Science.gov

Sample records for binding receptor sorla

  1. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA.

    PubMed

    Nielsen, Morten S; Gustafsen, Camilla; Madsen, Peder; Nyengaard, Jens R; Hermey, Guido; Bakke, Oddmund; Mari, Muriel; Schu, Peter; Pohlmann, Regina; Dennes, André; Petersen, Claus M

    2007-10-01

    SorLA/LR11 (250 kDa) is the largest and most composite member of the Vps10p-domain receptors, a family of type 1 proteins preferentially expressed in neuronal tissue. SorLA binds several ligands, including neurotensin, platelet-derived growth factor-bb, and lipoprotein lipase, and via complex-formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that its cytoplasmic tail mediates efficient Golgi body-endosome transport, as well as AP-2 complex-dependent endocytosis. Functional sorting sites were mapped to an acidic cluster-dileucine-like motif and to a GGA binding site in the C terminus. Experiments in permanently or transiently AP-1 mu1-chain-deficient cells established that the AP-1 adaptor complex is essential to SorLA's transport between Golgi membranes and endosomes. Our results further implicate the GGA proteins in SorLA trafficking and provide evidence that SNX1 and Vps35, as parts of the retromer complex or possibly in a separate context, are engaged in retraction of the receptor from endosomes. PMID:17646382

  2. SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity.

    PubMed

    Schmidt, Vanessa; Schulz, Nadja; Yan, Xin; Schürmann, Annette; Kempa, Stefan; Kern, Matthias; Blüher, Matthias; Poy, Matthew N; Olivecrona, Gunilla; Willnow, Thomas E

    2016-07-01

    In humans, genetic variation of sortilin-related receptor, L(DLR class) A repeats containing (SORL1), which encodes the intracellular sorting receptor SORLA, is a major genetic risk factor for familial and sporadic forms of Alzheimer's disease. Recent GWAS analysis has also associated SORL1 with obesity in humans and in mouse models, suggesting that this receptor may play a role in regulating metabolism. Here, using mouse models with genetic loss or tissue-specific overexpression of SORLA as well as data from obese human subjects, we observed a gene-dosage effect that links SORLA expression to obesity and glucose tolerance. Overexpression of human SORLA in murine adipose tissue blocked hydrolysis of triacylglycerides and caused excessive adiposity. In contrast, Sorl1 gene inactivation in mice accelerated breakdown of triacylglycerides in adipocytes and protected animals from diet-induced obesity. We then identified the underlying molecular mechanism whereby SORLA promotes insulin-induced suppression of lipolysis in adipocytes. Specifically, we determined that SORLA acts as a sorting factor for the insulin receptor (IR) that redirects internalized receptor molecules from endosomes to the plasma membrane, thereby enhancing IR surface expression and strengthening insulin signal reception in target cells. Our findings provide a molecular mechanism for the association of SORL1 with human obesity and confirm a genetic link between neurodegeneration and metabolism that converges on the receptor SORLA. PMID:27322061

  3. Lysosomal sorting of amyloid-β by the SORLA receptor is impaired by a familial Alzheimer's disease mutation.

    PubMed

    Caglayan, Safak; Takagi-Niidome, Shizuka; Liao, Fan; Carlo, Anne-Sophie; Schmidt, Vanessa; Burgert, Tilman; Kitago, Yu; Füchtbauer, Ernst-Martin; Füchtbauer, Annette; Holtzman, David M; Takagi, Junichi; Willnow, Thomas E

    2014-02-12

    SORLA/SORL1 is a unique neuronal sorting receptor for the amyloid precursor protein that has been causally implicated in both sporadic and autosomal dominant familial forms of Alzheimer's disease (AD). Brain concentrations of SORLA are inversely correlated with amyloid-β (Aβ) in mouse models and AD patients, suggesting that increasing expression of this receptor could be a therapeutic option for decreasing the amount of amyloidogenic products in affected individuals. We characterize a new mouse model in which SORLA is overexpressed, and show a decrease in Aβ concentrations in mouse brain. We trace the underlying molecular mechanism to the ability of this receptor to direct lysosomal targeting of nascent Aβ peptides. Aβ binds to the amino-terminal VPS10P domain of SORLA, and this binding is impaired by a familial AD mutation in SORL1. Thus, loss of SORLA's Aβ sorting function is a potential cause of AD in patients, and SORLA may be a new therapeutic target for AD drug development. PMID:24523320

  4. Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing.

    PubMed

    Fjorback, Anja W; Seaman, Matthew; Gustafsen, Camilla; Mehmedbasic, Arnela; Gokool, Suzanne; Wu, Chengbiao; Militz, Daniel; Schmidt, Vanessa; Madsen, Peder; Nyengaard, Jens R; Willnow, Thomas E; Christensen, Erik Ilsø; Mobley, William B; Nykjær, Anders; Andersen, Olav M

    2012-01-25

    sorLA is a sorting receptor for amyloid precursor protein (APP) genetically linked to Alzheimer's disease (AD). Retromer, an adaptor complex in the endosome-to-Golgi retrieval pathway, has been implicated in APP transport because retromer deficiency leads to aberrant APP sorting and processing and levels of retromer proteins are altered in AD. Here we report that sorLA and retromer functionally interact in neurons to control trafficking and amyloidogenic processing of APP. We have identified a sequence (FANSHY) in the cytoplasmic domain of sorLA that is recognized by the VPS26 subunit of the retromer complex. Accordingly, we characterized the interaction between the retromer complex and sorLA and determined the role of retromer on sorLA-dependent sorting and processing of APP. Mutations in the VPS26 binding site resulted in receptor redistribution to the endosomal network, similar to the situation seen in cells with VPS26 knockdown. The sorLA mutant retained APP-binding activity but, as opposed to the wild-type receptor, misdirected APP into a distinct non-Golgi compartment, resulting in increased amyloid processing. In conclusion, our data provide a molecular link between reduced retromer expression and increased amyloidogenesis as seen in patients with sporadic AD. PMID:22279231

  5. Polarized trafficking of the sorting receptor SorLA in neurons and MDCK cells.

    PubMed

    Klinger, Stine C; Højland, Anne; Jain, Shweta; Kjolby, Mads; Madsen, Peder; Svendsen, Anna Dorst; Olivecrona, Gunilla; Bonifacino, Juan S; Nielsen, Morten S

    2016-07-01

    The sorting receptor SorLA is highly expressed in neurons and is also found in other polarized cells. The receptor has been reported to participate in the trafficking of several ligands, some of which are linked to human diseases, including the amyloid precursor protein, TrkB, and Lipoprotein Lipase (LpL). Despite this, only the trafficking in nonpolarized cells has been described so far. Due to the many differences between polarized and nonpolarized cells, we examined the localization and trafficking of SorLA in epithelial Madin-Darby canine kidney (MDCK) cells and rat hippocampal neurons. We show that SorLA is mainly found in sorting endosomes and on the basolateral surface of MDCK cells and in the somatodendritic domain of neurons. This polarized distribution of SorLA respectively depends on an acidic cluster and an extended version of this cluster and involves the cellular adaptor complex AP-1. Furthermore, we show that SorLA can mediate transcytosis across a tight cell layer. PMID:27192064

  6. SORLA-dependent and -independent functions for PACS1 in control of amyloidogenic processes.

    PubMed

    Burgert, Tilman; Schmidt, Vanessa; Caglayan, Safak; Lin, Fuyu; Füchtbauer, Annette; Füchtbauer, Ernst-Martin; Nykjaer, Anders; Carlo, Anne-Sophie; Willnow, Thomas E

    2013-11-01

    Sorting-related receptor with A-type repeats (SORLA) is a sorting receptor for the amyloid precursor protein (APP) that prevents breakdown of APP into Aβ peptides, a hallmark of Alzheimer's disease (AD). Several cytosolic adaptors have been shown to interact with the cytoplasmic domain of SORLA, thereby controlling intracellular routing of SORLA/APP complexes in cell lines. However, the relevance of adaptor-mediated sorting of SORLA for amyloidogenic processes in vivo remained unexplored. We focused on the interaction of SORLA with phosphofurin acidic cluster sorting protein 1 (PACS1), an adaptor that shuttles proteins between the trans-Golgi network (TGN) and endosomes. By studying PACS1 knockdown in neuronal cell lines and investigating transgenic mice expressing a PACS1-binding-defective mutant form of SORLA, we found that disruption of SORLA and PACS1 interaction results in the inability of SORLA/APP complexes to sort to the TGN in neurons and in increased APP processing in the brain. Loss of PACS1 also impairs the proper expression of the cation-independent mannose 6-phosphate receptor and its target cathepsin B, a protease that breaks down Aβ. Thus, our data identified the importance of PACS1-dependent protein sorting for amyloidogenic-burden control via both SORLA-dependent and SORLA-independent mechanisms. PMID:24001769

  7. SorLA controls neurotrophic activity by sorting of GDNF and its receptors GFRα1 and RET.

    PubMed

    Glerup, Simon; Lume, Maria; Olsen, Ditte; Nyengaard, Jens R; Vaegter, Christian B; Gustafsen, Camilla; Christensen, Erik I; Kjolby, Mads; Hay-Schmidt, Anders; Bender, Dirk; Madsen, Peder; Saarma, Mart; Nykjaer, Anders; Petersen, Claus M

    2013-01-31

    Glial cell-line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor that has reached clinical trials for Parkinson's disease. GDNF binds to its coreceptor GFRα1 and signals through the transmembrane receptor tyrosine kinase RET, or RET independently through NCAM or syndecan-3. Whereas the GDNF signaling cascades are well described, cellular turnover and trafficking of GDNF and its receptors remain poorly characterized. Here, we find that SorLA acts as sorting receptor for the GDNF/GFRα1 complex, directing it from the cell surface to endosomes. Through this mechanism, GDNF is targeted to lysosomes and degraded while GFRα1 recycles, creating an efficient GDNF clearance pathway. The SorLA/GFRα1 complex further targets RET for endocytosis but not for degradation, affecting GDNF-induced neurotrophic activities. SorLA-deficient mice display elevated GDNF levels, altered dopaminergic function, marked hyperactivity, and reduced anxiety, all of which are phenotypes related to abnormal GDNF activity. Taken together, these findings establish SorLA as a critical regulator of GDNF activity in the CNS. PMID:23333276

  8. ApoE-isoform-dependent cellular uptake of amyloid-β is mediated by lipoprotein receptor LR11/SorLA.

    PubMed

    Yajima, Ryuji; Tokutake, Takayoshi; Koyama, Akihide; Kasuga, Kensaku; Tezuka, Toshiyuki; Nishizawa, Masatoyo; Ikeuchi, Takeshi

    2015-01-01

    The formation of senile plaques composed of β-amyloid (Aβ) in the brain is likely the initial event in Alzheimer's disease (AD). Possession of the APOE ε4 allele, the strong genetic factor for AD, facilitates the Aβ deposition from the presymptomatic stage of AD in a gene-dosage-dependent manner. However, the precise mechanism by which apoE isoforms differentially induce the AD pathology is largely unknown. LR11/SorLA is a type I membrane protein that functions as the neuronal lipoprotein endocytic receptor of apoE and the sorting receptor of the amyloid precursor protein (APP) to regulate amyloidogenesis. Recently, LR11/SorLA has been reported to be involved in the lysosomal targeting of extracellular amyloid-β (Aβ) through the binding of Aβ to the vacuolar protein sorting 10 (VPS10) protein domain of LR11/SorLA. Here, we attempted to examine the human-apoE-isoform-dependent effect on the cellular uptake of Aβ through the formation of a complex between an apoE isoform and LR11/SorLA. Cell culture experiments using Neuro2a cells revealed that the cellular uptake of secreted apoE3 and apoE4 was enhanced by the overexpression of LR11/SorLA. In contrast, the cellular uptake of apoE2 was not affected by the expression of LR11/SorLA. Co-immunoprecipitation assay revealed that apoE-isoform-dependent differences were observed in the formation of an apoE-LR11 complex (apoE4>apoE3>apoE2). ApoE-isoform-dependent differences in cellular uptake of FAM-labeled Aβ were further investigated by coculture assay in which donor cells secrete one of the apoE isoforms and recipient cells express FL-LR11. The cellular uptake of extracellular Aβ into the recipient cells was most prominently accentuated when cocultured with the donor cells secreting apoE4 in the medium, followed by apoE3 and apoE2. Taken together, our results provide evidence for the mechanism whereby human-apoE-isoform-dependent differences modulate the cellular uptake of Aβ mediated by LR11/SorLA. PMID

  9. Sorting protein-related receptor SorLA controls regulated secretion of glial cell line-derived neurotrophic factor.

    PubMed

    Geng, Zhao; Xu, Feng-Yi; Huang, Shu-Hong; Chen, Zhe-Yu

    2011-12-01

    Glial cell line-derived neurotrophic factor (GDNF), after secreted from cells, plays a critical role in central and peripheral neuron survival and function. The secretion of GDNF can be either constitutive or regulated by physiological stimuli; however, the detailed mechanism driving GDNF secretion is still unknown. Here, we report that sorting protein-related receptor with A-type repeats (SorLA), a member of the mammal Vps10p domain receptor, interacts with GDNF and is localized to GDNF-containing vesicles. Overexpression of SorLA significantly increases, and knockdown of SorLA by siRNA decreases, the regulated secretion of GDNF in PC12 and MN9D cells but has no effect on GDNF constitutive secretion. In addition, overexpression of a truncated form of SorLA also impairs GDNF-regulated secretion. Finally, we found that the prodomain of GDNF mediates the interaction of GDNF with SorLA under acidic conditions. Moreover, overexpression of SorLA could enhance the regulated secretion of the GDNF prodomain-GFP fusion protein, suggesting that the prodomain of GDNF is responsible for its regulated secretion. Together, these findings will advance our understanding of the molecular mechanism underlying GDNF-regulated secretion. PMID:21994944

  10. Sorting receptor SORLA--a trafficking path to avoid Alzheimer disease.

    PubMed

    Willnow, Thomas E; Andersen, Olav M

    2013-07-01

    Excessive proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid β peptides (Aβ) by secretases in the brain is a molecular cause of Alzheimer disease (AD). According to current concepts, the complex route whereby APP moves between the secretory compartment, the cell surface and endosomes to encounter the various secretases determines its processing fate. However, the molecular mechanisms that control the intracellular trafficking of APP in neurons and their contribution to AD remain poorly understood. Here, we describe the functional elucidation of a new sorting receptor SORLA that emerges as a central regulator of trafficking and processing of APP. SORLA interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network and early endosomes, thereby restricting delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. Defects in SORLA and its interacting adaptors result in transport defects and enhanced amyloidogenic processing of APP, and represent important risk factors for AD in patients. As discussed here, these findings uncovered a unique regulatory pathway for the control of neuronal protein transport, and provide clues as to why defects in this pathway cause neurodegenerative disease. PMID:23813966

  11. Rho kinase II phosphorylation of the lipoprotein receptor LR11/SORLA alters amyloid-beta production.

    PubMed

    Herskowitz, Jeremy H; Seyfried, Nicholas T; Gearing, Marla; Kahn, Richard A; Peng, Junmin; Levey, Allan I; Lah, James J

    2011-02-25

    LR11, also known as SorLA, is a mosaic low-density lipoprotein receptor that exerts multiple influences on Alzheimer disease susceptibility. LR11 interacts with the amyloid-β precursor protein (APP) and regulates APP traffic and processing to amyloid-β peptide (Aβ). The functional domains of LR11 suggest that it can act as a cell surface receptor and as an intracellular sorting receptor for trans-Golgi network to endosome traffic. We show that LR11 over-expressed in HEK293 cells is radiolabeled following incubation of cells with [(32)P(i)]orthophosphate. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to discover putative LR11 interacting kinases. Rho-associated coiled-coil containing protein kinase (ROCK) 2 was identified as a binding partner and a candidate kinase acting on LR11. LR11 and ROCK2 co-immunoprecipitate from post-mortem human brain tissue and drug inhibition of ROCK activity reduces LR11 phosphorylation in vivo. Targeted knockdown of ROCK2 with siRNA decreased LR11 ectodomain shedding while simultaneously increasing intracellular LR11 protein level. Site-directed mutagenesis of serine 2206 in the LR11 cytoplasmic tail reduced LR11 shedding, decreased LR11 phosphorylation in vitro, and abrogated LR11 mediated Aβ reduction. These findings provide direct evidence that LR11 is phosphorylated in vivo and indicate that ROCK2 phosphorylation of LR11 may enhance LR11 mediated processing of APP and amyloid production. PMID:21147781

  12. SORLA/SORL1, a neuronal sorting receptor implicated in Alzheimer's disease.

    PubMed

    Willnow, Thomas E; Carlo, Anne-Sophie; Rohe, Michael; Schmidt, Vanessa

    2010-01-01

    The proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid-beta peptides in the brain has been recognized as a major pathological pathway in Alzheimer's disease (AD). Yet, the factors that control the processing of APP and their potential contribution to the common sporadic form of AD remain poorly understood. Here, we review recent findings from studies in patients and in animal models that led to the identification of a unique sorting receptor for APP in neurons, designated SORLA/SORL1, that emerges as a key player in amyloidogenic processing and as major genetic risk factor for AD. PMID:21086763

  13. SorLA regulates the activity of lipoprotein lipase by intracellular trafficking.

    PubMed

    Klinger, Stine C; Glerup, Simon; Raarup, Merete K; Mari, Muriel C; Nyegaard, Mette; Koster, Gerbrand; Prabakaran, Thaneas; Nilsson, Stefan K; Kjaergaard, Maj M; Bakke, Oddmund; Nykjær, Anders; Olivecrona, Gunilla; Petersen, Claus Munck; Nielsen, Morten S

    2011-04-01

    Many different tissues and cell types exhibit regulated secretion of lipoprotein lipase (LPL). However, the sorting of LPL in the trans Golgi network has not, hitherto, been understood in detail. Here, we characterize the role of SorLA (officially known as SorLA-1 or sortilin-related receptor) in the intracellular trafficking of LPL. We found that LPL bound to SorLA under neutral and acidic conditions, and in cells this binding mainly occurred in vesicular structures. SorLA expression changed the subcellular distribution of LPL so it became more concentrated in endosomes. From the endosomes, LPL was further routed to the lysosomes, which resulted in a degradation of newly synthesized LPL. Consequently, an 80% reduction of LPL activity was observed in cells that expressed SorLA. By analogy, SorLA regulated the vesicle-like localization of LPL in primary neuronal cells. Thus, LPL binds to SorLA in the biosynthetic pathway and is subsequently transported to endosomes. As a result of this SorLA mediated-transport, newly synthesized LPL can be routed into specialized vesicles and eventually sent to degradation, and its activity thereby regulated. PMID:21385844

  14. Mutants of metal binding site M1 in APP E2 show metal specific differences in binding of heparin but not of sorLA.

    PubMed

    Dienemann, Christian; Coburger, Ina; Mehmedbasic, Arnela; Andersen, Olav M; Than, Manuel E

    2015-04-21

    The amyloid precursor protein (APP) and its neurotoxic cleavage product Aβ are key players in the development of Alzheimer's disease (AD) and appear to be essential for neuronal development and cell homeostasis. Proteolytic processing of APP and its physiological function depend on its interaction with heparin and are influenced by the binding of metal ions and sorLA. We created various mutations of metal binding site M1 residing within the extracellular E2 domain of APP. Using isothermal titration calorimetry and circular dichroism spectroscopy, we analyzed the binding of Cu(2+) and Zn(2+) to APP E2 and identified two mutations that are most suited for functional studies to dissect ion specific effects of metal binding. The H313A mutation abrogates only copper-based effects, whereas the H382A mutation weakens any metal binding at M1 of APP E2. Subsequently, we tested the effect of Cu(2+) and Zn(2+) on the binding of heparin and sorLA to APP E2 using a chromatographic technique and surface plasmon resonance. We show that Zn(2+) and to a larger degree also Cu(2+) enhance the binding of heparin to APP E2, consistent with an extracellular regulation of the function of APP by both metal ions. In contrast, neither ion seemed to affect the interaction between APP E2 and sorLA. This supports an intracellular interaction between the latter two partners that would not sense extracellular variations of metal ions upon synaptic activity. PMID:25835329

  15. SorLA Complement-type Repeat Domains Protect the Amyloid Precursor Protein against Processing*

    PubMed Central

    Mehmedbasic, Arnela; Christensen, Sofie K.; Nilsson, Jonas; Rüetschi, Ulla; Gustafsen, Camilla; Poulsen, Annemarie Svane Aavild; Rasmussen, Rikke W.; Fjorback, Anja N.; Larson, Göran; Andersen, Olav M.

    2015-01-01

    SorLA is a neuronal sorting receptor that is genetically associated with Alzheimer disease. SorLA interacts directly with the amyloid precursor protein (APP) and affects the processing of the precursor, leading to a decreased generation of the amyloid-β peptide. The SorLA complement-type repeat (CR) domains associate in vitro with APP, but the precise molecular determinants of SorLA·APP complex formation and the mechanisms responsible for the effect of binding on APP processing have not yet been elucidated. Here, we have generated protein expression constructs for SorLA devoid of the 11 CR-domains and for two SorLA mutants harboring substitutions of the fingerprint residues in the central CR-domains. We generated SH-SY5Y cell lines that stably express these SorLA variants to study the binding and processing of APP using co-immunoprecipitation and Western blotting/ELISAs, respectively. We found that the SorLA CR-cluster is essential for interaction with APP and that deletion of the CR-cluster abolishes the protection against APP processing. Mutation of identified fingerprint residues in the SorLA CR-domains leads to changes in the O-linked glycosylation of APP when expressed in SH-SY5Y cells. Our results provide novel information on the mechanisms behind the influence of SorLA activity on APP metabolism by controlling post-translational glycosylation in the Golgi, suggesting new strategies against amyloidogenesis in Alzheimer disease. PMID:25525276

  16. SorLA complement-type repeat domains protect the amyloid precursor protein against processing.

    PubMed

    Mehmedbasic, Arnela; Christensen, Sofie K; Nilsson, Jonas; Rüetschi, Ulla; Gustafsen, Camilla; Poulsen, Annemarie Svane Aavild; Rasmussen, Rikke W; Fjorback, Anja N; Larson, Göran; Andersen, Olav M

    2015-02-01

    SorLA is a neuronal sorting receptor that is genetically associated with Alzheimer disease. SorLA interacts directly with the amyloid precursor protein (APP) and affects the processing of the precursor, leading to a decreased generation of the amyloid-β peptide. The SorLA complement-type repeat (CR) domains associate in vitro with APP, but the precise molecular determinants of SorLA·APP complex formation and the mechanisms responsible for the effect of binding on APP processing have not yet been elucidated. Here, we have generated protein expression constructs for SorLA devoid of the 11 CR-domains and for two SorLA mutants harboring substitutions of the fingerprint residues in the central CR-domains. We generated SH-SY5Y cell lines that stably express these SorLA variants to study the binding and processing of APP using co-immunoprecipitation and Western blotting/ELISAs, respectively. We found that the SorLA CR-cluster is essential for interaction with APP and that deletion of the CR-cluster abolishes the protection against APP processing. Mutation of identified fingerprint residues in the SorLA CR-domains leads to changes in the O-linked glycosylation of APP when expressed in SH-SY5Y cells. Our results provide novel information on the mechanisms behind the influence of SorLA activity on APP metabolism by controlling post-translational glycosylation in the Golgi, suggesting new strategies against amyloidogenesis in Alzheimer disease. PMID:25525276

  17. Structural basis for amyloidogenic peptide recognition by sorLA.

    PubMed

    Kitago, Yu; Nagae, Masamichi; Nakata, Zenzaburo; Yagi-Utsumi, Maho; Takagi-Niidome, Shizuka; Mihara, Emiko; Nogi, Terukazu; Kato, Koichi; Takagi, Junichi

    2015-03-01

    SorLA is a neuronal sorting receptor considered to be a major risk factor for Alzheimer's disease. We have recently reported that it directs lysosomal targeting of nascent neurotoxic amyloid-β (Aβ) peptides by directly binding Aβ. Here, we determined the crystal structure of the human sorLA domain responsible for Aβ capture, Vps10p, in an unbound state and in complex with two ligands. Vps10p assumes a ten-bladed β-propeller fold with a large tunnel at the center. An internal ligand derived from the sorLA propeptide bound inside the tunnel to extend the β-sheet of one of the propeller blades. The structure of the sorLA Vps10p-Aβ complex revealed that the same site is used. Peptides are recognized by sorLA Vps10p in redundant modes without strict dependence on a particular amino acid sequence, thus suggesting a broad specificity toward peptides with a propensity for β-sheet formation. PMID:25643321

  18. Sortilin-related receptor with A-type repeats (SORLA) affects the amyloid precursor protein-dependent stimulation of ERK signaling and adult neurogenesis.

    PubMed

    Rohe, Michael; Carlo, Anne-Sophie; Breyhan, Henning; Sporbert, Anje; Militz, Daniel; Schmidt, Vanessa; Wozny, Christian; Harmeier, Anja; Erdmann, Bettina; Bales, Kelly R; Wolf, Susanne; Kempermann, Gerd; Paul, Steven M; Schmitz, Dietmar; Bayer, Thomas A; Willnow, Thomas E; Andersen, Olav M

    2008-05-23

    Sortilin-related receptor with A-type repeats (SORLA) is a sorting receptor that impairs processing of amyloid precursor protein (APP) to soluble (s) APP and to the amyloid beta-peptide in cultured neurons and is poorly expressed in patients with Alzheimer disease (AD). Here, we evaluated the consequences of Sorla gene defects on brain anatomy and function using mouse models of receptor deficiency. In line with a protective role for SORLA in APP metabolism, lack of the receptor results in increased amyloidogenic processing of endogenous APP and in aggravated plaque deposition when introduced into PDAPP mice expressing mutant human APP. Surprisingly, increased levels of sAPP caused by receptor deficiency correlate with pro-found stimulation of neuronal ERK signaling and with enhanced neurogenesis, providing in vivo support for neurotrophic functions of sAPP. Our data document a role for SORLA not only in control of plaque burden but also in APP-dependent neuronal signaling and suggest a molecular explanation for increased neurogenesis observed in some AD patients. PMID:18362153

  19. Sortilin and SorLA display distinct roles in processing and trafficking of amyloid precursor protein.

    PubMed

    Gustafsen, Camilla; Glerup, Simon; Pallesen, Lone Tjener; Olsen, Ditte; Andersen, Olav M; Nykjær, Anders; Madsen, Peder; Petersen, Claus Munck

    2013-01-01

    The development and progression of Alzheimer's disease is linked to excessive production of toxic amyloid-β peptide, initiated by β-secretase cleavage of the amyloid precursor protein (APP). In contrast, soluble APPα (sAPPα) generated by the α-secretase is known to stimulate dendritic branching and enhance synaptic function. Regulation of APP processing, and the shift from neurotrophic to neurotoxic APP metabolism remains poorly understood, but the cellular localization of APP and its interaction with various receptors is considered important. We here identify sortilin as a novel APP interaction partner. Like the related APP receptor SorLA, sortilin is highly expressed in the CNS, but whereas SorLA mainly colocalizes with APP in the soma, sortilin interacts with APP in neurites. The presence of sortilin promotes α-secretase cleavage of APP, unlike SorLA, which inhibits the generation of all soluble products. Also, sortilin and SorLA both bind and mediate internalization of sAPP but to different cellular compartments. The interaction involves the 6A domain of APP, present in both neuronal and non-neuronal APP isoforms. This is important as sAPP receptors described so far only bind the non-neuronal isoforms, leaving SorLA and sortilin as the only receptors for sAPP generated by neurons. Together, our findings establish sortilin, as a novel APP interaction partner that influences both production and cellular uptake of sAPP. PMID:23283322

  20. SORLA-mediated trafficking of TrkB enhances the response of neurons to BDNF.

    PubMed

    Rohe, Michael; Hartl, Daniela; Fjorback, Anja Nawarecki; Klose, Joachim; Willnow, Thomas E

    2013-01-01

    Stimulation of neurons with brain-derived neurotrophic factor (BDNF) results in robust induction of SORLA, an intracellular sorting receptor of the VPS10P domain receptor gene family. However, the relevance of SORLA for BDNF-induced neuronal responses has not previously been investigated. We now demonstrate that SORLA is a sorting factor for the tropomyosin-related kinase receptor B (TrkB) that facilitates trafficking of this BDNF receptor between synaptic plasma membranes, post-synaptic densities, and cell soma, a step critical for neuronal signal transduction. Loss of SORLA expression results in impaired neuritic transport of TrkB and in blunted response to BDNF in primary neurons; and it aggravates neuromotoric deficits caused by low BDNF activity in a mouse model of Huntington's disease. Thus, our studies revealed a key role for SORLA in mediating BDNF trophic signaling by regulating the intracellular location of TrkB. PMID:23977241

  1. Brain-derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression.

    PubMed

    Rohe, Michael; Synowitz, Michael; Glass, Rainer; Paul, Steven M; Nykjaer, Anders; Willnow, Thomas E

    2009-12-01

    Sorting protein-related receptor with A-type repeats (SORLA) is a major risk factor in cellular processes leading to Alzheimer's disease (AD). It acts as sorting receptor for the amyloid precursor protein (APP) that regulates intracellular trafficking and processing into amyloidogenic-beta peptides (A beta). Overexpression of SORLA in neurons reduces while inactivation of gene expression (as in knock-out mouse models) accelerates amyloidogenic processing and senile plaque formation. The current study aimed at identifying molecular pathways that control SORLA gene transcription in vivo and that may contribute to low levels of receptor expression in the brain of patients with AD. Using screening approaches in primary neurons, we identified brain-derived neurotrophic factor (BDNF) as a major inducer of Sorla that activates receptor gene transcription through the ERK (extracellular regulated kinase) pathway. In line with a physiological role as regulator of Sorla, expression of the receptor is significantly impaired in mouse models with genetic (Bdnf(-/-)) or disease-related loss of BDNF activity in the brain (Huntington's disease). Intriguingly, exogenous application of BDNF reduced A beta production in primary neurons and in the brain of wild-type mice in vivo, but not in animals genetically deficient for Sorla. These findings demonstrate that the beneficial effects ascribed to BDNF in APP metabolism act through induction of Sorla that encodes a negative regulator of neuronal APP processing. PMID:20007471

  2. Bacterial expression, purification, and model membrane reconstitution of the transmembrane and cytoplasmic domains of the human APP binding protein LR11/SorLA for NMR studies.

