (W123) and NPN. Binding of cVA was measured from quenching of W123 fluorescence as a function of cVA concentration. The equilibrium constant for transfer of cVA between β-cyclodextrin and LUSH was determined from a linked equilibria model. This constant, multiplied by the β-cyclodextrin-cVA dissociation constant, gives the LUSH-cVA dissociation constant: ~100 nM. It was also found that other ligands quench W123 fluorescence. The LUSH-ligand dissociation constants were determined to be ~200 nM for the silk moth pheromone bombykol and ~90 nM for methyl oleate. The results indicate that the ligand-binding cavity of LUSH can accommodate a variety ligands with strong binding interactions. Implications of this for the pheromone receptor model proposed by Laughlin et al. (Cell 133: 1255–65, 2008) are discussed. PMID:23121132

  16. Binding of heparin to human platelet factor 4.

    PubMed Central

    Cowan, S W; Bakshi, E N; Machin, K J; Isaacs, N W

    1986-01-01

    Platelet factor 4 is a small protein (Mr 7756) from the alpha-granules of blood platelets which binds strongly to and neutralizes the anticoagulant properties of heparin. From an analysis of X-ray crystallographic data a model for the binding of platelet factor 4 to heparin is proposed. PMID:3718482

  17. A VARIABLE REACTIVITY MODEL FOR ION BINDING TO ENVIRONMENTAL SORBENTS

    EPA Science Inventory

    The conceptual and mathematical basis for a new general-composite modeling approach for ion binding to environmental sorbents is presented. The work extends the Simple Metal Sorption (SiMS) model previously presented for metal and proton binding to humic substances. A surface com...

  18. Spectroscopic study on binding of rutin to human serum albumin

    NASA Astrophysics Data System (ADS)

    Pastukhov, Alexander V.; Levchenko, Lidiya A.; Sadkov, Anatoli P.

    2007-10-01

    Steady-state and time-resolved fluorescence spectroscopy techniques were used to study the interaction of the flavonoid rutin with human serum albumin (HSA) as well as spectral properties of the protein-bound flavonoid. Both quenching of the intrinsic fluorescence of the protein (Trp214) and the ligand fluorescence, appearing upon complexation with HSA, were used to determine binding parameters. The binding constant determined from the quenching of the Trp214 fluorescence by rutin is equal to 6.87 ± 0.22 × 10 4 M -1 and that obtained from the fluorescence of HSA-bound rutin is 3.8 ± 0.4 × 10 4 M -1. Based on the Job plot analysis, the 1:1 binding stoichiometry for the HSA-rutin complex was determined. The efficient quenching of the Trp214 fluorescence by rutin, fluorescence resonance energy transfer from excited Trp214 to rutin, and competitive binding of warfarin indicate that the binding site for the flavonoid is situated within subdomain IIA of HSA. The presence of the sugar moiety in the flavonoid molecule reduces affinity of rutin for binding to HSA but does not affect the binding stoichiometry and location of the binding site compared with aglycone analogues.

  19. Modification of opiate agonist binding by pertussis toxin

    SciTech Connect

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.

  20. Specific binding of antigen onto human T lymphocytes

    SciTech Connect

    Durandy, A.; Fischer, A.; Charron, D.; Griscelli, C.

    1986-05-01

    Human T lymphocytes sensitized to Candida albicans (CA) were shown to proliferate in cultures induced with mannan, a ramified polysaccharide extracted from the cell well of CA. We presently describe that, when we used strongly labeled (/sup 3/H)mannan, antigen-specific T blast cells were able to bind the labeled mannan on their membrane. The observations that irrelevant blast cells did not bind (/sup 3/H)mannan, and that mannan-specific blast cells did not bind tritiated pneumococcal polysaccharide SIII, indicate the specificity of mannan binding. Mannan binding was reversible and saturable. Mannan binding on T blast cells was inhibited by preincubation with monoclonal antibodies to T3 but not to other T cell-related molecules. The characteristics of this receptor suggest its identity with the T cell receptor for antigen. The direct binding of mannan could be either due to a cross-linking of the receptor by multivalent mannan or to a recognition of mannan in association with HLA-DQ molecules, as suggested by partial blocking of mannan binding using anti-HLA-DQ monoclonal antibodies.

