Science.gov

Sample records for binding exogenous ligands

  1. Disulfide bonds regulate binding of exogenous ligand to human cytoglobin.

    PubMed

    Tsujino, Hirofumi; Yamashita, Taku; Nose, Azusa; Kukino, Kaori; Sawai, Hitomi; Shiro, Yoshitsugu; Uno, Tadayuki

    2014-06-01

    Cytoglobin (Cgb) was discovered a decade ago and is a fourth member of the group of hexacoordinated globin-folded proteins. Although some crystal structures have been reported and several functions have been proposed for Cgb, its physiological role remains uncertain. In this study, we measured cyanide binding to the ferric state of the wild-type (WT) Cgb, and found that the binding consisted of multiple steps. These results indicated that Cgb may be comprised of several forms, and the presence of monomers, dimers, and tetramers was subsequently confirmed by SDS-PAGE. Remarkably, each species contained two distinguishable forms, and, in the monomer, analyses of alternative cysteine states suggested the presence of an intramolecular disulfide bond (monomer SS form) and a structure with unpaired thiol groups (monomer SH form). These confirmed that forms were separated by gel-exclusion chromatography, and that the cyanide binding of the separated fractions was again measured; they showed different affinities for cyanide, with the monomer fraction showing the highest affinity. In addition, the ferrous state in each fraction showed distinct carbon monoxide (CO)-binding properties, and the affinities for cyanide and CO suggested a linear correlation. Furthermore, we also prepared several variants involving the two cysteine residues. The C38S and C83S variants showed a binding affinity for cyanide similar to the value for the monomer SH form, and hence the fraction with the highest affinity for exogenous ligands was designated as a monomer SS form. We concluded that polymerization could be a mechanism that triggers the exertion of various physiological functions of this protein and that an appropriate disulfide bond between the two cysteine residues was critical for regulating the binding affinity of Cgb, which can act as a ROS scavenger, for exogenous ligands. PMID:24632414

  2. Crystal Structure, Exogenous Ligand Binding and Redox Properties of an Engineered Diiron Active Site in a Bacterial Hemerythrin

    PubMed Central

    Okamoto, Yasunori; Onoda, Akira; Sugimoto, Hiroshi; Takano, Yu; Hirota, Shun; Kurtz, Donald M.; Shiro, Yoshitsugu; Hayashi, Takashi

    2013-01-01

    A non-heme diiron active site in a 13-kDa hemerythrin-like domain of the bacterial chemotaxis protein, DcrH-Hr, contains an oxo bridge, two bridging carboxylate groups from Glu and Asp residues, and five terminally ligated His residues. We created a unique diiron coordination sphere containing five His and three Glu/Asp residues by replacing an Ile residue with Glu in DcrH-Hr. Direct coordination of the carboxylate group of E119 to Fe2 of the diiron site in the I119E variant was confirmed by X-ray crystallography. The substituted Glu is adjacent to an exogenous ligand-accessible tunnel. UV-vis absorption spectra indicate that the additional coordination of E119 inhibits the binding of the exogenous ligands, azide and phenol, to the diiron site. The extent of azide binding to the diiron site increases at pH ≤ 6, which is ascribed to protonation of the carboxylate ligand of E119. The diferrous state (deoxy form) of the engineered diiron site with the extra Glu residue is found to react more slowly than wild type with O2 to yield the diferric state (met form). The additional coordination of E119 to the diiron site also slows the rate of reduction from the met form. All these processes were found to be pH-dependent, which can be attributed to protonation state and coordination status of the E119 carboxylate. These results demonstrate that modifications of the endogenous coordination sphere can produce significant changes in the ligand binding and redox properties in a prototypical non-heme diiron-carboxylate protein active site. PMID:24187962

  3. Exploration of electrostatic interaction in the hydrophobic pocket of lysozyme: Importance of ligand-induced perturbation of the secondary structure on the mode of binding of exogenous ligand and possible consequences.

    PubMed

    Panja, Sudipta; Halder, Mintu

    2016-08-01

    Exogenous ligand binding can be adequate to alter the secondary structure of biomolecules besides other external stimuli. In such cases, structural alterations can complicate on the nature of interaction with the exogenous molecules. In order to accommodate the exogenous ligand, the biomolecule has to unfold resulting in a considerable change to its properties. If the bound ligand can be unbound, the biomolecule gets the opportunity to refold back and return to its native state. Keeping this in mind, we have purposely investigated the interaction of tartrazine (TZ), a well abundant azo food colorant, with two homologous lysozymes, namely, human lysozyme (HLZ) and chicken egg white lysozyme (CEWLZ) in physiological pH condition. The binding of TZ with lysozymes has been identified to accompany a ligand-induced secondary structure alteration as indicated by the circular dichroism spectra, and the reduction of α-helical content is more with HLZ than CEWLZ. Interestingly, the binding is identified to occur in the electronic ground state of TZ with lysozyme in its hydrophobic cavity, containing excess of positive charge, predominantly via electrostatic interaction. With increase of salinity of the medium the protein tends to refold back due to wakening of electrostatic forces and consequent reduction of strength of ligand interaction and unbinding. The entropy enthalpy compensation (EEC) has been probed to understand the binding features and it is found that CEWLZ-TZ shows better compensation than HLZ-TZ complex. This is presumably due to the fact that with CEWLZ the binding does not accompany substantial change in the protein secondary structure and hence ineffective to scramble the EEC. The present study initiates the importance of ligand-perturbed structural alteration of biomolecule in controlling the thermodynamics of binding. If there is a considerable alteration of the protein secondary structure due to binding, it is indicative that such changes should bring in

  4. Environment of copper in Pseudomonas aeruginosa azurin probed by binding of exogenous ligands to Met121X (X = Gly, Ala, Val, Leu, or Asp) mutants.

    PubMed

    Bonander, N; Karlsson, B G; Vänngård, T

    1996-02-20

    The binding of small exogenous ligands to mutants of the blue copper protein azurin from Pseudomonas aeruginosa, altered in the axial position, Met121X (X = Gly, Ala, Val, Leu, or Asp), has been studied with optical and electron paramagnetic resonance (EPR) spectroscopy. The results show that small molecules can enter the pocket left by the side chain of Met121. For azide, the dissociation constants are Leu > Val > Ala, reflecting the increasing space available. The Gly and Asp mutants bind azide less strongly than the Ala mutant, due to competition with water (Gly) and the polar side chain (Asp). Similar trends are found for thiocyanate. Cyanide binds equally well to the Ala and Val mutants. A number of other small potential ligands were tried. Alcohols do not affect room-temperature optical spectra, but at low temperatures, the EPR spectrum is stellacyanin-like, indicative of a weak axial interaction. Ligands binding with a carboxyl group or nitrogen (e.g. acetate or azide) convert the metal center to a form intermediate between regular types 1 and 2, presumably by pulling the copper ion out of the trigonal plane formed by Cys(S) and two His(N). Cyanide interacts strongly as shown by the hyperfine coupling to the 13C nucleus. With increasing strength of the axial interaction, the two major bands in the visible region (600 and 400-500 nm) shift in parallel to higher energy, and at the same time, the strength of the latter transition increases at the expense of the former. This demonstrates that these transitions have a common origin, namely S-to-Cu charge transfer transition. PMID:8652586

  5. Al(+)-ligand binding energies

    NASA Technical Reports Server (NTRS)

    Sodupe, M.; Bauschlicher, Charles W., Jr.

    1991-01-01

    Ab initio calculations are used to optimize the structure and determine the binding energies of Al(+) to a series of ligands. For Al(+)-CN, the bonding was found to have a large covalent component. For the remaining ligands, the bonding is shown to be electrostatic in origin. The results obtained for Al(+) are compared with those previously reported for Mg(+).

  6. Mg(+)-ligand binding energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry

    1991-01-01

    Ab initio calculations are used to optimize the structures and determine the binding energies of Mg(+) to a series of ligands. Mg(+) bonds electrostatically with benzene, acetone, H2, CO, and NH3 and a self-consistent-field treatment gives a good description of the bonding. The bonding in MgCN(+) and MgCH3(+) is largely covalent and a correlated treatment is required.

  7. Predicting target-ligand interactions using protein ligand-binding site and ligand substructures

    PubMed Central

    2015-01-01

    Background Cell proliferation, differentiation, Gene expression, metabolism, immunization and signal transduction require the participation of ligands and targets. It is a great challenge to identify rules governing molecular recognition between chemical topological substructures of ligands and the binding sites of the targets. Methods We suppose that the ligand-target interactions are determined by ligand substructures as well as the physical-chemical properties of the binding sites. Therefore, we propose a fragment interaction model (FIM) to describe the interactions between ligands and targets, with the purpose of facilitating the chemical interpretation of ligand-target binding. First we extract target-ligand complexes from sc-PDB database, based on which, we get the target binding sites and the ligands. Then we represent each binding site as a fragment vector based on a target fragment dictionary that is composed of 199 clusters (denoted as fragements in this work) obtained by clustering 4200 trimers according to their physical-chemical properties. And then, we represent each ligand as a substructure vector based on a dictionary containing 747 substructures. Finally, we build the FIM by generating the interaction matrix M (representing the fragment interaction network), and the FIM can later be used for predicting unknown ligand-target interactions as well as providing the binding details of the interactions. Results The five-fold cross validation results show that the proposed model can get higher AUC score (92%) than three prevalence algorithms CS-PD (80%), BLM-NII (85%) and RF (85%), demonstrating the remarkable predictive ability of FIM. We also show that the ligand binding sites (local information) overweight the sequence similarities (global information) in ligand-target binding, and introducing too much global information would be harmful to the predictive ability. Moreover, The derived fragment interaction network can provide the chemical insights on

  8. Ligand configurational entropy and protein binding

    PubMed Central

    Chang, Chia-en A.; Chen, Wei; Gilson, Michael K.

    2007-01-01

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing ∼25 kcal/mol (4.184 kJ/kcal) to ΔG°. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  9. Ligand configurational entropy and protein binding.

    PubMed

    Chang, Chia-en A; Chen, Wei; Gilson, Michael K

    2007-01-30

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing approximately 25 kcal/mol (4.184 kJ/kcal) to DeltaG degrees. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  10. Time, the Forgotten Dimension of Ligand Binding Teaching

    ERIC Educational Resources Information Center

    Corzo, Javier

    2006-01-01

    Ligand binding is generally explained in terms of the equilibrium constant K[subscript d] for the protein-ligand complex dissociation. However, both theoretical considerations and experimental data point to the life span of the protein-ligand complex as an important, but generally overlooked, aspect of ligand binding by macromolecules. Short-lived…

  11. Ligand binding and hexacoordination in synechocystis hemoglobin.

    PubMed

    Hvitved, A N; Trent, J T; Premer, S A; Hargrove, M S

    2001-09-14

    A large and phylogenetically diverse group of organisms contain truncated hemoglobins, including the unicellular cyanobacterium Synechocystis (Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., and Bolognesi, M. (2000) EMBO J. 19, 2424-2434). Synechocystis hemoglobin is also hexacoordinate, with a heme pocket histidine that reversibly coordinates the ligand binding site. Hexacoordinate hemoglobins are ubiquitous in plants and are now being identified in a diverse array of organisms including humans (Arredondo-Peter, R., Hargrove, M. S., Moran, J. F., Sarath, G., and Klucas, R. V. (1998) Plant Physiol. 118, 1121-1125; Trent, J. T., III, Watts, R. A., and Hargrove, M. S. (2001) J. Biol. Chem. 276, 30106-30110). Rate constants for association and dissociation of the hexacoordinating amino acid side chain in Synechocystis hemoglobin have been measured along with bimolecular rate constants for association of oxygen and carbon monoxide following laser flash photolysis. These values were compared with ligand binding initiated by rapid mixing. Site-directed mutagenesis was used to determine the roles of several heme pocket amino acids in facilitating hexacoordination and stabilizing bound oxygen. It is demonstrated that Synechocystis hemoglobin contains a very reactive binding site and that ligand migration through the protein is rapid. Rate constants for hexacoordination by His(46) are also large and facilitated by other heme pocket amino acids including Gln(43). PMID:11438545

  12. Follitropin receptors contain cryptic ligand binding sites.

    PubMed

    Lin, Win; Bernard, Michael P; Cao, Donghui; Myers, Rebecca V; Kerrigan, John E; Moyle, William R

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with different regions of an FSHR/LHR chimera having only two unique LHR residues and that binds both hormones with high affinity. hCG and hFSH analogs dock with this receptor chimera in a manner similar to that in which they bind LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  13. Landscape of protein-small ligand binding modes.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  14. Ligand Binding to Macromolecules: Allosteric and Sequential Models of Cooperativity.

    ERIC Educational Resources Information Center

    Hess, V. L.; Szabo, Attila

    1979-01-01

    A simple model is described for the binding of ligands to macromolecules. The model is applied to the cooperative binding by hemoglobin and aspartate transcarbamylase. The sequential and allosteric models of cooperative binding are considered. (BB)

  15. Combining quantum mechanical ligand conformation analysis and protein modeling to elucidate GPCR-ligand binding modes.

    PubMed

    Schultes, Sabine; Engelhardt, Harald; Roumen, Luc; Zuiderveld, Obbe P; Haaksma, Eric E J; de Esch, Iwan J P; Leurs, Rob; de Graaf, Chris

    2013-01-01

    SAR beyond protein-ligand interactions: By combining structure-affinity relationships, protein-ligand modeling studies, and quantum mechanical calculations, we show that ligand conformational energies and basicity play critical roles in ligand binding to the histamine H4 receptor, a GPCR that plays a key role in inflammation. PMID:23161844

  16. A Structural Switch between Agonist and Antagonist Bound Conformations for a Ligand-Optimized Model of the Human Aryl Hydrocarbon Receptor Ligand Binding Domain

    PubMed Central

    Perkins, Arden; Phillips, Jessica L.; Kerkvliet, Nancy I.; Tanguay, Robert L.; Perdew, Gary H.; Kolluri, Siva K.; Bisson, William H.

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates the expression of a diverse group of genes. Exogenous AHR ligands include the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a potent agonist, and the synthetic AHR antagonist N-2-(1H-indol-3yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351). As no experimentally determined structure of the ligand binding domain exists, homology models have been utilized for virtual ligand screening (VLS) to search for novel ligands. Here, we have developed an “agonist-optimized” homology model of the human AHR ligand binding domain, and this model aided in the discovery of two human AHR agonists by VLS. In addition, we performed molecular dynamics simulations of an agonist TCDD-bound and antagonist GNF351-bound version of this model in order to gain insights into the mechanics of the AHR ligand-binding pocket. These simulations identified residues 307–329 as a flexible segment of the AHR ligand pocket that adopts discrete conformations upon agonist or antagonist binding. This flexible segment of the AHR may act as a structural switch that determines the agonist or antagonist activity of a given AHR ligand. PMID:25329374

  17. Plasmon resonance enhanced mechanical detection of ligand binding

    SciTech Connect

    Ariyaratne, Amila; Zocchi, Giovanni

    2015-01-05

    Small molecule binding to the active site of enzymes typically modifies the mechanical stiffness of the enzyme. We exploit this effect, in a setup which combines nano-mechanics and surface plasmon resonance (SPR) enhanced optics, for the label free detection of ligand binding to an enzyme. The large dynamic range of the signal allows to easily obtain binding curves for small ligands, in contrast to traditional SPR methods which rely on small changes in index of refraction. Enzyme mechanics, assessed by nano-rheology, thus emerges as an alternative to electronic and spin resonances, assessed by traditional spectroscopies, for detecting ligand binding.

  18. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  19. Cellular uptake of exogenous calcineurin B is dependent on TLR4/MD2/CD14 complexes, and CnB is an endogenous ligand of TLR4

    PubMed Central

    Yang, Jinju; Qin, Nannan; Zhang, Hongwei; Yang, Rui; Xiang, Benqiong; Wei, Qun

    2016-01-01

    Our previous research showed that recombinant calcineurin B (rhCnB) stimulates cytokine secretion by immune cells, probably through TLR4. Exogenous CnB can be incorporated into many different tumour cells in vitro, but the mode of uptake and receptors required remain unknown. Here, we report that exogenous CnB is taken up by cells in a time- and concentration-dependent manner via clathrin-dependent receptor-mediated internalization. Our findings further confirm that uptake is mediated by the TLR4/MD2 complex together with the co-receptor CD14. The MST results revealed a high affinity between CnB and the TLR4 receptor complex. No binding was detected between CnB and LPS. CnB inhibited the uptake of LPS, and LPS also inhibited the uptake of CnB. These results indicate that the uptake of exogenous CnB did not occur through LPS and that CnB was not a chaperone of LPS. Thus, we conclude that TLR4 receptor complexes were required for the recognition and internalization of exogenous CnB. CnB could be a potential endogenous ligand of TLR4 and function as an agonist of TLR4. These properties of CnB support its potential for development as an anti-cancer drug. PMID:27090571

  20. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites

    PubMed Central

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where “nonspecific” interactions contribute to biological function. PMID:26064949

  1. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    PubMed

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function. PMID:26064949

  2. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    PubMed

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. PMID:24740818

  3. Exchange Kinetics of a Hydrophobic Ligand Binding Protein

    NASA Astrophysics Data System (ADS)

    Vaughn, Jeff; Stone, Martin

    2002-03-01

    Conformational fluctuations of proteins are thought to be important for determining the functional roles in biological activity. In some cases, the rates of these conformational changes may be directly correlated to, for example, the rates of catalysis or ligand binding. We are studying the role of conformational fluctuations in the binding of small volatile hydrophobic pheromones by the mouse major urinary proteins (MUPs). Communication among mice occurs, in part, with the MUP-1 protein. This urinary protein binds pheromones as a way to increase the longevity of the pheromone in an extracellular environment. Of interest is that the crystal structure of MUP-1 with a pheromone ligand shows the ligand to be completely occluded from the solvent with no obvious pathway to enter or exit. This suggests that conformational exchange of the protein may be required for ligand binding and release to occur. We hypothesize that the rate of conformational exchange may be a limiting factor determining the rate of ligand association and dissociation. By careful measurement of the on- and off-rates of ligand binding and the rates of conformational changes of the protein, a more defined picture of the interplay between protein structure and function can be obtained. To this end, heteronuclear saturation transfer, ^15N-exchange and ^15N dynamics experiments have been employed to probe the kinetics of ligand binding to MUP-1.

  4. Structural evidence for asymmetric ligand binding to transthyretin.

    PubMed

    Cianci, Michele; Folli, Claudia; Zonta, Francesco; Florio, Paola; Berni, Rodolfo; Zanotti, Giuseppe

    2015-08-01

    Human transthyretin (TTR) represents a notable example of an amyloidogenic protein, and several compounds that are able to stabilize its native state have been proposed as effective drugs in the therapy of TTR amyloidosis. The two thyroxine (T4) binding sites present in the TTR tetramer display negative binding cooperativity. Here, structures of TTR in complex with three natural polyphenols (pterostilbene, quercetin and apigenin) have been determined, in which this asymmetry manifests itself as the presence of a main binding site with clear ligand occupancy and related electron density and a second minor site with a much lower ligand occupancy. The results of an analysis of the structural differences between the two binding sites are consistent with such a binding asymmetry. The different ability of TTR ligands to saturate the two T4 binding sites of the tetrameric protein can be ascribed to the different affinity of ligands for the weaker binding site. In comparison, the high-affinity ligand tafamidis, co-crystallized under the same experimental conditions, was able to fully saturate the two T4 binding sites. This asymmetry is characterized by the presence of small but significant differences in the conformation of the cavity of the two binding sites. Molecular-dynamics simulations suggest the presence of even larger differences in solution. Competition binding assays carried out in solution revealed the presence of a preferential binding site in TTR for the polyphenols pterostilbene and quercetin that was different from the preferential binding site for T4. The TTR binding asymmetry could possibly be exploited for the therapy of TTR amyloidosis by using a cocktail of two drugs, each of which exhibits preferential binding for a distinct binding site, thus favouring saturation of the tetrameric protein and consequently its stabilization. PMID:26249340

  5. A Correlation between Protein Function and Ligand Binding Profiles

    PubMed Central

    Shortridge, Matthew D.; Bokemper, Michael; Copeland, Jennifer C.; Stark, Jaime L.; Powers, Robert

    2011-01-01

    We report that proteins with the same function bind the same set of small molecules from a standardized chemical library. This observation led to a quantifiable and rapidly adaptable method for protein functional analysis using experimentally-derived ligand binding profiles. Ligand binding is measured using a high-throughput NMR ligand affinity screen with a structurally diverse chemical library. The method was demonstrated using a set of 19 proteins with a range of functions. A statistically significant similarity in ligand binding profiles was only observed between the two functionally identical albumins and between the five functionally similar amylases. This new approach is independent of sequence, structure or evolutionary information, and therefore, extends our ability to analyze and functionally annotate novel genes. PMID:21366353

  6. Regulation of the extracellular ligand binding activity of integrins.

    PubMed

    Fernandez, C; Clark, K; Burrows, L; Schofield, N R; Humphries, M J

    1998-07-01

    Integrins are a large heterodimeric family of cell surface adhesion receptors that bind extracellular matrix and cell surface ligands. The extracellular ligand binding activity of integrins is a dynamic and highly regulated event involving the induction of conformational changes within the integrin structure. The adhesive properties of integrins can be controlled by altering the activation state of the integrin, either through conformational change or receptor clustering, using mechanisms that are regulated by intracellular proteins. In this review, we will discuss what is currently known about integrin structure and the ligand binding sites present within the receptor. In addition, the mechanisms by which the ligand binding event is regulated through conformational change will be addressed, and the potential role of intracellular cytoplasmic proteins will be discussed. PMID:9637803

  7. Identification of Soft Matter Binding Peptide Ligands Using Phage Display.

    PubMed

    Günay, Kemal Arda; Klok, Harm-Anton

    2015-10-21

    Phage display is a powerful tool for the selection of highly affine, short peptide ligands. While originally primarily used for the identification of ligands to proteins, the scope of this technique has significantly expanded over the past two decades. Phage display nowadays is also increasingly applied to identify ligands that selectively bind with high affinity to a broad range of other substrates including natural and biological polymers as well as a variety of low-molecular-weight organic molecules. Such peptides are of interest for various reasons. The ability to selectively and with high affinity bind to the substrate of interest allows the conjugation or immobilization of, e.g., nanoparticles or biomolecules, or generally, facilitates interactions at materials interfaces. On the other hand, presentation of peptide ligands that selectively bind to low-molecular-weight organic materials is of interest for the development of sensor surfaces. The aim of this article is to highlight the opportunities provided by phage display for the identification of peptide ligands that bind to synthetic or natural polymer substrates or to small organic molecules. The article will first provide an overview of the different peptide ligands that have been identified by phage display that bind to these "soft matter" targets. The second part of the article will discuss the different characterization techniques that allow the determination of the affinity of the identified ligands to the respective substrates. PMID:26275106

  8. In-cell optical imaging of exogenous G-quadruplex DNA by fluorogenic ligands

    PubMed Central

    Tseng, Ting-Yuan; Wang, Zi-Fu; Chien, Cheng-Hao; Chang, Ta-Chau

    2013-01-01

    Guanine-rich oligonucleotides (GROs) are promising therapeutic candidate for cancer treatment and other biomedical application. We have introduced a G-quadruplex (G4) ligand, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide, to monitor the cellular uptake of naked GROs and map their intracellular localizations in living cells by using confocal microscopy. The GROs that form parallel G4 structures, such as PU22, T40214 and AS1411, are detected mainly in the lysosome of CL1-0 lung cancer cells after incubation for 2 h. On the contrary, the GROs that form non-parallel G4 structures, such as human telomeres (HT23) and thrombin binding aptamer (TBA), are rarely detected in the lysosome, but found mainly in the mitochondria. Moreover, the fluorescence resonant energy transfer studies of fluorophore-labeled GROs show that the parallel G4 structures can be retained in CL1-0 cells, whereas the non-parallel G4 structures are likely distorted in CL1-0 cells after cellular uptake. Of interest is that the distorted G4 structure of HT23 from the non-parallel G4 structure can reform to a probable parallel G4 structure induced by a G4 ligand in CL1-0 living cells. These findings are valuable to the design and rationale behind the possible targeted drug delivery to specific cellular organelles using GROs. PMID:24030712

  9. Persistent Binding of Ligands to the Aryl Hydrocarbon Receptor

    PubMed Central

    Bohonowych, Jessica E.; Denison, Michael S.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxic effects of halogenated aromatic hydrocarbons (HAHs), polycyclic aromatic hydrocarbons (PAHs), and other structurally diverse ligands. While HAHs are several orders of magnitude more potent in producing AhR-dependent biochemical effects than PAHs or other AhR agonists, only the HAHs have been observed to produce AhR-dependent toxicity in vivo. Here we have characterized the dissociation of a prototypical HAH ligand ([3H] 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) and PAH-like ligand ([3H] β-naphthoflavone [βNF]) from the guinea pig, hamster, mouse, and rat hepatic cytosolic AhR in order to elucidate the relationship between the apparent ligand-binding affinities and the divergent potency of these chemicals. Both compounds dissociated very slowly from the AhR with the amount of specific binding remaining at 96 h ranging from 53% to 70% for [3H]TCDD and 26% to 85% for [3H] βNF, depending upon the species examined. The rate of ligand dissociation was unaffected by protein concentration or incubation temperature. Preincubation of cytosol with 2,3,7,8-tetrachlorodibenzofuran, carbaryl, or primaquine, prior to the addition of [3H]TCDD, shifted the apparent IC50 of these compounds as competitive AhR ligands by ∼10- to 50-fold. Our results support the need for reassessment of previous AhR ligand-binding affinity calculations and competitive binding analysis since these measurements are not carried out at equilibrium binding conditions. Our studies suggest that AhR binding affinity/occupancy has little effect on the observed differences in the persistence of gene expression by HAHs and PAHs. PMID:17431010

  10. Analyzing Ligand Depletion in a Saturation Equilibrium Binding Experiment

    ERIC Educational Resources Information Center

    Claro, Enrique

    2006-01-01

    I present a proposal for a laboratory practice to generate and analyze data from a saturation equilibrium binding experiment addressed to advanced undergraduate students. [[superscript 3]H]Quinuclidinyl benzilate is a nonselective muscarinic ligand with very high affinity and very low nonspecific binding to brain membranes, which contain a high…

  11. Calculation of Mg(+)-ligand relative binding energies

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.

    1992-01-01

    The calculated relative binding energies of 16 organic molecules to Mg(+) are compared with experimental results where available. The geometries of the ligands and the Mg(+)-ligand complexes arc optimized at the self-consistent field level using a 6-31G* basis set. The Mg(+) binding energies are evaluated using second-order perturbation theory and basis sets of triple-sigma quality augmented with two sets of polarization functions. This level of theory is calibrated against higher levels of theory for selected systems. The computed binding energies are accurate to about 2 kcal/mol.