    PubMed

    Wang, Xingsheng; Gill, Richard L; Zhu, Qin; Tian, Fang

    2011-06-01

    LR11 (SorLA) is a recently identified neuronal protein that interacts with amyloid precursor protein (APP), a central player in the pathology of the Alzheimer's disease (AD). AD is a neurodegenerative disease and the most common cause of dementia in the elderly. Current estimates suggest that as many as 5.3 million Americans are living with AD. Recent investigations have uncovered the pathophysiological relevance of APP intracellular trafficking in AD. LR11 is of particular importance due to its role in regulating APP transport and processing. LR11 is a type I transmembrane protein and belongs to a novel family of Vps10p receptors. Using a new expression vector, pMTTH (MBP-MCS1 (multiple cloning site)-Thrombin protease cleavage site-MCS2-TEV protease cleavage site-MCS3-His(6)), we successfully expressed, purified and reconstituted the LR11 transmembrane (TM) and cytoplasmic (CT) domains into bicelles and detergent micelles for NMR structural studies. This new construct allowed us to overcome several obstacles during sample preparation. MBP fused LR11TM and LR11TMCT proteins are preferably expressed at high levels in Escherichia coli membrane, making a refolding of the protein unnecessary. The C-terminal His-tag allows for easy separation of the target protein from the truncated products from the C-terminus, and provides a convenient route for screening detergents to produce high quality 2D (1)H-(15)N TROSY spectra. Thrombin protease cleavage is compatible with most of the commonly used detergents, including a direct cleavage at the E. coli membrane surface. This new MBP construct may provide an effective route for the preparation of small proteins with TM domains. PMID:21320603

  3. SorLA deficiency dissects amyloid pathology from tau and cholinergic neurodegeneration in a mouse model of Alzheimer's disease.

    PubMed

    Capsoni, Simona; Carlo, Anne-Sophie; Vignone, Domenico; Amato, Gianluca; Criscuolo, Chiara; Willnow, Thomas E; Cattaneo, Antonino

    2013-01-01

    Sortilin-related receptor with A-type repeats (SorLA, also known as LR11) has been implicated in Alzheimer's disease (AD). Thus, genetic studies associated SorLA gene variants with the risk of sporadic AD. Also, in vitro and in vivo studies showed that SorLA impairs processing of the amyloid-β protein precursor (AβPP) to amyloid-β. In particular, it has been found that loss of SorLA accelerates senile plaque deposition in mouse models overexpressing mutant forms of human AβPP and presenilin 1. Here we tested the possibility that SorLA deficiency also interferes with behavioral and neuropathological endpoints in an alternative murine AD model, the AD10 anti-nerve growth factor (NGF) mouse, in which amyloid-β accumulation derives from the altered processing of endogenous AβPP. In addition to alterations in AβPP processing, AD10 mice also show cholinergic deficit and tau hyperphosphorylation resulting in behavioral deficits in learning and memory paradigms. We found that the loss of SorLA not only exacerbates early amyloid pathology but, at the same time, protects from cholinergic deficit and from early phospho-tau mislocalization. The results show that in the AD10 anti-NGF mouse model the AβPP processing-related aspects of neurodegeneration can be dissociated from those related to tau posttranslational processing and to cholinergic phenotypic maintenance by modulation of SorLA expression. We suggest that SorLA regulates different aspects of neurodegeneration in a complex way, supporting the hypothesis that SorLA expression might be critical not only for amyloid-related pathology but also for other cellular processes altered in AD. PMID:22986780

  4. SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)-K(+)-Cl(-) cotransporter 2.

    PubMed

    Reiche, Juliane; Theilig, Franziska; Rafiqi, Fatema H; Carlo, Anne-Sophie; Militz, Daniel; Mutig, Kerim; Todiras, Mihail; Christensen, Erik Ilsø; Ellison, David H; Bader, Michael; Nykjaer, Anders; Bachmann, Sebastian; Alessi, Dario; Willnow, Thomas E

    2010-06-01

    Proper control of NaCl excretion in the kidney is central to bodily functions, yet many mechanisms that regulate reabsorption of sodium and chloride in the kidney remain incompletely understood. Here, we identify an important role played by the intracellular sorting receptor SORLA (sorting protein-related receptor with A-type repeats) in functional activation of renal ion transporters. We demonstrate that SORLA is expressed in epithelial cells of the thick ascending limb (TAL) of Henle's loop and that lack of receptor expression in this cell type in SORLA-deficient mice results in an inability to properly reabsorb sodium and chloride during osmotic stress. The underlying cellular defect was correlated with an inability of the TAL to phosphorylate Na(+)-K(+)-Cl(-) cotransporter 2 (NKCC2), the major sodium transporter in the distal nephron. SORLA functionally interacts with Ste-20-related proline-alanine-rich kinase (SPAK), an activator of NKCC2, and receptor deficiency is associated with missorting of SPAK. Our data suggest a novel regulatory pathway whereby intracellular trafficking of SPAK by the sorting receptor SORLA is crucial for proper NKCC2 activation and for maintenance of renal ion balance. PMID:20385770

  5. Calcineurin and Sorting-Related Receptor with A-Type Repeats Interact to Regulate the Renal Na⁺-K⁺-2Cl⁻ Cotransporter.

    PubMed

    Borschewski, Aljona; Himmerkus, Nina; Boldt, Christin; Blankenstein, Katharina I; McCormick, James A; Lazelle, Rebecca; Willnow, Thomas E; Jankowski, Vera; Plain, Allein; Bleich, Markus; Ellison, David H; Bachmann, Sebastian; Mutig, Kerim

    2016-01-01

    The furosemide-sensitive Na(+)-K(+)-2Cl(-)-cotransporter (NKCC2) is crucial for NaCl reabsorption in kidney thick ascending limb (TAL) and drives the urine concentrating mechanism. NKCC2 activity is modulated by N-terminal phosphorylation and dephosphorylation. Serine-threonine kinases that activate NKCC2 have been identified, but less is known about phosphatases that deactivate NKCC2. Inhibition of calcineurin phosphatase has been shown to stimulate transport in the TAL and the distal convoluted tubule. Here, we identified NKCC2 as a target of the calcineurin Aβ isoform. Short-term cyclosporine administration in mice augmented the abundance of phospho-NKCC2, and treatment of isolated TAL with cyclosporine increased the chloride affinity and transport activity of NKCC2. Because sorting-related receptor with A-type repeats (SORLA) may affect NKCC2 phosphoregulation, we used SORLA-knockout mice to test whether SORLA is involved in calcineurin-dependent modulation of NKCC2. SORLA-deficient mice showed more calcineurin Aβ in the apical region of TAL cells and less NKCC2 phosphorylation and activity compared with littermate controls. In contrast, overexpression of SORLA in cultured cells reduced the abundance of endogenous calcineurin Aβ. Cyclosporine administration rapidly normalized the abundance of phospho-NKCC2 in SORLA-deficient mice, and a functional interaction between calcineurin Aβ and SORLA was further corroborated by binding assays in rat kidney extracts. In summary, we have shown that calcineurin Aβ and SORLA are key components in the phosphoregulation of NKCC2. These results may have clinical implications for immunosuppressive therapy using calcineurin inhibitors. PMID:25967121

  6. Sortilin and SorLA regulate neuronal sorting of trophic and dementia-linked proteins.

    PubMed

    Pallesen, Lone Tjener; Vaegter, Christian Bjerggaard

    2012-04-01

    Sortilin and SorLA are members of the Vps10p domain receptor family, the Sortilins, which comprise five type I transmembrane receptors differentially expressed in neuronal tissues of the central and peripheral nervous system. Since the identification of sortilin in 1997, members of this receptor family are recognized as sorting receptors primarily in the trans-Golgi network, interacting with a wide range of ligands comprising other transmembrane receptors as well as soluble proteins from neurotrophic factors to enzymes targeted for lysosomes. Specifically, the involvement of sortilin in neutrophin signaling in healthy and injured neurons is increasingly recognized, as well as the impact of SorLA on the cellular processing of amyloid precursor protein, an important component in Alzheimer's disease. The current understanding of these issues as well as the recent recognition of a molecular link between sortilin and frontotemporal dementia is addressed in this present review. PMID:22297619

  7. SorLA is a molecular link for retromer-dependent sorting of the Amyloid precursor protein.

    PubMed

    Fjorback, Anja W; Andersen, Olav M

    2012-11-01

    Deficiency in the retromer sorting pathway is known to be associated with the onset of Alzheimer disease (AD), and has been suggested to involve regulation of Amyloid precursor protein (APP) trafficking. Absence of the APP sorting receptor sorLA is also associated to AD, as amyloidogenic processing of APP is increased due to missorting. Reduced activity of either retromer or sorLA thus both lead to enhanced amyloidogenic APP processing, and these pathways are therefore important factors for understanding the development of AD. It is therefore key to outline the neuronal APP trafficking in order to determine the mechanisms that influence AD onset. PMID:23740096

  8. Cytokine-Like Factor 1, an Essential Facilitator of Cardiotrophin-Like Cytokine:Ciliary Neurotrophic Factor Receptor α Signaling and sorLA-Mediated Turnover

    PubMed Central

    Kristensen, Anders Mejer; Pallesen, Lone Tjener; Bauer, Johannes; Vægter, Christian Bjerggaard; Nielsen, Morten Schallburg; Madsen, Peder

    2016-01-01

    Cardiotrophin-like cytokine:cytokine-like factor-1 (CLC:CLF-1) is a heterodimeric neurotropic cytokine that plays a crucial role during neuronal development. Mice lacking CLC:CLF-1 die soon after birth due to a suckling defect and show reduced numbers of motor neurons. Humans carrying mutations in CLC:CLF-1 develop similar disorders, known as Sohar-Crisponi or cold-induced sweating syndrome, and have a high risk of early death. It is well known that CLC binds the ciliary neurotrophic factor receptor α (CNTFRα) and is a prerequisite for signaling through the gp130/leukemia inhibitory factor receptor β (LIFRβ) heterodimer, whereas CLF-1 serves to promote the cellular release of CLC. However, the precise role of CLF-1 is unclear. Here, we report that CLF-1, based on its binding site for CLC and on two additional and independent sites for CNTFRα and sorLA, is a key player in CLC and CNTFRα signaling and turnover. The site for CNTFRα enables CLF-1 to promote CLC:CNTFRα complex formation and signaling. The second site establishes a link between the endocytic receptor sorLA and the tripartite CLC:CLF-1:CNTFRα complex and allows sorLA to downregulate the CNTFRα pool in stimulated cells. Finally, sorLA may bind and concentrate the tripartite soluble CLC:CLF-1:CNTFRα complex on cell membranes and thus facilitate its signaling through gp130/LIFRβ. PMID:26858303

  9. Cytokine-Like Factor 1, an Essential Facilitator of Cardiotrophin-Like Cytokine:Ciliary Neurotrophic Factor Receptor α Signaling and sorLA-Mediated Turnover.

    PubMed

    Larsen, Jakob Vejby; Kristensen, Anders Mejer; Pallesen, Lone Tjener; Bauer, Johannes; Vægter, Christian Bjerggaard; Nielsen, Morten Schallburg; Madsen, Peder; Petersen, Claus Munck

    2016-04-15

    Cardiotrophin-like cytokine:cytokine-like factor-1 (CLC:CLF-1) is a heterodimeric neurotropic cytokine that plays a crucial role during neuronal development. Mice lacking CLC:CLF-1 die soon after birth due to a suckling defect and show reduced numbers of motor neurons. Humans carrying mutations in CLC:CLF-1 develop similar disorders, known as Sohar-Crisponi or cold-induced sweating syndrome, and have a high risk of early death. It is well known that CLC binds the ciliary neurotrophic factor receptor α (CNTFRα) and is a prerequisite for signaling through the gp130/leukemia inhibitory factor receptor β (LIFRβ) heterodimer, whereas CLF-1 serves to promote the cellular release of CLC. However, the precise role of CLF-1 is unclear. Here, we report that CLF-1, based on its binding site for CLC and on two additional and independent sites for CNTFRα and sorLA, is a key player in CLC and CNTFRα signaling and turnover. The site for CNTFRα enables CLF-1 to promote CLC:CNTFRα complex formation and signaling. The second site establishes a link between the endocytic receptor sorLA and the tripartite CLC:CLF-1:CNTFRα complex and allows sorLA to downregulate the CNTFRα pool in stimulated cells. Finally, sorLA may bind and concentrate the tripartite soluble CLC:CLF-1:CNTFRα complex on cell membranes and thus facilitate its signaling through gp130/LIFRβ. PMID:26858303

  10. Binding of ATP to the progesterone receptor.

    PubMed Central

    Moudgil, V K; Toft, D O

    1975-01-01

    The possible interaction of progesterone--receptor complexes with nucleotides was tested by affinity chromatography. The cytosol progesterone receptor from hen oviduct was partially purified by ammonium sulfate precipitation before use. When progesterone was bound to the receptor, the resulting complex could be selectively adsorbed onto columns of ATP-Sepharose. This interaction was reversible and of an ionic nature since it could be disrupted by high-salt conditions. A competitive binding assay was used to test the specificity of receptor binding to several other nucleotides, including ADP, AMP, and cAMP. A clear specificity for binding ATP was evident from these studies. When ATP was added to receptor preparations, the nucleotide did not affect the sedimentation properties or hormone binding characteristics of the receptor. Although the function of ATP remains unknown, these studies indicate a role of this nucleotide in some aspect of hormone receptor activity. PMID:165493

  11. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family.

    PubMed

    Nilsson, Stefan K; Lookene, Aivar; Beckstead, Jennifer A; Gliemann, Jørgen; Ryan, Robert O; Olivecrona, Gunilla

    2007-03-27

    Apolipoprotein A-V is a potent modulator of plasma triacylglycerol levels. To investigate the molecular basis for this phenomenon we explored the ability of apolipoprotein A-V, in most experiments complexed to disks of dimyristoylphosphatidylcholine, to interact with two members of the low density lipoprotein receptor family, the low density lipoprotein receptor-related protein and the mosaic type-1 receptor, SorLA. Experiments using surface plasmon resonance showed specific binding of both free and lipid-bound apolipoprotein A-V to both receptors. The binding was calcium dependent and was inhibited by the receptor associated protein, a known ligand for members of the low density lipoprotein receptor family. Preincubation with heparin decreased the receptor binding of apolipoprotein A-V, indicating that overlap exists between the recognition sites for these receptors and for heparin. A double mutant, apolipoprotein A-V (Arg210Glu/Lys211Gln), showed decreased binding to heparin and decreased ability to bind the low density lipoprotein receptor-related protein. Association of apolipoprotein A-V with the low density lipoprotein receptor-related protein or SorLA resulted in enhanced binding of human chylomicrons to receptor-covered sensor chips. Our results indicate that apolipoprotein A-V may influence plasma lipid homeostasis by enhancing receptor-mediated endocytosis of triacylglycerol-rich lipoproteins. PMID:17326667

  12. Binding of the Ah receptor to receptor binding factors in chromatin.

    PubMed

    Dunn, R T; Ruh, T S; Ruh, M F

    1993-03-01

    Dioxin induces biological responses through interaction with a specific intracellular receptor, the Ah receptor, and the subsequent interaction of the Ah receptor with chromatin. We report the binding of the Ah receptor, partially purified from rabbit liver, to receptor binding factors in chromatin. Rabbit liver chromatin proteins (CP) were isolated by adsorption of chromatin to hydroxylapatite followed by sequential extraction with 1-8 M GdnHCl. To assay for receptor binding a portion of each CP fraction was reconstituted to rabbit double-stranded DNA using a reverse gradient dialysis of 7.5 to 0 M GdnHCl. These reconstituted nucleoacidic proteins were then examined for binding to [3H]-2,3,7,8-tetrachlorodibenzo-p-dioxin ([3H]TCDD)-receptor complexes by the streptomycin filter assay. Prior to the binding assay, [3H]TCDD-receptor complexes were partially purified by step elution from DEAE-cellulose columns. CP fractions 2, 5, and 7 were found to bind to the Ah receptor with high affinity. Scatchard analysis yielded Kd values in the nanomolar range. Competition with 2-fold excess unlabeled TCDD-receptor complexes was demonstrated, and binding was reduced markedly when the receptor was prepared in the presence of 10 mM molybdate. Such chromatin receptor binding factors (RBFs) may participate in the interaction of receptor with specific DNA sequences resulting in modulation of specific gene expression. PMID:8384852

  13. The Vps10p-domain receptor family.

    PubMed

    Hermey, Guido

    2009-08-01

    The family of mammalian type-I transmembrane receptors containing a Vps10p domain contains five members, Sortilin, SorCS1, SorCS2, SorCS3, and SorLA. The common characteristic of these receptors is an N-terminal Vps10p domain, which either represents the only module of the luminal/extracellular moiety or is combined with additional domains. Family members play roles in protein transport and signal transduction. The individual receptors bind and internalize a variety of ligands, such as neuropeptides and trophic factors, and Sortilin and SorLA mediate trans-Golgi network-to-endosome sorting. Their prominent neuronal expression, several of the identified ligands, and recent results support the notion that members of this receptor family have important functions in neurogenesis, plasticity-related processes, and functional maintenance of the nervous system. For instance, it has been demonstrated that Sortilin partakes in the transduction of proapoptotic effects, and there is converging biochemical and genetic evidence that implies that SorLA is an Alzheimer's disease risk factor. PMID:19434368

  14. Peptide binding at the GLP-1 receptor.

    PubMed

    Mann, R; Nasr, N; Hadden, D; Sinfield, J; Abidi, F; Al-Sabah, S; de Maturana, R López; Treece-Birch, J; Willshaw, A; Donnelly, D

    2007-08-01

    The receptor for GLP-1 [glucagon-like peptide-1-(7-36)-amide] is a member of the 'Family B' of GPCRs (G-protein-coupled receptors) comprising an extracellular N-terminal domain containing six conserved cysteine residues (the N-domain) and a core domain (or J-domain) comprising the seven transmembrane helices and interconnecting loop regions. According to the two-domain model for peptide binding, the N-domain is primarily responsible for providing most of the peptide binding energy, whereas the core domain is responsible for binding the N-terminal region of the peptide agonists and transmitting the signal to the intracellular G-protein. Two interesting differences between the binding properties of two GLP-1 receptor agonists, GLP-1 and EX-4 (exendin-4), can be observed. First, while GLP-1 requires its full length to maintain high affinity, the eight N-terminal residues of EX-4 can be removed with little reduction in affinity. Secondly, EX-4 (but not GLP-1) can bind to the fully isolated N-domain of the receptor with an affinity matching that of the full-length receptor. In order to better understand these differences, we have studied the interaction between combinations of full-length or truncated ligands with full-length or truncated receptors. PMID:17635131

  15. Collective binding properties of receptor arrays.

    PubMed Central

    Agmon, N; Edelstein, A L

    1997-01-01

    Binding kinetics of receptor arrays can differ dramatically from that of the isolated receptor. We simulate synaptic transmission using a microscopically accurate Brownian dynamics routine. We study the factors governing the rise and decay of the activation probability as a function of the number of transmitter molecules released. Using a realistic receptor array geometry, the simulation reproduces the time course of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated excitatory postsynaptic currents. A consistent interpretation of experimentally observed synaptic currents in terms of rebinding and spatial correlations is discussed. Images FIGURE 1 FIGURE 4 FIGURE 5 PMID:9083663

  16. Stability analysis of the ODE model representation of amyloidogenic processing in Alzheimer's disease in the presence of SORLA.

    PubMed

    Alcantara, Jan Harold M; Lao, Angelyn R; Ruivivar, Leonor A

    2016-04-26

    The proteolytic breakdown of the amyloid precursor protein (APP) by secretases is a complex cellular process that results in the formation of neurotoxic Aβ peptides, causative of neurodegeneration in Alzheimer's disease (AD). Processing involves monomeric and dimeric forms of APP that are transported through distinct cellular compartments where the various secretases reside. Amyloidogenic processing is also influenced by modifiers such as sorting receptor-related protein (SORLA), an inhibitor of APP breakdown and a major AD risk factor. This paper analyzed the temporal behavior of a mathematical model describing APP processing under the influence of SORLA, by performing a stability analysis of the mathematical model. We found one biochemically meaningful equilibrium point ξ. By means of linearization, Hartman-Grobman theorem, and Routh-Hurwitz test, it was shown that ξ is a locally asymptotically stable equilibrium point. The region of attraction of ξ was approximated by using the fluctuation lemma. An immediate consequence of the stability analysis of the reduced system to the temporal behavior of the solutions of the original system was also obtained. The biological implications of these results for the dynamic behavior of the activity of APP and secretases under SORLA's influence were established. PMID:26980455

  17. Follitropin receptors contain cryptic ligand binding sites.

    PubMed

    Lin, Win; Bernard, Michael P; Cao, Donghui; Myers, Rebecca V; Kerrigan, John E; Moyle, William R

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with different regions of an FSHR/LHR chimera having only two unique LHR residues and that binds both hormones with high affinity. hCG and hFSH analogs dock with this receptor chimera in a manner similar to that in which they bind LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  18. Receptor-binding sites: bioinformatic approaches.

    PubMed

    Flower, Darren R

    2006-01-01

    It is increasingly clear that both transient and long-lasting interactions between biomacromolecules and their molecular partners are the most fundamental of all biological mechanisms and lie at the conceptual heart of protein function. In particular, the protein-binding site is the most fascinating and important mechanistic arbiter of protein function. In this review, I examine the nature of protein-binding sites found in both ligand-binding receptors and substrate-binding enzymes. I highlight two important concepts underlying the identification and analysis of binding sites. The first is based on knowledge: when one knows the location of a binding site in one protein, one can "inherit" the site from one protein to another. The second approach involves the a priori prediction of a binding site from a sequence or a structure. The full and complete analysis of binding sites will necessarily involve the full range of informatic techniques ranging from sequence-based bioinformatic analysis through structural bioinformatics to computational chemistry and molecular physics. Integration of both diverse experimental and diverse theoretical approaches is thus a mandatory requirement in the evaluation of binding sites and the binding events that occur within them. PMID:16671408

  19. Stabilized Interleukin-6 receptor binding RNA aptamers

    PubMed Central

    Meyer, Cindy; Berg, Katharina; Eydeler-Haeder, Katja; Lorenzen, Inken; Grötzinger, Joachim; Rose-John, Stefan; Hahn, Ulrich

    2014-01-01

    Interleukin-6 (IL-6) is a multifunctional cytokine that is involved in the progression of various inflammatory diseases, such as rheumatoid arthritis and certain cancers; for example, multiple myeloma or hepatocellular carcinoma. To interfere with IL-6-dependent diseases, targeting IL-6 receptor (IL-6R)-presenting tumor cells using aptamers might be a valuable strategy to broaden established IL-6- or IL-6R-directed treatment regimens. Recently, we reported on the in vitro selection of RNA aptamers binding to the human IL-6 receptor (IL-6R) with nanomolar affinity. One aptamer, namely AIR-3A, was 19 nt in size and able to deliver bulky cargos into IL-6R-presenting cells. As AIR-3A is a natural RNA molecule, its use for in vivo applications might be limited due to its susceptibility to ubiquitous ribonucleases. Aiming at more robust RNA aptamers targeting IL-6R, we now report on the generation of stabilized RNA aptamers for potential in vivo applications. The new 2'-F-modified RNA aptamers bind to IL-6R via its extracellular portion with low nanomolar affinity comparable to the previously identified unmodified counterpart. Aptamers do not interfere with the IL-6 receptor complex formation. The work described here represents one further step to potentially apply stabilized IL-6R-binding RNA aptamers in IL-6R-connected diseases, like multiple myeloma and hepatocellular carcinoma. PMID:24440854

  20. GGA1-mediated endocytic traffic of LR11/SorLA alters APP intracellular distribution and amyloid-β production.

    PubMed

    Herskowitz, Jeremy H; Offe, Katrin; Deshpande, Aniruddha; Kahn, Richard A; Levey, Allan I; Lah, James J

    2012-07-01

    Proteolytic processing of the amyloid-β precursor protein (APP) and generation of amyloid-β peptide (Aβ) are key events in Alzheimer's disease (AD) pathogenesis. Cell biological and genetic evidence has implicated the low-density lipoprotein and sorting receptor LR11/SorLA in AD through mechanisms related to APP and Aβ production. Defining the cellular pathway(s) by which LR11 modulates Aβ production is critical to understanding how changes in LR11 expression affect the development of Aβ pathology in AD progression. We report that the LR11 ectodomain is required for LR11-mediated reduction of Aβ and that mutagenesis of the LR11 Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor (GGA)-binding motif affects the endosomal distribution of LR11, as well as LR11's effects on APP traffic and Aβ production. Targeted small interfering RNA (siRNA) knockdown studies of GGA1, GGA2, and GGA3 indicate a surprising degree of specificity toward GGA1, suggesting that GGA1 is a candidate regulator of LR11 traffic. Additional siRNA knockdown experiments reveal that GGA1 is necessary for both LR11 and β-site APP-cleaving enzyme-1 (BACE1) modulation of APP processing to Aβ. Mutagenesis of BACE1 serine 498 to alanine enhances BACE1 targeting to LR11-positive compartments and nullifies LR11-mediated reduction of Aβ. On basis of these results, we propose that GGA1 facilitates LR11 endocytic traffic and that LR11 modulates Aβ levels by promoting APP traffic to the endocytic recycling compartment. PMID:22621900

  1. SorLA in glia: shared subcellular distribution patterns with caveolin-1.

    PubMed

    Salgado, Iris K; Serrano, Melissa; García, José O; Martínez, Namyr A; Maldonado, Héctor M; Báez-Pagán, Carlos A; Lasalde-Dominicci, José A; Silva, Walter I

    2012-04-01

    SorLA is an established sorting and trafficking protein in neurons with demonstrated relevance to Alzheimer's disease (AD). It shares these roles with the caveolins, markers of membrane rafts microdomains. To further our knowledge on sorLA's expression and traffic, we studied sorLA expression in various cultured glia and its relation to caveolin-1 (cav-1), a caveolar microdomain marker. RT-PCR and immunoblots demonstrated sorLA expression in rat C6 glioma, primary cultures of rat astrocytes (PCRA), and human astrocytoma 1321N1 cells. PCRA were determined to express the highest levels of sorLA's message. Induction of differentiation of C6 cells into an astrocyte-like phenotype led to a significant decrease in sorLA's mRNA and protein expression. A set of complementary experimental approaches establish that sorLA and cav-1 directly or indirectly interact in glia: (1) co-fractionation in light-density membrane raft fractions of rat C6 glioma, PCRA, and human 1321N1 astrocytoma cells; (2) a subcellular co-localization distribution pattern in vesicular perinuclear compartments seen via confocal imaging in C6 and PCRA; (3) additional confocal analysis in C6 cells suggesting that the perinuclear compartments correspond to their co-localization in early endosomes and the trans-Golgi; and; (4) co-immunoprecipitation data strongly supporting their direct or indirect physical interaction. These findings further establish that sorLA is expressed in glia and that it shares its subcellular distribution pattern with cav-1. A direct or indirect cav-1/sorLA interaction could modify the trafficking and sorting functions of sorLA in glia and its proposed neuroprotective role in AD. PMID:22127416

  2. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    SciTech Connect

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  3. Bladder endothelin-1 receptor binding of bosentan and ambrisentan.