  1. Analysis of binding reactions by fluorescence recovery after photobleaching.

    PubMed

    Sprague, Brian L; Pego, Robert L; Stavreva, Diana A; McNally, James G

    2004-06-01

    Fluorescence recovery after photobleaching (FRAP) is now widely used to investigate binding interactions in live cells. Although various idealized solutions have been identified for the reaction-diffusion equations that govern FRAP, there has been no comprehensive analysis or systematic approach to serve as a guide for extracting binding information from an arbitrary FRAP curve. Here we present a complete solution to the FRAP reaction-diffusion equations for either single or multiple independent binding interactions, and then relate our solution to the various idealized cases. This yields a coherent approach to extract binding information from FRAP data which we have applied to the question of transcription factor mobility in the nucleus. We show that within the nucleus, the glucocorticoid receptor is transiently bound to a single state, with each molecule binding on average 65 sites per second. This rapid sampling is likely to be important in finding a specific promoter target sequence. Further we show that this predominant binding state is not the nuclear matrix, as some studies have suggested. We illustrate how our analysis provides several self-consistency checks on a FRAP fit. We also define constraints on what can be estimated from FRAP data, show that diffusion should play a key role in many FRAP recoveries, and provide tools to test its contribution. Overall our approach establishes a more general framework to assess the role of diffusion, the number of binding states, and the binding constants underlying a FRAP recovery. PMID:15189848

  2. Hereditary spherocytosis diagnosed with the eosin-5'-maleimide binding test.

    PubMed

    Watanabe, Toru; Ono, Hiroyuki; Tajima, Iwao; Ishigaki, Hidetoshi; Hakamata, Akio; Shirai, Masami; Endoh, Akira; Hongo, Teruaki

    2014-06-01

    We describe three cases of hereditary spherocytosis (HS) diagnosed using the eosin-5'-maleimide (EMA) binding test and discuss the relevance of the EMA binding test. In Japan, this test is not widely used because the prevalence of HS is low. This test is a valuable screening test for the diagnosis of HS. PMID:24894931

  3. Improved assay for measuring heparin binding to bull sperm

    SciTech Connect

    Miller, D.J.; Ax, R.L.

    1988-01-01

    The binding of heparin to sperm has been used to study capacitation and to rank relative fertility of bulls. Previous binding assays were laborious, used 10/sup 7/ sperm per assay point, and required large amounts of radiolabeled heparin. A modified heparin-binding assay is described that used only 5 x 10/sup 4/ cells per incubation well and required reduced amounts of (/sup 3/H) heparin. The assay was performed in 96-well Millititer plates, enabling easy incubation and filtering. Dissociation constants and concentrations of binding sites did not differ if analyzed by Scatchard plots, Woolf plots, or by log-logit transformed weighted nonlinear least squares regression, except in the case of outliers. In such cases, Scatchard analysis was more sensitive to outliers. Nonspecific binding was insignificant using nonlinear logistic fit regression and a proportion graph. The effects were tested of multiple free-thawing of sperm in either a commercial egg yolk extender, 40 mM Tris buffer with 8% glycerol, or 40 mM Tris buffer without glycerol. Freeze-thawing in extender did not affect the dissociation constant or the concentration of binding sites. However, freeze-thawing three times in 40 mM Tris reduced the concentration of binding sites and lowered the dissociation constant (raised the affinity). The inclusion of glycerol in the 40 mM Tris did not significantly affect the estimated dissociation constant or the concentration of binding sites as compared to 40 mM Tris without glycerol.