  12. Exploration of dimensions of estrogen potency: parsing ligand binding and coactivator binding affinities.

    PubMed

    Jeyakumar, M; Carlson, Kathryn E; Gunther, Jillian R; Katzenellenbogen, John A

    2011-04-15

    The estrogen receptors, ERα and ERβ, are ligand-regulated transcription factors that control gene expression programs in target tissues. The molecular events underlying estrogen action involve minimally two steps, hormone binding to the ER ligand-binding domain followed by coactivator recruitment to the ER·ligand complex; this ligand·receptor·coactivator triple complex then alters gene expression. Conceptually, the potency of an estrogen in activating a cellular response should reflect the affinities that characterize both steps involved in the assembly of the active ligand·receptor·coactivator complex. Thus, to better understand the molecular basis of estrogen potency, we developed a completely in vitro system (using radiometric and time-resolved FRET assays) to quantify independently three parameters: (a) the affinity of ligand binding to ER, (b) the affinity of coactivator binding to the ER·ligand complex, and (c) the potency of ligand recruitment of coactivator. We used this system to characterize the binding and potency of 12 estrogens with both ERα and ERβ. Some ligands showed good correlations between ligand binding affinity, coactivator binding affinity, and coactivator recruitment potency with both ERs, whereas others showed correlations with only one ER subtype or displayed discordant coactivator recruitment potencies. When ligands with low receptor binding affinity but high coactivator recruitment potencies to ERβ were evaluated in cell-based assays, elevation of cellular coactivator levels significantly and selectively improved their potency. Collectively, our results indicate that some low affinity estrogens may elicit greater cellular responses in those target cells that express higher levels of specific coactivators capable of binding to their ER complexes with high affinity. PMID:21321128

  13. Non-peptide ligand binding to the formyl peptide receptor FPR2--A comparison to peptide ligand binding modes.

    PubMed

    Stepniewski, Tomasz M; Filipek, Slawomir

    2015-07-15

    Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2. PMID:25882522

  14. Trypsin-Ligand Binding Free Energy Calculation with AMOEBA

    PubMed Central

    Shi, Yue; Jiao, Dian; Schnieders, Michael J.; Ren, Pengyu

    2010-01-01

    The binding free energies of several benzamidine-like inhibitors to trypsin were examined using a polarizable potential. All the computed binding free energies are in good agreement with the experimental data. From free energy decomposition, electrostatic interaction was found to be the driving force for the binding. Structural analysis shows that the ligands form hydrogen bonds with residues and water molecules nearby in a competitive fashion. The dependence of binding free energy on molecular dipole moment and polarizability was also studied. While the binding free energy is independent on the dipole moment, it shows a negative correlation with the polarizability. PMID:19965178

  15. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    PubMed

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  16. Application of BRET to monitor ligand binding to GPCRs

    PubMed Central

    Stoddart, Leigh A; Johnstone, Elizabeth K M; Wheal, Amanda J; Goulding, Joëlle; Robers, Matthew B; Machleidt, Thomas; Wood, Keith V

    2015-01-01

    Bioluminescence resonance energy transfer (BRET) is a well-established method for investigating protein-protein interactions. Here we present a novel BRET approach to monitor ligand binding to G protein-coupled receptors (GPCRs) on the surface of living cells made possible by the use of fluorescent ligands in combination with a novel bioluminescent protein (NanoLuc) that can be readily expressed on the N-terminus of GPCRs. PMID:26030448

  17. Application of BRET to monitor ligand binding to GPCRs.

    PubMed

    Stoddart, Leigh A; Johnstone, Elizabeth K M; Wheal, Amanda J; Goulding, Joëlle; Robers, Matthew B; Machleidt, Thomas; Wood, Keith V; Hill, Stephen J; Pfleger, Kevin D G

    2015-07-01

    Bioluminescence resonance energy transfer (BRET) is a well-established method for investigating protein-protein interactions. Here we present a BRET approach to monitor ligand binding to G protein-coupled receptors (GPCRs) on the surface of living cells made possible by the use of fluorescent ligands in combination with a bioluminescent protein (NanoLuc) that can be readily expressed on the N terminus of GPCRs. PMID:26030448

  18. VEGFR-2 conformational switch in response to ligand binding

    PubMed Central

    Sarabipour, Sarvenaz; Ballmer-Hofer, Kurt; Hristova, Kalina

    2016-01-01

    VEGFR-2 is the primary regulator of angiogenesis, the development of new blood vessels from pre-existing ones. VEGFR-2 has been hypothesized to be monomeric in the absence of bound ligand, and to undergo dimerization and activation only upon ligand binding. Using quantitative FRET and biochemical analysis, we show that VEGFR-2 forms dimers also in the absence of ligand when expressed at physiological levels, and that these dimers are phosphorylated. Ligand binding leads to a change in the TM domain conformation, resulting in increased kinase domain phosphorylation. Inter-receptor contacts within the extracellular and TM domains are critical for the establishment of the unliganded dimer structure, and for the transition to the ligand-bound active conformation. We further show that the pathogenic C482R VEGFR-2 mutant, linked to infantile hemangioma, promotes ligand-independent signaling by mimicking the structure of the ligand-bound wild-type VEGFR-2 dimer. DOI: http://dx.doi.org/10.7554/eLife.13876.001 PMID:27052508

  19. Helix-helix interfaces and ligand binding.

    PubMed

    Kurochkina, Natalya; Choekyi, Tsering

    2011-08-21

    Helix-helix parallel interfaces can be characterized by certain combinations of amino acids, which repeatedly occur at core positions a and d (leucine zipper nomenclature) in homologous and nonhomologous proteins and influence interhelical angles. Applied for the prediction of interhelical angles in glutathione S-transferase, intracellular chloride channel and annexin molecules from various sources, correct results were achieved in 58 out of 62 proteins. Interhelical angles are found to correlate with the conformation of the glutathione S-transferase ligands glutathione, s-hexylglutathione, glutathione sulfonic acid, and glutathione-s-dinitrobenzene. PMID:21620863

  20. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    SciTech Connect

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  1. Mechanistic insight into ligand binding to G-quadruplex DNA

    PubMed Central

    Di Leva, Francesco Saverio; Novellino, Ettore; Cavalli, Andrea; Parrinello, Michele; Limongelli, Vittorio

    2014-01-01

    Specific guanine-rich regions in human genome can form higher-order DNA structures called G-quadruplexes, which regulate many relevant biological processes. For instance, the formation of G-quadruplex at telomeres can alter cellular functions, inducing apoptosis. Thus, developing small molecules that are able to bind and stabilize the telomeric G-quadruplexes represents an attractive strategy for antitumor therapy. An example is 3-(benzo[d]thiazol-2-yl)-7-hydroxy-8-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)-2H-chromen-2-one (compound 1), recently identified as potent ligand of the G-quadruplex [d(TGGGGT)]4 with promising in vitro antitumor activity. The experimental observations are suggestive of a complex binding mechanism that, despite efforts, has defied full characterization. Here, we provide through metadynamics simulations a comprehensive understanding of the binding mechanism of 1 to the G-quadruplex [d(TGGGGT)]4. In our calculations, the ligand explores all the available binding sites on the DNA structure and the free-energy landscape of the whole binding process is computed. We have thus disclosed a peculiar hopping binding mechanism whereas 1 is able to bind both to the groove and to the 3’ end of the G-quadruplex. Our results fully explain the available experimental data, rendering our approach of great value for further ligand/DNA studies. PMID:24753420

  2. Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites

    PubMed Central

    Pineda-Molina, Estela; Reyes-Darias, José-Antonio; Lacal, Jesús; Ramos, Juan L.; García-Ruiz, Juan Manuel; Gavira, Jose A.; Krell, Tino

    2012-01-01

    Chemoreceptor-based signaling is a central mechanism in bacterial signal transduction. Receptors are classified according to the size of their ligand-binding region. The well-studied cluster I proteins have a 100- to 150-residue ligand-binding region that contains a single site for chemoattractant recognition. Cluster II receptors, which contain a 220- to 300-residue ligand-binding region and which are almost as abundant as cluster I receptors, remain largely uncharacterized. Here, we report high-resolution structures of the ligand-binding region of the cluster II McpS chemotaxis receptor (McpS-LBR) of Pseudomonas putida KT2440 in complex with different chemoattractants. The structure of McpS-LBR represents a small-molecule binding domain composed of two modules, each able to bind different signal molecules. Malate and succinate were found to bind to the membrane-proximal module, whereas acetate binds to the membrane-distal module. A structural alignment of the two modules revealed that the ligand-binding sites could be superimposed and that amino acids involved in ligand recognition are conserved in both binding sites. Ligand binding to both modules was shown to trigger chemotactic responses. Further analysis showed that McpS-like receptors were found in different classes of proteobacteria, indicating that this mode of response to different carbon sources may be universally distributed. The physiological relevance of the McpS architecture may lie in its capacity to respond with high sensitivity to the preferred carbon sources malate and succinate and, at the same time, mediate lower sensitivity responses to the less preferred but very abundant carbon source acetate. PMID:23112148

  3. Structural Dynamics of the Cereblon Ligand Binding Domain

    PubMed Central

    Hartmann, Marcus D.; Boichenko, Iuliia; Coles, Murray; Lupas, Andrei N.; Hernandez Alvarez, Birte

    2015-01-01

    Cereblon, a primary target of thalidomide and its derivatives, has been characterized structurally from both bacteria and animals. Especially well studied is the thalidomide binding domain, CULT, which shows an invariable structure across different organisms and in complex with different ligands. Here, based on a series of crystal structures of a bacterial representative, we reveal the conformational flexibility and structural dynamics of this domain. In particular, we follow the unfolding of large fractions of the domain upon release of thalidomide in the crystalline state. Our results imply that a third of the domain, including the thalidomide binding pocket, only folds upon ligand binding. We further characterize the structural effect of the C-terminal truncation resulting from the mental-retardation linked R419X nonsense mutation in vitro and offer a mechanistic hypothesis for its irresponsiveness to thalidomide. At 1.2Å resolution, our data provide a view of thalidomide binding at atomic resolution. PMID:26024445

  4. Anisotropic energy flow and allosteric ligand binding in albumin

    PubMed Central

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265

  5. Anisotropic energy flow and allosteric ligand binding in albumin

    NASA Astrophysics Data System (ADS)

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.

  6. Cloud computing for protein-ligand binding site comparison.

    PubMed

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  7. Cloud Computing for Protein-Ligand Binding Site Comparison

    PubMed Central

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  8. RXR function requires binding to an endogenous terpenoid ligand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The issue of whether the nuclear receptor RXR must bind to an endogenous, nanomolar affinity ligand in order to perform its natural function is still unsettled (1). On the basis of our previous studies establishing that the Drosophilamelanogaster ortholog of the retinoid X receptor ("ultraspiracle,"...

  9. Enhanced ligand sampling for relative protein-ligand binding free energy calculations.

    PubMed

    Kaus, Joseph W; McCammon, J Andrew

    2015-05-21

    Free energy calculations are used to study how strongly potential drug molecules interact with their target receptors. The accuracy of these calculations depends on the accuracy of the molecular dynamics (MD) force field as well as proper sampling of the major conformations of each molecule. However, proper sampling of ligand conformations can be difficult when there are large barriers separating the major ligand conformations. An example of this is for ligands with an asymmetrically substituted phenyl ring, where the presence of protein loops hinders the proper sampling of the different ring conformations. These ring conformations become more difficult to sample when the size of the functional groups attached to the ring increases. The Adaptive Integration Method (AIM) has been developed, which adaptively changes the alchemical coupling parameter λ during the MD simulation so that conformations sampled at one λ can aid sampling at the other λ values. The Accelerated Adaptive Integration Method (AcclAIM) builds on AIM by lowering potential barriers for specific degrees of freedom at intermediate λ values. However, these methods may not work when there are very large barriers separating the major ligand conformations. In this work, we describe a modification to AIM that improves sampling of the different ring conformations, even when there is a very large barrier between them. This method combines AIM with conformational Monte Carlo sampling, giving improved convergence of ring populations and the resulting free energy. This method, called AIM/MC, is applied to study the relative binding free energy for a pair of ligands that bind to thrombin and a different pair of ligands that bind to aspartyl protease β-APP cleaving enzyme 1 (BACE1). These protein-ligand binding free energy calculations illustrate the improvements in conformational sampling and the convergence of the free energy compared to both AIM and AcclAIM. PMID:25906170

  10. Enhanced Ligand Sampling for Relative Protein–Ligand Binding Free Energy Calculations

    PubMed Central

    2016-01-01

    Free energy calculations are used to study how strongly potential drug molecules interact with their target receptors. The accuracy of these calculations depends on the accuracy of the molecular dynamics (MD) force field as well as proper sampling of the major conformations of each molecule. However, proper sampling of ligand conformations can be difficult when there are large barriers separating the major ligand conformations. An example of this is for ligands with an asymmetrically substituted phenyl ring, where the presence of protein loops hinders the proper sampling of the different ring conformations. These ring conformations become more difficult to sample when the size of the functional groups attached to the ring increases. The Adaptive Integration Method (AIM) has been developed, which adaptively changes the alchemical coupling parameter λ during the MD simulation so that conformations sampled at one λ can aid sampling at the other λ values. The Accelerated Adaptive Integration Method (AcclAIM) builds on AIM by lowering potential barriers for specific degrees of freedom at intermediate λ values. However, these methods may not work when there are very large barriers separating the major ligand conformations. In this work, we describe a modification to AIM that improves sampling of the different ring conformations, even when there is a very large barrier between them. This method combines AIM with conformational Monte Carlo sampling, giving improved convergence of ring populations and the resulting free energy. This method, called AIM/MC, is applied to study the relative binding free energy for a pair of ligands that bind to thrombin and a different pair of ligands that bind to aspartyl protease β-APP cleaving enzyme 1 (BACE1). These protein–ligand binding free energy calculations illustrate the improvements in conformational sampling and the convergence of the free energy compared to both AIM and AcclAIM. PMID:25906170

  11. How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels.

    PubMed

    Tagliazucchi, Mario; Szleifer, Igal

    2015-10-01

    We present systematic studies for the binding of small model proteins to ligands attached to the inner walls of long nanochannels and short nanopores by polymeric tethers. Binding of proteins to specific ligands inside nanometric channels and pores leads to changes in their ionic conductance, which have been exploited in sensors that quantify the concentration of the proteins in solution. The theoretical predictions presented in this work are aimed to provide a fundamental understanding of protein binding under geometrically confined environments and to guide the design of this kind of nanochannel-based sensors. The theory predicts that the fraction of the channel volume filled by bound proteins is a nonmonotonic function of the channel radius, the length of the tethers, the surface density of the ligands and the size of the proteins. Notably, increasing the density of ligands, decreasing the size of the channel or increasing the size of the protein may lead to a decrease of the fraction of the channel volume filled by bound proteins. These results are explained from the incomplete binding of proteins to the ligands due to repulsive protein-protein and protein-ligand steric interactions. Our work suggests strategies to optimize the change in conductance due to protein binding, for example: (i) proteins much smaller than the radius of the channel may effectively block the channel if tethers of appropriate length are used, and (ii) a large decrease in conductance upon protein binding can be achieved if the channel and the protein are oppositely charged. PMID:26368839

  12. Biphasic binding kinetics between FepA and its ligands.

    PubMed

    Payne, M A; Igo, J D; Cao, Z; Foster, S B; Newton, S M; Klebba, P E

    1997-08-29

    The Escherichia coli FepA protein is an energy- and TonB-dependent, ligand-binding porin that functions as a receptor for the siderophore ferric enterobactin and colicins B and D. We characterized the kinetic and thermodynamic parameters associated with the initial, energy-independent steps in ligand binding to FepA. In vivo experiments produced Kd values of 24, 185, and 560 nM for ferric enterobactin, colicin B, and colicin D, respectively. The siderophore and colicin B bound to FepA with a 1:1 stoichiometry, but colicin D bound to a maximum level that was 3-fold lower. Preincubation with ferric enterobactin prevented colicin B binding, and preincubation with colicin B prevented ferric enterobactin binding. Colicin B release from FepA was unexpectedly slow in vivo, about 10-fold slower than ferric enterobactin release. This slow dissociation of the colicin B.FepA complex facilitated the affinity purification of FepA and FepA mutants with colicin B-Sepharose. Analysis of a fluorescent FepA derivative showed that ferric enterobactin and colicin B adsorbed with biphasic kinetics, suggesting that both ligands bind in at least two distinct steps, an initial rapid stage and a subsequent slower step, that presumably establishes a transport-competent complex. PMID:9268330

  13. Rationalizing Tight Ligand Binding through Cooperative Interaction Networks

    PubMed Central

    2011-01-01

    Small modifications of the molecular structure of a ligand sometimes cause strong gains in binding affinity to a protein target, rendering a weakly active chemical series suddenly attractive for further optimization. Our goal in this study is to better rationalize and predict the occurrence of such interaction hot-spots in receptor binding sites. To this end, we introduce two new concepts into the computational description of molecular recognition. First, we take a broader view of noncovalent interactions and describe protein–ligand binding with a comprehensive set of favorable and unfavorable contact types, including for example halogen bonding and orthogonal multipolar interactions. Second, we go beyond the commonly used pairwise additive treatment of atomic interactions and use a small world network approach to describe how interactions are modulated by their environment. This approach allows us to capture local cooperativity effects and considerably improves the performance of a newly derived empirical scoring function, ScorpionScore. More importantly, however, we demonstrate how an intuitive visualization of key intermolecular interactions, interaction networks, and binding hot-spots supports the identification and rationalization of tight ligand binding. PMID:22087588

  14. Dynamics of biomolecules, ligand binding & biological functions

    NASA Astrophysics Data System (ADS)

    Yi, Myunggi

    Proteins are flexible and dynamic. One static structure alone does not often completely explain biological functions of the protein, and some proteins do not even have high resolution structures. In order to provide better understanding to the biological functions of nicotinic acetylcholine receptor, Diphtheria toxin repressor and M2 proton channel, the dynamics of these proteins are investigated using molecular modeling and molecular dynamics (MD) simulations. With absence of high resolution structure of alpha7 receptor, the homology models of apo and cobra toxin bound forms have been built. From the MD simulations of these model structures, we observed one subunit of apo simulation moved away from other four subunits. With local movement of flexible loop regions, the whole subunit tilted clockwise. These conformational changes occurred spontaneously, and were strongly correlated with the conformational change when the channel is activated by agonists. Unlike other computational studies, we directly compared our model of open conformation with the experimental data. However, the subunits of toxin bound form were stable, and conformational change is restricted by the bound cobra toxin. These results provide activation and inhibition mechanisms of alpha7 receptors and a possible explanation for intermediate conductance of the channel. Intramolecular complex of SH3-like domain with a proline-rich (Pr) peptide segment in Diphtheria toxin repressor (DtxR) is stabilized in inactive state. Upon activation of DtxR by transition metal binding, this intramolecular complex should be dissociated. The dynamics of this intramolecular complex is investigated using MD simulations and NMR spectroscopy. We observed spontaneous opening and closing motions of the Pr segment binding pockets in both Pr-SH3 and SH3 simulations. The MD simulation results and NMR relaxation data suggest that the Pr segment exhibits a binding ↔ unbinding equilibrium. Despite a wealth of experimental

  15. Lipid A binding proteins in macrophages detected by ligand blotting

    SciTech Connect

    Hampton, R.Y.; Golenbock, D.T.; Raetz, C.R.H.

    1987-05-01

    Endotoxin (LPS) stimulates a variety of eukaryotic cells. These actions are involved in the pathogenesis of Gram-negative septicemia. The site of action of the LPS toxic moiety, lipid A (LA), is unclear. Their laboratory has previously identified a bioactive LA precursor lipid IV/sub A/, which can be enzymatically labeled with /sup 32/P/sub i/ (10/sup 9/ dpm/nmole) and purified (99%). They now show that this ligand binds to specific proteins immobilized on nitrocellulose (NC) from LPS-sensitive RAW 264.7 cultured macrophages. NC blots were incubated with (/sup 32/P)-IV/sub A/ in a buffer containing BSA, NaCl, polyethylene glycol, and azide. Binding was assessed using autoradiography or scintillation counting. Dot blot binding of the radioligand was inhibited by excess cold IV/sub A/, LA, or ReLPS but not by phosphatidylcholine, cardiolipin, phosphatidylinositol, or phosphatidic acid. Binding was trypsin-sensitive and dependent on protein concentration. Particulate macrophage proteins were subjected to SDS-PAGE and then electroblotted onto NC. Several discrete binding proteins were observed. Identical treatment of fetal bovine serum or molecular weight standards revealed no detectable binding. By avoiding high nonspecific binding of intact membranes, this ligand blotting assay may be useful in elucidating the molecular actions of LPS.

  16. Ligand migration and binding in nonsymbiotic hemoglobins of Arabidopsis thaliana.

    PubMed

    Nienhaus, Karin; Dominici, Paola; Astegno, Alessandra; Abbruzzetti, Stefania; Viappiani, Cristiano; Nienhaus, G Ulrich

    2010-09-01

    We have studied carbon monoxide (CO) migration and binding in the nonsymbiotic hemoglobins AHb1 and AHb2 of Arabidopsis thaliana using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) at cryogenic temperatures. Both proteins have similar amino acid sequences but display pronounced differences in ligand binding properties, at both physiological and cryogenic temperatures. Near neutral pH, the distal HisE7 side chain is close to the heme-bound ligand in the majority of AHb1-CO molecules, as indicated by a low CO stretching frequency at 1921 cm(-1). In this fraction, two CO docking sites can be populated, the primary site B and the secondary site C. When the pH is lowered, a high-frequency stretching band at approximately 1964 cm(-1) grows at the expense of the low-frequency band, indicating that HisE7 protonates and, concomitantly, moves away from the bound ligand. Geminate rebinding barriers are markedly different for the two conformations, and docking site C is not accessible in the low-pH conformation. Rebinding of NO ligands was observed only from site B of AHb1, regardless of conformation. In AHb2, the HisE7 side chain is removed from the bound ligand; rebinding barriers are low, and CO molecules can populate only primary docking site B. These results are interpreted in terms of differences in the active site structures and physiological functions. PMID:20666470

  17. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.

    PubMed

    Tinberg, Christine E; Khare, Sagar D

    2016-01-01

    The ability to de novo design proteins that can bind small molecules has wide implications for synthetic biology and medicine. Combining computational protein design with the high-throughput screening of mutagenic libraries of computationally designed proteins is emerging as a general approach for creating binding proteins with programmable binding modes, affinities, and selectivities. The computational step enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended ligand, and targeted mutagenic screening allows for validation and refinement of the computational model as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic libraries can provide insights into the mutagenic binding landscape and enable further affinity improvements. Moreover, in such a combined computational-experimental approach where the binding mode is preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the experimental aspects of a combined computational-experimental approach for designing-using the software suite Rosetta-proteins that bind a small molecule of choice and engineering, using fluorescence-activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structurally related steroids. PMID:27094290

  18. Solvent fluctuations in hydrophobic cavity–ligand binding kinetics

    PubMed Central

    Setny, Piotr; Baron, Riccardo; Michael Kekenes-Huskey, Peter; McCammon, J. Andrew; Dzubiella, Joachim

    2013-01-01

    Water plays a crucial part in virtually all protein–ligand binding processes in and out of equilibrium. Here, we investigate the role of water in the binding kinetics of a ligand to a prototypical hydrophobic pocket by explicit-water molecular dynamics (MD) simulations and implicit diffusional approaches. The concave pocket in the unbound state exhibits wet/dry hydration oscillations whose magnitude and time scale are significantly amplified by the approaching ligand. In turn, the ligand’s stochastic motion intimately couples to the slow hydration fluctuations, leading to a sixfold-enhanced friction in the vicinity of the pocket entrance. The increased friction considerably decelerates association in the otherwise barrierless system, indicating the importance of molecular-scale hydrodynamic effects in cavity–ligand binding arising due to capillary fluctuations. We derive and analyze the diffusivity profile and show that the mean first passage time distribution from the MD simulation can be accurately reproduced by a standard Brownian dynamics simulation if the appropriate position-dependent friction profile is included. However, long-time decays in the water–ligand (random) force autocorrelation demonstrate violation of the Markovian assumption, challenging standard diffusive approaches for rate prediction. Remarkably, the static friction profile derived from the force correlations strongly resembles the profile derived on the Markovian assumption apart from a simple shift in space, which can be rationalized by a time–space retardation in the ligand’s downhill dynamics toward the pocket. The observed spatiotemporal hydrodynamic coupling may be of biological importance providing the time needed for conformational receptor–ligand adjustments, typical of the induced-fit paradigm. PMID:23297241

  19. Ligand Migration and Binding in Myoglobin Mutant L29W

    NASA Astrophysics Data System (ADS)

    Nienhaus, G. Ulrich; Waschipky, Robert; Nienhaus, Karin; Minkow, Oleksandr; Ostermann, Andreas; Parak, Fritz G.

    2001-09-01

    Myoglobin, a small globular heme protein that binds gaseous ligands such as O2, CO, and NO reversibly at the heme iron, has for many years been a paradigm for studying the effects of structure and dynamics on protein reactions. Time-resolved spectroscopic measurements after photodissociation of the ligand reveal a complex ligand binding reaction with multiple kinetic intermediates, resulting from protein relaxation and movements of the ligand within the protein. To observe structural changes induced by ligand dissociation, we have investigated carbonmonoxy myoglobin (MbCO) mutant L29W using time-resolved infrared spectroscopy in combination with x-ray crystallography. The presence of two distinct infrared stretch bands of the bound CO, AI at 1945 cm-1 and AII at 1955 cm-1, implies that L29W MbCO assumes two different conformations at neutral pH. Low-temperature flash photolysis experiments with monitoring of the absorption changes in the individual CO lines reveal markedly different rebinding properties. While recombination in AII is conceptually simple and well described by a two-state transition involving a distribution of enthalpy barriers, recombination in AI is more complicated: Besides a fast kinetic component, a second, slower kinetic component appears; its population grows with increasing temperature. X-ray crystallography of crystals illuminated below 180 K to photodissociate the CO reveals that the slow component arises from ligands that have migrated from their initial docking site to a remote site within the distal heme pocket. This process occurs in an essentially immobilized, frozen protein. Subsequently, ligands rebind by thermal activation over a barrier that is much higher than the barrier for recombination from the initial docking site. Upon photodissociation above 180 K, ligands escape from the distal pocket, aided by protein fluctuations that transiently open exit channels. The x-ray structure shows a large proportion of ligands in a cavity on

  20. Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site

    PubMed Central

    Boyce, Sarah E.; Mobley, David L.; Rocklin, Gabriel; Graves, Alan P.

    2009-01-01

    We present a combined experimental and modeling study of organic ligand molecules binding to a slightly polar engineered cavity site in T4 lysozyme (L99A/M102Q). For modeling, we computed alchemical absolute binding free energies. These were blind tests performed prospectively on 13 diverse, previously untested candidate ligand molecules. We predicted that eight compounds would bind to the cavity and five would not; 11 of 13 predictions were correct at this level. The RMS error to the measurable absolute binding energies was 1.8 kcal/mol. In addition, we computed relative binding free energies for six phenol derivatives starting from two known ligands: phenol and catechol. The average RMS error in the relative free energy prediction was 2.5 (phenol) and 1.1 (catechol) kcal/mol. To understand these results at atomic resolution, we obtained x-ray co-complex structures for nine of the diverse ligands and for all six phenol analogs. The average RMSD of the predicted pose to the experiment was 2.0Å (diverse set), 1.8Å (phenol derived predictions) and 1.2Å (catechol derived predictions). We found that to predict accurate affinities and rank-orderings required near-native starting orientations of the ligand in the binding site. Unanticipated binding modes, multiple ligand binding, and protein conformational change all proved challenging for the free energy methods. We believe these results can help guide future improvements in physics-based absolute binding free energy methods. PMID:19782087

  1. Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures.

    PubMed

    Ahmed, Aqeel; Smith, Richard D; Clark, Jordan J; Dunbar, James B; Carlson, Heather A

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein-ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23,269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330

  2. Modelling of trace metal uptake by roots taking into account complexation by exogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Jean-Marc, Custos; Christian, Moyne; Sterckeman, Thibault

    2010-05-01

    The context of this study is phytoextraction of soil trace metals such as Cd, Pb or Zn. Trace metal transfer from soil to plant depends on physical and chemical processes such as minerals alteration, transport, adsorption/desorption, reactions in solution and biological processes including the action of plant roots and of associated micro-flora. Complexation of metal ions by organic ligands is considered to play a role on the availability of trace metals for roots in particular in the event that synthetic ligands (EDTA, NTA, etc.) are added to the soil to increase the solubility of the contaminants. As this role is not clearly understood, we wanted to simulate it in order to quantify the effect of organic ligands on root uptake of trace metals and produce a tool which could help in optimizing the conditions of phytoextraction.We studied the effect of an aminocarboxilate ligand on the absorption of the metal ion by roots, both in hydroponic solution and in soil solution, for which we had to formalize the buffer power for the metal. We assumed that the hydrated metal ion is the only form which can be absorbed by the plants. Transport and reaction processes were modelled for a system made up of the metal M, a ligand L and the metal complex ML. The Tinker-Nye-Barber model was adapted to describe the transport of solutes M, L and ML in the soil and absorption of M by the roots. This allowed to represent the interactions between transport, chelating reactions, absorption of the solutes at the root surface, root growth with time, in order to simulate metal uptake by a whole root system.Several assumptions were tested such as i) absorption of the metal by an infinite sink and according to a Michaelis-Menten kinetics, solutes transport by diffusion with and without ii) mass flow and iii) soil buffer power for the ligand L. In hydroponic solution (without soil buffer power), ligands decreased the trace metal flux towards roots, as they reduced the concentration of hydrated

  3. Coarse-grained molecular dynamics simulations of protein-ligand binding.

    PubMed

    Negami, Tatsuki; Shimizu, Kentaro; Terada, Tohru

    2014-09-30

    Coarse-grained molecular dynamics (CGMD) simulations with the MARTINI force field were performed to reproduce the protein-ligand binding processes. We chose two protein-ligand systems, the levansucrase-sugar (glucose or sucrose), and LinB-1,2-dichloroethane systems, as target systems that differ in terms of the size and shape of the ligand-binding pocket and the physicochemical properties of the pocket and the ligand. Spatial distributions of the Coarse-grained (CG) ligand molecules revealed potential ligand-binding sites on the protein surfaces other than the real ligand-binding sites. The ligands bound most strongly to the real ligand-binding sites. The binding and unbinding rate constants obtained from the CGMD simulation of the levansucrase-sucrose system were approximately 10 times greater than the experimental values; this is mainly due to faster diffusion of the CG ligand in the CG water model. We could obtain dissociation constants close to the experimental values for both systems. Analysis of the ligand fluxes demonstrated that the CG ligand molecules entered the ligand-binding pockets through specific pathways. The ligands tended to move through grooves on the protein surface. Thus, the CGMD simulations produced reasonable results for the two different systems overall and are useful for studying the protein-ligand binding processes. PMID:25043724

  4. Allosteric Ligand Binding and Anisotropic Energy Flow in Albumin

    NASA Astrophysics Data System (ADS)

    Dyer, Brian

    2014-03-01

    Protein allostery usually involves propagation of local structural changes through the protein to a remote site. Coupling of structural changes at remote sites is thought to occur through anisotropic energy transport, but the nature of this process is poorly understood. We have studied the relationship between allosteric interactions of remote ligand binding sites of the protein and energy flow through the structure of bovine serum albumin (BSA). We applied ultrafast infrared spectroscopy to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic flow through the protein structure following input of thermal energy into the flexible ligand binding sites. We also observe anisotropic heat flow through the structure, without local heating of the rigid helix bundles that connect these sites. We will discuss the implications of this efficient energy transport mechanism with regard to the allosteric propagation of binding energy through the connecting helix structures.

  5. CO Binding and Ligand Discrimination in Human Myeloperoxidase†

    PubMed Central

    Murphy, Emma J.; Maréchal, Amandine; Segal, Anthony W.; Rich, Peter R.

