Science.gov

Sample records for bio stimulatory response

  1. Immunoprotective responses of T helper type 1 stimulatory protein-S-adenosyl-L-homocysteine hydrolase against experimental visceral leishmaniasis.

    PubMed

    Khare, P; Jaiswal, A K; Tripathi, C D P; Sundar, S; Dube, A

    2016-08-01

    It is well known that a patient in clinical remission of visceral leishmaniasis (VL) remains immune to reinfection, which provides a rationale for the feasibility of a vaccine against this deadly disease. In earlier studies, observation of significant cellular responses in treated Leishmania patients as well as in hamsters against leishmanial antigens from different fractions led to its further proteomic characterization, wherein S-adenosyl-L-homocysteine hydrolase (AdoHcy) was identified as a helper type 1 (Th1) stimulatory protein. The present study includes immunological characterization of this protein, its cellular responses [lymphoproliferation, nitric oxide (NO) production and cytokine responses] in treated Leishmania-infected hamsters and patients as well as prophylactic efficacy against Leishmania challenge in hamsters and the immune responses generated thereof. Significantly higher cellular responses were noticed against recombinant L. donovani S-adenosyl-L-homocysteine hydrolase (rLdAdoHcy) compared to soluble L. donovani antigen in treated samples. Moreover, stimulation of peripheral blood mononuclear cells with rLdAdoHcy up-regulated the levels of interferon (IFN)-γ, interleukin (IL)-12 and down-regulated IL-10. Furthermore, vaccination with rLdAdoHcy generated perceptible delayed-type hypersensitivity response and exerted considerably good prophylactic efficacy (∼70% inhibition) against L. donovani challenge. The efficacy was confirmed by the increased expression levels of inducible NO synthase and Th1-type cytokines, IFN-γ and IL-12 and down-regulation of IL-4, IL-10 and transforming growth factor (TGF)-β. The results indicate the potentiality of rLdAdoHcy protein as a suitable vaccine candidate against VL. PMID:26898994

  2. Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response

    PubMed Central

    Serafino, Annalucia; Vallebona, Paola Sinibaldi; Andreola, Federica; Zonfrillo, Manuela; Mercuri, Luana; Federici, Memmo; Rasi, Guido; Garaci, Enrico; Pierimarchi, Pasquale

    2008-01-01

    Background Besides few data concerning the antiseptic properties against a range of microbial agents and the anti-inflammatory potential both in vitro and in vivo, little is known about the influence of Eucalyptus oil (EO) extract on the monocytic/macrophagic system, one of the primary cellular effectors of the immune response against pathogen attacks. The activities of this natural extract have mainly been recognized through clinical experience, but there have been relatively little scientific studies on its biological actions. Here we investigated whether EO extract is able to affect the phagocytic ability of human monocyte derived macrophages (MDMs) in vitro and of rat peripheral blood monocytes/granulocytes in vivo in absence or in presence of immuno-suppression induced by the chemotherapeutic agent 5-fluorouracil (5-FU). Methods Morphological activation of human MDMs was analysed by scanning electron microscopy. Phagocytic activity was tested: i) in vitro in EO treated and untreated MDMs, by confocal microscopy after fluorescent beads administration; ii) in vivo in monocytes/granulocytes from peripheral blood of immuno-competent or 5-FU immuno-suppressed rats, after EO oral administration, by flow cytometry using fluorescein-labelled E. coli. Cytokine release by MDMs was determined using the BD Cytometric Bead Array human Th1/Th2 cytokine kit. Results EO is able to induce activation of MDMs, dramatically stimulating their phagocytic response. EO-stimulated internalization is coupled to low release of pro-inflammatory cytokines and requires integrity of the microtubule network, suggesting that EO may act by means of complement receptor-mediated phagocytosis. Implementation of innate cell-mediated immune response was also observed in vivo after EO administration, mainly involving the peripheral blood monocytes/granulocytes. The 5-FU/EO combined treatment inhibited the 5-FU induced myelotoxicity and raised the phagocytic activity of the granulocytic

  3. Comparative Ethanol-Induced Potentiation of Stimulatory Responses to Dexmethylphenidate Versus Methylphenidate.

    PubMed

    Patrick, Kennerly S; Straughn, Arthur B; Reeves, Owen T; Bernstein, Hilary; Malcolm, Robert

    2015-08-01

    The potentiation of positive subjective responses to immediate-release dexmethylphenidate (d-MPH) or dl-methylphenidate (dl-MPH) by ethanol was investigated over the time course of maximal drug exposure after a single dose. In a 4-way, randomized, crossover study design, 12 men and 12 women normal volunteers received d-MPH (0.15 mg/kg) or dl-MPH (0.3 mg/kg) with or without ethanol (0.6 g/kg). Serial visual analog scales were used as surrogates for drug abuse liability ("high," "good," "like," "stimulated," and "any drug effect"). Combining pure d-MPH with ethanol significantly (P < 0.005) increased the area under the effect curves (AUC(0-5.25h)) of all 5 subscales. The dl-MPH-ethanol combination significantly (P < 0.05) increased these AUCs with the exception of like (P = 0.08). Effects of the pure d-MPH-ethanol combination exhibited delayed potentiation relative to dl-MPH-ethanol. A pharmacokinetic interaction between the l-isomer of dl-MPH and ethanol has previously been shown to increase early exposure to d-MPH. Administration of the pure isomer d-MPH precludes this absorption phase pharmacokinetic interaction with ethanol. This notwithstanding, the pure d-MPH-ethanol combination resulted in comparable, if not greater, cumulative stimulant potentiation than the dl-MPH-ethanol combination. These findings provide evidence of a pharmacodynamic component to d-MPH-ethanol synergistic interactions and carry implications for the rational drug individualization in the treatment of attention-deficit/hyperactivity disorder. PMID:26075488

  4. Self-stimulatory behavior and perceptual reinforcement.

    PubMed Central

    Lovaas, I; Newsom, C; Hickman, C

    1987-01-01

    Self-stimulatory behavior is repetitive, stereotyped, functionally autonomous behavior seen in both normal and developmentally disabled populations, yet no satisfactory theory of its development and major characteristics has previously been offered. We present here a detailed hypothesis of the acquisition and maintenance of self-stimulatory behavior, proposing that the behaviors are operant responses whose reinforcers are automatically produced interoceptive and exteroceptive perceptual consequences. The concept of perceptual stimuli and reinforcers, the durability of self-stimulatory behaviors, the sensory extinction effect, the inverse relationship between self-stimulatory and other behaviors, the blocking effect of self-stimulatory behavior on new learning, and response substitution effects are discussed in terms of the hypothesis. Support for the hypothesis from the areas of sensory reinforcement and sensory deprivation is also reviewed. Limitations of major alternative theories are discussed, along with implications of the perceptual reinforcement hypothesis for the treatment of excessive self-stimulatory behavior and for theoretical conceptualizations of functionally related normal and pathological behaviors. PMID:3583964

  5. Comparative Analysis of Cellular Immune Responses in Treated Leishmania Patients and Hamsters against Recombinant Th1 Stimulatory Proteins of Leishmania donovani

    PubMed Central

    Joshi, Sumit; Yadav, Narendra K.; Rawat, Keerti; Tripathi, Chandra Dev P.; Jaiswal, Anil K.; Khare, Prashant; Tandon, Rati; Baharia, Rajendra K.; Das, Sanchita; Gupta, Reema; Kushawaha, Pramod K.; Sundar, Shyam; Sahasrabuddhe, Amogh A.; Dube, Anuradha

    2016-01-01

    Our prior studies demonstrated that cellular response of T helper 1 (Th1) type was generated by a soluble antigenic fraction (ranging from 89.9 to 97.1 kDa) of Leishmania donovani promastigote, in treated Leishmania patients as well as hamsters and showed significant prophylactic potential against experimental visceral leishmaniasis (VL). Eighteen Th1 stimulatory proteins were identified through proteomic analysis of this subfraction, out of which 15 were developed as recombinant proteins. In the present work, we have evaluated these 15 recombinant proteins simultaneously for their comparative cellular responses in treated Leishmania patients and hamsters. Six proteins viz. elongation factor-2, enolase, aldolase, triose phosphate isomerase, protein disulfide isomerase, and p45 emerged as most immunogenic as they produced a significant lymphoproliferative response, nitric oxide generation and Th1 cytokine response in PBMCs and lymphocytes of treated Leishmania patients and hamsters respectively. The results suggested that these proteins may be exploited for developing a successful poly-protein and/or poly-epitope vaccine against VL. PMID:27047452

  6. Characterization of a double-CRD-mutated Gal-8 recombinant protein that retains co-stimulatory activity on antigen-specific T-cell response.

    PubMed

    Schroeder, Matías Nicolás; Tribulatti, María Virginia; Carabelli, Julieta; André-Leroux, Gwenaëlle; Caramelo, Julio Javier; Cattaneo, Valentina; Campetella, Oscar

    2016-04-01

    Galectins (Gals) constitute a family of mammalian lectins with affinity for β-galactosides, characterized by the presence of conserved CRDs (carbohydrate-recognition domains). We have found previously that Gal-8, from the tandem-repeat group with two linked CRDs, exerts two separate actions on CD4(+)T-cells: antigen-independent proliferation and, at lower concentration, antigen-specific co-stimulation. Whereas proliferation can be ascribed to the pro-inflammatory role of Gal-8, the co-stimulatory activity of borderline T-cell-specific responses allows the proposal of Gal-8 as an adjuvant in vaccination. To study the relevance of glycan-lectin interaction to these T-cell activities, we generated a double-mutated protein (Gal-8mut) by replacing canonical arginine residues on each CRD, so as to abolish sugar-binding capacity. As expected, Gal-8mut was unable to bind to lactosyl-Sepharose, confirming that lactose recognition was precluded; however, preservation of lectin activity was still evident since Gal-8mut displayed haemoagglutinatory effects and binding capacity to the T-cell surface. To search for glycan affinity, a glycan microarray analysis was conducted which revealed that Gal-8mut lost most low- and intermediate-, but retained high-, affinity interactions, mainly to polylactosamines and blood group antigens. These findings were supported further by molecular modelling. Regarding biological activity, Gal-8mut was unable to induce T-cell proliferation, but efficiently co-stimulated antigen-specific responses, bothin vitroandin vivo.Therefore Gal-8mut represents a useful tool to dissect the specificities of lectin-glycan interactions underlying distinctive Gal-8 activities on T-cell biology. Moreover, given its distinguishing properties, Gal-8mut could be used to enhance borderline immune responses without the non-specific pro-inflammatory activity or other potential adverse effects. PMID:26795039

  7. Differential roles of the co-stimulatory molecules GITR and CTLA-4 in the immune response to Trichinella spiralis.

    PubMed

    Furze, Rebecca C; Culley, Fiona J; Selkirk, Murray E

    2006-10-01

    We investigated the roles of the regulatory molecules glucocorticoid-induced TNF receptor family-related protein (GITR) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) in murine infection with the nematode parasite Trichinella spiralis. Expression of GITR and CTLA-4 was rapidly upregulated on cells in the mesenteric lymph nodes and spleen, with approximately 80% of CD4+ lymphocytes expressing GITR by day 7 post-infection, coinciding with release and dissemination of newborn larvae. As the infection progressed to the chronic muscle phase, expression of GITR returned to normal, whereas CTLA-4 was sustained as late as day 60. Mice treated with anti-GITR antibodies rapidly developed higher titres of parasite-specific IgG1, IgG2a, IgG2b and IgM than controls. This was accompanied by elevated background lymphocyte proliferation, but parasite establishment in the intestine or the muscle was unaffected. In contrast, treatment with anti-CTLA-4 antibody resulted in elevated serum IgE, enhanced production of interleukin-4 and interleukin-10, and lower numbers of parasites recovered from skeletal muscle. These results reveal different temporal and regulatory roles for CTLA-4 and GITR in immune responses to helminth infection. PMID:17045510

  8. Natural killer cell stimulatory factor (NKSF) augments natural killer cell and antibody-dependent tumoricidal response against colon carcinoma cell lines.

    PubMed

    Lieberman, M D; Sigal, R K; Williams, N N; Daly, J M

    1991-04-01

    The therapy of colorectal cancer may be improved by biologic response modifiers that enhance natural killer (NK) cell and antibody-dependent tumoricidal mechanisms. This study examined the effect of a recently discovered cytokine purified from the supernatant of an Ebstein-Barr virus-transformed B-lymphoblastoid cell line (RPMI-8866), natural killer cell stimulatory factor (NKSF), on NK and antibody-dependent cellular cytotoxicity (ADCC) of human colon adenocarcinoma cell lines. Human peripheral blood lymphocytes were cultured for 24 hr in the presence or absence of NKSF (3.6 pM) or interleukin-2 (1 nM). The cultured lymphocytes were analyzed for lytic potential toward chromium-51-labeled colon carcinoma targets SW 1116, 498 LI, and WC 1. ADCC was measured by incubating chromium-51-labeled SW 1116 or WC 1 targets with the monoclonal antibody CO17-1A, an IgG2a antibody reactive with gastrointestinal cancer-associated cell antigen, or control mouse IgG prior to testing NKSF-treated or control PBL effectors in a 6-hr cytotoxicity assay. NKSF significantly enhanced NK cytolysis of colon carcinoma and NK-resistant lymphoma cell lines, and on a molar basis was approximately 300 times more potent than interleukin-2 in generating NK cytotoxicity. Furthermore, NKSF significantly augmented lymphocyte-mediated ADCC against colon carcinoma targets, and the combination of NKSF with the antibody CO17-1A had an additive effect on lymphocyte tumoricidial capacity. Thus, NKSF may have a potential role in the treatment of colon cancer. PMID:1673486

  9. Bio-inspired Nanomaterials for Biosensing and Cell Response

    NASA Astrophysics Data System (ADS)

    Stevens, Molly

    2012-02-01

    This talk will provide an overview of our recent developments in bio-inspired nanomaterials for tissue regeneration and sensing. Bio-responsive nanomaterials are of growing importance with potential applications including drug delivery, diagnostics and tissue engineering [1]. DNA-, protein- or peptide-functionalised nanoparticle (NP) aggregates are particularly useful systems since triggered changes in their aggregation states may be readily monitored. Our recent simple conceptually novel approaches to real-time monitoring of protease, lipase and kinase enzyme action using modular peptide functionalized NPs will be presented [2,3,4]. The highly interdisciplinary field of Tissue Engineering (TE) can also benefit from advances in the design of bio-responsive nanomaterials. TE involves the development of artificial scaffold structures on which new cells are encouraged to grow. The ability to control topography and chemistry at the nanoscale offers exciting possibilities for stimulating growth of new tissue through the development of novel nanostructured scaffolds that mimic the nanostructure of the tissues in the body [1,5,6]. Recent developments in this context will be discussed as well as novel approaches to in vivo tissue regeneration of large volumes of highly vascularised and hierarchically organized tissue [7,8,9]. [4pt] [1] MM Stevens, J George. Science 310:1135-1138 (2005)[0pt] [2] A Laromaine, L Koh, M Murugesan, RV Ulijn, MM Stevens. Journal of the American Chemical Society 129:4156-4157 (2007)[0pt] [3] J Ghadiali, MM Stevens. Advanced Materials 20: 4359-4363 (2008); J Ghadiali et al, ACS Nano 4:4915-4919 (2010)[0pt] [4] D Aili, M Mager, D Roche, MM Stevens. Nano Letters 11:1401-1405 (2011) [0pt] [5] E Place, ND Evans, MM Stevens. Nature Materials 8:457-470 (2009)[0pt] [6] MD Mager, V LaPointe, MM Stevens. Nature Chemistry 3:582-589 (2011)[0pt] [7] MM Stevens et. al. Proc. Natl. Acad. Sci. USA 102:11450-11455 (2005)[0pt] [8] E Gentleman et al. Nature

  10. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    PubMed

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody

  11. Flow cytometric analysis of the stimulatory response of T cell subsets from normal and HIV-1+ individuals to various mitogenic stimuli in vitro.

    PubMed Central

    Medina, E; Borthwick, N; Johnson, M A; Miller, S; Bofill, M

    1994-01-01

    A novel technique is described which allows the study of the responses of T cell subpopulations stimulated in bulk cultures without interfering with cell-cell interactions. The number and phenotype of lymphoblasts developing following stimulation with phytohaemagglutinin (PHA), anti-CD3, staphylococcal protein A (SPA) and pokeweed mitogen (PWM) was determined in HIV-1- and HIV-1+ patients using a new five-parameter flow cytometric method. We found that normal T cells responded faster to PHA than to any of the other mitogens tested. The peak of the PHA response occurred on day 3, followed by anti-CD3 and SPA on day 4 and PWM mitogen on day 5. Although PHA and anti-CD3 stimulated up to 95% and 80% of lymphocytes, respectively, SPA and PWM stimulated only 40% and 30% of cells, respectively. A defective T cell response was observed in lymphocytes cultured from asymptomatic HIV-1+ patients compared with negative controls. This loss of response was related to a selective mortality of T cells following mitogenic stimulation, referred to as activation-associated lymphocyte death (AALD). The results showed that stronger mitogens (PHA and anti-CD3) induced AALD in a larger proportion (50-60%) of T cells than weaker mitogens such as SPA and PWM (30-40%), and that AALD affected different lymphocyte subsets to different extents. AALD occurred more frequently in total CD8+ and CD45RO+ T cells compared with CD4+ and CD45RA+ T cells, but memory CD4+ T cells were the population most severely affected in samples from HIV-1+ donors. PMID:7914156

  12. Polymorphisms in B Cell Co-Stimulatory Genes Are Associated with IgG Antibody Responses against Blood–Stage Proteins of Plasmodium vivax

    PubMed Central

    Cassiano, Gustavo C.; Furini, Adriana A. C.; Capobianco, Marcela P.; Storti-Melo, Luciane M.; Cunha, Maristela G.; Kano, Flora S.; Carvalho, Luzia H.; Soares, Irene S.; Santos, Sidney E.; Póvoa, Marinete M.; Machado, Ricardo L. D.

    2016-01-01

    The development of an effective immune response can help decrease mortality from malaria and its clinical symptoms. However, this mechanism is complex and has significant inter-individual variation, most likely owing to the genetic contribution of the human host. Therefore, this study aimed to investigate the influence of polymorphisms in genes involved in the costimulation of B-lymphocytes in the naturally acquired humoral immune response against proteins of the asexual stage of Plasmodium vivax. A total of 319 individuals living in an area of malaria transmission in the Brazilian Amazon were genotyped for four SNPs in the genes CD40, CD40L, BLYS and CD86. In addition, IgG antibodies against P. vivax apical membrane antigen 1 (PvAMA–1), Duffy binding protein (PvDBP) and merozoite surface protein 1 (PvMSP–119) were detected by ELISA. The SNP BLYS –871C>T was associated with the frequency of IgG responders to PvAMA–1 and PvMSP–119. The SNP CD40 –1C>T was associated with the IgG response against PvDBP, whereas IgG antibody titers against PvMSP–119 were influenced by the polymorphism CD86 +1057G>A. These data may help to elucidate the immunological aspects of vivax malaria and consequently assist in the design of malaria vaccines. PMID:26901523

  13. Polymorphisms in B Cell Co-Stimulatory Genes Are Associated with IgG Antibody Responses against Blood-Stage Proteins of Plasmodium vivax.

    PubMed

    Cassiano, Gustavo C; Furini, Adriana A C; Capobianco, Marcela P; Storti-Melo, Luciane M; Cunha, Maristela G; Kano, Flora S; Carvalho, Luzia H; Soares, Irene S; Santos, Sidney E; Póvoa, Marinete M; Machado, Ricardo L D

    2016-01-01

    The development of an effective immune response can help decrease mortality from malaria and its clinical symptoms. However, this mechanism is complex and has significant inter-individual variation, most likely owing to the genetic contribution of the human host. Therefore, this study aimed to investigate the influence of polymorphisms in genes involved in the costimulation of B-lymphocytes in the naturally acquired humoral immune response against proteins of the asexual stage of Plasmodium vivax. A total of 319 individuals living in an area of malaria transmission in the Brazilian Amazon were genotyped for four SNPs in the genes CD40, CD40L, BLYS and CD86. In addition, IgG antibodies against P. vivax apical membrane antigen 1 (PvAMA-1), Duffy binding protein (PvDBP) and merozoite surface protein 1 (PvMSP-119) were detected by ELISA. The SNP BLYS -871C>T was associated with the frequency of IgG responders to PvAMA-1 and PvMSP-119. The SNP CD40 -1C>T was associated with the IgG response against PvDBP, whereas IgG antibody titers against PvMSP-119 were influenced by the polymorphism CD86 +1057G>A. These data may help to elucidate the immunological aspects of vivax malaria and consequently assist in the design of malaria vaccines. PMID:26901523

  14. Upstream stimulatory factor proteins are major components of the glucose response complex of the L-type pyruvate kinase gene promoter.

    PubMed

    Lefrançois-Martinez, A M; Martinez, A; Antoine, B; Raymondjean, M; Kahn, A

    1995-02-10

    L-type pyruvate kinase (L-PK) gene transcription is induced by glucose through its glucose response element (GlRE) composed of two degenerated E boxes able to bind in vitro ubiquitous upstream stimulator factor (USF) proteins. Here we demonstrate in vivo, by transient transfections in hepatoma cells, that (i) native USF proteins synthesized from expression vectors can act as transactivators of the L-PK promoter via the GlRE, stimulating transcription without glucose and, therefore, decreasing the glucose responsiveness of the promoter; (ii) expression of the truncated USF proteins, able to bind the GlRE but devoid of the NH2-terminal activation domain, represses the activation of the L-PK promoter by glucose; and (iii) a similar repression of the glucose effect is observed upon expression of mutant USF proteins devoid of the basic DNA binding domain, able to dimerize with endogenous USF but not to bind the GlRE. We conclude that USF proteins are components of the transcriptional glucose response complex assembled on the L-PK gene promoter. PMID:7852331

  15. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection.

    PubMed

    Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages

  16. A Comprehensive Evaluation System for Military Hospitals' Response Capability to Bio-terrorism.

    PubMed

    Wang, Hui; Jiang, Nan; Shao, Sicong; Zheng, Tao; Sun, Jianzhong

    2015-05-01

    The objective of this study is to establish a comprehensive evaluation system for military hospitals' response capacity to bio-terrorism. Literature research and Delphi method were utilized to establish the comprehensive evaluation system for military hospitals' response capacity to bio-terrorism. Questionnaires were designed and used to survey the status quo of 134 military hospitals' response capability to bio-terrorism. Survey indicated that factor analysis method was suitable to for analyzing the comprehensive evaluation system for military hospitals' response capacity to bio-terrorism. The constructed evaluation system was consisted of five first-class and 16 second-class indexes. Among them, medical response factor was considered as the most important factor with weight coefficient of 0.660, followed in turn by the emergency management factor with weight coefficient of 0.109, emergency management consciousness factor with weight coefficient of 0.093, hardware support factor with weight coefficient of 0.078, and improvement factor with weight coefficient of 0.059. The constructed comprehensive assessment model and system are scientific and practical. PMID:25605265

  17. Asperlicin antagonizes stimulatory effects of cholecystokinin on isolated islets

    SciTech Connect

    Zawalich, W.S.; Diaz, V.A.

    1987-03-01

    Asperlicin, a product derived from the fungus Aspergillus alliaceus, antagonized the multiple stimulatory effects of cholecystokinin (CCK-8S) on isolated islets. At a level of 10 uM, asperlicin completely inhibited insulin release in response to 25 nM CCK-8S. Increasing the level of CCK-8S to 100 nM partially restored a secretory response, while an even greater insulin stimulatory effect was noted with 500 nM CCK-8S. The inhibitory effect of asperlicin on CCK-8S-induced release was reversible. Asperlicin exposure had no effect on glucose or glyceraldehyde-induced secretion. Asperlicin reduced, in parallel with secretion, the increase in /sup 3/H efflux from (/sup 3/H) inositol prelabeled islets usually noted with CCK-8S addition. Asperlicin did not influence the small glucose-stimulated increase in /sup 3/H efflux. The results support the notion that asperlicin is a specific and potent antagonist of the multiple stimulatory effects of CCK-8S on islet tissue.

  18. Designing a bio-responsive robot from DNA origami.

    PubMed

    Ben-Ishay, Eldad; Abu-Horowitz, Almogit; Bachelet, Ido

    2013-01-01

    Nucleic acids are astonishingly versatile. In addition to their natural role as storage medium for biological information(1), they can be utilized in parallel computing(2,3) , recognize and bind molecular or cellular targets(4,5) , catalyze chemical reactions(6,7) , and generate calculated responses in a biological system(8,9). Importantly, nucleic acids can be programmed to self-assemble into 2D and 3D structures(10-12), enabling the integration of all these remarkable features in a single robot linking the sensing of biological cues to a preset response in order to exert a desired effect. Creating shapes from nucleic acids was first proposed by Seeman(13), and several variations on this theme have since been realized using various techniques(11,12,14,15) . However, the most significant is perhaps the one proposed by Rothemund, termed scaffolded DNA origami(16). In this technique, the folding of a long (>7,000 bases) single-stranded DNA 'scaffold' is directed to a desired shape by hundreds of short complementary strands termed 'staples'. Folding is carried out by temperature annealing ramp. This technique was successfully demonstrated in the creation of a diverse array of 2D shapes with remarkable precision and robustness. DNA origami was later extended to 3D as well(17,18) . The current paper will focus on the caDNAno 2.0 software(19) developed by Douglas and colleagues. caDNAno is a robust, user-friendly CAD tool enabling the design of 2D and 3D DNA origami shapes with versatile features. The design process relies on a systematic and accurate abstraction scheme for DNA structures, making it relatively straightforward and efficient. In this paper we demonstrate the design of a DNA origami nanorobot that has been recently described(20). This robot is 'robotic' in the sense that it links sensing to actuation, in order to perform a task. We explain how various sensing schemes can be integrated into the structure, and how this can be relayed to a desired effect

  19. Co-stimulatory and Co-inhibitory Pathways in Autoimmunity.

    PubMed

    Zhang, Qianxia; Vignali, Dario A A

    2016-05-17

    The immune system is guided by a series of checks and balances, a major component of which is a large array of co-stimulatory and co-inhibitory pathways that modulate the host response. Although co-stimulation is essential for boosting and shaping the initial response following signaling through the antigen receptor, inhibitory pathways are also critical for modulating the immune response. Excessive co-stimulation and/or insufficient co-inhibition can lead to a breakdown of self-tolerance and thus to autoimmunity. In this review, we will focus on the role of co-stimulatory and co-inhibitory pathways in two systemic (systemic lupus erythematosus and rheumatoid arthritis) and two organ-specific (multiple sclerosis and type 1 diabetes) emblematic autoimmune diseases. We will also discuss how mechanistic analysis of these pathways has led to the identification of potential therapeutic targets and initiation of clinical trials for autoimmune diseases, as well as outline some of the challenges that lie ahead. PMID:27192568

  20. Governing at a distance: social marketing and the (bio) politics of responsibility.

    PubMed

    Crawshaw, Paul

    2012-07-01

    In the recently published lectures from the College de France series, The Birth of Bio-Politics, Foucault (2009) offers his most explicit analysis of neo-liberal governmentality and its impact upon states and societies in the late twentieth century. Framed in terms of the bio-political as a mode of governance of populations and its relationship to neo-liberalism, these lectures offer a rich seam of theoretical resources with which to interrogate contemporary forms of governmentality. This paper seeks to apply these and some recent critical analysis by Foucauldian scholars, to the study of health governance, with particular reference to the use of social marketing as a strategy to improve the health of populations 'at a distance'. Reflecting a broader decollectivisation of welfare, such strategies are identified as exemplars of neo-liberal methods of governance through inculcating self management and individualisation of responsibility for health and wellbeing. Drawing on original empirical data collected with a sample of fifty long term unemployed men in 2009, this paper critically examines social marketing as a newer feature of health governance and reflects upon participants' responses to it as a strategy in the context of their wider understandings of health, choice and responsibility. PMID:22541800

  1. Products for Alzheimer's self-stimulatory wanderers.

    PubMed

    Lucero, M; Pearson, R; Hutchinson, S; Leger-Krall, S; Rinalducci, E

    2001-01-01

    The objective of this study was to develop a variety of sensory stimulation products for the behavioral intervention of patients with Alzheimer's type dementia. Many caregivers have relied on physical and chemical restraints as the primary method of patient intervention due to the lack of appropriate dementia management products. This significantly lowers the sufferer's quality of care and life. As the age group most susceptible to Alzheimer's disease (65 and older) is the fastest growing segment of our society, an appropriate care solution must be sought. The specific aim of this study was to develop products that are sensory satisfying for the Alzheimer's patient that exhibits self-stimulatory wandering behavior. Sensory satisfying objects for product development would be determined through structured observations of self-stimulatory wanderers in an institutionalized setting. Variations of product design and mounting would be pursued in order to develop products that are not only safe and effective for patient use, but are easy for the caregiver to implement and maintain. Such products would have widespread commercial application in both the institutional and private care settings such as nursing homes, adult day care facilities, Alzheimer's care facilities, convalescent homes, mental health institutions, and assisted-living facilities. PMID:11416947

  2. A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation.

    PubMed

    Wu, Songlin; Wang, Pei; Xiao, Chen; Li, Zheng; Yang, Bing; Fu, Jieyang; Chen, Jing; Wan, Neng; Ma, Cong; Li, Maoteng; Yang, Xiangliang; Zhan, Yi