  4. Characterization of the Binding Properties of Molecularly Imprinted Polymers.

    PubMed

    Ansell, Richard J

    2015-01-01

    The defining characteristic of the binding sites of any particular molecularly imprinted material is heterogeneity: that is, they are not all identical. Nonetheless, it is useful to study their fundamental binding properties, and to obtain average properties. In particular, it has been instructive to compare the binding properties of imprinted and non-imprinted materials. This chapter begins by considering the origins of this site heterogeneity. Next, the properties of interest of imprinted binding sites are described in brief: affinity, selectivity, and kinetics. The binding/adsorption isotherm, the graph of concentration of analyte bound to a MIP versus concentration of free analyte at equilibrium, over a range of total concentrations, is described in some detail. Following this, the techniques for studying the imprinted sites are described (batch-binding assays, radioligand binding assays, zonal chromatography, frontal chromatography, calorimetry, and others). Thereafter, the parameters that influence affinity, selectivity and kinetics are discussed (solvent, modifiers of organic solvents, pH of aqueous solvents, temperature). Finally, mathematical attempts to fit the adsorption isotherms for imprinted materials, so as to obtain information about the range of binding affinities characterizing the imprinted sites, are summarized. PMID:25796622

  5. Protein Function Annotation By Local Binding Site Surface Similarity

    PubMed Central

    Spitzer, Russell; Cleves, Ann E.; Varela, Rocco; Jain, Ajay N.

    2013-01-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against approximately 60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that pre-dated query protein biochemical annotation for five out of the eight query proteins. A panel of twelve currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins. PMID:24166661

  6. The Audiovisual Temporal Binding Window Narrows in Early Childhood

    ERIC Educational Resources Information Center

    Lewkowicz, David J.; Flom, Ross

    2014-01-01

    Binding is key in multisensory perception. This study investigated the audio-visual (A-V) temporal binding window in 4-, 5-, and 6-year-old children (total N = 120). Children watched a person uttering a syllable whose auditory and visual components were either temporally synchronized or desynchronized by 366, 500, or 666 ms. They were asked…

  7. HEMOGLOBIN BINDING AS A DOSE MONITOR FOR CHEMICAL CARCINOGENS

    EPA Science Inventory

    The covalent binding of chemical carcinogens and mutagens to hemoglobin has been proposed as a dose monitor for environmental exposure. The binding of chloroform and bromoform to hemoglobin in rats was demonstrated to result from the formation of adducts to amino acids in the glo...

  8. Binding of More Than One Retinoid to Visual Opsins

    PubMed Central

    Makino, Clint L.; Riley, Charles K.; Looney, James; Crouch, Rosalie K.; Okada, Tetsuji

    2010-01-01

    Visual opsins bind 11-cis retinal at an orthosteric site to form rhodopsins but increasing evidence suggests that at least some are capable of binding an additional retinoid(s) at a separate, allosteric site(s). Microspectrophotometric measurements on isolated, dark-adapted, salamander photoreceptors indicated that the truncated retinal analog, β-ionone, partitioned into the membranes of green-sensitive rods; however, in blue-sensitive rod outer segments, there was an enhanced uptake of four or more β-ionones per rhodopsin. X-ray crystallography revealed binding of one β-ionone to bovine green-sensitive rod rhodopsin. Cocrystallization only succeeded with extremely high concentrations of β-ionone and binding did not alter the structure of rhodopsin from the inactive state. Salamander green-sensitive rod rhodopsin is also expected to bind β-ionone at sufficiently high concentrations because the binding site is present on its surface. Therefore, both blue- and green-sensitive rod rhodopsins have at least one allosteric binding site for retinoid, but β-ionone binds to the latter type of rhodopsin with low affinity and low efficacy. PMID:20923672