    2015-01-01

    Despite the fact that ferrous myeloperoxidase (MPO) can bind both O2 and NO, its ability to bind CO has been questioned. UV/visible spectroscopy was used to confirm that CO induces small spectral shifts in ferrous MPO, and Fourier transform infrared difference spectroscopy showed definitively that these arose from formation of a heme ferrous–CO compound. Recombination rates after CO photolysis were monitored at 618 and 645 nm as a function of CO concentration and pH. At pH 6.3, kon and koff were 0.14 mM−1·s−1 and 0.23 s−1, respectively, yielding an unusually high KD of 1.6 mM. This affinity of MPO for CO is 10 times weaker than its affinity for O2. The observed rate constant for CO binding increased with increasing pH and was governed by a single protonatable group with a pKa of 7.8. Fourier transform infrared spectroscopy revealed two different conformations of bound CO with frequencies at 1927 and 1942 cm−1. Their recombination rate constants were identical, indicative of two forms of bound CO that are in rapid thermal equilibrium rather than two distinct protein populations with different binding sites. The ratio of bound states was pH-dependent (pKa ≈ 7.4) with the 1927 cm−1 form favored at high pH. Structural factors that account for the ligand-binding properties of MPO are identified by comparisons with published data on a range of other ligand-binding heme proteins, and support is given to the recent suggestion that the proximal His336 in MPO is in a true imidazolate state. PMID:20146436

  6. Sequence variation in ligand binding sites in proteins

    PubMed Central

    Magliery, Thomas J; Regan, Lynne

    2005-01-01

    Background The recent explosion in the availability of complete genome sequences has led to the cataloging of tens of thousands of new proteins and putative proteins. Many of these proteins can be structurally or functionally categorized from sequence conservation alone. In contrast, little attention has been given to the meaning of poorly-conserved sites in families of proteins, which are typically assumed to be of little structural or functional importance. Results Recently, using statistical free energy analysis of tetratricopeptide repeat (TPR) domains, we observed that positions in contact with peptide ligands are more variable than surface positions in general. Here we show that statistical analysis of TPRs, ankyrin repeats, Cys2His2 zinc fingers and PDZ domains accurately identifies specificity-determining positions by their sequence variation. Sequence variation is measured as deviation from a neutral reference state, and we present probabilistic and information theory formalisms that improve upon recently suggested methods such as statistical free energies and sequence entropies. Conclusion Sequence variation has been used to identify functionally-important residues in four selected protein families. With TPRs and ankyrin repeats, protein families that bind highly diverse ligands, the effect is so pronounced that sequence "hypervariation" alone can be used to predict ligand binding sites. PMID:16194281

  7. Proteus and the Design of Ligand Binding Sites.

    PubMed

    Polydorides, Savvas; Michael, Eleni; Mignon, David; Druart, Karen; Archontis, Georgios; Simonson, Thomas

    2016-01-01

    This chapter describes the organization and use of Proteus, a multitool computational suite for the optimization of protein and ligand conformations and sequences, and the calculation of pK α shifts and relative binding affinities. The software offers the use of several molecular mechanics force fields and solvent models, including two generalized Born variants, and a large range of scoring functions, which can combine protein stability, ligand affinity, and ligand specificity terms, for positive and negative design. We present in detail the steps for structure preparation, system setup, construction of the interaction energy matrix, protein sequence and structure optimizations, pK α calculations, and ligand titration calculations. We discuss illustrative examples, including the chemical/structural optimization of a complex between the MHC class II protein HLA-DQ8 and the vinculin epitope, and the chemical optimization of the compstatin analog Ac-Val4Trp/His9Ala, which regulates the function of protein C3 of the complement system. PMID:27094287

  8. A determination of Mg(+)-ligand binding energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry

    1991-01-01

    Theoretical calculations employing large basis sets and including correlation are carried out for Mg(+) with methanol, water, and formaldehyde. For Mg(+) with ethanol and acetaldehyde, the trends in the binding energies are studied at the self-consistent-field level. The predictions for the binding energy of Mg(+) to methanol and water of 41 + or - 5 and 36 + or - 5 kcal/mol, respectively, are much less than the experimental upper bounds, of 61 + or - 5 and 60 + or - 5 kcal mol, determined by using photodissociation techniques. The theoretical results are inconsistent with the onset of Mg(+) production observed in the photodissociation experiments, as the smallest absorptions are calculated at about 80 kcal/mol for both Mg(+)-CH3OH and Mg(+)-H2O, and these transitions are to bound excited states. The binding energy for Mg(+) with formaldehyde is predicted to be similar to Mg(+)-H2O. The relative binding energies are in reasonable agreement with experiment. The binding energy of a second water molecule to Mg(+) is predicted to be similar to the first. This suggests that the reduced reaction rate observed for the second ligand is not a consequence of a significantly smaller binding energy, at least for the smaller ligards such as those considered in this work.

  9. Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets.

    PubMed

    Chen, Wan-Na; Nitsche, Christoph; Pilla, Kala Bharath; Graham, Bim; Huber, Thomas; Klein, Christian D; Otting, Gottfried

    2016-04-01

    Structure-guided drug design relies on detailed structural knowledge of protein-ligand complexes, but crystallization of cocomplexes is not always possible. Here we present a sensitive nuclear magnetic resonance (NMR) approach to determine the binding mode of tightly binding lead compounds in complex with difficult target proteins. In contrast to established NMR methods, it does not depend on rapid exchange between bound and free ligand or on stable isotope labeling, relying instead on a tert-butyl group as a chemical label. tert-Butyl groups are found in numerous protein ligands and deliver an exceptionally narrow and tall (1)H NMR signal. We show that a tert-butyl group also produces outstandingly intense intra- and intermolecular NOESY cross-peaks. These enable measurements of pseudocontact shifts generated by lanthanide tags attached to the protein, which in turn allows positioning of the ligand on the protein. Once the ligand has been located, assignments of intermolecular NOEs become possible even without prior resonance assignments of protein side chains. The approach is demonstrated with the dengue virus NS2B-NS3 protease in complex with a high-affinity ligand containing a tert-butyl group. PMID:26974502

  10. Observation of Protein Structural Vibrational Mode Sensitivity to Ligand Binding

    NASA Astrophysics Data System (ADS)

    Niessen, Katherine; Xu, Mengyang; Snell, Edward; Markelz, Andrea

    2014-03-01

    We report the first measurements of the dependence of large-scale protein intramolecular vibrational modes on ligand binding. These collective vibrational modes in the terahertz (THz) frequency range (5-100 cm-1) are of great interest due to their predicted relation to protein function. Our technique, Crystals Anisotropy Terahertz Microscopy (CATM), allows for room temperature, table-top measurements of the optically active intramolecular modes. CATM measurements have revealed surprisingly narrowband features. CATM measurements are performed on single crystals of chicken egg-white lysozyme (CEWL) as well as CEWL bound to tri-N-acetylglucosamine (CEWL-3NAG) inhibitor. We find narrow band resonances that dramatically shift with binding. Quasiharmonic calculations are performed on CEWL and CEWL-3NAG proteins with CHARMM using normal mode analysis. The expected CATM response of the crystals is then calculated by summing over all protein orientations within the unit cell. We will compare the CATM measurements with the calculated results and discuss the changes which arise with protein-ligand binding. This work is supported by NSF grant MRI 2 grant DBI2959989.

  11. Exploring Hydrophobic Binding Surfaces Using Comfa and Flexible Hydrophobic Ligands

    NASA Astrophysics Data System (ADS)

    Thakkar, Shraddha; Sanchez, Rosa. I.; Bhuveneswaran, Chidambaram; Compadre, Cesar M.

    2011-06-01

    Cysteine proteinases are a very important group of enzymes involved in a variety of physiological and pathological processes including cancer metastasis and rheumatoid arthritis. In this investigation we used 3D-Quantitative Structure Activity Relationships (3D-QSAR) techniques to model the binding of a variety of substrates to two cysteine proteinases, papain, and cathepsin B. The analysis was performed using Comparative Molecular Field Analysis (CoMFA). The molecules were constructed using standard bond angles and lengths, minimized and aligned. Charges were calculated using the PM3 method in MOPAC. The CoMFA models derived for the binding of the studied substrates to the two proteinases were compared with the expected results from the experimental X-ray crystal structures of the same proteinases. The results showed the value of CoMFA modeling of flexible hydrophobic ligands to analyze ligand binding to protein receptors, and could also serve as the basis to design specific inhibitors of cysteine proteinases with potential therapeutic value.

  12. FOLLITROPIN RECEPTORS CONTAIN CRYPTIC LIGAND BINDING SITES1

    PubMed Central

    Lin, Win; Bernard, Michael P.; Cao, Donghui; Myers, Rebecca V.; Kerrigan, John E.; Moyle, William R.

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with an FSHR/LHR chimera having only two unique LHR residues similar to the manners in which they dock with LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  13. Conformational dynamics and thermodynamics of protein-ligand binding studied by NMR relaxation.

    PubMed

    Akke, Mikael

    2012-04-01

    Protein conformational dynamics can be critical for ligand binding in two ways that relate to kinetics and thermodynamics respectively. First, conformational transitions between different substates can control access to the binding site (kinetics). Secondly, differences between free and ligand-bound states in their conformational fluctuations contribute to the entropy of ligand binding (thermodynamics). In the present paper, I focus on the second topic, summarizing our recent results on the role of conformational entropy in ligand binding to Gal3C (the carbohydrate-recognition domain of galectin-3). NMR relaxation experiments provide a unique probe of conformational entropy by characterizing bond-vector fluctuations at atomic resolution. By monitoring differences between the free and ligand-bound states in their backbone and side chain order parameters, we have estimated the contributions from conformational entropy to the free energy of binding. Overall, the conformational entropy of Gal3C increases upon ligand binding, thereby contributing favourably to the binding affinity. Comparisons with the results from isothermal titration calorimetry indicate that the conformational entropy is comparable in magnitude to the enthalpy of binding. Furthermore, there are significant differences in the dynamic response to binding of different ligands, despite the fact that the protein structure is virtually identical in the different protein-ligand complexes. Thus both affinity and specificity of ligand binding to Gal3C appear to depend in part on subtle differences in the conformational fluctuations that reflect the complex interplay between structure, dynamics and ligand interactions. PMID:22435823

  14. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  15. Ligand Binding to Chlorite Dismutase from Magnetospirillum sp.

    PubMed

    De Schutter, Amy; Correia, Hugo D; Freire, Diana M; Rivas, María G; Rizzi, Alberto; Santos-Silva, Teresa; González, Pablo J; Van Doorslaer, Sabine

    2015-10-29

    Chlorite dismutase (Cld) catalyzes the reduction of chlorite to chloride and dioxygen. Here, the ligand binding to Cld of Magnetospirillum sp. (MaCld) is investigated with X-ray crystallography and electron paramagnetic resonance (EPR). EPR reveals a large heterogeneity in the structure of wild-type MaCld, showing a variety of low- and high-spin ferric heme forms. Addition of an axial ligand, such as azide or imidazole, removes this heterogeneity almost entirely. This is in line with the two high resolution crystal structures of MaCld obtained in the presence of azide and thiocyanate that show the coordination of the ligands to the heme iron. The crystal structure of the MaCld-azide complex reveals a single well-defined orientation of the azide molecule in the heme pocket. EPR shows, however, a pH-dependent heme structure, probably due to acid-base transitions of the surrounding amino-acid residues stabilizing azide. For the azide and imidazole complex of MaCld, the hyperfine and nuclear quadrupole interactions with the close-by (14)N and (1)H nuclei are determined using pulsed EPR. These values are compared to the corresponding data for the low-spin forms observed in the ferric wild-type MaCld and to existing EPR data on azide and imidazole complexes of other heme proteins. PMID:26287794

  16. The Movable Type Method Applied to Protein-Ligand Binding

    PubMed Central

    Zheng, Zheng; Ucisik, Melek N.; Merz, Kenneth M.

    2013-01-01

    Accurately computing the free energy for biological processes like protein folding or protein-ligand association remains a challenging problem. Both describing the complex intermolecular forces involved and sampling the requisite configuration space make understanding these processes innately difficult. Herein, we address the sampling problem using a novel methodology we term “movable type”. Conceptually it can be understood by analogy with the evolution of printing and, hence, the name movable type. For example, a common approach to the study of protein-ligand complexation involves taking a database of intact drug-like molecules and exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing where each page had to be laboriously created prior to printing a book. However, printing evolved to an approach where a database of symbols (letters, numerals, etc.) was created and then assembled using a movable type system, which allowed for the creation of all possible combinations of symbols on a given page, thereby, revolutionizing the dissemination of knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in protein-ligand complexes and then creating two databases: one with their associated pairwise distant dependent energies and another associated with the probability of how these pairs can combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two databases coupled with the principles of statistical mechanics allows us to accurately estimate binding free energies as well as the pose of a ligand in a receptor. This method, by its mathematical construction, samples all of configuration space of a selected region (the protein active site here) in one shot without resorting to brute force sampling schemes involving Monte Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely efficient. Importantly, this method explores the

  17. The Movable Type Method Applied to Protein-Ligand Binding.

    PubMed

    Zheng, Zheng; Ucisik, Melek N; Merz, Kenneth M

    2013-12-10

    Accurately computing the free energy for biological processes like protein folding or protein-ligand association remains a challenging problem. Both describing the complex intermolecular forces involved and sampling the requisite configuration space make understanding these processes innately difficult. Herein, we address the sampling problem using a novel methodology we term "movable type". Conceptually it can be understood by analogy with the evolution of printing and, hence, the name movable type. For example, a common approach to the study of protein-ligand complexation involves taking a database of intact drug-like molecules and exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing where each page had to be laboriously created prior to printing a book. However, printing evolved to an approach where a database of symbols (letters, numerals, etc.) was created and then assembled using a movable type system, which allowed for the creation of all possible combinations of symbols on a given page, thereby, revolutionizing the dissemination of knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in protein-ligand complexes and then creating two databases: one with their associated pairwise distant dependent energies and another associated with the probability of how these pairs can combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two databases coupled with the principles of statistical mechanics allows us to accurately estimate binding free energies as well as the pose of a ligand in a receptor. This method, by its mathematical construction, samples all of configuration space of a selected region (the protein active site here) in one shot without resorting to brute force sampling schemes involving Monte Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely efficient. Importantly, this method explores the free

  18. Effect of ECM Stiffness on Integrin-Ligand Binding Strength

    NASA Astrophysics Data System (ADS)

    Thomas, Gawain; Wen, Qi

    2014-03-01

    Many studies have shown that cells respond to the stiffness of their extracellular matrix (ECM). However, the mechanism of this stiffness sensing is not fully understood. We believe that cells probe stiffness by applying intracellular force to the ECM via the integrin-mediated adhesions. The linkage of integrins to the cytoskeleton has been modeled as a slip clutch, which has been shown to affect focal adhesion formation and hence force transmission in a stiffness dependent manner. In contrast, the bonds between integrins and ECM have been characterized as ``catch bonds.'' It is unclear how ECM viscoelasticity affects these catch bonds. We report, for the first time, the effects of ECM stiffness on the binding strength of integrins to ECM ligands by measuring the rupture force of individual integrin-ligand bonds of cells on collagen-coated polyacrylamide gels. Results show that the integrin-collagen bonds of 3T3 fibroblasts are nearly four times stronger on a stiff (30 kPa) gel than on a soft (3 kPa) gel. The stronger integrin bonds on stiffer substrates can promote focal adhesion formation. This suggests that the substrate stiffness regulates the cell-ECM adhesions not only by affecting the cytoskeleton-integrin links but also by modulating the binding of integrins to the ECM.

  19. Study on effects of molecular crowding on G-quadruplex-ligand binding and ligand-mediated telomerase inhibition.

    PubMed

    Yaku, Hidenobu; Murashima, Takashi; Tateishi-Karimata, Hisae; Nakano, Shu-ichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2013-11-01

    The telomere G-quadruplex-binding and telomerase-inhibiting capacity of two cationic (TMPyP4 and PIPER) and two anionic (phthalocyanine and Hemin) G-quadruplex-ligands were examined under conditions of molecular crowding (MC). Osmotic experiments showed that binding of the anionic ligands, which bind to G-quadruplex DNA via π-π stacking interactions, caused some water molecules to be released from the G-quadruplex/ligand complex; in contrast, a substantial number of water molecules were taken up upon electrostatic binding of the cationic ligands to G-quadruplex DNA. These behaviors of water molecules maintained or reduced the binding affinity of the anionic and the cationic ligands, respectively, under MC conditions. Consequently, the anionic ligands (phthalocyanine and Hemin) robustly inhibited telomerase activity even with MC; in contrast, the inhibition of telomerase caused by cationic TMPyP4 was drastically reduced by MC. These results allow us to conclude that the binding of G-quadruplex-ligands to G-quadruplex via non-electrostatic interactions is preferable for telomerase inhibition under physiological conditions. PMID:23562626

  20. Protein-Ligand Binding Detected by Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Knab, J.; Chen, J. Y.; Mader, M.; Markelz, A.

    2004-03-01

    Established measures of protein flexibility through the B-factor use time intensive and facility limited techniques such as X-ray crystallography, NMR structure analysis and inelastic neutron scattering. We demonstrate a novel technique that may be used for determination of ligand binding for proteins as well as a measure of protein flexibility. Using the method of terahertz (THz) time domain spectroscopy, we measured the far infrared dielectric response as a function of the binding of N (1-4)-acetylglucosamine (NAG) to hen egg white lysozyme (HEWL). Vibrational modes associated with tertiary structure conformational motions lay in the THz frequency range. The THz dielectric response reflects the density and amplitude of these normal modes through dipole coupling. Transmission measurements on thin films show that while there is no change in the real part of the refractive index as a function of binding, there is a decrease in the absorbance for the HEWL+NAG thin films relative to HEWL films. This decrease can be attributed to a reduction in the flexibility of the protein with binding. These results are compared to calculated absorbance spectra.

  1. Detection of functional ligand-binding events using synchrotron x-ray scattering.

    SciTech Connect

    Rodi, D. J.; Mandava, S.; Gore, D. B.; Makowski, L.; Fischetti, R. F.; Biosciences Division; IIT

    2007-10-01

    Small-molecule ligands that change the structure of a protein are likely to affect its function, whereas those causing no structural change are less likely to be functional. Wide-angle x-ray scattering (WAXS) can be easily carried out on proteins and small molecules in solution in the absence of chemical tags or derivatives. The authors demonstrate that WAXS is a sensitive probe of ligand binding to proteins in solution and can distinguish between nonfunctional and productive binding. Furthermore, similar ligand-binding modes translate into similar scattering patterns. This approach has high potential as a novel, generic, low-throughput assay for functional ligand binding.

  2. Ligand deconstruction: Why some fragment binding positions are conserved and others are not

    PubMed Central

    Kozakov, Dima; Hall, David R.; Jehle, Stefan; Luo, Lingqi; Ochiana, Stefan O.; Jones, Elizabeth V.; Pollastri, Michael; Allen, Karen N.; Whitty, Adrian; Vajda, Sandor

    2015-01-01

    Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots—regions of the protein where interactions with a ligand contribute substantial binding free energy—the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand. PMID:25918377

  3. Ligand deconstruction: Why some fragment binding positions are conserved and others are not.

    PubMed

    Kozakov, Dima; Hall, David R; Jehle, Stefan; Jehle, Sefan; Luo, Lingqi; Ochiana, Stefan O; Jones, Elizabeth V; Pollastri, Michael; Allen, Karen N; Whitty, Adrian; Vajda, Sandor

    2015-05-19

    Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots--regions of the protein where interactions with a ligand contribute substantial binding free energy--the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand. PMID:25918377

  4. Ligand Binding and Substrate Discrimination by UDP-Galactopyranose Mutase

    SciTech Connect

    Gruber, Todd D.; Borrok, M. Jack; Westler, William M.; Forest, Katrina T.; Kiessling, Laura L.

    2009-07-31

    Galactofuranose (Galf) residues are present in cell wall glycoconjugates of numerous pathogenic microbes. Uridine 5{prime}-diphosphate (UDP) Galf, the biosynthetic precursor of Galf-containing glycoconjugates, is produced from UDP-galactopyranose (UDP-Galp) by the flavoenzyme UDP-galactopyranose mutase (UGM). The gene encoding UGM (glf) is essential for the viability of pathogens, including Mycobacterium tuberculosis, and this finding underscores the need to understand how UGM functions. Considerable effort has been devoted to elucidating the catalytic mechanism of UGM, but progress has been hindered by a lack of structural data for an enzyme-substrate complex. Such data could reveal not only substrate binding interactions but how UGM can act preferentially on two very different substrates, UDP-Galp and UDP-Galf, yet avoid other structurally related UDP sugars present in the cell. Herein, we describe the first structure of a UGM-ligand complex, which provides insight into the catalytic mechanism and molecular basis for substrate selectivity. The structure of UGM from Klebsiella pneumoniae bound to the substrate analog UDP-glucose (UDP-Glc) was solved by X-ray crystallographic methods and refined to 2.5 {angstrom} resolution. The ligand is proximal to the cofactor, a finding that is consistent with a proposed mechanism in which the reduced flavin engages in covalent catalysis. Despite this proximity, the glucose ring of the substrate analog is positioned such that it disfavors covalent catalysis. This orientation is consistent with data indicating that UDP-Glc is not a substrate for UGM. The relative binding orientations of UDP-Galp and UDP-Glc were compared using saturation transfer difference NMR. The results indicate that the uridine moiety occupies a similar location in both ligand complexes, and this relevant binding mode is defined by our structural data. In contrast, the orientations of the glucose and galactose sugar moieties differ. To understand the

  5. Effects of ligand binding upon flexibility of proteins.

    PubMed

    Erman, Burak

    2015-05-01

    Binding of a ligand on a protein changes the flexibility of certain parts of the protein, which directly affects its function. These changes are not the same at each point, some parts become more flexible and some others become stiffer. Here, an equation is derived that gives the stiffness map for proteins. The model is based on correlations of fluctuations of pairs of points in proteins, which may be evaluated at different levels of refinement, ranging from all atom molecular dynamics to general elastic network models, including the simplest case of isotropic Gaussian Network Model. The latter is used, as an example, to evaluate the changes of stiffness upon dimerization of ACK1. PMID:25737428

  6. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors.

    PubMed

    Aráoz, Rómulo; Vilariño, Natalia; Botana, Luis M; Molgó, Jordi

    2010-07-01

    Toxic cyanobacterial blooms are a threat to public health because of the capacity of some cyanobacterial species to produce potent hepatotoxins and neurotoxins. Cyanobacterial neurotoxins are involved in the rapid death of wild and domestic animals by targeting voltage gated sodium channels and cholinergic synapses, including the neuromuscular junction. Anatoxin-a and its methylene homologue homoanatoxin-a are potent agonists of nicotinic acetylcholine receptors. Since the structural determination of anatoxin-a, several mass spectrometry-based methods have been developed for detection of anatoxin-a and, later, homoanatoxin-a. Mass spectrometry-based techniques provide accuracy, precision, selectivity, sensitivity, reproducibility, adequate limit of detection, and structural and quantitative information for analyses of cyanobacterial anatoxins from cultured and environmental cyanobacterial samples. However, these physicochemical techniques will only detect known toxins for which toxin standards are commercially available, and they require highly specialized laboratory personnel and expensive equipment. Receptor-based assays are functional methods that are based on the mechanism of action of a class of toxins and are thus, suitable tools for survey of freshwater reservoirs for cyanobacterial anatoxins. The competition between cyanobacterial anatoxins and a labelled ligand for binding to nicotinic acetylcholine receptors is measured radioactively or non-radioactively providing high-throughput screening formats for routine detection of this class of neurotoxins. The mouse bioassay is the method of choice for marine toxin monitoring, but has to be replaced by fully validated functional methods. In this paper we review the ligand-binding assays developed for detection of cyanobacterial and algal neurotoxins targeting the nicotinic acetylcholine receptors and for high-throughput screening of novel nicotinic agents. PMID:20238109

  7. Muscarinic acetylcholine receptors: location of the ligand binding site

    SciTech Connect

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-05-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, /sup 3/H-propylbenzilycholine mustard aziridinium ion (/sup 3/H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that /sup 3/H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin.

  8. Origin and evolution of the ligand-binding ability of nuclear receptors.

    PubMed

    Markov, Gabriel V; Laudet, Vincent

    2011-03-01

    The origin of the ligand-binding ability of nuclear receptors is still a matter of discussion. Current opposing models are the early evolution of an ancestral receptor that would bind a specific ligand with high affinity and the early evolution of an ancestral orphan that was a constitutive transcription factor. Here we review the arguments in favour or against these two hypotheses, and we discuss an alternative possibility that the ancestor was a ligand sensor, which would be able to explain the apparently contradictory data generated in previous models for the evolution of ligand binding in nuclear receptors. PMID:21055443

  9. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    ERIC Educational Resources Information Center

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.

    2016-01-01

    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  10. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes. PMID:19754879

  11. Local Unfolding of Fatty Acid Binding Protein to Allow Ligand Entry for Binding.

    PubMed

    Xiao, Tianshu; Fan, Jing-Song; Zhou, Hu; Lin, Qingsong; Yang, Daiwen

    2016-06-01

    Fatty acid binding proteins are responsible for the transportation of fatty acids in biology. Despite intensive studies, the molecular mechanism of fatty acid entry to and exit from the protein cavity is still unclear. Here a cap-closed variant of human intestinal fatty acid binding protein was generated by mutagenesis, in which the helical cap is locked to the β-barrel by a disulfide linkage. Structure determination shows that this variant adopts a closed conformation, but still uptakes fatty acids. Stopped-flow experiments indicate that a rate-limiting step exists before the ligand association and this step corresponds to the conversion of the closed form to the open one. NMR relaxation dispersion and H-D exchange data demonstrate the presence of two excited states: one is native-like, but the other adopts a locally unfolded structure. Local unfolding of helix 2 generates an opening for ligands to enter the protein cavity, and thus controls the ligand association rate. PMID:27105780

  12. Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability

    PubMed Central

    Raman, E. Prabhu; MacKerell, Alexander D.

    2015-01-01

    The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  13. Spatial analysis and quantification of the thermodynamic driving forces in protein-ligand binding: binding site variability.

    PubMed

    Raman, E Prabhu; MacKerell, Alexander D

    2015-02-25

    The thermodynamic driving forces behind small molecule-protein binding are still not well-understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provide an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both nonpolar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the "hydrophobic effect". Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. It is notable to have the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  14. Evaluation of Metal-Mediated DNA Binding of Benzoazole Ligands by Electrospray Ionization Mass Spectrometry

    PubMed Central

    Mazzitelli, Carolyn L.; Rodriguez, Mireya; Kerwin, Sean; Brodbelt, Jennifer S.

    2008-01-01

    The binding of a series of benzoxazole analogs with different amide- and ester-linked side chains to duplex DNA in the absence and presence of divalent metal cations is examined. All ligands were found to form complexes with Ni2+, Cu2+, and Zn2+, with 2:1 ligand/metal cation binding stoichiometries dominating for ligands containing shorter side chains (2, 6, 7, and 8), while 1:1 complexes were the most abundant for ligands with long side chains (9, 10 and 11). Ligand binding with duplex DNA in the absence of metal cations was assessed, and the long side-chain ligands were found to form low abundance complexes with 1:1 ligand/DNA binding stoichiometries. The ligands with the shorter side chains only formed DNA complexes in the presence of metal cations, most notably for 7 and 8 binding to DNA in the presence of Cu2+. The binding of long side-chain ligands was enhanced by Cu2+ and to a lesser degree by Ni2+ and Zn2+. The cytotoxicities of all of the ligands against the A549 lung cancer and MCF7 breast cancer cell lines were also examined. The ligands exhibiting the most dramatic metal-enhanced DNA binding also demonstrated the greatest cytotoxic activity. Both 7 and 8 were found to be the most cytotoxic against the A549 lung cancer cell line and 8 demonstrated moderate cytotoxicity against MCF7 breast cancer cells. Metal ions also enhanced the DNA binding of the ligands with the long side-chains, especially for 9, which also exhibited the highest level of cytotoxicity of the long side-chain compounds. PMID:17583529

  15. Bioluminescent Ligand-Receptor Binding Assays for Protein or Peptide Hormones.

    PubMed

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    Bioluminescence has been widely used in biomedical research due to its high sensitivity, low background, and broad linear range. In recent studies, we applied bioluminescence to ligand-receptor binding assays for some protein or peptide hormones based on a newly developed small monomeric Nanoluciferase (NanoLuc) reporter that has the so far brightest bioluminescence. The conventional ligand-receptor binding assays rely on radioligands that have drawbacks, such as radioactive hazards and short shelf lives. In contrast, the novel bioluminescent binding assays use the NanoLuc-based protein or peptide tracers that are safe, stable, and ultrasensitive. Thus, the novel bioluminescent ligand-receptor binding assay would be applied to more and more protein or peptide hormones for ligand-receptor interaction studies in future. In the present article, we provided detailed protocols for setting up the novel bioluminescent ligand-receptor binding assays using two representative protein hormones as examples. PMID:27424896

  16. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity.

    PubMed

    Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2014-12-01

    YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  17. Ligand Binding to WW Tandem Domains of YAP2 Transcriptional Regulator Is Under Negative Cooperativity

    PubMed Central

    Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad

    2014-01-01

    YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  18. Uncoupling the Structure-Activity Relationships of β2 Adrenergic Receptor Ligands from Membrane Binding.

    PubMed

    Dickson, Callum J; Hornak, Viktor; Velez-Vega, Camilo; McKay, Daniel J J; Reilly, John; Sandham, David A; Shaw, Duncan; Fairhurst, Robin A; Charlton, Steven J; Sykes, David A; Pearlstein, Robert A; Duca, Jose S

    2016-06-23

    Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein-ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the β2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure-activity relationship analysis and structure-based drug design. Molecular dynamics simulations of ligand bound membrane protein complexes were used to validate binding poses, allowing analysis of key interactions and binding site solvation to develop structure-activity relationships of β2 ligand binding. The resulting relationships are consistent with intrinsic binding affinity (corrected for membrane interaction). The successful structure-based design of ligands targeting membrane proteins may require an assessment of membrane affinity to uncouple protein binding from membrane interactions. PMID:27239696

  19. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding

    PubMed Central

    2013-01-01

    Background A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. Results A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. Conclusions The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis. PMID:23627990

  20. Conformational Transitions upon Ligand Binding: Holo-Structure Prediction from Apo Conformations

    PubMed Central

    Seeliger, Daniel; de Groot, Bert L.

    2010-01-01

    Biological function of proteins is frequently associated with the formation of complexes with small-molecule ligands. Experimental structure determination of such complexes at atomic resolution, however, can be time-consuming and costly. Computational methods for structure prediction of protein/ligand complexes, particularly docking, are as yet restricted by their limited consideration of receptor flexibility, rendering them not applicable for predicting protein/ligand complexes if large conformational changes of the receptor upon ligand binding are involved. Accurate receptor models in the ligand-bound state (holo structures), however, are a prerequisite for successful structure-based drug design. Hence, if only an unbound (apo) structure is available distinct from the ligand-bound conformation, structure-based drug design is severely limited. We present a method to predict the structure of protein/ligand complexes based solely on the apo structure, the ligand and the radius of gyration of the holo structure. The method is applied to ten cases in which proteins undergo structural rearrangements of up to 7.1 Å backbone RMSD upon ligand binding. In all cases, receptor models within 1.6 Å backbone RMSD to the target were predicted and close-to-native ligand binding poses were obtained for 8 of 10 cases in the top-ranked complex models. A protocol is presented that is expected to enable structure modeling of protein/ligand complexes and structure-based drug design for cases where crystal structures of ligand-bound conformations are not available. PMID:20066034

  1. Family 42 carbohydrate-binding modules display multiple arabinoxylan-binding interfaces presenting different ligand affinities.