    2016-01-01

    Physiological processes such as metabolism, cell apoptosis and immune responses, must be strictly regulated to maintain their homeostasis and achieve their normal physiological functions. The speed with which bio-molecular homeostatic regulation occurs directly determines the ability of an organism to adapt to conditional changes. To produce a quick-responsive regulatory system that can be easily utilized for various types of homeostasis, a device called nano-fingers that facilitates the regulation of physiological processes was constructed using DNA origami nanotechnology. This nano-fingers device functioned in linked open and closed phases using two types of DNA tweezers, which were covalently coupled with aptamers that captured specific molecules when the tweezer arms were sufficiently close. Via this specific interaction mechanism, certain physiological processes could be simultaneously regulated from two directions by capturing one biofactor and releasing the other to enhance the regulatory capacity of the device. To validate the universal application of this device, regulation of the homeostasis of the blood coagulant thrombin was attempted using the nano-fingers device. It was successfully demonstrated that this nano-fingers device achieved coagulation buffering upon the input of fuel DNA. This nano-device could also be utilized to regulate the homeostasis of other types of bio-molecules. PMID:27506964

  3. A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation

    PubMed Central

    Wu, Songlin; Wang, Pei; Xiao, Chen; Li, Zheng; Yang, Bing; Fu, Jieyang; Chen, Jing; Wan, Neng; Ma, Cong; Li, Maoteng; Yang, Xiangliang; Zhan, Yi

    2016-01-01

    Physiological processes such as metabolism, cell apoptosis and immune responses, must be strictly regulated to maintain their homeostasis and achieve their normal physiological functions. The speed with which bio-molecular homeostatic regulation occurs directly determines the ability of an organism to adapt to conditional changes. To produce a quick-responsive regulatory system that can be easily utilized for various types of homeostasis, a device called nano-fingers that facilitates the regulation of physiological processes was constructed using DNA origami nanotechnology. This nano-fingers device functioned in linked open and closed phases using two types of DNA tweezers, which were covalently coupled with aptamers that captured specific molecules when the tweezer arms were sufficiently close. Via this specific interaction mechanism, certain physiological processes could be simultaneously regulated from two directions by capturing one biofactor and releasing the other to enhance the regulatory capacity of the device. To validate the universal application of this device, regulation of the homeostasis of the blood coagulant thrombin was attempted using the nano-fingers device. It was successfully demonstrated that this nano-fingers device achieved coagulation buffering upon the input of fuel DNA. This nano-device could also be utilized to regulate the homeostasis of other types of bio-molecules. PMID:27506964

  4. Targeting the finite-deformation response of wavy biological tissues with bio-inspired material architectures.

    PubMed

    Tu, Wenqiong; Pindera, Marek-Jerzy

    2013-12-01

    The Particle Swarm Optimization algorithm driven by a homogenized-based model is employed to target the response of three types of heart-valve chordae tendineae with different stiffening characteristics due to different degrees of waviness of collagen fibril/fiber bundles. First, geometric and material parameters are identified through an extensive parametric study that produce excellent agreement of the simulated response based on simplified unit cell architectures with the actual response of the complex biological tissue. These include amplitude and wavelength of the crimped chordae microstructure, elastic moduli of the constituent phases, and degree of microstructural refinement of the stiff phase at fixed volume fraction whose role in the stiffening response is elucidated. The study also reveals potential non-uniqueness of bio-inspired wavy microstructures in attaining the targeted response of certain chordae tendineae crimp configurations. The homogenization-based Particle Swarm Optimization algorithm, whose predictions are validated through the parametric study, is then shown to be an excellent tool in identifying optimal unit cell architectures in the design space that exhibits very steep gradients. Finally, defect criticality of optimal unit cell architectures is investigated in order to assess their feasibility in replacing actual biological tendons with stiffening characteristics. PMID:24018396

  5. Biological correlates of child and adolescent responses to disaster exposure: a bio-ecological model.

    PubMed

    Weems, Carl F

    2015-07-01

    Exposure to both human-caused and natural disasters is associated with a number of postevent reactions in youth including the experience of symptoms of several mental disorders. There is wide variability in these responses, with some youth having very intense exposure to the disaster and yet showing resilience or even personal growth, while others with low exposure sometimes show intensely negative reactions. Research findings are reviewed in this article to identify biological correlates of risk and resilience focusing on potential genetic, neurobiological, and physiological factors linked to the reactions of children exposed to disasters. A bio-ecological model is presented to couch this review of biological correlates of disaster exposure. The model predicts susceptibility to negative reactions after disaster exposure, and the biological correlates of disaster reactions can be understood in terms of this susceptibility as it relates to biological markers of the fear system. PMID:25980506

  6. The bio-response of osteocytes and its regulation on osteoblasts under vibration.

    PubMed

    Wu, Xin-Tong; Sun, Lian-Wen; Qi, Hong-Yu; Shi, Hao; Fan, Yu-Bo

    2016-04-01

    Vibration, especially at low magnitude and high frequency (LMHF), was demonstrated to be anabolic for bone, but how the LMHF vibration signal is perceived by osteocytes is not fully studied. On the other hand, the mechanotransduction of osteocytes under shear stress has been scientists' primary focus for years. Due to the small strain caused by low-magnitude vibration, whether the previous explanation for shear stress will still work for LMHF vibration is unknown. In this study, a finite element method (FEM) model based on the real geometrical shape of an osteocyte was built to compare the mechanical behaviors of osteocytes under LMHF vibration and shear stress. The bio-response of osteocytes to vibration under different frequencies, including the secretion of soluble factors and the concentration of intracellular calcium, were studied. The regulating effect of the conditioned medium (CM) from vibrated osteocytes on osteoblasts was also studied. The FEM analysis result showed the cell membrane deformation under LMHF vibration was very small (with a peak value of 1.09%) as compared to the deformation caused by shear stress (with a peak value of 6.65%). The F-actin stress fibers of osteocytes were reorganized, especially on the nucleus periphery after LMHF vibration. The vibration at 30 Hz has a promoting effect on osteocytes and the osteogenesis of osteoblasts, whereas vibration at 90 Hz was suppressive. These results lead to a conclusion that the bio-response of osteocytes to LMHF vibration is frequency-dependent and is more related to the cytoskeleton on nuclear periphery rather than the membrane deformation. PMID:26715381

  7. Forensic DNA Barcoding and Bio-Response Studies of Animal Horn Products Used in Traditional Medicine

    PubMed Central

    Han, Yu M.; Peng, Cheng; Dong, Xiao P.; Chen, Shi L.; Sun, Li G.; Xiao, Xiao H.

    2013-01-01

    Background Animal horns (AHs) have been applied to traditional medicine for more than thousands of years, of which clinical effects have been confirmed by the history. But now parts of AHs have been listed in the items of wildlife conservation, which limits the use for traditional medicine. The contradiction between the development of traditional medicine and the protection of wild resources has already become the common concern of zoophilists, traditional medical professionals, economists, sociologists. We believe that to strengthen the identification for threatened animals, to prevent the circulation of them, and to seek fertile animals of corresponding bioactivities as substitutes are effective strategies to solve this problem. Methodology/Principal Findings A powerful technique of DNA barcoding based on the mitochondrial gene cytochrome c oxidase I (COI) was used to identify threatened animals of Bovidae and Cervidae, as well as their illegal adulterants (including 10 species and 47 specimens). Meanwhile, the microcalorimetric technique was used to characterize the differences of bio-responses when those animal specimens acted on model organism (Escherichia coli). We found that the COI gene could be used as a universal primer to identify threatened animals and illegal adulterants mentioned above. By analyzing 223 mitochondrial COI sequences, a 100% identification success rate was achieved. We further found that the horns of Mongolian Gazelle and Red Deer could be exploited as a substitute for some functions of endangered Saiga Antelope and Sika Deer in traditional medicine, respectively. Conclusion/Significance Although it needs a more comprehensive evaluation of bioequivalence in order to completely solve the problem of substitutes for threatened animals, we believe that the identification (DNA barcoding) of threatened animals combined with seeking substitutions (bio-response) can yet be regarded as a valid strategy for establishing a balance between the

  8. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    SciTech Connect

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Thomas, Edward Victor; Slepoy, Alexander; Zhang, Zhaoduo; May, Elebeoba Eni; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-12-01

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.

  9. To begin at the beginning: the science of bio-stimulation in cells and tissues

    NASA Astrophysics Data System (ADS)

    Bisland, Stuart K.; Wilson, Brian C.

    2006-02-01

    There have been numerous reports describing the phenomena of low-level light therapy (LLLT) within the clinic and its broad application to alleviate pain, enhance the rate of wound healing, including spinal cord injury, reduce inflammation, improve learning, bolster immunity and combat disease. Yet, despite the breadth of potential applications for which bio-stimulation may prove beneficial, there persists a dramatic ignorance in our understanding of the signal pathways that govern these effects. At the cellular level, there exist a variety of endogenous chromophores such as cytochrome C oxidase, NADPH, FAD, FMN and other factors intrinsic to the electron transport chain in mitochondria that absorb light of specific wavelength and will undoubtedly have their role in bio-stimulation, however the dose dependency of effect with regard to total light fluence and fluence rate, as well as the importance of specific subcellular targeting, remains elusive. Furthermore, the translation of cellular response(s) in vitro to in vivo needs to be expounded. Clearly, a rigorous examination of bio-stimulatory parameters as a function of cellular and tissue response is necessary if we are to attain optimized, reproducible protocols based on a true scientific rationale for using bio-stimulation as a therapeutic modality in clinic. This paper introduces a number of the challenges we now face for advancing the bio-stimulation phenomena into the scientific mainstream by highlighting our current knowledge in this field as well as some of the research that we are conducting using LLLT in combination with photodynamic therapy.

  10. Complement activation and cytokine response by BioProtein, a bacterial single cell protein.

    PubMed

    Sikkeland, L I B; Thorgersen, E B; Haug, T; Mollnes, T E

    2007-04-01

    The bacterial single cell protein (BSCP), BioProtein, is dried bacterial mass derived from fermentation of the gram negative bacteria Methylococcus capsulatus, used for animal and fish feed. Workers in this industry suffer frequently from pulmonary and systemic symptoms which may be induced by an inflammatory reaction. The aim of the present study was to examine the effect of BSCP on inflammation in vitro as evaluated by complement activation and cytokine production. Human serum was incubated with BSCP and complement activation products specific for all pathways were detected by enzyme-linked immunosorbent assay (ELISA). Human whole blood anti-coagulated with lepirudin was incubated with BSCP and a panel of 27 biological mediators was measured using multiplex technology. BSCP induced a dose-dependent complement activation as revealed by a pronounced increase in alternative and terminal pathway activation (fivefold and 20-fold, respectively) at doses from 1 microg BSCP/ml serum and a similar, but less extensive (two- to fourfold) increase in activation of the lectin and classical pathways at doses from 100 and 1000 microg BSCP/ml serum, respectively. Similarly, BSCP induced a dose-dependent production of a number of cytokines, chemokines and growth factors in human whole blood. At doses as low as 0 x 05-0 x 5 microg BSCP/ml blood a substantial increase was seen for tumour necrosis factor (TNF)-alpha, interleukin (IL)-1-beta, IL-6, interferon (IFN)-gamma, IL-8, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, IL-4, IL-9, IL-17, IL-1Ra, granulocyte-colony-stimulating factor (G-CSF) and vascular endothelial growth factor (VEGF). Thus, BSCP induced a substantial activation of all three initial complement pathways as well as a pronounced cytokine response in vitro, indicating a potent inflammatory property of this agent. PMID:17302729

  11. Marked enhancement of the immune response to BioThrax® (Anthrax Vaccine Adsorbed) by the TLR9 agonist CPG 7909 in healthy volunteers.

    PubMed

    Rynkiewicz, Dianna; Rathkopf, Melinda; Sim, Iain; Waytes, A Thomas; Hopkins, Robert J; Giri, Lallan; DeMuria, Deborah; Ransom, Janet; Quinn, James; Nabors, Gary S; Nielsen, Carl J

    2011-08-26

    Immunization with BioThrax(®) (Anthrax Vaccine Adsorbed) is a safe and effective means of preventing anthrax. Animal studies have demonstrated that the addition of CpG DNA adjuvants to BioThrax can markedly increase the immunogenicity of the vaccine, increasing both serum anti-protective antigen (PA) antibody and anthrax toxin-neutralizing antibody (TNA) concentrations. The immune response to CpG-adjuvanted BioThrax in animals was not only stronger, but was also more rapid and led to higher levels of protection in spore challenge models. The B-class CpG DNA adjuvant CPG 7909, a 24-base synthetic, single-strand oligodeoxynucleotide, was evaluated for its safety profile and adjuvant properties in a Phase 1 clinical trial. A double-blind study was performed in which 69 healthy subjects, age 18-45 years, were randomized to receive three doses of either: (1) BioThrax alone, (2) 1 mg of CPG 7909 alone or (3) BioThrax plus 1 mg of CPG 7909, all given intramuscularly on study days 0, 14 and 28. Subjects were monitored for IgG to PA by ELISA and for TNA titers through study day 56 and for safety through month 6. CPG 7909 increased the antibody response by 6-8-fold at peak, and accelerated the response by 3 weeks compared to the response seen in subjects vaccinated with BioThrax alone. No serious adverse events related to study agents were reported, and the combination was considered to be reasonably well tolerated. The marked acceleration and enhancement of the immune response seen by combining BioThrax and CPG 7909 offers the potential to shorten the course of immunization and reduce the time to protection, and may be particularly useful in the setting of post-exposure prophylaxis. PMID:21624418

  12. Functional specificity of two hormone response elements present on the human apoA-II promoter that bind retinoid X receptor alpha/thyroid receptor beta heterodimers for retinoids and thyroids: synergistic interactions between thyroid receptor beta and upstream stimulatory factor 2a.

    PubMed Central

    Hatzivassiliou, Eudoxia; Koukos, George; Ribeiro, Agnes; Zannis, Vassilis; Kardassis, Dimitris

    2003-01-01

    DNA binding and mutagenesis in vitro established that the -67/-55 region of the apoA-II (apolipoprotein A-II) promoter contains a thyroid HRE (hormone response element), which strongly binds RXRalpha (retinoid X receptor alpha)/T(3)Rbeta (thyroid receptor beta) heterodimers and weakly T(3)Rbeta homodimers, but does not bind other homo- or heterodimers of RXRalpha or orphan nuclear receptors. Transactivation was abolished by point mutations in the thyroid HRE. In co-transfection experiments of HEK-293 (human embryonic kidney 293) cells, the -911/+29 human apoA-II promoter was transactivated strongly by RXRalpha/T(3)Rbeta heterodimers in the presence of RA (9- cis retinoic acid) or T(3) (tri-iodothyronine). Homopolymeric promoters containing either three copies of the -73/-40 (element AIIAB) or four copies of the -738/-712 (element AIIJ) apoA-II promoter could be transactivated by RXRalpha/T(3)Rbeta heterodimers in COS-7 cells only in the presence of T(3) or RA respectively. RXRalpha/T(3)Rbeta heterodimers and USF2a (upstream stimulatory factor 2a) synergistically transactivated the -911/+29 apoA-II promoter in the presence of T(3). USF2a also enhanced the activity of a GAL4-T(3)Rbeta fusion protein in the presence of T(3) and suppressed the activity of a GAL4-RXRalpha fusion protein in the presence of RA. These findings suggest a functional specificity of the two HREs of the apoA-II promoter for retinoids and thyroids, which is modulated by synergistic or antagonistic interactions between RXRalpha/T(3)Rbeta heterodimers and the ubiquitous transcription factor USF2a. PMID:12959642

  13. Effect of the nano-bio interface on the genotoxicity of titanium dioxide nanoparticles and associated cellular responses

    NASA Astrophysics Data System (ADS)

    Prasad, Raju Yashaswi

    Several toxicological studies have shown that titanium dioxide nanoparticles (nano-TiO2), one of the most widely produced engineered nanoparticles, can induce genotoxicity; however, potential adverse health effects associated with their physicochemical properties are not fully understood. Proteins in a biological medium can adsorb to the surface of the nanoparticle resulting in the formation of a protein corona that can alter the physicochemical properties of the particle. Furthermore, the protein corona may impact the interaction between nanoparticles and cells, referred to as the nano-bio interface, effecting the uptake, distribution, and toxicity of the particles. Despite the potential influence of the composition of the biological medium on the physicochemical properties and genotoxicity of titanium dioxide nanoparticles, the majority of studies have not examined systematically the influence of medium composition on protein corona, genotoxicity, and cellular responses. In this dissertation we tested the overall hypothesis that titanium dioxide nanoparticles in medium that produces the smallest agglomerates would be taken up into cells and induce genotoxicity, and that exposure would initiate the signaling of key mediators of a DNA damage and inflammation response. Three major findings were shown in this study: 1) Protein corona formation on the surface of nano-TiO2 can impact the nano-bio interface and change cellular interaction. 2) Smaller agglomerates of nano-TiO2 are taken up more by cells without inducing cell cycle arrest, thereby allowing induced DNA damage to be processed into micronuclei in BEAS-2B cells. 3) Nano-TiO 2 in medium that facilitates increased cellular interaction induces the upregulation of the ATM-Chk2 DNA damage response (similar to ionizing radiation) and NF-kappaB inflammation pathways. Taken together, our research provides a systematic examination of the physicochemical properties, genotoxicity, and cellular responses induced by

  14. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China

    PubMed Central

    Wei, Wei; Yu, Yun; Chen, Liding

    2015-01-01

    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes. PMID:26207757

  15. Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing.

    PubMed

    Bai, Ling; Xie, Zhuoying; Wang, Wei; Yuan, Chunwei; Zhao, Yuanjin; Mu, Zhongde; Zhong, Qifeng; Gu, Zhongze

    2014-11-25

    Facile, fast, and cost-effective technology for patterning of responsive colloidal photonic crystals (CPCs) is of great importance for their practical applications. In this report, we develop a kind of responsive CPC patterns with multicolor shifting properties by inkjet printing mesoporous colloidal nanoparticle ink on both rigid and soft substrates. By adjusting the size and mesopores' proportion of nanoparticles, we can precisely control the original color and vapor-responsive color shift extent of mesoporous CPC. As a consequence, multicolor mesoporous CPCs patterns with complex vapor responsive color shifts or vapor-revealed implicit images are subsequently achieved. The complicated and reversible multicolor shifts of mesoporous CPC patterns are favorable for immediate recognition by naked eyes but hard to copy. This approach is favorable for integration of responsive CPCs with controllable responsive optical properties. Therefore, it is of great promise for developing advanced responsive CPC devices such as anticounterfeiting devices, multifunctional microchips, sensor arrays, or dynamic displays. PMID:25300045

  16. Reliability and Validity of the Zephyr[TM] BioHarness[TM] to Measure Respiratory Responses to Exercise

    ERIC Educational Resources Information Center

    Hailstone, Jono; Kilding, Andrew E.

    2011-01-01

    The Zephyr[TM] BioHarness[TM] (Zephyr Technology, Auckland, New Zealand) is a wireless physiological monitoring system that has the ability to measure respiratory rate unobtrusively. However, the ability of the BioHarness[TM] to accurately and reproducibly determine respiratory rate across a range of intensities is currently unknown. The aim of…

  17. Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Peng, Wenhong; Zhu, Shenmin; Zhang, Di

    2016-03-01

    When the constitutive materials of photonic crystals (PCs) are stimuli-responsive, the resultant PCs exhibit optical properties that can be tuned by the stimuli. This can be exploited for promising applications in colour displays, biological and chemical sensors, inks and paints, and many optically active components. However, the preparation of the required photonic structures is the first issue to be solved. In the past two decades, approaches such as microfabrication and self-assembly have been developed to incorporate stimuli-responsive materials into existing periodic structures for the fabrication of PCs, either as the initial building blocks or as the surrounding matrix. Generally, the materials that respond to thermal, pH, chemical, optical, electrical, or magnetic stimuli are either soft or aggregate, which is why the manufacture of three-dimensional hierarchical photonic structures with responsive properties is a great challenge. Recently, inspired by biological PCs in nature which exhibit both flexible and responsive properties, researchers have developed various methods to synthesize metals and metal oxides with hierarchical structures by using a biological PC as the template. This review will focus on the recent developments in this field. In particular, PCs with biological hierarchical structures that can be tuned by external stimuli have recently been successfully fabricated. These findings offer innovative insights into the design of responsive PCs and should be of great importance for future applications of these materials.

  18. Bio-Inspired Synthetic Nanovesicles for Glucose-Responsive Release of Insulin

    PubMed Central

    2015-01-01

    A new glucose-responsive formulation for self-regulated insulin delivery was constructed by packing insulin, glucose-specific enzymes into pH-sensitive polymersome-based nanovesicles assembled by a diblock copolymer. Glucose can passively transport across the bilayer membrane of the nanovesicle and be oxidized into gluconic acid by glucose oxidase, thereby causing a decrease in local pH. The acidic microenvironment causes the hydrolysis of the pH sensitive nanovesicle that in turn triggers the release of insulin in a glucose responsive fashion. In vitro studies validated that the release of insulin from nanovesicle was effectively correlated with the external glucose concentration. In vivo experiments, in which diabetic mice were subcutaneously administered with the nanovesicles, demonstrate that a single injection of the developed nanovesicle facilitated stabilization of the blood glucose levels in the normoglycemic state (<200 mg/dL) for up to 5 days. PMID:25268758

  19. Community Viral Load Management: Can Attractors Contribute to Developing an Improved Bio-social Response to HIV Risk-reduction?

    PubMed

    Burman, Christopher J; Aphane, Marota

    2016-01-01

    This article reports on the first twelve months of a pilot study that was designed to improve community responses to HIV/AIDS in rural South Africa. The framework was designed to enable the modification of emergent attractor landscapes. Specifically, we report on the introduction of a primary probe; the secondary, community initiated probes and the attractors that emerged through the process. Probes were designed to stimulate frame changes amongst participants that would influence social practices. Attractors represent the empirically visible culmination of discrete patterns that influence the dynamic landscape. Managing or modifying these patterns, thus changing the landscape, including social practices, is the principle that underpins the framework. The findings were analysed using a qualitative methodology called causal layered analysis. Six attractors emerged that contribute to reducing the aggregate community viral load, and three attractors emerged that detract from that ambition. The first pilot has provided insights into improving the framework and has had an impact at multiple scales suggesting that the framework is a promising tool for engaging with the bio-social aspects of the contemporary epidemic. PMID:26639922

  20. History of river regulation of the Noce River (NE Italy) and related bio-morphodynamic responses

    NASA Astrophysics Data System (ADS)

    Serlet, Alyssa; Scorpio, Vittoria; Mastronunzio, Marco; Proto, Matteo; Zen, Simone; Zolezzi, Guido; Bertoldi, Walter; Comiti, Francesco; Prà, Elena Dai; Surian, Nicola; Gurnell, Angela

    2016-04-01

    The Noce River is a hydropower-regulated Alpine stream in Northern-East Italy and a major tributary of the Adige River, the second longest Italian river. The objective of the research is to investigate the response of the lower course of the Noce to two main stages of hydromorphological regulation; channelization/ diversion and, one century later, hydropower regulation. This research uses a historical reconstruction to link the geomorphic response with natural and human-induced factors by identifying morphological and vegetation features from historical maps and airborne photogrammetry and implementing a quantitative analysis of the river response to channelization and flow / sediment supply regulation related to hydropower development. A descriptive overview is presented. The concept of evolutionary trajectory is integrated with predictions from morphodynamic theories for river bars that allow increased insight to investigate the river response to a complex sequence of regulatory events such as development of bars, islands and riparian vegetation. Until the mid-19th century the river had a multi-thread channel pattern. Thereafter (1852) the river was straightened and diverted. Upstream of Mezzolombardo village the river was constrained between embankments of approximately 100 m width while downstream they are of approximately 50 m width. Since channelization some interesting geomorphic changes have appeared in the river e.g. the appearance of alternate bars in the channel. In 1926 there was a breach in the right bank of the downstream part that resulted in a multi-thread river reach which can be viewed as a recovery to the earlier multi-thread pattern. After the 1950's the flow and sediment supply became strongly regulated by hydropower development. The analysis of aerial images reveals that the multi-thread reach became progressively stabilized by vegetation development over the bars, though signs of some dynamics can still be recognizable today, despite the

  1. Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response

    NASA Astrophysics Data System (ADS)

    Alexander, Tsouknidas; Antonis, Lontos; Savvas, Savvakis; Nikolaos, Michailidis

    2012-06-01

    3D finite element models representing functional parts of the human skeletal system, have been repeatedly introduced over the last years, to simulate biomechanical response of anatomical characteristics or investigate surgical treatment. The reconstruction of geometrically accurate FEM models, poses a significant challenge for engineers and physicians, as recent advances in tissue engineering dictate highly customized implants, while facilitating the production of alloplast materials that are employed to restore, replace or supplement the function of human tissue. The premises of every accurate reconstruction method, is to encapture the precise geometrical characteristics of the examined tissue and thus the selection of a sufficient imaging technique is of the up-most importance. This paper reviews existing and potential applications related to the current state-of-the-art of medical imaging and simulation techniques. The procedures are examined by introducing their concepts; strengths and limitations, while the authors also present part of their recent activities in these areas. [Figure not available: see fulltext.

  2. Folding and Characterization of a Bio-responsive Robot from DNA Origami.

    PubMed

    Amir, Yaniv; Abu-Horowitz, Almogit; Bachelet, Ido

    2015-01-01

    The DNA nanorobot is a hollow hexagonal nanometric device, designed to open in response to specific stimuli and present cargo sequestered inside. Both stimuli and cargo can be tailored according to specific needs. Here we describe the DNA nanorobot fabrication protocol, with the use of the DNA origami technique. The procedure initiates by mixing short single-strand DNA staples into a stock mixture which is then added to a long, circular, single-strand DNA scaffold in presence of a folding buffer. A standard thermo cycler is programmed to gradually lower the mixing reaction temperature to facilitate the staples-to-scaffold annealing, which is the guiding force behind the folding of the nanorobot. Once the 60 hr folding reaction is complete, excess staples are discarded using a centrifugal filter, followed by visualization via agarose-gel electrophoresis (AGE). Finally, successful fabrication of the nanorobot is verified by transmission electron microscopy (TEM), with the use of uranyl-formate as negative stain. PMID:26709748

  3. Spectroscopic studies on chemical- and photo-responsive molecular machines and their bio-applications

    NASA Astrophysics Data System (ADS)

    Lau, Yuen Agnes

    2011-07-01

    The four chapters presented in this dissertation describe how various spectroscopic techniques are used: 1) to study the operation of molecular machines in solution, 2) to track the operation of molecular machines inside a single cell, and 3) to investigate the photo-decomposition pathway of a biological chromophore. Recent advances in nanotechnology have enriched the development of nano-scale molecular assemblies to be used as delivery platforms for biologically relevant molecules. Among all the molecular assemblies, molecular machines that are incorporated onto various domains of mesoporous silica nanoparticles (MSN) hold considerable potential as a reliable delivery system. Because the ease of functionalization enables chemical or photo-responsive molecular moieties to be covalently attached to the silica framework, these molecular assemblies, with defined mechanized properties, can perform specific functions under external stimuli (pH, redox, or light). While the primary function of these molecular machines is to deliver stored cargo molecules, the means of activation and the motif in which they operate are different. In the first and second chapters of this dissertation, two types of molecular machines, nanovalves and nanoimpellers, and their operations are studied. The ability to continuously monitor and image progression of molecular-based biological events in real-time can enhance our understanding of intracellular processes upon drug, protein and nucleic acid delivery. Using the photo-activated nanoimpeller described in the second chapter, the third chapter explores how it can be used to transport a nuclear staining agent, PI, inside a single cell. Nanoimpellers are made by functionalizing azobenzene molecules to the internal pore surface of MSN. The continuous cis/trans isomerizations are set in motion upon laser illumination at optimal wavelength(s), which facilitate cargo molecules to be expelled from the pores to the surrounding medium. By refining a

  4. Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: Process optimization by response surface methodology.

    PubMed

    Jana, Animesh; Bhattacharya, Priyankari; Swarnakar, Snehasikta; Majumdar, Swachchha; Ghosh, Sourja

    2015-11-01

    Blue green algae Anabaena sp. was cultivated in synthetic arsenite solution to investigate its bio-oxidation potential for arsenic species. Response surface methodology (RSM) was employed based on a 3-level full factorial design considering four factors, viz. initial arsenic (III) concentration, algal dose, temperature and time. Bio-oxidation (%) of arsenic (III) was considered as response for the design. The study revealed that about 100% conversion of As (III) to As (V) was obtained for initial As (III) concentration of 2.5-7.5 mg/L at 30 °C for 72 h of exposure using 3 g/L of algal dose signifying a unique bio-oxidation potential of Anabaena sp. The dissolved CO2 (DCO2) and oxygen (DO) concentration in solution was monitored during the process and based on the data, a probable mechanism was proposed wherein algal cell acts like a catalytic membrane surface and expedites the bio-oxidation process. Bioaccumulation of arsenic, as well as, surface adsorption on algal cell was found considerably low. Lipid content of algal biomass grown in arsenite solution was found slightly lower than that of algae grown in synthetic media. Toxicity effects on algal cells due to arsenic exposure were evaluated in terms of comet assay and chlorophyll a content which indicated DNA damage to some extent along with very little decrease in chlorophyll a content. In summary, the present study explored the potential application of Anabaena sp. as an ecofriendly and sustainable option for detoxification of arsenic contaminated natural water with value-added product generation. PMID:26247411

  5. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms.