    PubMed

    Osano, Ayaka; Yokoyama, Yoshinari; Hayashi, Hideki; Itoh, Kunihiko; Okura, Takashi; Deguchi, Yoshiharu; Ito, Yoshihiko; Yamada, Shizuo

    2014-01-01

    The present study aimed to characterize bladder endothelin-1 (ET-1) receptor binding of clinically used ET-1 receptor antagonists by using [(125)I]ET-1. The inhibition of specific [(125)I]ET-1 binding was measured in the presence of ET-1 and its receptor antagonists. Specific binding of [(125)I]ET-1 in rat bladder was saturable and of high affinity, which characterized selective labeling of bladder ET-1 receptors. ET-1, bosentan, ambrisentan, and CI-1020 inhibited specific [(125)I]ET-1 binding in a concentration-dependent manner at nanomolar ranges of IC50. Nonlinear least squares regression analysis revealed the presence of high- and low-affinity ET-1 receptor sites for ambrisentan and CI-1020. Bosentan and ambrisentan significantly increased the dissociation constant for bladder [(125)I]ET-1 binding without affecting maximal number of binding sites (Bmax). Thus, bosentan and ambrisentan seem to bind to bladder ET-1 receptor in a competitive and reversible manner. Oral administration of bosentan caused a dose-dependent decrease in Bmax for bladder [(125)I]ET-1 binding, suggesting significant binding of bladder ET-1 receptors in vivo. A significant amount of pharmacologically relevant ET-1 receptors may exist in the bladder. These receptors may be implicated in the pathogenesis of lower urinary tract symptoms and may also be promising targets for the development of therapeutic agents. PMID:24389822

  4. NMDA receptor binding in focal epilepsies

    PubMed Central

    McGinnity, C J; Koepp, M J; Hammers, A; Riaño Barros, D A; Pressler, R M; Luthra, S; Jones, P A; Trigg, W; Micallef, C; Symms, M R; Brooks, D J; Duncan, J S

    2015-01-01

    Objective To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [18F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. Methods Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [18F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [18F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. Results Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [18F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [18F]GE-179 VT (−29%; p<0.002). There were no focal abnormalities common to the epilepsy group. Conclusions In patients with focal epilepsies, we detected primarily global increases of [18F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [18F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy. PMID:25991402

  5. Enhanced human receptor binding by H5 haemagglutinins.

    PubMed

    Xiong, Xiaoli; Xiao, Haixia; Martin, Stephen R; Coombs, Peter J; Liu, Junfeng; Collins, Patrick J; Vachieri, Sebastien G; Walker, Philip A; Lin, Yi Pu; McCauley, John W; Gamblin, Steven J; Skehel, John J

    2014-05-01

    Mutant H5N1 influenza viruses have been isolated from humans that have increased human receptor avidity. We have compared the receptor binding properties of these mutants with those of wild-type viruses, and determined the structures of their haemagglutinins in complex with receptor analogues. Mutants from Vietnam bind tighter to human receptor by acquiring basic residues near the receptor binding site. They bind more weakly to avian receptor because they lack specific interactions between Asn-186 and Gln-226. In contrast, a double mutant, Δ133/Ile155Thr, isolated in Egypt has greater avidity for human receptor while retaining wild-type avidity for avian receptor. Despite these increases in human receptor binding, none of the mutants prefers human receptor, unlike aerosol transmissible H5N1 viruses. Nevertheless, mutants with high avidity for both human and avian receptors may be intermediates in the evolution of H5N1 viruses that could infect both humans and poultry. PMID:24889237

  6. Enhanced human receptor binding by H5 haemagglutinins

    PubMed Central

    Xiong, Xiaoli; Xiao, Haixia; Martin, Stephen R.; Coombs, Peter J.; Liu, Junfeng; Collins, Patrick J.; Vachieri, Sebastien G.; Walker, Philip A.; Lin, Yi Pu; McCauley, John W.; Gamblin, Steven J.; Skehel, John J.

    2014-01-01

    Mutant H5N1 influenza viruses have been isolated from humans that have increased human receptor avidity. We have compared the receptor binding properties of these mutants with those of wild-type viruses, and determined the structures of their haemagglutinins in complex with receptor analogues. Mutants from Vietnam bind tighter to human receptor by acquiring basic residues near the receptor binding site. They bind more weakly to avian receptor because they lack specific interactions between Asn-186 and Gln-226. In contrast, a double mutant, Δ133/Ile155Thr, isolated in Egypt has greater avidity for human receptor while retaining wild-type avidity for avian receptor. Despite these increases in human receptor binding, none of the mutants prefers human receptor, unlike aerosol transmissible H5N1 viruses. Nevertheless, mutants with high avidity for both human and avian receptors may be intermediates in the evolution of H5N1 viruses that could infect both humans and poultry. PMID:24889237

  7. Unexpected binding of an octapeptide to the angiotensin II receptor

    SciTech Connect

    Soffer, R.L.; Bandyopadhyay, S.; Rosenberg, E.; Hoeprich, P.; Teitelbaum, A.; Brunck, T.; Colby, C.B.; Gloff, C.

    1987-12-01

    An octapeptide, TBI-22 (Lys-Gly-Val-Tyr-Ile, His-Ala-Leu), inhibited binding of angiotensin II by a solubilized angiotensin receptor partially purified from rabbit liver. This inhibition appears to result from competition for binding to the same receptor. Radioiodinated TBI-22, like angiotensin II, bound to the solubilized receptor with an affinity such that the binding was inhibited 50% by unlabeled TBI-22 or angiotensin II at nanomolar concentrations. The binding reaction, like that for angiotensin II, required p-chloromercuriphenylsulfonic acid and was reversed in the presence of dithiothreitol. TBI-22 and angiotensin II share the sequence Val-Tyr-Ile-His; this tetrapeptide alone, however, did not inhibit binding of angiotensin II. Replacement of the tyrosine residue by aspartic acid in TBI-22 greatly reduced the ability of the peptide to compete with angiotensin II for binding, suggesting an important contribution of this residue to the configuration required for recognition by the receptor.

  8. Characterization of pulmonary sigma receptors by radioligand binding

    PubMed Central

    Lever, John R.; Litton, Tyler P.; Fergason-Cantrell, Emily A.

    2015-01-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [3H](+)-pentazocine reached steady state within 6 h at 37 °C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36 ± 0.04 nM; Bmax 967 ± 11 fmol / mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (−)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [3H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2 min at 25 °C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8 ± 8.3 nM; Bmax 921 ± 228 fmol / mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2 µmol / kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  9. Characterization of pulmonary sigma receptors by radioligand binding.

    PubMed

    Lever, John R; Litton, Tyler P; Fergason-Cantrell, Emily A

    2015-09-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [(3)H](+)-pentazocine reached steady state within 6h at 37°C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36±0.04nM; Bmax 967±11fmol/mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (-)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [(3)H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2min at 25°C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8±8.3nM; Bmax 921±228fmol/mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2μmol/kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  10. Estrophilin immunoreactivity versus estrogen receptor binding activity in meningiomas: evidence for multiple estrogen binding sites

    SciTech Connect

    Lesch, K.P.; Schott, W.; Gross, S.

    1987-09-01

    The existence of estrogen receptors in human meningiomas has long been a controversial issue. This may be explained, in part, by apparent heterogeneity of estrogen binding sites in meningioma tissue. In this study, estrogen receptors were determined in 58 meningiomas with an enzyme immunoassay using monoclonal antibodies against human estrogen receptor protein (estrophilin) and with a sensitive radioligand binding assay using /sup 125/I-labeled estradiol (/sup 125/I-estradiol) as radioligand. Low levels of estrophilin immunoreactivity were found in tumors from 62% of patients, whereas radioligand binding activity was demonstrated in about 46% of the meningiomas examined. In eight (14%) tissue samples multiple binding sites for estradiol were observed. The immunoreactive binding sites correspond to the classical, high affinity estrogen receptors: the Kd for /sup 125/I-estradiol binding to the receptor was approximately 0.2 nM and the binding was specific for estrogens. The second, low affinity class of binding sites considerably influenced measurement of the classical receptor even at low ligand concentrations. The epidemiological and clinical data from patients with meningiomas, and the existence of specific estrogen receptors confirmed by immunochemical detection, may be important factors in a theory of oncogenesis.

  11. Mu opioid receptor binding sites in human brain

    SciTech Connect

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand (/sup 3/H)DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of (/sup 3/H)DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas.

  12. CONTAMINANT INTERACTIONS WITH STEROID RECEPTORS: EVIDENCE FOR RECEPTOR BINDING.

    EPA Science Inventory

    Steroid receptors are important determinants of endocrine disrupter consequences. As the most frequently proposed mechanism of endocrine-disrupting contaminant (EDC) action, steroid receptors are not only targets of natural steroids but are also commonly sites of nonsteroidal com...

  13. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  14. Functional and receptor binding characterization of recombinant murine macrophage inflammatory protein 2: sequence analysis and mutagenesis identify receptor binding epitopes.

    PubMed Central

    Jerva, L. F.; Sullivan, G.; Lolis, E.

    1997-01-01

    Murine macrophage inflammatory protein-2 (MIP-2), a member of the alpha-chemokine family, is one of several proteins secreted by cells in response to lipopolysaccharide. Many of the alpha-chemokines, such as interleukin-8, gro-alpha/MGSA, and neutrophil activating peptide-2 (NAP-2), are associated with neutrophil activation and chemotaxis. We describe the expression, purification, and characterization of murine MIP-2 from Pichia pastoris. Circular dichroism spectroscopy reveals that MIP-2 exhibits a highly ordered secondary structure consistent with the alpha/beta structures of other chemokines. Recombinant MIP-2 is chemotactic for human and murine neutrophils and up-regulates cell surface expression of Mac-1. MIP-2 binds to human and murine neutrophils with dissociation constants of 6.4 nM and 2.9 nM, respectively. We further characterize the binding of MIP-2 to the human types A and B IL-8 receptors and the murine homologue of the IL-8 receptor. MIP-2 displays low-affinity binding to the type A IL-8 receptor (Kd > 120 nM) and high-affinity binding to the type B IL-8 receptor (Kd 5.7 nM) and the murine receptor (Kd 6.8 nM). The three-dimensional structure of IL-8 and sequence analysis of six chemokines (IL-8, gro-alpha, NAP-2, ENA-78, KC, and MIP-2) that display high-affinity binding to the IL-8 type B receptor are used to identify an extended N-terminal surface that interacts with this receptor. Two mutants of MIP-2 establish that this region is also involved in binding and activating the murine homologue of the IL-8 receptor. Differences in the sequence between IL-8 and related chemokines identify a unique hydrophobic/aromatic region surrounded by charged residues that is likely to impart specificity to IL-8 for binding to the type A receptor. PMID:9260277

  15. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding.

    PubMed

    Kim, Felix J; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng; Pasternak, Gavril W

    2010-04-01

    sigma Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned mu opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP gamma S) binding, by sigma(1) receptors. sigma Ligands do not compete opioid receptor binding. Administered alone, neither sigma agonists nor antagonists significantly stimulated [(35)S]GTP gamma S binding. Yet sigma receptor selective antagonists, but not agonists, shifted the EC(50) of opioid-induced stimulation of [(35)S]GTP gamma S binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [(35)S]GTP gamma S binding. sigma(1) Receptors physically associate with mu opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, sigma receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of sigma(1) in BE(2)-C cells also potentiated mu opioid-induced stimulation of [(35)S]GTP gamma S binding. These modulatory actions are not limited to mu and delta opioid receptors. In mouse brain membrane preparations, sigma(1)-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [(35)S]GTP gamma S binding, suggesting a broader role for sigma receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  16. σ1 Receptor Modulation of G-Protein-Coupled Receptor Signaling: Potentiation of Opioid Transduction Independent from Receptor Binding

    PubMed Central

    Kim, Felix J.; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng

    2010-01-01

    σ Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned μ opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding, by σ1 receptors. σ Ligands do not compete opioid receptor binding. Administered alone, neither σ agonists nor antagonists significantly stimulated [35S]GTPγS binding. Yet σ receptor selective antagonists, but not agonists, shifted the EC50 of opioid-induced stimulation of [35S]GTPγS binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [35S]GTPγS binding. σ1 Receptors physically associate with μ opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, σ receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of σ1 in BE(2)-C cells also potentiated μ opioid-induced stimulation of [35S]GTPγS binding. These modulatory actions are not limited to μ and δ opioid receptors. In mouse brain membrane preparations, σ1-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [35S]GTPγS binding, suggesting a broader role for σ receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  17. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    PubMed Central

    Root-Bernstein, Robert; Podufaly, Abigail; Dillon, Patrick F.

    2014-01-01

    Rationale: Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. Objectives: To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. Methods: Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. Measurements: Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. Main Results: Estradiol bound to INS with a Kd of 12 × 10−9 M and to the IR with a Kd of 24 × 10−9 M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. Conclusion: Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance. PMID:25101056

  18. Effect of desipramine on dopamine receptor binding in vivo

    SciTech Connect

    Suhara, Tetsuya Jikei Univ., Tokyo ); Inoue, Osamu; Kobayasi, Kaoru )

    1990-01-01

    Effect of desipramine on the in vivo binding of {sup 3}H-SCH23390 and {sup 3}H-N-methylspiperone ({sup 3}H-NMSP) in mouse striatum was studied. The ratio of radioactivity in the striatum to that in the cerebellum at 15 min after i.v. injection of {sup 3}H-SCH23390 or 45 min after injection of {sup 3}H-NMSP were used as indices of dopamine D1 or D2 receptor binding in vivo, respectively. In vivo binding of D1 and D2 receptors was decreased in a dose-dependent manner by acute treatment with desipramine (DMI). A saturation experiment suggested that the DMI-induced reduction in the binding was mainly due to the decrease in the affinity of both receptors. No direct interactions between the dopamine receptors and DMI were observed in vitro by the addition of 1 mM of DMI into striatal homogenate. Other antidepressants such as imipramine, clomipramine, maprotiline and mianserin also decreased the binding of dopamine D1 and D2 receptors. The results indicated an important role of dopamine receptors in the pharmacological effect of antidepressants.

  19. Extra-helical binding site of a glucagon receptor antagonist.

    PubMed

    Jazayeri, Ali; Doré, Andrew S; Lamb, Daniel; Krishnamurthy, Harini; Southall, Stacey M; Baig, Asma H; Bortolato, Andrea; Koglin, Markus; Robertson, Nathan J; Errey, James C; Andrews, Stephen P; Teobald, Iryna; Brown, Alastair J H; Cooke, Robert M; Weir, Malcolm; Marshall, Fiona H

    2016-05-12

    Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors. PMID:27111510

  20. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding

    PubMed Central

    Spiga, Francesca; Knight, David M; Droste, Susanne K; Conway-Campbell, Becky; Kershaw, Yvonne; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Peeters, Bernard WMM; Lightman, Stafford L

    2016-01-01

    The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3–300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3–300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic–pituitary–adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic–pituitary–adrenal axis. PMID:20093322

  1. Rapid screening of environmental chemicals for estrogen receptor binding capacity.

    PubMed Central

    Bolger, R; Wiese, T E; Ervin, K; Nestich, S; Checovich, W

    1998-01-01

    Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemicals. While it is clear that in vivo methods will be required to identify adverse effects produced by these chemicals, in vitro assays can define particular mechanisms of action and have the potential to be employed as rapid and low-cost screens for use in large scale EDC screening programs. Traditional estrogen receptor (ER) binding assays are useful for characterizing a chemical's potential to be an estrogen-acting EDC, but they involve displacement of a radioactive ligand from crude receptor preparations at low temperatures. The usefulness of these assays for realistically determining the ER binding interactions of weakly estrogenic environmental and industrial compounds that have low aqueous solubility is unclear. In this report, we present a novel fluorescence polarization (FP) method that measures the capacity of a competitor chemical to displace a high affinity fluorescent ligand from purified, recombinant human ER-[alpha] at room temperature. The ER-[alpha] binding interactions generated for 15 natural and synthetic compounds were found to be similar to those determined with traditional receptor binding assays. We also discuss the potential to employ this FP technology to binding studies involving ER-ss and other receptors. Thus, the assay introduced in this study is a nonradioactive receptor binding method that shows promise as a high throughput screening method for large-scale testing of environmental and industrial chemicals for ER binding interactions. Images Figure 2 Figure 3 Figure 4 PMID:9721254

  2. Structural Allostery and Binding of the Transferring Receptor Complex

    SciTech Connect

    Xu,G.; Liu, R.; Zak, O.; Aisen, P.; Chance, M.

    2005-01-01

    The structural allostery and binding interface for the human serum transferrin (Tf){center_dot}transferrin receptor (TfR) complex were identified using radiolytic footprinting and mass spectrometry. We have determined previously that the transferrin C-lobe binds to the receptor helical domain. In this study we examined the binding interactions of full-length transferrin with receptor and compared these data with a model of the complex derived from cryoelectron microscopy (cryo-EM) reconstructions. The footprinting results provide the following novel conclusions. First, we report characteristic oxidations of acidic residues in the C-lobe of native Tf and basic residues in the helical domain of TfR that were suppressed as a function of complex formation; this confirms ionic interactions between these protein segments as predicted by cryo-EM data and demonstrates a novel method for detecting ion pair interactions in the formation of macromolecular complexes. Second, the specific side-chain interactions between the C-lobe and N-lobe of transferrin and the corresponding interactions sites on the transferrin receptor predicted from cryo-EM were confirmed in solution. Last, the footprinting data revealed allosteric movements of the iron binding C- and N-lobes of Tf that sequester iron as a function of complex formation; these structural changes promote tighter binding of the metal ion and facilitate efficient ion transport during endocytosis.

  3. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  4. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    SciTech Connect

    Kikuchi, M.; Ishii, S. )

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reaction time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.

  5. Development of a homogeneous binding assay for histamine receptors.

    PubMed

    Crane, Kathy; Shih, Daw-Tsun

    2004-12-01

    Histamine is critically involved in a wide range of physiological and pathological processes through its actions at different receptors. Thus, histamine receptors have been actively pursued as therapeutic targets in the pharmaceutical industry for the treatment of a variety of diseases. There are currently four histamine receptors that have been cloned, all of which are G protein-coupled receptors. Studies from both academia and pharmaceutical companies have identified compounds that modulate the function of specific histamine receptors. These efforts led to the successful introduction of histamine H(1) and H(2) receptor antagonists for the treatment of allergy and excess gastric acid secretion, respectively. Histamine H(3) receptor ligands are currently under investigation for the treatment of obesity and neurological disorders. The recently identified histamine H(4) receptor is preferentially expressed in the immune tissues, suggesting a potential role in normal immune functions and possibly in the pathogenesis of inflammatory diseases. Even with the long history of histamine research and the important applications of histamine receptor ligands, assays to measure the affinity of compounds binding to histamine receptors are still routinely analyzed using a filtration assay, a very low-throughput assay involving washing and filtration steps. This article describes a simple, robust, and homogeneous binding assay based on the scintillation proximity assay (SPA) technology that provides results equivalent to those obtained using the more complex filtration assay. The SPA format is easily adapted to high-throughput screening because it is amenable to automation. In summary, this technique allows high-throughput screening of compounds against multiple histamine receptors and, thus, facilitates drug discovery efforts. PMID:15519569

  6. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands

    PubMed Central

    Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N–H and O–H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure. PMID:27159606

  7. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands.

    PubMed

    Kržan, Mojca; Vianello, Robert; Maršavelski, Aleksandra; Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N-H and O-H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure. PMID:27159606

  8. The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides.

    PubMed

    Zhang, Yanfeng; Varnum, Susan M

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD(50) of ∼1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a "dual receptor" mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro domain. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides in both assays. Interactions with phosphoinositides may facilitate tighter binding between neuronal membranes and BoNT/C. PMID:22120109

  9. A binding question: the evolution of the receptor concept

    PubMed Central

    Maehle, Andreas-Holger

    2009-01-01

    In present-day pharmacology and medicine, it is usually taken for granted that cells contain a host of highly specific receptors. These are defined as proteins on or within the cell that bind with specificity to particular drugs, chemical messenger substances or hormones and mediate their effects on the body. However, it is only relatively recently that the notion of drug-specific receptors has become widely accepted, with considerable doubts being expressed about their existence as late as the 1960s. When did the receptor concept emerge, how did it evolve and why did it take so long to become established? PMID:19837460

  10. Radioligand binding to muscarinic receptors of bovine aortic endothelial cells.

    PubMed

    Brunner, F; Kukovetz, W R

    1991-02-01

    1. Muscarinic receptors on endothelial cells of bovine thoracic aorta were characterized by binding assays in which (-)-[3H]-N-methyl quinuclidinyl benzilate ([3H]-NMeQNB) was used as radioligand. 2. Binding of [3H]-NMeQNB to crude membranes of freshly isolated endothelial cells was atropine-displaceable and of high affinity (KD = 0.48 nM) to a single class of sites (maximum binding capacity: 14 +/- 3 fmol mg-1 protein). Stereospecificity of the binding sites was demonstrated in experiments in which [3H]-NMeQNB binding was inhibited by dexetimide in the nanomolar range (KI = 0.63 nM) and by levetimide, its stereoisomer in the micromolar range (KI = 3.2 microM) (selectivity factor: approximately 5000). 3. Drug competition curves indicated a single class of binding sites for antagonists and the following apparent affinities (KI, nM): methyl atropine: 1.1: 4-diphenylacetoxy N-methyl piperidine methyl bromide (4-DAMP): 3.4; pirenzepine: 16; 11-[2-diethylamino-methyl)-1-piperidinyl- acetyl]-5,11-dihydro-6H-pyrido(2,3-b)1,4-benzodiazepine-6-one (AF-DX 116); 2.500. Competition of acetylcholine with [3H]-NMeQNB was best described by two affinity sites (or states) (KH = 0.82 microM, KL = 1.6 microM). In the presence of guanylimido diphosphate [Gpp(NH)p] (100 microM), acetylcholine affinity (IC50) was slightly, but significantly reduced (factor approximately 4). 4. Binding of [3H]-NMeQNB to freshly harvested intact cells was also atropine-displaceable, stereospecific (selectivity factor: approximately 3500) and of high affinity (KD = 0.35 nM). The maximum binding capacity (9 +/- 2 fmol mg-1 total cell protein) was comparable to that of membranes and corresponded to approximately 900 binding sites per endothelial cell. Binding to enzymatically harvested and cultured endothelial cells, or membranes derived therefrom, showed no atropine-displaceable binding. 5. The results suggest that (1) bovine aortic endothelial cells contain muscarinic binding sites with all necessary

  11. Evidence for a second receptor binding site on human prolactin.

    PubMed

    Goffin, V; Struman, I; Mainfroid, V; Kinet, S; Martial, J A

    1994-12-23

    The existence of a second receptor binding site on human prolactin (hPRL) was investigated by site-directed mutagenesis. First, 12 residues of helices 1 and 3 were mutated to alanine. Since none of the resulting mutants exhibit reduced bioactivity in the Nb2 cell proliferation bioassay, the mutated residues do not appear to be functionally necessary. Next, small residues surrounding the helix 1-helix 3 interface were replaced with Arg and/or Trp, the aim being to sterically hinder the second binding site. Several of these mutants exhibit only weak agonistic properties, supporting our hypothesis that the channel between helices 1 and 3 is involved in a second receptor binding site. We then analyzed the antagonistic and self-antagonistic properties of native hPRL and of several hPRLs analogs altered at binding site 1 or 2. Even at high concentrations (approximately 10 microM), no self-inhibition was observed with native hPRL; site 2 hPRL mutants self-antagonized while site 1 mutants did not. From these data, we propose a model of hPRL-PRL receptor interaction which slightly differs from that proposed earlier for the homologous human growth hormone (hGH) (Fuh, G., Cunningham, B. C., Fukunaga, R., Nagata, S., and Goeddel, D. V., and Well, J. A. (1992) Science 256, 1677-1680). Like hGH, hPRL would bind sequentially to two receptor molecules, first through site 1, then through site 2, but we would expect the two sites of hPRL to display, unlike the two binding sites of hGH, about the same binding affinity, thus preventing self-antagonism at high concentrations. PMID:7798264

  12. Selective binding of estrogen receptor α to ubiquitin chains.

    PubMed

    Pesiri, Valeria; Di Muzio, Elena; Polticelli, Fabio; Acconcia, Filippo

    2016-07-01

    Ubiquitin (Ub)-binding domains (UBDs) noncovalently contact the Ub modification on binding partners. Ub possesses seven lysine (K) residues (i.e., K6, K11, K27, K29, K33, K48, and K63) that can be used to form different chains based on different Ub linkage types (e.g., monoubiquitination/polyubiquitination). Thus, different Ub-based signals exist and are decoded by UBDs. Recently, we have reported the existence of two Ub binding surfaces located within the estrogen receptor α (ERα) protein. We have shown that the leucine (L) 429 and alanine (A) 430 ERα residues direct noncovalent receptor binding to K63-based Ub chains in vitro. However, mutation of L429 and A430 residues did not completely abolish the ability of ERα to associate with Ub in cell lines. Thus, we evaluated the possibility that one or both ERα Ub binding surfaces could non-covalently interact with other Ub chains. Here, we report that ERα selectively binds to specific Ub chains based on different Ub linkages and that ERα monoubiquitination requires non-covalent ERα:Ub binding. Considering the importance of the UBD:Ub interaction in the initiation and progression of many diseases (e.g., cancer), our data provide novel insights into ERα functions that could be relevant to ERα-related diseases. © 2016 IUBMB Life, 68(7):569-577, 2016. PMID:27193211

  13. Structure of the heterodimeric ecdysone receptor DNA-binding complex

    PubMed Central

    Devarakonda, Srikripa; Harp, Joel M.; Kim, Youngchang; Ożyhar, Andrzej; Rastinejad, Fraydoon

    2003-01-01

    Ecdysteroids initiate molting and metamorphosis in insects via a heterodimeric receptor consisting of the ecdysone receptor (EcR) and ultraspiracle (USP). The EcR–USP heterodimer preferentially mediates transcription through highly degenerate pseudo-palindromic response elements, resembling inverted repeats of 5′-AGGTCA-3′ separated by 1 bp (IR-1). The requirement for a heterodimeric arrangement of EcR–USP subunits to bind to a symmetric DNA is unusual within the nuclear receptor superfamily. We describe the 2.24 Å structure of the EcR–USP DNA-binding domain (DBD) heterodimer bound to an idealized IR-1 element. EcR and USP use similar surfaces, and rely on the deformed minor groove of the DNA to establish protein–protein contacts. As retinoid X receptor (RXR) is the mammalian homolog of USP, we also solved the 2.60 Å crystal structure of the EcR–RXR DBD heterodimer on IR-1 and found the dimerization and DNA-binding interfaces to be the same as in the EcR–USP complex. Sequence alignments indicate that the EcR–RXR heterodimer is an important model for understanding how the FXR–RXR heterodimer binds to IR-1 sites. PMID:14592980

  14. RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR

    EPA Science Inventory

    RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR. T R Henry1, J S Denny2 and P K Schmieder2. USEPA, ORD, NHEERL, 1Experimental Toxicology Division and 2Mid-Continent Ecology Division, Duluth, MN, USA.
    The USEPA has been mandated to screen industria...

  15. A tricatecholic receptor for carbohydrate recognition: synthesis and binding studies.

    PubMed

    Cacciarini, Martina; Cordiano, Elisa; Nativi, Cristina; Roelens, Stefano

    2007-05-11

    A new tripodal receptor bearing three catechol subunits on a benzene platform has been synthesized in four steps from 1,3,5-triethylbenzene and pyrogallol. The binding ability of the tricatecholic receptor was investigated toward several monosaccharides in CDCl3, where multiple equilibria were detected, and compared to that of a previously reported trisureidic receptor of analogous structure. Association constants were measured by 1H NMR titrations, and the corresponding affinities were assessed through the BC50 parameter, a binding descriptor univocally defining the affinity of a host for a guest in multi-equilibrium systems. Results show that the tripodal catecholic receptor binds the octyl glycosides with affinities ranging from 0.87 to 5.2 mM and with a 6-fold selectivity factor for the alpha-mannoside over the beta-glucoside. Although the affinity for glycosides was not appreciably improved with respect to the ureidic receptor, a significant change in selectivity was obtained by the H-bonding group replacement. PMID:17444686

  16. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    SciTech Connect

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  17. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    SciTech Connect

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  18. Mutational analysis of hsp90 binding to the progesterone receptor.