    PubMed

    Ribeiro, Teresa; Santos-Silva, Teresa; Alves, Victor D; Dias, Fernando M V; Luís, Ana S; Prates, José A M; Ferreira, Luís M A; Romão, Maria J; Fontes, Carlos M G A

    2010-10-01

    Enzymes that degrade plant cell wall polysaccharides display a modular architecture comprising a catalytic domain bound to one or more non-catalytic carbohydrate-binding modules (CBMs). CBMs display considerable variation in primary structure and are grouped into 59 sequence-based families organized in the Carbohydrate-Active enZYme (CAZy) database. Here we report the crystal structure of CtCBM42A together with the biochemical characterization of two other members of family 42 CBMs from Clostridium thermocellum. CtCBM42A, CtCBM42B and CtCBM42C bind specifically to the arabinose side-chains of arabinoxylans and arabinan, suggesting that various cellulosomal components are targeted to these regions of the plant cell wall. The structure of CtCBM42A displays a beta-trefoil fold, which comprises 3 sub-domains designated as alpha, beta and gamma. Each one of the three sub-domains presents a putative carbohydrate-binding pocket where an aspartate residue located in a central position dominates ligand recognition. Intriguingly, the gamma sub-domain of CtCBM42A is pivotal for arabinoxylan binding, while the concerted action of beta and gamma sub-domains of CtCBM42B and CtCBM42C is apparently required for ligand sequestration. Thus, this work reveals that the binding mechanism of CBM42 members is in contrast with that of homologous CBM13s where recognition of complex polysaccharides results from the cooperative action of three protein sub-domains presenting similar affinities. PMID:20637315

  2. Multipurpose ligand, DAKLI (Dynorphin A-analogue Kappa LIgand), with high affinity and selectivity for dynorphin (. kappa. opioid) binding sites

    SciTech Connect

    Goldstein, A.; Nestor, J.J. Jr.; Naidu, A.; Newman, S.R. )

    1988-10-01

    The authors describe a synthetic ligand, DALKI (Dynorphin A-analogue Kappa LIgand), related to the opioid peptide dynorphin A. A single reactive amino group at the extended carboxyl terminus permits various reporter groups to be attached, such as {sup 125}I-labeled Bolton-Hunter reagent, fluorescein isothiocyanate, or biotin. These derivatives have high affinity and selectivity for the dynorphin ({kappa} opioid) receptor. An incidental finding is that untreated guinea pig brain membranes have saturable avidin binding sites.

  3. Ligand preference and orientation in b- and c-type heme-binding proteins

    PubMed Central

    Fufezan, Christian; Zhang, Jun; Gunner, M. R.

    2009-01-01

    Hemes are often incorporated into designed proteins. The importance of the heme ligand type and its orientation is still a matter of debate. Here, heme ligands and ligand orientation were investigated using a nonredundant (87 structures) and a redundant (1503 structures) set of structures to compare and contrast design features of natural b- and c-type heme-binding proteins. Histidine is the most common ligand. Marked differences in ligation motifs between b- and c-type hemes are higher occurrence of His-Met in c-type heme binding motifs (16.4% vs. 1.4%) and higher occurrence of exchangeable, small molecules in b-type heme binding motifs (67.6% vs. 9.9%). Histidine ligands that are part of the c-type CXXCH heme-binding motif show a distinct asymmetric distribution of orientation. They tend to point between either the heme propionates or between the NA and NB heme nitrogens. Molecular mechanics calculations show that this asymmetry is due to the bonded constraints of the covalent attachment between the heme and the protein. In contrast, the orientations of b-type hemes histidine ligands are found evenly distributed with no preference. Observed histidine heme ligand orientations show no dominating influence of electrostatic interactions between the heme propionates and the ligands. Furthermore, ligands in bis-His hemes are found more frequently perpendicular rather than parallel to each other. These correlations support energetic constraints on ligands that can be used in designing proteins. PMID:18491383

  4. Transforming growth factor beta increases cell surface binding and assembly of exogenous (plasma) fibronectin by normal human fibroblasts.

    PubMed Central

    Allen-Hoffmann, B L; Crankshaw, C L; Mosher, D F

    1988-01-01

    Transforming growth factor beta (TGF-beta) enhances the cell surface binding of 125I-fibronectin by cultured human fibroblasts. The effect of TGF-beta on cell surface binding was maximal after 2 h of exposure to TFG-beta and did not require epidermal growth factor or protein synthesis. The enhancement was dose dependent and was found with the 125I-labeled 70-kilodalton amino-terminal fragment of fibronectin as well as with 125I-fibronectin. Treatment of cultures with TGF-beta for 6 h resulted in a threefold increase in the estimated number of fibronectin binding sites. The increase in number of binding sites was accompanied by an increased accumulation of labeled fibronectin in detergent-insoluble extracellular matrix. The effect of TGF-beta was biphasic; after 6 h of exposure, less labeled fibronectin bound to treated cultures than to control cultures. Exposure of cells to TGF-beta for greater than 6 h caused a two- to threefold increase in the accumulation of cellular fibronectin in culture medium as detected by a quantitative enzyme-linked immunosorbent assay. The second phase of the biphasic effect and the increase in soluble cellular fibronectin were blocked by cycloheximide. Immunofluorescence staining of fibroblast cultures with antifibronectin revealed that TGF-beta caused a striking increase in fibronectin fibrils. The 70-kilodalton amino-terminal fragment of fibronectin, which blocks incorporation of fibronectin into extracellular matrix, blocked anchorage-independent growth of NRK-49F cells in the presence of epidermal growth factor. Our results show that an increase in the binding and rate of assembly of exogenous fibronectin is an early event preceding the increase in expression of extracellular matrix proteins. Such an early increase in cell surface binding of exogenous fibronectin may be a mechanism whereby TGF-beta can modify extracellular matrix characteristics rapidly after tissue injury or during embryonic morphogenesis. Images PMID:3054513

  5. DNA-Based Nanostructures: Changes of Mechanical Properties of DNA upon Ligand Binding

    NASA Astrophysics Data System (ADS)

    Nechipurenko, Yury; Grokhovsky, Sergey; Gursky, Georgy; Nechipurenko, Dmitry; Polozov, Robert

    The formation of DNA-based nanostructures involves the binding of different kinds of ligands to DNA as well as the interaction of DNA molecules with each other. Complex formation between ligand and DNA can alter physicochemical properties of the DNA molecule. In the present work, the accessibility of DNA-ligand complexes to cleavage by DNase I are considered, and the exact algorithms for analysis of diagrams of DNase I footprinting for ligand-DNA complexes are obtained. Changes of mechanical properties of the DNA upon ligand binding are also demonstrated by the cleavage patterns generated upon ultrasound irradiation of cis-platin-DNA complexes. Propagation of the mechanical perturbations along DNA in the presence of bound ligands is considered in terms of a string model with a heterogeneity corresponding to the position of a bound ligand on DNA. This model can reproduce qualitatively the cleavage patterns obtained upon ultrasound irradiation of cis-platin-DNA complexes.

  6. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  7. Ligand binding cooperativity: Bioisosteric replacement of CO with SO2 among thrombin inhibitors.

    PubMed

    Said, Ahmed M; Hangauer, David G

    2016-08-15

    Ligand-protein binding is a complex process that involves the formation of number of non-covalent interactions, e.g. H-bonds and hydrophobic interactions, between the ligand and the protein host. Upon binding, ligand functional groups can act synergistically (positive cooperativity) to improve the overall ligand binding affinity beyond what would be expected from their individual contributions. In this study, using thrombin as a protein model system, we evaluated the effect of the bioisosteric replacement of a carbonyl functionality with a sulphonyl functionality on positive cooperativity between their H-bonds with thrombin and hydrophobic binding in the adjacent S3 pocket. The positive cooperativity observed was greatly reduced when replacing the carbonyl group with a sulphonyl group. Evaluating how bioisosteric replacements affect cooperativity is important for making better informed ligand optimization SAR decisions. PMID:27445170

  8. The Study of the Successive Metal-ligand Binding Energies for Fe(+), Fe(-), V(+) and Co(+)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Maitre, Philippe; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The successive binding energies of CO and H2O to Fe(+), CO to Fe(-), and H2 to Co(+) and V(+) are presented. Overall the computed results are in good agreement with experiment. The trends in binding energies are analyzed in terms of metal to ligand donation, ligand to metal donation, ligand-ligand repulsion, and changes in the metal atom, such as hybridization, promotion, and spin multiplicity. The geometry and vibrational frequencies are also shown to be directly affected by these effects.

  9. The Study Of The Successive Metal-Ligand Binding Energies For Fe+, Fe-, V+ and Co+

    NASA Technical Reports Server (NTRS)

    Bauschicher, Charles W., Jr.; Ricca, Alessandra; Maitre, Philippe; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The successive binding energies of CO and H2O to Fe(+), CO to Fe(-), and H2 to Co(+) and V(+) are presented. Overall the computed results are in good agreement with experiment. The trends in binding energies are analyzed in terms of metal to ligand donation, ligand to metal donation, ligand-ligand repulsion, and changes in the metal atom, such as hybridization, promotion, and spin multiplicity. The geometry and vibrational frequencies are also shown to be directly affected by these effects.

  10. Detection of persistent organic pollutants binding modes with androgen receptor ligand binding domain by docking and molecular dynamics

    PubMed Central

    2013-01-01

    Background Persistent organic pollutants (POPs) are persistent in the environment after release from industrial compounds, combustion productions or pesticides. The exposure of POPs has been related to various reproductive disturbances, such as reduced semen quality, testicular cancer, and imbalanced sex ratio. Among POPs, dichlorodiphenyldichloroethylene (4,4’-DDE) and polychlorinated biphenyls (PCBs) are the most widespread and well-studied compounds. Recent studies have revealed that 4,4’-DDE is an antagonist of androgen receptor (AR). However, the mechanism of the inhibition remains elusive. CB-153 is the most common congener of PCBs, while the action of CB-153 on AR is still under debate. Results Molecular docking and molecular dynamics (MD) approaches have been employed to study binding modes and inhibition mechanism of 4,4’-DDE and CB-153 against AR ligand binding domain (LBD). Several potential binding sites have been detected and analyzed. One possible binding site is the same binding site of AR natural ligand androgen 5α-dihydrotestosterone (DHT). Another one is on the ligand-dependent transcriptional activation function (AF2) region, which is crucial for the co-activators recruitment. Besides, a novel possible binding site was observed for POPs with low binding free energy with the receptor. Detailed interactions between ligands and the receptor have been represented. The disrupting mechanism of POPs against AR has also been discussed. Conclusions POPs disrupt the function of AR through binding to three possible biding sites on AR/LBD. One of them shares the same binding site of natural ligand of AR. Another one is on AF2 region. The third one is in a cleft near N-terminal of the receptor. Significantly, values of binding free energy of POPs with AR/LBD are comparable to that of natural ligand androgen DHT. PMID:24053684

  11. Microassay for measurement of binding of radiolabelled ligands to cell surface molecules.

    PubMed

    Woof, J M; Burton, D R

    1988-07-22

    An improved technique for measuring the binding of radiolabelled ligands to cell surface molecules has been developed by modification of a procedure using centrifugation through a water-immiscible oil to separate free and cell-bound ligand. It maximises the percentage of ligand bound since cell-bound and free ligand can be separated easily and reproducibly even when very small reaction volumes are used. This permits low levels of ligand radiolabelling and relatively low numbers of cells to be used. PMID:2840465

  12. Comparison of ligand migration and binding in heme proteins of the globin family

    NASA Astrophysics Data System (ADS)

    Karin, Nienhaus; Ulrich Nienhaus, G.

    2015-12-01

    The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of this process in full detail. Here, we compare ligand binding in three heme proteins of the globin family, myoglobin, a dimeric hemoglobin, and neuroglobin. The combination of structural, spectroscopic, and kinetic experiments over many years by many laboratories has revealed common properties of globins and a clear mechanistic picture of ligand binding at the molecular level. In addition to the ligand binding site at the heme iron, a primary ligand docking site exists that ensures efficient ligand binding to and release from the heme iron. Additional, secondary docking sites can greatly facilitate ligand escape after its dissociation from the heme. Although there is only indirect evidence at present, a preformed histidine gate appears to exist that allows ligand entry to and exit from the active site. The importance of these features can be assessed by studies involving modified proteins (via site-directed mutagenesis) and comparison with heme proteins not belonging to the globin family.

  13. Copper binding ligands: production by marine plankton and characterization by ESI-MS

    NASA Astrophysics Data System (ADS)

    Orians, K.; Ross, A.; Lawrence, M.; Ikonomou, M.

    2003-04-01

    Organic complexation affects the bioavailability and distribution of copper in the surface ocean. The cyanobacterium Synechococcus sp. PCC 7002 was cultured in the lab and subjected to near-toxic Cu concentrations. Strong Cu-binding ligands were produced under these conditions, as found for other species of Synechococcus. The copper-binding ligand produced had a log K'cond. (log conditional stability constant) of 12.2, similar to the natural ligands found in the surface ocean. The amount of ligand produced was proportional to the amount of copper present. Isolation and concentration of these compounds for characterization by electrospray mass spectrometry (ESI-MS) provides information about the structure of the organic ligands and their metal-ion complexes. Using model ligands, we'll show that ligands can be characterized by ESI-MS and that the location of the copper binding site can be determined in complex molecules. We'll also present results of copper-complexing ligands extracted from the coastal waters of British Columbia. Ligand concentrations are higher at low salinity and in surface waters, indicating that these ligands are produced in surface waters and/or delivered to the region via the Fraser River. Analysis of the extracts with highest UV absorbance identified two Cu2+ ligands of molecular weight 259 and 264. The mass and isotopic distributions are consistent with dipeptides and tripeptides containing two metal-binding amino groups. This result is consistent with the findings of other studies attempting to characterize Cu2+ ligands in seawater. The structure of the identified ligand is similar to that of rhodotorulic acid (a microbial siderophore), glutathione, and phytochelatins, indicating that small peptides and related compounds can act as strong, specific metal chelators in natural waters

  14. Theoretical investigation on the diatomic ligand migration process and ligand binding properties in non-O2-binding H-NOX domain.

    PubMed

    Zhang, Yuebin; Liu, Li; Wu, Lei; Li, Shuai; Li, Fei; Li, Zhengqiang

    2013-08-01

    The Nostoc sp (Ns) H-NOX (heme-nitric oxide or OXygen-binding) domain shares 35% sequence identity with soluble guanylate cyclase (sGC) and exhibits similar ligand binding property with the sGC. Previously, our molecular dynamic (MD) simulation work identified that there exists a Y-shaped tunnel system hosted in the Ns H-NOX interior, which servers for ligand migration. The tunnels were then confirmed by Winter et al. [PNAS 2011;108(43):E 881-889] recently using x-ray crystallography with xenon pressured conditions. In this work, to further investigate how the protein matrix of Ns H-NOX modulates the ligand migration process and how the distal residue composition affects the ligand binding prosperities, the free energy profiles for nitric oxide (NO), carbon monooxide (CO), and O2 migration are explored using the steered MDs simulation and the ligand binding energies are calculated using QM/MM schemes. The potential of mean force profiles suggest that the longer branch of the tunnel would be the most favorable route for NO migration and a second NO trapping site other than the distal heme pocket along this route in the Ns H-NOX was identified. On the contrary, CO and O2 would prefer to diffuse via the shorter branch of the tunnel. The QM/MM (quantum mechanics/molecular mechanics) calculations suggest that the hydrophobic distal pocket of Ns H-NOX would provide an approximately vacuum environment and the ligand discrimination would be determined by the intrinsic binding properties of the diatomic gas ligand to the heme group. PMID:23504767

  15. Improved Estimation of Protein-Ligand Binding Free Energy by Using the Ligand-Entropy and Mobility of Water Molecules

    PubMed Central

    Fukunishi, Yoshifumi; Nakamura, Haruki

    2013-01-01

    We previously developed the direct interaction approximation (DIA) method to estimate the protein-ligand binding free energy (ΔG). The DIA method estimates the ΔG value based on the direct van der Waals and electrostatic interaction energies between the protein and the ligand. In the current study, the effect of the entropy of the ligand was introduced with protein dynamic properties by molecular dynamics simulations, and the interaction between each residue of the protein and the ligand was also weighted considering the hydration of each residue. The molecular dynamics simulation of the apo target protein gave the hydration effect of each residue, under the assumption that the residues, which strongly bind the water molecules, are important in the protein-ligand binding. These two effects improved the reliability of the DIA method. In fact, the parameters used in the DIA became independent of the target protein. The averaged error of ΔG estimation was 1.3 kcal/mol and the correlation coefficient between the experimental ΔG value and the calculated ΔG value was 0.75. PMID:24276169

  16. Specific ligand binding attributable to individual epitopes of gonococcal transferrin binding protein A.

    PubMed

    Masri, Heather P; Cornelissen, Cynthia Nau

    2002-02-01

    The gonococcal transferrin receptor complex comprises two iron-regulated proteins, TbpA and TbpB. TbpA is essential for transferrin-iron uptake and is a TonB-dependent integral outer membrane protein. TbpB is thought to increase the efficiency of iron uptake from transferrin and is lipid modified and surface exposed. To evaluate the structure-function relationships in one of the components of the receptor, TbpA, we created constructs that fused individual putative loops of TbpA with amino-terminal affinity tags. The recombinant proteins were then overexpressed in Escherichia coli, and the fusions were recovered predominately from inclusion bodies. Inclusion body proteins were solubilized, and the epitope fusions were renatured by slow dialysis. To assess transferrin binding capabilities, the constructs were tested in a solid-phase dot blot assay followed by confirmatory quantitative chemiluminescent enzyme-linked immunosorbent assays. The constructs with only loop 5 and with loops 4 and 5 demonstrated dose-dependent specific ligand binding in spite of being out of the context of the intact receptor. The immunogenicities of individual TbpA-specific epitopes were investigated by generating rabbit polyclonal antisera against the fusion proteins. Most of the fusion proteins were immunogenic under these conditions, and the resulting sera recognized full-length TbpA in immunoblots. These results suggest that individual epitopes of TbpA are both immunogenic and functional with respect to ligand binding capabilities, and the vaccine implications of these findings are discussed. PMID:11796606

  17. LISE: a server using ligand-interacting and site-enriched protein triangles for prediction of ligand-binding sites.

    PubMed

    Xie, Zhong-Ru; Liu, Chuan-Kun; Hsiao, Fang-Chih; Yao, Adam; Hwang, Ming-Jing

    2013-07-01

    LISE is a web server for a novel method for predicting small molecule binding sites on proteins. It differs from a number of servers currently available for such predictions in two aspects. First, rather than relying on knowledge of similar protein structures, identification of surface cavities or estimation of binding energy, LISE computes a score by counting geometric motifs extracted from sub-structures of interaction networks connecting protein and ligand atoms. These network motifs take into account spatial and physicochemical properties of ligand-interacting protein surface atoms. Second, LISE has now been more thoroughly tested, as, in addition to the evaluation we previously reported using two commonly used small benchmark test sets and targets of two community-based experiments on ligand-binding site predictions, we now report an evaluation using a large non-redundant data set containing >2000 protein-ligand complexes. This unprecedented test, the largest ever reported to our knowledge, demonstrates LISE's overall accuracy and robustness. Furthermore, we have identified some hard to predict protein classes and provided an estimate of the performance that can be expected from a state-of-the-art binding site prediction server, such as LISE, on a proteome scale. The server is freely available at http://lise.ibms.sinica.edu.tw. PMID:23609546

  18. Common Internal Allosteric Network Links Anesthetic Binding Sites in a Pentameric Ligand-Gated Ion Channel.

    PubMed

    Joseph, Thomas T; Mincer, Joshua S

    2016-01-01

    General anesthetics bind reversibly to ion channels, modifying their global conformational distributions, but the underlying atomic mechanisms are not completely known. We examine this issue by way of the model protein Gloeobacter violaceous ligand-gated ion channel (GLIC) using computational molecular dynamics, with a coarse-grained model to enhance sampling. We find that in flooding simulations, both propofol and a generic particle localize to the crystallographic transmembrane anesthetic binding region, and that propofol also localizes to an extracellular region shared with the crystallographic ketamine binding site. Subsequent simulations to probe these binding modes in greater detail demonstrate that ligand binding induces structural asymmetry in GLIC. Consequently, we employ residue interaction correlation analysis to describe the internal allosteric network underlying the coupling of ligand and distant effector sites necessary for conformational change. Overall, the results suggest that the same allosteric network may underlie the actions of various anesthetics, regardless of binding site. PMID:27403526

  19. Common Internal Allosteric Network Links Anesthetic Binding Sites in a Pentameric Ligand-Gated Ion Channel

    PubMed Central

    Joseph, Thomas T.

    2016-01-01

    General anesthetics bind reversibly to ion channels, modifying their global conformational distributions, but the underlying atomic mechanisms are not completely known. We examine this issue by way of the model protein Gloeobacter violaceous ligand-gated ion channel (GLIC) using computational molecular dynamics, with a coarse-grained model to enhance sampling. We find that in flooding simulations, both propofol and a generic particle localize to the crystallographic transmembrane anesthetic binding region, and that propofol also localizes to an extracellular region shared with the crystallographic ketamine binding site. Subsequent simulations to probe these binding modes in greater detail demonstrate that ligand binding induces structural asymmetry in GLIC. Consequently, we employ residue interaction correlation analysis to describe the internal allosteric network underlying the coupling of ligand and distant effector sites necessary for conformational change. Overall, the results suggest that the same allosteric network may underlie the actions of various anesthetics, regardless of binding site. PMID:27403526

  20. Coordination of two sequential ester-transfer reactions: exogenous guanosine binding promotes the subsequent omegaG binding to a group I intron.

    PubMed

    Bao, Penghui; Wu, Qi-Jia; Yin, Ping; Jiang, Yanfei; Wang, Xu; Xie, Mao-Hua; Sun, Tao; Huang, Lin; Mo, Ding-Ding; Zhang, Yi

    2008-12-01

    Self-splicing of group I introns is accomplished by two sequential ester-transfer reactions mediated by sequential binding of two different guanosine ligands, but it is yet unclear how the binding is coordinated at a single G-binding site. Using a three-piece trans-splicing system derived from the Candida intron, we studied the effect of the prior GTP binding on the later omegaG binding by assaying the ribozyme activity in the second reaction. We showed that adding GTP simultaneously with and prior to the esterified omegaG in a substrate strongly accelerated the second reaction, suggesting that the early binding of GTP facilitates the subsequent binding of omegaG. GTP-mediated facilitation requires C2 amino and C6 carbonyl groups on the Watson-Crick edge of the base but not the phosphate or sugar groups, suggesting that the base triple interactions between GTP and the binding site are important for the subsequent omegaG binding. Strikingly, GTP binding loosens a few local structures of the ribozyme including that adjacent to the base triple, providing structural basis for a rapid exchange of omegaG for bound GTP. PMID:18978026

  1. Computational Prediction of Alanine Scanning and Ligand Binding Energetics in G-Protein Coupled Receptors

    PubMed Central

    Boukharta, Lars; Gutiérrez-de-Terán, Hugo; Åqvist, Johan

    2014-01-01

    Site-directed mutagenesis combined with binding affinity measurements is widely used to probe the nature of ligand interactions with GPCRs. Such experiments, as well as structure-activity relationships for series of ligands, are usually interpreted with computationally derived models of ligand binding modes. However, systematic approaches for accurate calculations of the corresponding binding free energies are still lacking. Here, we report a computational strategy to quantitatively predict the effects of alanine scanning and ligand modifications based on molecular dynamics free energy simulations. A smooth stepwise scheme for free energy perturbation calculations is derived and applied to a series of thirteen alanine mutations of the human neuropeptide Y1 receptor and series of eight analogous antagonists. The robustness and accuracy of the method enables univocal interpretation of existing mutagenesis and binding data. We show how these calculations can be used to validate structural models and demonstrate their ability to discriminate against suboptimal ones. PMID:24743773

  2. Kinetics and mechanism of exogenous anion exchange in FeFbpA-NTA: significance of periplasmic anion lability and anion binding activity of ferric binding protein A.

    PubMed

    Heymann, Jared J; Gabricević, Mario; Mietzner, Timothy A; Crumbliss, Alvin L

    2010-02-01

    The bacterial transferrin ferric binding protein A (FbpA) requires an exogenous anion to facilitate iron sequestration, and subsequently to shuttle the metal across the periplasm to the cytoplasmic membrane. In the diverse conditions of the periplasm, numerous anions are known to be present. Prior in vitro experiments have demonstrated the ability of multiple anions to fulfill the synergistic iron-binding requirement, and the identity of the bound anion has been shown to modulate important physicochemical properties of iron-bound FbpA (FeFbpA). Here we address the kinetics and mechanism of anion exchange for the FeFbpA-nitrilotriacetate (NTA) assembly with several biologically relevant anions (citrate, oxalate, phosphate, and pyrophosphate), with nonphysiologic NTA serving as a representative synergistic anion/chelator. The kinetic data are consistent with an anion-exchange process that occurs in multiple steps, dependent on the identity of both the entering anion and the leaving anion. The exchange mechanism may proceed either as a direct substitution or through an intermediate FeFbpA-X* assembly based on anion (X) identity. Our kinetic results further develop an understanding of exogenous anion lability in the periplasm, as well as address the final step of the iron-free FbpA (apo-FbpA)/Fe(3+) sequestration mechanism. Our results highlight the kinetic significance of the FbpA anion binding site, demonstrating a correlation between apo-FbpA/anion affinity and the FeFbpA rate of anion exchange, further supporting the requirement of an exogenous anion to complete tight sequestration of iron by FbpA, and developing a mechanism for anion exchange within FeFbpA that is dependent on the identity of both the entering anion and the leaving anion. PMID:19813031

  3. Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems.

    PubMed

    Fielding, Lee; Rutherford, Samantha; Fletcher, Dan

    2005-06-01

    The usefulness of bovine serum albumin (BSA) as a model protein for testing NMR methods for the study of protein-ligand interactions is discussed. Isothermal titration calorimetry established the binding affinity and stoichiometry of the specific binding site for L-tryptophan, D-tryptophan, naproxen, ibuprofen, salicylic acid and warfarin. The binding affinities of the same ligands determined by NMR methods are universally weaker (larger KD). This is because the NMR methods are susceptible to interference from additional non-specific binding. The L-tryptophan-BSA and naproxen-BSA systems were the best behaved model systems. PMID:15816062

  4. Molecular decoys: ligand-binding recombinant proteins protect mice from curarimimetic neurotoxins.

    PubMed Central

    Gershoni, J M; Aronheim, A

    1988-01-01

    Mimic ligand-binding sites of the nicotinic acetylcholine receptor bind d-tubocurarine and alpha-bungarotoxin in vitro. Injection of such binding sites into mice could act as molecular decoys in vivo, providing protection against toxic ligands. This hypothesis of molecular "decoyance" has been tested in greater than 250 mice. Bacterially produced cholinergic binding sites provided a 2-fold increase in the survival rate of animals challenged with curarimimetic neurotoxins. Possible considerations for decoy designs and their applications are discussed. Images PMID:3375254

  5. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein

    SciTech Connect

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.; Andersen, John F.

    2009-04-07

    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describe the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.

  6. Cationic Gold Clusters Ligated with Differently Substituted Phosphines: Effect of Substitution on Ligand Reactivity and Binding

    SciTech Connect

    Johnson, Grant E.; Olivares, Astrid M.; Hill, David E.; Laskin, Julia

    2015-01-01

    We present a systematic study of the effect of the number of methyl (Me) and cyclohexyl (Cy) functional groups in monodentate phosphine ligands on the solution-phase synthesis of ligated sub-nanometer gold clusters and their gas-phase fragmentation pathways. Small mixed ligand cationic gold clusters were synthesized using ligand exchange reactions between pre-formed triphenylphosphine ligated (PPh3) gold clusters and monodentate Me- and Cy-substituted ligands in solution and characterized using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation (CID) experiments. Under the same experimental conditions, larger gold-PPh3 clusters undergo efficient exchange of unsubstituted PPh3 ligands for singly Me- and Cy-substituted PPh2Me and PPh2Cy ligands. The efficiency of ligand exchange decreases with an increasing number of Me or Cy groups in the substituted phosphine ligands. CID experiments performed for a series of ligand-exchanged gold clusters indicate that loss of a neutral Me-substituted ligand is preferred over loss of a neutral PPh¬3 ligand while the opposite trend is observed for Cy-substituted ligands. The branching ratio of the competing ligand loss channels is strongly correlated with the electron donating ability of the phosphorous lone pair as determined by the relative proton affinity of the ligand. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3< PPh2Cy < PPhCy2< PCy3. Furthermore, the difference in relative ligand binding energies increases with the number of substituted PPh3-mMem or PPh3-mCym ligands (L) exchanged onto each cluster. This study provides the first experimental determination of the relative binding energies of ligated gold clusters containing differently substituted monophosphine ligands, which are important to controlling their synthesis and reactivity in solution. The results also indicate that ligand substitution is an important

  7. Principles of Ligand Binding within a Completely Buried Cavity in HIF2[alpha] PAS-B

    SciTech Connect

    Key, Jason; Scheuermann, Thomas H.; Anderson, Peter C.; Daggett, Valerie; Gardner, Kevin H.

    2010-04-19

    Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors responsible for the metazoan hypoxia response and promote tumor growth, metastasis, and resistance to cancer treatment. The C-terminal Per-ARNT-Sim (PAS) domain of HIF2{alpha} (HIF2{alpha} PAS-B) contains a preformed solvent-inaccessible cavity that binds artificial ligands that allosterically perturb the formation of the HIF heterodimer. To better understand how small molecules bind within this domain, we examined the structures and equilibrium and transition-state thermodynamics of HIF2{alpha} PAS-B with several artificial ligands using isothermal titration calorimetry, NMR exchange spectroscopy, and X-ray crystallography. Rapid association rates reveal that ligand binding is not dependent upon a slow conformational change in the protein to permit ligand access, despite the closed conformation observed in the NMR and crystal structures. Compensating enthalpic and entropic contributions to the thermodynamic barrier for ligand binding suggest a binding-competent transition state characterized by increased structural disorder. Finally, molecular dynamics simulations reveal conversion between open and closed conformations of the protein and pathways of ligand entry into the binding pocket.