    PubMed

    Viollet, B; Lefrançois-Martinez, A M; Henrion, A; Kahn, A; Raymondjean, M; Martinez, A

    1996-01-19

    The ubiquitous upstream stimulatory factor (USF) transcription factors encoded by two distinct genes (USF1 and USF2) exist under the form of various dimers able to bind E-boxes. We report the molecular cloning and functional characterization of USF2 isoforms, corresponding to a 44-kDa subunit, USF2a, and a new 38-kDa subunit, USF2b, generated by differential splicing. Using specific anti-USF antibodies, we define the different binding complexes in various nuclear extracts. In vivo, the USF1/USF2a heterodimer represents over 66% of the USF binding activity whereas the USF1 and USF2a homodimers represent less than 10%, which strongly suggests an in vivo preferential association in heterodimers. In particular, an USF1/USF2b heterodimer accounted for almost 15% of the USF species in some cells. The preferential heterodimerization of USF subunits was reproduced ex vivo, while the in vitro association of cotranslated subunits, or recombinant USF proteins, appeared to be random. In transiently transfected HeLa or hepatoma cells, USF2a and USF1 homodimers transactivated a minimal promoter with similar efficiency, whereas USF2b, which lacks an internal 67-amino acid domain, was a poor transactivator. Additionally, USF2b was an efficient as USF1 and USF2a homodimers in transactivating the liver-specific pyruvate kinase gene promoter. PMID:8576131

  6. Role of upstream stimulatory factor 2 in diabetic nephropathy

    PubMed Central

    Wang, Shuxia

    2015-01-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD). About 20%–30% of people with type 1 and type 2 diabetes develop DN. DN is characterized by both glomerulosclerosis with thickening of the glomerular basement membrane and mesangial matrix expansion, and tubulointerstitial fibrosis. Hyperglycemia and the activation of the intra-renal renin-angiotensin system (RAS) in diabetes have been suggested to play a critical role in the pathogenesis of DN. However, the mechanisms are not well known. Studies from our laboratory demonstrated that the transcription factor—upstream stimulatory factor 2 (USF2) is an important regulator of DN. Moreover, the renin gene is a downstream target of USF2. Importantly, USF2 transgenic (Tg) mice demonstrate a specific increase in renal renin expression and angiotensin II (AngII) levels in kidney and exhibit increased urinary albumin excretion and extracellular matrix deposition in glomeruli, supporting a role for USF2 in the development of diabetic nephropathy. In this review, we summarize our findings of the mechanisms by which diabetes regulates USF2 in kidney cells and its role in regulation of renal renin-angiotensin system and the development of diabetic nephropathy. PMID:26494984

  7. Response of Human Osteoblast to n-HA/PEEK—Quantitative Proteomic Study of Bio-effects of Nano-Hydroxyapatite Composite

    NASA Astrophysics Data System (ADS)

    Zhao, Minzhi; Li, Haiyun; Liu, Xiaochen; Wei, Jie; Ji, Jianguo; Yang, Shu; Hu, Zhiyuan; Wei, Shicheng

    2016-03-01

    Nano-sized hydroxyapatite (n-HA) is considered as a bio-active material, which is often mixed into bone implant material, polyetheretherketone (PEEK). To reveal the global protein expression modulations of osteoblast in response to direct contact with the PEEK composite containing high level (40%) nano-sized hydroxyapatite (n-HA/PEEK) and explain its comprehensive bio-effects, quantitative proteomic analysis was conducted on human osteoblast-like cells MG-63 cultured on n-HA/PEEK in comparison with pure PEEK. Results from quantitative proteomic analysis showed that the most enriched categories in the up-regulated proteins were related to calcium ion processes and associated functions while the most enriched categories in the down-regulated proteins were related to RNA process. This enhanced our understanding to the molecular mechanism of the promotion of the cell adhesion and differentiation with the inhibition of the cell proliferation on n-HA/PEEK composite. It also exhibited that although the calcium ion level of incubate environment hadn’t increased, merely the calcium fixed on the surface of material had influence to intracellular calcium related processes, which was also reflect by the higher intracellular Ca2+ concentration of n-HA/PEEK. This study could lead to more comprehensive cognition to the versatile biocompatibility of composite materials. It further proves that proteomics is useful in new bio-effect discovery.

  8. Response of Human Osteoblast to n-HA/PEEK—Quantitative Proteomic Study of Bio-effects of Nano-Hydroxyapatite Composite

    PubMed Central

    Zhao, Minzhi; Li, Haiyun; Liu, Xiaochen; Wei, Jie; Ji, Jianguo; Yang, Shu; Hu, Zhiyuan; Wei, Shicheng

    2016-01-01

    Nano-sized hydroxyapatite (n-HA) is considered as a bio-active material, which is often mixed into bone implant material, polyetheretherketone (PEEK). To reveal the global protein expression modulations of osteoblast in response to direct contact with the PEEK composite containing high level (40%) nano-sized hydroxyapatite (n-HA/PEEK) and explain its comprehensive bio-effects, quantitative proteomic analysis was conducted on human osteoblast-like cells MG-63 cultured on n-HA/PEEK in comparison with pure PEEK. Results from quantitative proteomic analysis showed that the most enriched categories in the up-regulated proteins were related to calcium ion processes and associated functions while the most enriched categories in the down-regulated proteins were related to RNA process. This enhanced our understanding to the molecular mechanism of the promotion of the cell adhesion and differentiation with the inhibition of the cell proliferation on n-HA/PEEK composite. It also exhibited that although the calcium ion level of incubate environment hadn’t increased, merely the calcium fixed on the surface of material had influence to intracellular calcium related processes, which was also reflect by the higher intracellular Ca2+ concentration of n-HA/PEEK. This study could lead to more comprehensive cognition to the versatile biocompatibility of composite materials. It further proves that proteomics is useful in new bio-effect discovery. PMID:26956660

  9. GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells.

    PubMed

    Rigiracciolo, Damiano Cosimo; Scarpelli, Andrea; Lappano, Rosamaria; Pisano, Assunta; Santolla, Maria Francesca; Avino, Silvia; De Marco, Paola; Bussolati, Benedetta; Maggiolini, Marcello; De Francesco, Ernestina Marianna

    2016-01-01

    Aldosterone induces relevant effects binding to the mineralcorticoid receptor (MR), which acts as a ligand-gated transcription factor. Alternate mechanisms can mediate the action of aldosterone such as the activation of epidermal growth factor receptor (EGFR), MAPK/ERK, transcription factors and ion channels. The G-protein estrogen receptor (GPER) has been involved in the stimulatory effects of estrogenic signalling in breast cancer. GPER has been also shown to contribute to certain responses to aldosterone, however the role played by GPER and the molecular mechanisms implicated remain to be fully understood. Here, we evaluated the involvement of GPER in the stimulatory action exerted by aldosterone in breast cancer cells and breast tumor derived endothelial cells (B-TEC). Competition assays, gene expression and silencing studies, immunoblotting and immunofluorescence experiments, cell proliferation and migration were performed in order to provide novel insights into the role of GPER in the aldosterone-activated signalling. Our results demonstrate that aldosterone triggers the EGFR/ERK transduction pathway in a MR- and GPER-dependent manner. Aldosterone does not bind to GPER, it however induces the direct interaction between MR and GPER as well as between GPER and EGFR. Next, we ascertain that the up-regulation of the Na+/H+ exchanger-1 (NHE-1) induced by aldosterone involves MR and GPER. Biologically, both MR and GPER contribute to the proliferation and migration of breast and endothelial cancer cells mediated by NHE-1 upon aldosterone exposure. Our data further extend the current knowledge on the molecular mechanisms through which GPER may contribute to the stimulatory action elicited by aldosterone in breast cancer. PMID:26646587

  10. GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells

    PubMed Central

    Rigiracciolo, Damiano Cosimo; Scarpelli, Andrea; Lappano, Rosamaria; Pisano, Assunta; Santolla, Maria Francesca; Avino, Silvia; De Marco, Paola; Bussolati, Benedetta; Maggiolini, Marcello; De Francesco, Ernestina Marianna

    2016-01-01

    Aldosterone induces relevant effects binding to the mineralcorticoid receptor (MR), which acts as a ligand-gated transcription factor. Alternate mechanisms can mediate the action of aldosterone such as the activation of epidermal growth factor receptor (EGFR), MAPK/ERK, transcription factors and ion channels. The G-protein estrogen receptor (GPER) has been involved in the stimulatory effects of estrogenic signalling in breast cancer. GPER has been also shown to contribute to certain responses to aldosterone, however the role played by GPER and the molecular mechanisms implicated remain to be fully understood. Here, we evaluated the involvement of GPER in the stimulatory action exerted by aldosterone in breast cancer cells and breast tumor derived endothelial cells (B-TEC). Competition assays, gene expression and silencing studies, immunoblotting and immunofluorescence experiments, cell proliferation and migration were performed in order to provide novel insights into the role of GPER in the aldosterone-activated signalling. Our results demonstrate that aldosterone triggers the EGFR/ERK transduction pathway in a MR- and GPER-dependent manner. Aldosterone does not bind to GPER, it however induces the direct interaction between MR and GPER as well as between GPER and EGFR. Next, we ascertain that the up-regulation of the Na+/H+ exchanger-1 (NHE-1) induced by aldosterone involves MR and GPER. Biologically, both MR and GPER contribute to the proliferation and migration of breast and endothelial cancer cells mediated by NHE-1 upon aldosterone exposure. Our data further extend the current knowledge on the molecular mechanisms through which GPER may contribute to the stimulatory action elicited by aldosterone in breast cancer. PMID:26646587

  11. A fragment liberated from the Escherichia coli CheA kinase that blocks stimulatory, but not inhibitory, chemoreceptor signaling.

    PubMed Central

    Morrison, T B; Parkinson, J S

    1997-01-01

    CheA, a cytoplasmic histidine autokinase, in conjunction with the CheW coupling protein, forms stable ternary complexes with the cytoplasmic signaling domains of transmembrane chemoreceptors. These signaling complexes induce chemotactic movements by stimulating or inhibiting CheA autophosphorylation activity in response to chemoeffector stimuli. To explore the mechanisms of CheA control by chemoreceptor signaling complexes, we examined the ability of various CheA fragments to interfere with receptor coupling control of CheA. CheA[250-654], a fragment carrying the catalytic domain and an adjacent C-terminal segment previously implicated in stimulatory control of CheA activity, interfered with the production of clockwise flagellar rotation and with chemotactic ability in wild-type cells. Epistasis tests indicated that CheA[250-654] blocked clockwise rotation by disrupting stimulatory coupling of CheA to receptors. In vitro coupling assays confirmed that a stoichiometric excess of CheA[250-654] fragments could exclude CheA from stimulatory receptor complexes, most likely by competing for CheW binding. However, CheA[250-654] fragments, even in vast excess, did not block receptor-mediated inhibition of CheA, suggesting that CheA[250-654] lacks an inhibitory contact site present in native CheA. This inhibitory target is most likely in the N-terminal P1 domain, which contains His-48, the site of autophosphorylation. These findings suggest a simple allosteric model of CheA control by ternary signaling complexes in which the receptor signaling domain conformationally regulates the interaction between the substrate and catalytic domains of CheA. PMID:9287011

  12. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types

    PubMed Central

    Hong, In-Sun

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892

  13. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types.

    PubMed

    Hong, In-Sun

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a 'danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892

  14. Effect of Inducible Co-Stimulatory Molecule siRNA in Cerebral Infarction Rat Models

    PubMed Central

    Luo, Yingquan; Yang, Yu; Zhang, Hui; Zhang, Ting; Wang, Yina; Tan, Shengyu; Xu, Yan; Li, Dan; Ye, Ling; Chen, Ping

    2015-01-01

    Background T cell-induced inflammatory response and related cytokine secretion at the injury site may participate in the pathogenesis of cerebral infarction. Recent studies established inducible co-stimulatory molecule (ICOS) as a novel T cell-related factor for its activation and functions. We thus investigate the role of ICOS in cerebral infarction. Material/Methods The siRNA of ICOS was first used to suppress the gene expression in cultured lymphocytes. An in vivo study was then performed by intravenous application of ICOS siRNA in cerebral infarction rats. Survival rates, neurological scores, serum tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-17 levels were observed. Results The expression of ICOS in cultured lymphocytes was significantly suppressed by siRNA. In the in vivo study, the application of siRNA effectively lowered mortality rates of rats, in addition to the improvement of neurological behaviors and amelioration of cerebral tissue damage. Serum levels of TNF-α, IL-1 and IL-17 were all significantly suppressed after siRNA injection. Conclusions ICOS siRNA can protect brain tissues from ischemia injuries after cerebral infarction, improve limb movement and coordination, lower the mortality rate of rats, and inhibit T cell-induced cytokines. These results collectively suggest the potential treatment efficacy of ICOS siRNA against cerebral infarction. PMID:26436531

  15. Natural Killer Cell Immunomodulation: Targeting Activating, Inhibitory, and Co-stimulatory Receptor Signaling for Cancer Immunotherapy

    PubMed Central

    Chester, Cariad; Fritsch, Katherine; Kohrt, Holbrook E.

    2015-01-01

    There is compelling clinical and experimental evidence to suggest that natural killer (NK) cells play a critical role in the recognition and eradication of tumors. Efforts at using NK cells as antitumor agents began over two decades ago, but recent advances in elucidating NK cell biology have accelerated the development of NK cell-targeting therapeutics. NK cell activation and the triggering of effector functions is governed by a complex set of activating and inhibitory receptors. In the early phases of cancer immune surveillance, NK cells directly identify and lyse cancer cells. Nascent transformed cells elicit NK cell activation and are eliminated. However, as tumors progress, cancerous cells develop immunosuppressive mechanisms that circumvent NK cell-mediated killing, allowing for tumor escape and proliferation. Therapeutic intervention aims to reverse tumor-induced NK cell suppression and sustain NK cells’ tumorlytic capacities. Here, we review tumor–NK cell interactions, discuss the mechanisms by which NK cells generate an antitumor immune response, and discuss NK cell-based therapeutic strategies targeting activating, inhibitory, and co-stimulatory receptors. PMID:26697006

  16. Suppressive effects of co-stimulatory molecule expressions on mouse splenocytes by anti-allergic agents in vitro.

    PubMed Central

    Ito, J; Asano, K; Tryka, E; Kanai, K; Yamamoto, S; Hisamitsu, T; Suzaki, H

    2000-01-01

    The influence of anti-allergic drugs, epinastine hydrochloride (EP) and disodium cromoglycate (DSCG), on the co-stimulatory molecule expression was examined using in vitro cell culture technique. Spleen cells obtained from BALB/c mice 10 days after immunization with haemocyanin absorbed to aluminium hydroxide were cultured in the presence of 100.0 microg/ml haemocyanin and various concentrations of the agents. Low concentrations (<1.5 x 10(-4)M) of EP and DSCG did not influence spleen cell blastic activity induced by antigenic stimulation, whereas these agents caused significant inhibition of spleen cell activation when 2 x 10(-4) M of the agents were added to cell cultures. EP and DSCG also did not affect blastic activity of sensitized splenic T cells by anti-CD3 monoclonal antibody stimulation even when these cells were cultured in the presence of 2 x 10(-4) M of the agents. We next examined the influence of EP and DSCG on the expression of co-stimulatory molecules on spleen cells in response to antigenic stimulation. Sensitized spleen cells were cultured in the presence of 2 x 10(-4)M of the agents and the expression of molecules were examined by flow cytometer 24h later. EP and DSCG suppressed the expression of costimulatory molecules, CD40 and CD80, but not CD86, on splenic B cells which were enhanced by antigenic stimulation in vitro. PMID:10958379

  17. A Response to "BIO 2010: Transforming Undergraduate Education for Future Research Biologists," from the Perspective of the Biochemistry and Molecular Biology Major Program at Kenyon College

    ERIC Educational Resources Information Center

    Slonczewski, Joan L.; Marusak, Rosemary

    2004-01-01

    The National Research Council completed a major study of undergraduate biology education, "BIO 2010-Transforming Undergraduate Education For Future Research Biologists (BIO 2010)," funded by the Howard Hughes Medical Institute and the National Institutes of Health. The "BIO 2010" report recommends that biology pedagogy should use an…

  18. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury.

    PubMed

    Larsen, Agnete; Kolind, Kristian; Pedersen, Dan Sonne; Doering, Peter; Pedersen, Mie Ostergaard; Danscher, Gorm; Penkowa, Milena; Stoltenberg, Meredin

    2008-10-01

    Traumatic brain injury results in loss of neurons caused as much by the resulting neuroinflammation as by the injury. Gold salts are known to be immunosuppressive, but their use are limited by nephrotoxicity. However, as we have proven that implants of pure metallic gold release gold ions which do not spread in the body, but are taken up by cells near the implant, we hypothesize that metallic gold could reduce local neuroinflammation in a safe way. Bio-liberation, or dissolucytosis, of gold ions from metallic gold surfaces requires the presence of disolycytes i.e. macrophages and the process is limited by their number and activity. We injected 20-45 mum gold particles into the neocortex of mice before generating a cryo-injury. Comparing gold-treated and untreated cryolesions, the release of gold reduced microgliosis and neuronal apoptosis accompanied by a transient astrogliosis and an increased neural stem cell response. We conclude that bio-liberated gold ions possess pronounced anti-inflammatory and neuron-protective capacities in the brain and suggest that metallic gold has clinical potentials. Intra-cerebral application of metallic gold as a pharmaceutical source of gold ions represents a completely new medical concept that bypasses the blood-brain-barrier and allows direct drug delivery to inflamed brain tissue. PMID:18542984

  19. Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator.

    PubMed

    Chappe, Valerie; Hinkson, Deborah A; Howell, L Daniel; Evagelidis, Alexandra; Liao, Jie; Chang, Xiu-Bao; Riordan, John R; Hanrahan, John W

    2004-01-01

    Protein kinase C (PKC) phosphorylation stimulates the cystic fibrosis transmembrane conductance regulator (CFTR) channel and enhances its activation by protein kinase A (PKA) through mechanisms that remain poorly understood. We have examined the effects of mutating consensus sequences for PKC phosphorylation and report here evidence for both stimulatory and inhibitory sites. Sequences were mutated in subsets and the mutants characterized by patch clamping. Activation of a 4CA mutant (S707A/S790A/T791A/S809A) by PKA was similar to that of wild-type CFTR and was enhanced by PKC, whereas responses of 3CA (T582A/T604A/S641A) and 2CA (T682A/S686A) channels to PKA were both drastically reduced (>90%). When each mutation in the 3CA and 2CA constructs was studied individually in a wild-type background, T582, T604, and S686 were found to be essential for PKA activation. Responses were restored when these three residues were reintroduced simultaneously into a 9CA mutant lacking all nine PKC consensus sequences (R6CA revertant); however, PKC phosphorylation was not required for this rescue. Nevertheless, two of the sites (T604 and S686) were phosphorylated in vitro, and PKC alone partially activated wild-type CFTR, the 4CA mutant, and the point mutants T582A and T604A, but not S686A channels, indicating that PKC does act at S686. The region encompassing S641 and T682 is inhibitory, because S641A enhanced activation by PKA, and T682A channels had 4-fold larger responses to PKC compared to wild-type channels. These results identify functionally important PKC consensus sequences on CFTR and will facilitate studies of its convergent regulation by PKC and PKA. PMID:14695900

  20. Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator

    PubMed Central

    Chappe, Valerie; Hinkson, Deborah A.; Howell, L. Daniel; Evagelidis, Alexandra; Liao, Jie; Chang, Xiu-Bao; Riordan, John R.; Hanrahan, John W.

    2004-01-01

    Protein kinase C (PKC) phosphorylation stimulates the cystic fibrosis transmembrane conductance regulator (CFTR) channel and enhances its activation by protein kinase A (PKA) through mechanisms that remain poorly understood. We have examined the effects of mutating consensus sequences for PKC phosphorylation and report here evidence for both stimulatory and inhibitory sites. Sequences were mutated in subsets and the mutants characterized by patch clamping. Activation of a 4CA mutant (S707A/S790A/T791A/S809A) by PKA was similar to that of wild-type CFTR and was enhanced by PKC, whereas responses of 3CA (T582A/T604A/S641A) and 2CA (T682A/S686A) channels to PKA were both drastically reduced (>90%). When each mutation in the 3CA and 2CA constructs was studied individually in a wild-type background, T582, T604, and S686 were found to be essential for PKA activation. Responses were restored when these three residues were reintroduced simultaneously into a 9CA mutant lacking all nine PKC consensus sequences (R6CA revertant); however, PKC phosphorylation was not required for this rescue. Nevertheless, two of the sites (T604 and S686) were phosphorylated in vitro, and PKC alone partially activated wild-type CFTR, the 4CA mutant, and the point mutants T582A and T604A, but not S686A channels, indicating that PKC does act at S686. The region encompassing S641 and T682 is inhibitory, because S641A enhanced activation by PKA, and T682A channels had 4-fold larger responses to PKC compared to wild-type channels. These results identify functionally important PKC consensus sequences on CFTR and will facilitate studies of its convergent regulation by PKC and PKA. PMID:14695900

  1. The elimination of autistic self-stimulatory behavior by overcorrection1

    PubMed Central

    Foxx, R. M.; Azrin, N. H.

    1973-01-01

    No method is in general usage and of demonstrated effectiveness in eliminating the self-stimulatory behaviors of retardates and autistics. An Overcorrection rationale was used to develop such a method. The Overcorrection procedures consisted of a period of practice in the correct mode of the behavior contingent upon self-stimulatory behavior. The procedures were applied in a behavioral day-care program to three retarded children and one autistic child who exhibited object-mouthing, hand-mouthing, head-weaving and hand-clapping. For some behaviors, comparisons were made between the Overcorrection procedure and several alternative procedures, such as physical punishment by a slap, reinforcement for nonself-stimulatory behavior, a distasteful solution painted on the hand of a hand-mouther, and free reinforcement. The Overcorrection procedures eliminated the self-stimulatory behaviors of all four children in tutorial sessions and during the entire school day and were more effective than the alternative procedures in eliminating self-stimulation. The Overcorrection procedures appear to be rapid, enduring, and effective methods of eliminating self-stimulatory behavior. PMID:16795380

  2. Enhancing vaccines with immune stimulatory CpG DNA.

    PubMed

    Krieg, A M; Davis, H L

    2001-02-01

    Certain vertebrate immune cells have evolved receptors that detect the presence of pathogen DNA based on its content of unmethylated CpG dinucleotides in particular base contexts. This 'CpG DNA' acts as a 'danger signal', triggering protective innate and acquired immune responses. The activity of CpG DNA can be mimicked with synthetic oligodeoxynucleotides, which when added to a vaccine greatly boost the resulting immune response. PMID:11249727

  3. The soil-water balance simulations of a grassland in response to CO2, rainfall, and biodiversity manipulations at BioCON

    NASA Astrophysics Data System (ADS)

    Flinker, R. H.; Cardenas, M.; Caldwell, T. G.; Rich, R.; Reich, P.

    2013-12-01

    The BioCON (Biodiversity, CO2 and N) experiment has been continuously running since 1997. Operated by the University of Minnesota and located within the Cedar Creek Ecosystem Science Reserve in Minnesota, USA, BioCON is a Free-Air CO2 Enrichment (FACE) experiment that investigates plant community response to three key environmental variables: nitrogen, atmospheric CO2 and biodiversity. More recently rainfall exclusion and temperature manipulation were added to the experiment which amounts to 371 plots. The site attempts to replicate predicted average temperature increases and a northern shift of plant species and any associated consequences. FACE experiments have been conducted for a number of years in different countries, but the focus has generally been on how plant communities, soil respiration and microbes respond. Minimal work has been focused on the hydrologic aspects of these experiments which are potentially valuable for investigating global warming effects on local and plot-scale ecohydrology. Thus, the objective of this work is to characterize and model unsaturated flow for different CO2 and rainfall treatments in order to see how they affect soil moisture dynamics and groundwater recharge on grasslands of central Minnesota. Our study focuses on simulating soil moisture dynamics in eighteen of the BioCON plots: six bare plots with regular rainfall regimes (zero plant species, three plots with elevated atmospheric CO2 levels), six regular rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels) and six reduced rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels). The Simultaneous Heat and Water (SHAW) model, which solves the Richards equation for unsaturated zone water flow coupled to a comprehensive energy balance model, was parameterized with a combination of field and lab estimates of soil properties. Field estimates of saturated hydraulic conductivity using tension infiltrometers ranged

  4. Immunological characterization of a γδ T-cell stimulatory ligand on autologous monocytes

    PubMed Central

    Sathiyaseelan, Thillainayagam; Naiman, Brian; Welte, Stefan; Machugh, Niall; Black, Samuel J; Baldwin, Cynthia L

    2002-01-01

    Bovine γδ T cells are stimulated to proliferate by autologous monocytes. This is referred to as the autologous mixed leucocyte reaction (AMLR). It has been shown previously that the stimulatory component is constitutively expressed on the monocyte plasma membrane and is a protein or has a protein moiety. Here we showed that γδ T-cell responses to the monocytes requires interaction with the T-cell receptor because Fab1 fragments of a monoclonal antibody (mAb) that reacts with the δ chain of the T-cell receptor blocked proliferation in the AMLR. Monocyte molecules involved in stimulation were also characterized further by biochemical and immunological methods. A mAb, named M5, was generated by immunizing mice with bovine monocytes and shown to block the ability of monocytes to stimulate in the AMLR. Treatment of monocytes or monocyte membranes with high salt, chelating agents or phospholipase C did not affect their ability to stimulate γδ T-cell proliferation or reactivity with mAb M5 indicating the ability of monocytes to stimulate does not involve peripheral membrane components or a glycosyl-phosphatidylinsositol (GPI)-anchored components. Hence it was concluded that the stimulation occurred as a result of intergral membrane proteins including that recognized by mAb M5. The ligand for mAb M5 was on all bovine monocytes and to a lower level on granulocytes but not on lymphocytes. MAb M5 also reacted with sheep monocytes but not with human monocytes or murine macrophages, in agreement with a previous reports that sheep monocytes but not human or mouse mononuclear phagocytes have the capacity to stimulate bovine γδ T cells in in vitro cultures. The level of expression of the M5 ligand was not altered by γ-irradiation or culture of monocytes with lipopolysaccharide but it was decreased following culture with interferon-γ-containing cell culture supernatants. PMID:11872093

  5. Stimulatory effects of combined endocrine disruptors on MA-10 Leydig cell steroid production and lipid homeostasis.

    PubMed

    Jones, Steven; Boisvert, Annie; Naghi, Andrada; Hullin-Matsuda, Françoise; Greimel, Peter; Kobayashi, Toshihide; Papadopoulos, Vassilios; Culty, Martine

    2016-04-29

    Previous work in our laboratory demonstrated that in-utero exposure to a mixture of the phytoestrogen Genistein (GEN), and plasticizer DEHP, induces short- and long-term alterations in testicular gene and protein expression different from individual exposures. These studies identified fetal and adult Leydig cells as sensitive targets for low dose endocrine disruptor (ED) mixtures. To further investigate the direct effects and mechanisms of toxicity of GEN and DEHP, MA-10 mouse tumor Leydig cells were exposed in-vitro to varying concentrations of GEN and MEHP, the principal bioactive metabolite of DEHP. Combined 10μM GEN+10μM MEHP had a stimulatory effect on basal progesterone production. Consistent with increased androgenicity, the mRNA of steroidogenic and cholesterol mediators Star, Cyp11a, Srb1 and Hsl, as well as upstream orphan nuclear receptors Nr2f2 and Sf1 were all significantly increased uniquely in the mixture treatment group. Insl3, a sensitive marker of Leydig endocrine disruption and cell function, was significantly decreased by combined GEN+MEHP. Lipid analysis by high-performance thin layer chromatography demonstrated the ability of combined 10μM combined GEN+MEHP, but not individual exposures, to increase levels of several neutral lipids and phospholipid classes, indicating a generalized deregulation of lipid homeostasis. Further investigation by qPCR analysis revealed a concomitant increase in cholesterol (Hmgcoa) and phospholipid (Srebp1c, Fasn) mediator mRNAs, suggesting the possible involvement of upstream LXRα agonism. These results suggest a deregulation of MA-10 Leydig function in response to a combination of GEN+MEHP. We propose a working model for GEN+MEHP doses relevant to human exposure involving LXR agonism and activation of other transcription factors. Taken more broadly, this research highlights the importance of assessing the impact of ED mixtures in multiple toxicological models across a range of environmentally relevant doses

  6. Effects of Punishment Procedures on the Self-Stimulatory Behavior of an Autistic Child.

    ERIC Educational Resources Information Center

    Friman, Patrick C.; And Others

    1984-01-01

    Three punishment procedures--contingent applications of water mist, lemon juice, and vinegar--were evaluated as aversive treatment methods for a self-stimulatory behavior exhibited by a severely retarded 11-year-old male. The water mist procedure was as effective as lemon juice or vinegar, presented less physical threat to the client, and was…

  7. Brief Report: The Effects of Exercise on the Self-Stimulatory Behaviors and Positive Responding of Adolescents with Autism.