    PubMed

    Sullivan, W P; Toft, D O

    1993-09-25

    The 90-kDa heat shock protein, hsp90, is known to associate with steroid receptors that are in the inactive state. While the biochemical function of hsp90 is unclear, this association is believed to be significant because dissociation of hsp90 occurs when receptors are activated by hormone. Complexes between hsp90 and the progesterone receptor can be formed in vitro in rabbit reticulocyte lysate. This has been shown to be an ATP-dependent process, and dissociation of the complex occurs when progesterone is added to the system. We now show that hsp90 synthesized by in vitro translation in reticulocyte lysate can form complexes with progesterone receptor that are sensitive to hormone. This system was used to analyze several mutant forms of hsp90. A series of NH2-terminal deletions showed that amino acids 1-380 can be removed from hsp90 without substantial loss of receptor binding activity. However, several deletions in the COOH-terminal half of hsp90 resulted in a partial or complete loss of this activity. Two regions, amino acids 381-441 and 601-677, appear to be particularly important for receptor binding. These studies describe a convenient and reliable method for the initial screening of hsp90 mutants, and they provide important clues to the identification of domains on hsp90 that interact with other proteins. PMID:8376394

  19. Evidence for an intrinsic binding force between dodecaborate dianions and receptors with hydrophobic binding pockets.

    PubMed

    Warneke, Jonas; Jenne, Carsten; Bernarding, Johannes; Azov, Vladimir A; Plaumann, Markus

    2016-05-01

    A gas phase binding study revealed strong intrinsic intermolecular interactions between dianionic halogenated closo-dodecaborates [B12X12](2-) and several neutral organic receptors. Oxidation of a tetrathiafulvalene host allowed switching between two host-guest binding modes in a supramolecular complex. Complexes of β-cyclodextrin with [B12F12](2-) show remarkable stability in the gas phase and were successfully tested as carriers for the delivery of boron clusters into cancer cells. PMID:27087168

  20. Binding properties of androgen receptors. Evidence for identical receptors in rat testis, epididymis, and prostate.

    PubMed

    Wilson, E M; French, F S

    1976-09-25

    Androgen receptors in crude and partially purified 105,000 X g supernatant fractions from rat testis, epididymis, and prostate were studied in vitro using a charcoal adsorption assay and sucrose gradient centrifugation. Androgen metabolism was eliminated during receptor purification allowing determination of the kinetics of [3H]-androgen-receptor complex formation. In all three tissues, receptors were found to have essentially identical capabilities to bind androgen, with the affinity for [3H] dihydrotestosterone being somewhat higher than for [3H] testosterone. Equilibrium dissociation constants for [3H] dihydrotestosterone and [3H] testosterone (KD = 2 to 5 X 10(-10) M) were estimated from independently determined rates of association (ka congruent to 6 X 10(7) M-1 h-1 for [3H] dihydrotestosterone and 2 X 10(8) M-1 h-1 for [3H] testosterone) and dissociation (t 1/2 congruent to 40 hr for [3H] dihydrotestosterone and 15 h [3H] testosterone). Evaluation of the effect of temperature on androgen receptor binding of [3H]testosterone allowed estimation of several thermodynamic parameters, including activation energies of association and dissociation (delta H congruent to 14 kcal/mol), the apparent free energy (delta G congruent to -12 kcal/mol), enthalpy (delta H congruent to -2.5 kcal/mol), and entropy (delta S congruent to 35 cal col-1 K-1). Optimum receptor binding occurred at a pH of 8. Receptor stability was greatly enhanced when bound with androgen. Receptor specificity for testosterone and dihydrotestosterone was demonstrated by competitive binding assays. The potent synthetic androgen, 7 alpha, 17 alpha-dimethyl-19-nortestosterone, inhibited binding of [3H] testosterone or [3H] dihydrotesterone nearly as well as testosterone and dihydrotestosterone while larger amounts of 5 alpha-androstane-3alpha, 17 beta-diol and nonandrogenic steroids were required. Sedimentation coefficients of androgen receptors in all unfractionated supernatants were 4 and 5 to 8 S

  1. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  2. FOLLITROPIN RECEPTORS CONTAIN CRYPTIC LIGAND BINDING SITES1

    PubMed Central

    Lin, Win; Bernard, Michael P.; Cao, Donghui; Myers, Rebecca V.; Kerrigan, John E.; Moyle, William R.

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with an FSHR/LHR chimera having only two unique LHR residues similar to the manners in which they dock with LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  3. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor*

    PubMed Central

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W.; Kaplan, David L.; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-01-01

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  4. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor.

    PubMed

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W; Kaplan, David L; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-02-26

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  5. Defining a minimal estrogen receptor DNA binding domain.

    PubMed Central

    Mader, S; Chambon, P; White, J H

    1993-01-01

    The estrogen receptor (ER) is a transcriptional regulator which binds to cognate palindromic DNA sequences known as estrogen response elements (EREs). A 66 amino acid core region which contains two zinc fingers and is highly conserved among the nuclear receptors is essential for site specific DNA recognition. However, it remains unclear how many flanking amino acids in addition to the zinc finger core are required for DNA binding. Here, we have characterized the minimal DNA binding region of the human ER by analysing the DNA binding properties of a series of deletion mutants expressed in bacteria. We find that the 66 amino acid zinc finger core of the DBD fails to bind DNA, and that the C-terminal end of the minimal ER DBD required for binding to perfectly palindromic EREs corresponds to the limit of 100% amino acid homology between the chicken and human receptors, which represents the boundary between regions C and D in the ER. Moreover, amino acids of region D up to 30 residues C-terminal to the zinc fingers greatly stabilize DNA binding by the DBD to perfectly palindromic EREs and are absolutely required for formation of gel retardation complexes by the DBD on certain physiological imperfectly palindromic EREs. These results indicate that in addition to the zinc finger core, amino acids C-terminal to the core in regions C and D play a key role in DNA binding by the ER, particularly to imperfectly palindromic response elements. The ER DBD expressed in E. coli binds as a dimer to ERE palindromes in a highly cooperative manner and forms only low levels of monomeric protein-DNA complexes on either palindromic or half-palindromic response elements. Conversion of ER amino acids 222 to 226, which lie within region C, to the corresponding residues of the human RAR alpha abolishes formation of dimeric protein-DNA complexes. Conversely, replacement of the same region of RAR alpha with ER residues 222 to 226 creates a derivative that, unlike the RAR alpha DBD, binds

  6. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  7. Viral receptor-binding site antibodies with diverse germline origins

    PubMed Central

    Schmidt, Aaron G.; Therkelsen, Matthew D.; Stewart, Shaun; Kepler, Thomas B.; Liao, Hua-Xin; Moody, M. Anthony; Haynes, Barton F.; Harrison, Stephen C.

    2015-01-01

    Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by eleven different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B-cell targets. PMID:25959776

  8. Recognition and Accommodation at the Androgen Receptor Coactivator Binding Interface

    PubMed Central

    Hur, Eugene; Pfaff, Samuel J; Payne, E. Sturgis; Grøn, Hanne; Buehrer, Benjamin M

    2004-01-01

    Prostate cancer is a leading killer of men in the industrialized world. Underlying this disease is the aberrant action of the androgen receptor (AR). AR is distinguished from other nuclear receptors in that after hormone binding, it preferentially responds to a specialized set of coactivators bearing aromatic-rich motifs, while responding poorly to coactivators bearing the leucine-rich “NR box” motifs favored by other nuclear receptors. Under normal conditions, interactions with these AR-specific coactivators through aromatic-rich motifs underlie targeted gene transcription. However, during prostate cancer, abnormal association with such coactivators, as well as with coactivators containing canonical leucine-rich motifs, promotes disease progression. To understand the paradox of this unusual selectivity, we have derived a complete set of peptide motifs that interact with AR using phage display. Binding affinities were measured for a selected set of these peptides and their interactions with AR determined by X-ray crystallography. Structures of AR in complex with FxxLF, LxxLL, FxxLW, WxxLF, WxxVW, FxxFF, and FxxYF motifs reveal a changing surface of the AR coactivator binding interface that permits accommodation of both AR-specific aromatic-rich motifs and canonical leucine-rich motifs. Induced fit provides perfect mating of the motifs representing the known family of AR coactivators and suggests a framework for the design of AR coactivator antagonists. PMID:15328534

  9. Viral receptor-binding site antibodies with diverse germline origins.

    PubMed

    Schmidt, Aaron G; Therkelsen, Matthew D; Stewart, Shaun; Kepler, Thomas B; Liao, Hua-Xin; Moody, M Anthony; Haynes, Barton F; Harrison, Stephen C

    2015-05-21

    Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by 11 different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B cell targets. PMID:25959776

  10. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    NASA Astrophysics Data System (ADS)

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.

    1991-05-01

    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  11. Binding Mode Prediction of Evodiamine within Vanilloid Receptor TRPV1

    PubMed Central

    Wang, Zhanli; Sun, Lidan; Yu, Hui; Zhang, Yanhui; Gong, Wuzhuang; Jin, Hongwei; Zhang, Liangren; Liang, Huaping

    2012-01-01

    Accurate assessment of the potential binding mode of drugs is crucial to computer-aided drug design paradigms. It has been reported that evodiamine acts as an agonist of the vanilloid receptor Transient receptor potential vanilloid-1 (TRPV1). However, the precise interaction between evodiamine and TRPV1 was still not fully understood. In this perspective, the homology models of TRPV1 were generated using the crystal structure of the voltage-dependent shaker family K+ channel as a template. We then performed docking and molecular dynamics simulation to gain a better understanding of the probable binding modes of evodiamine within the TRPV1 binding pocket. There are no significant interspecies differences in evodiamine binding in rat, human and rabbit TRPV1 models. Pharmacophore modeling further provided confidence for the validity of the docking studies. This study is the first to shed light on the structural determinants required for the interaction between TRPV1 and evodiamine, and gives new suggestions for the rational design of novel TRPV1 ligands. PMID:22942745

  12. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    SciTech Connect

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  13. Development of Gamma-Emitting Receptor Binding Radiopharmace

    SciTech Connect

    Reba, Richard

    2003-02-20

    The long-term objective is to develop blood-brain barrier (BBB) permeable m2-selective (relative to m1, m3, and m4) receptor-binding radiotracers and utilize these radiotracers for quantifying receptor concentrations obtained from PET or SPECT images of human brain. In initial studies, we concluded that the lipophilicity and high affinity prevented (R,S)-I-QNB from reaching a flow-independent and receptor-dependent state in a reasonable time. Thus, it was clear that (R,S)-I-QNB should be modified. Therefore, during the last portion of this funded research, we proposed that more polar heterocycles should help accomplish that. Since reports of others concluded that radiobromination and radiofluorination of the unactivated phenyl ring is not feasible (Newkome et al,,1982), we, therefore, explored during this grant period a series of analogues of (R)-QNB in which one or both of the six-membered phenyl rings is replaced by a five-membered thienyl (Boulay et al., 1995), or furyl ring. The chemistry specific aims were to synthesize novel compounds designed to be m2-selective mAChR ligands capable of penetrating into the CNS, and develop methods for efficient radiolabeling of promising m2-selective muscarinic ligands. The pharmacology specific aims were to determine the affinity and subtype-selectivity of the novel compounds using competition binding studies with membranes from cells that express each of the five muscarinic receptor subtypes, to determine the ability of the promising non-radioactive compounds and radiolabeled novel compounds to cross the BBB, to determine the biodistribution, in-vivo pharmacokinetics, and in-vitm kinetics of promising m2-selective radioligands and to determine the distribution of receptors for the novel m2-selective radioligands using quantitative autoradiography of rat brain, and compare this distribution to the distribution of known m2-selective compounds.

  14. Predicting Binding to P-Glycoprotein by Flexible Receptor Docking

    PubMed Central

    Dolghih, Elena; Bryant, Clifford; Renslo, Adam R.; Jacobson, Matthew P.

    2011-01-01

    P-glycoprotein (P-gp) is an ATP-dependent transport protein that is selectively expressed at entry points of xenobiotics where, acting as an efflux pump, it prevents their entering sensitive organs. The protein also plays a key role in the absorption and blood-brain barrier penetration of many drugs, while its overexpression in cancer cells has been linked to multidrug resistance in tumors. The recent publication of the mouse P-gp crystal structure revealed a large and hydrophobic binding cavity with no clearly defined sub-sites that supports an “induced-fit” ligand binding model. We employed flexible receptor docking to develop a new prediction algorithm for P-gp binding specificity. We tested the ability of this method to differentiate between binders and nonbinders of P-gp using consistently measured experimental data from P-gp efflux and calcein-inhibition assays. We also subjected the model to a blind test on a series of peptidic cysteine protease inhibitors, confirming the ability to predict compounds more likely to be P-gp substrates. Finally, we used the method to predict cellular metabolites that may be P-gp substrates. Overall, our results suggest that many P-gp substrates bind deeper in the cavity than the cyclic peptide in the crystal structure and that specificity in P-gp is better understood in terms of physicochemical properties of the ligands (and the binding site), rather than being defined by specific sub-sites. PMID:21731480

  15. Midbrain dopamine D2/3 receptor binding in schizophrenia.

    PubMed

    Tuppurainen, Heli; Kuikka, Jyrki T; Laakso, Mikko P; Viinamäki, Heimo; Husso, Minna; Tiihonen, Jari

    2006-09-01

    Several studies suggest that dysregulation of dopaminergic transmission in the midbrain and thalamus may contribute to the symptomatology of schizophrenia. The objective of this study was to examine the putative alteration of dopamine D(2/3 )receptor densities in the thalamus and midbrain of drug-naïve schizophrenic patients. We used the high-affinity single-photon emission tomography ligand [(123)I]epidepride for imaging D(2/3 )receptor binding sites in six neuroleptic-naïve schizophrenic patients, and seven healthy controls. Schizophrenic symptoms were evaluated by the Positive and Negative Syndrome Scale. Significantly lower D(2/3 )values were observed in the midbrain of patients with schizophrenia compared to controls (P = 0.02). No statistically significant difference was observed in the thalamus between two groups. Negative correlations were found between thalamic D(2/3 )receptor binding and general psychopathological schizophrenic symptoms (r from -0.78 to -0.92). These observations implicate altered dopaminergic activity in the midbrain of schizophrenic patients. PMID:16783502

  16. The glycocalyx promotes cooperative binding and clustering of adhesion receptors.

    PubMed

    Xu, Guang-Kui; Qian, Jin; Hu, Jinglei

    2016-05-18

    Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion. PMID:27102288

  17. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  18. Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans.

    PubMed

    Whittle, Andrew J; Jiang, Meizi; Peirce, Vivian; Relat, Joana; Virtue, Sam; Ebinuma, Hiroyuki; Fukamachi, Isamu; Yamaguchi, Takashi; Takahashi, Mao; Murano, Takeyoshi; Tatsuno, Ichiro; Takeuchi, Masahiro; Nakaseko, Chiaki; Jin, Wenlong; Jin, Zhehu; Campbell, Mark; Schneider, Wolfgang J; Vidal-Puig, Antonio; Bujo, Hideaki

    2015-01-01

    Thermogenesis in brown adipose tissue (BAT) is an important component of energy expenditure in mammals. Recent studies have confirmed its presence and metabolic role in humans. Defining the physiological regulation of BAT is therefore of great importance for developing strategies to treat metabolic diseases. Here we show that the soluble form of the low-density lipoprotein receptor relative, LR11/SorLA (sLR11), suppresses thermogenesis in adipose tissue in a cell-autonomous manner. Mice lacking LR11 are protected from diet-induced obesity associated with an increased browning of white adipose tissue and hypermetabolism. Treatment of adipocytes with sLR11 inhibits thermogenesis via the bone morphogenetic protein/TGFβ signalling pathway and reduces Smad phosphorylation. In addition, sLR11 levels in humans are shown to positively correlate with body mass index and adiposity. Given the need for tight regulation of a tissue with a high capacity for energy wastage, we propose that LR11 plays an energy conserving role that is exaggerated in states of obesity. PMID:26584636

  19. Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans

    PubMed Central

    Whittle, Andrew J.; Jiang, Meizi; Peirce, Vivian; Relat, Joana; Virtue, Sam; Ebinuma, Hiroyuki; Fukamachi, Isamu; Yamaguchi, Takashi; Takahashi, Mao; Murano, Takeyoshi; Tatsuno, Ichiro; Takeuchi, Masahiro; Nakaseko, Chiaki; Jin, Wenlong; Jin, Zhehu; Campbell, Mark; Schneider, Wolfgang J.; Vidal-Puig, Antonio; Bujo, Hideaki

    2015-01-01

    Thermogenesis in brown adipose tissue (BAT) is an important component of energy expenditure in mammals. Recent studies have confirmed its presence and metabolic role in humans. Defining the physiological regulation of BAT is therefore of great importance for developing strategies to treat metabolic diseases. Here we show that the soluble form of the low-density lipoprotein receptor relative, LR11/SorLA (sLR11), suppresses thermogenesis in adipose tissue in a cell-autonomous manner. Mice lacking LR11 are protected from diet-induced obesity associated with an increased browning of white adipose tissue and hypermetabolism. Treatment of adipocytes with sLR11 inhibits thermogenesis via the bone morphogenetic protein/TGFβ signalling pathway and reduces Smad phosphorylation. In addition, sLR11 levels in humans are shown to positively correlate with body mass index and adiposity. Given the need for tight regulation of a tissue with a high capacity for energy wastage, we propose that LR11 plays an energy conserving role that is exaggerated in states of obesity. PMID:26584636

  20. Binding of indolylalkylamines at 5-HT2 serotonin receptors: examination of a hydrophobic binding region.

    PubMed

    Glennon, R A; Chaurasia, C; Titeler, M

    1990-10-01

    Taking advantage of a proposed hydrophobic region on 5-HT2 receptors previously identified by radioligand-binding studies utilizing various phenylisopropylamine derivatives, we prepared and evaluated several N1 - and/or C7-alkyl-substituted derivatives of alpha-methyltryptamine in order to improve its affinity and selectivity. It was determined that substitution of an n-propyl or amyl group has similar effect on affinity regardless of location (i.e., N1 or C7). The low affinity of several N1-alkylpyrroleethylamines suggests that the benzene portion of the alpha-methyltryptamines is necessary for significant affinity. Whereas tryptamine derivatives generally display little selectivity for the various populations of 5-HT receptors, N1-n-propyl-5-methoxy-alpha-methyltryptamine (3h) binds with significant affinity (Ki = 12 nM) and selectivity at 5-HT2 receptors relative to 5-HT1A (Ki = 7100 nM), 5-HT1B (Ki = 5000 nM), 5-HT1C (Ki = 120 nM), and 5-HT1D (Ki greater than 10,000 nM) receptors. As a consequence, this is the most 5-HT2-selective indolylalkylamine derivative reported to date. PMID:2213830

  1. Tc-99m-galactosyl-neoglycoalbumin: in vivo characterization of receptor-mediated binding to hepatocyctes

    SciTech Connect

    Vera, D.R.; Krohn, K.A.; Stadalnik, R.C.; Scheibe, P.O.

    1984-04-01

    The biodistribution and kinetics of a receptor-binding hepatic radiopharmaceutical, Tc-99m-galactosyl-neoglycoalbumin (Tc-NGA), were investigated using mammalian and avian models. The radiopharmaceutical exhibited four significant features associated with receptor-mediated binding at the hepatocyte membrane in mammals: (a) high tissue specificity, (b) high molecular specificity, (c) affinity-dependent uptake, and (d) dose-dependent uptake. Diminished hepatic uptake by the avian model illustrated low nonspecific binding. The kinetic sensitivity to ligand-receptor affinity and stoichiometry illustrated the principal feature of receptor-binding radiopharmaceuticals, namely, quantitative assessment of tissue function based upon the biochemical interaction of a ligand and its specific receptor.

  2. 1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity.

    PubMed

    Davis, A Sally; Chertow, Daniel S; Kindrachuk, Jason; Qi, Li; Schwartzman, Louis M; Suzich, Jon; Alsaaty, Sara; Logun, Carolea; Shelhamer, James H; Taubenberger, Jeffery K

    2016-06-01

    The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model. PMID:27062579

  3. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  4. A mutant influenza virus that uses an N1 neuraminidase as the receptor-binding protein.

    PubMed

    Hooper, Kathryn A; Bloom, Jesse D

    2013-12-01

    In the vast majority of influenza A viruses characterized to date, hemagglutinin (HA) is the receptor-binding and fusion protein, whereas neuraminidase (NA) is a receptor-cleaving protein that facilitates viral release but is expendable for entry. However, the NAs of some recent human H3N2 isolates have acquired receptor-binding activity via the mutation D151G, although these isolates also appear to retain the ability to bind receptors via HA. We report here the laboratory generation of a mutation (G147R) that enables an N1 NA to completely co-opt the receptor-binding function normally performed by HA. Viruses with this mutant NA grow to high titers even in the presence of extensive mutations to conserved residues in HA's receptor-binding pocket. When the receptor-binding NA is paired with this binding-deficient HA, viral infectivity and red blood cell agglutination are blocked by NA inhibitors. Furthermore, virus-like particles expressing only the receptor-binding NA agglutinate red blood cells in an NA-dependent manner. Although the G147R NA receptor-binding mutant virus that we characterize is a laboratory creation, this same mutation is found in several natural clusters of H1N1 and H5N1 viruses. Our results demonstrate that, at least in tissue culture, influenza virus receptor-binding activity can be entirely shifted from HA to NA. PMID:24027333

  5. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish

    PubMed Central

    Hardison, D. Ransom; Holland, William C.; McCall, Jennifer R.; Bourdelais, Andrea J.; Baden, Daniel G.; Darius, H. Taiana; Chinain, Mireille; Tester, Patricia A.; Shea, Damian; Flores Quintana, Harold A.; Morris, James A.; Litaker, R. Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®- PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®- PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  6. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    PubMed

    Hardison, D Ransom; Holland, William C; McCall, Jennifer R; Bourdelais, Andrea J; Baden, Daniel G; Darius, H Taiana; Chinain, Mireille; Tester, Patricia A; Shea, Damian; Quintana, Harold A Flores; Morris, James A; Litaker, R Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  7. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors.

    PubMed

    Aráoz, Rómulo; Vilariño, Natalia; Botana, Luis M; Molgó, Jordi

    2010-07-01

    Toxic cyanobacterial blooms are a threat to public health because of the capacity of some cyanobacterial species to produce potent hepatotoxins and neurotoxins. Cyanobacterial neurotoxins are involved in the rapid death of wild and domestic animals by targeting voltage gated sodium channels and cholinergic synapses, including the neuromuscular junction. Anatoxin-a and its methylene homologue homoanatoxin-a are potent agonists of nicotinic acetylcholine receptors. Since the structural determination of anatoxin-a, several mass spectrometry-based methods have been developed for detection of anatoxin-a and, later, homoanatoxin-a. Mass spectrometry-based techniques provide accuracy, precision, selectivity, sensitivity, reproducibility, adequate limit of detection, and structural and quantitative information for analyses of cyanobacterial anatoxins from cultured and environmental cyanobacterial samples. However, these physicochemical techniques will only detect known toxins for which toxin standards are commercially available, and they require highly specialized laboratory personnel and expensive equipment. Receptor-based assays are functional methods that are based on the mechanism of action of a class of toxins and are thus, suitable tools for survey of freshwater reservoirs for cyanobacterial anatoxins. The competition between cyanobacterial anatoxins and a labelled ligand for binding to nicotinic acetylcholine receptors is measured radioactively or non-radioactively providing high-throughput screening formats for routine detection of this class of neurotoxins. The mouse bioassay is the method of choice for marine toxin monitoring, but has to be replaced by fully validated functional methods. In this paper we review the ligand-binding assays developed for detection of cyanobacterial and algal neurotoxins targeting the nicotinic acetylcholine receptors and for high-throughput screening of novel nicotinic agents. PMID:20238109

  8. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    EPA Science Inventory

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  9. Persistent Binding of Ligands to the Aryl Hydrocarbon Receptor

    PubMed Central

    Bohonowych, Jessica E.; Denison, Michael S.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxic effects of halogenated aromatic hydrocarbons (HAHs), polycyclic aromatic hydrocarbons (PAHs), and other structurally diverse ligands. While HAHs are several orders of magnitude more potent in producing AhR-dependent biochemical effects than PAHs or other AhR agonists, only the HAHs have been observed to produce AhR-dependent toxicity in vivo. Here we have characterized the dissociation of a prototypical HAH ligand ([3H] 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) and PAH-like ligand ([3H] β-naphthoflavone [βNF]) from the guinea pig, hamster, mouse, and rat hepatic cytosolic AhR in order to elucidate the relationship between the apparent ligand-binding affinities and the divergent potency of these chemicals. Both compounds dissociated very slowly from the AhR with the amount of specific binding remaining at 96 h ranging from 53% to 70% for [3H]TCDD and 26% to 85% for [3H] βNF, depending upon the species examined. The rate of ligand dissociation was unaffected by protein concentration or incubation temperature. Preincubation of cytosol with 2,3,7,8-tetrachlorodibenzofuran, carbaryl, or primaquine, prior to the addition of [3H]TCDD, shifted the apparent IC50 of these compounds as competitive AhR ligands by ∼10- to 50-fold. Our results support the need for reassessment of previous AhR ligand-binding affinity calculations and competitive binding analysis since these measurements are not carried out at equilibrium binding conditions. Our studies suggest that AhR binding affinity/occupancy has little effect on the observed differences in the persistence of gene expression by HAHs and PAHs. PMID:17431010

  10. Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer's disease.

    PubMed

    Schmidt, Vanessa; Baum, Katharina; Lao, Angelyn; Rateitschak, Katja; Schmitz, Yvonne; Teichmann, Anke; Wiesner, Burkhard; Petersen, Claus Munck; Nykjaer, Anders; Wolf, Jana; Wolkenhauer, Olaf; Willnow, Thomas E

    2012-01-01

    The extent of proteolytic processing of the amyloid precursor protein (APP) into neurotoxic amyloid-β (Aβ) peptides is central to the pathology of Alzheimer's disease (AD). Accordingly, modifiers that increase Aβ production rates are risk factors in the sporadic form of AD. In a novel systems biology approach, we combined quantitative biochemical studies with mathematical modelling to establish a kinetic model of amyloidogenic processing, and to evaluate the influence by SORLA/SORL1, an inhibitor of APP processing and important genetic risk factor. Contrary to previous hypotheses, our studies demonstrate that secretases represent allosteric enzymes that require cooperativity by APP oligomerization for efficient processing. Cooperativity enables swift adaptive changes in secretase activity with even small alterations in APP concentration. We also show that SORLA prevents APP oligomerization both in cultured cells and in the brain in vivo, eliminating the preferred form of the substrate and causing secretases to switch to a less efficient non-allosteric mode of action. These data represent the first mathematical description of the contribution of genetic risk factors to AD substantiating the relevance of subtle changes in SORLA levels for amyloidogenic processing as proposed for patients carrying SORL1 risk alleles. PMID:21989385

  11. Fibronectin receptors of mononuclear phagocytes: Binding characteristics and biochemical isolation

    SciTech Connect

    Garcia-Pardo, A.; Ferreira, O.C.; Valinsky, J.; Bianco, C. )

    1989-04-01

    Fibronectin receptors on mononuclear phagocytes are involved in the localization of monocytes at inflammatory sites and in the subsequent expression of macrophage-like phenotypes. In this study, the authors have investigated the hypothesis that preteolytically derived fragments of fibronectin may interfere with binding of fibronectin to monocytes in the extracellular matrix. They report on the reactivity of U937 cells with an 80-kDa tryptic fragment of fibronectin which contains the cell-binding domain but lacks the gelatin/collagen-binding domain. U937 cells attached to surfaces coated with the 80-kDa fragment as well as with intact fibronectin. Preincubation of the cells with the 80-kDa fragment inhibited attachment to both surfaces while intact fibronectin had little or no inhibitory effect. This complex resolved into a single diffuse band of 144 kDa upon reduction. Binding of the protein complex to the affinity column required divalent cations. The complex bound to wheat germ agglutinin and could be specifically eluted by N-acetylglucosamine. Similar cell-surface proteins were isolated from peripheral blood monocytes.

  12. Functional differences between neurotransmitter binding sites of muscle acetylcholine receptors

    PubMed Central

    Nayak, Tapan K.; Bruhova, Iva; Chakraborty, Srirupa; Gupta, Shaweta; Zheng, Wenjun; Auerbach, Anthony

    2014-01-01

    A muscle acetylcholine receptor (AChR) has two neurotransmitter binding sites located in the extracellular domain, at αδ and either αε (adult) or αγ (fetal) subunit interfaces. We used single-channel electrophysiology to measure the effects of mutations of five conserved aromatic residues at each site with regard to their contribution to the difference in free energy of agonist binding to active versus resting receptors (ΔGB1). The two binding sites behave independently in both adult and fetal AChRs. For four different agonists, including ACh and choline, ΔGB1 is ∼−2 kcal/mol more favorable at αγ compared with at αε and αδ. Only three of the aromatics contribute significantly to ΔGB1 at the adult sites (αY190, αY198, and αW149), but all five do so at αγ (as well as αY93 and γW55). γW55 makes a particularly large contribution only at αγ that is coupled energetically to those contributions of some of the α-subunit aromatics. The hydroxyl and benzene groups of loop C residues αY190 and αY198 behave similarly with regard to ΔGB1 at all three kinds of site. ACh binding energies estimated from molecular dynamics simulations are consistent with experimental values from electrophysiology and suggest that the αγ site is more compact, better organized, and less dynamic than αε and αδ. We speculate that the different sensitivities of the fetal αγ site versus the adult αε and αδ sites to choline and ACh are important for the proper maturation and function of the neuromuscular synapse. PMID:25422413

  13. Radioligand binding to muscarinic receptors of bovine aortic endothelial cells.

    PubMed Central

    Brunner, F.; Kukovetz, W. R.