  9. Unique carbohydrate binding platforms employed by the glucan phosphatases.

    PubMed

    Emanuelle, Shane; Brewer, M Kathryn; Meekins, David A; Gentry, Matthew S

    2016-07-01

    Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans. PMID:27147465

  10. Analyzing Ligand Depletion in a Saturation Equilibrium Binding Experiment

    ERIC Educational Resources Information Center

    Claro, Enrique

    2006-01-01

    I present a proposal for a laboratory practice to generate and analyze data from a saturation equilibrium binding experiment addressed to advanced undergraduate students. [[superscript 3]H]Quinuclidinyl benzilate is a nonselective muscarinic ligand with very high affinity and very low nonspecific binding to brain membranes, which contain a high…

  11. Pentoxifylline affects idarubicin binding to DNA.

    PubMed

    Gołuński, Grzegorz; Borowik, Agnieszka; Lipińska, Andrea; Romanik, Monika; Derewońko, Natalia; Woziwodzka, Anna; Piosik, Jacek

    2016-04-01

    Anticancer drug idarubicin - derivative of doxorubicin - is commonly used in treatment of numerous cancer types. However, in contrast to doxorubicin, its biophysical properties are not well established yet. Additionally, potential direct interactions of idarubicin with other biologically active aromatic compounds, such as pentoxifylline - representative of methylxanthines - were not studied at all. Potential formation of such hetero-aggregates may result in sequestration of the anticancer drug and, in consequence, reduction of its biological activity. This work provide description of the idarubicin biophysical properties as well as assess influence of pentoxifylline on idarubicin interactions with DNA. To achieve these goals we employed spectrophotometric methods coupled with analysis with the appropriate mathematical models as well as flow cytometry and Ames test. Obtained results show influence of pentoxifylline on idarubicin binding to DNA and are well in agreement with the data previously published for other aromatic ligands. Additionally it may be hypothesized that direct interactions between idarubicin and pentoxifylline may influence the anticancer drug biological activity. PMID:26921593

  12. Bilirubin Binding to PPARα Inhibits Lipid Accumulation.

    PubMed

    Stec, David E; John, Kezia; Trabbic, Christopher J; Luniwal, Amarjit; Hankins, Michael W; Baum, Justin; Hinds, Terry D

    2016-01-01

    Numerous clinical and population studies have demonstrated that increased serum bilirubin levels protect against cardiovascular and metabolic diseases such as obesity and diabetes. Bilirubin is a potent antioxidant, and the beneficial actions of moderate increases in plasma bilirubin have been thought to be due to the antioxidant effects of this bile pigment. In the present study, we found that bilirubin has a new function as a ligand for PPARα. We show that bilirubin can bind directly to PPARα and increase transcriptional activity. When we compared biliverdin, the precursor to bilirubin, on PPARα transcriptional activation to known PPARα ligands, WY 14,643 and fenofibrate, it showed that fenofibrate and biliverdin have similar activation properties. Treatment of 3T3-L1 adipocytes with biliverdin suppressed lipid accumulation and upregulated PPARα target genes. We treated wild-type and PPARα KO mice on a high fat diet with fenofibrate or bilirubin for seven days and found that both signal through PPARα dependent mechanisms. Furthermore, the effect of bilirubin on lowering glucose and reducing body fat percentage was blunted in PPARα KO mice. These data demonstrate a new function for bilirubin as an agonist of PPARα, which mediates the protection from adiposity afforded by moderate increases in bilirubin. PMID:27071062

  13. Binding of Sulpiride to Seric Albumins

    PubMed Central

    da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins

    2016-01-01

    The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08) × 104 M−1, at 37 °C, and 5.46 (±0.20) × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M−1, at 37 °C and 2.17 (±0.04) × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure. PMID:26742031

  14. Systematic discovery of Xist RNA binding proteins

    PubMed Central

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A.; Bharadwaj, Maheetha; Calabrese, J. Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y.