    ERIC Educational Resources Information Center

    Rosenthal-Malek, Andrea; Mitchell, Stella

    1997-01-01

    A study investigated the effects of aerobic exercise on the self-stimulatory behaviors and academic performance of five adolescent males with autism. Results found there was a significant decrease in self-stimulatory behavior following the physical exercise. Academic performance increased after the aerobic exercise as compared to classroom…

  8. Influence of seat foam and geometrical properties on BioRID P3 kinematic response to rear impacts.

    PubMed

    Szabo, T J; Voss, D P; Welcher, J B

    2003-12-01

    As the primary interface with the human body during rear impact, the automotive seat holds great promise for mitigation of Whiplash Associated Disorders (WAD). Recent research has chronicled the potential influence of both seat geometrical and constitutive properties on occupant dynamics and injury potential. Geometrical elements such as reduced head to head restraint, rearward offset, and increased head restraint height have shown strong correlation with reductions in occupant kinematics. The stiffness and energy absorption of both the seating foam and the seat infrastructure are also influential on occupant motion; however, the trends in injury mitigation are not as clear as for the geometrical properties. It is of interest to determine whether, for a given seat frame and infrastructure, the properties of the seating foam alone can be tailored to mitigate WAD potential. Rear impact testing was conducted using three model year 2000 automotive seats (Chevrolet Camaro, Chevrolet S-10 pickup, and Pontiac Grand Prix), using the BioRID P3 anthropometric rear impact dummy. Each seat was distinct in construction and geometry. Each seat back was tested with various foams (i.e., standard, viscoelastic, low or high density). Seat geometries and infrastructures were constant so that the influence of the seating foams on occupant dynamics could be isolated. Three tests were conducted on each foam combination for a given seat (total of 102 tests), with a nominal impact severity of Delta V = 11 km/h (nominal duration of 100 msec). The seats were compared across a host of occupant kinematic variables most likely to be associated with WAD causation. No significant differences (p < 0.05) were found between seat back foams for tests within any given seat. However, seat comparisons yielded several significant differences (p < 0.05). The Camaro seat was found to result in several significantly different occupant kinematic variables when compared to the other seats. No significant

  9. The in vivo regulation of heart rate in the murine sinoatrial node by stimulatory and inhibitory heterotrimeric G proteins

    PubMed Central

    Sebastian, Sonia; Ang, Richard; Abramowitz, Joel; Weinstein, Lee S.; Chen, Min; Ludwig, Andreas; Birnbaumer, Lutz

    2013-01-01

    Reciprocal physiological modulation of heart rate is controlled by the sympathetic and parasympathetic systems acting on the sinoatrial (SA) node. However, there is little direct in vivo work examining the role of stimulatory and inhibitory G protein signaling in the SA node. Thus, we designed a study to examine the role of the stimulatory (Gαs) and inhibitory G protein (Gαi2) in in vivo heart rate regulation in the SA node in the mouse. We studied mice with conditional deletion of Gαs and Gαi2 in the conduction system using cre-loxP technology. We crossed mice in which cre recombinase expression was driven by a tamoxifen-inducible conduction system-specific construct with “Gαs floxed” and “Gαi2 floxed” mice. We studied the heart rate responses of adult mice compared with littermate controls by using radiotelemetry before and after administration of tamoxifen. The mice with conditional deletion of Gαs and Gαi2 had a loss of diurnal variation and were bradycardic or tachycardic, respectively, in the daytime. In mice with conditional deletion of Gαs, there was a selective loss of low-frequency power, while with deletion of Gαi2, there was a loss of high-frequency power in power spectral analysis of heart rate variability. There was no evidence of pathological arrhythmia. Pharmacological modulation of heart rate by isoprenaline was impaired in the Gαs mice, but a muscarinic agonist was still able to slow the heart rate in Gαi2 mice. We conclude that Gαs- and Gαi2-mediated signaling in the sinoatrial node is important in the reciprocal regulation of heart rate through the autonomic nervous system. PMID:23697798

  10. Borrelia burgdorferi Elicited-IL-10 Suppresses the Production of Inflammatory Mediators, Phagocytosis, and Expression of Co-Stimulatory Receptors by Murine Macrophages and/or Dendritic Cells

    PubMed Central

    Wooten, R. Mark

    2013-01-01

    Borrelia burgdorferi (Bb) is a tick-borne spirochete that is the causative agent for Lyme disease. Our previous studies indicate that virulent Bb can potently enhance IL-10 production by macrophages (MØs) and that blocking IL-10 production significantly enhances bacterial clearance. We hypothesize that skin-associated APC types, such as MØs and dendritic cells (DCs) are potent producers of IL-10 in response to Bb, which may act in autocrine fashion to suppress APC responses critical for efficient Bb clearance. Our goal is to delineate which APC immune functions are dysregulated by Bb-elicited IL-10 using a murine model of Lyme disease. Our in vitro studies indicated that both APCs rapidly produce IL-10 upon exposure to Bb, that these levels inversely correlate with the production of many Lyme-relevant proinflammatory cytokines and chemokines, and that APCs derived from IL-10-/- mice produced greater amounts of these proinflammatory mediators than wild-type APCs. Phagocytosis assays determined that Bb-elicited IL-10 levels can diminish Bb uptake and trafficking by MØs, suppresses ROS production, but does not affect NO production; Bb-elicited IL-10 had little effect on phagocytosis, ROS, and NO production by DCs. In general, Bb exposure caused little-to-no upregulation of several critical surface co-stimulatory markers by MØs and DCs, however eliminating Bb-elicited IL-10 allowed a significant upregulation in many of these co-stimulatory receptors. These data indicate that IL-10 elicited from Bb-stimulated MØs and DCs results in decreased production of proinflammatory mediators and co-stimulatory molecules, and suppress phagocytosis-associated events that are important for mediating both innate and adaptive immune responses by APCs. PMID:24367705

  11. Species differences in the gut stimulatory effects of radish seeds.

    PubMed

    Ghayur, Muhammad Nabeel; Gilani, Anwarul Hassan; Houghton, Peter J

    2005-11-01

    This study describes the gastrointestinal (GI) prokinetic effects of the aqueous extract of radish seeds (Rs.Cr). Rs.Cr, which tested positive for terpenes, flavonoids, phenols, alkaloids and saponins, showed a spasmogenic effect in isolated rabbit jejunum and ileum, rat stomach fundus and ileum, and guinea-pig ileum and jejunum. Rs.Cr was around 10 times more potent in the guinea-pig tissues and this effect was resistant to atropine, pyrilamine or SB203186 while the spasmogenic effect in the rat and rabbit tissues was atropine sensitive. The extract exhibited atropine-sensitive GI prokinetic and laxative effects in vivo in mice. In the atropinized rabbit jejunum, Rs.Cr produced a spasmolytic effect independent of Ca(++) or K(+) channels, adrenergic or opioid receptor involvement. Activity-directed fractionation of Rs.Cr yielded four fractions, all showing effects similar to that of the parent extract. Rs.Cr and its fractions were found to be non-lethal up to 10 g kg(-1) in mice for 24 h, except for the petroleum fraction, which showed 50% mortality at high doses. Some known radish compounds (spermine, spermidine, putrescine and sinigrin) were also tested and found to be devoid of any activity. The study shows species-specific spasmogenic effects of radish in rabbit, rat and mouse via muscarinic receptors but through an uncharacterized pathway in guinea-pig tissues. Additionally, a dormant relaxant effect was also seen, while the three polyamines and one glucosinolate from radish were found to be inactive, indicating that the compound(s) responsible for the activities reported remains to be isolated. PMID:16259783

  12. Bio-Inspired Antifouling Strategies

    NASA Astrophysics Data System (ADS)

    Kirschner, Chelsea M.; Brennan, Anthony B.

    2012-08-01

    Biofouling is a complex, dynamic problem that globally impacts both the economy and environment. Interdisciplinary research in marine biology, polymer science, and engineering has led to the implementation of bio-inspired strategies for the development of the next generation of antifouling marine coatings. Natural fouling defense mechanisms have been mimicked through chemical, physical, and/or stimuli-responsive strategies. This review outlines the detrimental effects associated with biofouling, describes the theoretical basis for antifouling coating design, and highlights prominent advances in bio-inspired antifouling technologies.

  13. RNA-Seq analysis of urea nutrition responsive transcriptome of Oryza sativa elite indica cultivar RP Bio 226.

    PubMed

    Reddy, Mettu Madhavi; Ulaganathan, Kandasamy

    2015-12-01

    Rice yield is greatly influenced by the nitrogen and rice varieties show variation in yield. For understanding the role of urea nutrition in the yield of elite indica rice cultivar RPBio-226, the urea responsive transcriptome was sequenced and analyzed. The raw reads and the Transcriptome Shotgun Assembly project has been deposited at DDBJ/EMBL/GenBank under the accession GDKM00000000. The version described in this paper is the first version, GDKM01000000. PMID:26697348

  14. Co-Stimulatory Blockade of the CD28/CD80-86/CTLA-4 Balance in Transplantation: Impact on Memory T Cells?

    PubMed Central

    Ville, Simon; Poirier, Nicolas; Blancho, Gilles; Vanhove, Bernard

    2015-01-01

    CD28 and CTLA-4 are prototypal co-stimulatory and co-inhibitory cell surface signaling molecules interacting with CD80/86, known to be critical for immune response initiation and regulation, respectively. Initial “bench-to-beside” translation, two decades ago, resulted in the development of CTLA4-Ig, a biologic that targets CD80/86 and prevents T-cell costimulation. In spite of its proven effectiveness in inhibiting allo-immune responses, particularly in murine models, clinical experience in kidney transplantation with belatacept (high-affinity CTLA4-Ig molecule) reveals a high incidence of acute, cell-mediated rejection. Originally, the etiology of belatacept-resistant graft rejection was thought to be heterologous immunity, i.e., the cross-reactivity of the pool of memory T cells from pathogen-specific immune responses with alloantigens. Recently, the standard view that memory T cells arise from effector cells after clonal contraction has been challenged by a “developmental” model, in which less differentiated memory T cells generate effector cells. This review delineates how this shift in paradigm, given the differences in co-stimulatory and co-inhibitory signal depending on the maturation stage, could profoundly affect our understanding of the CD28/CD80-86/CTLA-4 blockade and highlights the potential advantages of selectively targeting CD28, instead of CD80/86, to control post-transplant immune responses. PMID:26322044

  15. Crystal structure of the stimulatory complex of GTP cyclohydrolase I and its feedback regulatory protein GFRP.

    PubMed

    Maita, Nobuo; Okada, Kengo; Hatakeyama, Kazuyuki; Hakoshima, Toshio

    2002-02-01

    In the presence of phenylalanine, GTP cyclohydrolase I feedback regulatory protein (GFRP) forms a stimulatory 360-kDa complex with GTP cyclohydrolase I (GTPCHI), which is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. The crystal structure of the stimulatory complex reveals that the GTPCHI decamer is sandwiched by two GFRP homopentamers. Each GFRP pentamer forms a symmetrical five-membered ring similar to beta-propeller. Five phenylalanine molecules are buried inside each interface between GFRP and GTPCHI, thus enhancing the binding of these proteins. The complex structure suggests that phenylalanine-induced GTPCHI x GFRP complex formation enhances GTPCHI activity by locking the enzyme in the active state. PMID:11818540

  16. The importance of being coupled: Stable states, transitions and responses to changing forcings in tidal bio-morphodynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Marani, M.; D'Alpaos, A.; da Lio, C.; Carniello, L.; Lanzoni, S.; Rinaldo, A.

    2009-12-01

    Changes in relative sea level, nutrient and sediment loading, and ecological characteristics expose tidal landforms and ecosystems to responses which may or may not be reversible. Predicting such responses is important in view of the ecological, cultural and socio-economic importance of endangered tidal environments worldwide. Here we develop a point model of the joint evolution of tidal landforms and biota including the dynamics of intertidal vegetation, benthic microbial assemblages, erosional and depositional processes, local and general hydrodynamics, and relative sea-level change. Alternative stable states and punctuated equilibrium dynamics emerge, characterized by possible sudden transitions of the system, governed by vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions. Multiple equilibria are the result of the interplay of erosion, deposition and biostabilization. They highlight the importance of the coupling between biological and sediment transport processes in determining the evolution of a tidal system as a whole. Hysteretic switches between stable states may arise because of differences in the threshold values of relative sea level rise inducing transitions from vegetated to unvegetated equilibria and viceversa.

  17. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery

    NASA Astrophysics Data System (ADS)

    Wei, Weijia; Zhang, Xiujuan; Chen, Xianfeng; Zhou, Mengjiao; Xu, Ruirui; Zhang, Xiaohong

    2016-04-01

    Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability and minimal premature release of therapeutic molecules during circulation in the blood stream. To meet this requirement, herein, we develop GSH-responsive and crosslinkable amphiphilic polyethylene glycol (PEG) molecules to modify carrier-free drug NPs. These PEG molecules can be cross-linked on the surface of the NPs to endow them with greater stability and the cross-link is sensitive to intracellular environment for bio-responsive drug release. With this elegant design, our experimental results show that the liberation of DOX from DOX-cross-linked PEG NPs is dramatically slower than that from DOX-non-cross-linked PEG NPs, and the DOX release profile can be controlled by tuning the concentration of the reducing agent to break the cross-link between PEG molecules. More importantly, in vivo studies reveal that the DOX-cross-linked PEG NPs exhibit favorable blood circulation half-life (>4 h) and intense accumulation in tumor areas, enabling effective anti-cancer therapy. We expect this work will provide a powerful strategy for stabilizing carrier-free nanomedicines and pave the way to their successful clinical applications in the future.Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability

  18. Human Prolyl-4-hydroxylase α(I) Transcription Is Mediated by Upstream Stimulatory Factors *

    PubMed Central

    Chen, Li; Shen, Ying H.; Wang, Xinwen; Wang, Jing; Gan, Yehua; Chen, Nanyue; Wang, Jian; LeMaire, Scott A.; Coselli, Joseph S.; Wang, Xing Li

    2010-01-01

    Prolyl-4-hydroxylase α(I) (P4Hα(I)) is the rate-limiting subunit forP4Henzyme activity, which is essential for procollagen hydroxylation and secretion. In the current study, we have characterized the human P4Hα(I) promoter for transcription factors and DNA elements regulating P4Hα(I) expression. Using a progressive deletion cloning approach, we have constructed pGL3-P4Hα(I) recombinant plasmids. We have identified a positive regulatory region at the positions of bp −184 to −97 responsible for ~80% of the P4Hα(I) promoter efficiency. Three E-boxes were located within this region, and the E-box at position bp −135 explains most of the regulatory capacity. Upstream stimulatory factors (USF1/USF2) were shown to bind on the E-box using chromatin immunoprecipitation assay. Suppression of USF1 and/or USF2 using specific short interference RNA resulted in a significant reduction in P4Hα(I) promoter activity, and overexpressed USF1 or USF2 increased P4Hα(I) promoter activity significantly. Although transforming growth factor β1 increased the USF1/USF2-E-box binding and P4Hα(I) promoter activity, this up-regulatory effect can be largely prevented by USF1/USF2-specific short interference RNA. On the other hand, cigarette smoking extracts, which have been shown to suppress P4Hα(I) expression, inhibited the binding between the USF1/USF2 and E-box, resulting in a reduced P4Hα(I) promoter activity. Furthermore, the E-box on the P4Hα(I) promoter appeared to indiscriminately bind with either USF1 or USF2, with a similar outcome on the promoter efficiency. In conclusion, our study shows that USF1/USF2 plays a critical role in basal P4Hα(I) expression, and both positive (transforming growth factor β1) and negative (cigarette smoking extract) regulators appear to influence the USF-E-box interaction and affect P4Hα(I) expression. PMID:16488890

  19. Influenza Virus-Like Particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin

    PubMed Central

    Pearton, Marc; Kang, Sang-Moo; Song, Jae-Min; Kim, Yeu-Chun; Quan, Fu-Shi; Anstey, Alexander; Ivory, Matthew; Prausnitz, Mark R.; Compans, Richard W.; Birchall, James C.

    2010-01-01

    Virus-like particles (VLPs) have a number of features that make them attractive influenza vaccine candidates. Microneedle (MN) devices are being developed for the convenient and pain-free delivery of vaccines across the skin barrier layer. Whilst MN-based vaccines have demonstrated proof-of-concept in mice, it is vital to understand how MN targeting of VLPs to the skin epidermis affects activation and migration of Langerhans cells (LCs) in the real human skin environment. MNs coated with vaccine reproducibly penetrated freshly excised human skin, depositing 80% of the coating within 60 seconds of insertion. Human skin experiments showed that H1 (A/PR/8/34) and H5 (A/Viet Nam/1203/04) VLPs, delivered via MN, stimulated LCs resulting in changes in cell morphology and a reduction in cell number in epidermal sheets. LC response was significantly more pronounced in skin treated with H1 VLPs, compared with H5 VLPs. Our data provides strong evidence that MN-facilitated delivery of influenza VLP vaccines initiates a stimulatory response in LCs in human skin. The results support and validate animal data, suggesting that dendritic cells (DCs) targeted through deposition of the vaccine in skin generate immune response. The study also demonstrates the value of using human skin alongside animal studies for preclinical testing of intradermal (ID) vaccines. PMID:20685601

  20. The Brain Activity in Brodmann Area 17: A Potential Bio-Marker to Predict Patient Responses to Antiepileptic Drugs

    PubMed Central

    Xu, Xin; Fang, Weidong; Zeng, Kebin; Yang, Mingming; Li, Chenyu; Wang, Shasha; Li, Minghui; Wang, Xuefeng

    2015-01-01

    In this study, we aimed to predict newly diagnosed patient responses to antiepileptic drugs (AEDs) using resting-state functional magnetic resonance imaging tools to explore changes in spontaneous brain activity. We recruited 21 newly diagnosed epileptic patients, 8 drug-resistant (DR) patients, 11 well-healed (WH) patients, and 13 healthy controls. After a 12-month follow-up, 11 newly diagnosed epileptic patients who showed a poor response to AEDs were placed into the seizures uncontrolled (SUC) group, while 10 patients were enrolled in the seizure-controlled (SC) group. By calculating the amplitude of fractional low-frequency fluctuations (fALFF) of blood oxygen level-dependent signals to measure brain activity during rest, we found that the SUC patients showed increased activity in the bilateral occipital lobe, particularly in the cuneus and lingual gyrus compared with the SC group and healthy controls. Interestingly, DR patients also showed increased activity in the identical cuneus and lingual gyrus regions, which comprise Brodmann’s area 17 (BA17), compared with the SUC patients; however, these abnormalities were not observed in SC and WH patients. The receiver operating characteristic (ROC) curves indicated that the fALFF value of BA17 could differentiate SUC patients from SC patients and healthy controls with sufficient sensitivity and specificity prior to the administration of medication. Functional connectivity analysis was subsequently performed to evaluate the difference in connectivity between BA17 and other brain regions in the SUC, SC and control groups. Regions nearby the cuneus and lingual gyrus were found positive connectivity increased changes or positive connectivity changes with BA17 in the SUC patients, while remarkably negative connectivity increased changes or positive connectivity decreased changes were found in the SC patients. Additionally, default mode network (DMN) regions showed negative connectivity increased changes or negative

  1. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin

    PubMed Central

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.

    2015-01-01

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. PMID:26042819

  2. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin.

    PubMed

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P; Elvin, Christopher M; Hill, Anita J; Choudhury, Namita R; Dutta, Naba K

    2015-01-01

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. PMID:26042819

  3. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin

    NASA Astrophysics Data System (ADS)

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.

    2015-06-01

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.

  4. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Nathala, Chandra S. R.; Kavatzikidou, P.; Ranella, A.; Szoszkiewicz, R.; Husinsky, W.; Fotakis, C.

    2016-09-01

    The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell's responses to substrate morphology. Mice fibroblasts migration was monitored after 3 days cultivation period using FESEM. We found that fibroblasts cells tend to migrate and adhere along the laser modified zones. The performed study proved that the immobilized collagen based biofilms suite as a template for successful fibroblasts cell guidance and orientation. Fs laser induced morphological modification of biomimetic materials exhibit direct control over fibroblasts behaviour due to induced change in their wettability state.

  5. Induction of death receptor CD95 and co-stimulatory molecules CD80 and CD86 by meningococcal capsular polysaccharide-loaded vaccine nanoparticles.

    PubMed

    Ubale, Ruhi V; Gala, Rikhav P; Zughaier, Susu M; D'Souza, Martin J

    2014-09-01

    Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis, and its capsular polysaccharides (CPS) are a major virulence factor in meningococcal infections and form the basis for serogroup designation and protective vaccines. We formulated a novel nanovaccine containing meningococcal CPS as an antigen encapsulated in albumin-based nanoparticles (NPs) that does not require chemical conjugation to a protein carrier. These nanoparticles are taken up by antigen-presenting cells and act as antigen depot by slowly releasing the antigen. In this study, we determined the ability of CPS-loaded vaccine nanoparticles to induce co-stimulatory molecules, namely CD80, CD86, and CD95 that impact effective antigen presentation. Co-stimulatory molecule gene induction and surface expression on macrophages and dendritic cells pulsed with meningococcal CPS-loaded nanoparticles were investigated using gene array and flow cytometry methods. Meningococcal CPS-loaded NP significantly induced the surface protein expression of CD80 and CD86, markers of dendritic cell maturation, in human THP-1 macrophages and in murine dendritic cells DC2.4 in a dose-dependent manner. The massive upregulation was also observed at the gene expression. However, high dose of CPS-loaded NP, but not empty NP, induced the expression of death receptor CD95 (Fas) leading to reduced TNF-α release and reduction in cell viability. The data suggest that high expression of CD95 may lead to death of antigen-presenting cells and consequently suboptimal immune responses to vaccine. The CPS-loaded NP induces the expression of co-stimulatory molecules and acts as antigen depot and can spare antigen dose, highly desirable criteria for vaccine formulations. PMID:24981893

  6. Paternal versus maternal transmission of a stimulatory G-protein α subunit knockout produces opposite effects on energy metabolism

    PubMed Central

    Yu, Shuhua; Gavrilova, Oksana; Chen, Hui; Lee, Randy; Liu, Jie; Pacak, Karel; Parlow, A.F.; Quon, Michael J.; Reitman, Marc L.; Weinstein, Lee S.

    2000-01-01

    Heterozygous disruption of Gnas, the gene encoding the stimulatory G-protein α subunit (Gsα), leads to distinct phenotypes depending on whether the maternal (m–/+) or paternal (+/p–) allele is disrupted. Gsα is imprinted, with the maternal allele preferentially expressed in adipose tissue. Hence, expression is decreased in m–/+ mice but normal in +/p– mice. M–/+ mice become obese, with increased lipid per cell in white and brown adipose tissue, whereas +/p– mice are thin, with decreased lipid in adipose tissue. These effects are not due to abnormalities in thyroid hormone status, food intake, or leptin secretion. +/p– mice are hypermetabolic at both ambient temperature (21° C) and thermoneutrality (30° C). In contrast, m–/+ mice are hypometabolic at ambient temperature and eumetabolic at thermoneutrality M–/+ and wild-type mice have similar dose-response curves for metabolic response to a β3-adrenergic agonist, CL316243, indicating normal sensitivity of adipose tissue to sympathetic stimulation. Measurement of urinary catecholamines suggests that +/p– and m–/+ mice have increased and decreased activation of the sympathetic nervous system, respectively. This is to our knowledge the first animal model in which a single genetic defect leads to opposite effects on energy metabolism depending on parental inheritance. This probably results from deficiency of maternal- and paternal-specific Gnas gene products, respectively. PMID:10712433

  7. Low concentrations of dibromoacetic acid and N-nitrosodimethylamine induce several stimulatory effects in the invertebrate model Caenorhabditis elegans.

    PubMed

    Baberschke, Nora; Steinberg, Christian E W; Saul, Nadine

    2015-04-01

    Dibromoacetic acid (DBAA) and N-nitrosodimethylamine (NDMA) have natural and anthropogenic sources and are ubiquitously distributed in the environment. They are classified as toxic and carcinogenetic and various studies have addressed their effects on vertebrates. Furthermore, there is no information about the whole-organism effects at low concentrations or about their impact on invertebrates. Therefore, these compounds were studied with the model invertebrate Caenorhabditis elegans (C. elegans) at relatively low concentrations. Biological tests (life span, reproduction, body size, thermal stress resistance) as well as biochemical (pro- and antioxidative capacity and lipid peroxidation) and biomolecular assays (transcription of stress genes) were performed. None of the applied concentrations showed a toxic potential. Instead, they extended life span and increased the body length. Both xenobiotics did not cause oxidative stress or DNA damages, or acted as endocrine disruptors. The stimulatory effects on C. elegans were most likely not a result of an induced protective stress response. Instead, an 'energy saving mode', indicated by the reduced transcription of many stress response genes, could have provided additional resources for longevity and growth. Although both substances are potentially toxic at higher doses, the present study underlines the importance of testing lower concentrations and their impact on invertebrates. PMID:25556763

  8. New Chemical, Bio-Optical and Physical Observations of Upper Ocean Response to the Passage of a Mesoscale Eddy Off Bermuda

    NASA Technical Reports Server (NTRS)

    McNeil, J. D.; Jannasch, H. W.; Dickey, T.; McGillicuddy, Dennis J., Jr.; Brzezinski, M.; Sakamoto, C. M.

    1999-01-01

    A mesoscale eddy advected across the Bermuda Testbed Mooring site over a 30-day period centered on July 14, 1995. Temperature and current measurements along with biogeochemical measurements were used to characterize the biological response of the upper ocean associated with the introduction of nitrate into the euphotic layer due to the doming of isotherms associated with the eddy. Complementary shipboard data showed an anomalous water mass, which extended from a depth of approximately 50 to 1000 m, manifesting as a cold surface expression and warm anomaly at depth. Although mesoscale eddies are frequently observed in the Sargasso Sea, the present observations are particularly unique because of the high-temporal-resolution measurements of the new instrumentation deployed on the mooring. Analyzers that measure nitrate plus nitrite were placed at depths of 80 and 200 m and bio-optical sensors were located at depths of 20, 35, 45, 71, and 86 m. Peak nitrate values of nearly 3.0 micro-M at 80 m and chlorophyll a values of 1.4 mg/cubic m at 71 m were observed, a well as a 25- to 30-meter shoaling of the 1% light level depth. A Doppler shift from the inertial period (22.8 hours) to 25.2 hours was observed in several time series records due to the movement of the eddy across the mooring. Inertial pumping brought cold, nutrient-rich waters farther into the euphotic zone than would occur solely by isothermal lifting. Silicic acid was depleted to undetectable levels owing to the growth of diatoms within the eddy. The chlorophyll a values associated with the eddy appear to be the largest recorded during the eight years of the ongoing US JGOFS Bermuda Atlantic Time Series Study program.

  9. New Chemical, Bio-Optical and Physical Observations of Upper Ocean Response to the Passage of a Mesoscale Eddy off Bermuda

    NASA Technical Reports Server (NTRS)

    McNeil, J. D.; Jannasch, H. W.; Dickey, T.; McGillicuddy, D.; Brzekinski, M.; Sakamoto, C. M.

    1999-01-01

    A mesoscale eddy advected across the Bermuda Testbed Mooring site over a 30-day period centered on July 14, 1995. Temperature and current measurements along with biogeochemical measurements were used to characterize the biological response of the upper ocean associated with the introduction of nitrate into the euphoric layer due to the doming of isotherms associated with the eddy. Complementary shipboard data showed an anomalous water mass, which extended from a depth of approximately 50 to 1000 m, manifesting as a cold surface expression and warm anomaly at depth. Although mesoscale eddies are frequently observed in the Sargasso Sea, the present observations are particularly unique because of the high-temporal-resolution measurements of the new instrumentation deployed on the mooring. Analyzers that measure nitrate plus nitrite were placed at depths of 80 and 200 m and bio-optical sensors were located at depths of 20, 35, 45, 71, and 86 m. Peak nitrate values of nearly 3.0 microns at 80 m and chlorophyll alpha values of 1.4 mg/cu m at 71 m were observed, as well as a 25- to 30-meter shoaling of the 1% light level depth. A Doppler shift from the inertial period (22.8 hours) to 25.2 hours was observed in several time series records due to the movement of the eddy across the mooring. Inertial pumping brought cold, nutrient-rich waters farther into the euphotic zone than would occur solely by isothermal lifting. Silicic acid was depleted to undetectable levels owing to the growth of diatoms within the eddy. The chlorophyll alpha values associated with the eddy appear to be the largest recorded during the 8 years of the ongoing U.S. JGOFS Bermuda Atlantic Time Series Study (BATS) program.

  10. Climatic response variability and machine learning: development of a modular technology framework for predicting bio-climatic change in pacific northwest ecosystems"

    NASA Astrophysics Data System (ADS)

    Seamon, E.; Gessler, P. E.; Flathers, E.

    2015-12-01

    The creation and use of large amounts of data in scientific investigations has become common practice. Data collection and analysis for large scientific computing efforts are not only increasing in volume as well as number, the methods and analysis procedures are evolving toward greater complexity (Bell, 2009, Clarke, 2009, Maimon, 2010). In addition, the growth of diverse data-intensive scientific computing efforts (Soni, 2011, Turner, 2014, Wu, 2008) has demonstrated the value of supporting scientific data integration. Efforts to bridge this gap between the above perspectives have been attempted, in varying degrees, with modular scientific computing analysis regimes implemented with a modest amount of success (Perez, 2009). This constellation of effects - 1) an increasing growth in the volume and amount of data, 2) a growing data-intensive science base that has challenging needs, and 3) disparate data organization and integration efforts - has created a critical gap. Namely, systems of scientific data organization and management typically do not effectively enable integrated data collaboration or data-intensive science-based communications. Our research efforts attempt to address this gap by developing a modular technology framework for data science integration efforts - with climate variation as the focus. The intention is that this model, if successful, could be generalized to other application areas. Our research aim focused on the design and implementation of a modular, deployable technology architecture for data integration. Developed using aspects of R, interactive python, SciDB, THREDDS, Javascript, and varied data mining and machine learning techniques, the Modular Data Response Framework (MDRF) was implemented to explore case scenarios for bio-climatic variation as they relate to pacific northwest ecosystem regions. Our preliminary results, using historical NETCDF climate data for calibration purposes across the inland pacific northwest region

  11. Immune checkpoint blockade reveals the stimulatory capacity of tumor-associated CD103(+) dendritic cells in late-stage ovarian cancer.

    PubMed

    Flies, Dallas B; Higuchi, Tomoe; Harris, Jaryse C; Jha, Vibha; Gimotty, Phyllis A; Adams, Sarah F

    2016-08-01

    Although immune infiltrates in ovarian cancer are associated with improved survival, the ovarian tumor environment has been characterized as immunosuppressive, due in part to functional shifts among dendritic cells with disease progression. We hypothesized that flux in dendritic cell subpopulations with cancer progression were responsible for observed differences in antitumor immune responses in early and late-stage disease. Here we identify three dendritic cell subsets with disparate functions in the ovarian tumor environment. CD11c+CD11b(-)CD103(+) dendritic cells are absent in the peritoneal cavity of healthy mice but comprise up to 40% of dendritic cells in tumor-bearing mice and retain T cell stimulatory capacity in advanced disease. Among CD11c+CD11b+ cells, Lair-1 expression distinguishes stimulatory and immunoregulatory DC subsets, which are also enriched in the tumor environment. Notably, PD-L1 is expressed by Lair-1(hi) immunoregulatory dendritic cells, and may contribute to local tumor antigen-specific T cell dysfunction. Using an adoptive transfer model, we find that PD-1 blockade enables tumor-associated CD103(+) dendritic cells to promote disease clearance. These data demonstrate that antitumor immune capacity is maintained among local dendritic cell subpopulations in the tumor environment with cancer progression. Similar dendritic cell subsets are present in malignant ascites from women with ovarian cancer, supporting the translational relevance of these results. PMID:27622059

  12. Stimulatory actions of bioflavenoids on tyrosine uptake into cultured bovine adrenal chromaffin cells

    SciTech Connect

    Morita, K.; Hamano, S.; Oka, M.; Teraoka, K. )

    1990-09-28

    The effects of flavenoids on L-({sup 14}C)tyrosine uptake into cultured adrenal chromaffin cells were examined. Flavone markedly stimulated tyrosine uptake into these cells in a manner dependent on its concentration. Apigenin also caused a moderate stimulatory action, but quercetin had no significant effect on the uptake. Flavone also stimulated the uptake of histidine, but did not affect the uptake of serine, lysine, or glutamic acid. These results are considered to propose the possibility that flavonoids may be able to stimulate the precursor uptake into the cells, resulting in an enhancement of the biogenic amine production.