    1991-01-01

    1. Muscarinic receptors on endothelial cells of bovine thoracic aorta were characterized by binding assays in which (-)-[3H]-N-methyl quinuclidinyl benzilate ([3H]-NMeQNB) was used as radioligand. 2. Binding of [3H]-NMeQNB to crude membranes of freshly isolated endothelial cells was atropine-displaceable and of high affinity (KD = 0.48 nM) to a single class of sites (maximum binding capacity: 14 +/- 3 fmol mg-1 protein). Stereospecificity of the binding sites was demonstrated in experiments in which [3H]-NMeQNB binding was inhibited by dexetimide in the nanomolar range (KI = 0.63 nM) and by levetimide, its stereoisomer in the micromolar range (KI = 3.2 microM) (selectivity factor: approximately 5000). 3. Drug competition curves indicated a single class of binding sites for antagonists and the following apparent affinities (KI, nM): methyl atropine: 1.1: 4-diphenylacetoxy N-methyl piperidine methyl bromide (4-DAMP): 3.4; pirenzepine: 16; 11-[2-diethylamino-methyl)-1-piperidinyl- acetyl]-5,11-dihydro-6H-pyrido(2,3-b)1,4-benzodiazepine-6-one (AF-DX 116); 2.500. Competition of acetylcholine with [3H]-NMeQNB was best described by two affinity sites (or states) (KH = 0.82 microM, KL = 1.6 microM). In the presence of guanylimido diphosphate [Gpp(NH)p] (100 microM), acetylcholine affinity (IC50) was slightly, but significantly reduced (factor approximately 4). 4. Binding of [3H]-NMeQNB to freshly harvested intact cells was also atropine-displaceable, stereospecific (selectivity factor: approximately 3500) and of high affinity (KD = 0.35 nM). The maximum binding capacity (9 +/- 2 fmol mg-1 total cell protein) was comparable to that of membranes and corresponded to approximately 900 binding sites per endothelial cell.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2015420

  14. Binding affinity prediction of novel estrogen receptor ligands using receptor-based 3-D QSAR methods.

    PubMed

    Sippl, Wolfgang

    2002-12-01

    We have recently reported the development of a 3-D QSAR model for estrogen receptor ligands showing a significant correlation between calculated molecular interaction fields and experimentally measured binding affinity. The ligand alignment obtained from docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection procedure, a significant and robust model was obtained (q(2)(LOO)=0.921, SDEP=0.345). To further analyze the robustness and the predictivity of the established model several recently developed estrogen receptor ligands were selected as external test set. An excellent agreement between predicted and experimental binding data was obtained indicated by an external SDEP of 0.531. Two other traditionally used prediction techniques were applied in order to check the performance of the receptor-based 3-D QSAR procedure. The interaction energies calculated on the basis of receptor-ligand complexes were correlated with experimentally observed affinities. Also ligand-based 3-D QSAR models were generated using program FlexS. The interaction energy-based model, as well as the ligand-based 3-D QSAR models yielded models with lower predictivity. The comparison with the interaction energy-based model and with the ligand-based 3-D QSAR models, respectively, indicates that the combination of receptor-based and 3-D QSAR methods is able to improve the quality of prediction. PMID:12413831

  15. Estrogen receptor transcription and transactivation: Structure-function relationship in DNA- and ligand-binding domains of estrogen receptors

    PubMed Central

    Ruff, Marc; Gangloff, Monique; Marie Wurtz, Jean; Moras, Dino

    2000-01-01

    Estrogen receptors are members of the nuclear receptor steroid family that exhibit specific structural features, ligand-binding domain sequence identity and dimeric interactions, that single them out. The crystal structures of their DNA-binding domains give some insight into how nuclear receptors discriminate between DNA response elements. The various ligand-binding domain crystal structures of the two known estrogen receptor isotypes (α and β) allow one to interpret ligand specificity and reveal the interactions responsible for stabilizing the activation helix H12 in the agonist and antagonist positions. PMID:11250728

  16. Muscarinic acetylcholine receptors: location of the ligand binding site

    SciTech Connect

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-05-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, /sup 3/H-propylbenzilycholine mustard aziridinium ion (/sup 3/H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that /sup 3/H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin.

  17. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    SciTech Connect

    Johns, Douglas G. . E-mail: Douglas.G.Johns@gsk.com; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-06-22

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [{sup 125}I]-ANP from NPR-C with pM-to-nM K {sub i} values. DNP displaced [{sup 125}I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K {sub i} > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.

  18. Differential estrogen receptor binding of estrogenic substances: a species comparison.

    PubMed

    Matthews, J; Celius, T; Halgren, R; Zacharewski, T

    2000-11-15

    The study investigated the ability of 34 natural and synthetic chemicals to compete with [3H]17beta-estradiol (E2) for binding to bacterially expressed glutathione-S-transferase (GST)-estrogen receptors (ER) fusion proteins from five different species. Fusion proteins consisted of the ER D, E and F domains of human alpha (GST-hERalphadef), mouse alpha (GST-mERalphadef), chicken (GST-cERdef), green anole (GST-aERdef) and rainbow trout ERs (GST-rtERdef). All five fusion proteins displayed high affinity for E2 with dissociation constants (K(d)) ranging from 0.3 to 0.9 nM. Although, the fusion proteins exhibited similar binding preferences and binding affinities for many of the chemicals, several differences were observed. For example, alpha-zearalenol bound with greater affinity to GST-rtERdef than E2, which was in contrast to other GST-ERdef fusion proteins examined. Coumestrol, genistein and naringenin bound with higher affinity to the GST-aERdef, than to the other GST-ERdef fusion proteins. Many of the industrial chemicals examined preferentially bound to GST-rtERdef. Bisphenol A, 4-t-octylphenol and o,p' DDT bound with approximately a ten-fold greater affinity to GST-rtERdef than to other GST-ERdefs. Methoxychlor, p,p'-DDT, o,p'-DDE, p,p'-DDE, alpha-endosulfan and dieldrin weakly bound to the ERs from the human, mouse, chicken and green anole. In contrast, these compounds completely displaced [3H]E2 from GST-rtERdef. These results demonstrate that ERs from different species exhibit differential ligand preferences and relative binding affinities for estrogenic compounds and that these differences may be due to the variability in the amino acid sequence within their respective ER ligand binding domains. PMID:11162928

  19. Substitution of synthetic chimpanzee androgen receptor for human androgen receptor in competitive binding and transcriptional activation assays for EDC screening

    EPA Science Inventory

    The potential effect of receptor-mediated endocrine modulators across species is of increasing concern. In attempts to address these concerns we are developing androgen and estrogen receptor binding assays using recombinant hormone receptors from a number of species across differ...

  20. The opioid receptor selectivity for trimebutine in isolated tissues experiments and receptor binding studies.

    PubMed

    Kaneto, H; Takahashi, M; Watanabe, J

    1990-07-01

    Differences of affinity to and selectivity for trimebutine between peripheral and central opioid receptors have been investigated. Trimebutine inhibited electrically induced contraction of guinea-pig ileum (GPI) and mouse vas deferens (MVD) but not of rabbit vas deferens, and the inhibition was antagonized by naloxone and, to lesser extent, by nor-binaltorphimine (nor-BNI). The pA2 values for morphine and trimebutine with naloxone were higher than the values for these compounds with nor-BNI in both GPI and MVD preparations. GPI preparations incubated with a high concentration of morphine or trimebutine developed tolerance; however, there was no cross-tolerance between them, suggesting difference in the underlying mechanisms. In mouse and guinea-pig brain homogenate trimebutine was about 1/13 as potent as morphine to displace the [3H]naloxone binding, while it has no appreciable affinity for kappa-opioid receptors in [3H]U-69593, a selective kappa-receptor agonist. These results suggest that trimebutine, showing its low affinity to opioid receptors, possesses mu-receptor selective properties rather than those of kappa-opioid receptor in the peripheral tissues and in the central brain homogenate. PMID:1963196

  1. Endothelin B receptors on human endothelial and smooth-muscle cells show equivalent binding pharmacology.

    PubMed

    Flynn, M A; Haleen, S J; Welch, K M; Cheng, X M; Reynolds, E E

    1998-07-01

    We have described the pharmacologic profiles of endothelin B receptors in human endothelial cells and vascular and nonvascular smooth-muscle cells. First, by amplifying endothelin B receptor numbers through the use of phosphoramidon and intact cell-binding techniques, we demonstrated the presence of these receptors in human umbilical vein endothelial cells (100% endothelin B receptors), human aortic smooth-muscle cells (22% endothelin B, 78% endothelin A receptors), and human bronchial smooth-muscle cells (55% endothelin B, 45% endothelin A receptors) by using [125I]-endothelin-1 radioligand binding. The typical binding profiles of the endothelin B receptors were established through competition binding curve analysis with endothelin-1, endothelin-3, sarafotoxin 6c, and the endothelin A receptor-selective antagonist BQ-123. In the presence of BQ-123, a diverse group of antagonists, including PD 142893, BQ-788, SB 209670, and Ro 47-0203, were used to probe for binding differences indicative of multiple endothelin B-receptor subtypes. The results indicate a rank order of potency for the antagonists of BQ-788 > SB 209670 > PD 142893 > Ro 47-0203 for each cell line, and that between any of these human cell lines, measurements of [125I]-endothelin-1-binding antagonism for each of the four test compounds differed by less than twofold. Although this study cannot discount the possibility of more than one endothelin B-receptor subtype in humans, it does indicate that these tissues express receptors that show equivalent binding pharmacology. PMID:9676729

  2. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  3. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    SciTech Connect

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark . E-mail: dan@bc.georgetown.edu

    2005-08-15

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.

  4. A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity

    PubMed Central

    Glaser, Laurel; Stevens, James; Zamarin, Dmitriy; Wilson, Ian A.; García-Sastre, Adolfo; Tumpey, Terrence M.; Basler, Christopher F.; Taubenberger, Jeffery K.; Palese, Peter

    2005-01-01

    The receptor binding specificity of influenza viruses may be important for host restriction of human and avian viruses. Here, we show that the hemagglutinin (HA) of the virus that caused the 1918 influenza pandemic has strain-specific differences in its receptor binding specificity. The A/South Carolina/1/18 HA preferentially binds the α2,6 sialic acid (human) cellular receptor, whereas the A/New York/1/18 HA, which differs by only one amino acid, binds both the α2,6 and the α2,3 sialic acid (avian) cellular receptors. Compared to the conserved consensus sequence in the receptor binding site of avian HAs, only a single amino acid at position 190 was changed in the A/New York/1/18 HA. Mutation of this single amino acid back to the avian consensus resulted in a preference for the avian receptor. PMID:16103207

  5. Disentangling Viral Membrane Fusion from Receptor Binding Using Synthetic DNA-Lipid Conjugates.

    PubMed

    Rawle, Robert J; Boxer, Steven G; Kasson, Peter M

    2016-07-12

    Enveloped viruses must bind to a receptor on the host membrane to initiate infection. Membrane fusion is subsequently initiated by a conformational change in the viral fusion protein, triggered by receptor binding, an environmental change, or both. Here, we present a strategy to disentangle the two processes of receptor binding and fusion using synthetic DNA-lipid conjugates to bind enveloped viruses to target membranes in the absence of receptor. This permits direct testing of whether receptor engagement affects the fusion mechanism as well as a comparison of fusion behavior across viruses with different receptor binding specificities. We demonstrate this approach by binding X-31 influenza virus to target vesicles and measuring the rates of individual pH-triggered lipid mixing events using fluorescence microscopy. Influenza lipid mixing kinetics are found to be independent of receptor binding, supporting the common yet previously unproven assumption that receptor binding does not produce any clustering or spatial rearrangement of viral hemagglutinin, which affects the rate-limiting step of pH-triggered fusion. This DNA-lipid tethering strategy should also allow the study of viruses where challenging receptor reconstitution has previously prevented single-virus fusion experiments. PMID:27410740

  6. Receptor Concentration and Diffusivity Control Multivalent Binding of Sv40 to Membrane Bilayers

    PubMed Central

    Szklarczyk, Oliwia M.; González-Segredo, Nélido; Kukura, Philipp; Oppenheim, Ariella; Choquet, Daniel; Sandoghdar, Vahid; Helenius, Ari; Sbalzarini, Ivo F.; Ewers, Helge

    2013-01-01

    Abstract Incoming Simian Virus 40 particles bind to their cellular receptor, the glycolipid GM1, in the plasma membrane and thereby induce membrane deformation beneath the virion leading to endocytosis and infection. Efficient membrane deformation depends on receptor lipid structure and the organization of binding sites on the internalizing particle. To determine the role of receptor diffusion, concentration and the number of receptors required for stable binding in this interaction, we analyze the binding of SV40 to GM1 in supported membrane bilayers by computational modeling based on experimental data. We measure the diffusion rates of SV40 virions in solution by fluorescence correlation spectroscopy and of the receptor in bilayers by single molecule tracking. Quartz-crystal microbalance with dissipation (QCM-D) is used to measure binding of SV40 virus-like particles to bilayers containing the viral receptor GM1. We develop a phenomenological stochastic dynamics model calibrated against this data, and use it to investigate the early events of virus attachment to lipid membranes. Our results indicate that SV40 requires at least 4 attached receptors to achieve stable binding. We moreover find that receptor diffusion is essential for the establishment of stable binding over the physiological range of receptor concentrations and that receptor concentration controls the mode of viral motion on the target membrane. Our results provide quantitative insight into the initial events of virus-host interaction at the nanoscopic level. PMID:24244125

  7. Structure of human Aichi virus and implications for receptor binding.

    PubMed

    Zhu, Ling; Wang, Xiangxi; Ren, Jingshan; Kotecha, Abhay; Walter, Thomas S; Yuan, Shuai; Yamashita, Teruo; Tuthill, Tobias J; Fry, Elizabeth E; Rao, Zihe; Stuart, David I

    2016-01-01

    Aichi virus (AiV), an unusual and poorly characterized picornavirus, classified in the genus Kobuvirus, can cause severe gastroenteritis and deaths in children below the age of five years, especially in developing countries(1,2). The seroprevalence of AiV is approximately 60% in children under the age of ten years and reaches 90% later in life(3,4). There is no available vaccine or effective antiviral treatment. Here, we describe the structure of AiV at 3.7 Å. This first high-resolution structure for a kobuvirus is intermediate between those of the enteroviruses and cardioviruses, with a shallow, narrow depression bounded by the prominent VP0 CD loops (linking the C and D strands of the β-barrel), replacing the depression known as the canyon, frequently the site of receptor attachment in enteroviruses. VP0 is not cleaved to form VP2 and VP4, so the 'VP2' β-barrel structure is complemented with a unique extended structure on the inside of the capsid. On the outer surface, a polyproline helix structure, not seen previously in picornaviruses is present at the C terminus of VP1, a position where integrin binding motifs are found in some other picornaviruses. A peptide corresponding to this polyproline motif somewhat attenuates virus infectivity, presumably blocking host-cell attachment. This may guide cellular receptor identification. PMID:27595320

  8. An aprotinin binding site localized in the hormone binding domain of the estrogen receptor from calf uterus.

    PubMed

    Nigro, V; Medici, N; Abbondanza, C; Minucci, S; Moncharmont, B; Molinari, A M; Puca, G A

    1990-07-31

    It has been proposed that the estrogen receptor bears proteolytic activity responsible for its own transformation. This activity was inhibited by aprotinin. Incubation of transformed ER with aprotinin modified the proteolytic digestion of the hormone binding subunit by proteinase K. The smallest hormone-binding fragment of the ER, obtained by tryptic digestion, was still able to bind to aprotinin. These results suggest that aprotinin interacts with ER and the hormone-binding domain of ER is endowed with a specific aprotinin-binding site. PMID:1696480

  9. THE INFLUENCE OF SERUM BINDING PROTEINS AND CLEARANCE ON THE COMPARATIVE RECEPTOR BINDING POTENCY OF ENDOCRINE ACTIVE COMPOUNDS

    EPA Science Inventory

    THE INFLUENCE OF SERUM BINDING PROTEINS AND CLEARANCE ON THE COMPARATIVE RECEPTOR BINDING POTENCY OF ENDOCRINE ACTIVE COMPOUNDS. JG Teeguarden1 and HA Barton2. 1ENVIRON International, Ruston LA; 2US EPA, ORD, NHEERL, ETD, Pharmacokinetics Branch, RTP, NC.

    One measure of th...

  10. A rapid filtration method for receptor binding: characterization with mu and delta opiate receptors.

    PubMed

    Zadina, J E; Kastin, A J

    1984-12-01

    A commercially available (Skatron) cell harvester was adapted for use in mu (3H-naloxone-labeled) and delta (3H-DADLE-labeled) opiate receptor assays and compared with a widely used conventional manifold for a number of binding characteristics. Whatman GF/B glass fiber filters and the less expensive filters available with the harvester were also compared and produced similar binding characteristics on the harvester and manifold if the harvester filters were used double-ply, and if the rinse time was less than 12.5 sec. Longer rinse times produced lower binding with 2-ply Skatron filters. Kd values, Hill coefficients, and Scatchard plot regression coefficients were very similar for the two filtration devices and filter types. A significantly reduced maximum number of sites (Bmax) was observed after filtration on the harvester, reflecting the smaller filter surface area relative to that of the manifold. The filter surface area on the harvester, nevertheless, is considerably larger than that of other manifolds with microplate spacing. This provides the advantages of rapid filtration with less restriction on tissue concentrations. Specific binding was linear with protein concentration up to at least 800 micrograms protein, which is well within the range of most neurotransmitter and peptide receptor binding studies. At about 1 mg protein the rinse buffer flow was slower due to the high tissue concentration. Although the results of filtration with the harvester and the conventional manifold were similar, the time requirements differed considerably. With the harvester, one experimenter could conduct the filtration process 2-3 times faster than 2 experimenters using the manifold.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6097920

  11. Cycloxaprid insecticide: nicotinic acetylcholine receptor binding site and metabolism.

    PubMed

    Shao, Xusheng; Swenson, Tami L; Casida, John E

    2013-08-21

    Cycloxaprid (CYC) is a novel neonicotinoid prepared from the (nitromethylene)imidazole (NMI) analogue of imidacloprid. In this study we consider whether CYC is active per se or only as a proinsecticide for NMI. The IC50 values (nM) for displacing [(3)H]NMI binding are 43-49 for CYC and 2.3-3.2 for NMI in house fly and honeybee head membranes and 302 and 7.2, respectively, in mouse brain membranes, potency relationships interpreted as partial conversion of some CYC to NMI under the assay conditions. The 6-8-fold difference in toxicity of injected CYC and NMI to house flies is consistent with their relative potencies as in vivo nicotinic acetylcholine receptor (nAChR) inhibitors in brain measured with [(3)H]NMI binding assays. CYC metabolism in mice largely involves cytochrome P450 pathways without NMI as a major intermediate. Metabolites of CYC tentatively assigned are five monohydroxy derivatives and one each of dihydroxy, nitroso, and amino modifications. CYC appears be a proinsecticide, serving as a slow-release reservoir for NMI with selective activity for insect versus mammalian nAChRs. PMID:23889077

  12. A humanized antibody that binds to the interleukin 2 receptor.

    PubMed Central

    Queen, C; Schneider, W P; Selick, H E; Payne, P W; Landolfi, N F; Duncan, J F; Avdalovic, N M; Levitt, M; Junghans, R P; Waldmann, T A

    1989-01-01

    The anti-Tac monoclonal antibody is known to bind to the p55 chain of the human interleukin 2 receptor and to inhibit proliferation of T cells by blocking interleukin 2 binding. However, use of anti-Tac as an immunosuppressant drug would be impaired by the human immune response against this murine antibody. We have therefore constructed a "humanized" antibody by combining the complementarity-determining regions (CDRs) of the anti-Tac antibody with human framework and constant regions. The human framework regions were chosen to maximize homology with the anti-Tac antibody sequence. In addition, a computer model of murine anti-Tac was used to identify several amino acids which, while outside the CDRs, are likely to interact with the CDRs or antigen. These mouse amino acids were also retained in the humanized antibody. The humanized anti-Tac antibody has an affinity for p55 of 3 x 10(9) M-1, about 1/3 that of murine anti-Tac. Images PMID:2513570

  13. A sensitive equilibrium binding assay for soluble beta-adrenergic receptors

    SciTech Connect

    Witkin, K.M.; Harden, T.K.

    1981-01-01

    An equilibrium binding assay has been developed for digitonin-solubilized beta-adrenergic receptors using 125 I-pindolol (IPIN) as a radioligand. Up to 50% of the beta-adrenergic receptors from rat lung membranes could be solubilized using 1% digitonin. Following incubation of soluble fractions with IPIN at 25 degree, protein associated radioactivity was identified by column chromatography using Sephadex G-50. The solubilized receptors bound IPIN with properties similar but not identical to those of the membrane bound receptor. The Kd determined for IPIN binding to soluble receptors was 113 pM while the Kd for membrane associated receptors was 36 pM. The rate constant for association (k1) of IPIN was 0.15x10(9) M-1 for soluble receptors and 2.2x10(9) M-1 min-1 for lung membrane receptors. The rate constant for dissociation (k2) was 0.025 min-1 for soluble receptors and 0.048 min-1 for membrane receptors. Agonists and antagonist of beta-adrenergic receptors inhibited in a stereoselective manner the binding of IPIN to both soluble and membrane bound receptors. The affinities of individual drugs determined for soluble receptors were similar to those determined for membrane receptors. Not only could digitonin-solubilized receptors be identified in soluble preparations from rat lung, but also from rat cerebral cortex and liver, and from L6 muscle, C6 rat glioma, and 1321N1 astrocytoma cell membranes.

  14. Analysis of Influenza Virus Hemagglutinin Receptor Binding Mutants with Limited Receptor Recognition Properties and Conditional Replication Characteristics▿

    PubMed Central

    Bradley, Konrad C.; Galloway, Summer E.; Lasanajak, Yi; Song, Xuezheng; Heimburg-Molinaro, Jamie; Yu, Hai; Chen, Xi; Talekar, Ganesh R.; Smith, David F.; Cummings, Richard D.; Steinhauer, David A.

    2011-01-01

    To examine the range of selective processes that potentially operate when poorly binding influenza viruses adapt to replicate more efficiently in alternative environments, we passaged a virus containing an attenuating mutation in the hemagglutinin (HA) receptor binding site in mice and characterized the resulting mutants with respect to the structural locations of mutations selected, the replication phenotypes of the viruses, and their binding properties on glycan microarrays. The initial attenuated virus had a tyrosine-to-phenylalanine mutation at HA1 position 98 (Y98F), located in the receptor binding pocket, but viruses that were selected contained second-site pseudoreversion mutations in various structural locations that revealed a range of molecular mechanisms for modulating receptor binding that go beyond the scope that is generally mapped using receptor specificity mutants. A comparison of virus titers in the mouse respiratory tract versus MDCK cells in culture showed that the mutants displayed distinctive replication properties depending on the system, but all were less attenuated in mice than the Y98F virus. An analysis of receptor binding properties confirmed that the initial Y98F virus bound poorly to several different species of erythrocytes, while all mutants reacquired various degrees of hemagglutination activity. Interestingly, both the Y98F virus and pseudoreversion mutants were shown to bind very inefficiently to standard glycan microarrays containing an abundance of binding substrates for most influenza viruses that have been characterized to date, provided by the Consortium for Functional Glycomics. The viruses were also examined on a recently developed microarray containing glycans terminating in sialic acid derivatives, and limited binding to a potentially interesting subset of glycans was revealed. The results are discussed with respect to mechanisms for HA-mediated receptor binding, as well as regarding the species of molecules that may act

  15. Substance P Receptor Binding Sites are Expressed by Glia in vivo after Neuronal Injury

    NASA Astrophysics Data System (ADS)

    Mantyh, Patrick W.; Johnson, Donald J.; Boehmer, Christian G.; Catton, Mark D.; Vinters, Harry V.; Maggio, John E.; Too, Heng-Phon; Vigna, Steven R.

    1989-07-01

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, we examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve and tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.

  16. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury

    SciTech Connect

    Mantyh, P.W.; Johnson, D.J.; Boehmer, C.G.; Catton, M.D.; Vinters, H.V.; Maggio, J.E.; Too, Hengphon; Vigna, S.R. )

    1989-07-01

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve and tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.

  17. Plasma binding proteins for platelet-derived growth factor that inhibit its binding to cell-surface receptors.

    PubMed Central

    Raines, E W; Bowen-Pope, D F; Ross, R

    1984-01-01

    Evidence is presented that the binding of platelet-derived growth factor (PDGF) to plasma constituents inhibits the binding of PDGF to its cell-surface mitogen receptor. Approximately equivalent amounts of PDGF-binding activity were found in plasma from a number of different species known by radioreceptor assay to contain PDGF homologues in their clotted blood. Activation of the coagulation cascade did not significantly alter the PDGF-binding activity of the plasma components. Three molecular weight classes of plasma fractions that inhibit PDGF binding to its cell-surface receptor were defined by gel filtration: approximately equal to 40,000, 150,000, and greater than 500,000. Specific binding of 125I-labeled PDGF to the highest molecular weight plasma fraction could also be demonstrated by gel filtration. The binding of PDGF to these plasma components was reversible under conditions of low pH or with guanidine X HCl, and active PDGF could be recovered from the higher molecular weight fractions. Immunologic and functional evidence is presented that the highest molecular weight plasma fraction may be alpha 2-macroglobulin. A model is proposed in which the activity of PDGF released in vivo may be regulated by association with these plasma binding components and by high-affinity binding to cell-surface PDGF receptors. PMID:6203121

  18. Differential effects of exercise on brain opioid receptor binding and activation in rats.

    PubMed

    Arida, Ricardo Mario; Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Cavalheiro, Esper Abrão; Zavala-Tecuapetla, Cecilia; Brand, Serge; Rocha, Luisa

    2015-01-01

    Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short- (acute) or long-term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute-exercise animals and the opposite was found in the chronic-exercise animals. The binding of [(35) S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli. We characterized the binding and G protein activation of mu, kappa, and delta opioid receptors in several brain regions following acute (7 days) and chronic (30 days) exercise. Higher opioid receptor binding was observed in the acute exercise animal group and opposite findings in the chronic exercise group. Higher G protein activation under basal conditions was noted in rats submitted to chronic exercise, as visible in the depicted pseudo-color autoradiograms. PMID:25330347

  19. Competitive inhibition of (TH)dexamethasone binding to mammary glucocorticoid receptor by leupeptin

    SciTech Connect

    Hsieh, L.C.C.; Su, C.; Markland, F.S. Jr.

    1987-03-01

    The inhibitory effect of leupeptin on (TH)dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of (TH)dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of (TH)dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S).

  20. Bioluminescent Ligand-Receptor Binding Assays for Protein or Peptide Hormones.

    PubMed

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    Bioluminescence has been widely used in biomedical research due to its high sensitivity, low background, and broad linear range. In recent studies, we applied bioluminescence to ligand-receptor binding assays for some protein or peptide hormones based on a newly developed small monomeric Nanoluciferase (NanoLuc) reporter that has the so far brightest bioluminescence. The conventional ligand-receptor binding assays rely on radioligands that have drawbacks, such as radioactive hazards and short shelf lives. In contrast, the novel bioluminescent binding assays use the NanoLuc-based protein or peptide tracers that are safe, stable, and ultrasensitive. Thus, the novel bioluminescent ligand-receptor binding assay would be applied to more and more protein or peptide hormones for ligand-receptor interaction studies in future. In the present article, we provided detailed protocols for setting up the novel bioluminescent ligand-receptor binding assays using two representative protein hormones as examples. PMID:27424896

  1. Metal binding sites of the estradiol receptor from calf uterus and their possible role in the regulation of receptor function

    SciTech Connect

    Medici, N.; Minucci, S.; Nigro, V.; Abbondanza, C.; Armetta, I.; Molinari, A.M.; Puca, G.A. )

    1989-01-10

    The existence of putative metal binding sites on the estradiol receptor (ER) molecule from calf uterus was evaluated by immobilizing various divalent metals to iminodiacetate-Sepharose. ER from both crude and highly purified preparations binds to metal-containing adsorbents complexed with Zn(II), Ni(II), Co(II), and Cu(II), but not to those complexed with Fe(II) and Cd(II). Analysis of affinity-labeled ER by ({sup 3}H)tamoxifen aziridine after elution from a column of Zn(II)-charged iminodiacetate-Sepharose showed that ER fragments obtained by extensive trypsinization were also bound. Zn(II) and the same other metals able to bind ER, when immobilized on resins, inhibit the binding of estradiol to the receptor at micromolar concentration. This inhibition is noncompetitive and can be reversed by EDTA. The inhibition of the hormone binding was still present after trypsin treatment of the cytosol, and it was abolished by preincubation with the hormone. Micromolar concentrations of these metals were able to block those chemical-physical changes occurring during the process of ER transformation in vitro. The presence of metal binding sites that modulate the ER activity in the hormone binding domain of ER is speculated. Since progesterone receptor showed the same pattern of binding and elution from metal-containing adsorbents, the presence of metal binding regulatory sites could be a property of all steroid receptors.