    2015-01-01

    Summary Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA- protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3′ RNA processing machinery. Xist, an essential lncRNA for X-chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK that participates in Xist-mediated gene silencing and histone modifications, but not Xist localization and Drosophila Split ends homolog Spen that interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628

  15. Neptunium Binding Kinetics with Arsenazo(III)

    SciTech Connect

    Leigh R. Martin; Aaron T. Johnson; Stephen P. Mezyk

    2014-08-01

    This document has been prepared to meet FCR&D level 2 milestone M2FT-14IN0304021, “Report on the results of actinide binding kinetics with aqueous phase complexants” This work was carried out under the auspices of the Thermodynamics and Kinetics of Advanced Separations Systems FCR&D work package. The report details kinetics experiments that were performed to measure rates of aqueous phase complexation for pentavalent neptunium with the chromotropic dye Arsenazo III (AAIII). The studies performed were designed to determine how pH, ionic strength and AAIII concentration may affect the rate of the reaction. A brief comparison with hexavalent neptunium is also made. It was identified that as pH was increased the rate of reaction also increased, however increasing the ionic strength and concentration of AAIII had the opposite effect. Interestingly, the rate of reaction of Np(VI) with AAIII was found to be slower than that of the Np(V) reaction.

  16. Computational Design of DNA-Binding Proteins.

    PubMed

    Thyme, Summer; Song, Yifan

    2016-01-01

    Predicting the outcome of engineered and naturally occurring sequence perturbations to protein-DNA interfaces requires accurate computational modeling technologies. It has been well established that computational design to accommodate small numbers of DNA target site substitutions is possible. This chapter details the basic method of design used in the Rosetta macromolecular modeling program that has been successfully used to modulate the specificity of DNA-binding proteins. More recently, combining computational design and directed evolution has become a common approach for increasing the success rate of protein engineering projects. The power of such high-throughput screening depends on computational methods producing multiple potential solutions. Therefore, this chapter describes several protocols for increasing the diversity of designed output. Lastly, we describe an approach for building comparative models of protein-DNA complexes in order to utilize information from homologous sequences. These models can be used to explore how nature modulates specificity of protein-DNA interfaces and potentially can even be used as starting templates for further engineering. PMID:27094297

  17. Borrelia burgdorferi bind to epithelial cell proteoglycans.

    PubMed Central

    Isaacs, R D

    1994-01-01

    Borrelia burgdorferi adhere to mammalian cells in vitro but neither the ligand(s) nor the receptor(s) has (have) been clearly established. Using an in vitro attachment-inhibition assay, a B. burgdorferi attachment mechanism has been identified. Heparin, heparan sulfate, and dermatan sulfate reduced the attachment of virulent B. burgdorferi strain 297 to HeLa cells by approximately 60%. In addition, virulent, but not avirulent, B. burgdorferi strains B31, N40, and HB19 demonstrated heparin attachment-inhibition. Attachment to Chinese hamster ovary cells deficient in heparan sulfate proteoglycans was reduced by 68% compared to attachment to wild-type cells and was identical to attachment at maximum heparin inhibition to the wild-type cells. Pretreatment of HeLa cell monolayers with heparitinase, heparinase, and chondroitinase ABC, but not with chondroitinase AC, reduced borrelial attachment by approximately 50%. A moderately high affinity, low copy number, promiscuous B. burgdorferi glycosaminoglycan receptor was demonstrated by equilibrium binding studies. A 39-kD polypeptide, purified by heparin affinity chromatography from Triton X-100 extracts derived from virulent borrelia, was a candidate for this receptor. These studies indicate that one mode of B. burgdorferi attachment to eukaryotic cells is mediated by a borrelial glycosaminoglycan receptor attaching to surface-exposed proteoglycans on mammalian cells. Images PMID:8113413