  13. Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance.

    PubMed

    Li, Chunjian; Bangerth, Fritz

    2003-09-01

    Lateral buds of pea plants can be released from apical dominance and even be transformed into dominant shoots when repeatedly treated with synthetic exogenous cytokinins (CKs). The mechanism of the effect of CKs, however, is not clear. The results in this work showed that the stimulatory effects of CKs on the growth of lateral buds and the increase in their fresh weights in pea plants depended on the structure and concentration of the CKs used. The effect of N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) was stronger than that of 6-benzylaminopurine (6-BA). Indoleacetic acid (IAA) concentration in shoot, IAA export out of the treated apex and basipetal transport in stems were markedly increased after the application of CPPU or 6-BA to the apex or the second node of pea plant. This increase was positively correlated with the increased concentration of the applied CKs. These results suggest that the increased IAA synthesis and export induced by CKs application might be responsible for the growth of lateral shoots in intact pea plants. PMID:14593807

  14. Evaluation of co-stimulatory effects of Tamarindus indica L. on MNU-induced colonic cell proliferation.

    PubMed

    Shivshankar, Pooja; Shyamala Devi, Chennam Srinivasulu

    2004-08-01

    Colonic cell proliferation is the prerequisite for the genesis of cancer. Experimental and epidemiologic evidence indicate dietary factors to be one of the commonest predisposing factors in the development of several types of cancers including large intestine. Here we have investigated the role of the fruit pulp of Tamarindus indica L. (TI), a tropical plant-derived food material, on the proliferating colonic mucosa using Swiss albino mice. Crypt cell proliferation rate (CCPR), on histological basis and [3H]-thymidine incorporation assay were chosen to evaluate the modulating potential of TI per se and in response to a subacute dose of N-nitroso N'-methyl urea (MNU). Descending colonic segment showed greater rate of cell proliferation than the ascending colon and cecum tissues isolated from the group 2 (TI-per se) when compared with group 1 (negative controls). It also revealed a positive correlation with the incorporation studies. Significant increase in the CCPR and radiolabeled precursor incorporation (p <0.001) was observed in MNU-induced+TI fed group of animals (group 4) in all the three segments when compared with control diet fed normal (group 1) as well as MNU-induced (group 3) animals. This study therefore indicates a co-stimulatory effect of TI on MNU-induced colonic cell kinetics. PMID:15207373

  15. Metformin Suppresses MHC-Restricted Antigen Presentation by Inhibiting Co-Stimulatory Factors and MHC Molecules in APCs

    PubMed Central

    Shin, Seulmee; Hyun, Bobae; Lee, Aeri; Kong, Hyunseok; Han, Shinha; Lee, Chong-Kil; Ha, Nam-Joo; Kim, Kyungjae

    2013-01-01

    Metformin is widely used for T2D therapy but its cellular mechanism of action is undefined. Recent studies on the mechanism of metformin in T2D have demonstrated involvement of the immune system. Current immunotherapies focus on the potential of immunomodulatory strategies for the treatment of T2D. In this study, we examined the effects of metformin on the antigen-presenting function of antigen-presenting cells (APCs). Metformin decreased both MHC class I and class II-restricted presentation of OVA and suppressed the expression of both MHC molecules and co-stimulatory factors such as CD54, CD80, and CD86 in DCs, but did not affect the phagocytic activity toward exogenous OVA. The class II-restricted OVA presentation-regulating activity of metformin was also confirmed using mice that had been injected with metformin followed by soluble OVA. These results provide an understanding of the mechanisms of the T cell response-regulating activity of metformin through the inhibition of MHC-restricted antigen presentation in relation to its actions on APCs. PMID:24009856

  16. An auxiliary peptide required for the function of two activation domains in upstream stimulatory factor 2 (USF2) transcription factor.

    PubMed

    Gourdon, L; Lefrançois-Martinez, A M; Viollet, B; Martinez, A; Kahn, A; Raymondjean, M

    1997-04-01

    Ubiquitous upstream stimulatory factors (USF1, USF2a and USF2b) are members of the basic-helix-loop-helix-leucine-zipper family of transcription factors that have been shown to be involved in the transcriptional response of the L-type pyruvate kinase (L-PK) gene to glucose. To understand the mechanisms of action of the USF2 isoforms, we initiated a series of co-transfection assays with deletion mutants and Ga14-USF2 fusions. The transactivating efficiency of the different native and mutant factors was determined at similar DNA binding activity. We found that: (i) exons 3- and 5-encoded regions are activation domains, (ii) a modulator domain encoded by exon 4 could be necessary to their additive action, (iii) a hexapeptide encoded by the first 5' codons of exon 6 is indispensable for transmitting activation due to both exon 3- and exon 5-encoded domains to the transcriptional machinery. Therefore, USF2 presents a modular structure and mediates transcriptional activation thanks to two non-autonomous activation domains dependent on an auxiliary peptide for expressing their activating potential. PMID:9680311

  17. Control of the reproductive axis: Balancing act between stimulatory and inhibitory inputs.

    PubMed

    Bédécarrats, Grégoy Y

    2015-04-01

    As for most vertebrates, reproduction in poultry is controlled by an integrated axis [the hypothalamo-pituitary-gonadal (HPG) axis]. External and internal cues are integrated at the level of the hypothalamus to initiate gonadal recruitment and control the subsequent reproductive cycle. Until recently, it was believed that the HPG was exclusively under stimulatory control from hypothalamic gonadotropin releasing hormone (GnRH). However in 2000, the discovery of gonadotropin inhibitory hormone (GnIH), an inhibitory peptide, changed this dogma. Since then, evidence accumulated to confirm that in fact the HPG is under a dual control system with a stimulatory and an inhibitory branch. In this paper, we review the organization of this dual control system, the mechanisms controlling the synthesis and release of GnRH and GnIH, and the possible integration and interactions between the two branches to regulate pituitary gonadotropes' function. Furthermore, as light perception and photoperiod are the primary cues utilized by the poultry industry in controlled environments, special consideration was given to potential practical applications. PMID:25638470

  18. Preparation and crystallization of the stimulatory and inhibitory complexes of GTP cyclohydrolase I and its feedback regulatory protein GFRP.

    PubMed

    Maita, N; Okada, K; Hirotsu, S; Hatakeyama, K; Hakoshima, T

    2001-08-01

    Mammalian GTP cyclohydrolase I is a decameric enzyme in the first and rate-limiting step in the biosynthesis of tetrahydrobiopterin, which is an essential cofactor for enzymes producing neurotransmitters such as catecholamines and for nitric oxide synthases. The enzyme is dually regulated by its feedback regulatory protein GFRP in the presence of its stimulatory effector phenylalanine and its inhibitory effector biopterin. Here, both the stimulatory and inhibitory complexes of rat GTP cyclohydrolase I bound to GFRP were crystallized by vapour diffusion. Diffraction data sets at resolutions of 3.0 and 2.64 A were collected for the stimulatory and inhibitory complexes, respectively. Each complex consists of two GTPCHI pentamer rings and two GFRP pentamer rings, with pseudo-52 point-group symmetry. PMID:11468403

  19. Identification of stimulatory and inhibitory inputs to the hypothalamic-pituitary-adrenal axis during hypoglycaemia or transport in ewes.

    PubMed

    Smith, R F; French, N P; Saphier, P W; Lowry, P J; Veldhuis, J D; Dobson, H

    2003-06-01

    This study used the novel approach of statistical modelling to investigate the control of hypothalamic-pituitary-adrenal (HPA) axis and quantify temporal relationships between hormones. Two experimental paradigms were chosen, insulin-induced hypoglycaemia and 2 h transport, to assess differences in control between noncognitive and cognitive stimuli. Vasopressin and corticotropin-releasing hormone (CRH) were measured in hypophysial portal plasma, and adrenocorticotropin hormone (ACTH) and cortisol in jugular plasma of conscious sheep, and deconvolution analysis was used to calculate secretory rates, before modelling. During hypoglycaemia, the relationship between plasma glucose and vasopressin or CRH was best described by log10 transforming variables (i.e. a positive power-curve relationship). A negative-feedback relationship with log10 cortisol concentration 2 h previously was detected. Analysis of the "transport" stimulus suggested that the strength of the perceived stimulus decreased over time after accounting for cortisol facilitation and negative-feedback. The time course of vasopressin and CRH responses to each stimulus were different However, at the pituitary level, the data suggested that log10 ACTH secretion rate was related to log10 vasopressin and CRH concentrations with very similar regression coefficients and an identical ratio of actions (2.3 : 1) for both stimuli. Similar magnitude negative-feedback effects of log10 cortisol at -110 min (hypoglycaemia) or -40 min (transport) were detected, and both models contained a stimulatory relationship with cortisol at 0 min (facilitation). At adrenal gland level, cortisol secretory rates were related to simultaneously measured untransformed ACTH concentration but the regression coefficient for the hypoglycaemia model was 2.5-fold greater than for transport. No individual sustained maximum cortisol secretion for longer than 20 min during hypoglycaemia and 40 min during transport. These unique models demonstrate

  20. Ganoderma lucidum polysaccharides can induce human monocytic leukemia cells into dendritic cells with immuno-stimulatory function

    PubMed Central

    Chan, Wing Keung; Cheung, Christopher Ching Hang; Law, Helen Ka Wai; Lau, Yu Lung; Chan, Godfrey Chi Fung

    2008-01-01

    Background Previous studies demonstrated Ganoderma lucidum polysaccharides (GL-PS), a form of bioactive β-glucan can stimulate the maturation of monocyte-derived dendritic cells (DC). The question of how leukemic cells especially in monocytic lineage respond to GL-PS stimuli remains unclear. Results In this study, we used in vitro culture model with leukemic monocytic cell-lines THP-1 and U937 as monocytic effectors cells for proliferation responses and DCs induction. We treated the THP-1 and U937 cells with purified GL-PS (100 μg/mL) or GL-PS with GM-CSF/IL-4. GL-PS alone induced proliferative response on both THP-1 and U937 cells but only THP-1 transformed into typical DC morphology when stimulated with GL-PS plus GM-CSF/IL-4. The transformed THP-1 DCs had significant increase expression of HLA-DR, CD40, CD80 and CD86 though not as high as the extent of normal monocyte-derived DCs. They had similar antigen-uptake ability as the normal monocyte-derived DCs positive control. However, their potency in inducing allogeneic T cell proliferation was also less than that of normal monocyte-derived DCs. Conclusion Our findings suggested that GL-PS could induce selected monocytic leukemic cell differentiation into DCs with immuno-stimulatory function. The possible clinical impact of using this commonly used medicinal mushroom in patients with monocytic leukemia (AML-M4 and M5) deserved further investigation. PMID:18644156

  1. Effect of multiple endogenous biological factors on the response of the tephritids Anastrepha ludens and Anastrepha obliqua (Diptera: Tephritidae) to multilure traps baited with BioLure or NuLure in mango orchards.

    PubMed

    Arredondo, José; Flores, Salvador; Montoya, Pablo; Díaz-Fleischer, Francisco

    2014-06-01

    The physiological state of an insect is likely the most important endogenous factor influencing resource-oriented behavior, and it varies considerably among individuals. Trials were conducted in mango orchards to study the effect of multiple endogenous biological factors on the response of two fly species, Anastrepha ludens (Loew) and Anastrepha obliqua Maquart (Diptera: Tephritidae), to BioLure and NuLure baits. The biological factors of the two fly species that were tested were the following: 1) fertility status-sterile (irradiated) and fertile flies; 2) two types of diets (only sugar and a 3:1 mixture of sugar and hydrolyzed yeast protein; 3) sex, and 4) two sexual maturity conditions (2-4- and 15-18-d-old flies, representing immature and sexually mature flies, respectively, and 2-4-d-old flies treated with methoprene as an artificially induced sexually state male condition). The laboratory-treated flies were released into three different mango orchards. The trials were conducted in four blocks per orchard using eight traps in each block (50:50 BioLure: NuLure). The traps were replaced every 2 d during the 12-d period and the flies per trap per day values were calculated. More protein-fed, fertile, female, immature, and A. obliqua flies were caught compared with the other flies tested. In addition, the traps baited with NuLure attracted more flies than those baited with BioLure. Interaction analyses indicated that the type of bait and the sexual maturity status were the most important factors affecting the responses of the flies. Our study demonstrated that lures attract only a small segment of the fly population, those that have a specific hunger for amino acids-immature flies-and those that were protein-starved. The implications for improved trapping system designs are discussed. PMID:25026661

  2. Oncogenic potential of guanine nucleotide stimulatory factor alpha subunit in thyroid glands of transgenic mice.

    PubMed Central

    Michiels, F M; Caillou, B; Talbot, M; Dessarps-Freichey, F; Maunoury, M T; Schlumberger, M; Mercken, L; Monier, R; Feunteun, J

    1994-01-01

    Transgenic mice have been used to address the issue of the oncogenic potential of mutant guanine nucleotide stimulatory factor (Gs) alpha subunit in the thyroid gland. The expression of the mutant Arg-201-->His Gs alpha subunit transgene has been directed to murine thyroid epithelial cells by bovine thyroglobulin promoter. The transgenic animals develop hyperfunctioning thyroid adenomas with increased intracellular cAMP levels and high uptake of [125I]iodine and produced elevated levels of circulating triiodothyronine and thyroxine. These animals demonstrate that the mutant form of Gs alpha subunit carries an oncogenic activity, thus supporting the model that deregulation of cAMP level alters growth control in thyroid epithelium. These animals represent models for humans with autonomously functioning thyroid nodules. Images PMID:7937980

  3. Immune stimulatory CpG oligodeoxynucleotides reduces Salmonella enterica subsp. Arizonae organ colonization and mortality in young turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic oligodeoxynucleotides (ODN) containing CpG dinucleotides (CpG ODN) mimic bacterial DNA and are stimulatory to the innate immune system of most vertebrate species. The immunostimulatory activities of CpG ODN have been studied extensively and are well characterized in human and murine immun...

  4. Forensic Analysis of BIOS Chips

    NASA Astrophysics Data System (ADS)

    Gershteyn, Pavel; Davis, Mark; Shenoi, Sujeet

    Data can be hidden in BIOS chips without hindering computer performance. This feature has been exploited by virus writers and computer game enthusiasts. Unused BIOS storage can also be used by criminals, terrorists and intelligence agents to conceal secrets. However, BIOS chips are largely ignored in digital forensic investigations. Few techniques exist for imaging BIOS chips and no tools are available specifically for analyzing BIOS data.

  5. Interaction between Angiotensin II and Insulin/IGF-1 Exerted a Synergistic Stimulatory Effect on ERK1/2 Activation in Adrenocortical Carcinoma H295R Cells

    PubMed Central

    Tong, An-li; Wang, Fen; Cui, Yun-ying; Li, Chun-yan; Li, Yu-xiu

    2016-01-01

    The cross talk between angiotensin II (Ang II) and insulin has been described mainly in cardiovascular cells, hepatocytes, adipocytes, and so forth, and to date no such cross talk was reported in adrenal. In this study, we examined the interaction between Ang II and insulin/IGF-1 in ERK and AKT signaling pathways and expression of steroidogenic enzymes in H295R cells. Compared to the control, 100 nM Ang II increased phospho-ERK1/2 approximately 3-fold. Insulin (100 nM) or IGF-1 (10 nM) alone raised phospho-ERK1/2 1.8- and 1.5-fold, respectively, while, after pretreatment with 100 nM Ang II for 30 min, insulin (100 nM) or IGF-1 (10 nM) elevated phospho-ERK1/2 level 8- and 7-fold, respectively. The synergistic effect of Ang II and insulin/IGF-1 on ERK1/2 activation was inhibited by selective AT1 receptor blocker, PKC inhibitor, and MEK1/2 inhibitor. Ang II marginally suppressed AKT activation under the basal condition, while it had no effect on phospho-AKT induced by insulin/IGF-1. Ang II significantly stimulated mRNA expression of CYP11B1 and CYP11B2, and such stimulatory effects were enhanced when cells were cotreated with insulin/IGF-1. We are led to conclude that Ang II in combination with insulin/IGF-1 had an evident synergistic stimulatory effect on ERK1/2 activation in H295R cells and the effect may be responsible for the enhanced steroid hormone production induced by Ang II plus insulin/IGF-1. PMID:27293433

  6. BioWatch in a Box

    SciTech Connect

    McBride, M T; Dzentis, J M; Meyer, R M

    2006-02-01

    BioWatch, the U.S. Department of Homeland Security (DHS) environmental monitoring program, has been successfully operating in many of the nation's urban centers since early 2003. This early warning environmental monitoring system can detect trace amounts of biological materials in the air, and has been used to provide information to assist public health experts determine whether detected materials are due to an intentional release (bioterrorism incident) or due to minute quantities that occur naturally in the environment. BioWatch information enables federal, state, and local officials to more quickly determine appropriate emergency response, medical care and consequence management.

  7. Stimulatory Effects of Arsenic-Tolerant Soil Fungi on Plant Growth Promotion and Soil Properties

    PubMed Central

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (P<0.05) increase in plant growth and improvement of soil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16–293%. Soil chemical and enzymatic properties varied from 20–222% and 34–760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils. PMID:23047145

  8. Immunosuppression by Co-stimulatory Molecules: Inhibition of CD2-CD48/CD58 Interaction by Peptides from CD2 to Suppress Progression of Collagen-induced Arthritis in Mice

    PubMed Central

    Gokhale, Ameya; Kanthala, Shanthi; Latendresse, John; Taneja, Veena; Satyanarayanajois, Seetharama

    2013-01-01

    Targeting co-stimulatory molecules to modulate the immune response has been shown to have useful therapeutic effects for autoimmune diseases. Among the co-stimulatory molecules, CD2 and CD58 are very important in the early stages of generation of an immune response. Our goal was to utilize CD2-derived peptides to modulate protein-protein interactions between CD2 and CD58, thereby modulating the immune response. Several peptides were designed based on the structure of the CD58 binding domain of CD2 protein. Among the CD2-derived peptides, peptide 6 from the F and C β-strand region of CD2 protein exhibited inhibition of cell-cell adhesion in the nanomolar concentration range. Peptide 6 was evaluated for its ability to bind to CD58 in Caco-2 cells and to CD48 in T cells from rodents. A molecular model was proposed for binding a peptide to CD58 and CD48 using docking studies. Furthermore, in vivo studies were carried out to evaluate the therapeutic ability of the peptide to modulate the immune response in the collagen-induced arthritis (CIA) mouse model. In vivo studies indicated that peptide 6 was able to suppress the progression of CIA. Evaluation of the antigenicity of peptides in CIA and transgenic animal models indicated that this peptide is not immunogenic. PMID:23530775

  9. Stimulatory Agents Simultaneously Improving the Production and Antioxidant Activity of Polyphenols from Inonotus obliquus by Submerged Fermentation.

    PubMed

    Xu, Xiangqun; Shen, Mengwei; Quan, Lili

    2015-07-01

    Polyphenols are important secondary metabolites from the edible and medicinal mushroom Inonotus obliquus. Both the rarity of I. obliquus fruit body and the low efficiency of current method of submerged fermentation lead to a low yield of polyphenols. This study was aimed to determine the effect of applying stimulatory agents to liquid cultured I. obliquus on the simultaneous accumulation of exo-polyphenols (EPC) and endo-polyphenols (IPC). Linoleic acid was the most effective out of the 17 tested stimulatory agents, the majority of which increased the EPC and IPC production. The result was totally different from the stimulatory effect of Tween 80 for polysaccharide production in previous studies. The addition of 1.0 g/L linoleic acid on day 0 resulted in 7-, 14-, and 10-fold of increase (p < 0.05) in the production of EPC extracted by ethyl acetate (EA-EPC), EPC extracted by n-butyl alcohol (NB-EPC), and IPC, and significantly increased the production of ferulic acid, gallic acid, epicatechin-3-gallate (ECG), epigallocatechin-3-gallate (EGCG), phelligridin G, inoscavin B, and davallialactone. The EA-EPC, BA-EPC, and IPC from the linoleic acid-containing medium had significantly (p < 0.05) stronger scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH), which was attributed to the higher content of these bioactive polyphenols. PMID:25951778

  10. The stimulatory effect of the TLR4-mediated adjuvant glucopyranosyl lipid A is well preserved in old age.

    PubMed

    Weinberger, Birgit; Joos, Clemens; Reed, Steven G; Coler, Rhea; Grubeck-Loebenstein, Beatrix

    2016-02-01

    Many subunit vaccines require adjuvants to improve their limited immunogenicity. Various adjuvant candidates targeting toll-like receptors (TLRs) are currently under development including the synthetic TLR4 agonist glucopyranosyl lipid A (GLA). GLA has been investigated in the context of influenza vaccine, which is of particular importance for the elderly population. This study investigates the effect of GLA on antigen-presenting cells from young (median age 29 years, range 26-33 years) and older (median age 72 years, range 61-78 years) adults. Treatment with GLA efficiently increases the expression of co-stimulatory molecules on human monocyte-derived dendritic cells (DC) as well as on ex vivo myeloid DC. Expression of co-stimulatory molecules is less pronounced on ex vivo monocytes. Production of pro-inflammatory cytokines (IL-6, TNF-α, IL-12) as well as of the anti-inflammatory cytokine IL-10 is induced in monocyte-derived DC. In PBMC cultures myeloid DC and to an even greater extent monocytes produce TNF-α and IL-6 after stimulation with GLA. Production of IL-12 can also be observed in these cultures. There are no age-related differences in the capacity of GLA to induce expression of co-stimulatory molecules or production of cytokines by human antigen-presenting cells. Therefore, TLR4 agonists like GLA are particularly promising candidates as adjuvants of vaccines designed for elderly individuals. PMID:25957253

  11. Selaginellin and biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella tamariscina and their glucose uptake stimulatory effects.

    PubMed

    Nguyen, Phi-Hung; Ji, Da-Jung; Han, Yu-Ran; Choi, Jae-Sue; Rhyu, Dong-Young; Min, Byung-Sun; Woo, Mi-Hee

    2015-07-01

    As part of an ongoing search for new antidiabetic agents from medicinal plants, the methanol extract of the aerial parts of Selaginella tamariscina was found to possess stimulatory effect on glucose uptake in 3T3-L1 adipocyte cells. Thus, bioassay-guided isolation of this active extract yielded two new compounds (1 and 2) along with five known biflavonoids (3-7). Their structures were elucidated by extensive analysis of spectroscopic and physicochemical data. The absolute configuration of compound 2 was determined by specific rotation and CD data analysis. All isolates exhibited potent inhibitory effects on PTP1B enzyme with IC50 values ranging from 4.5±0.1 to 13.2±0.8μM. Furthermore, the isolates (1-7) showed significant stimulatory effects on 2-NBDG uptake in 3T3-L1 adipocyte cells. Of these, compounds (1, 6, and 7) which exhibited mixed-competitive inhibition modes against PTP1B, showed potent stimulatory effects on 2-NBDG uptake. This result indicated the potential of these biflavonoids as lead molecules for development of antidiabetic agents and the beneficial use of S. tamariscina against hyperglycemia. PMID:25907369

  12. Stimulatory Effects of Balanced Deep Sea Water on Mitochondrial Biogenesis and Function.

    PubMed

    Ha, Byung Geun; Park, Jung-Eun; Cho, Hyun-Jung; Shon, Yun Hee

    2015-01-01

    The worldwide prevalence of metabolic diseases, including obesity and diabetes, is increasing. Mitochondrial dysfunction is recognized as a core feature of these diseases. Emerging evidence also suggests that defects in mitochondrial biogenesis, number, morphology, fusion, and fission, contribute to the development and progression of metabolic diseases. Our previous studies revealed that balanced deep-sea water (BDSW) has potential as a treatment for diabetes and obesity. In this study, we aimed to investigate the mechanism by which BDSW regulates diabetes and obesity by studying its effects on mitochondrial metabolism. To determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA) content, mitochondrial enzyme activity, and the expression of transcription factors and mitochondria specific genes, as well as on the phosphorylation of signaling molecules associated with mitochondria biogenesis and its function in C2C12 myotubes. BDSW increased mitochondrial biogenesis in a time and dose-dependent manner. Quantitative real-time PCR revealed that BDSW enhances gene expression of PGC-1α, NRF1, and TFAM for mitochondrial transcription; MFN1/2 and DRP1 for mitochondrial fusion; OPA1 for mitochondrial fission; TOMM40 and TIMM44 for mitochondrial protein import; CPT-1α and MCAD for fatty acid oxidation; CYTC for oxidative phosphorylation. Upregulation of these genes was validated by increased mitochondria staining, CS activity, CytC oxidase activity, NAD+ to NADH ratio, and the phosphorylation of signaling molecules such as AMPK and SIRT1. Moreover, drinking BDSW remarkably improved mtDNA content in the muscles of HFD-induced obese mice. Taken together, these results suggest that the stimulatory effect of BDSW on mitochondrial biogenesis and function may provide further insights into the regulatory mechanism of BDSW-induced anti-diabetic and anti-obesity action. PMID:26068191

  13. Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures

    NASA Astrophysics Data System (ADS)

    Hennige, S. J.; Suggett, D. J.; Warner, M. E.; McDougall, K. E.; Smith, D. J.

    2009-03-01

    Light is often the most abundant resource within the nutrient-poor waters surrounding coral reefs. Consequently, zooxanthellae ( Symbiodinium spp.) must continually photoacclimate to optimise productivity and ensure coral success. In situ coral photobiology is becoming dominated by routine assessments using state-of-the-art non-invasive bio-optical or chlorophyll a fluorescence (bio-physical) techniques. Multiple genetic types of Symbiodinium are now known to exist; however, little focus has been given as to how these types differ in terms of characteristics that are observable using these techniques. Therefore, this investigation aimed to revisit and expand upon a pivotal study by Iglesias-Prieto and Trench (1994) by comparing the photoacclimation characteristics of different Symbiodinium types based on their bio-physical (chlorophyll a fluorescence, reaction centre counts) and bio-optical (optical absorption, pigment concentrations) ‘signatures’. Signatures described here are unique to Symbiodinium type and describe phenotypic responses to set conditions, and hence are not suitable to describe taxonomic structure of in hospite Symbiodinium communities. In this study, eight Symbiodinium types from clades and sub-clades (A-B, F) were grown under two PFDs (Photon Flux Density) and examined. The photoacclimation response by Symbiodinium was highly variable between algal types for all bio-physical and for many bio-optical measurements; however, a general preference to modifying reaction centre content over effective antennae-absorption was observed. Certain bio-optically derived patterns, such as light absorption, were independent of algal type and, when considered per photosystem, were matched by reaction centre stoichiometry. Only by better understanding genotypic and phenotypic variability between Symbiodinium types can future studies account for the relative taxonomic and physiological contribution by Symbiodinium to coral acclimation.

  14. Diamond bio electronics.

    PubMed

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions. PMID:19745488

  15. Dose-dependent stimulatory and inhibitory effects of luminal and serosal n-butyric acid on epithelial cell proliferation of pig distal colonic mucosa.

    PubMed

    Inagaki, Akiko; Sakata, Takashi

    2005-06-01

    Large bowel bacteria convert various carbohydrates into short-chain fatty acids (SCFA). SCFA stimulate epithelial cell proliferation of the large intestine in vivo and inhibit that of various cells in vitro. Supposing that too high concentration of SCFA on the serosal side is responsible for their inhibitory effect in vitro, we studied effects of luminal and serosal n-butyric acid (0, 0.1, 1, or 10 mmol/L, adjusted to neutral pH) on the epithelial cell proliferation rate of pig colonic mucosa in organ culture taking crypt cell production rate (CCPR) as the measure of proliferative activity. With 0 or 0.1 mmol/L n-butyric acid on the serosal side, luminal n-butyric acid increased CCPR at 1.0 mmol/L, and decreased CCPR at 10 mmol/L when compared to the luminal 0 mmol/L control. With 1.0 or 10 mmol/L serosal n-butyric acid, luminal n-butyric acid depressed CCPR dose-dependently. The above results indicated that n-butyric acid stimulated colonic epithelial cell proliferation at low concentration and inhibit it at high concentration with interaction effect to enhance the inhibitory action. The stimulatory effect of a low dose of serosal n-butyric acid may be responsible for the distant trophic effect of SCFA. PMID:16161765

  16. Receptors for B cell stimulatory factor 2. Quantitation, specificity, distribution, and regulation of their expression

    SciTech Connect

    Taga, T.; Kawanishi, Y.; Hardy, R.R.; Hirano, T.; Kishimoto, T.