  2. Novel bioluminescent receptor-binding assays for peptide hormones: using ghrelin as a model.

    PubMed

    Liu, Yu; Shao, Xiao-Xia; Zhang, Lei; Song, Ge; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2015-10-01

    Peptide hormones perform important biological functions by binding specific cell membrane receptors. For hormone-receptor interaction studies, receptor-binding assays are widely used. However, conventional receptor-binding assays rely on radioactive tracers that have drawbacks. In recent studies, we established novel non-radioactive receptor-binding assays for some recombinant protein hormones based on the ultrasensitive bioluminescence of a newly developed nanoluciferase (NanoLuc) reporter. In the present work, we extended the novel bioluminescent receptor-binding assay to peptide hormones that have small size and can be conveniently prepared by chemical synthesis. Human ghrelin, a 28-amino acid peptide hormone carrying a special O-fatty acid modification, was used as a model. To prepare a bioluminescent ghrelin tracer, a chemically synthesized ghrelin analog with a unique cysteine residue at the C-terminus was site-specifically conjugated with an engineered NanoLuc with a unique exposed cysteine residue at the C-terminus via a reversible disulfide linkage. The NanoLuc-conjugated ghrelin retained high binding affinity with the ghrelin receptor GHSR1a (K d = 1.14 ± 0.13 nM, n = 3) and was able to sensitively monitor the receptor-binding of various GHSR1a ligands. The novel bioluminescent receptor-binding assay will facilitate the interaction studies of ghrelin with its receptor. We also proposed general procedures for convenient conjugation of other peptide hormones with NanoLuc for novel bioluminescent receptor-binding assays. PMID:26002812

  3. Molecular basis of agonist binding to the type A cholecystokinin receptor.

    PubMed

    Miller, Laurence J; Lybrand, Terry P

    2002-12-01

    The receptors for cholecystokinin (CCK) peptides are guanine nucleotide-binding protein-coupled receptors in the rhodopsin/beta-adrenergic receptor family. The molecular basis of natural ligand binding to the type A CCK receptor has been studied using ligand structure-activity series, receptor mutagenesis, and photoaffinity labeling studies. These have focused attention on the extracellular loop and tail domains, with the most direct insights coming from intrinsic photoaffinity labeling studies. A model of the binding of CCK to this receptor is consistent with all these studies. This model places the carboxyl terminus of CCK adjacent to the amino-terminal tail outside of transmembrane segment 1, the mid-region of the peptide adjacent to the third extracellular loop outside of transmembrane segment 7, and includes a charge-charge interaction between peptide residue tyrosine-sulfate 27 and the arginine residue in the second extracellular loop of the receptor in position 197. PMID:12688369

  4. Hemagglutinin Receptor Binding of a Human Isolate of Influenza A(H10N8) Virus

    PubMed Central

    Mansour, Mena; Wohlbold, Teddy J.; Ermler, Megan E.; Hirsh, Ariana; Runstadler, Jonathan A.; Fernandez-Sesma, Ana

    2015-01-01

    Three cases of influenza A(H10N8) virus infection in humans have been reported; 2 of these infected persons died. Characterization of the receptor binding pattern of H10 hemagglutinin from avian and human isolates showed that both interact weakly with human-like receptors and maintain strong affinity for avian-like receptors. PMID:26079843

  5. Hemagglutinin Receptor Binding of a Human Isolate of Influenza A(H10N8) Virus.

    PubMed

    Ramos, Irene; Mansour, Mena; Wohlbold, Teddy J; Ermler, Megan E; Hirsh, Ariana; Runstadler, Jonathan A; Fernandez-Sesma, Ana; Krammer, Florian

    2015-07-01

    Three cases of influenza A(H10N8) virus infection in humans have been reported; 2 of these infected persons died. Characterization of the receptor binding pattern of H10 hemagglutinin from avian and human isolates showed that both interact weakly with human-like receptors and maintain strong affinity for avian-like receptors. PMID:26079843

  6. Aprotinin inhibits the hormone binding of the estrogen receptor from calf uterus.

    PubMed

    Nigro, V; Medici, N; Abbondanza, C; Minucci, S; Molinari, A M; Puca, G A

    1989-11-15

    Micromolar concentrations of the proteinase inhibitor, aprotinin, produced a dose-dependent inhibition in the binding capacity of the estrogen receptor from calf uterus. Aprotinin inhibition was greater at 28 degrees C than at 4 degrees C and only occurred when conditions allowed the receptor transformation. When aprotinin was tested in the presence of transformation inhibitors, its effect was no longer seen. The binding capacity of the highly purified estrogen-binding subunit was similarly inhibited. PMID:2480113

  7. Inhibition by synthetic peptides from human IgG Fc of OKT4 binding and Fc receptor binding

    SciTech Connect

    Gaarde, W.A.; McClurg, M.R.; Hahn, G.S.; Plummer, J.M.

    1986-03-05

    Synthetic peptides from the Fc region of human IgG were tested for the ability to inhibit IgG rosette formation, /sup 125/I-IgG binding to Fc receptors on lymphocytes, and expression of the T4 cell determinant. The Fc/sub ..gamma../ peptides inhibited IgG rosette formation and competitively inhibited both /sup 125/I-IgG binding to Fc receptors and OKT4 binding to the T4 cell determinant. Peptides containing D-amino acids did not inhibit IgG rosettes, OKT4 binding or /sup 125/I-IgG binding. OKT4 binding to T4 on MNC was inhibited by heat aggregated IgG but not by monomeric IgG. OKT3, OKT8 and OKT11 binding to their determinants was not altered by Fc/sub ..gamma../ peptides, aggregated IgG or monomeric IgG. These results suggest that T4 antigen, Fc receptor for IgG and the Fc/sub ..gamma../ peptide binding site are in close proximity on the cell surface and when occupied by their respective ligands may sterically hinder binding to other sites. Alternatively, Fc/sub ..gamma../ peptides may indirectly regulate cell surface expression of T4 and/or Fc receptors for IgG. These Fc/sub ..gamma../ peptides inhibit the MLR, inhibit antigen induced T cell proliferation and reverse animal models of autoimmune disease. The immunoregulatory activities of these peptides may be related to their selective action on T4 helper/inducer lymphocytes expressing Fc receptors.

  8. Molecular Conversion of Muscarinic Acetylcholine Receptor M5 to Muscarinic Toxin 7 (MT7)-Binding Protein

    PubMed Central

    Rondinelli, Sergio; Näreoja, Katja; Näsman, Johnny

    2011-01-01

    Muscarinic toxin 7 (MT7) is a mamba venom peptide that binds selectively to the M1 muscarinic acetylcholine receptor. We have previously shown that the second (ECL2) and third (ECL3) extracellular loops of the M1 receptor are critically involved in binding the peptide. In this study we used a mutagenesis approach on the M5 subtype of the receptor family to find out if this possesses a similar structural architecture in terms of toxin binding as the M1 receptor. An M5 receptor construct (M5-E175Y184E474), mutated at the formerly deciphered critical residues on ECL2 and 3, gained the ability to bind MT7, but with rather low affinity as determined in a functional assay (apparent Ki = 24 nM; apparent Ki for M1 = 0.5 nM). After screening for different domains and residues, we found a specific residue (P179 to L in M5) in the middle portion of ECL2 that was necessary for high affinity binding of MT7 (M5-EL179YE, apparent Ki = 0.5 nM). Mutation of P179 to A confirmed a role for the leucine side chain in the binding of MT7. Together the results reveal new binding interactions between receptors and the MT7 peptide and strengthen the hypothesis that ECL2 sequence is of utmost importance for MT binding to muscarinic receptors. PMID:22174976

  9. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  10. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  11. Apparent dopamine D1 and D2 receptors in the weaver mutant mouse: receptor binding and coupling to adenylyl cyclase.

    PubMed

    Dewar, K M; Paquet, M; Sequeira, A

    1999-01-01

    Weaver mutant mice have a selective degeneration of the nigrostriatal dopamine pathway arising between 7-21 days after birth. The goal of this study was to investigate the effects of this mutation on different parameters of the nigrostriatal and mesolimbic dopamine system: apparent D1 and D2 receptor binding sites as well as their signal transduction pathway. Using quantitative autoradiography of ligands for dopamine D1, D2 receptors and the dopamine uptake site, we found a significant loss in apparent D1 receptor binding sites throughout the neostriatum, significant increase of apparent D2 receptor binding in the dorsal aspect of the neostriatum, and almost complete loss of DA uptake sites in these regions of the weaver mouse. In contrast to the neostriatum, the density of dopamine receptors and uptake sites in the nucleus accumbens of the weaver mouse did not differ from controls. Despite alterations in the binding of apparent D1 and D2 receptors, there was no significant difference in either basal, DA stimulated or GTPgammaS stimulated cAMP production. These findings suggest the down-regulation of apparent D1 receptor binding sites reported in this model, probably does not reflect an important physiological mechanism through which these animals compensate for loss of dopamine innervation. PMID:10443552

  12. Binding of serotonin and N1-benzenesulfonyltryptamine-related analogs at human 5-HT6 serotonin receptors: receptor modeling studies.

    PubMed

    Dukat, Małgorzata; Mosier, Philip D; Kolanos, Renata; Roth, Bryan L; Glennon, Richard A

    2008-02-14

    A population of 100 graphics models of the human 5-HT6 serotonin receptor was constructed based on the structure of bovine rhodopsin. The endogenous tryptamine-based agonist serotonin (5-HT; 1) and the benzenesulfonyl-containing tryptamine-derived 5-HT6 receptor antagonist MS-245 (4a) were automatically docked with each of the 100 receptor models using a genetic algorithm approach. Similar studies were conducted with the more selective 5-HT6 receptor agonist EMDT (5) and optical isomers of EMDT-related analog 8, as well as with optical isomers of MS-245 (4a)-related and benzenesulfonyl-containing pyrrolidine 6 and aminotetralin 7. Although associated with the same general aromatic/hydrophobic binding cluster, 5-HT (1) and MS-245 (4a) were found to preferentially bind with distinct receptor conformations, and did so with different binding orientations (i.e., poses). A 5-HT pose/model was found to be common to EMDT (5) and its analogs, whereas that identified for MS-245 (4a) was found common to benzenesulfonyl-containing compounds. Specific amino acid residues were identified that can participate in binding, and evaluation of a sulfenamide analog of MS-245 indicates for the first time that the presence of the sulfonyl oxygen atoms enhances receptor affinity. The results indicate that the presence or absence of an N1-benzenesulfonyl group is a major determinant of the manner in which tryptamine-related agents bind at 5-HT6 serotonin receptors. PMID:18201064

  13. Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A.

    PubMed

    Strotmeier, Jasmin; Mahrhold, Stefan; Krez, Nadja; Janzen, Constantin; Lou, Jianlong; Marks, James D; Binz, Thomas; Rummel, Andreas

    2014-04-01

    Botulinum neurotoxins (BoNTs) inhibit neurotransmitter release by hydrolysing SNARE proteins. The most important serotype BoNT/A employs the synaptic vesicle glycoprotein 2 (SV2) isoforms A-C as neuronal receptors. Here, we identified their binding site by blocking SV2 interaction using monoclonal antibodies with characterised epitopes within the cell binding domain (HC). The site is located on the backside of the conserved ganglioside binding pocket at the interface of the HCC and HCN subdomains. The dimension of the binding pocket was characterised in detail by site directed mutagenesis allowing the development of potent inhibitors as well as modifying receptor binding properties. PMID:24583011

  14. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay
    Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. Wilson
    U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  15. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY.
    MC Cardon, PC Hartig,LE Gray, Jr. and VS Wilson.
    U.S. EPA, ORD, NHEERL, RTD, Research Triangle Park, NC, USA.
    Typically, in vitro hazard assessments for ...

  16. Detection of persistent organic pollutants binding modes with androgen receptor ligand binding domain by docking and molecular dynamics

    PubMed Central

    2013-01-01

    Background Persistent organic pollutants (POPs) are persistent in the environment after release from industrial compounds, combustion productions or pesticides. The exposure of POPs has been related to various reproductive disturbances, such as reduced semen quality, testicular cancer, and imbalanced sex ratio. Among POPs, dichlorodiphenyldichloroethylene (4,4’-DDE) and polychlorinated biphenyls (PCBs) are the most widespread and well-studied compounds. Recent studies have revealed that 4,4’-DDE is an antagonist of androgen receptor (AR). However, the mechanism of the inhibition remains elusive. CB-153 is the most common congener of PCBs, while the action of CB-153 on AR is still under debate. Results Molecular docking and molecular dynamics (MD) approaches have been employed to study binding modes and inhibition mechanism of 4,4’-DDE and CB-153 against AR ligand binding domain (LBD). Several potential binding sites have been detected and analyzed. One possible binding site is the same binding site of AR natural ligand androgen 5α-dihydrotestosterone (DHT). Another one is on the ligand-dependent transcriptional activation function (AF2) region, which is crucial for the co-activators recruitment. Besides, a novel possible binding site was observed for POPs with low binding free energy with the receptor. Detailed interactions between ligands and the receptor have been represented. The disrupting mechanism of POPs against AR has also been discussed. Conclusions POPs disrupt the function of AR through binding to three possible biding sites on AR/LBD. One of them shares the same binding site of natural ligand of AR. Another one is on AF2 region. The third one is in a cleft near N-terminal of the receptor. Significantly, values of binding free energy of POPs with AR/LBD are comparable to that of natural ligand androgen DHT. PMID:24053684

  17. Impact of D2 Receptor Internalization on Binding Affinity of Neuroimaging Radiotracers

    PubMed Central

    Guo, Ningning; Guo, Wen; Kralikova, Michaela; Jiang, Man; Schieren, Ira; Narendran, Raj; Slifstein, Mark; Abi-Dargham, Anissa; Laruelle, Marc; Javitch, Jonathan A; Rayport, Stephen

    2010-01-01

    Synaptic dopamine (DA) levels seem to affect the in vivo binding of many D2 receptor radioligands. Thus, release of endogenous DA induced by the administration of amphetamine decreases ligand binding, whereas DA depletion increases binding. This is generally thought to be due to competition between endogenous DA and the radioligands for D2 receptors. However, the temporal discrepancy between amphetamine-induced increases in DA as measured by microdialysis, which last on the order of 2 h, and the prolonged decrease in ligand binding, which lasts up to a day, has suggested that agonist-induced D2 receptor internalization may contribute to the sustained decrease in D2 receptor-binding potential seen following a DA surge. To test this hypothesis, we developed an in vitro system showing robust agonist-induced D2 receptor internalization following treatment with the agonist quinpirole. Human embryonic kidney 293 (HEK293) cells were stably co-transfected with human D2 receptor, G-protein-coupled receptor kinase 2 and arrestin 3. Agonist-induced D2 receptor internalization was demonstrated by fluorescence microscopy, flow cytometry, and radioligand competition binding. The binding of seven D2 antagonists and four agonists to the surface and internalized receptors was measured in intact cells. All the imaging ligands bound with high affinity to both surface and internalized D2 receptors. Affinity of most of the ligands to internalized receptors was modestly lower, indicating that internalization would reduce the binding potential measured in imaging studies carried out with these ligands. However, between-ligand differences in the magnitude of the internalization-associated affinity shift only partly accounted for the data obtained in neuroimaging experiments, suggesting the involvement of mechanisms beyond competition and internalization. PMID:19956086

  18. Selective CGRP and adrenomedullin peptide binding by tethered RAMP-calcitonin receptor-like receptor extracellular domain fusion proteins

    PubMed Central

    Moad, Heather E; Pioszak, Augen A

    2013-01-01

    Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are related peptides that are potent vasodilators. The CGRP and AM receptors are heteromeric protein complexes comprised of a shared calcitonin receptor-like receptor (CLR) subunit and a variable receptor activity modifying protein (RAMP) subunit. RAMP1 enables CGRP binding whereas RAMP2 confers AM specificity. How RAMPs determine peptide selectivity is unclear and the receptor stoichiometries are a topic of debate with evidence for 1:1, 2:2, and 2:1 CLR:RAMP stoichiometries. Here, we describe bacterial production of recombinant tethered RAMP-CLR extracellular domain (ECD) fusion proteins and biochemical characterization of their peptide binding properties. Tethering the two ECDs ensures complex stability and enforces defined stoichiometry. The RAMP1-CLR ECD fusion purified as a monomer, whereas the RAMP2-CLR ECD fusion purified as a dimer. Both proteins selectively bound their respective peptides with affinities in the low micromolar range. Truncated CGRP(27-37) and AM(37-52) fragments were identified as the minimal ECD complex binding regions. The CGRP C-terminal amide group contributed to, but was not required for, ECD binding, whereas the AM C-terminal amide group was essential for ECD binding. Alanine-scan experiments identified CGRP residues T30, V32, and F37 and AM residues P43, K46, I47, and Y52 as critical for ECD binding. Our results identify CGRP and AM determinants for receptor ECD complex binding and suggest that the CGRP receptor functions as a 1:1 heterodimer. In contrast, the AM receptor may function as a 2:2 dimer of heterodimers, although our results cannot rule out 2:1 or 1:1 stoichiometries. PMID:24115156

  19. Binding and surface exposure characteristics of the gonococcal transferrin receptor are dependent on both transferrin-binding proteins.

    PubMed Central

    Cornelissen, C N; Sparling, P F

    1996-01-01

    Neisseria gonorrhoeae is capable of iron utilization from human transferrin in a receptor-mediated event. Transferrin-binding protein 1 (Tbp1) and Tbp2 have been implicated in transferrin receptor function, but their specific roles in transferrin binding and transferrin iron utilization have not yet been defined. We utilized specific gonococcal mutants lacking Tbp1 or Tbp2 to assess the relative transferrin-binding properties of each protein independently of the other. The apparent affinities of the wild-type transferrin receptor and of Tbp1 and Tbp2 individually were much higher than previously estimated for the gonococcal receptor and similar to the estimates for the mammalian transferrin receptor. The binding parameters of both of the mutants were distinct from those of the parent, which expressed two transferrin-binding sites. Tbp2 discriminated between ferrated transferrin and apotransferrin, while Tbp1 did not. Results of transferrin-binding affinity purification, and protease accessibility experiments were consistent with the hypothesis that Tbp1 and Tbp2 interact in the wild-type strain, although both proteins were capable of binding to transferrin independently when separated in the mutants. The presence of Tbp1 partially protected Tbp2 from trypsin proteolysis, and Tbp2 also protected Tbp1 from trypsin exposure. Addition of transferrin to wild-type but not mutant cells protected Tbp1 from trypsin but increased the trypsin susceptibility of Tbp2. These observations indicate that Tbp1 and Tbp2 function together in the wild-type strain to evoke binding conformations that are distinct from those expressed by the mutants lacking either protein. PMID:8631722

  20. Binding of polychlorinated biphenyls to the aryl hydrocarbon receptor.

    PubMed Central

    Kafafi, S A; Afeefy, H Y; Ali, A H; Said, H K; Kafafi, A G

    1993-01-01

    A new thermodynamic model for calculating the dissociation constants of complexes formed between the aryl hydrocarbon receptor (AhR) and polychlorinated biphenyls (PCBs) is reported. The free energies of binding of PCBs to AhR are controlled by their lipophilicities, electron affinities, and entropies. The corresponding physicochemical properties of polychlorinated dibenzo-p-dioxins and dibenzofurans also control their interactions with AhR. We present evidence supporting the hypothesis that the majority of PCBs are likely to interact with AhR in their nonplanar conformations. In addition, we demonstrate that the affinities of PCBs for AhR relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin correlate with corresponding toxic equivalency factors in animals. The reported methodology is likely to be applicable to other polyhalogenated and mixed polyhalogenated bi- and terphenyls and related xenobiotics; thus, it could minimize the number of in vivo studies in laboratory animals and facilitate the identification of potentially hazardous aromatic xenobiotics. Images p422-a Figure 2. PMID:8119253

  1. Evidence for a vasopressin receptor-GTP binding protein complex

    SciTech Connect

    Fitzgerald, T.J.; Uhing, R.J.; Exton, J.H.

    1986-05-01

    Plasma membranes from the livers of rats were able to hydrolyze the ..gamma..-phosphate from guanosine-5'-triphosphate (GTP). The rate of GTP hydrolysis could be decreased to 10% of its initial rate by the addition of adenosine-5'-triphosphate with a concomitant decrease in the K/sub m/ for GTP from approx. 10/sup -3/ M to 10/sup -6/ M. The low K/sub m/ GTPase activity was inhibited by the addition of nonhydrolyzable analogs of GTP. In addition, the GTPase activity was stimulated from 10 to 30% over basal by the addition of vasopressin. A dose dependency curve showed that the maximum stimulation was obtained with 10/sup -8/ M vasopressin. Identical results were obtained from plasma membranes that had been solubilized with 1% digitonin. When membranes that had been solubilized in the presence of (Phenylalanyl-3,4,5-/sup 3/H(N))vasopressin were subjected to sucrose gradient centrifugation, the majority of bound (/sup 3/H)vasopressin migrated with an approximate molecular weight of 300,000. Moreover, there was a GTPase activity that migrated with the bound (/sup 3/H)vasopressin. This peak of bound (/sup 3/H)vasopressin was decreased by 90% when the sucrose gradient centrifugation was run in the presence of 10/sup -5/ M guanosine-5'-O-(3-thiotriphosphate). These results support the conclusion that liver plasma membranes contain a GTP-binding protein that can complex with the vasopressin receptor.

  2. Growth hormone receptor/binding protein: Physiology and function

    SciTech Connect

    Herington, A.C.; Ymer, S.I.; Stevenson, J.L.; Roupas, P.

    1994-12-31

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular forms(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and a membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR. 43 refs.

  3. MDM2 binds and inhibits vitamin D receptor

    PubMed Central

    Heyne, Kristina; Heil, Tessa-Carina; Bette, Birgit; Reichrath, Jörg; Roemer, Klaus

    2015-01-01

    The E3 ubiquitin ligase and transcriptional repressor MDM2 is a potent inhibitor of the p53 family of transcription factors and tumor suppressors. Herein, we report that vitamin D receptor (VDR), another transcriptional regulator and probably, tumor suppressor, is also bound and inhibited by MDM2. This interaction was not affected by vitamin D ligand. VDR was ubiquitylated in the cell and its steady-state level was controlled by the proteasome. Strikingly, overproduced MDM2 reduced the level of VDR whereas knockdown of endogenous MDM2 increased the level of VDR. In addition to ubiquitin-marking proteins for degradation, MDM2, once recruited to promoters by DNA-binding interaction partners, can inhibit the transactivation of genes. Transient transfections with a VDR-responsive luciferase reporter revealed that low levels of MDM2 potently suppress VDR-mediated transactivation. Conversely, knockdown of MDM2 resulted in a significant increase of transcript from the CYP24A1 and p21 genes, noted cellular targets of transactivation by liganded VDR. Our findings suggest that MDM2 negatively regulates VDR in some analogy to p53. PMID:25969952

  4. Effects of vitamin B-6 nutrition on benzodiazepine (BDZ) receptor binding in the developing rat brain

    SciTech Connect

    Borek, J.P.; Guilarte, T.R. )

    1990-02-26

    A dietary deficiency of vitamin B-6 promotes seizure activity in neonatal animals and human infants. Previous studied have shown that neonatal vitamin B-6 deprivation results in reduced levels of brain gamma-aminobutyric acid (GABA) and increased binding at the GABA site of the GABA/BDZ receptor complex. Since the GABA and BDZ receptors are allosterically linked, this study was undertaken to determine if vitamin B-6 deprivation had an effect on BDZ receptor binding. Benzodiazepine receptor binding isotherms using {sup 3}H-flunitrazepam as ligand were performed in the presence and absence of 10 {mu}M GABA. The results indicate a significant increase in the binding affinity (Kd) in the presence of GABA in cerebellar membranes from deficient rat pups at 14 days of age with no effect on receptor number (Bmax). By 28 days of age, the increase in Kd was no longer present. No change in Kd or Bmax was observed in cortical tissue from deficient animals at 14 or 28 days of age. Preliminary studies of GABA-enhancement of {sup 3}H-flunitrazepam binding indicate that vitamin B-6 deficiency also induces alterations in the ability of GABA to enhance BZD receptor binding. In summary, these results indicate that the effects of vitamin B-6 deprivation on BDZ receptor binding are region specific and age related.

  5. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    SciTech Connect

    Palacios, J.M.; Chinaglia, G.; Rigo, M.; Ulrich, J.; Probst, A. )

    1991-02-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ({sup 125}I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease.

  6. Stacking interaction and its role in kynurenic acid binding to glutamate ionotropic receptors.

    PubMed

    Zhuravlev, Alexander V; Zakharov, Gennady A; Shchegolev, Boris F; Savvateeva-Popova, Elena V

    2012-05-01

    Stacking interaction is known to play an important role in protein folding, enzyme-substrate and ligand-receptor complex formation. It has been shown to make a contribution into the aromatic antagonists binding with glutamate ionotropic receptors (iGluRs), in particular, the complex of NMDA receptor NR1 subunit with the kynurenic acid (KYNA) derivatives. The specificity of KYNA binding to the glutamate receptors subtypes might partially result from the differences in stacking interaction. We have calculated the optimal geometry and binding energy of KYNA dimers with the four types of aromatic amino acid residues in Rattus and Drosophila ionotropic iGluR subunits. All ab initio quantum chemical calculations were performed taking into account electron correlations at MP2 and MP4 perturbation theory levels. We have also investigated the potential energy surfaces (PES) of stacking and hydrogen bonds (HBs) within the receptor binding site and calculated the free energy of the ligand-receptor complex formation. The energy of stacking interaction depends both on the size of aromatic moieties and the electrostatic effects. The distribution of charges was shown to determine the geometry of polar aromatic ring dimers. Presumably, stacking interaction is important at the first stage of ligand binding when HBs are weak. The freedom of ligand movements and rotation within receptor site provides the precise tuning of the HBs pattern, while the incorrect stacking binding prohibits the ligand-receptor complex formation. PMID:21833825

  7. MS Binding Assays for D1 and D5 Dopamine Receptors.

    PubMed

    Neiens, Patrick; Höfner, Georg; Wanner, Klaus Theodor

    2015-11-01

    MS Binding Assays are a label-free alternative to radioligand binding assays. They provide basically the same capabilities as the latter, but an unlabeled reporter ligand is used instead of a radioligand. The study presented herein describes the development of MS Binding Assays that address D1 and D5 dopamine receptors. A highly sensitive, rapid and robust LC-ESI-MS/MS quantification method for the selective D1 dopamine receptor antagonist SCH23390 ((5R)-8-chloro-3-methyl-5-phenyl-1,2,4,5-tetrahydro-3-benzazepin-7-ol) was established and validated, using its 8-bromo analogue SKF83566 as an internal standard. This quantification method proved to be suitable for the characterization of SCH23390 binding to human D1 and D5 receptors. Following the concept of MS Binding Assays, saturation experiments for D1 and D5 receptors were performed, as well as competition experiments for D1 receptors. The results obtained are in good agreement with results from radioligand binding assays and therefore indicate that the established MS Binding Assays addressing D1 and D5 receptors are well-suited substitutes for radioligand binding assays, the technique that has so far dominated affinity determinations toward these targets. PMID:26332653

  8. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  9. Human myometrial adrenergic receptors during pregnancy: identification of the alpha-adrenergic receptor by (/sup 3/H) dihydroergocryptine binding

    SciTech Connect

    Jacobs, M.M.; Hayashida, D.; Roberts, J.M.

    1985-07-15

    The radioactive alpha-adrenergic antagonist (/sup 3/H) dihydroergocryptine binds to particulate preparations of term pregnant human myometrium in a manner compatible with binding to the alpha-adrenergic receptor (alpha-receptor). (/sup 3/H) Dihydroergocryptine binds with high affinity (KD = 2 nmol/L and low capacity (receptor concentration = 100 fmol/mg of protein). Adrenergic agonists compete for (/sup 3/H) dihydroergocryptine binding sites stereo-selectively ((-)-norepinephrine is 100 times as potent as (+)-norepinephrine) and in a manner compatible with alpha-adrenergic potencies (epinephrine approximately equal to norepinephrine much greater than isoproterenol). Studies in which prazosin, an alpha 1-antagonist, and yohimbine, and alpha 2-antagonist, competed for (/sup 3/H) dihydroergocryptine binding sites in human myometrium indicated that approximately 70% are alpha 2-receptors and that 30% are alpha 1-receptors. (/sup 3/H) dihydroergocryptine binding to human myometrial membrane particulate provides an important tool with which to study the molecular mechanisms of uterine alpha-adrenergic response.