  18. Matrix binding of ochratoxin A during roasting.

    PubMed

    Bittner, Andrea; Cramer, Benedikt; Humpf, Hans-Ulrich

    2013-12-26

    The mycotoxin ochratoxin A is degraded during coffee roasting by up to 90%. During this process, the two known degradation products, 14R-ochratoxin A and 14-decarboxy-ochratoxin A are formed. However, there is still an unexplained loss of more than 50% ochratoxin A. Here, we describe the binding of ochratoxin A to coffee polysaccharides via esterification as a further thermal reaction. This ester formation was studied by heating ochratoxin A with methyl α-d-glucopyranoside, a model compound to mimic polysaccharides. From this experiment, (22 → 6') ochratoxin A-methyl-α-d-glucopyranoside ester was isolated and characterized as a reaction product, showing the general ability of ochratoxin A for esterification with carbohydrates at roasting temperatures. Subsequently, a sample preparation protocol for the detection of ochratoxin A saccharide esters based on an enzymatic cleavage and purification using immunoaffinity chromatography was developed and applied. The detection was carried out by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Using this method, it was possible to detect ochratoxin A polysaccharide esters formed during roasting of artificially contaminated coffee, confirming the results of the previous model experiments. Thus, the formation of ochratoxin A esters is a further explanation for the loss of ochratoxin A during coffee roasting. PMID:24328070

  19. Bilirubin Binding to PPARα Inhibits Lipid Accumulation

    PubMed Central

    Stec, David E.; John, Kezia; Trabbic, Christopher J.; Luniwal, Amarjit; Hankins, Michael W.; Baum, Justin

    2016-01-01

    Numerous clinical and population studies have demonstrated that increased serum bilirubin levels protect against cardiovascular and metabolic diseases such as obesity and diabetes. Bilirubin is a potent antioxidant, and the beneficial actions of moderate increases in plasma bilirubin have been thought to be due to the antioxidant effects of this bile pigment. In the present study, we found that bilirubin has a new function as a ligand for PPARα. We show that bilirubin can bind directly to PPARα and increase transcriptional activity. When we compared biliverdin, the precursor to bilirubin, on PPARα transcriptional activation to known PPARα ligands, WY 14,643 and fenofibrate, it showed that fenofibrate and biliverdin have similar activation properties. Treatment of 3T3-L1 adipocytes with biliverdin suppressed lipid accumulation and upregulated PPARα target genes. We treated wild-type and PPARα KO mice on a high fat diet with fenofibrate or bilirubin for seven days and found that both signal through PPARα dependent mechanisms. Furthermore, the effect of bilirubin on lowering glucose and reducing body fat percentage was blunted in PPARα KO mice. These data demonstrate a new function for bilirubin as an agonist of PPARα, which mediates the protection from adiposity afforded by moderate increases in bilirubin. PMID:27071062

  20. Lithium Binding in Fluorinated Phosphazene Trimers

    SciTech Connect

    Michael T. Benson; Mason K. Harrup; Kevin L. Gering

    2013-02-01

    Density functional theory is used to model a series of cyclic phosphazenes, with and without coordinated Li+. Two pendant groups are used, ethoxy and 2,2,2-trifluoroethoxy, in varying combinations to generate phosphazenes with 0, 1, 2, 3, or 6 trifluoro groups. In all cases, Li+ sits in a pocket on the ring, always bonding to a ring nitrogen, and can be three- or four-coordinate, depending on the local environment. Three-coordinate occurs when no fluorines are close enough to interact, with the lithium bonding to a ring nitrogen and the two adjacent oxygens. When Li+ is four-coordinate, the bonding varies between the ring nitrogen, two adjacent oxygens, and one fluorine, or the ring nitrogen, one adjacent oxygen, and two fluorines. All of the possible symmetry unique structures have been calculated. The binding strength of Li+ steadily decreases, from 74.93 kcal/mol with no trifluoro groups, to 58.01 kcal/mol when 6 trifluoro groups are present. The decrease is attributed to the electron withdrawing effect of the trifluoro groups, and also to distortions in the geometry to accommodate Li-F interactions.