    1987-10-01

    B cell stimulatory factor 2 receptors (BSF-2-R) were studied using radioiodinated recombinant BSF-2 with a specific activity of 6.16 X 10(13) cpm/g. Kinetic studies showed that binding of /sup 125/I-BSF-2 to CESS cells reached maximum level within 150 min at 0 degrees C. There was a single class of receptors with high affinity (Kd 3.4 X 10(-10) M) on CESS, and the number of receptors was 2700 per cell. Binding of /sup 125/I-BSF-2 to CESS was competitively inhibited by unlabeled BSF-2 but not by IL-1, IL-2, IFN-beta, IFN-gamma, and G-CSF, indicating the presence of the receptors specific for BSF-2. EBV-transformed B lymphoblastoid cell lines (CESS, SKW6-CL4, LCL13, and LCL14) expressed BSF-2-R, whereas Burkitt's lines did not. EBV or EBNA2 did not induce the expression of the receptors on Burkitt's cells. The plasma cell lines (ARH-77 and U266) expressed BSF-2-R, fitting the function of BSF-2 as plasma cell growth factor. Several other cell lines, the histiocytic line U937, the promyelocytic line HL60, the astrocytoma line U373 and the glioblastoma line SK-MG-4, in which BSF-2 was inducible with IL-1 or TPA, displayed BSF-2-R with Kd in the range of 1.3-6.4 X 10(-10) M, suggesting the autocrine mechanism in BSF-2 function. The four T cell lines (CEM, HSB, Jurkat, and OM 1) did not express a detectable number of receptors, but normal resting T cells expressed 100-1000 receptors per cell. BSF-2-R were not present on normal resting B cells but expressed on activated B cells with a Kd of 3.6-5.0 X 10(-10) M, fitting the function of BSF-2, which acts on B cells at the final maturation stage to induce immunoglobulin production.

  17. Growth-stimulatory monoclonal antibodies against human insulin-like growth factor I receptor.

    PubMed

    Xiong, L; Kasuya, J; Li, S L; Kato, J; Fujita-Yamaguchi, Y

    1992-06-15

    Monoclonal antibodies (mAbs) against purified human placental insulin-like growth factor I (IGF-I) receptors were prepared and characterized. Three IgG mAbs were specific for the human IGF-I receptor and displayed negligible crossreactivity with the human insulin receptor. They stimulated 125I-labeled IGF-I (125I-IGF-I) or 125I-IGF-II binding to purified human placental IGF-I receptors and to IGF-I receptors expressed in NIH 3T3 cells in contrast to the well-studied mAb alpha IR-3, which inhibits 125I-IGF-I or 125I-IGF-II binding to both forms of IGF-I receptors. The mAbs introduced in this study stimulated DNA synthesis in NIH 3T3 cells expressing human IGF-I receptors approximately 1.5-fold above the basal level and the IGF-I- or IGF-II-stimulated level. In contrast, alpha IR-3 inhibited both basal and IGF-I or IGF-II-stimulated DNA synthesis by approximately 30%. Inhibition of IGF-II-stimulated DNA synthesis by alpha IR-3 was as potent as its inhibition of IGF-I-stimulated DNA synthesis, although IGF-II binding to the IGF-I receptors was not inhibited by IGF-II as potently as was IGF-I. With the purified IGF-I receptors, both inhibitory and stimulatory mAbs were shown to activate autophosphorylation of the IGF-I receptor beta subunit and to induce microaggregation of the receptors. These results suggest that conformational changes resulting from receptor dimerization in the presence of either type of mAb may affect the signal-transducing function of the IGF-I receptor differently. These additional mAbs and alpha IR-3 immunoprecipitated nearly 90% of IGF-I binding activity from Triton X-100-solubilized human placental membranes, indicating that IGF-I receptor reactive with these mAbs is the major form of the IGF-I receptor in human placenta. PMID:1319060

  18. BioReactor

    Energy Science and Technology Software Center (ESTSC)

    2003-04-18

    BioReactor is a simulation tool kit for modeling networks of coupled chemical processes (or similar productions rules). The tool kit is implemented in C++ and has the following functionality: 1. Monte Carlo discrete event simulator 2. Solvers for ordinary differential equations 3. Genetic algorithm optimization routines for reverse engineering of models using either Monte Carlo or ODE representation )i.e., 1 or 2)

  19. Israel Marine Bio-geographic Database (ISRAMAR-BIO)

    NASA Astrophysics Data System (ADS)

    Greengrass, Eyal; Krivenko, Yevgeniya; Ozer, Tal; Ben Yosef, Dafna; Tom, Moshe; Gertman, Isaac

    2015-04-01

    The knowledge of the space/time variations of species is the basis for any ecological investigations. While historical observations containing integral concentrations of biological parameters (chlorophyll, abundance, biomass…) are organized partly in ISRAMAR Cast Database, the taxon-specific data collected in Israel has not been sufficiently organized. This has been hindered by the lack of standards, variability of methods and complexity of biological data formalization. The ISRAMAR-BIO DB was developed to store various types of historical and future available information related to marine species observations and related metadata. Currently the DB allows to store biological data acquired by the following sampling devices such as: van veer grab, box corer, sampling bottles, nets (plankton, trawls and fish), quadrates, and cameras. The DB's logical unit is information regarding a specimen (taxa name, barcode, image), related attributes (abundance, size, age, contaminants…), habitat description, sampling device and method, time and space of sampling, responsible organization and scientist, source of information (cruise, project and publication). The following standardization of specimen and attributes naming were implemented: Taxonomy according to World Register of Marine Species (WoRMS: http://www.marinespecies.org). Habitat description according to Coastal and Marine Ecological Classification Standards (CMECS: http://www.cmecscatalog.org) Parameter name; Unit; Device name; Developmental stage; Institution name; Country name; Marine region according to SeaDataNet Vocabularies (http://www.seadatanet.org/Standards-Software/Common-Vocabularies). This system supports two types of data submission procedures, which support the above stated data structure. The first is a downloadable excel file with drop-down fields based on the ISRAMAR-BIO vocabularies. The file is filled and uploaded online by the data contributor. Alternatively, the same dataset can be assembled by

  20. Bio-Terrorism Threat and Casualty Prevention

    SciTech Connect

    NOEL,WILLIAM P.

    2000-01-01

    The bio-terrorism threat has become the ''poor man's'' nuclear weapon. The ease of manufacture and dissemination has allowed an organization with only rudimentary skills and equipment to pose a significant threat with high consequences. This report will analyze some of the most likely agents that would be used, the ease of manufacture, the ease of dissemination and what characteristics of the public health response that are particularly important to the successful characterization of a high consequence event to prevent excessive causalities.

  1. BioSig-Air-Force

    Energy Science and Technology Software Center (ESTSC)

    2011-07-15

    1) Configured servers: In coordination with the INSIGHT team, a hardware configuration was selected. Two nodes were purchased, configured, and shipped with compatible OS and database installation. The servers have been stress tested for reliability as they use leading edge technologies. Each node has two CPUs and 12 cores per CPU with maximum onboard memory for high performance. 2) LIM and Experimental module: The original BioSig system was developed for cancer research. Accordingly, the LIMmore » system its corresponding web pages are being modified to facilitate (i) pathogene-donor interactions, (ii) media composition, (iii) chemical and siRNA plate configurations. The LIM system has been redesigned. The revised system allows design of new media and tracking it from lot-to-lot so that variations in the phenotypic responses can be tracked to a specific media and lot number. Similar associations are also possible with other experimental factors (e.g., donor-pathoge, siRNA, and chemical). Furthermore, the design of the experimental variables has also been revised to (i) interact with the newly developed LIM system, (ii) simplify experimental specifications, and (iii) test for potential operator's error during the data entry. Part of the complication has been due to the handshake between multiple teams that provide the small molecule plates and the team that creates assay plates. Our efforts have focused to harmonize these interactions (e.g., various data formats) so that each assay plate can be mapped to its source so that a correct set of experimental variables can be associated with each image. For example, depending upon the source of the chemical plates, they may have different formats. We have developed a canonical representation that registers SMILES code, for each chemical compound, along with its physiochemical properties. The schema for LIM conjunction with customized Web pages. 3) Import of Images and computed descriptors module: In coordination with the

  2. BioSig-Air-Force

    SciTech Connect

    2011-07-15

    1) Configured servers: In coordination with the INSIGHT team, a hardware configuration was selected. Two nodes were purchased, configured, and shipped with compatible OS and database installation. The servers have been stress tested for reliability as they use leading edge technologies. Each node has two CPUs and 12 cores per CPU with maximum onboard memory for high performance. 2) LIM and Experimental module: The original BioSig system was developed for cancer research. Accordingly, the LIM system its corresponding web pages are being modified to facilitate (i) pathogene-donor interactions, (ii) media composition, (iii) chemical and siRNA plate configurations. The LIM system has been redesigned. The revised system allows design of new media and tracking it from lot-to-lot so that variations in the phenotypic responses can be tracked to a specific media and lot number. Similar associations are also possible with other experimental factors (e.g., donor-pathoge, siRNA, and chemical). Furthermore, the design of the experimental variables has also been revised to (i) interact with the newly developed LIM system, (ii) simplify experimental specifications, and (iii) test for potential operator's error during the data entry. Part of the complication has been due to the handshake between multiple teams that provide the small molecule plates and the team that creates assay plates. Our efforts have focused to harmonize these interactions (e.g., various data formats) so that each assay plate can be mapped to its source so that a correct set of experimental variables can be associated with each image. For example, depending upon the source of the chemical plates, they may have different formats. We have developed a canonical representation that registers SMILES code, for each chemical compound, along with its physiochemical properties. The schema for LIM conjunction with customized Web pages. 3) Import of Images and computed descriptors module: In coordination with the INSIGHT

  3. Stimulatory function of paired immunoglobulin-like receptor-A in mast cell line by associating with subunits common to Fc receptors.

    PubMed

    Ono, M; Yuasa, T; Ra, C; Takai, T

    1999-10-15

    Paired Ig-like receptors (PIR) are polymorphic type I transmembrane proteins belonging to an Ig superfamily encoded by multiple isotypic genes. They are expressed on immune cells such as mast cells, macrophages, and B lymphocytes. Two subtypes of PIR have been classified according to the difference in the primary structure of the PIR transmembrane and cytoplasmic regions. These subtypes are designated as PIR-A and PIR-B. In this study, the transmembrane and cytoplasmic regions of the PIR-A subtype were shown to mediate activation signal events such as cytoplasmic calcium mobilization, protein tyrosine phosphorylations, and degranulation in rat mast cell line RBL-2H3. The association of the Fc receptor gamma and beta subunits with PIR-A was shown to be responsible for PIR-A function but not required for membrane expression of PIR-A on COS-7 cells. We further revealed the role of two charged amino acid residues in the transmembrane region, namely arginine and glutamic acid, in PIR-A function and its association with the above subunits. In contrast to the inhibitory nature of the PIR-B subtype, present findings reveal that PIR-A potentially acts as a stimulatory receptor in mast cells, suggesting a mechanism for regulation of mast cell functions by the PIR family. PMID:10514523

  4. Concurrent loss of co-stimulatory molecules and functional cytokine secretion attributes leads to proliferative senescence of CD8(+) T cells in HIV/TB co-infection.

    PubMed

    Saeidi, Alireza; Chong, Yee K; Yong, Yean K; Tan, Hong Y; Barathan, Muttiah; Rajarajeswaran, Jayakumar; Sabet, Negar S; Sekaran, Shamala D; Ponnampalavanar, Sasheela; Che, Karlhans F; Velu, Vijayakumar; Kamarulzaman, Adeeba; Larsson, Marie; Shankar, Esaki M

    2015-09-01

    The role of T-cell immunosenescence and functional CD8(+) T-cell responses in HIV/TB co-infection is unclear. We examined and correlated surrogate markers of HIV disease progression with immune activation, immunosenescence and differentiation using T-cell pools of HIV/TB co-infected, HIV-infected and healthy controls. Our investigations showed increased plasma viremia and reduced CD4/CD8 T-cell ratio in HIV/TB co-infected subjects relative to HIV-infected, and also a closer association with changes in the expression of CD38, a cyclic ADP ribose hydrolase and CD57, which were consistently expressed on late-senescent CD8(+) T cells. Up-regulation of CD57 and CD38 were directly proportional to lack of co-stimulatory markers on CD8(+) T cells, besides diminished expression of CD127 (IL-7Rα) on CD57(+)CD4(+) T cells. Notably, intracellular IFN-γ, perforin and granzyme B levels in HIV-specific CD8(+) T cells of HIV/TB co-infected subjects were diminished. Intracellular CD57 levels in HIV gag p24-specific CD8(+) T cells were significantly increased in HIV/TB co-infection. We suggest that HIV-TB co-infection contributes to senescence associated with chronic immune activation, which could be due to functional insufficiency of CD8(+) T cells. PMID:26071876

  5. Herpes simplex virus virion stimulatory protein mRNA leader contains sequence elements which increase both virus-induced transcription and mRNA stability.

    PubMed

    Blair, E D; Blair, C C; Wagner, E K

    1987-08-01

    To investigate the role of 5' noncoding leader sequence of herpes simplex virus type 1 (HSV-1) mRNA in infected cells, the promoter for the 65,000-dalton virion stimulatory protein (VSP), a beta-gamma polypeptide, was introduced into plasmids bearing the chloramphenicol acetyltransferase (cat) gene together with various lengths of adjacent viral leader sequences. Plasmids containing longer lengths of leader sequence gave rise to significantly higher levels of CAT enzyme in transfected cells superinfected with HSV-1. RNase T2 protection assays of CAT mRNA showed that transcription was initiated from an authentic viral cap site in all VSP-CAT constructs and that CAT mRNA levels corresponded to CAT enzyme levels. Use of cis-linked simian virus 40 enhancer sequences demonstrated that the effect was virus specific. Constructs containing 12 and 48 base pairs of the VSP mRNA leader gave HSV infection-induced CAT activities intermediate between those of the leaderless construct and the VSP-(+77)-CAT construct. Actinomycin D chase experiments demonstrated that the longest leader sequences increased hybrid CAT mRNA stability at least twofold in infected cells. Cotransfection experiments with a cosmid bearing four virus-specified transcription factors (ICP4, ICP0, ICP27, and VSP-65K) showed that sequences from -3 to +77, with respect to the viral mRNA cap site, also contained signals responsive to transcriptional activation. PMID:3037112

  6. Stimulatory effect of 1,25-dihydroxycholecalciferol-like substances from Solanum malacoxylon and Cestrum diurnum on phosphate transport in chick jejunum.

    PubMed

    Peterlik, M; Wasserman, R H

    1978-10-01

    Extracts of the calcinogenic plants Solanum malocoxylon and Cestrum diurnum stimulate phosphate absorption by the jejunum of vitamin D-deficient chicks, as determined by everted gut sac technique. Their action on cellular pathways of transepithelial phosphate transport is indistinguishable thereby from that of cholecalciferol. Increased net absorption from the lumen was due to enhanced uptake of phosphate from the luminal side, while leakage of tissue phosphate in the opposite direction was apparently unaffected. Steep serosa/mucosa concentration gradients were observed as consequence of enhanced levels of transepithelial phosphate flux in the mucosa-to-serosa direction. With respect to their stimulatory action on phosphate absorption, the calcinogenic plant factors retained their biological activity when phosphate transport was depressed by a high strontium diet. Their action in overcoming the strontium inhibition of phosphate absorption, calcium-binding protein synthesis, and alkaline phosphatase activity, was comparable to the effect of 1,25-dihydroxycholecalciferol. On the basis of these biological responses, the action of the plant factors from Solanum malacoxylon and Cestrum diurnum provides further evidence for their close resemblance to the hormonally active sterol. PMID:702209

  7. Mycobacterial Phosphatidylinositol Mannosides Negatively Regulate Host Toll-like Receptor 4, MyD88-dependent Proinflammatory Cytokines, and TRIF-dependent Co-stimulatory Molecule Expression*

    PubMed Central

    Doz, Emilie; Rose, Stéphanie; Court, Nathalie; Front, Sophie; Vasseur, Virginie; Charron, Sabine; Gilleron, Martine; Puzo, Germain; Fremaux, Isabelle; Delneste, Yves; Erard, François; Ryffel, Bernhard; Martin, Olivier R.; Quesniaux, Valerie F. J.

    2009-01-01

    Mycobacterium tuberculosis modulates host immune responses through proteins and complex glycolipids. Here, we report that the glycosylphosphatidylinositol anchor phosphatidyl-myo-inositol hexamannosides PIM6 or PIM2 exert potent anti-inflammatory activities. PIM strongly inhibited the Toll-like receptor (TLR4) and myeloid differentiation protein 88 (MyD88)-mediated release of NO, cytokines, and chemokines, including tumor necrosis factor (TNF), interleukin 12 (IL-12) p40, IL-6, keratinocyte-derived chemokine, and also IL-10 by lipopolysaccharide (LPS)-activated macrophages. This effect was independent of the presence of TLR2. PIM also reduced the LPS-induced MyD88-independent, TIR domain-containing adaptor protein inducing interferon β (TRIF)-mediated expression of co-stimulatory receptors. PIM inhibited LPS/TLR4-induced NFκB translocation. Synthetic PIM1 and a PIM2 mimetic recapitulated these in vitro activities and inhibited endotoxin-induced airway inflammation, TNF and keratinocyte-derived chemokine secretion, and neutrophil recruitment in vivo. Mannosyl, two acyl chains, and phosphatidyl residues are essential for PIM anti-inflammatory activity, whereas the inosityl moiety is dispensable. Therefore, PIM exert potent antiinflammatory effects both in vitro and in vivo that may contribute to the strategy developed by mycobacteria for repressing the host innate immunity, and synthetic PIM analogs represent powerful anti-inflammatory leads. PMID:19561082

  8. Clinical application of bio ceramics

    NASA Astrophysics Data System (ADS)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  9. Ozone depletion due to the use of chlorofluorocarbon: Government and industry response. (Latest citations from the BioBusiness database). Published Search

    SciTech Connect

    1996-03-01

    The bibliography contains citations concerning the response of business and government to atmospheric ozone depletion. Voluntary restrictions in the use of chlorofluorocarbons by industry and attempts to develop a substitute are examined. References cite studies of the ozone layer and the effects of aerosols worldwide, and examples of climatic models of ozone depletion. Government sponsored bans on chloroflourocarbons are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Bio-forensics

    SciTech Connect

    Trewhella, J.

    2004-01-01

    Bioforensics presents significant technical challenges. Determining if an outbreak is natural or not, and then providing evidence to trace an outbreak to its origin is very complex. Los Alamos scientists pioneered research and development that has generated leading edge strain identification methods based on sequence data. Molecular characterization of environmental background samples enable development of highly specific pathogen signatures. Economic impacts of not knowing the relationships at the molecular level Many different kinds of data are needed for DNA-based bio-forensics.

  11. Biochemical properties of the stimulatory activity of DNA polymerase alpha by the hyper-phosphorylated retinoblastoma protein.

    PubMed

    Takemura, Masaharu

    2002-06-01

    Previously, my colleagues and I have reported that the immunopurified hyper-phosphorylated retinoblastoma protein (ppRb) stimulates the activity of DNA polymerase alpha. I describe here the biochemical characteristics of this stimulatory activity. DNA polymerase alpha-stimulatory activity of ppRb was most remarkable when using activated DNA as a template-primer, rather than using poly(dT)-(rA)(10), poly(dA)-(dT)(12-18), and so on. Kinetic analysis showed that there was no significant difference in K(m) value for deoxyribonucleotides of DNA polymerase alpha in the presence of ppRb. Adding ppRb resulted in the overcoming pause site on the template, but did not affect the rate of misincorporation of incorrect deoxyribonucleotides. By adding ppRb, the optimal concentration of template-primer was shifted to a higher region, but not using M13 singly primed DNA. The ppRb seemed to assist the process that DNA polymerase alpha changed its conformation resulting in appropriate enzyme activity. These results suggest that ppRb affects both template-primer and DNA polymerase alpha and makes appropriate circumstances for the enzyme reaction. PMID:12049795

  12. Peripheral administration of a μ-opioid receptor agonist DAMGO suppresses the anxiolytic and stimulatory effects of caffeine.

    PubMed

    Sudakov, S K; Nazarova, G A; Alekseeva, E V; Kolpakov, A A

    2015-01-01

    We studied the possibility of modulation of the stimulatory and anxiolytic effects of caffeine by activation of μ-opioid receptors in the gastrointestinal tract. Caffeine in a dose of 10 mg/kg (but not in a dose of 100 mg/kg) had a strong anxiolytic and psychostimulant effect. This effect was manifested in a significant increase in the time spent in the open arms of the elevated plus-maze, elevation of locomotor activity, and stimulation of metabolism. Administration of DAMGO to animals receiving caffeine in a dose of 10 mg/kg abolished the anxiolytic and psychostimulant effects of caffeine. By contrast, administration of DAMGO to rats receiving caffeine in a dose of 100 mg/kg had the anxiolytic effect. Activation of peripheral μ-opioid receptors is followed by the inhibition of the central μ-opioid system. We observed a decrease in the number of μ-opioid receptors in the midbrain and cerebral cortex and inhibition of β-endorphin release from nerve ending of the cingulate cortex in rats. These changes are probably followed by activation of the adenosine system in the brain. Caffeine dose should be increased to achieve the effect. Therefore, the anxiolytic and stimulatory effects of caffeine in a dose of 10 mg/kg are abolished under these conditions. By contrast, the anxiolytic effect of caffeine in a dose of 100 mg/kg (not observed under normal conditions) develops after this treatment. PMID:25573353

  13. Upstream stimulatory factors, USF1 and USF2, bind to the human haem oxygenase-1 proximal promoter in vivo and regulate its transcription

    PubMed Central

    2004-01-01

    The human HO-1 (haem oxygenase-1) gene encodes a microsomal enzyme responsible for the breakdown of haem, and is also cytoprotective in response to various cellular insults. HO-1 transcription is induced by a vast array of compounds including, but certainly not limited to, haem and heavy metals such as cadmium. In the present study, we show that upstream stimulatory factors, USF1 and USF2, ubiquitous proteins belonging to the basic helix–loop–helix-leucine zipper family of transcription factors, constitutively bind to the class B E-box located in the proximal promoter of the human HO-1 gene and are responsible for the enhancement of HO-1 gene transcription in human renal proximal tubular epithelial cells. Dimethylsulphate in vivo footprinting studies have identified three protected guanine residues in the E-box of the HO-1 proximal promoter. One of these guanine contact points is essential for USF binding, and when mutated mimics a deletion mutation of the entire E-box palindrome sequence encompassing all three guanine contact points. Binding of USF1 and USF2 to the HO-1 E-box was confirmed by chromatin immunoprecipitation and gel-shift assays. Furthermore, we show that overexpression of USF1 or USF2 enhances the basal expression of HO-1 and that expression of a USF dominant negative form reduces its expression. These results demonstrate for the first time that USF proteins bind to the human HO-1 promoter in vivo and are required for high-level expression of HO-1 by haem and cadmium in human renal epithelial cells. PMID:15242350

  14. Bio-tribology.

    PubMed

    Dowson, Duncan

    2012-01-01

    It is now forty six years since the separate topics of friction, lubrication, wear and bearing design were integrated under the title 'Tribology' [Department of Education and Science, Lubrication (Tribology) Education and Research. A Report on the Present Position and Industry's Needs, HMSO, London, 1966]. Significant developments have been reported in many established and new aspects of tribology during this period. The subject has contributed to improved performance of much familiar equipment, such as reciprocating engines, where there have been vast improvements in engine reliability and efficiency. Nano-tribology has been central to remarkable advances in information processing and digital equipment. Shortly after widespread introduction of the term tribology, integration with biology and medicine prompted rapid and extensive interest in the fascinating sub-field now known as Bio-tribology [D. Dowson and V. Wright, Bio-tribology, in The Rheology of Lubricants, ed. T. C. Davenport, Applied Science Publishers, Barking, 1973, pp. 81-88]. An outline will be given of some of the developments in the latter field. PMID:23285619

  15. Bio-coal briquette

    SciTech Connect

    Honda, Hiroshi

    1993-12-31

    Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

  16. Bio-threat microparticle simulants

    DOEpatents

    Farquar, George Roy; Leif, Roald N

    2012-10-23

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  17. Bio-threat microparticle simulants

    SciTech Connect

    Farquar, George Roy; Leif, Roald

    2014-09-16

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  18. Characterization of Glycolytic Enzymes - rAldolase and rEnolase of Leishmania donovani, Identified as Th1 Stimulatory Proteins, for Their Immunogenicity and Immunoprophylactic Efficacies against Experimental Visceral Leishmaniasis

    PubMed Central

    Gupta, Reema; Kumar, Vikash; Kushawaha, Pramod Kumar; Tripathi, Chandradev Pati; Joshi, Sumit; Sahasrabuddhe, Amogh Anant; Mitra, Kalyan; Sundar, Shyam; Siddiqi, Mohammad Imran; Dube, Anuradha

    2014-01-01

    Th1 immune responses play an important role in controlling Visceral Leishmaniasis (VL) hence, Leishmania proteins stimulating T-cell responses in host, are thought to be good vaccine targets. Search of such antigens eliciting cellular responses in Peripheral blood mononuclear cells (PBMCs) from cured/exposed/Leishmania patients and hamsters led to the identification of two enzymes of glycolytic pathway in the soluble lysate of a clinical isolate of Leishmania donovani - Enolase (LdEno) and aldolase (LdAld) as potential Th1 stimulatory proteins. The present study deals with the molecular and immunological characterizations of LdEno and LdAld. The successfully cloned and purified recombinant proteins displayed strong ability to proliferate lymphocytes of cured hamsters’ along with significant nitric-oxide production and generation of Th1-type cytokines (IFN-γ and IL-12) from stimulated PBMCs of cured/endemic VL patients. Assessment of their prophylactic potentials revealed ∼90% decrease in parasitic burden in rLdEno vaccinated hamsters against Leishmania challenge, strongly supported by an increase in mRNA expression levels of iNOS, IFN-γ, TNF-α and IL-12 transcripts along with extreme down-regulation of TGF-β, IL-4 and IL-10. However, animals vaccinated with rLdAld showed comparatively lesser prophylactic efficacy (∼65%) with inferior immunological response. Further, with a possible implication in vaccine design against VL, identification of potential T-cell epitopes of both the proteins was done using computational approach. Additionally, in-silico 3-D modelling of the proteins was done in order to explore the possibility of exploiting them as potential drug targets. The comparative molecular and immunological characterizations strongly suggest rLdEno as potential vaccine candidate against VL and supports the notion of its being effective T-cell stimulatory protein. PMID:24475071

  19. Bio-photonics workstation

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Perch-Nielsen, Ivan; Dam, Jeppe S.; Palima, Darwin Z.

    2007-01-01

    We outline the specifications of a portable Bio-photonics Workstation we have developed that utilizes just a single spatial light modulator to generate an array of up to 100 reconfigurable laser-traps with adjustable power ratios making 3D real-time optical manipulation possible with the click of a laptop mouse. We employ a simple patented optical mapping approach from a fast spatial light modulator to obtain reconfigurable intensity patterns corresponding to two independently addressable regions relayed to the sample volume where the optical manipulation of a plurality of nano-featured micro-objects takes place. The stand-alone Biophotonics Workstation is currently being tested by external partners with micro-biologic and chemistry expertise.

  20. Bio-prospecting of distillery yeasts as bio-control and bio-remediation agents.

    PubMed

    Ubeda, Juan F; Maldonado, María; Briones, Ana I; Francisco, J Fernández; González, Francisco J

    2014-05-01

    This work constitutes a preliminary study in which the capacity of non-Saccharomyces yeasts isolated from ancient distilleries as bio-control agents against moulds and in the treatment of waste waters contaminated by heavy metals-i.e. bio-remediation-is shown. In the first control assays, antagonist effect between non-Saccharomyces yeasts, their extracts and supernatants against some moulds, analysing the plausible (not exhaustive) involved factors were qualitatively verified. In addition, two enzymatic degrading properties of cell wall plant polymers, quitinolitic and pectinolitic, were screened. Finally, their use as agents of bio-remediation of three heavy metals (cadmium, chromium and lead) was analysed semi-quantitatively. The results showed that all isolates belonging to Pichia species effectively inhibited all moulds assayed. Moreover, P. kudriavzevii is a good candidate for both bio-control and bio-remediation because it inhibited moulds and accumulated the major proportion of the three tested metals. PMID:24370629

  1. Overview of the TAC-BIO sensor

    NASA Astrophysics Data System (ADS)

    Cabalo, Jerry; Sickenberger, Richard; De Lucia, Marla; Briles, John; Poldmae, Aime; Sickenberger, David

    2005-05-01

    In light of the current state of detection technologies designed to meet the current threat from biological agents, the need for a low-cost and lightweight sensor is clear. Such a sensor based on optical detection, with real time responses and no consumables, is possible. Devices arising from the Defense Advanced Research Projects Agency's (DARPA) Semiconductor UV Optical Sources (SUVOS) are the enabling technology. These sources are capable of emitting UV wavelengths known to excite fluorescence from biological agent particles while costing a few dollars apiece and consuming low power. These devices are exploited in the TAC-Bio Sensor. A unique optical design is used to collect the usable portion of the LED emission and focus it into the probing region of the sensor. To compensate for the low UV power density relative to UV lasers, the TAC-Bio utilizes a unique opposed flow configuration to increase the interaction between particles and the UV beam. The current TAC-Bio sensor testbed is capable of detecting fluorescence Bacillus globigii (BG, an anthrax simulant) spore agglomerates down to 5 microns in diameter. Ongoing work is focusing on increasing signal to noise so that smaller particles, possibly single spores, can be detected, as well as on including additional data channels, such as light scattering, to increase selectivity of the sensor.

  2. Green paper on bio-preparedness--general comments.

    PubMed

    Sirbu, Manuela

    2010-01-01

    The Commission's Green Paper on Bio-preparedness represents an important signal that the European Commission is actively involved in, working on issues related to bio-preparedness across all Member States and the international Community. In 2006, the Commission held two seminars on European Bio Preparedness and a workshop on Transport and Traceability of Bio materials. The results and recommendations emerging from these discussions have been inserted in this Green Paper. The document intends to stimulate a debate within and between the Member States and to launch a process of consultation on how to reduce biological risks and to enhance preparedness and response. All the national authorities responsible for risk prevention and response, human, animal and plant health, customs, civil protection, law enforcement authorities, the military, bio-industry, epidemiological and health communities, academic institutions and bioresearch institutes are therefore called to be involved, to contribute and to improve the ability of the EU to prevent, respond to and recover from a biological incident or deliberate criminal activity. PMID:21254743

  3. Protein kinases as switches for the function of upstream stimulatory factors: implications for tissue injury and cancer

    PubMed Central

    Horbach, Tina; Götz, Claudia; Kietzmann, Thomas; Dimova, Elitsa Y.