  10. Molecular characterization of the receptor binding structure-activity relationships of influenza B virus hemagglutinin.

    PubMed

    Carbone, V; Kim, H; Huang, J X; Baker, M A; Ong, C; Cooper, M A; Li, J; Rockman, S; Velkov, T

    2013-01-01

    Selectivity of α2,6-linked human-like receptors by B hemagglutinin (HA) is yet to be fully understood. This study integrates binding data with structure-recognition models to examine the impact of regional-specific sequence variations within the receptor-binding pocket on selectivity and structure activity relationships (SAR). The receptor-binding selectivity of influenza B HAs corresponding to either B/Victoria/2/1987 or the B/Yamagata/16/88 lineages was examined using surface plasmon resonance, solid-phase ELISA and gel-capture assays. Our SAR data showed that the presence of asialyl sugar units is the main determinant of receptor preference of α2,6 versus α2,3 receptor binding. Changes to the type of sialyl-glycan linkage present on receptors exhibit only a minor effect upon binding affinity. Homology-based structural models revealed that structural properties within the HA pocket, such as a glyco-conjugate at Asn194 on the 190-helix, sterically interfere with binding to avian receptor analogs by blocking the exit path of the asialyl sugars. Similarly, naturally occurring substitutions in the C-terminal region of the 190-helix and near the N-terminal end of the 140-loop narrows the horizontal borders of the binding pocket, which restricts access of the avian receptor analog LSTa. This study helps bridge the gap between ligand structure and receptor recognition for influenza B HA; and provides a consensus SAR model for the binding of human and avian receptor analogs to influenza B HA. PMID:24020757

  11. Calcitonin receptor binding properties in bone and kidney of the chicken during the oviposition cycle.

    PubMed

    Yasuoka, T; Kawashima, M; Takahashi, T; Tatematsu, N; Tanaka, K

    1998-09-01

    The binding property of calcitonin (CT) in the membrane fraction of calvaria and kidney of egg-laying and nonlaying hens was analyzed using a [125I] CT binding assay system. Binding properties of CT receptors in both tissues satisfy the authentic criteria of a receptor-ligand interaction in terms of specificity, reversibility, and saturation. Scatchard plots revealed a single class of binding sites. Values of the equilibrium dissociation constant (Kd) and binding capacity (Bmax) in laying hens showed a decrease during the period between 3 h before and 2 h after oviposition. No change was observed in nonlaying hens. In vivo administration of 17beta-estradiol or progesterone caused the decrease in Kd and Bmax values. The results suggest that the binding affinity and capacity of the CT receptor in the calvaria and the kidney of the hen may be modulated by the ovarian steroid hormone. PMID:9738513

  12. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  13. Origin and evolution of the ligand-binding ability of nuclear receptors.

    PubMed

    Markov, Gabriel V; Laudet, Vincent

    2011-03-01

    The origin of the ligand-binding ability of nuclear receptors is still a matter of discussion. Current opposing models are the early evolution of an ancestral receptor that would bind a specific ligand with high affinity and the early evolution of an ancestral orphan that was a constitutive transcription factor. Here we review the arguments in favour or against these two hypotheses, and we discuss an alternative possibility that the ancestor was a ligand sensor, which would be able to explain the apparently contradictory data generated in previous models for the evolution of ligand binding in nuclear receptors. PMID:21055443

  14. Coupling the Torpedo Microplate-Receptor Binding Assay with Mass Spectrometry to Detect Cyclic Imine Neurotoxins

    PubMed Central

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi

    2014-01-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  15. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  16. Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin.

    PubMed Central

    Levitz, S M; Tabuni, A

    1991-01-01

    We studied the receptors on human cultured macrophages (MO-M phi) responsible for binding encapsulated and isogenic mutant acapsular strains of Cryptococcus neoformans, and whether such binding leads to a phagocytic event. Both strains required opsonization with complement components in normal human serum in order for binding to occur. Binding of the acapsular, but not the encapsulated, strain led to phagocytosis. MAb directed against any of the three defined complement receptors (CR) on MO-M phi (CR1, CR3, and CR4) profoundly inhibited binding of serum-opsonized encapsulated (and to a lesser extent acapsular) organisms to MO-M phi. Immunofluorescence studies demonstrated migration of CR to the area of the cryptococcal binding site. Trypsin and elastase inhibited binding of encapsulated and, to a lesser extent, acapsular yeasts to MO-M phi. Binding of encapsulated C. neoformans was profoundly inhibited by incubation in the cold or by inhibitors of receptor capping and actin microfilaments. Thus, multiple CR appear to contribute to binding of serum-opsonized encapsulated C. neoformans by MO-M phi. Binding is an energy-dependent process that requires conformational changes in actin yet does not lead to phagocytosis of the organism. In contrast, energy is not required for binding of acapsular yeasts by MO-M phi and binding triggers phagocytosis. Images PMID:1991837

  17. Non-peptide ligand binding to the formyl peptide receptor FPR2--A comparison to peptide ligand binding modes.

    PubMed

    Stepniewski, Tomasz M; Filipek, Slawomir

    2015-07-15

    Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2. PMID:25882522

  18. Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference.

    PubMed

    Wang, Fei; Qi, Jianxun; Bi, Yuhai; Zhang, Wei; Wang, Min; Zhang, Baorong; Wang, Ming; Liu, Jinhua; Yan, Jinghua; Shi, Yi; Gao, George F

    2015-06-12

    The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference. PMID:25940072

  19. Mu receptor binding of some commonly used opioids and their metabolites

    SciTech Connect

    Chen, Zhaorong; Irvine, R.J. ); Somogyi, A.A.; Bochner, F. Royal Adelaide Hospital )

    1991-01-01

    The binding affinity to the {mu} receptor of some opioids chemically related to morphine and some of their metabolites was examined in rat brain homogenates with {sup 3}H-DAMGO. The chemical group at position 6 of the molecule had little effect on binding. Decreasing the length of the alkyl group at position 3 decreased the K{sub i} values (morphine < codeine < ethylmorphine < pholcodine). Analgesics with high clinical potency containing a methoxyl group at position 3 had relatively weak receptor binding, while their O-demethylated metabolites had much stronger binding. Many opioids may exert their pharmacological actions predominantly through metabolites.

  20. Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors.

    PubMed

    Shang, Yi; Yeatman, Holly R; Provasi, Davide; Alt, Andrew; Christopoulos, Arthur; Canals, Meritxell; Filizola, Marta

    2016-05-20

    Available crystal structures of opioid receptors provide a high-resolution picture of ligand binding at the primary ("orthosteric") site, that is, the site targeted by endogenous ligands. Recently, positive allosteric modulators of opioid receptors have also been discovered, but their modes of binding and action remain unknown. Here, we use a metadynamics-based strategy to efficiently sample the binding process of a recently discovered positive allosteric modulator of the δ-opioid receptor, BMS-986187, in the presence of the orthosteric agonist SNC-80, and with the receptor embedded in an explicit lipid-water environment. The dynamics of BMS-986187 were enhanced by biasing the potential acting on the ligand-receptor distance and ligand-receptor interaction contacts. Representative lowest-energy structures from the reconstructed free-energy landscape revealed two alternative ligand binding poses at an allosteric site delineated by transmembrane (TM) helices TM1, TM2, and TM7, with some participation of TM6. Mutations of amino acid residues at these proposed allosteric sites were found to either affect the binding of BMS-986187 or its ability to modulate the affinity and/or efficacy of SNC-80. Taken together, these combined experimental and computational studies provide the first atomic-level insight into the modulation of opioid receptor binding and signaling by allosteric modulators. PMID:26841170

  1. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    SciTech Connect

    Taketazu, F.; Chiba, S.; Shibuya, K.; Kuwaki, T.; Tsumura, H.; Miyazono, K.; Miyagawa, K.; Takaku, F. )

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF binding to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.

  2. Binding-site analysis of opioid receptors using monoclonal anti-idiotypic antibodies

    SciTech Connect

    Conroy, W.G.

    1988-01-01

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG{sub 3}k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of ({sup 3}H)naloxone. The antibody which did not inhibit the binding of ({sup 3}H)naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand, and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG{sub 3}k antibody that blocked the binding of ({sup 3}H)naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form.

  3. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  4. Analyzing machupo virus-receptor binding by molecular dynamics simulations.

    PubMed

    Meyer, Austin G; Sawyer, Sara L; Ellington, Andrew D; Wilke, Claus O

    2014-01-01

    In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein-protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host-virus protein-protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein-protein interactions. PMID:24624315

  5. Metal binding sites of the estradiol receptor from calf uterus and their possible role in the regulation of receptor function.

    PubMed

    Medici, N; Minucci, S; Nigro, V; Abbondanza, C; Armetta, I; Molinari, A M; Puca, G A

    1989-01-10

    The existence of putative metal binding sites on the estradiol receptor (ER) molecule from calf uterus was evaluated by immobilizing various divalent metals to iminodiacetate-Sepharose. ER from both crude and highly purified preparations binds to metal-containing adsorbents complexed with Zn(II), Ni(II), Co(II), and Cu(II), but not to those complexed with Fe(II) and Cd(II). Elution of ER was obtained by chelating agents or by imidazole, thus indicating that histidine residues on the ER molecule are involved in the interaction with the metal. Analysis of affinity-labeled ER by [3H]tamoxifen aziridine after elution from a column of Zn(II)-charged iminodiacetate-Sepharose showed that ER fragments obtained by extensive trypsinization were also bound. Zn(II) and the same other metals able to bind ER, when immobilized on resins, inhibit the binding of estradiol to the receptor at micromolar concentrations. This inhibition is noncompetitive and can be reversed by EDTA. The inhibition of the hormone binding was still present after trypsin treatment of the cytosol, and it was abolished by preincubation with the hormone. Micromolar concentrations of these metals were able to block those chemical-physical changes occurring during the process of ER transformation in vitro. Furthermore, if added to pretransformed ER-hormone complex, they strongly inhibited the binding of the complex to isolated nuclei. The presence of metal binding sites that modulate the ER activity in the hormone binding domain of ER is therefore speculated. Since progesterone receptor showed the same pattern of binding and elution from metal-containing adsorbents, the presence of metal binding regulatory sites could be a property of all steroid receptors. PMID:2706244

  6. Characterization of ( sup 3 H)alprazolam binding to central benzodiazepine receptors

    SciTech Connect

    McCabe, R.T.; Mahan, D.R.; Smith, R.B.; Wamsley, J.K. )

    1990-10-01

    The binding of the triazolobenzodiazepine ({sup 3}H)alprazolam was studied to characterize the in vitro interactions with benzodiazepine receptors in membrane preparations of rat brain. Studies using nonequilibrium and equilibrium binding conditions for ({sup 3}H)alprazolam resulted in high specific to nonspecific (signal to noise) binding ratios. The binding of ({sup 3}H)alprazolam was saturable and specific with a low nanomolar affinity for benzodiazepine receptors in the rat brain. The Kd was 4.6 nM and the Bmax was 2.6 pmol/mg protein. GABA enhanced ({sup 3}H)alprazolam binding while several benzodiazepine receptor ligands were competitive inhibitors of this drug. Compounds that bind to other receptor sites had a very weak or negligible effect on ({sup 3}H)alprazolam binding. Alprazolam, an agent used as an anxiolytic and in the treatment of depression, acts in vitro as a selective and specific ligand for benzodiazepine receptors in the rat brain. The biochemical binding profile does not appear to account for the unique therapeutic properties which distinguish this compound from the other benzodiazepines in its class.

  7. Building a Better Halide Receptor: Optimum Choice of Spacer, Binding Unit, and Halosubstitution.

    PubMed

    Nepal, Binod; Scheiner, Steve

    2016-03-16

    Quantum calculations are used to measure the binding of halides to a number of bipodal dicationic receptors, constructed as a pair of binding units separated by a spacer group. A number of variations are studied. A H atom on each binding unit (imidazolium or triazolium) is replaced by Br or I. Benzene, thiophene, carbazole, and dimethylnaphthalene are considered as spacer groups. Each receptor is paired with halides F(-) , Cl(-) , Br(-) , and I(-) . Substitution with I on the binding unit yields a large enhancement of binding, as much as 13 orders of magnitude; a much smaller increase occurs for substitution with Br. Imidazolium is a more effective binding agent than is triazolium. Benzene and dimethylnaphthalene represent the best spacers, followed by thiophene and carbazole. F(-) binds much more strongly than do the other halides, which obey the order Cl(-) >Br(-) >I(-) . PMID:26676206

  8. Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin.

    PubMed

    Lin, Yi Pu; Xiong, Xiaoli; Wharton, Stephen A; Martin, Stephen R; Coombs, Peter J; Vachieri, Sebastien G; Christodoulou, Evangelos; Walker, Philip A; Liu, Junfeng; Skehel, John J; Gamblin, Steven J; Hay, Alan J; Daniels, Rodney S; McCauley, John W

    2012-12-26

    The hemagglutinin (HA) of influenza A(H3N2) virus responsible for the 1968 influenza pandemic derived from an avian virus. On introduction into humans, its receptor binding properties had changed from a preference for avian receptors (α2,3-linked sialic acid) to a preference for human receptors (α2,6-linked sialic acid). By 2001, the avidity of human H3 viruses for avian receptors had declined, and since then the affinity for human receptors has also decreased significantly. These changes in receptor binding, which correlate with increased difficulties in virus propagation in vitro and in antigenic analysis, have been assessed by virus hemagglutination of erythrocytes from different species and quantified by measuring virus binding to receptor analogs using surface biolayer interferometry. Crystal structures of HA-receptor analog complexes formed with HAs from viruses isolated in 2004 and 2005 reveal significant differences in the conformation of the 220-loop of HA1, relative to the 1968 structure, resulting in altered interactions between the HA and the receptor analog that explain the changes in receptor affinity. Site-specific mutagenesis shows the HA1 Asp-225→Asn substitution to be the key determinant of the decreased receptor binding in viruses circulating since 2005. Our results indicate that the evolution of human influenza A(H3N2) viruses since 1968 has produced a virus with a low propensity to bind human receptor analogs, and this loss of avidity correlates with the marked reduction in A(H3N2) virus disease impact in the last 10 y. PMID:23236176

  9. Ascorbic acid enables reversible dopamine receptor /sup 3/H-agonist binding

    SciTech Connect

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-11-16

    The effects of ascorbic acid on dopaminergic /sup 3/H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the /sup 3/H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total /sup 3/H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable /sup 3/H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable /sup 3/H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of /sup 3/H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific /sup 3/H-agonist binding to dopamine receptors.

  10. Substance P and substance K receptor binding sites in the human gastrointestinal tract: localization by autoradiography

    SciTech Connect

    Gates, T.S.; Zimmerman, R.P.; Mantyh, C.R.; Vigna, S.R.; Maggio, J.E.; Welton, M.L.; Passaro, E.P. Jr.; Mantyh, P.W.

    1988-11-01

    Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for /sup 125/I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: (1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; (2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; (3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and (4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells.

  11. Central phencyclidine (PCP) receptor binding is glutamate dependent: evidence for a PCP/excitatory amino acid receptor (EAAR) complex

    SciTech Connect

    Loo, P.; Braunwalder, A.; Lehmann, J.; Williams, M.

    1986-03-01

    PCP and other dissociative anesthetica block the increase in neuronal firing rate evoked by the EAAR agonist, N-methyl-Daspartate. NMDA and other EAAs such as glutamate (glu) have not been previously shown to affect PCP ligand binding. In the present study, using once washed rat forebrain membranes, 10 ..mu..M-glu was found to increase the binding of (/sup 3/H)TCP, a PCP analog, to defined PCP recognition sites by 20%. Removal of glu and aspartate (asp) by extensive washing decreased TCP binding by 75-90%. In these membranes, 10 ..mu..M L-glu increased TCP binding 3-fold. This effect was stereospecific and evoked by other EAAs with the order of activity, L-glu > D-asp > L- asp > NMDA > D-glu > quisqualate. Kainate, GABA, NE, DA, 5-HT, 2-chloroadenosine, oxotremorine and histamine had no effect on TCP binding at concentrations up to 100 ..mu..M. The effects of L-glu were attenuated by the NMDA-type receptor antagonist, 2-amino-7--phosphonoheptanoate (AP7; 10 ..mu..M-1 mM). These findings indicate that EAAS facilitate TCP binding, possibly through NMDA-type receptors. The observed interaction between the PCP receptor and EAARs may reflect the existence of a macromolecular receptor complex similar to that demonstrated for the benzodiazepines and GABA.

  12. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  13. Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory

    NASA Astrophysics Data System (ADS)

    Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard; Weikl, Thomas R.

    2015-12-01

    The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.

  14. ( sup 3 H)cytisine binding to nicotinic cholinergic receptors in brain

    SciTech Connect

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J. )

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic {sup 3}H-agonist ligands. Here we have examined the binding of ({sup 3}H)cytisine in rat brain homogenates. ({sup 3}H)Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for ({sup 3}H)cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that ({sup 3}H)cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of ({sup 3}H)cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of ({sup 3}H)cytisine should make it a very useful ligand for studying neuronal nicotinic receptors.

  15. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    SciTech Connect

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  16. Trigger factor binds to ribosome–signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor

    PubMed Central

    Buskiewicz, Iwona; Deuerling, Elke; Gu, Shan-Qing; Jöckel, Johannes; Rodnina, Marina V.; Bukau, Bernd; Wintermeyer, Wolfgang

    2004-01-01

    Trigger factor (TF) and signal recognition particle (SRP) bind to the bacterial ribosome and are both crosslinked to protein L23 at the peptide exit, where they interact with emerging nascent peptide chains. It is unclear whether TF and SRP exclude one another from their ribosomal binding site(s). Here we show that SRP and TF can bind simultaneously to ribosomes or ribosome nascent-chain complexes exposing a SRP-specific signal sequence. Based on changes of the crosslinking pattern and on results obtained by fluorescence measurements using fluorescence-labeled SRP, TF binding induces structural changes in the ribosome–SRP complex. Furthermore, we show that binding of the SRP receptor, FtsY, to ribosome-bound SRP excludes TF from the ribosome. These results suggest that TF and SRP sample nascent chains on the ribosome in a nonexclusive fashion. The decision for ribosome nascent-chain complexes exposing a signal sequence to enter SRP-dependent membrane targeting seems to be determined by the binding of SRP, which is stabilized by signal sequence recognition, and promoted by the exclusion of TF due to the binding of the SRP receptor to ribosome-bound SRP. PMID:15148364

  17. Changes in parathyroid hormone receptor binding affinity during egg laying: implications for calcium homeostasis in chicken.

    PubMed

    Yasuoka, T; Kawashima, M; Takahashi, T; Iwata, A; Oka, N; Tanaka, K

    1996-12-01

    Parathyroid hormone (PTH) receptor bindings were examined in the membrane fraction of the calvaria and the kidney of the hen by the use of [125I]PTH-related protein (PTHrP) binding assays. The binding specificity, reversibility, and saturation of the receptor were demonstrated. The equilibrium dissociation constant (Kd) and the maximum binding capacity (Bmax) were obtained by Scatchard analyses. In both calvaria and kidney, Kd and Bmax values decreased at 3 h before oviposition in egg-laying hens, but not in nonlaying hens. Administration of 17 beta-estradiol or progesterone in vivo caused a decrease in the Kd and Bmax values. Ionized calcium concentrations in the blood plasma showed a decrease at 13 h before oviposition. The results suggest that the PTH receptor binding in the calvaria and the kidney is affected by ovarian steroid hormones and may play a role in maintaining the calcium homeostasis in the egg-laying hen. PMID:8970893

  18. Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D

    SciTech Connect

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  19. Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D

    SciTech Connect

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Lin; Robinson, Howard; Varnum, Susan M.

    2010-10-28

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65 Å resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10 Å relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  20. ( sup 3 H)SCH39166, a D1 dopamine receptor antagonist: Binding characteristics and localization

    SciTech Connect

    Wamsley, J.K.; Hunt, M.E.; McQuade, R.D.; Alburges, M.E. )

    1991-02-01

    Schering-Plough Research has developed a new, more specific analogue of SCH23390. This compound, SCH39166, has been shown to be a potent, specific, D1 receptor antagonist with several features which are advantageous over its predecessor. In this report, the binding characteristics of (3H)SCH39166 are described by in vitro analysis in rat brain tissues. The binding was shown to be of high affinity (Kd in the low nM range), saturable, and specific (readily displaceable with SCH23390, but not with the D2 receptor antagonists sulpiride or haloperidol). The binding of SCH39166 is more selective for binding to D1 receptors than SCH23390 with regard to overlap of the latter compound onto 5HT2 and 5HT1C receptors. Autoradiographic localization of D1 receptor sites labeled with (3H)SCH39166 showed a very specific distribution in areas known to contain high quantities of D1 receptors. These regions included the deepest layer of the cerebral cortex, the caudate-putamen, nucleus accumbens, olfactory tubercle, entopeduncular nucleus, and substantia nigra-pars reticulata, as well as less dense binding in a few other areas. At the concentration of ligand used (1 nM), there was a noticeable paucity of labeling in lamina IV of the cerebral cortex and in the choroid plexus, regions of high 5HT2 and 5HT1C receptor binding, respectively. Thus, SCH39166 represents a new D1 receptor antagonist which shows a greater specificity for the D1 receptor than its predecessor SCH23390. As previously shown, another distinct advantage of this compound is its stability in primates which should allow the determination of the effects and utility of D1 receptor antagonism in vivo.

  1. Stereospecificity in binding studies. A useful criterion though insufficient to prove the presence of receptors.

    PubMed

    Laduron, P M

    1988-01-01

    In binding studies, stereospecificity is not a property restricted to receptor sites; indeed stereospecific binding has also been observed for acceptor sites. Therefore it does not represent a decisive criterion to make a binding site, a receptor site. However, in some well established cases, it can be useful especially when the difference between the active and inactive enantiomer exceeds 1000-fold as is the case for dexetimide and levetimide on muscarinic receptors. Stereospecific effect is also detectable with acceptor sites, e.g. spirodecanone sites, levocabastine displaceable neurotensin and, presumably, many other ones. Since the membrane is chiral (L-aminoacid) one should expect that non-specific displaceable binding would also display stereospecificity. In this regard, as most of the Scatchard plots reported throughout the literature are curvilinear, even if a straight line is drawn, one may assume that this is due to the presence of acceptor sites that are labelled by the ligand in addition to receptor sites. One cannot exclude the repetition of another "levocabastine story" with other neuropeptides. Hence, as the biochemical criteria like high affinity, saturability, reversibility and stereospecificity cannot differentiate a receptor from an acceptor (see Table 1), the most important and decisive criteria remain: (1) the drug displacement with compounds belonging to different pharmacological classes but mostly to different chemical classes, and (2) the functional correlates between the binding affinity and the potency in pharmacological or physiological tests in vitro or in vivo. When these points are fulfilled a binding site may be called a receptor site. PMID:2827683

  2. Kit receptor dimerization is driven by bivalent binding of stem cell factor.

    PubMed

    Lemmon, M A; Pinchasi, D; Zhou, M; Lax, I; Schlessinger, J

    1997-03-01

    Most growth factors and cytokines activate their receptors by inducing dimerization upon binding. We have studied binding of the dimeric cytokine stem cell factor (SCF) to the extracellular domain of its receptor Kit, which is a receptor tyrosine kinase similar to the receptors for platelet-derived growth factor and colony-stimulating factor-1. Calorimetric studies show that one SCF dimer binds simultaneously to two molecules of the Kit extracellular domain. Gel filtration and other methods show that this results in Kit dimerization. It has been proposed that SCF-induced Kit dimerization proceeds via a conformational change that exposes a key receptor dimerization site in the fourth of the five immunoglobulin (Ig)-like domains in Kit. We show that a form of Kit containing just the first three Ig domains (Kit-123) binds to SCF with precisely the same thermodynamic parameters as does Kit-12345. Analytical ultracentrifugation, light scattering, and gel filtration show that Kit-123 dimerizes upon SCF binding in a manner indistinguishable from that seen with Kit-12345. These data argue that the fourth Ig-like domain of Kit is not required for SCF-induced receptor dimerization and provide additional support for a model in which bivalent binding of the SCF dimer provides the driving force for Kit dimerization. PMID:9045650

  3. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    SciTech Connect

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  4. The different ligand-binding modes of relaxin family peptide receptors RXFP1 and RXFP2.

    PubMed

    Scott, Daniel J; Rosengren, K Johan; Bathgate, Ross A D

    2012-11-01

    Relaxin and insulin-like peptide 3 (INSL3) are peptide hormones with a number of important physiological roles in reproduction, regulation of extracellular matrix turnover, and cardiovascular function. Relaxin and INSL3 mediate their actions through the closely related G-protein coupled receptors, relaxin family peptide receptors 1 and 2 (RXFP1 and RXFP2), respectively. These receptors have large extracellular domains (ECD) that contain high-affinity ligand-binding sites within their 10 leucine-rich repeat (LRR)-containing modules. Although relaxin can bind and activate both RXFP1 and RXFP2, INSL3 can only bind and activate RXFP2. To investigate whether this difference is related to the nature of the high-affinity ECD binding site or to differences in secondary binding sites involving the receptor transmembrane (TM) domain, we created a suite of constructs with RXFP1/2 chimeric ECD attached to single TM helices. We show that by changing as little as one LRR, representing four amino acid substitutions, we were able to engineer a high-affinity INSL3-binding site into the ECD of RXFP1. Molecular modeling of the INSL3-RXFP2 interaction based on extensive experimental data highlights the differences in the binding mechanisms of relaxin and INSL3 to the ECD of their cognate receptors. Interestingly, when the engineered RXFP1/2 ECD were introduced into full-length RXFP1 constructs, INSL3 exhibited only low affinity and efficacy on these receptors. These results highlight critical differences both in the ECD binding and in the coordination of the ECD-binding site with the TM domain, and provide new mechanistic insights into the binding and activation events of RXFP1 and RXFP2 by their native hormone ligands. PMID:22973049

  5. A Binding Site Model and Structure-Activity Relationships for the Rat A3 Adenosine Receptor

    PubMed Central

    VAN GALEN, PHILIP J. M.; VAN BERGEN, ANDREW H.; GALLO-RODRIGUEZ, CAROLA; MELMAN, NELI; OLAH, MARK E.; IJZERMAN, AD P.; STILES, GARY L.; JACOBSON, KENNETH A.

    2012-01-01

    SUMMARY A novel adenosine receptor, the A3 receptor, has recently been cloned. We have systematically investigated the hitherto largely unexplored structure-activity relationships (SARs) for binding at A3 receptors, using 125I-N6-2-(4-aminophenyl)ethyladenosine as a radioligand and membranes from Chinese hamster ovary cells stably transfected with the rat A3-cDNA. As is the case for A1 and A2a, receptors, substitutions at the N6 and 5′ positions of adenosine, the prototypic agonist ligand, may yield fairly potent compounds. However, the highest affinity and A3 selectivity is found for N6,5′-disubstituted compounds, in contrast to A1 and A2a receptors. Thus, N6-benzyladenosine-5′-N-ethylcarboxamide is highly potent (Ki, 6.8 nM) and moderately selective (13- and 14-fold versus A1 and A2a). The N6 region of the A3 receptor also appears to tolerate hydrophilic substitutions, in sharp contrast to the other subtypes. Potencies of N6,5′-disubstituted compounds in inhibition of adenylate cyclase via A3 receptors parallel their high affinity in the binding assay. None of the typical xanthine or nonxanthine (A1/A2) antagonists tested show any appreciable affinity for rat A3 receptors. 1,3-Dialkylxanthines did not antagonize the A3 agonist-induced inhibition of adenylate cyclase. A His residue in helix 6 that is absent in A3 receptors but present in A1/A2 receptors may be causal in this respect. In a molecular model for the rat A3 receptor, this mutation, together with an increased bulkiness of residues surrounding the ligand, make antagonist binding unfavorable when compared with a previously developed A1 receptor model. Second, this A3 receptor model predicted similarities with A1 and A2 receptors in the binding requirements for the ribose moiety and that xanthine-7-ribosides would bind to rat A3 receptors. This hypothesis was supported experimentally by the moderate affinity (Ki 6 μM) of 7-riboside of 1,3-dibutylxanthine, which appears to be a partial agonist at

  6. Inhibition of mu and delta opioid receptor ligand binding by the peptide aldehyde protease inhibitor, leupeptin.

    PubMed

    Christoffers, Keith H; Khokhar, Arshia; Chaturvedi, Kirti; Howells, Richard D

    2002-04-15

    We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions. PMID:11853866

  7. Oestradiol stimulates tyrosine phosphorylation and hormone binding activity of its own receptor in a cell-free system.