  8. Elucidation of Nonadditive Effects in Protein-Ligand Binding Energies: Thrombin as a Case Study.

    PubMed

    Calabrò, Gaetano; Woods, Christopher J; Powlesland, Francis; Mey, Antonia S J S; Mulholland, Adrian J; Michel, Julien

    2016-06-23

    Accurate predictions of free energies of binding of ligands to proteins are challenging partly because of the nonadditivity of protein-ligand interactions; i.e., the free energy of binding is the sum of numerous enthalpic and entropic contributions that cannot be separated into functional group contributions. In principle, molecular simulations methodologies that compute free energies of binding do capture nonadditivity of protein-ligand interactions, but efficient protocols are necessary to compute well-converged free energies of binding that clearly resolve nonadditive effects. To this end, an efficient GPU-accelerated implementation of alchemical free energy calculations has been developed and applied to two congeneric series of ligands of the enzyme thrombin. The results show that accurate binding affinities are computed across the two congeneric series and positive coupling between nonpolar R(1) substituents and a X = NH3(+) substituent is reproduced, albeit with a weaker trend than experimentally observed. By contrast, a docking methodology completely fails to capture nonadditive effects. Further analysis shows that the nonadditive effects are partly due to variations in the strength of a hydrogen-bond between the X = NH3(+) ligands family and thrombin residue Gly216. However, other partially compensating interactions occur across the entire binding site, and no single interaction dictates the magnitude of the nonadditive effects for all the analyzed protein-ligand complexes. PMID:27248478

  9. Trypsin-Ligand Binding Free Energies from Explicit and Implicit Solvent Simulations with Polarizable Potential

    PubMed Central

    Jiao, Dian; Zhang, Jiajing; Duke, Robert E.; Li, Guohui; Ren, Pengyu

    2009-01-01

    We have calculated the binding free energies of a series of benzamidine-like inhibitors to trypsin with a polarizable force field using both explicit and implicit solvent approaches. Free energy perturbation has been performed for the ligands in bulk water and in protein complex with molecular dynamics simulations. The calculated binding free energies are well within the accuracy of experimental measurement and the direction of change is predicted correctly in call cases. We analyzed the molecular dipole moments of the ligands in gas, water and protein environments. Neither binding affinity nor ligand solvation free energy in bulk water shows much dependence on the molecular dipole moments of the ligands. Substitution of the aromatic or the charged group in the ligand results in considerable change in the solvation energy in bulk water and protein whereas the binding affinity varies insignificantly due to cancellation. The effect of chemical modification on ligand charge distribution is mostly local. Replacing benzene with diazine has minimal impact on the atomic multipoles at the amidinium group. We have also utilized an implicit solvent based end-state approach to evaluate the binding free energies of these inhibitors. In this approach, the polarizable multipole model combined with Poisson-Boltzmann/surface area (PMPB/SA) provides the electrostatic interaction energy and the polar solvation free energy. Overall the relative binding free energies obtained from the PMPB/SA model are in good agreement with the experimental data. PMID:19399779

  10. Dynamics and intramolecular ligand binding of DtxR studied by MD simulations and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Myunggi; Bhattacharya, Nilakshee; Zhou, Huan-Xiang

    2005-11-01

    Diphtheria toxin repressor (DtxR) regulates the expression of the diphtheria toxin gene through intramolecular ligand binding (Wylie et al., Biochemistry 2005, 44:40-51). Protein dynamics is essential to the binding process of the Pro-rich (Pr) ligand to the C-terminal SH3 domain. We present MD and NMR results on the dynamics and ligand interactions of a Pr-SH3 construct of DtxR. NMR relaxation data (T1, T2, and NOE) showed that the Pr ligand is very flexible, suggesting that it undergoes binding/unbinding transitions. A 50-ns MD trajectory of the protein was used to calculate T1, T2, and NOE, reproducing the NMR results for the SH3 domain but not for the Pr segment. During the MD simulation, the ligand stayed bound to the SH3 domain; thus the simulation represented the bound state. The NMR data for the Pr-segment could be explained by assuming that they represented the average behavior of a fast binding/unbinding exchange. Though unbinding was not observed in the MD simulation, the simulation did show large fluctuations of a loop which forms part of the wall of the binding pocket. The fluctuations led to opening up of the binding pocket, thus weakening the interaction with the Pr segment and perhaps ultimately leading to ligand unbinding.

  11. Two Unique Ligand-Binding Clamps of Rhizopus oryzae Starch Binding Domain for Helical Structure Disruption of Amylose

    PubMed Central

    Jiang, Ting-Ying; Ci, Yuan-Pei; Chou, Wei-I; Lee, Yuan-Chuan; Sun, Yuh-Ju; Chou, Wei-Yao; Li, Kun-Mou; Chang, Margaret Dah-Tsyr

    2012-01-01

    The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD) has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21) members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs. PMID:22815939

  12. Ligand-induced conformational changes in a thermophilic ribose-binding protein

    SciTech Connect

    Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.

    2009-05-21

    Members of the periplasmic binding protein (PBP) superfamily are involved in transport and signaling processes in both prokaryotes and eukaryotes. Biological responses are typically mediated by ligand-induced conformational changes in which the binding event is coupled to a hinge-bending motion that brings together two domains in a closed form. In all PBP-mediated biological processes, downstream partners recognize the closed form of the protein. This motion has also been exploited in protein engineering experiments to construct biosensors that transduce ligand binding to a variety of physical signals. Understanding the mechanistic details of PBP conformational changes, both global (hinge bending, twisting, shear movements) and local (rotamer changes, backbone motion), therefore is not only important for understanding their biological function but also for protein engineering experiments. Here we present biochemical characterization and crystal structure determination of the periplasmic ribose-binding protein (RBP) from the hyperthermophile Thermotoga maritima in its ribose-bound and unliganded state. The T. maritima RBP (tmRBP) has 39% sequence identity and is considerably more resistant to thermal denaturation (appTm value is 108 C) than the mesophilic Escherichia coli homolog (ecRBP) (appTm value is 56 C). Polar ligand interactions and ligand-induced global conformational changes are conserved among ecRBP and tmRBP; however local structural rearrangements involving side-chain motions in the ligand-binding site are not conserved. Although the large-scale ligand-induced changes are mediated through similar regions, and are produced by similar backbone movements in tmRBP and ecRBP, the small-scale ligand-induced structural rearrangements differentiate the mesophile and thermophile. This suggests there are mechanistic differences in the manner by which these two proteins bind their ligands and are an example of how two structurally similar proteins utilize different

  13. Analysis of ligand binding and protein dynamics of human retinoid X receptor alpha ligand-binding domain by nuclear magnetic resonance.

    PubMed

    Lu, Jianyun; Cistola, David P; Li, Ellen

    2006-02-14

    Retinoid X receptors (RXRs) are nuclear receptors that can activate transcription as homodimers or as obligate heterodimeric partners of other nuclear receptors. While the crystal structures of the RXR ligand-binding domains (LBD) have been previously determined, the dynamics of activation is less well characterized at an atomic level. To probe the effect of ligand binding on RXR LBD dynamics, we initiated nuclear magnetic resonance studies of recombinant human RXRalpha LBD (T223-T462) with and without bound 9-cis-retinoic acid (9cRA). The 1HN, 15N, 13C(alpha), 13CO, and 13C(beta) resonance assignments were established for 164 of 240 residues in apo-RXRalpha LBD. Resonances corresponding to an additional 47 residues emerged upon 9cRA binding. These additional residues included those located in the vicinity of the ligand-binding pocket (helices H3, H5, and strands S1, S2), as well as residues located at the dimerization interface (helices H9 and H10). Thus 9cRA binding stabilized the ligand-binding pocket and had allosteric effects on the dimerization interface. Ligand-induced chemical shift perturbations outside the binding cavity were mapped to helix H3 and the AF-2 helix H12, indicating conformational changes in these regions. However, helix H11, a component of the tetramerization interface, and a large part of helix H10, a component of the dimerization interface, remained undetectable even after 9cRA binding. Although apo- and holo-hRXRalpha LBD existed predominantly as homodimers in solution, exchange between monomeric, dimeric, and tetrameric forms of the protein could have contributed to line broadening of cross-peaks corresponding to helices H10 and H11. 15N T1, T2, and steady-state {1H}-15N NOE data collected at 500 and 700 MHz static magnetic fields showed that the internal motions for the residues in the H1-H3 loop (K245-D263) were much less restricted than those in the protein core for both apo- and holo-forms. Significant exchange R(ex) contributions to

  14. Exploration of Gated Ligand Binding Recognizes an Allosteric Site for Blocking FABP4-Protein Interaction

    PubMed Central

    Li, Yan; Li, Xiang; Dong, Zigang

    2015-01-01

    Fatty acid binding protein 4 (FABP4), reversibly binding to fatty acids and other lipids with high affinities, is a potential target for treatment of cancers. The binding site of FABP4 is buried in an interior cavity and thereby ligand binding/unbinding is coupled with opening/closing of FABP4. It is a difficult task both experimentally and computationally to illuminate the entry or exit pathway, especially with the conformational gating. In this report we combine extensive computer simulations, clustering analysis, and Markov state model to investigate the binding mechanism of FABP4 and troglitazone. Our simulations capture spontaneous binding and unbinding events as well as the conformational transition of FABP4 between the open and closed states. An allosteric binding site on the protein surface is recognized for development of novel FABP4 inhibitors. The binding affinity is calculated and compared with the experimental value. The kinetic analysis suggests that ligand residence on the protein surface may delay the binding process. Overall, our results provide a comprehensive picture of ligand diffusion on the protein surface, ligand migration into the buried cavity, and the conformational change of FABP4 at an atomic level. PMID:26580122

  15. Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory

    NASA Astrophysics Data System (ADS)

    Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard; Weikl, Thomas R.

    2015-12-01

    The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.

  16. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted. PMID:19836400

  17. Thermodynamics of binding of di- and tetrasubstituted naphthalene diimide ligands to DNA G-quadruplex.

    PubMed

    Prato, Gary; Silvent, Samantha; Saka, Sammy; Lamberto, Massimiliano; Kosenkov, Dmytro

    2015-02-26

    Naphthalene diimide ligands have the potential to stabilize human telomeric G-quadruplex DNA via noncovalent interactions. Stabilization of G-quadruplex high order structures has become an important strategy to develop novel anticancer therapeutics. In this study four naphthalene diimide based ligands were analyzed in order to elucidate the principal factors determining contributions to G-quadruplex-ligand binding. Three possible modes of binding and their respective Gibbs free energies for two naphthalene diimide based di-N-alkylpyridinium substituted ligands have been determined using a molecular docking technique and compared to experimental results. The structures obtained from the molecular docking calculations, were analyzed using the ab initio based fragment molecular orbital (FMO) method in order to determine the major enthalpic contributions to the binding and types of interactions between the ligand and specific residues of the G-quadruplex. A computational methodology for the efficient and inexpensive ligand optimization as compared to fully ab initio methods based on the estimation of binding affinities of the naphthalene diimide derived ligands to G-quadruplex is proposed. PMID:25635929

  18. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.

    PubMed

    Alsteens, David; Pfreundschuh, Moritz; Zhang, Cheng; Spoerri, Patrizia M; Coughlin, Shaun R; Kobilka, Brian K; Müller, Daniel J

    2015-09-01

    Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors. PMID:26167642

  19. Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy

    PubMed Central

    Duan, Li L.; Feng, Guo Q.; Zhang, Qing G.

    2016-01-01

    Molecular dynamics (MD) simulations lasting 500 ns were performed in explicit water to investigate the effect of polarization on the binding of ligands to human α-thrombin based on the standard nonpolarizable AMBER force field and the quantum-derived polarized protein-specific charge (PPC). The PPC includes the electronic polarization effect of the thrombin-ligand complex, which is absent in the standard force field. A detailed analysis and comparison of the results of the MD simulation with experimental data provided strong evidence that intra-protein, protein-ligand hydrogen bonds and the root-mean-square deviation of backbone atoms were significantly stabilized through electronic polarization. Specifically, two critical hydrogen bonds between thrombin and the ligand were broken at approximately 190 ns when AMBER force field was used and the number of intra-protein backbone hydrogen bonds was higher under PPC than under AMBER. The thrombin-ligand binding energy was computed using the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, and the results were consistent with the experimental value obtained using PPC. Because hydrogen bonds were unstable, it was failed to predict the binding affinity under the AMBER force field. Furthermore, the results of the present study revealed that differences in the binding free energy between AMBER and PPC almost comes from the electrostatic interaction. Thus, this study provides evidence that protein polarization is critical to accurately describe protein-ligand binding. PMID:27507430

  20. Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy.

    PubMed

    Duan, Li L; Feng, Guo Q; Zhang, Qing G

    2016-01-01

    Molecular dynamics (MD) simulations lasting 500 ns were performed in explicit water to investigate the effect of polarization on the binding of ligands to human α-thrombin based on the standard nonpolarizable AMBER force field and the quantum-derived polarized protein-specific charge (PPC). The PPC includes the electronic polarization effect of the thrombin-ligand complex, which is absent in the standard force field. A detailed analysis and comparison of the results of the MD simulation with experimental data provided strong evidence that intra-protein, protein-ligand hydrogen bonds and the root-mean-square deviation of backbone atoms were significantly stabilized through electronic polarization. Specifically, two critical hydrogen bonds between thrombin and the ligand were broken at approximately 190 ns when AMBER force field was used and the number of intra-protein backbone hydrogen bonds was higher under PPC than under AMBER. The thrombin-ligand binding energy was computed using the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, and the results were consistent with the experimental value obtained using PPC. Because hydrogen bonds were unstable, it was failed to predict the binding affinity under the AMBER force field. Furthermore, the results of the present study revealed that differences in the binding free energy between AMBER and PPC almost comes from the electrostatic interaction. Thus, this study provides evidence that protein polarization is critical to accurately describe protein-ligand binding. PMID:27507430

  1. Notch ligand delta-like1: X-ray crystal structure and binding affinity.

    PubMed

    Kershaw, Nadia J; Church, Nicole L; Griffin, Michael D W; Luo, Cindy S; Adams, Timothy E; Burgess, Antony W

    2015-05-15

    The Notch pathway is a fundamental signalling system in most multicellular animals. We have determined the X-ray crystal structure of the extracellular domain of the Notch ligand delta-like ligand-1 (Dll-1). The structure incorporates the N-terminal C2 domain, receptor-binding DSL domain and the first six (of eight) EGF (epidermal growth factor)-like repeats, which form a highly extended conformation, confirmed by analytical ultracentrifugation. Comparison of our structure with a fragment of Jagged1 ligand allows us to dissect the similarities and differences between the ligand families. Differences in the C2 domains of Dll-1 and Jagged1 suggest their lipid-binding properties are likely to differ. A conserved hydrophobic patch on the surface of both Dll-1 and Jagged1 provides a likely receptor-interaction site that is common to both ligands. We also explore the binding affinity of Dll-1 for a fragment of Notch1 using different techniques. Apparent binding affinities vary when different techniques are used, explaining discrepancies in the literature. Using analytical ultracentrifugation, we perform for the first time binding analyses where both receptor and ligand are in solution, which confirms a Kd of 10 μM for this interaction. PMID:25715738

  2. Proton coupling in the ligand-binding reaction of ferric cytochrome P-450 from Pseudomonas putida

    SciTech Connect

    Totani, K.; Iizuka, T.; Shimada, H.; Makino, R.; Ishimura, Y.

    1983-04-01

    Effects of pH on the ligand-binding reactions of ferric heme in cytochrome P-450 from Pseudomonas putida (camphor 5-monooxygenase, EC 1.14.15.1) were studied by using cyanide, N-methylimidazole, pyridine, and ethylisocyanide as ligands. In all cases, affinity of the ferric heme for the ligand was found to increase as pH of the medium was raised from around 6 to 9. Depending on the ligand, the increase was 10- to 1000-fold and the shapes of their pH-affinity curves were remarkably different. Analyses such pH profiles disclosed the presence of a dissociable group in the enzyme with a pK value of approximately 9.5 and that its ionization greatly enhanced the affinity of the heme for ligands. When a dissociable ligand such as hydrogen cyanide and N-methylimidazole was used, the dissociated form of the ligand had a higher affinity toward the heme than the undissociated form. The shapes of the pH-affinity curves were successfully simulated as overlapping curves of ionization reactions of the ligand and the dissociable group. In addition, size of the ligand molecule was shown to be also important in the binding reaction: relatively large molecules such as pyridine, ethylisocyanide, and N-methylimidazole bound to the enzyme in a competitive manner against d-camphor concentration, whereas the binding of a smaller molecule such as cyanide was inhibited by the substrate in a noncompetitive manner. On the basis of these findings, control mechanisms for the ligand-binding reactions of the cytochrome P-450 from P. putida are discussed.

  3. Evidence of Conformational Selection Driving the Formation of Ligand Binding Sites in Protein-Protein Interfaces

    PubMed Central

    Bohnuud, Tanggis; Kozakov, Dima; Vajda, Sandor

    2014-01-01

    Many protein-protein interactions (PPIs) are compelling targets for drug discovery, and in a number of cases can be disrupted by small molecules. The main goal of this study is to examine the mechanism of binding site formation in the interface region of proteins that are PPI targets by comparing ligand-free and ligand-bound structures. To avoid any potential bias, we focus on ensembles of ligand-free protein conformations obtained by nuclear magnetic resonance (NMR) techniques and deposited in the Protein Data Bank, rather than on ensembles specifically generated for this study. The measures used for structure comparison are based on detecting binding hot spots, i.e., protein regions that are major contributors to the binding free energy. The main tool of the analysis is computational solvent mapping, which explores the surface of proteins by docking a large number of small “probe” molecules. Although we consider conformational ensembles obtained by NMR techniques, the analysis is independent of the method used for generating the structures. Finding the energetically most important regions, mapping can identify binding site residues using ligand-free models based on NMR data. In addition, the method selects conformations that are similar to some peptide-bound or ligand-bound structure in terms of the properties of the binding site. This agrees with the conformational selection model of molecular recognition, which assumes such pre-existing conformations. The analysis also shows the maximum level of similarity between unbound and bound states that is achieved without any influence from a ligand. Further shift toward the bound structure assumes protein-peptide or protein-ligand interactions, either selecting higher energy conformations that are not part of the NMR ensemble, or leading to induced fit. Thus, forming the sites in protein-protein interfaces that bind peptides and can be targeted by small ligands always includes conformational selection, although

  4. PatchSurfers: Two methods for local molecular property-based binding ligand prediction.

    PubMed

    Shin, Woong-Hee; Bures, Mark Gregory; Kihara, Daisuke

    2016-01-15

    Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided. PMID:26427548

  5. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    SciTech Connect

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  6. Direct Determination of Vibrational Density of States Change on Ligand Binding to a Protein

    NASA Astrophysics Data System (ADS)

    Balog, Erika; Becker, Torsten; Oettl, Martin; Lechner, Ruep; Daniel, Roy; Finney, John; Smith, Jeremy C.

    2004-07-01

    The change in the vibrational density of states of a protein (dihydrofolate reductase) on binding a ligand (methotrexate) is determined using inelastic neutron scattering. The vibrations of the complex soften significantly relative to the unbound protein. The resulting free-energy change, which is directly determined by the density of states change, is found to contribute significantly to the binding equilibrium.

  7. Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity.

    PubMed

    Ayres, Cory M; Scott, Daniel R; Corcelli, Steven A; Baker, Brian M

    2016-01-01

    Complementarity determining region (CDR) loop flexibility has been suggested to play an important role in the selection and binding of ligands by T cell receptors (TCRs) of the cellular immune system. However, questions remain regarding the role of loop motion in TCR binding, and crystallographic structures have raised questions about the extent to which generalizations can be made. Here we studied the flexibility of two structurally well characterized αβ TCRs, A6 and DMF5. We found that the two receptors utilize loop motion very differently in ligand binding and cross-reactivity. While the loops of A6 move rapidly in an uncorrelated fashion, those of DMF5 are substantially less mobile. Accordingly, the mechanisms of binding and cross-reactivity are very different between the two TCRs: whereas A6 relies on conformational selection to select and bind different ligands, DMF5 uses a more rigid, permissive architecture with greater reliance on slower motions or induced-fit. In addition to binding site flexibility, we also explored whether ligand-binding resulted in common dynamical changes in A6 and DMF5 that could contribute to TCR triggering. Although binding-linked motional changes propagated throughout both receptors, no common features were observed, suggesting that changes in nanosecond-level TCR structural dynamics do not contribute to T cell signaling. PMID:27118724

  8. Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity

    PubMed Central

    Ayres, Cory M.; Scott, Daniel R.; Corcelli, Steven A.; Baker, Brian M.

    2016-01-01

    Complementarity determining region (CDR) loop flexibility has been suggested to play an important role in the selection and binding of ligands by T cell receptors (TCRs) of the cellular immune system. However, questions remain regarding the role of loop motion in TCR binding, and crystallographic structures have raised questions about the extent to which generalizations can be made. Here we studied the flexibility of two structurally well characterized αβ TCRs, A6 and DMF5. We found that the two receptors utilize loop motion very differently in ligand binding and cross-reactivity. While the loops of A6 move rapidly in an uncorrelated fashion, those of DMF5 are substantially less mobile. Accordingly, the mechanisms of binding and cross-reactivity are very different between the two TCRs: whereas A6 relies on conformational selection to select and bind different ligands, DMF5 uses a more rigid, permissive architecture with greater reliance on slower motions or induced-fit. In addition to binding site flexibility, we also explored whether ligand-binding resulted in common dynamical changes in A6 and DMF5 that could contribute to TCR triggering. Although binding-linked motional changes propagated throughout both receptors, no common features were observed, suggesting that changes in nanosecond-level TCR structural dynamics do not contribute to T cell signaling. PMID:27118724

  9. VASP: A Volumetric Analysis of Surface Properties Yields Insights into Protein-Ligand Binding Specificity

    PubMed Central

    Chen, Brian Y.; Honig, Barry

    2010-01-01

    Many algorithms that compare protein structures can reveal similarities that suggest related biological functions, even at great evolutionary distances. Proteins with related function often exhibit differences in binding specificity, but few algorithms identify structural variations that effect specificity. To address this problem, we describe the Volumetric Analysis of Surface Properties (VASP), a novel volumetric analysis tool for the comparison of binding sites in aligned protein structures. VASP uses solid volumes to represent protein shape and the shape of surface cavities, clefts and tunnels that are defined with other methods. Our approach, inspired by techniques from constructive solid geometry, enables the isolation of volumetrically conserved and variable regions within three dimensionally superposed volumes. We applied VASP to compute a comparative volumetric analysis of the ligand binding sites formed by members of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains and the serine proteases. Within both families, VASP isolated individual amino acids that create structural differences between ligand binding cavities that are known to influence differences in binding specificity. Also, VASP isolated cavity subregions that differ between ligand binding cavities which are essential for differences in binding specificity. As such, VASP should prove a valuable tool in the study of protein-ligand binding specificity. PMID:20814581

  10. Steroid signaling: ligand-binding promiscuity, molecular symmetry, and the need for gating.

    PubMed

    Lathe, Richard; Kotelevtsev, Yuri

    2014-04-01

    Steroid/sterol-binding receptors and enzymes are remarkably promiscuous in the range of ligands they can bind to and, in the case of enzymes, modify - raising the question of how specific receptor activation is achieved in vivo. Estrogen receptors (ER) are modulated by 27-hydroxycholesterol and 5α-androstane-3β,17β-diol (Adiol), in addition to estradiol (E2), and respond to diverse small molecules such as bisphenol A. Steroid-modifying enzymes are also highly promiscuous in ligand binding and metabolism. The specificity problem is compounded by the fact that the steroid core (hydrogenated cyclopentophenanthrene ring system) has several planes of symmetry. Ligand binding can be in symmetrical East-West (rotation) and North-South (inversion) orientations. Hydroxysteroid dehydrogenases (HSDs) can modify symmetrical 7 and 11, also 3 and 17/20, positions, exemplified here by yeast 3α,20β-HSD and mammalian 11β-HSD and 17β-HSD enzymes. Faced with promiscuity and symmetry, other strategies are clearly necessary to promote signaling selectivity in vivo. Gating regulates hormone access via enzymes that preferentially inactivate (or activate) a subclass of ligands, thereby governing which ligands gain receptor access - exemplified by 11β-HSD gating cortisol access to the mineralocorticoid receptor, and P450 CYP7B1 gating Adiol access to ER. Counter-intuitively, the specificity of steroid/sterol action is achieved not by intrinsic binding selectivity but by the combination of local metabolism and binding affinity. PMID:24462647

  11. Differentiation between ligand trapping into intact cells and binding on muscarinic receptors.

    PubMed

    Gossuin, A; Maloteaux, J M; Trouet, A; Laduron, P

    1984-05-22

    Binding properties of [3H] dexetimide , L-quinuclidinyl[phenyl-4-3H] benzilate and [3H]methylscopolamine were compared with intact 108 CC 15 cells and membrane preparations of those. The ability of the three ligands to label specifically muscarinic receptors on membrane fractions was quite similar. By contrast, when performed with intact cells, [3H] dexetimide and L-quinuclidinyl [phenyl-4-3H]benzilate revealed higher nonspecific binding which was prevented by methylamine, suggesting a trapping of the ligands within the cells presumably in the lysosomes. To the contrary, such nonspecific 'binding' or trapping was not detectable when [3H]methylscopolamine was used as ligand, a fact which makes this ligand particularly appropriate for labelling cell surface muscarinic receptors. It is concluded that more caution is needed in binding studies when performed with intact cells; indeed, besides specific binding on receptor sites, [3H]ligand can be entrapped within the cell and can even sometimes give the illusion of specific binding. The use of lysosomal agents which do not interfere with specific receptors on membrane preparations should allow one, in most cases, to discard the possibility of a trapping phenomenon in intact cells. PMID:6722181

  12. Coupling of disulfide bond and distal histidine dissociation in human ferrous cytoglobin regulates ligand binding.

    PubMed

    Beckerson, Penny; Reeder, Brandon J; Wilson, Michael T

    2015-02-13

    Earlier kinetics studies on cytoglobin did not assign functional properties to specific structural forms. Here, we used defined monomeric and dimeric forms and cysteine mutants to show that an intramolecular disulfide bond (C38-C83) alters the dissociation rate constant of the intrinsic histidine (H81) (∼1000 fold), thus controlling binding of extrinsic ligands. Through time-resolved spectra we have unequivocally assigned CO binding to hexa- and penta-coordinate forms and have made direct measurement of histidine rebinding following photolysis. We present a model that describes how the cysteine redox state of the monomer controls histidine dissociation rate constants and hence extrinsic ligand binding. PMID:25601563

  13. Effects of the Hydroxyl Group on Phenyl Based Ligand/ERRγ Protein Binding

    PubMed Central

    2015-01-01

    Bisphenol-A (4,4′-dihydroxy-2,2-diphenylpropane, BPA, or BPA-A) and its derivatives, when exposed to humans, may affect functions of multiple organs by specific binding to the human estrogen-related receptor γ (ERRγ). We carried out atomistic molecular dynamics (MD) simulations of three ligand compounds including BPA-A, 4-α-cumylphenol (BPA-C), and 2,2-diphenylpropane (BPA-D) binding to the ligand binding domain (LBD) of a human ERRγ to study the structures and energies associated with the binding. We used the implicit Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method to estimate the free energies of binding for the phenyl based compound/ERRγ systems. The addition of hydroxyl groups to the aromatic ring had only a minor effect on binding structures and a significant effect on ligand/protein binding energy in an aqueous solution. Free binding energies of BPA-D to the ERRγ were found to be considerably less than those of BPA-A and BPA-C to the ERRγ. These results are well correlated with those from experiments where no binding affinities were determined in the BPA-D/ERRγ complex. No conformational change was observed for the helix 12 (H-12) of ERRγ upon binding of these compounds preserving an active transcriptional conformation state. PMID:25098505

  14. Parameterization of an effective potential for protein–ligand binding from host–guest affinity data

    PubMed Central

    Wickstrom, Lauren; Deng, Nanjie; He, Peng; Mentes, Ahmet; Nguyen, Crystal; Gilson, Michael K.; Kurtzman, Tom; Gallicchio, Emilio; Levy, Ronald M.

    2015-01-01

    Force field accuracy is still one of the “stalemates” in biomolecular modeling. Model systems with high quality experimental data are valuable instruments for the validation and improvement of effective potentials. With respect to protein–ligand binding, organic host–guest complexes have long served as models for both experimental and computational studies because of the abundance of binding affinity data available for such systems. Binding affinity data collected for cyclodextrin (CD) inclusion complexes, a popular model for molecular recognition, is potentially a more reliable resource for tuning energy parameters than hydration free energy measurements. Convergence of binding free energy calculations on CD host–guest systems can also be obtained rapidly, thus offering the opportunity to assess the robustness of these parameters. In this work, we demonstrate how implicit solvent parameters can be developed using binding affinity experimental data and the binding energy distribution analysis method (BEDAM) and validated using the Grid Inhomogeneous Solvation Theory analysis. These new solvation parameters were used to study protein–ligand binding in two drug targets against the HIV-1 virus and improved the agreement between the calculated and the experimental binding affinities. This work illustrates how benchmark sets of high quality experimental binding affinity data and physics-based binding free energy models can be used to evaluate and optimize force fields for protein–ligand systems. PMID:26256816

  15. Molecular dynamics studies of Hsp90 with ADP: Protein-ligand binding dynamics

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kazutomo; Takagi, Hiroyuki; Takasu, Masako; Saito, Hiroaki; Nagao, Hidemi

    2013-02-01

    Ligand binding to a protein molecule plays a key role in the function of many proteins. We performed all-atom model molecular dynamics (MD) simulations of the N-terminal domain of human Hsp90 in complex with ADP, and calculated a free energy profile for ligand binding with thermodynamic integration method. The free energy profile as a function of the distance between the centers of mass of the N-terminal domain of Hsp90 and ADP was calculated using the results of the binding-distance constrained MD simulations. The free energy profile was fit to a harmonic oscillator. We obtained spring constant k = 3.84kJ/molṡnm2 = 9.17×10-1kcal/molṡÅ2. This result indicates that the dynamics of the ligand binding to the protein molecule is about 1,000 times slower than that of the covalent bond.