    2015-01-01

    The upstream stimulatory factors (USFs) are regulators of important cellular processes. Both USF1 and USF2 are supposed to have major roles in metabolism, tissue protection and tumor development. However, the knowledge about the mechanisms that control the function of USFs, in particular in tissue protection and cancer, is limited. Phosphorylation is a versatile tool to regulate protein functions. Thereby, phosphorylation can positively or negatively affect different aspects of transcription factor function including protein stability, protein–protein interaction, cellular localization, or DNA binding. The present review aims to summarize the current knowledge about the regulation of USFs by direct phosphorylation and the consequences for USF functions in tissue protection and cancer. PMID:25741280

  4. Stimulatory effect of oral administration of green tea and caffeine on locomotor activity in SKH-1 mice.

    PubMed

    Michna, Laura; Lu, Yao-Ping; Lou, You-Rong; Wagner, George C; Conney, Allan H

    2003-08-01

    Administration of green tea or caffeine was shown previously to inhibit ultraviolet B light-induced carcinogenesis in SKH-1 mice, and this effect was associated with a reduction in dermal fat. In the present study, oral administration of 0.6% green tea (6 mg tea solids/ml) or 0.04% caffeine (0.4 mg/ml; equivalent to the amount of caffeine in 0.6% green tea) as the sole source of drinking fluid to SKH-1 mice for 15 weeks increased total 24 hr locomotor activity by 47 and 24%, respectively (p<0.0001). Oral administration of 0.6% decaffeinated green tea (6 mg tea solids/ml) for 15 weeks increased locomotor activity by 9% (p<0.05). The small increase in locomotor activity observed in mice treated with decaffeinated green tea may have resulted from the small amounts of caffeine still remaining in decaffeinated green tea solutions (0.047 mg/ml). The stimulatory effects of orally administered green tea and caffeine on locomotor activity were paralleled by a 38 and 23% increase, respectively, in the dermal muscle layer thickness. In addition, treatment of the mice with 0.6% green tea or 0.04% caffeine for 15 weeks decreased the weight of the parametrial fat pad by 29 and 43%, respectively, and the thickness of the dermal fat layer was decreased by 51 and 47%, respectively. These results indicate that oral administration of green tea or caffeine to SKH-1 mice increases locomotor activity and muscle mass and decreases fat stores. The stimulatory effect of green tea and caffeine administration on locomotor activity described here may contribute to the effects of green tea and caffeine to decrease fat stores and to inhibit carcinogenesis induced by UVB in SKH-1 mice. PMID:12850499

  5. Navigating the Bio-Politics of Childhood

    ERIC Educational Resources Information Center

    Lee, Nick; Motzkau, Johanna

    2011-01-01

    Childhood research has long shared a bio-political terrain with state agencies in which children figure primarily as "human futures". In the 20th century bio-social dualism helped to make that terrain navigable by researchers, but, as life processes increasingly become key sites of bio-political action, bio-social dualism is becoming less useful…

  6. Functional tooth restoration by next-generation bio-hybrid implant as a bio-hybrid artificial organ replacement therapy.

    PubMed

    Oshima, Masamitsu; Inoue, Kaoru; Nakajima, Kei; Tachikawa, Tetsuhiko; Yamazaki, Hiromichi; Isobe, Tomohide; Sugawara, Ayaka; Ogawa, Miho; Tanaka, Chie; Saito, Masahiro; Kasugai, Shohei; Takano-Yamamoto, Teruko; Inoue, Takashi; Tezuka, Katsunari; Kuboki, Takuo; Yamaguchi, Akira; Tsuji, Takashi

    2014-01-01

    Bio-hybrid artificial organs are an attractive concept to restore organ function through precise biological cooperation with surrounding tissues in vivo. However, in bio-hybrid artificial organs, an artificial organ with fibrous connective tissues, including muscles, tendons and ligaments, has not been developed. Here, we have enveloped with embryonic dental follicle tissue around a HA-coated dental implant, and transplanted into the lower first molar region of a murine tooth-loss model. We successfully developed a novel fibrous connected tooth implant using a HA-coated dental implant and dental follicle stem cells as a bio-hybrid organ. This bio-hybrid implant restored physiological functions, including bone remodelling, regeneration of severe bone-defect and responsiveness to noxious stimuli, through regeneration with periodontal tissues, such as periodontal ligament and cementum. Thus, this study represents the potential for a next-generation bio-hybrid implant for tooth loss as a future bio-hybrid artificial organ replacement therapy. PMID:25116435

  7. Poor Mixed Lymphocyte Reaction Stimulatory Capacity of Leukemic B Cells of Chronic Lymphocytic Leukemia Patients Despite the Presence of Ia Antigens

    PubMed Central

    Halper, James P.; Fu, Shu Man; Gottlieb, Alice B.; Winchester, Robert J.; Kunkel, Henry G.

    1979-01-01

    The human Ia-like antigens, selectively expressed on B lymphocytes, are now recognized to be closely associated with, or identical to, the gene products of the major histocompatibility complex responsible for stimulation in the mixed lymphocyte reaction. The leukemic B lymphocytes of patients with chronic lymphocytic leukemia express these antigens very well. In the present study they were readily detected by several techniques utilizing both allo- and heteroantisera. However, the leukemic B cells from most patients were found to be extremely poor stimulating cells in the mixed lymphocyte reaction. This was particularly apparent when comparisons were made on a B-cell basis with isolated normal B lymphocytes. Leukemic cell death, abnormal kinetics of leukemic cell-mediated stimulation, and serum or cellular suppressor factors do not appear to explain these findings. Studies comparing cells from a leukemic patient with those of her HLA identical sibling and results of mixed lymphocyte reactions between normal and leukemic subjects discordant for D-region-associated Ia antigens ruled out genetic explanations for the differences observed. Experiments with normal peripheral blood mononuclear cells depleted of T cells and monocytes exclude the quantitative deficiency of monocytes which is found in the peripheral blood of most leukemic patients as an explanation. The present results with chronic lymphocytic leukemia cells indicate that the mere expression of the Ia-like antigens by cell populations does not render them effective stimulators. The accumulated evidence obtained indicate that abnormalities, particularly of membrane function and metabolism, known to occur in chronic lymphocytic leukemia lymphocytes may be involved in the poor stimulatory capacity of the leukemic B cells. PMID:159311

  8. mTORC2 deficiency in myeloid DC enhances their allogeneic Th1 and Th17 stimulatory ability after TLR4 ligation in vitro and in vivo

    PubMed Central

    Raïch-Regué, Dàlia; Rosborough, Brian R.; Watson, Alicia R.; McGeachy, Mandy J.; Turnquist, Hēth R.; Thomson, Angus W.

    2015-01-01

    The mammalian/mechanistic target of rapamycin (mTOR) is a key integrative kinase that functions in two independent complexes, mTOR complex (mTORC) 1 and mTORC2. In contrast to the well-defined role of mTORC1 in dendritic cells (DC), little is known about the function of mTORC2. Here, we demonstrate for the first time an enhanced ability of mTORC2-deficient myeloid DC to stimulate and polarize allogeneic T cells. We show that activated bone marrow-derived DC from conditional Rictor−/− mice exhibit lower co-inhibitory B7-H1 molecule expression independently of the stimulus and enhanced IL-6, TNFα, IL-12p70 and IL-23 production following TLR4 ligation. Accordingly, TLR4-activated Rictor−/− DC display augmented allogeneic T cell stimulatory ability, expanding IFN-γ+ and IL-17+, but not IL-10+ or CD4+Foxp3+ regulatory T cells in vitro. A similar DC profile was obtained by stimulating Dectin-1 (C-type lectin family member) on Rictor−/− DC. Using novel CD11c-specific Rictor−/− mice, we confirm the alloreactive Th1 and Th17 cell-polarizing ability of endogenous mTORC2-deficient DC after TLR4 ligation in vivo. Furthermore, we demonstrate that pro-inflammatory cytokines produced by Rictor−/− DC after LPS stimulation are key in promoting Th1/Th17 responses. These data establish that mTORC2 activity restrains conventional DC pro-inflammatory capacity and their ability to polarize T cells following TLR and non-TLR stimulation. Our findings provide new insight into the role of mTORC2 in regulating DC function and may have implications for emerging therapeutic strategies that target mTOR in cancer, infectious diseases, and transplantation. PMID:25840913

  9. Stimulatory current at the edge of an inactive conductor in an electric field: Role of nonlinear interfacial current-voltage relationship

    PubMed Central

    Sims, Jared A.; Pollard, Andrew E.; White, Peter S.; Knisley, Stephen B.

    2011-01-01

    Cardiac electric field stimulation is critical for the mechanism of defibrillation. The presence of certain inactive epicardial conductors in the field during defibrillation can decrease the defibrillation threshold. We hypothesized this decrease is due to stimulatory effects of current across the interface between the inactive conductor and the heart during field stimulation. To examine this current and its possible stimulatory effects, we imaged transmittance of indium-tin-oxide (ITO) conductors, tested for indium with x-ray diffraction, created a computer model containing realistic ITO interfacial properties, and optically mapped excitation of rabbit heart during electric field stimulation in the presence of an ITO conductor. Reduction of ITO to indium decreased transmittance at the edge facing the anodal shock electrode when trans-interfacial voltage exceeded standard reduction potential. The interfacial current-voltage relationship was nonlinear, producing larger conductances at higher currents. This nonlinearity concentrated the interfacial current near edges in images and in a computer model. The edge current was stimulatory, producing early postshock excitation of rabbit ventricles. Thus, darkening of ITO indicates interfacial current by indium reduction. Interfacial nonlinearity concentrates current near the edge where it can excite the heart. Stimulatory current at edges may account for the reported decrease in defibrillation threshold by inactive conductors. PMID:19605317

  10. Stimulatory effects of muramyl dipeptide upon neutrophils isolated from a local bacterial infection.

    PubMed Central

    Lamont, P. M.; Maier, K. G.; Melton, L.; Polk, H. C.

    1987-01-01

    This study examined the effects of muramyl dipeptide (MDP) in vivo upon the local inflammatory response to a bacterial challenge. In addition to quantitative bacteriology of the tissues surrounding an infected suture, polymorphonuclear leucocytes (PMN) involved in the local inflammatory response were extracted and estimations made of their number, viability and phagocytic activity. Fewer bacteria were recovered from the muscle around the suture in MDP-treated animals compared to placebo-treated controls (P less than 0.02), although there was no difference in the number of bacteria on the suture itself. Polymorphonuclear leucocytes were present in greater numbers (P less than 0.01), more PMNs were viable (P less than 0.01) and more PMNs had visibly phagocytosed bacteria (P less than 0.01) in the MDP group compared to the placebo group. These data indicate that MDP enhances the local inflammatory response to infection with increased influx, viability and phagocytic activity of PMNs, resulting in improved local control of a test bacterial challenge. PMID:3318904

  11. Assessing the Need for an On-Line Educational Module for Volunteer Leaders on Bio-Security in Washington State 4-H Livestock Projects

    ERIC Educational Resources Information Center

    Stevenson, Jill L.; Moore, Dale A.; Newman, Jerry; Schmidt, Janet L.; Smith, Sarah M.; Smith, Jean; Kerr, Susan; Wallace, Michael; BoyEs, Pat

    2011-01-01

    4-H livestock projects present disease transmission risks that can be reduced by the use of bio-security practices. The responsibility of teaching bio-security to youth belongs primarily to volunteer leaders, who may not be aware of the importance of these practices. A needs assessment for an online educational module about bio-security revealed…

  12. S-Layer Protein Mediates the Stimulatory Effect of Lactobacillus helveticus MIMLh5 on Innate Immunity

    PubMed Central

    Taverniti, Valentina; Stuknyte, Milda; Minuzzo, Mario; Arioli, Stefania; De Noni, Ivano; Scabiosi, Christian; Cordova, Zuzet Martinez; Junttila, Ilkka; Hämäläinen, Sanna; Turpeinen, Hannu; Mora, Diego; Karp, Matti; Pesu, Marko

    2013-01-01

    The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention. PMID:23220964

  13. S-layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity.

    PubMed

    Taverniti, Valentina; Stuknyte, Milda; Minuzzo, Mario; Arioli, Stefania; De Noni, Ivano; Scabiosi, Christian; Cordova, Zuzet Martinez; Junttila, Ilkka; Hämäläinen, Sanna; Turpeinen, Hannu; Mora, Diego; Karp, Matti; Pesu, Marko; Guglielmetti, Simone

    2013-02-01

    The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention. PMID:23220964

  14. Bio-inspired vision

    NASA Astrophysics Data System (ADS)

    Posch, C.

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980`s, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ``neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  15. Bio-oil fractionation and condensation

    DOEpatents

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  16. Uridine from Pleurotus giganteus and Its Neurite Outgrowth Stimulatory Effects with Underlying Mechanism

    PubMed Central

    Phan, Chia-Wei; David, Pamela; Wong, Kah-Hui; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1±0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80±0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine. PMID:26565787

  17. Uridine from Pleurotus giganteus and Its Neurite Outgrowth Stimulatory Effects with Underlying Mechanism.

    PubMed

    Phan, Chia-Wei; David, Pamela; Wong, Kah-Hui; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1 ± 0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80 ± 0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine. PMID:26565787

  18. Complex biological and bio-inspired systems

    SciTech Connect

    Ecke, Robert E

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to accurately

  19. PubChem BioAssay: 2014 update.

    PubMed

    Wang, Yanli; Suzek, Tugba; Zhang, Jian; Wang, Jiyao; He, Siqian; Cheng, Tiejun; Shoemaker, Benjamin A; Gindulyte, Asta; Bryant, Stephen H

    2014-01-01

    PubChem's BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for archiving biological tests of small molecules generated through high-throughput screening experiments, medicinal chemistry studies, chemical biology research and drug discovery programs. In addition, the BioAssay database contains data from high-throughput RNA interference screening aimed at identifying critical genes responsible for a biological process or disease condition. The mission of PubChem is to serve the community by providing free and easy access to all deposited data. To this end, PubChem BioAssay is integrated into the National Center for Biotechnology Information retrieval system, making them searchable by Entrez queries and cross-linked to other biomedical information archived at National Center for Biotechnology Information. Moreover, PubChem BioAssay provides web-based and programmatic tools allowing users to search, access and analyze bioassay test results and metadata. In this work, we provide an update for the PubChem BioAssay resource, such as information content growth, new developments supporting data integration and search, and the recently deployed PubChem Upload to streamline chemical structure and bioassay submissions. PMID:24198245

  20. PubChem BioAssay: 2014 update

    PubMed Central

    Wang, Yanli; Suzek, Tugba; Zhang, Jian; Wang, Jiyao; He, Siqian; Cheng, Tiejun; Shoemaker, Benjamin A.; Gindulyte, Asta; Bryant, Stephen H.

    2014-01-01

    PubChem’s BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for archiving biological tests of small molecules generated through high-throughput screening experiments, medicinal chemistry studies, chemical biology research and drug discovery programs. In addition, the BioAssay database contains data from high-throughput RNA interference screening aimed at identifying critical genes responsible for a biological process or disease condition. The mission of PubChem is to serve the community by providing free and easy access to all deposited data. To this end, PubChem BioAssay is integrated into the National Center for Biotechnology Information retrieval system, making them searchable by Entrez queries and cross-linked to other biomedical information archived at National Center for Biotechnology Information. Moreover, PubChem BioAssay provides web-based and programmatic tools allowing users to search, access and analyze bioassay test results and metadata. In this work, we provide an update for the PubChem BioAssay resource, such as information content growth, new developments supporting data integration and search, and the recently deployed PubChem Upload to streamline chemical structure and bioassay submissions. PMID:24198245

  1. Bio-threat preparedness: Need for a paradigm shift

    PubMed Central

    Jindal, A.K.; Roy, Kaushik

    2014-01-01

    India of late has been vulnerable to Chemical, Biological, Radiological and Nuclear (CBRN) threat, on account of its unique geographic position. Biological threat is an imminent threat in the hands of a terrorist. The public health system of our country is overburdened due to its present role and bio-attack response is not a priority area. This paper suggests that as the prime focus is on the CR and N threats in the integrated CBRN preparedness strategy and that specialized and technical forces are needed to deal with a bio-threat; hence there is a need for a paradigm shift in policy. The emerging field of bio-threat needs to be delinked from the joint family of ‘CBRN’, with consequent structural and functional changes. A separate specialized cadre needs to be formed for dealing with bio-threat, created from the pool of doctors and non-medical scientists from the AFMS and the DRDO. Structural changes are needed in the organization, to bring in the resources of NCDC, New Delhi for enhanced disease surveillance capacity and creation of a bio-threat mitigation node in the AFMC, Pune. PMID:24843207

  2. The Stimulatory Gαs Protein Is Involved in Olfactory Signal Transduction in Drosophila

    PubMed Central

    Deng, Ying; Zhang, Weiyi; Farhat, Katja; Oberland, Sonja; Gisselmann, Günter; Neuhaus, Eva M.

    2011-01-01

    Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology, constituting a key difference between the olfactory systems of insects and other animals. While heteromeric insect ORs form ligand-activated non-selective cation channels in recombinant expression systems, the evidence for an involvement of cyclic nucleotides and G-proteins in odor reception is inconsistent. We addressed this question in vivo by analyzing the role of G-proteins in olfactory signaling using electrophysiological recordings. We found that Gαs plays a crucial role for odorant induced signal transduction in OR83b expressing olfactory sensory neurons, but not in neurons expressing CO2 responsive proteins GR21a/GR63a. Moreover, signaling of Drosophila ORs involved Gαs also in a heterologous expression system. In agreement with these observations was the finding that elevated levels of cAMP result in increased firing rates, demonstrating the existence of a cAMP dependent excitatory signaling pathway in the sensory neurons. Together, we provide evidence that Gαs plays a role in the OR mediated signaling cascade in Drosophila. PMID:21490930

  3. Stimulatory Effects of Polysaccharide Fraction from Solanum nigrum on RAW 264.7 Murine Macrophage Cells

    PubMed Central

    Razali, Faizan Naeem; Ismail, Amirah; Abidin, Nurhayati Zainal; Shuib, Adawiyah Suriza

    2014-01-01

    The polysaccharide fraction from Solanum nigrum Linne has been shown to have antitumor activity by enhancing the CD4+/CD8+ ratio of the T-lymphocyte subpopulation. In this study, we analyzed a polysaccharide extract of S. nigrum to determine its modulating effects on RAW 264.7 murine macrophage cells since macrophages play a key role in inducing both innate and adaptive immune responses. Crude polysaccharide was extracted from the stem of S. nigrum and subjected to ion-exchange chromatography to partially purify the extract. Five polysaccharide fractions were then subjected to a cytotoxicity assay and a nitric oxide production assay. To further analyze the ability of the fractionated polysaccharide extract to activate macrophages, the phagocytosis activity and cytokine production were also measured. The polysaccharide fractions were not cytotoxic, but all of the fractions induced nitric oxide in RAW 264.7 cells. Of the five fractions tested, SN-ppF3 was the least toxic and also induced the greatest amount of nitric oxide, which was comparable to the inducible nitric oxide synthase expression detected in the cell lysate. This fraction also significantly induced phagocytosis activity and stimulated the production of tumor necrosis factor-α and interleukin-6. Our study showed that fraction SN-ppF3 could classically activate macrophages. Macrophage induction may be the manner in which polysaccharides from S. nigrum are able to prevent tumor growth. PMID:25299340

  4. Blockade of adenosine receptors unmasks a stimulatory effect of ATP on cardiac contractility.

    PubMed Central

    Mantelli, L.; Amerini, S.; Filippi, S.; Ledda, F.

    1993-01-01

    1. The effects of ATP, alpha,beta-methylene ATP and beta,gamma-methylene ATP on the contractile tension of guinea-pig isolated left atria were evaluated. 2. ATP (1-100 microM) produced a concentration-dependent negative inotropic effect; this response was converted to a positive inotropic effect in the presence of the antagonist of adenosine A1 receptors, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 0.1 microM), and in the presence of 8-phenyltheophylline (10 microM), an antagonist of A1 and A2 receptors. 3. The positive inotropic effect of ATP was antagonized by the P2 receptor antagonist, suramin (500 microM). Reactive blue 2 (30-500 microM), a putative P2y receptor antagonist, concentration-dependently reduced and finally abolished the effect of ATP. 4. In the presence of 8-phenyltheophylline, the stable analogues of ATP, alpha,beta-methylene ATP and beta,gamma-methylene ATP (1-30 microM), produced a concentration-dependent increase in atrial contractility of a lesser degree than that induced by ATP. 5. The results suggest that when inhibitory adenosine receptors are blocked, ATP produces a positive inotropic effect, probably mediated by P2y receptor stimulation. PMID:8401938

  5. Bio-nanopatterning of Surfaces

    NASA Astrophysics Data System (ADS)

    Mendes, Paula M.; Yeung, Chun L.; Preece, Jon A.

    2007-08-01

    Bio-nanopatterning of surfaces is a very active interdisciplinary field of research at the interface between biotechnology and nanotechnology. Precise patterning of biomolecules on surfaces with nanometre resolution has great potential in many medical and biological applications ranging from molecular diagnostics to advanced platforms for fundamental studies of molecular and cell biology. Bio-nanopatterning technology has advanced at a rapid pace in the last few years with a variety of patterning methodologies being developed for immobilising biomolecules such as DNA, peptides, proteins and viruses at the nanoscale on a broad range of substrates. In this review, the status of research and development are described, with particular focus on the recent advances on the use of nanolithographic techniques as tools for biomolecule immobilisation at the nanoscale. Present strengths and weaknesses, as well future challenges on the different nanolithographic bio-nanopatterning approaches are discussed.

  6. Retroviral induction of GSK-3β expression blocks the stimulatory action of physical exercise on the maturation of newborn neurons.

    PubMed

    Llorens-Martín, María; Teixeira, Catia M; Jurado-Arjona, Jerónimo; Rakwal, Randeep; Shibato, Junko; Soya, Hideaki; Ávila, Jesús

    2016-09-01

    Adult hippocampal neurogenesis (AHN) is a key process for certain types of hippocampal-dependent learning. Alzheimer's disease (AD) is accompanied by memory deficits related to alterations in AHN. Given that the increased activity of GSK-3β has been related to alterations in the population of hippocampal granule neurons in AD patients, we designed a novel methodology by which to induce selective GSK-3β overexpression exclusively in newborn granule neurons. To this end, we injected an rtTA-IRES-EGFP-expressing retrovirus into the hippocampus of tTO-GSK-3β mice. Using this novel retroviral strategy, we found that GSK-3β caused a cell-autonomous impairment of the morphological and synaptic maturation of newborn neurons. In addition, we examined whether GSK-3β overexpression in newborn neurons limits the effects of physical activity. While physical exercise increased the number of dendritic spines, the percentage of mushroom spines, and the head diameter of the same in tet-OFF cells, these effects were not triggered in tet-ON cells. This observation suggests that GSK-3β blocks the stimulatory actions of exercise. Given that the activity of GSK-3β is increased in the brains of individuals with AD, these data may be relevant for non-pharmacological therapies for AD. PMID:27010990

  7. Glucagon induces disaggregation of polymer-like structures of the. alpha. subunit of the stimulatory G protein in liver membranes

    SciTech Connect

    Nakamura, Shunichi; Rodbell, M. )

    1991-08-15

    The hydrodynamic behavior of G{alpha}{sub s}, the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein (G protein), in octyl glucoside extracts of rat liver membranes was investigated. As was previously shown for G proteins similarly extracted from brain synaptoneurosomes, G{alpha}{sub s} behaved as polydisperse structures with S values higher than that of heterotrimeric G proteins. When G{alpha}{sub s} in its membrane-bound form was ({sup 32}P)ADP-ribosylated by cholera toxin and the treated membranes were extracted with octyl glucoside, > 35% of the labeled G{alpha}{sub s} was found in material that sedimented through sucrose gradients and contained relatively low levels of immunoreactive G{alpha}{sub s}. These finding suggest that the glucagon receptor selectivity interacts with polymer-like structures of G{alpha}{sub 2} and that activation by GTP({gamma}S) results in disaggregation. The role of the {beta} and {gamma} subunits of G proteins in the hormone-induced process is not clear since the polymer-like structures extracted with octyl glucoside are devoid of {beta} and {gamma} subunits.

  8. Upstream stimulatory factors stimulate transcription through E-box motifs in the PF4 gene in megakaryocytes.

    PubMed

    Okada, Yoshiaki; Matsuura, Eri; Tozuka, Zenzaburo; Nagai, Ryohei; Watanabe, Ayako; Matsumoto, Kayoko; Yasui, Kazuta; Jackman, Robert W; Nakano, Toru; Doi, Takefumi

    2004-10-01

    Platelet factor 4 (PF4) is expressed during megakaryocytic differentiation. We previously demonstrated that the homeodomain proteins (myeloid ecotropic integration site 1 [MEIS1], Pbx-regulating protein 1 [PREP1], and pre-B-cell leukemia transcription factors [PBXs]) bind to the novel regulatory element tandem repeat of MEIS1 binding element [TME] and transactivate the rat PF4 promoter. In the present study, we investigated and identified other TME binding proteins in megakaryocytic HEL cells using mass spectrometry. Among identified proteins, we focused on upstream stimulatory factor (USF1) and USF2 and investigated their effects on the PF4 promoter. USF1 and 2 bound to the E-box motif in the TME and strongly transactivated the PF4 promoter. Furthermore, physiologic bindings of USF1 and 2 to the TME in rat megakaryocytes were demonstrated by the chromatin immunoprecipitation (ChIP) assay. Interestingly, the E-box motif in the TME was conserved in TME-like sequences of both the human and mouse PF4 promoters. USF1 and 2 also bound to the human TME-like sequence and transactivated the human PF4 promoter. Expressions of USF1 and 2 were detected by reverse-transcriptase-polymerase chain reaction (RT-PCR) in the human megakaryocytes derived from CD34+ cells. Thus, these studies demonstrate that the novel TME binding transcription factors, USF1 and 2, transactivate rat and human PF4 promoters and may play an important role in megakaryocytic gene expression. PMID:15187018

  9. Influence of various treatments including povidone-iodine and healing stimulatory reagents in a rabbit ear wound model.

    PubMed

    Arai, Keitaro; Yamazaki, Masashi; Maeda, Tatsuo; Okura, Takaaki; Tsuboi, Ryoji

    2013-10-01

    Selecting an appropriate treatment for a given case of skin wound is crucial for inducing optimal healing. We used an animal model developed from normal rabbit ears in order to assess the efficacy of treatments for skin wounds with or without a wet dressing, anti microbial reagent or topical wound-stimulatory reagents. The degree of healing in each group was evaluated and compared using four histological parameters: (i) degree of reepithelialisation, (ii) amount of granulation tissue formation, and (iii) the number of capillary lumens and (iv) fibroblasts in the granulation tissue. Treatment using wet dressings resulted in an increase in capillary number compared with the open dry wound. Although the retention of povidone-iodine (PI) in wound tissue after application significantly inhibited reepithelialisation (P < 0.05), rinsing PI off with saline was comparable in effect to using only a wet dressing. The three topical reagents, namely, basic fibroblast growth factor, prostaglandin E1 and dibutyryl cyclic adenosine monophosphate, significantly improved reepithelialisation (P < 0.05). In conclusion, wounds should be kept hydrated by applying topical reagents. If there are any signs of bacterial infection, PI can be applied and rinsed later with saline in order to minimise its cytotoxic effects. PMID:22776519

  10. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution.