    PubMed Central

    Auricchio, F; Migliaccio, A; Di Domenico, M; Nola, E

    1987-01-01

    Recent experiments have shown that calf uterus oestrogen receptor exists in a tyrosine-phosphorylated hormone binding form and in non-phosphorylated, non-hormone binding form. We report here that physiological concentrations of oestradiol in complex with the receptor stimulate the calf uterus receptor kinase that converts the non-hormone binding receptor into hormone binding receptor through phosphorylation of the receptor on tyrosine. The activity of this enzyme has been followed by reactivation of hormone binding sites and phosphorylation on tyrosine of calf uterus phosphatase-inactivated receptor. Phosphorylation of the receptor has been demonstrated by interaction of kinase 32P-phosphorylated proteins with anti-receptor antibody followed either by sucrose gradient centrifugation or SDS-PAGE of the immunoprecipitated proteins. Hormone stimulation of the kinase is inhibited by receptor occupancy of the anti-oestrogen tamoxifen. Oestradiol-receptor complex increases the affinity of the kinase for the dephosphorylated receptor. Findings of this report are consistent with the observation that several protein tyrosine kinases that are associated with peptide hormone receptors are stimulated by the binding of the hormone to the receptor. This is the first report on the activation of a tyrosine kinase by a steroid hormone. The finding that hormones can regulate their own receptor binding activity through a tyrosine kinase is also new. Images Fig. 2. Fig. 4. Fig. 5. PMID:3691476

  8. Localization and synthesis of the hormone-binding regions of the human thyrotropin receptor

    SciTech Connect

    Atassi, M.Z.; Manshouri, T. ); Sakata, Shigeki )

    1991-05-01

    Two regions of human thyrotropin (thyroid-stimulating hormone, TSH) receptor (TSHR) were selected on the basis that they exhibit no sequence resemblance to luteinizing hormone/chorionic gonadotropin receptor. Five synthetic overlapping peptides (12-30, 24-44, 308-328, 324-344, and 339-364) were studied for their ability to bind {sup 125}I-labeled human TSH (hTSH), its isolated {alpha} and {beta} subunits, bovine TSH, ovine TSH, human luteinizing hormone, and human follicle-stimulating hormone. The human TSHR peptides 12-30 and 324-344 exhibited remarkable binding activity to human, bovine, and ovine TSH and to the {beta} chain of hTSH. Lower binding activity resided in the adjacent overlapping peptides, probably due to the contribution of the shared overlap to the binding. The specificity of TSH binding to these peptides was confirmed by their inability to bind human luteinizing hormone, human follicle-stimulating hormone, and the {alpha} chain of hTSH. Thyrotropins did not bind to bovine serum albumin or to peptide controls unrelated to the TSHR system. It is concluded that the binding of TSH to its receptor involves extensive contacts and that the TSHR peptides 12-30 and 324-344 contain specific binding regions for TSH that might be either independent sites or two faces (subsites) within a large binding site.

  9. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor.

    PubMed

    Lawrence, Callum F; Margetts, Mai B; Menting, John G; Smith, Nicholas A; Smith, Brian J; Ward, Colin W; Lawrence, Michael C

    2016-07-22

    Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe(701) and Phe(705) The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor. PMID:27281820

  10. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  11. Binding and transactivation of the largemouth bass estrogen receptors by model compounds

    EPA Science Inventory

    Environmental estrogens (EEs) are chemicals in the environment that can elicit adverse effects on estrogen (E2) signaling by binding with the estrogen receptors (ERs). In largemouth bass (LMB), the physiological actions of E2 are primarily mediated via three receptors (ERα, ERßb ...

  12. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    SciTech Connect

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers.

  13. Specific beta-adrenergic receptor binding of carazolol measured with PET

    SciTech Connect

    Berridge, M.S.; Nelson, A.D.; Zheng, L.

    1994-10-01

    Carazolol is a promising high-affinity beta-adrenergic receptor ligand for the noninvasive determination of beta receptor status using PET> Earlier investigations demonstrated specific receptor binding of carazolol in mice. These PET studies with S(-)-[2{double_prime}-{sup 11}C]carazolol in pigs were performed to explore the utility of the tracer for PET receptor studies. Tracer uptake in the heart and lung was measured by PET as a function of time. Receptors were blocked with propranolol and different doses of ICI 118,551 to estimate specific binding. Fluorine-18-1{double_prime}-Fluorocarazolol and the less active R-enantiomer of [{sup 11}C]-carazolol were also studied. Specific receptor binding was 75% of the total uptake in the heart, preventable and displaceable by propranolol. Dose-dependent competition showed that carazolol binds in vivo to {beta}{sub 1} and to {beta}{sub 2} subtypes. Uptake of the labeled R(=) enantiomer of carazolol was not receptor-specific. Carazolol labeled with {sup 11}C or {sup 18}F is a strong candidate for use in receptor estimation with PET. The in vivo observations were consistent with its known high affinity and slow receptor dissociation rate. Its high specific receptor uptake and low metabolism allow existing kinetic models to be applied for receptor measurements. The {sup 11}C label is convenient for repeated administrations, though {sup 13}F allowed the long observation periods necessary for measurement of the receptor dissociation rate. If needed, nonspecific uptake can be estimated without pharmacologic intervention by using the labeled R enantiomer. 32 refs., 11 figs.

  14. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?

    PubMed

    Puthenkalam, Roshan; Hieckel, Marcel; Simeone, Xenia; Suwattanasophon, Chonticha; Feldbauer, Roman V; Ecker, Gerhard F; Ernst, Margot

    2016-01-01

    Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational

  15. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    ERIC Educational Resources Information Center

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.

    2016-01-01

    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  16. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    SciTech Connect

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  17. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  18. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    SciTech Connect

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.

  19. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  20. DIFFERENCES IN SENSITIVITY BUT NOT SELECTIVITY OF XENOESTROGEN BINDING TO ALLIGATOR VERSUS HUMAN ESTROGEN RECEPTOR ALPHA

    PubMed Central

    Rider, Cynthia V.; Hartig, Phillip C.; Cardon, Mary C.; Lambright, Christy R.; Bobseine, Kathy L.; Guillette, Louis J.; Gray, L. Earl; Wilson, Vickie S.

    2010-01-01

    Reproductive abnormalities in alligators exposed to contaminants in Lake Apopka, Florida, USA represent a clear example of endocrine disruption in wildlife. Several of these contaminants that are not able to bind to mammalian estrogen receptors (such as atrazine and cyanazine) have previously been reported to bind to the alligator estrogen receptor from oviductal tissue. Binding of known Lake Apopka contaminants to full length estrogen receptors alpha from human (hERα) and alligator (aERα) was assessed in a side-by-side comparison within the same assay system. Baculovirus-expressed recombinant hERα and aERα were used in a competitive binding assay. Atrazine and cyanazine were not able to bind to either receptor. p,p′-Dicofol was able to bind to aERα with a concentration inhibiting 50% of binding (IC50) of 4 μM, while only partially displacing 17β-estradiol (E2) from hERα and yielding a projected IC50 of 45 μM. Chemicals that only partially displaced E2 from either receptor, including some dichlorodiphenyltrichloroethane (DDT) metabolites and trans-nonachlor, appeared to have higher affinity for aERα than hERα. p,p′-Dicofol-mediated transcriptional activation through aERα and hERα was assessed to further explore the preferential binding of p,p′-dicofol to aERα over hERα. p,p′-Dicofol was able to stimulate transcriptional activation in a similar manner with both receptors. However, the in vitro results obtained with p,p′-dicofol were not reflected in an in vivo mammalian model, where Kelthane™ (mixed o,p′-and p,p′-dicofol isomers) did not elicit estrogenic effects. In conclusion, although there was no evidence of exclusively species-specific estrogen receptor binders, some xenoestrogens, especially p,p′-dicofol, had a higher affinity for aERα than for hERα. PMID:20821664

  1. Binding properties of solubilized gonadotropin-releasing hormone receptor: role of carboxylic groups

    SciTech Connect

    Hazum, E.

    1987-11-03

    The interaction of /sup 125/I-buserelin, a superactive agonist of gonadotropin-releasing hormone (GnRH), with solubilized GnRH receptor was studied. The highest specific binding of /sup 125/I-buserelin to solubilized GnRH receptor is evident at 4/sup 0/C, and equilibrium is reached after 2 h of incubation. The soluble receptor retained 100% of the original binding activity when kept at 4 or 22/sup 0/C for 60 min. Mono- and divalent cations inhibited, in a concentration-dependent manner, the binding of /sup 125/I-buserelin to solubilized GnRH receptor. Monovalent cations require higher concentrations than divalent cations to inhibit the binding. Since the order of potency with the divalent cations was identical with that of their association constants to dicarboxylic compounds, it is suggested that there are at least two carboxylic groups of the receptor that participate in the binding of the hormone. The carboxyl groups of sialic acid residues are not absolutely required for GnRH binding since the binding of /sup 125/I-buserelin to solubilized GnRH receptor was only slightly affected by pretreatment with neuraminidase and wheat germ agglutinin. The finding that polylysines stimulate luteinizing hormone (LH) release from pituitary cell cultures with the same efficacy as GnRH suggest that simple charge interactions can induce LH release. According to these results, the authors propose that the driving force for the formation of the hormone-receptor complex is an ionic interaction between the positively charged amino acid arginine in position 8 and the carboxyl groups in the binding site.

  2. The effect of diffusion on the binding of membrane-bound receptors to coated pits.

    PubMed Central

    Keizer, J; Ramirez, J; Peacock-López, E

    1985-01-01

    We have formulated a kinetic model for the primary steps that occur at the cell membrane during receptor-mediated endocytosis. This model includes the diffusion of receptor molecules, the binding of receptors to coated pits, the loss of coated pits by invagination, and random reinsertion of receptors and coated pits. Using the mechanistic statistical theory of nonequilibrium thermodynamics, we employ this mechanism to calculate the two-dimensional radial distribution of receptors around coated pits at steady state. From this we obtain an equation that describes the effect of receptor diffusion on the rate of binding to coated pits. Our equation does not assume that ligand binding is instantaneous and can be used to assess the effect of diffusion on the binding rate. Using experimental data for low density lipoprotein receptors on fibroblast cells, we conclude that the effect of diffusion on the binding of these receptors to coated pits is no more than 84% diffusion controlled. This corresponds to a dissociation rate constant for receptors on coated pits (k-) that is much less than the rate constant for invagination of the pits (lambda = 3.3 X 10(-3)/s) and a correlation length for the radial distribution function of six times the radius of a coated pit. Although the existing experimental data are compatible with any value of k-, we obtain a lower bound for the value of the binding constant (k+) of 2.3 X 10(-2)(micron)2/s. Comparison of the predicted radial distributions with experiment should provide a clear indication of the effect of diffusion on k+. PMID:2858230

  3. Platelet-derived growth factor binds specifically to receptors on vascular smooth muscle cells and the binding becomes nondissociable.

    PubMed Central

    Williams, L T; Tremble, P; Antoniades, H N

    1982-01-01

    Radioiodinated platelet-derived growth factor (125I-PDGF) was used in studies of PDGF binding sites on vascular smooth muscle cells. There was an excellent correlation between the ability of 125I-PDGF to stimulate cell proliferation and to bind specifically to cultured vascular smooth muscle cells. The half-maximal concentration for both processes was 0.1 nM. There were 50,000 binding sites per cell. Reduced PDGF, prepared by treatment of PDGF with 20 mM dithiothreitol, had neither the ability to bind to smooth muscle cells nor to stimulate cellular proliferation. Epidermal growth factor, nerve growth factor, fibroblast growth factor, and histone B did not compete for the binding sites at a concentration of 10 nM. 125I-PDGF binding was slowly reversible at 4 degrees C and was rapidly and totally reversible after a 1-min incubation at 37 degrees C. After continued incubation at 37 degrees C, the binding became irreversible. The half-time for formation of the nondissociable state of 125I-PDGF binding was approximately equal to 5 min at 37 degrees C. The nondissociable state of binding was not formed at 4 degrees C even after 1 hr of incubation. These data suggest that the sites we labeled are the PDGF receptors that mediate PDGF's mitogenic action and that a nondissociable state of PDGF binding is formed at 37 degrees C. It is likely that nondissociable PDGF represents internalized ligand or binding to sites that are converted to a high-affinity state after the ligand binds. PMID:6310551

  4. Expression of gastric antisecretory and prostaglandin E receptor binding activity of misoprostol by misoprostol free acid.

    PubMed

    Tsai, B S; Kessler, L K; Stolzenbach, J; Schoenhard, G; Bauer, R F

    1991-05-01

    In enriched canine parietal cell preparations, misoprostol, an analog of prostaglandin E1 methyl ester, was rapidly deesterified to misoprostol free acid. Under this circumstance, misoprostol and misoprostol free acid exhibited equal antisecretory potency against histamine-stimulated acid secretion and bound equally well to prostaglandin E receptors. When the deesterification of misoprostol was inhibited by paraoxon, an esterase inhibitor, the antisecretory and receptor binding activity of misoprostol was markedly reduced, with potency much less than misoprostol free acid. These results indicate that misoprostol free acid is the active biological form of misoprostol that binds to prostaglandin E receptors and mediates the antisecretory action of misoprostol. PMID:1850690

  5. Different behavior toward muscarinic receptor binding between quaternary anticholinergics and their tertiary analogues.

    PubMed

    Ensing, K; de Zeeuw, R A

    1986-12-01

    A number of corresponding tertiary and quaternary anticholinergic analogues were examined for their ability to inhibit specific (3)H-dexetimide binding to calf brain muscarinic receptors. In all cases the tertiary antagonists (except pirenzepine) showed steep and monophasic inhibition curves, whereas those of the quaternary derivatives were shallow (thiazinamium, methylbenactyzine) or even biphasic (oxyphenonium, methylatropine, methylscopolamine). These observations show that the addition of a methyl group to the nitrogen atom changes the mode of interaction of the anticholinergics to muscarinic receptor binding sites. Whether there are separate binding sites present or differences in interaction mode for only the quaternary moiety is discussed. PMID:24271831

  6. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.

    PubMed

    de Vera, Ian Mitchelle S; Giri, Pankaj K; Munoz-Tello, Paola; Brust, Richard; Fuhrmann, Jakob; Matta-Camacho, Edna; Shang, Jinsai; Campbell, Sean; Wilson, Henry D; Granados, Juan; Gardner, William J; Creamer, Trevor P; Solt, Laura A; Kojetin, Douglas J

    2016-07-15

    Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function. PMID:27128111

  7. A comprehensive ligand based mapping of the σ₂ receptor binding pocket.

    PubMed

    Rhoades, Derek J; Kinder, David H; Mahfouz, Tarek M

    2014-01-01

    The sigma (σ) receptor system consists of at least two major receptor subtypes: σ₁ and σ₂. Several potential therapeutic applications would benefit from structural knowledge of the σ₂ receptor but gaining this knowledge has been hampered by the difficulties associated with its isolation and, thus, characterization. Here, a ligand based approach has been adopted using the program PHASE® and a group of 41 potent and structurally diverse σ₂ ligands to develop several pharmacophore models for different families of σ₂ ligands. These pharmacophores were analyzed to identify the different binding modes to the receptor and were combined together to construct a comprehensive pharmacophore that was used to develop a structural model for the σ₂ binding pocket. A total of six binding modes were identified and could be classified as neutral or charged modes. The results presented here also indicate the significance of hydrophobic interactions to σ₂ binding and the requirement of hydrogen bonding interactions to increase the affinity for this receptor subtype. This work adds breadth to our knowledge of this receptor's binding site, and should contribute significantly to the development of novel selective σ₂ ligands. PMID:23521001

  8. Differential receptor binding characteristics of consecutive phenylalanines in micro-opioid specific peptide ligand endomorphin-2.

    PubMed

    Honda, Takeshi; Shirasu, Naoto; Isozaki, Kaname; Kawano, Michiaki; Shigehiro, Daiki; Chuman, Yoshiro; Fujita, Tsugumi; Nose, Takeru; Shimohigashi, Yasuyuki

    2007-06-01

    Endogenous opioid peptides consist of a conserved amino acid residue of Phe(3) and Phe(4), although their binding modes for opioid receptors have not been elucidated in detail. Endomorphin-2, which is highly selective and specific for the mu opioid receptor, possesses two Phe residues at the consecutive positions 3 and 4. In order to clarify the role of Phe(3) and Phe(4) in binding to the mu receptor, we synthesized a series of analogs in which Phe(3) and Phe(4) were replaced by various amino acids. It was found that the aromaticity of the Phe-beta-phenyl groups of Phe(3) and Phe(4) is a principal determinant of how strongly it binds to the receptor, although better molecular hydrophobicity reinforces the activity. The receptor binding subsites of Phe(3) and Phe(4) of endomorphin-2 were found to exhibit different structural requirements. The results suggest that [Trp(3)]endomorphin-2 (native endomorphin-1) and endomorphin-2 bind to different receptor subclasses. PMID:17395470

  9. Novel Bioluminescent Binding Assays for Ligand–Receptor Interaction Studies of the Fibroblast Growth Factor Family

    PubMed Central

    Song, Ge; Shao, Xiao-Xia; Wu, Qing-Ping; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand–receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand–receptor interaction studies. PMID:27414797

  10. Characterization of a second ligand binding site of the insulin receptor

    SciTech Connect

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan . E-mail: jonathan.whittaker@case.edu

    2006-08-18

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the {alpha} subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K {sub d} of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site.

  11. Novel Bioluminescent Binding Assays for Ligand-Receptor Interaction Studies of the Fibroblast Growth Factor Family.

    PubMed

    Song, Ge; Shao, Xiao-Xia; Wu, Qing-Ping; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand-receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand-receptor interaction studies. PMID:27414797

  12. GABA binding to an insect GABA receptor: a molecular dynamics and mutagenesis study.

    PubMed

    Ashby, Jamie A; McGonigle, Ian V; Price, Kerry L; Cohen, Netta; Comitani, Federico; Dougherty, Dennis A; Molteni, Carla; Lummis, Sarah C R

    2012-11-21

    RDL receptors are GABA-activated inhibitory Cys-loop receptors found throughout the insect CNS. They are a key target for insecticides. Here, we characterize the GABA binding site in RDL receptors using computational and electrophysiological techniques. A homology model of the extracellular domain of RDL was generated and GABA docked into the binding site. Molecular dynamics simulations predicted critical GABA binding interactions with aromatic residues F206, Y254, and Y109 and hydrophilic residues E204, S176, R111, R166, S176, and T251. These residues were mutated, expressed in Xenopus oocytes, and their functions assessed using electrophysiology. The data support the binding mechanism provided by the simulations, which predict that GABA forms many interactions with binding site residues, the most significant of which are cation-π interactions with F206 and Y254, H-bonds with E204, S205, R111, S176, T251, and ionic interactions with R111 and E204. These findings clarify the roles of a range of residues in binding GABA in the RDL receptor, and also show that molecular dynamics simulations are a useful tool to identify specific interactions in Cys-loop receptors. PMID:23200041

  13. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes. PMID:17168764

  14. Effect of estradiol-17β on calcitonin receptor bindings in the hen neurohypophysis.

    PubMed

    Nakayama, H; Takahashi, T; Nakagawa-Mizuyachi, K; Kawashima, M

    2011-01-01

    The present study was performed to elucidate whether estradiol-17β (E₂) would affect calcitonin (CT) receptor binding in the hen neurohypophysis. The equilibrium dissociation constant (K(d)) and the maximum binding capacity (B(max)) of the CT receptor in the plasma membrane fraction of the hen neurohypophysis were examined by Scatchard analysis of specific binding of (125)I-labeled chicken CT. A single i.m. injection of E₂ into nonlaying hens caused a decrease in K(d) and B(max) values of the CT receptor. The K(d) and B(max) values of the CT receptor were smaller in laying hens than in nonlaying hens. The present study suggests that E₂ may increase the action of CT on the neurohypophysis in hens. PMID:21177459

  15. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.

    PubMed

    Alsteens, David; Pfreundschuh, Moritz; Zhang, Cheng; Spoerri, Patrizia M; Coughlin, Shaun R; Kobilka, Brian K; Müller, Daniel J

    2015-09-01

    Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors. PMID:26167642

  16. Ivermectin binding sites in human and invertebrate Cys-loop receptors.

    PubMed

    Lynagh, Timothy; Lynch, Joseph W

    2012-08-01

    Ivermectin is a gold standard antiparasitic drug that has been used successfully to treat billions of humans, livestock and pets. Until recently, the binding site on its Cys-loop receptor target had been a mystery. Recent protein crystal structures, site-directed mutagenesis data and molecular modelling now explain how ivermectin binds to these receptors and reveal why it is selective for invertebrate members of the Cys-loop receptor family. Combining this with emerging genomic information, we are now in a position to predict species sensitivity to ivermectin and better understand the molecular basis of ivermectin resistance. An understanding of the molecular structure of the ivermectin binding site, which is formed at the interface of two adjacent subunits in the transmembrane domain of the receptor, should also aid the development of new lead compounds both as anthelmintics and as therapies for a wide variety of human neurological disorders. PMID:22677714

  17. Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms.

    PubMed

    Joung, Hye-Young; Kang, Young Mi; Lee, Bae-Jin; Chung, Sun Yong; Kim, Kyung-Soo; Shim, Insop

    2015-09-01

    This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia. PMID:26336589

  18. Structure and receptor binding of the hemagglutinin from a human H6N1 influenza virus.

    PubMed

    Tzarum, Netanel; de Vries, Robert P; Zhu, Xueyong; Yu, Wenli; McBride, Ryan; Paulson, James C; Wilson, Ian A

    2015-03-11

    Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and human receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. This binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics. PMID:25766295

  19. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    PubMed

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain. PMID:24269284

  20. Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

    PubMed Central

    Joung, Hye-Young; Kang, Young Mi; Lee, Bae-Jin; Chung, Sun Yong; Kim, Kyung-Soo; Shim, Insop

    2015-01-01

    This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia. PMID:26336589

  1. A Membrane Proximal Helix in the Cytosolic Domain of the Human APP Interacting Protein LR11/SorLA Deforms Liposomes

    PubMed Central

    Gill, Richard L.; Wang, Xingsheng; Tian, Fang

    2014-01-01

    Over the last decade, compelling evidence has linked the development of Alzheimer’s disease (AD) to defective intracellular trafficking of the amyloid precursor protein (APP). Faulty APP trafficking results in an overproduction of Aβ peptides, which is generally agreed to be the primary cause of AD-related pathogenesis. LR11 (SorLA), a type I transmembrane sorting receptor, has emerged as a key regulator of APP trafficking and processing. It directly interacts with APP and diverts it away from amyloidogenic processing. The 54-residue cytosolic domain of LR11 is essential for its proper intracellular localization and trafficking which, in turn, determines the fate of APP. Here, we have found a surprising membrane-proximal amphipathic helix in the cytosolic domain of LR11. Moreover, a peptide corresponding to this region folds into an α-helical structure in the presence of liposomes and transforms liposomes to small vesicles and tubule-like particles. We postulate that this amphipathic helix may contribute to the dynamic remodeling of membrane structure and facilitate LR11 intracellular transport. PMID:24866012

  2. A membrane proximal helix in the cytosolic domain of the human APP interacting protein LR11/SorLA deforms liposomes.

    PubMed

    Gill, Richard L; Wang, Xingsheng; Tian, Fang

    2015-01-01

    Over the last decade, compelling evidence has linked the development of Alzheimer's disease (AD) to defective intracellular trafficking of the amyloid precursor protein (APP). Faulty APP trafficking results in an overproduction of Aβ peptides, which is generally agreed to be the primary cause of AD-related pathogenesis. LR11 (SorLA), a type I transmembrane sorting receptor, has emerged as a key regulator of APP trafficking and processing. It directly interacts with APP and diverts it away from amyloidogenic processing. The 54-residue cytosolic domain of LR11 is essential for its proper intracellular localization and trafficking which, in turn, determines the fate of APP. Here, we have found a surprising membrane-proximal amphipathic helix in the cytosolic domain of LR11. Moreover, a peptide corresponding to this region folds into an α-helical structure in the presence of liposomes and transforms liposomes to small vesicles and tubule-like particles. We postulate that this amphipathic helix may contribute to the dynamic remodeling of membrane structure and facilitate LR11 intracellular transport. PMID:24866012

  3. Multiple opioid receptor binding in dissociated intact guinea pig brain cells

    SciTech Connect

    Tam, S.W.; James, D.W.

    1986-03-05

    Dissociated intact guinea pig brain cells were prepared by the method of Rogers and El-Fakahany. Over 95% of these cells are viable as demonstrated by their exclusion of the dye trypan blue. Opioid receptor binding assays were performed in a modified Kreb-Ringers physiological buffer. The following radiolabeled ligands and conditions were used to selectively labeled multiple opioid receptors: mu binding, 1 nM (/sup 3/H)naloxone + 20 nM DADLE + 300 nM U50,488H; kappa binding, 4 nM (-)-(/sup 3/H)-EKC + 100 nM DAGO + 500 nM DADLE; delta binding, 2 nM (/sup 3/H)-DADLE + 100 nM DAGO + 300 nM U50,488H; sigma binding, 4 nM (+)-(/sup 3/H)SKF 10,047. The intact brain cells in physiological buffer demonstrated specific binding for mu, kappa, delta, and sigma receptors. The relative binding potency of naloxone for each of the receptor types is arbitrarily set at 1.

  4. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  5. Familial Risk for Major Depression is Associated with Lower Striatal 5-HT4 Receptor Binding

    PubMed Central

    Madsen, Karine; Torstensen, Eva; Holst, Klaus K.; Haahr, Mette E.; Knorr, Ulla; Frokjaer, Vibe G.; Brandt-Larsen, Malene; Iversen, Pernille; Fisher, Patrick M.

    2015-01-01

    Background: The 5-HT4 receptor provides a novel potential target for antidepressant treatment. No studies exist to elucidate the 5-HT4 receptor’s in vivo distribution in the depressed state or in populations that may display trait markers for major depression disorder (MDD). The aim of this study was to determine whether familial risk for MDD is associated with cerebral 5-HT4 receptor binding as measured with [11C]SB207145 brain PET imaging. Familial risk is the most potent risk factor of MDD. Methods: We studied 57 healthy individuals (mean age 36 yrs, range 20–86; 21 women), 26 of which had first-degree relatives treated for MDD. Results: We found that having a family history of MDD was associated with lower striatal 5-HT4 receptor binding (p = 0.038; in individuals below 40 years, p = 0.013). Further, we found evidence for a “risk-dose effect” on 5-HT4 receptor binding, since the number of first-degree relatives with a history of MDD binding correlated negatively with 5-HT4 receptor binding in both the striatum (p = 0.001) and limbic regions (p = 0.012). Conclusions: Our data suggest that the 5-HT4 receptor is involved in the neurobiological mechanism underlying familial risk for depression, and that lower striatal 5-HT4 receptor binding is associated with increased risk for developing MDD. The finding is intriguing considering that the 5-HT4 receptor has been suggested to be an effective target for antidepressant treatment. PMID:25522384

  6. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    PubMed Central

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-01-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface. PMID:27353000

  7. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    SciTech Connect

    Gil, D.W.; Wolfe, B.B.

    1986-05-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands (/sup 3/H)quinuclidinyl benzilate or (/sup 3/H)PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of (/sup 3/H)quinuclidinyl benzilate in a biphasic manner.

  8. PREDICTING RETINOID RECEPTOR BINDING AFFINITY: COREPA-M APPLICATION

    EPA Science Inventory

    Retinoic acid and associated vitamin A derivatives comprise a class of endogenous hormones that activate different retinoic acid receptors RARs). Transcriptional events subsequent to this activation are key to controlling several aspects of vertebrate development. As such, identi...

  9. Novel DNA-binding element within the C-terminal extension of the nuclear receptor DNA-binding domain

    PubMed Central

    Jakób, Michał; Kołodziejczyk, Robert; Orłowski, Marek; Krzywda, Szymon; Kowalska, Agnieszka; Dutko-Gwóźdź, Joanna; Gwóźdź, Tomasz; Kochman, Marian; Jaskólski, Mariusz; Ożyhar, Andrzej

    2007-01-01

    The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, is considered as the functional receptor for ecdysteroids initiating molting and metamorphosis in insects. Here we report the 1.95 Å structure of the complex formed by the DNA-binding domains (DBDs) the EcR and the Usp, bound to the natural pseudopalindromic response element. Comparison of the structure with that obtained previously, using an idealized response element, shows how the EcRDBD, which has been previously reported to possess extraordinary flexibility, accommodates DNA-induced structural changes. Part of the C-terminal extension (CTE) of the EcRDBD folds into an α-helix whose location in the minor groove does not match any of the locations previously observed for nuclear receptors. Mutational analyses suggest that the α-helix is a component of EcR-box, a novel element indispensable for DNA-binding and located within the nuclear receptor CTE. This element seems to be a general feature of all known EcRs. PMID:17426125

  10. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    SciTech Connect

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.