  16. Spin-dependent mechanism for diatomic ligand binding to heme

    PubMed Central

    Franzen, Stefan

    2002-01-01

    The nature of diatomic ligand recombination in heme proteins is elucidated by using a Landau–Zener model for the electronic coupling in the recombination rate constant. The model is developed by means of explicit potential energy surfaces calculated by using density functional theory (DFT). The interaction of all possible spin states of the three common diatomic ligands, CO, NO, and O2, and high-spin heme iron is compared. The electronic coupling, rebinding barrier, and Landau–Zener force terms can be obtained and used to demonstrate significant differences among the ligands. In particular the intermediate spin states of NO (S = 3/2) and O2 (S = 1) are shown to be bound states. Rapid recombination occurs from these bound states in agreement with experimental data. The slower phases of O2 recombination can be explained by the presence of two higher spin states, S = 2 and S = 3, which have a small and relatively large barrier to ligand recombination, respectively. By contrast, the intermediate spin state for CO is not a bound state, and the only recombination pathway for CO involves direct recombination from the S = 2 state. This process is significantly slower according to the Landau–Zener model. Quantitative estimates of the parameters used in the rate constants provide a complete description that explains rebinding rates that range from femtoseconds to milliseconds at ambient temperature. PMID:12477933

  17. Dynamics of cellular retinoic acid binding protein I on multiple time scales with implications for ligand binding.

    PubMed

    Krishnan, V V; Sukumar, M; Gierasch, L M; Cosman, M

    2000-08-01

    Cellular retinoic acid binding protein I (CRABPI) belongs to the family of intracellular lipid binding proteins (iLBPs), all of which bind a hydrophobic ligand within an internal cavity. The structures of several iLBPs reveal minimal structural differences between the apo (ligand-free) and holo (ligand-bound) forms, suggesting that dynamics must play an important role in the ligand recognition and binding processes. Here, a variety of nuclear magnetic resonance (NMR) spectroscopy methods were used to systematically study the dynamics of both apo and holo CRABPI at various time scales. Translational and rotational diffusion constant measurements were used to study the overall motions of the proteins. Both apo and holo forms of CRABPI tend to self-associate at high (1.2 mM) concentrations, while at low concentrations (0.2 mM), they are predominantly monomeric. Rapid amide exchange rate and laboratory frame relaxation rate measurements at two spectrometer field strengths (500 and 600 MHz) were used to probe the internal motions of the individual residues. Several residues in the apo form, notably within the ligand recognition region, exhibit millisecond time scale motions that are significantly arrested in the holo form. In contrast, no significant differences in the high-frequency motions were observed between the two forms. These results provide direct experimental evidence for dynamics-induced ligand recognition and binding at a specifically defined time scale. They also exemplify the importance of dynamics in providing a more comprehensive understanding of how a protein functions. PMID:10924105

  18. Crystallographic Study of Novel Transthyretin Ligands Exhibiting Negative-Cooperativity between Two Thyroxine Binding Sites

    PubMed Central

    Singh, Rajiv Ranjan; Mishra, Satyendra; Gupta, Sarika; Surolia, Avadhesha; Salunke, Dinakar M.

    2012-01-01

    Background Transthyretin (TTR) is a homotetrameric serum and cerebrospinal fluid protein that transports thyroxine (T4) and retinol by binding to retinol binding protein. Rate-limiting tetramer dissociation and rapid monomer misfolding and disassembly of TTR lead to amyloid fibril formation in different tissues causing various amyloid diseases. Based on the current understanding of the pathogenesis of TTR amyloidosis, it is considered that the inhibition of amyloid fibril formation by stabilization of TTR in native tetrameric form is a viable approach for the treatment of TTR amyloidosis. Methodology and Principal Findings We have examined interactions of the wtTTR with a series of compounds containing various substitutions at biphenyl ether skeleton and a novel compound, previously evaluated for binding and inhibiting tetramer dissociation, by x-ray crystallographic approach. High resolution crystal structures of five ligands in complex with wtTTR provided snapshots of negatively cooperative binding of ligands in two T4 binding sites besides characterizing their binding orientations, conformations, and interactions with binding site residues. In all complexes, the ligand has better fit and more potent interactions in first T4 site i.e. (AC site) than the second T4 site (BD site). Together, these results suggest that AC site is a preferred ligand binding site and retention of ordered water molecules between the dimer interfaces further stabilizes the tetramer by bridging a hydrogen bond interaction between Ser117 and its symmetric copy. Conclusion Novel biphenyl ether based compounds exhibit negative-cooperativity while binding to two T4 sites which suggests that binding of only single ligand molecule is sufficient to inhibit the TTR tetramer dissociation. PMID:22973437

  19. Docking and free energy perturbation studies of ligand binding in the kappa opioid receptor.

    PubMed

    Goldfeld, Dahlia A; Murphy, Robert; Kim, Byungchan; Wang, Lingle; Beuming, Thijs; Abel, Robert; Friesner, Richard A

    2015-01-22

    The kappa opioid receptor (KOR) is an important target for pain and depression therapeutics that lack harmful and addictive qualities of existing medications. We present a model for the binding of morphinan ligands and JDTic to the JDTic/KOR crystal structure based on an atomic level description of the water structure within its active site. The model contains two key interaction motifs that are supported by experimental evidence. The first is the formation of a salt bridge between the ligand and Asp 138(3.32) in transmembrane domain (TM) 3. The second is the stabilization by the ligand of two high energy, isolated, and ice-like waters near TM5 and TM6. This model is incorporated via energetic terms into a new empirical scoring function, WScore, designed to assess interactions between ligands and localized water in a binding site. Pairing WScore with the docking program Glide discriminates known active KOR ligands from large sets of decoy molecules much better than Glide's older generation scoring functions, SP and XP. We also use rigorous free energy perturbation calculations to provide evidence for the proposed mechanism of interaction between ligands and KOR. The molecular description of ligand binding in KOR should provide a good starting point for future drug discovery efforts for this receptor. PMID:25395044

  20. Automatic generation of bioinformatics tools for predicting protein–ligand binding sites

    PubMed Central

    Banno, Masaki; Ueki, Kokoro; Saad, Gul; Shimizu, Kentaro

    2016-01-01

    Motivation: Predictive tools that model protein–ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can rapidly and efficiently develop user-friendly protein–ligand binding predictive tools would be useful. Results: We developed a system for automatically generating protein–ligand binding predictions. Implementation of this system in a pipeline of Semantic Web technique-based web tools will allow users to specify a ligand and receive the tool within 0.5–1 day. We demonstrated high prediction accuracy for three machine learning algorithms and eight ligands. Availability and implementation: The source code and web application are freely available for download at http://utprot.net. They are implemented in Python and supported on Linux. Contact: shimizu@bi.a.u-tokyo.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26545824

  1. Molecular dynamics simulation of ligand dissociation from liver fatty acid binding protein.

    PubMed

    Long, Dong; Mu, Yuguang; Yang, Daiwen

    2009-01-01

    The mechanisms of how ligands enter and leave the binding cavity of fatty acid binding proteins (FABPs) have been a puzzling question over decades. Liver fatty acid binding protein (LFABP) is a unique family member which accommodates two molecules of fatty acids in its cavity and exhibits the capability of interacting with a variety of ligands with different chemical structures and properties. Investigating the ligand dissociation processes of LFABP is thus a quite interesting topic, which however is rather difficult for both experimental approaches and ordinary simulation strategies. In the current study, random expulsion molecular dynamics simulation, which accelerates ligand motions for rapid dissociation, was used to explore the potential egress routes of ligands from LFABP. The results showed that the previously hypothesized "portal region" could be readily used for the dissociation of ligands at both the low affinity site and the high affinity site. Besides, one alternative portal was shown to be highly favorable for ligand egress from the high affinity site and be related to the unique structural feature of LFABP. This result lends strong support to the hypothesis from the previous NMR exchange studies, which in turn indicates an important role for this alternative portal. Another less favored potential portal located near the N-terminal end was also identified. Identification of the dissociation pathways will allow further mechanistic understanding of fatty acid uptake and release by computational and/or experimental techniques. PMID:19564911

  2. Configurational entropy and cooperativity between ligand binding and dimerization in glycopeptide antibiotics.

    PubMed

    Jusuf, Sutjano; Loll, Patrick J; Axelsen, Paul H

    2003-04-01

    Oligomerization and ligand binding are thermodynamically cooperative processes in many biochemical systems, and the mechanisms giving rise to cooperative behavior are generally attributed to changes in structure. In glycopeptide antibiotics, however, these cooperative processes are not accompanied by significant structural changes. To investigate the mechanism by which cooperativity arises in these compounds, fully solvated molecular dynamics simulations and quasiharmonic normal-mode analysis were performed on chloroeremomycin, vancomycin, and dechlorovancomycin. Configurational entropies were derived from the vibrational modes recovered from ligand-free and ligand-bound forms of the monomeric and dimeric species. Results indicate that both ligand binding and dimerization incur an entropic cost as vibrational activity in the central core of the antibiotic is shifted to higher frequencies with lower amplitudes. Nevertheless, ligand binding and dimerization are cooperative because the entropic cost of both processes occurring together is less than the cost of these processes occurring separately. These reductions in configurational entropy are more than sufficient in magnitude to account for the experimentally observed cooperativity between dimerization and ligand binding. We conclude that biochemical cooperativity can be mediated through changes in vibrational activity, irrespective of the presence or absence of concomitant structural change. This may represent a general mechanism of allostery underlying cooperative phenomena in diverse macromolecular systems. PMID:12656635

  3. Estimating Protein-Ligand Binding Affinity using High-Throughput Screening by NMR

    PubMed Central

    Shortridge, Matthew D.; Hage, David S.; Harbison, Gerard S.; Powers, Robert

    2009-01-01

    Many of today’s drug discovery programs utilize high-throughput screening methods that rely on quick evaluations of protein activity to rank potential chemical leads. By monitoring biologically relevant protein-ligand interactions, NMR can provide a means to validate these discovery leads and to optimize the drug discovery process. NMR-based screens typically use a change in chemical shift or linewidth to detect a protein-ligand interaction. However, the relatively low throughput of current NMR screens and their high demand on sample requirements generally makes it impractical to collect complete binding curves to measure the affinity for each compound in a large and diverse chemical library. As a result, NMR ligand screens are typically limited to identifying candidates that bind to a protein and do not give any estimate of the binding affinity. To address this issue, a methodology has been developed to rank binding affinities for ligands based on NMR-based screens that use 1D 1H NMR line-broadening experiments. This method was demonstrated by using it to estimate the dissociation equilibrium constants for twelve ligands with the protein human serum albumin (HSA). The results were found to give good agreement with previous affinities that have been reported for these same ligands with HSA. PMID:18831571

  4. Conformational selection and adaptation to ligand binding in T4 lysozyme cavity mutants.

    PubMed

    López, Carlos J; Yang, Zhongyu; Altenbach, Christian; Hubbell, Wayne L

    2013-11-12

    The studies presented here explore the relationship between protein packing and molecular flexibility using ligand-binding cavity mutants of T4 lysozyme. Although previously reported crystal structures of the mutants investigated show single conformations that are similar to the WT protein, site-directed spin labeling in solution reveals additional conformational substates in equilibrium exchange with a WT-like population. Remarkably, binding of ligands, including the general anesthetic halothane shifts the population to the WT-like state, consistent with a conformational selection model of ligand binding, but structural adaptation to the ligand is also apparent in one mutant. Distance mapping with double electron-electron resonance spectroscopy and the absence of ligand binding suggest that the new substates induced by the cavity-creating mutations represent alternate packing modes in which the protein fills or partially fills the cavity with side chains, including the spin label in one case; external ligands compete with the side chains for the cavity space, stabilizing the WT conformation. The results have implications for mechanisms of anesthesia, the response of proteins to hydrostatic pressure, and protein engineering. PMID:24167295

  5. Allostery Mediates Ligand Binding to WWOX Tumor Suppressor via a Conformational Switch

    PubMed Central

    Schuchardt, Brett J.; Mikles, David C.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad

    2014-01-01

    While being devoid of the ability to recognize ligands itself, the WW2 domain is believed to aid ligand binding to WW1 domain in the context of WW1-WW2 tandem module of WWOX tumor suppressor. In an effort to test the generality of this hypothesis, we have undertaken here a detailed biophysical analysis of the binding of WW domains of WWOX alone and in the context of WW1-WW2 tandem module to an array of putative PPXY ligands. Our data show that while the WW1 domain of WWOX binds to all ligands in a physiologically-relevant manner, the WW2 domain does not. Moreover, ligand binding to WW1 domain in the context of WW1-WW2 tandem module is two-to-three-fold stronger than when treated alone. We also provide evidence that the WW domains within the WW1-WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. Of particular note is the observation that the physical association of WW2 domain with WW1 blocks access to ligand. Consequently, ligand binding to WW1 domain not only results in the displacement of WW2 lid but also disrupts the physical association of WW domains in the liganded conformation. Taken together, our study underscores a key role of allosteric communication in the ability of WW2 orphan domain to chaperone physiological action of WW1 domain within the context of the WW1-WW2 tandem module of WWOX. PMID:25703206

  6. Allostery mediates ligand binding to WWOX tumor suppressor via a conformational switch.

    PubMed

    Schuchardt, Brett J; Mikles, David C; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2015-04-01

    While being devoid of the ability to recognize ligands itself, the WW2 domain is believed to aid ligand binding to the WW1 domain in the context of a WW1-WW2 tandem module of WW domain-containing oxidoreductase (WWOX) tumor suppressor. In an effort to test the generality of this hypothesis, we have undertaken here a detailed biophysical analysis of the binding of WW domains of WWOX alone and in the context of the WW1-WW2 tandem module to an array of putative proline-proline-x-tyrosine (PPXY) ligands. Our data show that while the WW1 domain of WWOX binds to all ligands in a physiologically relevant manner, the WW2 domain does not. Moreover, ligand binding to the WW1 domain in the context of the WW1-WW2 tandem module is two-to-three-fold stronger than when treated alone. We also provide evidence that the WW domains within the WW1-WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. Of particular note is the observation that the physical association of the WW2 domain with WW1 blocks access to ligands. Consequently, ligand binding to the WW1 domain not only results in the displacement of the WW2 lid but also disrupts the physical association of WW domains in the liganded conformation. Taken together, our study underscores a key role of allosteric communication in the ability of the WW2 orphan domain to chaperone physiological action of the WW1 domain within the context of the WW1-WW2 tandem module of WWOX. PMID:25703206

  7. The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites

    PubMed Central

    2013-01-01

    Background Many Protein Data Bank (PDB) users assume that the deposited structural models are of high quality but forget that these models are derived from the interpretation of experimental data. The accuracy of atom coordinates is not homogeneous between models or throughout the same model. To avoid basing a research project on a flawed model, we present a tool for assessing the quality of ligands and binding sites in crystallographic models from the PDB. Results The Validation HElper for LIgands and Binding Sites (VHELIBS) is software that aims to ease the validation of binding site and ligand coordinates for non-crystallographers (i.e., users with little or no crystallography knowledge). Using a convenient graphical user interface, it allows one to check how ligand and binding site coordinates fit to the electron density map. VHELIBS can use models from either the PDB or the PDB_REDO databank of re-refined and re-built crystallographic models. The user can specify threshold values for a series of properties related to the fit of coordinates to electron density (Real Space R, Real Space Correlation Coefficient and average occupancy are used by default). VHELIBS will automatically classify residues and ligands as Good, Dubious or Bad based on the specified limits. The user is also able to visually check the quality of the fit of residues and ligands to the electron density map and reclassify them if needed. Conclusions VHELIBS allows inexperienced users to examine the binding site and the ligand coordinates in relation to the experimental data. This is an important step to evaluate models for their fitness for drug discovery purposes such as structure-based pharmacophore development and protein-ligand docking experiments. PMID:23895374

  8. Ligand Binding and Structural Changes Associated with Allostery in Yeast NAD+-specific Isocitrate Dehydrogenase

    PubMed Central

    Lee, McAlister-Henn

    2011-01-01

    Yeast NAD+-specific isocitrate dehydrogenase (IDH) is an octameric enzyme composed of four each of regulatory IDH1 and catalytic IDH2 subunits that share 42% sequence identity. IDH2 contains catalytic isocitrate/Mg2+ and NAD+ binding sites whereas IDH1 contains homologous binding sites, respectively, for cooperative binding of isocitrate and for allosteric binding of AMP. Ligand binding is highly ordered in vitro, and IDH exhibits the unusual property of half-site binding for all ligands. The structures of IDH solved in the absence or presence of ligands have shown: (a) a heterodimer to be the basic structural/functional unit of the enzyme, (b) the organization of heterodimers to form tetramer and octamer structures, (c) structural differences that may underlie cooperative and allosteric regulatory mechanisms, and (d) the possibility for formation of a disulfide bond that could reduce catalytic activity. In vivo analyses of mutant enzymes have elucidated the physiological importance of catalytic activity and allosteric regulation of this tricarboxylic acid cycle enzyme. Other studies have established the importance of a disulfide bond in regulation of IDH activity in vivo, as well as contributions of this bond to the property of half-site ligand binding exhibited by the wild-type enzyme. PMID:22008468

  9. Radioligand binding assays for high affinity binders in the presence of endogenous ligands

    SciTech Connect

    White, H.B. III; McGahan, T.

    1986-05-01

    Endogenous ligands complicate radioligand-binding assays of high-affinity binding proteins by obscuring binding sites or by diluting the labeled ligand. They have developed a mathematical model for such systems where structurally identical radioligand and endogenous ligand can be equilibrated on the binding site and bound radioligand measured. A double-reciprocal plot of bound radioligand, *L/sub B/, versus sample volume, V, yields a straight line. Introduction of scaling factors for sample dilution, F, and total radioligand available, *L/sub T/, produces a plot in which the x-intercept yields the endogenous ligand concentration, (L/sub T/); the slope is the reciprocal of the binding protein concentration, (P/sub T/)/sup -1/; and the y-intercept is the fractional saturation of the high-affinity binder, L/sub T//P/sub T/. This type of analysis has been applied to the assay of high-affinity biotin-binding proteins in egg yolk. Its use led to the detection of a second biotin-binding protein which is heat labile. The conceptual approach can be applied to the assay of other high-affinity binders.

  10. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    SciTech Connect

    Fagan, P A

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I{center_dot}C base pairs are functional analogs of A{center_dot}T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  11. In silico Identification and Characterization of Protein-Ligand Binding Sites.

    PubMed

    Roche, Daniel Barry; McGuffin, Liam James

    2016-01-01

    Protein-ligand binding site prediction methods aim to predict, from amino acid sequence, protein-ligand interactions, putative ligands, and ligand binding site residues using either sequence information, structural information, or a combination of both. In silico characterization of protein-ligand interactions has become extremely important to help determine a protein's functionality, as in vivo-based functional elucidation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro biochemical functional elucidation is time-consuming, costly, and may not be feasible for large-scale analysis, such as drug discovery. Thus, in silico prediction of protein-ligand interactions must be utilized to aid in functional elucidation. Here, we briefly discuss protein function prediction, prediction of protein-ligand interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the field. We also discuss, in detail, our cutting-edge web-server method, FunFOLD for the structurally informed prediction of protein-ligand interactions. Furthermore, we provide a step-by-step guide on using the FunFOLD web server and FunFOLD3 downloadable application, along with some real world examples, where the FunFOLD methods have been used to aid functional elucidation. PMID:27094282

  12. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes

    PubMed Central

    Bončina, Matjaž; Podlipnik, Črtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-01-01

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ ligands (Phen-DC3, 360A-Br; KTel22 > KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation. PMID:26546516

  13. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes.

    PubMed

    Bončina, Matjaž; Podlipnik, Črtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-12-01

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ ligands (Phen-DC3, 360A-Br; KTel22 > KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation. PMID:26546516

  14. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors.

    PubMed

    Massink, A; Holzheimer, M; Hölscher, A; Louvel, J; Guo, D; Spijksma, G; Hankemeier, T; IJzerman, A P

    2015-12-01

    Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label. The sensitivity of MS equipment increases progressively, and currently, it is possible to detect low ligand quantities that are usually found in ligand binding assays. We developed a label-free MS ligand binding (MS binding) assay on the adenosine A(1) and A(2A) receptors (A(1)AR and A(2A)AR), which are well-characterized members of the class A G protein-coupled receptor (GPCR) family. Radioligand binding assays for both receptors are well established, and ample data is available to compare and evaluate the performance of an MS binding assay. 1,3-Dipropyl-8-cyclopentyl-xanthine (DPCPX) and 4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol (ZM-241,385) are high-affinity ligands selective for the A(1)AR and A(2A)AR, respectively. To proof the feasibility of MS binding on the A(1)AR and A(2A)AR, we first developed an MS detection method for unlabeled DPCPX and ZM-241,385. To serve as internal standards, both compounds were also deuterium-labeled. Subsequently, we investigated whether the two unlabeled compounds could substitute for their radiolabeled counterparts as marker ligands in binding experiments, including saturation, displacement, dissociation, and competition association assays. Furthermore, we investigated the accuracy of these assays if the use of internal standards was excluded. The results demonstrate the feasibility of the MS binding assay, even in the absence of a deuterium-labeled internal standard, and provide great promise for the further development of label-free assays based on MS for other GPCRs. PMID

  15. Carboxylic-Acid-passivated metal oxide nanocrystals: ligand exchange characteristics of a new binding motif.

    PubMed

    De Roo, Jonathan; Justo, Yolanda; De Keukeleere, Katrien; Van den Broeck, Freya; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2015-05-26

    Ligand exchange is central in the processing of inorganic nanocrystals (NCs) and requires understanding of surface chemistry. Studying sterically stabilized HfO2 and ZrO2 NCs using (1) H solution NMR and IR spectroscopy as well as elemental analysis, this paper demonstrates the reversible exchange of initial oleic acid ligands for octylamine and self-adsorption of oleic acid at NC surfaces. Both processes are incompatible with an X-type binding motif of carboxylic acids as reported for sulfide and selenide NCs. We argue that this behavior stems from the dissociative adsorption of carboxylic acids at the oxide surface. Both proton and carboxylate moieties must be regarded as X-type ligands yielding a combined X2 binding motif that allows for self-adsorption and exchange for L-type ligands. PMID:25866095

  16. Metal-coordination-driven mixed ligand binding in supramolecular bisporphyrin tweezers.

    PubMed

    Ikbal, Sk Asif; Dhamija, Avinash; Rath, Sankar Prasad

    2015-09-25

    Mg(II)bisporphyrin has been used as an efficient host for the selective binding of guest ligands. In the presence of heterogeneous guest pairs, 2-aminopyrimidine/pyrazine and 2-aminopyrimidine/1,4-dioxane, 2-aminopyrimidine is bound selectively inside the bisporphyrin cavity whereas pyrazine/1,4-dioxane is bound outside to produce 1D mixed ligand polymers. UV-vis, (1)H NMR spectra and X-ray structure confirm such a selective and orthogonal binding of the guest ligands. The mixed ligand polymer has been synthesized just by mixing the host and guests in one pot and easily isolated as a solid in nearly quantitative yield due to its high stability. PMID:26256242

  17. Binding of stereognostically designed ligands to trivalent, pentavalent, and hexavalent f-block elements

    SciTech Connect

    Sinkov, Sergey I.; Lumetta, Gregg J.; Warner, Marvin G.; Pittman, Jonathan W.

    2012-03-26

    Stability constants were determined for the complexes formed from two stereognostically designed ligands and the f-block elements Nd(III), Np(V), and Pu(VI). The ligands investigated were tris[3-(2-carboxyphenoxy)propyl]amine (NPB) and tris-N,N',N''-[2-(2-carboxy-4-ethyl-phenoxy)ethyl]-1,4,7-triazacyclononane (EETAC). A stereognostically blind ligand, nitrilotriacetic acid (NTA), was also investigated for comparison. The results suggest that there is no significant stereognostic effect for complexation of NPB or EETAC to Np(V). On the other hand, a modest stereognostic effect is seen for the NPB ligand when complexed to Pu(VI), leading to an approximately 8-fold increase in the binding strength. A more significant effect is observed for the EETAC system in which a 250-fold increase in binding is observed for Pu(VI) versus Nd(III).

  18. Quantitative Determination of DNA-Ligand Binding Using Fluorescence Spectroscopy

    ERIC Educational Resources Information Center

    Healy, Eamonn F.

    2007-01-01

    The effective use of fluorescence spectroscopy for determining the binding of the intercalcating agent crhidium bromide to DNA is being described. The analysis used simple measurement techniques and hence can be easily adopted by the students for a better understanding.

  19. Identification of Ligand Binding Sites of Proteins Using the Gaussian Network Model

    PubMed Central

    Tuzmen, Ceren; Erman, Burak

    2011-01-01

    The nonlocal nature of the protein-ligand binding problem is investigated via the Gaussian Network Model with which the residues lying along interaction pathways in a protein and the residues at the binding site are predicted. The predictions of the binding site residues are verified by using several benchmark systems where the topology of the unbound protein and the bound protein-ligand complex are known. Predictions are made on the unbound protein. Agreement of results with the bound complexes indicates that the information for binding resides in the unbound protein. Cliques that consist of three or more residues that are far apart along the primary structure but are in contact in the folded structure are shown to be important determinants of the binding problem. Comparison with known structures shows that the predictive capability of the method is significant. PMID:21283550

  20. "DAKLI": a multipurpose ligand with high affinity and selectivity for dynorphin (kappa opioid) binding sites.

    PubMed Central

    Goldstein, A; Nestor, J J; Naidu, A; Newman, S R

    1988-01-01

    We describe a synthetic ligand, "DAKLI" (Dynorphin A-analogue Kappa LIgand), related to the opioid peptide dynorphin A. A single reactive amino group at the extended carboxyl terminus permits various reporter groups to be attached, such as 125I-labeled Bolton-Hunter reagent, fluorescein isothiocyanate, or biotin. These derivatives have high affinity and selectivity for the dynorphin (kappa opioid) receptor. An incidental finding is that untreated guinea pig brain membranes have saturable avidin binding sites. PMID:2902630

  1. Classification of Beta-Lactamases and Penicillin Binding Proteins Using Ligand-Centric Network Models

    PubMed Central

    Öztürk, Hakime; Ozkirimli, Elif; Özgür, Arzucan

    2015-01-01

    β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics, rendering them ineffective, Penicillin-Binding Proteins (PBPs), which share high structural similarity with β-lactamases, also confer antibiotic resistance to their host organism by acquiring mutations that allow them to continue their participation in cell wall biosynthesis. In this paper, we propose a novel approach to include ligand sharing information for classifying and clustering β-lactamases and PBPs in an effort to elucidate the ligand induced evolution of these β-lactam binding proteins. We first present a detailed summary of the β-lactamase and PBP families in the Protein Data Bank, as well as the compounds they bind to. Then, we build two different types of networks in which the proteins are represented as nodes, and two proteins are connected by an edge with a weight that depends on the number of shared identical or similar ligands. These models are analyzed under three different edge weight settings, namely unweighted, weighted, and normalized weighted. A detailed comparison of these six networks showed that the use of ligand sharing information to cluster proteins resulted in modules comprising proteins with not only sequence similarity but also functional similarity. Consideration of ligand similarity highlighted some interactions that were not detected in the identical ligand network. Analysing the β-lactamases and PBPs using ligand-centric network models enabled the identification of novel relationships, suggesting that these models can be used to examine other protein families to obtain information on their ligand induced evolutionary paths. PMID:25689853

  2. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor.

    PubMed

    Liu, Qian; Kwoh, Chee Keong; Li, Jinyan

    2013-11-25

    Accurate determination of protein-ligand binding affinity is a fundamental problem in biochemistry useful for many applications including drug design and protein-ligand docking. A number of scoring functions have been proposed for the prediction of protein-ligand binding affinity. However, accurate prediction is still a challenging problem because poor performance is often seen in the evaluation under the leave-one-cluster-out cross-validation (LCOCV). We introduce a new scoring function named B2BScore to improve the prediction performance. B2BScore integrates two physicochemical properties for protein-ligand binding affinity prediction. One is the property of β contacts. A β contact between two atoms requires no other atoms to interrupt the atomic contact and assumes that the two atoms should have enough direct contact area. The other is the property of B factor to capture the atomic mobility in the dynamic protein-ligand binding process. Tested on the PDBBind2009 data set, B2BScore shows superior prediction performance to existing methods on independent test data as well as under the LCOCV evaluation framework. In particular, B2BScore achieves a significant LCOCV improvement across 26 protein clusters-a big increase of the averaged Pearson's correlation coefficients from 0.418 to 0.518 and a significant decrease of standard deviation of the coefficients from 0.352 to 0.196. We also identified several important and intuitive contact descriptors of protein-ligand binding through the random forest learning in B2BScore. Some of these descriptors are closely related to contacts between carbon atoms without covalent-bond oxygen/nitrogen, preferred contacts of metal ions, interfacial backbone atoms from proteins, or π rings. Some others are negative descriptors relating to those contacts with nitrogen atoms without covalent-bond hydrogens or nonpreferred contacts of metal ions. These descriptors can be directly used to guide protein-ligand docking. PMID:24191692

  3. A model for the study of ligand binding to the ribosomal RNA helix h44

    SciTech Connect

    Dibrov, Sergey M.; Parsons, Jerod; Hermann, Thomas

    2010-09-02

    Oligonucleotide models of ribosomal RNA domains are powerful tools to study the binding and molecular recognition of antibiotics that interfere with bacterial translation. Techniques such as selective chemical modification, fluorescence labeling and mutations are cumbersome for the whole ribosome but readily applicable to model RNAs, which are readily crystallized and often give rise to higher resolution crystal structures suitable for detailed analysis of ligand-RNA interactions. Here, we have investigated the HX RNA construct which contains two adjacent ligand binding regions of helix h44 in 16S ribosomal RNA. High-resolution crystal structure analysis confirmed that the HX RNA is a faithful structural model of the ribosomal target. Solution studies showed that HX RNA carrying a fluorescent 2-aminopurine modification provides a model system that can be used to monitor ligand binding to both the ribosomal decoding site and, through an indirect effect, the hygromycin B interaction region.

  4. Development of a quantitative fluorescence-based ligand-binding assay

    PubMed Central

    Breen, Conor J.; Raverdeau, Mathilde; Voorheis, H. Paul

    2016-01-01

    A major goal of biology is to develop a quantitative ligand-binding assay that does not involve the use of radioactivity. Existing fluorescence-based assays have a serious drawback due to fluorescence quenching that accompanies the binding of fluorescently-labeled ligands to their receptors. This limitation of existing fluorescence-based assays prevents the number of cellular receptors under investigation from being accurately measured. We have developed a method where FITC-labeled proteins bound to a cell surface are proteolyzed extensively to eliminate fluorescence quenching and then the fluorescence of the resulting sample is compared to that of a known concentration of the proteolyzed FITC-protein employed. This step enables the number of cellular receptors to be measured quantitatively. We expect that this method will provide researchers with a viable alternative to the use of radioactivity in ligand binding assays. PMID:27161290

  5. Development of a quantitative fluorescence-based ligand-binding assay.

    PubMed

    Breen, Conor J; Raverdeau, Mathilde; Voorheis, H Paul

    2016-01-01

    A major goal of biology is to develop a quantitative ligand-binding assay that does not involve the use of radioactivity. Existing fluorescence-based assays have a serious drawback due to fluorescence quenching that accompanies the binding of fluorescently-labeled ligands to their receptors. This limitation of existing fluorescence-based assays prevents the number of cellular receptors under investigation from being accurately measured. We have developed a method where FITC-labeled proteins bound to a cell surface are proteolyzed extensively to eliminate fluorescence quenching and then the fluorescence of the resulting sample is compared to that of a known concentration of the proteolyzed FITC-protein employed. This step enables the number of cellular receptors to be measured quantitatively. We expect that this method will provide researchers with a viable alternative to the use of radioactivity in ligand binding assays. PMID:27161290

  6. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  7. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove.

    PubMed

    McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany; Remesh, Soumya G; Kaever, Thomas; Bardet, Wilfried; Jackson, Kenneth; McLeod, Rima; Sette, Alessandro; Nielsen, Morten; Zajonc, Dirk M; Blader, Ira J; Peters, Bjoern; Hildebrand, William

    2016-01-01

    HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1-30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F' pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions. PMID:26824387

  8. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove

    PubMed Central

    McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany; Remesh, Soumya G; Kaever, Thomas; Bardet, Wilfried; Jackson, Kenneth; McLeod, Rima; Sette, Alessandro; Nielsen, Morten; Zajonc, Dirk M; Blader, Ira J; Peters, Bjoern; Hildebrand, William

    2016-01-01

    HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1–30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F’ pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions. DOI: http://dx.doi.org/10.7554/eLife.12556.001 PMID:26824387

  9. Ligands Binding and Molecular Simulation: the Potential Investigation of a Biosensor Based on an Insect Odorant Binding Protein

    PubMed Central

    Yi, Xin; Zhang, Yanbo; Wang, Peidan; Qi, Jiangwei; Hu, Meiying; Zhong, Guohua

    2015-01-01

    Based on mimicking biological olfaction, biosensors have been applied for the detection of various ligands in complex environment, which could represent one of the most promising research fields. In this study, the basic characters of one insect odorant binding protein (OBP) as a biosensor were explored. To explore the molecular recognition process, the tertiary structure of the protein was modeled and the protein-ligand interactions with 1,536,550 chemicals were investigated by the molecular docking. The availability of large amount of recombinant SlitOBP1 overcame the difficulty to obtain biological sensing material. After obtained the purified recombinant protein, the result of fluorescence binding assays proved the candidate protein has good affinities with the majority of the tested chemicals. With the aid of simulation docking, the key conserved amino acids within the binding site were identified and then mutated to alanine. After mutation, the protein-ligand binding characteristics were recorded, and the competitive binding assays were carried out to provide experimental verification. The detailed information on its structure and affinities investigated in this study could allow the design of specific mutants with desired characteristics, which provides a solid base for tailoring OBP for biosensor and provides a role model for screening the other elements in olfactory system for different applications. PMID:25552932

  10. Ligands binding and molecular simulation: the potential investigation of a biosensor based on an insect odorant binding protein.

    PubMed

    Yi, Xin; Zhang, Yanbo; Wang, Peidan; Qi, Jiangwei; Hu, Meiying; Zhong, Guohua

    2015-01-01

    Based on mimicking biological olfaction, biosensors have been applied for the detection of various ligands in complex environment, which could represent one of the most promising research fields. In this study, the basic characters of one insect odorant binding protein (OBP) as a biosensor were explored. To explore the molecular recognition process, the tertiary structure of the protein was modeled and the protein-ligand interactions with 1,536,550 chemicals were investigated by the molecular docking. The availability of large amount of recombinant SlitOBP1 overcame the difficulty to obtain biological sensing material. After obtained the purified recombinant protein, the result of fluorescence binding assays proved the candidate protein has good affinities with the majority of the tested chemicals. With the aid of simulation docking, the key conserved amino acids within the binding site were identified and then mutated to alanine. After mutation, the protein-ligand binding characteristics were recorded, and the competitive binding assays were carried out to provide experimental verification. The detailed information on its structure and affinities investigated in this study could allow the design of specific mutants with desired characteristics, which provides a solid base for tailoring OBP for biosensor and provides a role model for screening the other elements in olfactory system for different applications. PMID:25552932

  11. Binding affinity prediction of novel estrogen receptor ligands using receptor-based 3-D QSAR methods.

    PubMed

    Sippl, Wolfgang

    2002-12-01

    We have recently reported the development of a 3-D QSAR model for estrogen receptor ligands showing a significant correlation between calculated molecular interaction fields and experimentally measured binding affinity. The ligand alignment obtained from docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection procedure, a significant and robust model was obtained (q(2)(LOO)=0.921, SDEP=0.345). To further analyze the robustness and the predictivity of the established model several recently developed estrogen receptor ligands were selected as external test set. An excellent agreement between predicted and experimental binding data was obtained indicated by an external SDEP of 0.531. Two other traditionally used prediction techniques were applied in order to check the performance of the receptor-based 3-D QSAR procedure. The interaction energies calculated on the basis of receptor-ligand complexes were correlated with experimentally observed affinities. Also ligand-based 3-D QSAR models were generated using program FlexS. The interaction energy-based model, as well as the ligand-based 3-D QSAR models yielded models with lower predictivity. The comparison with the interaction energy-based model and with the ligand-based 3-D QSAR models, respectively, indicates that the combination of receptor-based and 3-D QSAR methods is able to improve the quality of prediction. PMID:12413831

  12. Identification of a novel family of carbohydrate-binding modules with broad ligand specificity

    PubMed Central

    Duan, Cheng-Jie; Feng, Yu-Liang; Cao, Qi-Long; Huang, Ming-Yue; Feng, Jia-Xun

    2016-01-01

    Most enzymes that act on carbohydrates include non-catalytic carbohydrate-binding modules (CBMs) that recognize and target carbohydrates. CBMs bring their appended catalytic modules into close proximity with the target substrate and increase the hydrolytic rate of enzymes acting on insoluble substrates. We previously identified a novel CBM (CBMC5614-1) at the C-terminus of endoglucanase C5614-1 from an uncultured microorganism present in buffalo rumen. In the present study, that the functional region of CBMC5614-1 involved in ligand binding was localized to 134 amino acids. Two representative homologs of CBMC5614-1, sharing the same ligand binding profile, targeted a range of β-linked polysaccharides that adopt very different conformations. Targeted substrates included soluble and insoluble cellulose, β-1,3/1,4-mixed linked glucans, xylan, and mannan. Mutagenesis revealed that three conserved aromatic residues (Trp-380, Tyr-411, and Trp-423) play an important role in ligand recognition and targeting. These results suggest that CBMC5614-1 and its homologs form a novel CBM family (CBM72) with a broad ligand-binding specificity. CBM72 members can provide new insight into CBM-ligand interactions and may have potential in protein engineering and biocatalysis. PMID:26765840

  13. GATING OF HCN CHANNELS BY CYCLIC NUCLEOTIDES: RESIDUE CONTACTS THAT UNDERLIE LIGAND BINDING, SELECTIVITY AND EFFICACY

    PubMed Central

    Zhou, Lei; Siegelbaum, Steven A.

    2007-01-01

    SUMMARY Cyclic nucleotides regulate the activity of various proteins by interacting with a conserved cyclic nucleotide-binding domain (CNBD). Although X-ray crystallographic studies have revealed the structures of several CNBDs, the residues responsible for generating the high efficacy with which ligand binding leads to protein activation remain unknown. Here we combine molecular dynamics simulations with mutagenesis to identify ligand contacts important for the regulation of the hyperpolarization-activated HCN2 channel by cyclic nucleotides. Surprisingly, out of seven residues that make strong contacts with ligand, only R632 in the C-helix of the CNBD is essential for high ligand efficacy, due to its selective stabilization of cNMP binding to the open state of the channel. Principle component analysis suggests that a local movement of the C-helix upon ligand binding propagates through the CNBD of one subunit to the C-linker of a neighboring subunit to apply force to the gate of the channel. PMID:17562313

  14. The negative effects of exogenous DNA binding on porcine spermatozoa are caused by removal of seminal fluid.

    PubMed

    Kang, J H; Hakimov, H; Ruiz, A; Friendship, R M; Buhr, M; Golovan, S P

    2008-11-01

    Sperm-mediated gene transfer (SMGT) might become the most efficient and cost effective technique to generate transgenic animals, which will significantly increase their application in biomedical research and in commercial production. Despite some successes, the technique has remained controversial for almost 20 years and despite number of studies the reasons for poor reproducibility of this promising technology has not been understood. We suggest that the reason for poor reproducibility is the presence of natural defences against exogenous DNA invasion acting in spermatozoa or in embryo. Based on previous reports we have investigated the effect of foreign DNA binding on spermatozoa by monitoring motility, viability and genomic DNA damage. Evaluation of DNA binding in sperm collected from 16 boars demonstrated that 28-45% of the added pEGFP plasmid was bound to spermatozoa with 9-32% being internalized in sperm nucleus. In agreement with previous reports, our results demonstrated that the pEGFP-treated sperm show an average a 2-fold decrease in motility (p<0.05), 5-fold decrease in progressive motility (p<0.05), and 1.4-fold increase in number of sperm with highly damaged DNA (p<0.05) as detected by Comet assay. In contrast with previous reports, we demonstrate that all such changes were associated with the removal of seminal plasma during the washing step and not with foreign DNA binding per se. We suggest that poor reproducibility of SMGT most likely result from selection against DNA-loaded sperm at later stages of fertilization. PMID:18653226

  15. Alzheimer’s Disease Diagnosis by Detecting Exogenous Fluorescent Signal of Ligand Bound to Beta Amyloid in the Lens of Human Eye: An Exploratory Study

    PubMed Central

    Kerbage, Charles; Sadowsky, Carl H.; Jennings, Danna; Cagle, Gerald D.; Hartung, Paul D.

    2013-01-01

    We report results of a clinical exploratory human trial involving 10 participants using a combination of a fluorescent ligand and a laser scanning device, SAPPHIRE System, as an aid in the diagnosis of Probable Alzheimer’s disease (AD). To the best of our knowledge, this is the first time that such a technique has been used in vivo of a human lens. The primary goal of the clinical trial, in addition to safety assessment, was to evaluate efficacy of the system. By detecting specific fluorescent signature of ligand bound beta amyloid in the supranucleus (SN) region of the human lens, a twofold differentiation factor between AD patients and Control groups is achieved. Data from our studies indicates that deeper regions of the SN provide the highest measures of ligand bound fluorescence signal from both controls and patients with AD. In addition, we present preclinical studies that were performed to investigate the binding affinity of the ligand to beta amyloid and evaluate the pharmacokinetics of the ligand in rabbit eyes. Further studies are underway involving a larger population for statistical evaluation of the method. PMID:23750151

  16. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  17. Ligand binding sites of Na,K-ATPase.

    PubMed

    Lingrel, J B; Croyle, M L; Woo, A L; Argüello, J M

    1998-08-01

    Our studies have concentrated on two aspects of the Na,K-ATPase, the first relates to the identification of amino acids involved in binding Na+ and K+ during the catalytic cycle and the second involves defining how cardiac glycosides inhibit the enzyme. To date, three amino acids, Ser775, Asp804 and Asp808, all located in transmembrane regions five and six, have been shown to play a major role in K+ binding. These findings are based on site directed mutagenesis and expression studies. In order to understand how cardiac glycosides interact with the Na,K-ATPase, studies again involving mutagenesis coupled with expression have been used. More specifically, amino acid residues have been substituted in an ouabain sensitive alpha subunit using random mutagenesis, and the ability of the resulting enzyme to confer resistance to ouabain sensitive cells was determined. Interestingly, the amino acids of the alpha subunit which alter ouabain sensitivity cluster in two major regions, one comprised of the first and second transmembrane spanning domains and the extracellular loop joining them, and the second formed by the extracellular halves of transmembrane regions four, five, six and seven. As noted above, transmembrane regions five and six also contain the three amino acid residues Ser775, Asp804 and Asp808 which play a key role in cation transport, possibly binding K+. Thus, it is reasonable to propose that cardiac glycosides bind to two sites, the N- terminal region and the central region which contains the cation binding sites. Cardiac glycoside binding to the center region may lock the cation transport region into a configuration such that the enzyme cannot go through the conformational change required for ion transport. PMID:9789548

  18. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.

    PubMed Central

    Liang, J.; Edelsbrunner, H.; Woodward, C.

    1998-01-01

    Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structure-based ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings, as well as cavities. The program specifies the atoms lining pockets, pocket openings, and buried cavities; the volume and area of pockets and cavities; and the area and circumference of mouth openings. CAST analysis of over 100 proteins has been carried out; proteins examined include a set of 51 monomeric enzyme-ligand structures, several elastase-inhibitor complexes, the FK506 binding protein, 30 HIV-1 protease-inhibitor complexes, and a number of small and large protein inhibitors. Medium-sized globular proteins typically have 10-20 pockets/cavities. Most often, binding sites are pockets with 1-2 mouth openings; much less frequently they are cavities. Ligand binding pockets vary widely in size, most within the range 10(2)-10(3)A3. Statistical analysis reveals that the number of pockets and cavities is correlated with protein size, but there is no correlation between the size of the protein and the size of binding sites. Most frequently, the largest pocket/cavity is the active site, but there are a number of instructive exceptions. Ligand volume and binding site volume are somewhat correlated when binding site volume is < or =700 A3, but the ligand seldom occupies the entire site. Auxiliary pockets near the active site have been suggested as additional binding surface for designed ligands (Mattos C et al., 1994, Nat Struct Biol 1:55-58). Analysis of elastase-inhibitor complexes suggests that CAST can identify ancillary pockets suitable for recruitment in ligand design strategies. Analysis of the FK506 binding protein, and of compounds developed in SAR by NMR (Shuker SB et

  19. Does the tissue concentration in receptor binding studies change the affinity of the labelled ligand?

    PubMed

    Ensing, K; De Zeeuw, R A

    1984-12-14

    When the tissue concentration in a radioreceptor assay for anticholinergic drugs was varied in order to obtain optimum conditions, and the receptor concentration Cr and the equilibrium dissociation constant KD were determined by Scatchard analysis, the KD increased with increasing tissue concentrations. This phenomenon was considered as an artefact caused by non-specific binding of the labelled ligand to constituents of the receptor preparation which were not completely retained on the glass-fibre filters used for the separation of bound and free fraction of radio-labelled ligand. The increase in KD in these experiments could be described with a mathematical model of the binding experiments. PMID:6514542

  20. Role of extracellular disulfide-bonded cysteines in the ligand binding function of the. beta. sub 2 -adrenergic receptor

    SciTech Connect

    Dohlman, H.G.; Caron, M.G.; DeBlasi, A.; Frielle, T.; Lefkowitz, R.J. )

    1990-03-06

    Evidence is presented for a role of disulfide bridging in forming the ligand binding site of the {beta}{sub 2}-adrenergic receptor ({beta}AR). The presence of disulfide bonds at the ligand binding site is indicated by competitive inhibition by dithiothreitol (DTT) in radioligand binding assays, by specific protection by {beta}-adrenergic ligands of these effects, and by the requirement of disulfide reduction for limit proteolysis of affinity ligand labeled receptor. The kinetics of binding inhibition by DTT suggest at least two pairs of disulfide-bonded cysteines essential for normal binding. Through site-directed mutagenesis, the authors indeed were able to identify four cysteines which are critical for normal binding affinities and for the proper expression of functional {beta}AR at the cell surface. Unexpectedly, the four cysteines required for normal ligand binding are not those located within the hydrophobic transmembrane domains of the receptor (where ligand binding is presumed to occur) but lie in the extracellular hydrophilic loops connecting these transmembrane segments. These findings indicate that in addition to the well-documented involvement of the membrane-spanning domains of the receptor in ligand binding, there is an important and previously unsuspected role of the hydrophilic extracellular domains in forming the ligand binding site.

  1. Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptors. Insights into mechanisms of ligand binding.

    PubMed

    Mynarcik, D C; Williams, P F; Schaffer, L; Yu, G Q; Whittaker, J

    1997-07-25

    Insulin and insulin-like growth factor 1 (IGF-1) are peptides that share nearly 50% sequence homology. However, although their cognate receptors also exhibit significant overall sequence homology, the affinity of each peptide for the non-cognate receptor is 2-3 orders of magnitude lower than for the cognate receptor. The molecular basis for this discrimination is unclear, as are the molecular mechanisms underlying ligand binding. We have recently identified a major ligand binding site of the insulin receptor by alanine scannning mutagenesis. These studies revealed that a number of amino acids critical for insulin binding are conserved in the IGF-1 receptor, suggesting that they may play a role in ligand binding. We therefore performed alanine mutagenesis of these amino acids to determine whether this is the case. cDNAs encoding alanine-substituted secreted recombinant IGF-1 receptors were expressed in 293 EBNA cells, and the ligand binding properties of the expressed proteins were evaluated. Mutation of Phe701 resulted in a receptor with undetectable IGF-1 binding; alanine substitution of the corresponding amino acid of the insulin receptor, Phe714, produces a 140-fold reduction in affinity for insulin. Mutation of Asp8, Asn11, Phe58, Phe692, Glu693, His697, and Asn698 produces a 3.5-6-fold reduction in affinity for IGF-1. In contrast, alanine mutation of the corresponding amino acids of the insulin receptor with the exception of Asp12 produces reductions in affinity that are 50-fold or greater. The affinity of insulin for these mutants relative to wild type receptor was similar to that of their relative affinity for IGF-1 with two exceptions; the IC50 values for insulin binding to the mutants of Arg10, which has normal affinity for IGF-1, and His697, which has a 6-fold reduction in affinity for IGF-1, were both at least 2 orders of magnitude greater than for wild type receptor. The Kd values for insulin of the corresponding alanine mutants of the insulin receptor

  2. The FTMap family of web servers for determining and characterizing ligand binding hot spots of proteins

    PubMed Central

    Kozakov, Dima; Grove, Laurie E.; Hall, David R.; Bohnuud, Tanggis; Mottarella, Scott; Luo, Lingqi; Xia, Bing; Beglov, Dmitri; Vajda, Sandor

    2016-01-01

    FTMap is a computational mapping server that identifies binding hot spots of macromolecules, i.e., regions of the surface with major contributions to the ligand binding free energy. To use FTMap, users submit a protein, DNA, or RNA structure in PDB format. FTMap samples billions of positions of small organic molecules used as probes and scores the probe poses using a detailed energy expression. Regions that bind clusters of multiple probe types identify the binding hot spots, in good agreement with experimental data. FTMap serves as basis for other servers, namely FTSite to predict ligand binding sites, FTFlex to account for side chain flexibility, FTMap/param to parameterize additional probes, and FTDyn to map ensembles of protein structures. Applications include determining druggability of proteins, identifying ligand moieties that are most important for binding, finding the most bound-like conformation in ensembles of unliganded protein structures, and providing input for fragment based drug design. FTMap is more accurate than classical mapping methods such as GRID and MCSS, and is much faster than the more recent approaches to protein mapping based on mixed molecular dynamics. Using 16 probe molecules, the FTMap server finds the hot spots of an average size protein in less than an hour. Since FTFlex performs mapping for all low energy conformers of side chains in the binding site, its completion time is proportionately longer. PMID:25855957

  3. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands

    NASA Astrophysics Data System (ADS)

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  4. A comprehensive ligand based mapping of the σ₂ receptor binding pocket.

    PubMed

    Rhoades, Derek J; Kinder, David H; Mahfouz, Tarek M

    2014-01-01

    The sigma (σ) receptor system consists of at least two major receptor subtypes: σ₁ and σ₂. Several potential therapeutic applications would benefit from structural knowledge of the σ₂ receptor but gaining this knowledge has been hampered by the difficulties associated with its isolation and, thus, characterization. Here, a ligand based approach has been adopted using the program PHASE® and a group of 41 potent and structurally diverse σ₂ ligands to develop several pharmacophore models for different families of σ₂ ligands. These pharmacophores were analyzed to identify the different binding modes to the receptor and were combined together to construct a comprehensive pharmacophore that was used to develop a structural model for the σ₂ binding pocket. A total of six binding modes were identified and could be classified as neutral or charged modes. The results presented here also indicate the significance of hydrophobic interactions to σ₂ binding and the requirement of hydrogen bonding interactions to increase the affinity for this receptor subtype. This work adds breadth to our knowledge of this receptor's binding site, and should contribute significantly to the development of novel selective σ₂ ligands. PMID:23521001

  5. Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy

    SciTech Connect

    Ratto, T V; Rudd, R E; Langry, K C; Balhorn, R L; McElfresh, M W

    2005-07-15

    We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, they do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.

  6. DNA sequence preferences of several AT-selective minor groove binding ligands.

    PubMed Central

    Abu-Daya, A; Brown, P M; Fox, K R

    1995-01-01

    We have examined the interaction of distamycin, netropsin, Hoechst 33258 and berenil, which are AT-selective minor groove-binding ligands, with synthetic DNA fragments containing different arrangements of AT base pairs by DNase I footprinting. For fragments which contain multiple blocks of (A/T)4 quantitative DNase I footprinting reveals that AATT and AAAA are much better binding sites than TTAA and TATA. Hoechst 33258 shows that greatest discrimination between these sites with a 50-fold difference in affinity between AATT and TATA. Alone amongst these ligands, Hoechst 33258 binds to AATT better than AAAA. These differences in binding to the various AT-tracts are interpreted in terms of variations in DNA minor groove width and suggest that TpA steps within an AT-tract decrease the affinity of these ligands. The behaviour of each site also depends on the flanking sequences; adjacent pyrimidine-purine steps cause a decrease in affinity. The precise ranking order for the various binding sites is not the same for each ligand. Images PMID:7567447

  7. Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains.

    PubMed

    Hurt, Darrell E; Suzuki, Shigeru; Mayama, Takafumi; Charmandari, Evangelia; Kino, Tomoshige

    2016-02-01

    Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR. PMID:26745667

  8. Bringing Clarity to the Prediction of Protein–Ligand Binding Free Energies via “Blurring”

    PubMed Central

    2015-01-01

    We present a method to evaluate the free energies of ligand binding utilizing a Monte Carlo estimation of the configuration integrals concomitant with uncertainty quantification. Ensembles for integration are built through systematically perturbing an initial ligand conformation in a rigid binding pocket, which is optimized separately prior to incorporation of the ligand. We call the procedure producing the ensembles “blurring”, and it is carried out using an in-house developed code. The Boltzmann factor contribution of each pose to the configuration integral is computed and from there the free energy is obtained. Potential function uncertainties are estimated using a fragment-based error propagation method. This method has been applied to a set of small aromatic ligands complexed with T4 Lysozyme L99A mutant. Microstate energies have been determined with the force fields ff99SB and ff94, and the semiempirical method PM6DH2 in conjunction with continuum solvation models including Generalized Born (GB), the Conductor-like Screening Model (COSMO), and SMD. Of the methods studied, PM6DH2-based scoring gave binding free energy estimates, which yielded a good correlation to the experimental binding affinities (R2 = 0.7). All methods overestimated the calculated binding affinities. We trace this to insufficient sampling, the single static protein structure, and inaccuracies in the solvent models we have used in this study. PMID:24803861

  9. Ligand binding to the PDZ domains of postsynaptic density protein 95.

    PubMed

    Toto, Angelo; Pedersen, Søren W; Karlsson, O Andreas; Moran, Griffin E; Andersson, Eva; Chi, Celestine N; Strømgaard, Kristian; Gianni, Stefano; Jemth, Per

    2016-05-01

    Cellular scaffolding and signalling is generally governed by multidomain proteins, where each domain has a particular function. Postsynaptic density protein 95 (PSD-95) is involved in synapse formation and is a typical example of such a multidomain protein. Protein-protein interactions of PSD-95 are well studied and include the following three protein ligands: (i)N-methyl-d-aspartate-type ionotropic glutamate receptor subunit GluN2B, (ii) neuronal nitric oxide synthase and (iii) cysteine-rich protein (CRIPT), all of which bind to one or more of the three PDZ domains in PSD-95. While interactions for individual PDZ domains of PSD-95 have been well studied, less is known about the influence of neighbouring domains on the function of the respective individual domain. We therefore performed a systematic study on the ligand-binding kinetics of PSD-95 using constructs of different size for PSD-95 and its ligands. Regarding the canonical peptide-binding pocket and relatively short peptides (up to 15-mer), the PDZ domains in PSD-95 by and large work as individual binding modules. However, in agreement with previous studies, residues outside of the canonical binding pocket modulate the affinity of the ligands. In particular, the dissociation of the 101 amino acid CRIPT from PSD-95 is slowed down at least 10-fold for full-length PSD-95 when compared with the individual PDZ3 domain. PMID:26941280

  10. Influence of ligand binding on structure and thermostability of human α1-acid glycoprotein.

    PubMed

    Kopecký, Vladimír; Ettrich, Rüdiger; Pazderka, Tomáš; Hofbauerová, Kateřina; Řeha, David; Baumruk, Vladimír

    2016-02-01

    Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1-acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the β-barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are -18.2, -14.5, and -11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10-95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α-helical content is observed that coincides with an increase in β-sheet content. Above 45 °C, also β-strands tend to unfold, and the observed decrease in β-sheet coincides with an increase of β-turns accompanied by a conformational shift of the nearby disulfide bridge from high-energy trans-gauche-trans to more relaxed gauche-gauche-trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the β-sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein-ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone-like function of AGP. PMID:26400697

  11. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    NASA Astrophysics Data System (ADS)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  12. Molecular dynamics simulations of barley and maize lipid transfer proteins show different ligand binding preferences in agreement with experimental data.

    PubMed

    Smith, Lorna J; Roby, Ysobel; Allison, Jane R; van Gunsteren, Wilfred F

    2013-07-30

    Experimental studies of barley and maize lipid transfer proteins (LTPs) show that the two proteins bind the ligand palmitate in opposite orientations in their internal cavities. Moreover, maize LTP is reported to bind the ligand caprate in the internal cavity in a mixture of two orientations with approximately equal occupancy. Six 30 ns molecular dynamics (MD) simulations of maize and barley LTP with ligands bound in two orientations (modes M and B) have been used to understand the different ligand binding preferences. The simulations show that both maize and barley LTP could bind palmitate in the orientation observed experimentally for maize LTP (mode M), with the predominant interaction being a salt bridge between the ligand carboxylate headgroup and a conserved arginine side chain. However, the simulation of barley LTP with palmitate in the mode B orientation shows the most favorable protein-ligand interaction energy. In contrast, the simulations of maize LTP with palmitate and with caprate in the mode B orientation show no persistent ligand binding, the ligands leaving the cavity during the simulations. Sequence differences between maize and barley LTP in the AB loop region, in residues at the base of the hydrophobic cavity, and in the helix A region are identified as contributing to the different behavior. The simulations reproduce well the experimentally observed binding preferences for palmitate and suggest that the experimental data for maize LTP with caprate reflect ligand mobility in binding mode M rather than the population of binding modes M and B. PMID:23834513

  13. Graphlet signature-based scoring method to estimate protein–ligand binding affinity

    PubMed Central

    Singh, Omkar; Sawariya, Kunal; Aparoy, Polamarasetty

    2014-01-01

    Over the years, various computational methodologies have been developed to understand and quantify receptor–ligand interactions. Protein–ligand interactions can also be explained in the form of a network and its properties. The ligand binding at the protein-active site is stabilized by formation of new interactions like hydrogen bond, hydrophobic and ionic. These non-covalent interactions when considered as links cause non-isomorphic sub-graphs in the residue interaction network. This study aims to investigate the relationship between these induced sub-graphs and ligand activity. Graphlet signature-based analysis of networks has been applied in various biological problems; the focus of this work is to analyse protein–ligand interactions in terms of neighbourhood connectivity and to develop a method in which the information from residue interaction networks, i.e. graphlet signatures, can be applied to quantify ligand affinity. A scoring method was developed, which depicts the variability in signatures adopted by different amino acids during inhibitor binding, and was termed as GSUS (graphlet signature uniqueness score). The score is specific for every individual inhibitor. Two well-known drug targets, COX-2 and CA-II and their inhibitors, were considered to assess the method. Residue interaction networks of COX-2 and CA-II with their respective inhibitors were used. Only hydrogen bond network was considered to calculate GSUS and quantify protein–ligand interaction in terms of graphlet signatures. The correlation of the GSUS with pIC50 was consistent in both proteins and better in comparison to the Autodock results. The GSUS scoring method was better in activity prediction of molecules with similar structure and diverse activity and vice versa. This study can be a major platform in developing approaches that can be used alone or together with existing methods to predict ligand affinity from protein–ligand complexes. PMID:26064572

  14. Structure and Ligand-Binding Mechanism of a Cysteinyl Leukotriene-Binding Protein from a Blood-Feeding Disease Vector.

    PubMed

    Jablonka, Willy; Pham, Van; Nardone, Glenn; Gittis, Apostolos; Silva-Cardoso, Lívia; Atella, Georgia C; Ribeiro, José M C; Andersen, John F

    2016-07-15

    Blood-feeding disease vectors mitigate the negative effects of hemostasis and inflammation through the binding of small-molecule agonists of these processes by salivary proteins. In this study, a lipocalin protein family member (LTBP1) from the saliva of Rhodnius prolixus, a vector of the pathogen Trypanosoma cruzi, is shown to sequester cysteinyl leukotrienes during feeding to inhibit immediate inflammatory responses. Calorimetric binding experiments showed that LTBP1 binds leukotrienes C4 (LTC4), D4 (LTD4), and E4 (LTE4) but not biogenic amines, adenosine diphosphate, or other eicosanoid compounds. Crystal structures of ligand-free LTBP1 and its complexes with LTC4 and LTD4 reveal a conformational change during binding that brings Tyr114 into close contact with the ligand. LTC4 is cleaved in the complex, leaving free glutathione and a C20 fatty acid. Chromatographic analysis of bound ligands showed only intact LTC4, suggesting that cleavage could be radiation-mediated. PMID:27124118

  15. Structure and ligand-binding mechanism of a cysteinyl leukotriene-binding protein from a blood-feeding disease vector

    PubMed Central

    Jablonka, Willy; Pham, Van; Nardone, Glenn; Gittis, Apostolos; Silva-Cardoso, Lívia; Atella, Georgia C.; Ribeiro, José M.C.; Andersen, John F.

    2016-01-01

    Blood-feeding disease vectors mitigate the negative effects of hemostasis and inflammation through the binding of small-molecule agonists of these processes by salivary proteins. In this study, a lipocalin protein family member (LTBP1) from the saliva of Rhodnius prolixus, a vector of the pathogen Trypanosoma cruzi, is shown to sequester cysteinyl leukotrienes during feeding to inhibit immediate inflammatory responses. Calorimetric binding experiments showed that LTBP1 binds leukotrienes C4 (LTC4) and D4 (LTD4) and E4 (LTE4) but not biogenic amines, adenosine diphosphate or other eicosanoid compounds. Crystal structures of ligand-free LTBP1 and its complexes with LTC4 and LTD4 reveal a conformational change during binding that brings Tyr 114 into close contact with the ligand. LTC4 is cleaved in the complex leaving free glutathione, and a C20 fatty acid. Chromatographic analysis of bound ligands showed only intact LTC4, suggesting that cleavage could be radiation-mediated. PMID:27124118

  16. Characterization of Aluminum-Binding Ligands in Pisolithus tinctorius

    NASA Astrophysics Data System (ADS)

    McCauley, R. L.; Cumming, J.

    2009-12-01

    Highly abundant in soil, Al is found in non-toxic forms under neutral pH conditions. However, when the pH of the soil decreases, the presence of cationic Al increases, creating a toxic environment for plants and fungi. Certain plants and their ectomycorrhizal symbiotic fungi have higher tolerance for Al in the soil and surrounding media. A particular fungus, Pisolithus tinctorius, has been found to produce Al-binding pigments which chelate and detoxify cationic Al in the environment. The objectives of this study are to 1) determine the resistance of different ectomycorrhizal fungi species to Al, 2) characterize the production of Al binding compounds by fungi, and 3) quantify Al partitioning between free and bound forms in the environment. Pisolithus tinctorius, Amanita muscaria, Lacaria bicolor, and Rhizopogon rubescens were grown under varying Al concentration in vitro (0 and 200 µM for all species; 0, 100, 200, and 400 µM for P. tinctorius). Biomass was measured and media was analyzed for Al speciation and organic acid profiles post experiment. The Al-binding exudates of P. tinctorius were isolated using immobilized metal affinity chromatography (IMAC) and further separated with reverse phase HPLC (UV). All fungi were resistant to Al at the concentrations tested. Pisolithus was found to have a significantly higher mass than other ectomycorrhizae studied. Organic Al levels were found to increase with an increase in Al treatment for P. tinctorius. These techniques revealed at least eleven compounds active in the Al-binding IMAC fraction with seven peaks having brown pigmentation. These compounds may assist in Al detoxification by P. tinctorius.

  17. Effects of co-operative ligand binding on protein amide NH hydrogen exchange.

    PubMed

    Polshakov, Vladimir I; Birdsall, Berry; Feeney, James

    2006-03-01

    Amide protection factors have been determined from NMR measurements of hydrogen/deuterium amide NH exchange rates measured on assigned signals from Lactobacillus casei apo-DHFR and its binary and ternary complexes with trimethoprim (TMP), folinic acid and coenzymes (NADPH/NADP(+)). The substantial sizes of the residue-specific DeltaH and TDeltaS values for the opening/closing events in NH exchange for most of the measurable residues in apo-DHFR indicate that sub-global or global rather than local exchange mechanisms are usually involved. The amide groups of residues in helices and sheets are those most protected in apo-DHFR and its complexes, and the protection factors are generally related to the tightness of ligand binding. The effects of ligand binding that lead to changes in amide protection are not localised to specific binding sites but are spread throughout the structure via a network of intramolecular interactions. Although the increase in protein stability in the DHFR.TMP.NADPH complex involves increased ordering in the protein structure (requiring TDeltaS energy) this is recovered, to a large extent, by the stronger binding (enthalpic DeltaH) interactions made possible by the reduced motion in the protein. The ligand-induced protection effects in the ternary complexes DHFR.TMP.NADPH (large positive binding co-operativity) and DHFR.folinic acid.NADPH (large negative binding co-operativity) mirror the co-operative effects seen in the ligand binding. For the DHFR.TMP.NADPH complex, the ligand-induced protection factors result in DeltaDeltaG(o) values for many residues being larger than the DeltaDeltaG(o) values in the corresponding binary complexes. In contrast, for DHFR.folinic acid.NADPH, the DeltaDeltaG(o) values are generally smaller than many of those in the corresponding binary complexes. The results indicate that changes in protein conformational flexibility on formation of the ligand complex play an important role in determining the co-operativity in

  18. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    SciTech Connect

    Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure while gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.

  19. Protein:Ligand binding free energies: A stringent test for computational protein design.

    PubMed

    Druart, Karen; Palmai, Zoltan; Omarjee, Eyaz; Simonson, Thomas

    2016-02-01

    A computational protein design method is extended to allow Monte Carlo simulations where two ligands are titrated into a protein binding pocket, yielding binding free energy differences. These provide a stringent test of the physical model, including the energy surface and sidechain rotamer definition. As a test, we consider tyrosyl-tRNA synthetase (TyrRS), which has been extensively redesigned experimentally. We consider its specificity for its substrate l-tyrosine (l-Tyr), compared to the analogs d-Tyr, p-acetyl-, and p-azido-phenylalanine (ac-Phe, az-Phe). We simulate l- and d-Tyr binding to TyrRS and six mutants, and compare the structures and binding free energies to a more rigorous "MD/GBSA" procedure: molecular dynamics with explicit solvent for structures and a Generalized Born + Surface Area model for binding free energies. Next, we consider l-Tyr, ac- and az-Phe binding to six other TyrRS variants. The titration results are sensitive to the precise rotamer definition, which involves a short energy minimization for each sidechain pair to help relax bad contacts induced by the discrete rotamer set. However, when designed mutant structures are rescored with a standard GBSA energy model, results agree well with the more rigorous MD/GBSA. As a third test, we redesign three amino acid positions in the substrate coordination sphere, with either l-Tyr or d-Tyr as the ligand. For two, we obtain good agreement with experiment, recovering the wildtype residue when l-Tyr is the ligand and a d-Tyr specific mutant when d-Tyr is the ligand. For the third, we recover His with either ligand, instead of wildtype Gln. PMID:26503829

  20. Dopaminergic receptor-ligand binding assays based on molecularly imprinted polymers on quartz crystal microbalance sensors.

    PubMed

    Naklua, Wanpen; Suedee, Roongnapa; Lieberzeit, Peter A

    2016-07-15

    Molecularly imprinted polymers (MIPs) have been successfully applied as selective materials for assessing the binding activity of agonist and antagonist of dopamine D1 receptor (D1R) by using quartz crystal microbalance (QCM). In this study, D1R derived from rat hypothalamus was used as a template and thus self-organized on stamps. Those were pressed into an oligomer film consisting of acrylic acid: N-vinylpyrrolidone: N,N'-(1,2-dihydroxyethylene) bis-acrylamide in a ratio of 2:3:12 spin coated onto a dual electrode QCM. Such we obtained one D1R-MIP-QCM electrode, whereas the other electrode carried the non-imprinted control polymer (NIP) that had remained untreated. Successful imprinting of D1R was confirmed by AFM. The polymer can re-incorporate D1R leading to frequency responses of 100-1200Hz in a concentration range of 5.9-47.2µM. In a further step such frequency changes proved inherently useful for examining the binding properties of test ligands to D1R. The resulting mass-sensitive measurements revealed Kd of dopamine∙HCl, haloperidol, and (+)-SCH23390 at 0.874, 25.6, and 0.004nM, respectively. These results correlate well with the values determined in radio ligand binding assays. Our experiments revealed that D1R-MIP sensors are useful for estimating the strength of ligand binding to the active single site. Therefore, we have developed a biomimetic surface imprinting strategy for QCM studies of D1R-ligand binding and presented a new method to ligand binding assay for D1R. PMID:26926593

  1. Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer

    PubMed Central

    Duesterberg, Van K; Fischer-Hwang, Irena T; Perez, Christian F; Hogan, Daniel W; Block, Steven M

    2015-01-01

    The thiamine pyrophosphate (TPP) riboswitch is a cis-regulatory element in mRNA that modifies gene expression in response to TPP concentration. Its specificity is dependent upon conformational changes that take place within its aptamer domain. Here, the role of tertiary interactions in ligand binding was studied at the single-molecule level by combined force spectroscopy and Förster resonance energy transfer (smFRET), using an optical trap equipped for simultaneous smFRET. The ‘Force-FRET’ approach directly probes secondary and tertiary structural changes during folding, including events associated with binding. Concurrent transitions observed in smFRET signals and RNA extension revealed differences in helix-arm orientation between two previously-identified ligand-binding states that had been undetectable by spectroscopy alone. Our results show that the weaker binding state is able to bind to TPP, but is unable to form a tertiary docking interaction that completes the binding process. Long-range tertiary interactions stabilize global riboswitch structure and confer increased ligand specificity. DOI: http://dx.doi.org/10.7554/eLife.12362.001 PMID:26709838

  2. In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin

    SciTech Connect

    Thorsteinson, Nels; Ban, Fuqiang; Santos-Filho, Osvaldo; Tabaei, Seyed M.H.; Miguel-Queralt, Solange; Underhill, Caroline; Cherkasov, Artem Hammond, Geoffrey L.

    2009-01-01

    Anthropogenic compounds with the capacity to interact with the steroid-binding site of sex hormone binding globulin (SHBG) pose health risks to humans and other vertebrates including fish. Building on studies of human SHBG, we have applied in silico drug discovery methods to identify potential binders for SHBG in zebrafish (Danio rerio) as a model aquatic organism. Computational methods, including; homology modeling, molecular dynamics simulations, virtual screening, and 3D QSAR analysis, successfully identified 6 non-steroidal substances from the ZINC chemical database that bind to zebrafish SHBG (zfSHBG) with low-micromolar to nanomolar affinities, as determined by a competitive ligand-binding assay. We also screened 80,000 commercial substances listed by the European Chemicals Bureau and Environment Canada, and 6 non-steroidal hits from this in silico screen were tested experimentally for zfSHBG binding. All 6 of these compounds displaced the [{sup 3}H]5{alpha}-dihydrotestosterone used as labeled ligand in the zfSHBG screening assay when tested at a 33 {mu}M concentration, and 3 of them (hexestrol, 4-tert-octylcatechol, and dihydrobenzo(a)pyren-7(8H)-one) bind to zfSHBG in the micromolar range. The study demonstrates the feasibility of large-scale in silico screening of anthropogenic compounds that may disrupt or highjack functionally important protein:ligand interactions. Such studies could increase the awareness of hazards posed by existing commercial chemicals at relatively low cost.

  3. A simple model-free method for direct assessment of fluorescent ligand binding by linear spectral summation.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Glasgow, Ben J

    2014-01-01

    Fluorescent tagged ligands are commonly used to determine binding to proteins. However, bound and free ligand concentrations are not directly determined. Instead the response in a fluorescent ligand titration experiment is considered to be proportional to the extent of binding and, therefore, the maximum value of binding is scaled to the total protein concentration. Here, a simple model-free method is presented to be performed in two steps. In the first step, normalized bound and free spectra of the ligand are determined. In the second step, these spectra are used to fit composite spectra as the sum of individual components or linear spectral summation. Using linear spectral summation, free and bound 1-Anilinonaphthalene-8-Sulfonic Acid (ANS) fluorescent ligand concentrations are directly calculated to determine ANS binding to tear lipocalin (TL), an archetypical ligand binding protein. Error analysis shows that the parameters that determine bound and free ligand concentrations were recovered with high certainty. The linear spectral summation method is feasible when fluorescence intensity is accompanied by a spectral shift upon protein binding. Computer simulations of the experiments of ANS binding to TL indicate that the method is feasible when the fluorescence spectral shift between bound and free forms of the ligand is just 8 nm. Ligands tagged with environmentally sensitive fluorescent dyes, e.g., dansyl chromophore, are particularly suitable for this method. PMID:24043458

  4. A Simple Model-Free Method for Direct Assessment of Fluorescent Ligand Binding by Linear Spectral Summation

    PubMed Central

    Gasymov, Oktay K.; Abduragimov, Adil R.; Glasgow, Ben J.

    2013-01-01

    Fluorescent tagged ligands are commonly used to determine binding to proteins. However, bound and free ligand concentrations are not directly determined. Instead the response in a fluorescent ligand titration experiment is considered to be proportional to the extent of binding and, therefore, the maximum value of binding is scaled to the total protein concentration. Here, a simple model-free method is presented to be performed in two steps. In the first step, normalized bound and free spectra of the ligand are determined. In the second step, these spectra are used to fit composite spectra as the sum of individual components or linear spectral summation. Using linear spectral summation, free and bound 1-Anilinonaphthalene-8-Sulfonic Acid (ANS) fluorescent ligand concentrations are directly calculated to determine ANS binding to tear lipocalin (TL), an archetypical ligand binding protein. Error analysis shows that the parameters that determine bound and free ligand concentrations were recovered with high certainty. The linear spectral summation method is feasible when fluorescence intensity is accompanied by a spectral shift upon protein binding. Computer simulations of the experiments of ANS binding to TL indicate that the method is feasible when the fluorescence spectral shift between bound and free forms of the ligand is just 8 nm. Ligands tagged with environmentally sensitive fluorescent dyes, e.g., dansyl chromophore, are particularly suitable for this method. PMID:24043458

  5. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs

    PubMed Central

    Gilbert, Sunny D.; Reyes, Francis E.; Edwards, Andrea L.; Batey, Robert T.

    2009-01-01

    SUMMARY Purine riboswitches discriminate between guanine and adenine by at least 10,000-fold based on the identity of a single pyrimidine (Y74) that forms a Watson-Crick base pair with the ligand. To understand how this high degree of specificity for closely related compounds is achieved through simple pairing, we investigated their interaction with purine analogs with varying functional groups at the 2- and 6-positions that have the potential to alter interactions with Y74. Using a combination of crystallographic and calorimetric approaches, we find that binding these purines is often facilitated by either small structural changes in the RNA or tautomeric changes in the ligand. This work also reveals that, along with base pairing, conformational restriction of Y74 significantly contributes to nucleobase selectivity. These results reveal that compounds that exploit the inherent local flexibility within riboswitch binding pockets can alter their ligand specificity. PMID:19523903

  6. Calculations of distance distributions and probabilities of binding by ligands between parallel plane membranes comprising receptors

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc; Cucinotta, Francis A.

    2014-03-01

    Cell communication through biochemical signaling pathways is a key determinant of tissue responses to radiation. Several molecules, such as the transforming growth factor β (TGFβ), are implicated in radiation-induced signaling between cells. Brownian Dynamics (BD) algorithms have recently been used to simulate the interaction of ligands with receptors and to elucidate signal transduction and autocrine loops in ligand-receptors systems. In this paper, we discuss the simulation of particle diffusion and binding kinetics in a space bounded by two parallel plane membranes, using an exact algorithm to sample the propagator (Green’s function) of a particle located between 2 membranes. We also show that the simulation results are independent of the number of time steps used, in accordance with time discretization equations. These simulations could be used to simulate the motion and binding of ligand molecules in a cell culture, and possibly in neuronal synapses.

  7. A functional NMR for membrane proteins: dynamics, ligand binding, and allosteric modulation.

    PubMed

    Oxenoid, Kirill; Chou, James J

    2016-05-01

    By nature of conducting ions, transporting substrates and transducing signals, membrane channels, transporters and receptors are expected to exhibit intrinsic conformational dynamics. It is therefore of great interest and importance to understand the various properties of conformational dynamics acquired by these proteins, for example, the relative population of states, exchange rate, conformations of multiple states, and how small molecule ligands modulate the conformational exchange. Because small molecule binding to membrane proteins can be weak and/or dynamic, structural characterization of these effects is very challenging. This review describes several NMR studies of membrane protein dynamics, ligand-induced conformational rearrangements, and the effect of ligand binding on the equilibrium of conformational exchange. The functional significance of the observed phenomena is discussed. PMID:26928605

  8. Vibrational Softening of a Protein on Ligand Binding

    SciTech Connect

    Balog, Erica; Perahia, David; Smith, Jeremy C; Merzel, Franci

    2011-01-01

    Neutron scattering experiments have demonstrated that binding of the cancer drug methotrexate softens the low-frequency vibrations of its target protein, dihydrofolate reductase (DHFR). Here, this softening is fully reproduced using atomic detail normal-mode analysis. Decomposition of the vibrational density of states demonstrates that the largest contributions arise from structural elements of DHFR critical to stability and function. Mode-projection analysis reveals an increase of the breathing-like character of the affected vibrational modes consistent with the experimentally observed increased adiabatic compressibility of the protein on complexation.

  9. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect.

    PubMed

    Yan, Zhiqiang; Wang, Jin

    2015-09-01

    Solvation effect is an important factor for protein-ligand binding in aqueous water. Previous scoring function of protein-ligand interactions rarely incorporates the solvation model into the quantification of protein-ligand interactions, mainly due to the immense computational cost, especially in the structure-based virtual screening, and nontransferable application of independently optimized atomic solvation parameters. In order to overcome these barriers, we effectively combine knowledge-based atom-pair potentials and the atomic solvation energy of charge-independent implicit solvent model in the optimization of binding affinity and specificity. The resulting scoring functions with optimized atomic solvation parameters is named as specificity and affinity with solvation effect (SPA-SE). The performance of SPA-SE is evaluated and compared to 20 other scoring functions, as well as SPA. The comparative results show that SPA-SE outperforms all other scoring functions in binding affinity prediction and "native" pose identification. Our optimization validates that solvation effect is an important regulator to the stability and specificity of protein-ligand binding. The development strategy of SPA-SE sets an example for other scoring function to account for the solvation effect in biomolecular recognitions. PMID:26111900

  10. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    PubMed Central

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-01-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution. PMID:26561004

  11. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    PubMed Central

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  12. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    SciTech Connect

    Martini, Johannes W. R.; Habeck, Michael

    2015-03-07

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.

  13. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    NASA Astrophysics Data System (ADS)

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-11-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  14. Protein Unfolding Coupled to Ligand Binding: Differential Scanning Calorimetry Simulation Approach

    ERIC Educational Resources Information Center

    Celej, Maria Soledad; Fidelio, Gerardo Daniel; Dassie, Sergio Alberto

    2005-01-01

    A comprehensive theoretical description of thermal protein unfolding coupled to ligand binding is presented. The thermodynamic concepts are independent of the method used to monitor protein unfolding but a differential scanning calorimetry is being used as a tool for examining the unfolding process.

  15. Crystal structures of complexes of vitamin D receptor ligand-binding domain with lithocholic acid derivatives

    PubMed Central

    Masuno, Hiroyuki; Ikura, Teikichi; Morizono, Daisuke; Orita, Isamu; Yamada, Sachiko; Shimizu, Masato; Ito, Nobutoshi

    2013-01-01

    The secondary bile acid lithocholic acid (LCA) and its derivatives act as selective modulators of the vitamin D receptor (VDR), although their structures fundamentally differ from that of the natural hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3)]. Here, we have determined the crystal structures of the ligand-binding domain of rat VDR (VDR-LBD) in ternary complexes with a synthetic partial peptide of the coactivator MED1 (mediator of RNA polymerase II transcription subunit 1) and four ligands, LCA, 3-keto LCA, LCA acetate, and LCA propionate, with the goal of elucidating their agonistic mechanism. LCA and its derivatives bind to the same ligand-binding pocket (LBP) of VDR-LBD that 1,25(OH)2D3 binds to, but in the opposite orientation; their A-ring is positioned at the top of the LBP, whereas their acyclic tail is located at the bottom of the LBP. However, most of the hydrophobic and hydrophilic interactions observed in the complex with 1,25(OH)2D3 are reproduced in the complexes with LCA and its derivatives. Additional interactions between VDR-LBD and the C-3 substituents of the A-ring are also observed in the complexes with LCA and its derivatives. These may result in the observed difference in the potency among the LCA-type ligands. PMID:23723390

  16. Binding of angiogenesis inhibitor kringle 5 to its specific ligands by frontal affinity chromatography.

    PubMed

    Bian, Liujiao; Li, Qian; Ji, Xu

    2015-07-01

    The interactions between angiogenesis inhibitor Kringle 5 and its five specific ligands were investigated by frontal affinity chromatography in combination with fluorescence spectra and site-directed molecular docking. The binding constants of trans-4-(aminomethyl) cyclohexane carboxylic acid (AMCHA), epsilon-aminocaproic acid (EACA), benzylamine, 7-aminoheptanoic acid (7-AHA) and L-lysine to Kringle 5 were 19.0×10(3), 7.97×10(3), 6.45×10(3), 6.07×10(3) and 4.04×10(3) L/mol, respectively. The five ligands bound to Kringle 5 on the lysine binding site in equimolar amounts, which was pushed mainly by hydrogen bond and Van der Waals force. This binding affinity was believed to be dependent on the functional group and flexible feature in ligands. This study will provide an important insight into the binding mechanism of angiogenesis inhibitor Kringle 5 to its specific ligands. PMID:25981289

  17. From ligands to binding motifs and beyond; the enhanced versatility of nanocrystal surfaces.

    PubMed

    De Roo, J; De Keukeleere, K; Hens, Z; Van Driessche, I

    2016-09-14

    Surface chemistry bridges the gap between nanocrystal synthesis and their applications. In this respect, the discovery of complex ligand binding motifs on semiconductor quantum dots and metal oxide nanocrystals opens a gateway to new areas of research. The implications are far-reaching, from catalytic model systems to the performance of solar cells. PMID:27461488

  18. How to Illustrate Ligand-Protein Binding in a Class Experiment: An Elementary Fluorescent Assay.

    ERIC Educational Resources Information Center

    Marty, Alain; And Others

    1986-01-01

    Describes an experiment (taking approximately five hours) which illustrates the binding of a small molecule to a protein. By using an appropriate fluorescent ligand and a given protein, the fluorescent probe technique is applied to measure the number of bonding sites, and number of site classes, and their association constants. (JN)

  19. Comparison of the kinetics of different Markov models for ligand binding under varying conditions.

    PubMed

    Martini, Johannes W R; Habeck, Michael

    2015-03-01

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest. PMID:25747058

  20. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    NASA Astrophysics Data System (ADS)

    Martini, Johannes W. R.; Habeck, Michael

    2015-03-01

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.

  1. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism.

    PubMed

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through (15)N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  2. An Experiment Illustrating the Change in Ligand p"K"[subscript a] upon Protein Binding

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Panijpan, Bhinyo; Chaiyen, Pimchai

    2012-01-01

    The modulation of ligand p"K"[subscript a] due to its surrounding environment is a crucial feature that controls many biological phenomena. For example, the shift in the p"K"[subscript a] of substrates or catalytic residues at enzyme active sites upon substrate binding often triggers and controls enzymatic reactions. In this work, we developed an…

  3. PBSA_E: A PBSA-Based Free Energy Estimator for Protein-Ligand Binding Affinity.

    PubMed

    Liu, Xiao; Liu, Jinfeng; Zhu, Tong; Zhang, Lujia; He, Xiao; Zhang, John Z H

    2016-05-23

    Improving the accuracy of scoring functions for estimating protein-ligand binding affinity is of significant interest as well as practical utility in drug discovery. In this work, PBSA_E, a new free energy estimator based on the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) descriptors, has been developed. This free energy estimator was optimized using high-quality experimental data from a training set consisting of 145 protein-ligand complexes. The method was validated on two separate test sets containing 121 and 130 complexes. Comparison of the binding affinities predicted using the present method with those obtained using three popular scoring functions, i.e., GlideXP, GlideSP, and SYBYL_F, demonstrated that the PBSA_E method is more accurate. This new energy estimator requires a MM/PBSA calculation of the protein-ligand binding energy for a single complex configuration, which is typically obtained by optimizing the crystal structure. The present study shows that PBSA_E has the potential to become a robust tool for more reliable estimation of protein-ligand binding affinity in structure-based drug design. PMID:27088302

  4. Ligand Binding Reveals a Role for Heme in Translationally-Controlled Tumor Protein Dimerization

    PubMed Central

    Liu, JingJing; Brannon, Mary K.; Yang, Jianhua; Capelluto, Daniel G. S.; Finkielstein, Carla V.

    2014-01-01

    The translationally-controlled tumor protein (TCTP) is a highly conserved, ubiquitously expressed, abundant protein that is broadly distributed among eukaryotes. Its biological function spans numerous cellular processes ranging from regulation of the cell cycle and microtubule stabilization to cell growth, transformation, and death processes. In this work, we propose a new function for TCTP as a “buffer protein” controlling cellular homeostasis. We demonstrate that binding of hemin to TCTP is mediated by a conserved His-containing motif (His76His77) followed by dimerization, an event that involves ligand-mediated conformational changes and that is necessary to trigger TCTP's cytokine-like activity. Mutation in both His residues to Ala prevents hemin from binding and abrogates oligomerization, suggesting that the ligand site localizes at the interface of the oligomer. Unlike heme, binding of Ca2+ ligand to TCTP does not alter its monomeric state; although, Ca2+ is able to destabilize an existing TCTP dimer created by hemin addition. In agreement with TCTP's proposed buffer function, ligand binding occurs at high concentration, allowing the “buffer” condition to be dissociated from TCTP's role as a component of signal transduction mechanisms. PMID:25396429

  5. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    SciTech Connect

    Arnold, John

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  6. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  7. Functionalization of small platinum nanoparticles with amines and phosphines: Ligand binding modes and particle stability.

    PubMed

    Wand, Patricia; Bartl, Johannes D; Heiz, Ueli; Tschurl, Martin; Cokoja, Mirza

    2016-09-15

    We report the binding mode of amines and phosphines on platinum nanoparticles. Protective ligands comprising different functional groups are systematically studied for the elucidation of ligand binding at different functionalization conditions. From the functionalization conditions it is concluded that the binding of amines to the nanoparticles occurs via the formation of a PtHN moiety or electrostatic interaction, which is supported by spectroscopic evidences. In particular from complex chemistry such a binding mode is surprising, as amines are expected to bind via their electron pair to the metal. Similar results from functionalization are observed for phosphine-protected nanoparticles, which suggest similar binding modes in these systems. In contrast to the strong covalent bond of the protection with thiols, considerable weakly binding systems result. The characteristics of the binding mode are reflected by the stability of the colloids and their catalytic properties. In the selective hydrogenation of 3-hexyne to 3-hexene thiolate-stabilized Pt particles are highly stable, but exhibit the lowest activity. On the other hand, amine- and phosphine-capped platinum nanoparticles show a significantly higher activity, but rapidly agglomerate. PMID:27288572

  8. Structural and Functional Insights into Endoglin Ligand Recognition and Binding

    PubMed Central

    Alt, Aaron; Miguel-Romero, Laura; Donderis, Jordi; Aristorena, Mikel; Blanco, Francisco J.; Round, Adam; Rubio, Vicente; Bernabeu, Carmelo; Marina, Alberto

    2012-01-01

    Endoglin, a type I membrane glycoprotein expressed as a disulfide-linked homodimer on human vascular endothelial cells, is a component of the transforming growth factor (TGF)-β receptor complex and is implicated in a dominant vascular dysplasia known as hereditary hemorrhagic telangiectasia as well as in preeclampsia. It interacts with the type I TGF-β signaling receptor activin receptor-like kinase (ALK)1 and modulates cellular responses to Bone Morphogenetic Protein (BMP)-9 and BMP-10. Structurally, besides carrying a zona pellucida (ZP) domain, endoglin contains at its N-terminal extracellular region a domain of unknown function and without homology to any other known protein, therefore called the orphan domain (OD). In this study, we have determined the recognition and binding ability of full length ALK1, endoglin and constructs encompassing the OD to BMP-9 using combined methods, consisting of surface plasmon resonance and cellular assays. ALK1 and endoglin ectodomains bind, independently of their glycosylation state and without cooperativity, to different sites of BMP-9. The OD comprising residues 22 to 337 was identified among the present constructs as the minimal active endoglin domain needed for partner recognition. These studies also pinpointed to Cys350 as being responsible for the dimerization of endoglin. In contrast to the complete endoglin ectodomain, the OD is a monomer and its small angle X-ray scattering characterization revealed a compact conformation in solution into which a de novo model was fitted. PMID:22347366

  9. The ligand binding domain of the nicotinic acetylcholine receptor. Immunological analysis.

    PubMed

    Kachalsky, S G; Aladjem, M; Barchan, D; Fuchs, S

    1993-03-01

    The interaction of the acetylcholine receptor (AChR) binding site domain with specific antibodies and with alpha-bungarotoxin (alpha-BTX) has been compared. The cloned and expressed ligand binding domain of the mouse AChR alpha-subunit binds alpha-BTX, whereas the mongoose-expressed domain is not recognized by alpha-BTX. On the other hand, both the mouse and mongoose domains bind to the site-specific monoclonal antibody 5.5. These results demonstrate that the structural requirements for binding of alpha-BTX and mcAb 5.5, both of which interact with the AChR binding site, are distinct from each other. PMID:8440381

  10. In silico analysis of human Toll-like receptor 7 ligand binding domain.

    PubMed

    Gupta, Chhedi Lal; Akhtar, Salman; Sayyed, Uzma; Pathak, Neelam; Bajpai, Preeti

    2016-05-01

    Toll-like receptors recognizing pathogen-associated molecular patterns are preface actors for innate immunity. Among them TLR7 is a transmembrane protein playing very crucial role in the signaling pathways involved in innate immunity by recognizing viral ssRNA and specific small molecule agonists. The unavailability of experimental 3D structure of this receptor till date hampers the focused exploration of TLR7 interaction with its ligands. However, several proteins possessing high homology domain enabled us to construct a reliable 3D model of hTLR7 ECD, which was employed to generate the homodimer model using protein-protein docking strategy. Further molecular docking studies between developed homodimer model and ligands were performed to explore the most preferred site of hTLR7 ECD interacting with ligands. The comparative analysis of docking energies and protein-ligand interactions of all the ligands revealed resiquimod as the prominent agonist. Furthermore, molecular interactions between protein-ligand complexes suggested LRR15 and LRR16 region of hTLR7 ECD as the most preferential site for ligand binding. The Ser434 and Gly437 of LRR15 region of hTLR7 were found to be conserved with Drosophila Toll protein. The obtained complex model may lead to a better understanding of TLR7 functioning along with its inheritance from invertebrates to mammals. PMID:25817271