    PubMed

    Yokota, Takehiro; Nara, Yukinori; Kashima, Akiko; Matsubara, Keiko; Misawa, Satoru; Kato, Ryohei; Sugio, Shigetoshi

    2007-02-01

    Human JNK stimulatory phosphatase-1 (JSP-1) is a novel member of dual specificity phosphatases. A C-terminus truncated JSP-1 was expressed in Escherichia coli and was crystallized using the sitting-drop vapor diffusion method. Thin-plate crystals obtained at 278 K belong to a monoclinic space group, C2, with unit-cell parameters a = 84.0 A, b = 49.3 A, c = 47.3 A, and beta = 119.5 degrees , and diffract up to 1.5 A resolution at 100 K. The structure of JSP-1 has a single compact (alpha/beta) domain, which consists of six alpha-helices and five beta-strands, and shows a conserved structural scaffold in regard to both DSPs and PTPs. A cleft formed by a PTP-loop at the active site is very shallow, and is occupied by one sulfonate compound, MES, at the bottom. In the binary complex structure of JSP-1 with MES, the conformations of three important segments in regard to the catalytic mechanism are not similar to those in PTP1B. JSP-1 has no loop corresponding to the Lys120-loop of PTP1B, and tryptophan residue corresponding to the substrate-stacking in PTP1B is substituted by alanine residue in JSP-1. PMID:17068812

  11. The nuclear fraction of protein kinase CK2 binds to the upstream stimulatory factors (USFs) in the absence of DNA.

    PubMed

    Spohrer, Sarah; Dimova, Elitsa Y; Kietzmann, Thomas; Montenarh, Mathias; Götz, Claudia

    2016-02-01

    The functions of the upstream stimulatory factors USF1 and USF2 are, like those of other transcription factors, regulated by reversible phosphorylation. Besides many other kinases also protein kinase CK2 phosphorylates USF1 but not USF2. In a yeast-two-hybrid screen, however, the non-catalytic CK2β subunit of CK2 was identified as a binding partner of USF2. This surprising observation prompted us to investigate the CK2/USF interaction in more detail in the present study. By using immunofluorescence analyses as well as co-immunoprecipitations we found that USF1 and USF2 bound to CK2α and CK2β exclusively in the nucleus, though CK2β and to a minor amount CK2α were also present in the cytoplasm. Furthermore, we found that unlike other substrates the phosphorylation of USF1 required the presence of the regulatory CK2β subunit; the catalytic α-subunit of CK2 alone was not able to phosphorylate USF1. Thus, the correct phosphorylation of USF1 is only guaranteed and strictly controlled in particular by nuclear CK2β. Although the data indicated that a nuclear subfraction of CK2 subunits associated with USF proteins, DNA pull down experiments revealed that the CK2 subunits did not co-localize with DNA bound USF proteins indicating that the USF/CK2 interaction has a pre- or post DNA binding function. PMID:26577526

  12. Oxidative Stress Impairs the Stimulatory Effect of S100 Proteins on Protein Phosphatase 5 Activity.

    PubMed

    Yamaguchi, Fuminori; Tsuchiya, Mitsumasa; Shimamoto, Seiko; Fujimoto, Tomohito; Tokumitsu, Hiroshi; Tokuda, Masaaki; Kobayashi, Ryoji

    2016-01-01

    Oxidative stress is the consequence of an imbalance between the production of harmful reactive oxygen species and the cellular antioxidant system for neutralization, and it activates multiple intracellular signaling pathways, including apoptosis signal-regulating kinase 1 (ASK1). Protein phosphatase 5 (PP5) is a serine/threonine phosphatase involved in oxidative stress responses. Previously, we reported that S100 proteins activate PP5 in a calcium-dependent manner. S100 proteins belong to a family of small EF-hand calcium-binding proteins involved in many processes such as cell proliferation, differentiation, apoptosis, and inflammation. Therefore, we investigated the effects of oxidative stress on S100 proteins, their interaction with PP5, and PP5 enzyme activity. Recombinant S100A2 was easily air-oxidized or Cu-oxidized, and oxidized S100A2 formed cross-linked dimers and higher molecular-mass complexes. The binding of oxidized S100A2 to PP5 was reduced, resulting in decreased PP5 activation in vitro. Oxidation also impaired S100A1, S100A6, S100B, and S100P to activate PP5, although the low dose of oxidized S100 proteins still activated PP5. Hydrogen peroxide (H2O2) induced S100A2 oxidation in human keratinocytes (HaCaT) and human hepatocellular carcinoma (Huh-7) cells. Furthermore, H2O2 reduced the binding of S100A2 to PP5 and decreased PP5 activation in HaCaT and Huh-7 cells. Importantly, even the low dose of S100A2 achieved by knocking down increased dephosphorylation of ASK1 and reduced caspase 3/7 activity in Huh-7 cells treated with H2O2. These results indicate that oxidative stress impairs the ability of S100 proteins to bind and activate PP5, which in turn modulates the ASK1-mediated signaling cascades involved in apoptosis. PMID:27600583

  13. In vivo stimulatory effect of erythropoietin on endothelial nitric oxide synthase in cerebral arteries.

    PubMed

    Santhanam, Anantha Vijay R; Smith, Leslie A; Nath, Karl A; Katusic, Zvonimir S

    2006-08-01

    The discovery of tissue protective effects of erythropoietin has stimulated significant interest in erythropoietin (Epo) as a novel therapeutic approach to vascular protection. The present study was designed to determine the cerebral vascular effects of recombinant Epo in vivo. Recombinant adenoviral vectors (10(9) plaque-forming units/animal) encoding genes for human erythropoietin (AdEpo) and beta-galactosidase (AdLacZ) were injected into the cisterna magna of rabbits. After 48 h, basilar arteries were harvested for analysis of vasomotor function, Western blotting, and measurement of cGMP levels. Gene transfer of AdEpo increased the expressions of recombinant Epo and its receptor in the basilar arteries. Arteries exposed to recombinant Epo demonstrated attenuation of contractile responses to histamine (10(-9) to 10(-5) mol/l) (P < 0.05, n = 5). Endothelium-dependent relaxations to acetylcholine (10(-9) to 10(-5) mol/l) were significantly augmented (P < 0.05, n = 5), whereas endothelium-independent relaxations to a nitric oxide (NO) donor 2-(N,N-diethylamino)diazenolate-2-oxide sodium salt remained unchanged in AdEpo-transduced basilar arteries. Transduction with AdEpo increased the protein expression of endothelial NO synthase (eNOS) and phosphorylated the S1177 form of the enzyme. Basal levels of cGMP were significantly elevated in arteries transduced with AdEpo consistent with increased NO production. Our studies suggest that in cerebral circulation, Epo enhances endothelium-dependent vasodilatation mediated by NO. This effect could play an important role in the vascular protective effect of Epo. PMID:16565320

  14. A Novel Beta-Defensin Antimicrobial Peptide in Atlantic Cod with Stimulatory Effect on Phagocytic Activity

    PubMed Central

    Ruangsri, Jareeporn; Kitani, Yoichiro; Kiron, Viswanath; Lokesh, Jep; Brinchmann, Monica F.; Karlsen, Bård Ove; Fernandes, Jorge M. O.

    2013-01-01

    A novel defensin antimicrobial peptide gene was identified in Atlantic cod, Gadus morhua. This three exon/two intron defensin gene codes for a peptide precursor consisting of two domains: a signal peptide of 26 amino acids and a mature peptide of 40 residues. The mature cod defensin has six conserved cysteine residues that form 1–5, 2–4 and 3–6 disulphide bridges. This pattern is typical of beta-defensins and this gene was therefore named cod beta-defensin (defb). The tertiary structure of Defb exhibits an α/β fold with one α helix and β1β2β3 sheets. RT-PCR analysis indicated that defb transcripts were present mainly in the swim bladder and peritoneum wall but could also be detected at moderate to low levels in skin, head- and excretory kidneys. In situ hybridisation revealed that defb was specifically expressed by cells located in the swim bladder submucosa and the oocytes. During embryonic development, defb gene transcripts were detectable from the golden eye stage onwards and their expression was restricted to the swim bladder and retina. Defb was differentially expressed in several tissues following antigenic challenge with Vibrio anguillarum, being up-regulated up to 25-fold in head kidney. Recombinant Defb displayed antibacterial activity, with a minimal inhibitory concentration of 0.4–0.8 µM and 25–50 µM against the Gram-(+) bacteria Planococcus citreus and Micrococcus luteus, respectively. In addition, Defb stimulated phagocytic activity of cod head kidney leucocytes in vitro. These findings imply that beta-defensins may play an important role in the innate immune response of Atlantic cod. PMID:23638029

  15. Stimulatory effect of procaine on the growth of several microalgae and cyanobacteria.

    PubMed

    Suzuki, T; Ezure, T; Yamaguchi, T; Domen, H; Ishida, M; Schmidt, W

    2000-02-01

    Procaine has been used to stimulate plant growth and it has been noted that it also promotes growth of microorganisms. The effect of procaine hydrochloride concentration on the growth rates of several species of microalgae and cyanobacteria was studied under both photoautotropic and heterotrophic growth conditions. Procaine hydrochloride was added to cultures at concentrations over the range 0.01-1000 mg L(-1). A stimulating effect of procaine hydrochloride on photoautotrophic growth was observed for the cyanobacteria Anabaena cylindrica and Anabaena variabilis, and for the salt-tolerant green algae Dunaliella primolecta and Dunaliella parva. During active growth in batch culture an increase in growth rate (compared with control culture without procaine hydrochloride) of about 25% was observed at 0.1 mgL(-1) of procaine hydrochloride for A. cylindrica. However, procaine hydrochloride was toxic at concentrations of > 10 mgL(-1). Simultaneous administration of hydrolysis products of procaine, p-aminobenzoic acid and diethyl aminoethanol, in lieu of procaine hydrochloride, was as effective as procaine in stimulating growth of A. cylindrica. Heterotrophic growth of Chlorella ellipsoidea and Prototheca zopfii was not stimulated by procaine hydrochloride over the concentration range studied (0.1-10 mg L(-1)). The combined effects of procaine hydrochloride concentration and four other environmental factors (temperature, light intensity, CO2 concentration in the flushing gas and NaCl concentration) on growth rate of D. primolecta was modelled using both a neural network approach and a response surface method. These results indicate that procaine hydrochloride exerts different effects on the growth of microalgal and cyanobacterial cells as functions of dosage, species and culture conditions. PMID:10714957

  16. Kaolin Foliar Application Has a Stimulatory Effect on Phenylpropanoid and Flavonoid Pathways in Grape Berries

    PubMed Central

    Conde, Artur; Pimentel, Diana; Neves, Andreia; Dinis, Lia-Tânia; Bernardo, Sara; Correia, Carlos M.; Gerós, Hernâni; Moutinho-Pereira, José

    2016-01-01

    Drought, elevated air temperature, and high evaporative demand are increasingly frequent during summer in grape growing areas like the Mediterranean basin, limiting grapevine productivity and berry quality. The foliar exogenous application of kaolin, a radiation-reflecting inert mineral, has proven effective in mitigating the negative impacts of these abiotic stresses in grapevine and other fruit crops, however, little is known about its influence on the composition of the grape berry and on key molecular mechanisms and metabolic pathways notably important for grape berry quality parameters. Here, we performed a thorough molecular and biochemical analysis to assess how foliar application of kaolin influences major secondary metabolism pathways associated with berry quality-traits, leading to biosynthesis of phenolics and anthocyanins, with a focus on the phenylpropanoid, flavonoid (both flavonol- and anthocyanin-biosynthetic) and stilbenoid pathways. In grape berries from different ripening stages, targeted transcriptional analysis by qPCR revealed that several genes involved in these pathways—VvPAL1, VvC4H1, VvSTSs, VvCHS1, VvFLS1, VvDFR, and VvUFGT—were more expressed in response to the foliar kaolin treatment, particularly in the latter maturation phases. In agreement, enzymatic activities of phenylalanine ammonia lyase (PAL), flavonol synthase (FLS), and UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) were about two-fold higher in mature or fully mature berries from kaolin-treated plants, suggesting regulation also at a transcriptional level. The expression of the glutathione S-transferase VvGST4, and of the tonoplast anthocyanin transporters VvMATE1 and VvABCC1 were also all significantly increased at véraison and in mature berries, thus, when anthocyanins start to accumulate in the vacuole, in agreement with previously observed higher total concentrations of phenolics and anthocyanins in berries from kaolin-treated plants, especially at full

  17. Kaolin Foliar Application Has a Stimulatory Effect on Phenylpropanoid and Flavonoid Pathways in Grape Berries.

    PubMed

    Conde, Artur; Pimentel, Diana; Neves, Andreia; Dinis, Lia-Tânia; Bernardo, Sara; Correia, Carlos M; Gerós, Hernâni; Moutinho-Pereira, José

    2016-01-01

    Drought, elevated air temperature, and high evaporative demand are increasingly frequent during summer in grape growing areas like the Mediterranean basin, limiting grapevine productivity and berry quality. The foliar exogenous application of kaolin, a radiation-reflecting inert mineral, has proven effective in mitigating the negative impacts of these abiotic stresses in grapevine and other fruit crops, however, little is known about its influence on the composition of the grape berry and on key molecular mechanisms and metabolic pathways notably important for grape berry quality parameters. Here, we performed a thorough molecular and biochemical analysis to assess how foliar application of kaolin influences major secondary metabolism pathways associated with berry quality-traits, leading to biosynthesis of phenolics and anthocyanins, with a focus on the phenylpropanoid, flavonoid (both flavonol- and anthocyanin-biosynthetic) and stilbenoid pathways. In grape berries from different ripening stages, targeted transcriptional analysis by qPCR revealed that several genes involved in these pathways-VvPAL1, VvC4H1, VvSTSs, VvCHS1, VvFLS1, VvDFR, and VvUFGT-were more expressed in response to the foliar kaolin treatment, particularly in the latter maturation phases. In agreement, enzymatic activities of phenylalanine ammonia lyase (PAL), flavonol synthase (FLS), and UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) were about two-fold higher in mature or fully mature berries from kaolin-treated plants, suggesting regulation also at a transcriptional level. The expression of the glutathione S-transferase VvGST4, and of the tonoplast anthocyanin transporters VvMATE1 and VvABCC1 were also all significantly increased at véraison and in mature berries, thus, when anthocyanins start to accumulate in the vacuole, in agreement with previously observed higher total concentrations of phenolics and anthocyanins in berries from kaolin-treated plants, especially at full maturity

  18. Stimulatory effects of chitinase on growth and immune defense of orange-spotted grouper (Epinephelus coioides).

    PubMed

    Zhang, Yanhong; Feng, Shaozhen; Chen, Jun; Qin, Chaobin; Lin, Haoran; Li, Wensheng

    2012-05-01

    spleen in response to bacterial lipopolysaccharide (LPS) challenge, strongly suggesting the existence of an innate pathway for local defense against chitin-containing organisms. Moreover, the pathogen such as Escherichia coli and Staphylococcus aureus could be inhibited by the recombinant protein of grouper chitinase1 to a certain extent. PMID:22365990

  19. Joint BioEnergy Institute

    SciTech Connect

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2015-06-15

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  20. Bio-Microrheology: A Frontier in Microrheology

    PubMed Central

    Weihs, Daphne; Mason, Thomas G.; Teitell, Michael A.

    2006-01-01

    Cells continuously adapt to changing conditions through coordinated molecular and mechanical responses. This adaptation requires the transport of molecules and signaling through intracellular regions with differing material properties, such as variations in viscosity or elasticity. To determine the impact of regional variations on cell structure and physiology, an approach, termed bio-microrheology, or the study of deformation and flow of biological materials at small length scales has emerged. By tracking the thermal and driven motion of probe particles, organelles, or molecules, the local physical environment in distinct subcellular regions can be explored. On the surface or inside cells, tracking the motion of particles can reveal the rheological properties that influence cell features, such as shape and metastatic potential. Cellular microrheology promises to improve our concepts of regional and integrated properties, structures, and transport in live cells. Since bio-microrheology is an evolving methodology, many specific details, such as how to interpret complex combinations of thermally mediated and directed probe transport, remain to be fully explained. This work reviews the current state of the field and discusses the utility and challenges of this emerging approach. PMID:16963507

  1. BioCreative V BioC track overview: collaborative biocurator assistant task for BioGRID

    PubMed Central

    Kim, Sun; Islamaj Doğan, Rezarta; Chatr-Aryamontri, Andrew; Chang, Christie S.; Oughtred, Rose; Rust, Jennifer; Batista-Navarro, Riza; Carter, Jacob; Ananiadou, Sophia; Matos, Sérgio; Santos, André; Campos, David; Oliveira, José Luís; Singh, Onkar; Jonnagaddala, Jitendra; Dai, Hong-Jie; Su, Emily Chia-Yu; Chang, Yung-Chun; Su, Yu-Chen; Chu, Chun-Han; Chen, Chien Chin; Hsu, Wen-Lian; Peng, Yifan; Arighi, Cecilia; Wu, Cathy H.; Vijay-Shanker, K.; Aydın, Ferhat; Hüsünbeyi, Zehra Melce; Özgür, Arzucan; Shin, Soo-Yong; Kwon, Dongseop; Dolinski, Kara; Tyers, Mike; Wilbur, W. John; Comeau, Donald C.

    2016-01-01

    BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein–protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators’ feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining. Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/ PMID:27589962

  2. BioCreative V BioC track overview: collaborative biocurator assistant task for BioGRID.

    PubMed

    Kim, Sun; Islamaj Doğan, Rezarta; Chatr-Aryamontri, Andrew; Chang, Christie S; Oughtred, Rose; Rust, Jennifer; Batista-Navarro, Riza; Carter, Jacob; Ananiadou, Sophia; Matos, Sérgio; Santos, André; Campos, David; Oliveira, José Luís; Singh, Onkar; Jonnagaddala, Jitendra; Dai, Hong-Jie; Su, Emily Chia-Yu; Chang, Yung-Chun; Su, Yu-Chen; Chu, Chun-Han; Chen, Chien Chin; Hsu, Wen-Lian; Peng, Yifan; Arighi, Cecilia; Wu, Cathy H; Vijay-Shanker, K; Aydın, Ferhat; Hüsünbeyi, Zehra Melce; Özgür, Arzucan; Shin, Soo-Yong; Kwon, Dongseop; Dolinski, Kara; Tyers, Mike; Wilbur, W John; Comeau, Donald C

    2016-01-01

    BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein-protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators' feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/. PMID:27589962

  3. Bio-mimetic Flow Control

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  4. Immunological consequences of stress-related proteins--cytosolic tryparedoxin peroxidase and chaperonin TCP20--identified in splenic amastigotes of Leishmania donovani as Th1 stimulatory, in experimental visceral leishmaniasis.

    PubMed

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Rawat, Keerti; Yadav, Narendra; Sundar, Shyam; Dube, Anuradha

    2015-04-01

    In earlier studies, proteomic characterization of splenic amastigote fractions from clinical isolates of Leishmania donovani, exhibiting significant cellular responses in cured Leishmania subjects, led to the identification of cytosolic tryparedoxin peroxidase (LdcTryP) and chaperonin-TCP20 (LdTCP20) as Th1-stimulatory proteins. Both the proteins, particularly LdTCP20 for the first time, were successfully cloned, overexpressed, purified and were found to be localized in the cytosol of purified splenic amastigotes. When evaluated against lymphocytes of cured Leishmania-infected hamsters, the purified recombinant proteins (rLdcTryP and rLdTCP20) induced their proliferations as well as nitric oxide production. Similarly, these proteins also generated Th1-type cytokines (IFN-γ/IL-12) from stimulated PBMCs of cured/endemic Leishmania patients. Further, vaccination with rLdcTryP elicited noticeable delayed-type hypersensitivity response and offered considerably good prophylactic efficacy (~78% inhibition) against L. donovani challenge in hamsters, which was well supported by the increased mRNA expression of Th1 and Th2 cytokines. However, animals vaccinated with rLdTCP20 exhibited comparatively lesser prophylactic efficacy (~55%) with inferior immunological response. The results indicate the potentiality of rLdcTryP protein, between the two, as a suitable anti-leishmanial vaccine. Since, rLdTCP20 is also an important target, for optimization, further attempts towards determination of immunodominant regions for designing fusion peptides may be taken up. PMID:25498563

  5. The stimulatory effect of mannitol on levan biosynthesis: Lessons from metabolic systems analysis of Halomonas smyrnensis AAD6(T.).

    PubMed

    Ates, Ozlem; Arga, Kazim Y; Oner, Ebru Toksoy

    2013-01-01

    Halomonas smyrnensis AAD(T) is a halophilic, gram-negative bacterium that can efficiently produce levan from sucrose as carbon source via levansucrase activity. However, systems-based approaches are required to further enhance its metabolic performance for industrial application. As an important step toward this goal, the genome-scale metabolic network of Chromohalobacter salexigens DSM3043, which is considered a model organism for halophilic bacteria, has been reconstructed based on its genome annotation, physiological information, and biochemical information. In the present work, the genome-scale metabolic network of C. salexigens was recruited, and refined via integration of the available biochemical, physiological, and phenotypic features of H. smyrnensis AAD6(T) . The generic metabolic model, which comprises 1,393 metabolites and 1,108 reactions, was then systematically analyzed in silico using constraints-based simulations. To elucidate the relationship between levan biosynthesis and other metabolic processes, an enzyme-graph representation of the metabolic network and a graph decomposition technique were employed. Using the concept of control effective fluxes, significant links between several metabolic processes and levan biosynthesis were estimated. The major finding was the elucidation of the stimulatory effect of mannitol on levan biosynthesis, which was further verified experimentally via supplementation of mannitol to the fermentation medium. The optimal concentration of 30 g/L mannitol supplemented to the 50 g/L sucrose-based medium resulted in a twofold increase in levan production in parallel with increased sucrose hydrolysis rate, accumulated extracellular glucose, and decreased fructose uptake rate. PMID:24123998

  6. Upstream Stimulatory Factor 2, a Novel FoxA1-Interacting Protein, Is Involved in Prostate-Specific Gene Expression

    PubMed Central

    Sun, Qian; Yu, Xiuping; Degraff, David J.; Matusik, Robert J.

    2009-01-01

    The forkhead protein A1 (FoxA1) is critical for the androgenic regulation of prostate-specific promoters. Prostate tissue rescued from FoxA1 knockout mice exhibits abnormal prostate development, typified by the absence of expression of differentiation markers and inability to engage in secretion. Chromatin immunoprecipitation and coimmunoprecipitation studies revealed that FoxA1 is one of the earliest transcription factors that binds to prostate-specific promoters, and that a direct protein-protein interaction occurs between FoxA1 and androgen receptor. Interestingly, evidence of the interaction of FoxA1 with other transcription factors is lacking. The upstream stimulatory factor 2 (USF2), an E-box-binding transcription factor of the basic-helix-loop-helix-leucine-zipper family, binds to a consensus DNA sequence similar to FoxA1. Our in vitro and in vivo studies demonstrate the binding of USF2 to prostate-specific gene promoters including the probasin promoter, spermine-binding protein promoter, and prostate-specific antigen core enhancer. Furthermore, we show a direct physical interaction between FoxA1 and USF2 through the use of immunoprecipitation and glutathione-S-transferase pull-down assays. This interaction is mediated via the forkhead DNA-binding domain of FoxA1 and the DNA-binding domain of USF2. In summary, these data indicate that USF2 is one of the components of the FoxA1/androgen receptor transcriptional protein complex that contributes to the expression of androgen-regulated and prostate-specific genes. PMID:19846536

  7. TLR9 Activation Is Triggered by the Excess of Stimulatory versus Inhibitory Motifs Present in Trypanosomatidae DNA

    PubMed Central

    Rocha, Eduardo P.C.; Mériaux, Véronique; Maréchal, Vincent; Escoll, Pedro; Goyard, Sophie; Cavaillon, Jean-Marc; Manoury, Bénédicte; Doyen, Noëlle

    2014-01-01

    DNA sequences purified from distinct organisms, e.g. non vertebrate versus vertebrate ones, were shown to differ in their TLR9 signalling properties especially when either mouse bone marrow-derived- or human dendritic cells (DCs) are probed as target cells. Here we found that the DC-targeting immunostimulatory property of Leishmania major DNA is shared by other Trypanosomatidae DNA, suggesting that this is a general trait of these eukaryotic single-celled parasites. We first documented, in vitro, that the low level of immunostimulatory activity by vertebrate DNA is not due to its limited access to DCs' TLR9. In addition, vertebrate DNA inhibits the activation induced by the parasite DNA. This inhibition could result from the presence of competing elements for TLR9 activation and suggests that DNA from different species can be discriminated by mouse and human DCs. Second, using computational analysis of genomic DNA sequences, it was possible to detect the presence of over-represented inhibitory and under-represented stimulatory sequences in the vertebrate genomes, whereas L. major genome displays the opposite trend. Interestingly, this contrasting features between L. major and vertebrate genomes in the frequency of these motifs are shared by other Trypanosomatidae genomes (Trypanosoma cruzi, brucei and vivax). We also addressed the possibility that proteins expressed in DCs could interact with DNA and promote TLR9 activation. We found that TLR9 is specifically activated with L. major HMGB1-bound DNA and that HMGB1 preferentially binds to L. major compared to mouse DNA. Our results highlight that both DNA sequence and vertebrate DNA-binding proteins, such as the mouse HMGB1, allow the TLR9-signaling to be initiated and achieved by Trypanosomatidae DNA. PMID:25392997

  8. Identification of the control region for tissue-specific imprinting of the stimulatory G protein α-subunit

    PubMed Central

    Liu, Jie; Chen, Min; Deng, Chuxia; Bourc'his, Déborah; Nealon, Julie G.; Erlichman, Beth; Bestor, Timothy H.; Weinstein, Lee S.

    2005-01-01

    Gnas is a complex gene with multiple imprinted promoters. The upstream Nesp and Nespas/Gnasxl promoters are paternally and maternally methylated, respectively. The downstream promoter for the stimulatory G protein α-subunit (Gsα) is unmethylated, although in some tissues (e.g., renal proximal tubules), Gsα is poorly expressed from the paternal allele. Just upstream of the Gsα promoter is a primary imprint mark (1A region) where maternal-specific methylation is established during oogenesis. Pseudohypoparathyroidism type 1B, a disorder of renal parathyroid hormone resistance, is associated with loss of 1A methylation. Analysis of embryos of Dnmt3L–/– mothers (which cannot methylate maternal imprint marks) showed that Nesp, Nespas/Gnasxl, and 1A imprinting depend on one or more maternal primary imprint marks. We generated mice with deletion of the 1A differentially methylated region. These mice had normal Nesp-Nespas/Gnasxl imprinting, indicating that the Gnas locus contains two independent imprinting domains (Nespas-Nespas/Gnasxl and 1A-Gsα) controlled by distinct maternal primary imprint marks. Paternal, but not maternal, 1A deletion resulted in Gsα overexpression in proximal tubules and evidence for increased parathyroid hormone sensitivity but had no effect on Gsα expression in other tissues where Gsα is normally not imprinted. The 1A region is a maternal imprint mark that contains one or more methylation-sensitive cis-acting elements that suppress Gsα expression from the paternal allele in a tissue-specific manner. PMID:15811946

  9. Stimulatory effect of the secretogranin-ll derived peptide secretoneurin on food intake and locomotion in female goldfish (Carassius auratus).

    PubMed

    Mikwar, M; Navarro-Martin, L; Xing, L; Volkoff, H; Hu, W; Trudeau, V L

    2016-04-01

    Secretoneurin (SN) is a conserved peptide derived by proteolytic processing from the middle domain of the ∼600 amino acid precursor secretogranin-II (SgII). Secretoneurin is widely distributed in secretory granules of endocrine cells and neurons and has important roles in reproduction as it stimulates luteinizing hormone release from the pituitary. A potential new role of SN in goldfish feeding is the subject of this study. Firstly, we established that acute (26 h; p<0.0001) and short-term (72 h; p=0.016) fasting increased SgIIa precursor mRNA levels 1.25-fold in the telencephalon, implicating SN in the control of feeding. Secondly, we determined that intracerebroventricular injections of the type A SN (SNa; 0.2 and 1 ng/g BW) increased food intake and locomotor behavior by 60 min. Fish injected with the lower and higher doses of SNa (0.2 and 1 ng/g) respectively exhibited significant 1.77- and 2.58-fold higher food intake (p<0.0001) than the saline-injected control fish. Locomotor behavior was increased by 1.35- and 2.26-fold for 0.2 ng/g SNa (p=0.0001) and 1 ng/g SNa (p<0.0001), respectively. Injection of 1 ng/g SNa increased mRNA levels of hypothalamic neuropeptide Y 1.36-fold (p=0.038) and decreased hypothalamic cocaine-and amphetamine-regulated transcript by 33% (p=0.01) at 2h and 5h post-injection, respectively. These data suggest interactions of SNa with stimulatory and inhibitory pathways of food intake control in fish. PMID:26860475

  10. Upstream stimulatory factor activates the vasopressin promoter via multiple motifs, including a non-canonical E-box.

    PubMed Central

    Coulson, Judy M; Edgson, Jodie L; Marshall-Jones, Zoe V; Mulgrew, Robert; Quinn, John P; Woll, Penella J

    2003-01-01

    We have described previously a complex E-box enhancer (-147) of the vasopressin promoter in small-cell lung cancer (SCLC) extracts [Coulson, Fiskerstrand, Woll and Quinn, (1999) Biochem. J. 344, 961-970]. Upstream stimulatory factor (USF) heterodimers were one of the complexes binding to this site in vitro. We now report that USF overexpression in non-SCLC (NSCLC) cells can functionally activate vasopressin promoter-driven reporters that are otherwise inactive in this type of lung cancer cell. Site-directed mutagenesis and electrophoretic mobility-shift analysis demonstrate that although the -147 E-box contributes, none of the previously predicted E-boxes (-147, -135, -34) wholly account for this USF-mediated activation in NSCLC. 5' Deletion showed the key promoter region as -52 to +42; however, USF-2 binding was not reliant on the -34 E-box, but on a novel adjacent CACGGG non-canonical E-box at -42 (motif E). This mediated USF binding in both SCLC and USF-2-transfected NSCLC cells. Mutation of motif E or the non-canonical TATA box abolished activity, implying both are required for transcriptional initiation on overexpression of USF-2. Co-transfected dominant negative USF confirmed that binding was required through motif E for function, but that the classical activation domain of USF was not essential. USF-2 bound motif E with 10-fold lower affinity than the -147 E-box. In NSCLC, endogenous USF-2 expression is low, and this basal level appears to be insufficient to activate transcription of arginine vasopressin (AVP). In summary, we have demonstrated a novel mechanism for USF activation, which contributes to differential vasopressin expression in lung cancer. PMID:12403649

  11. Gene trapping uncovers sex-specific mechanisms for upstream stimulatory factors 1 and 2 in angiotensinogen expression.

    PubMed

    Park, Sungmi; Liu, Xuebo; Davis, Deborah R; Sigmund, Curt D

    2012-06-01

    A single-nucleotide polymorphism (C/A) located within an E-box at the -20 position of the human angiotensinogen (AGT) promoter may regulate transcriptional activation through differential recruitment of the transcription factors upstream stimulatory factor (USF) 1 and 2. To study the contribution of USF1 on AGT gene expression, mice carrying a (-20C) human AGT (hAGT) transgene were bred with mice harboring a USF1 gene trap allele designed to knock down USF1 expression. USF1 mRNA was reduced relative to controls in liver (9 ± 1%), perigenital adipose (16 ± 3%), kidney (17 ± 1%), and brain (34 ± 2%) in double-transgenic mice. This decrease was confirmed by electrophoretic mobility shift assay. Chromatin immunoprecipitation analyses revealed a decrease in USF1, with retention of USF2 binding at the hAGT promoter in the liver of male mice. hAGT expression was reduced in the liver and other tissues of female but not male mice. The decrease in endogenous AGT expression was insufficient to alter systolic blood pressure at baseline but caused reduced systolic blood pressure in female USF1 gene trap mice fed a high-fat diet. Treatment of USF1 knockdown males with intravenous adenoviral short hairpin RNA targeting USF2 resulted in reduced expression of USF1, USF2, and hAGT protein. Our data from chromatin immunoprecipitation assays suggests that this decrease in hAGT is attributed to decreased USF2 binding to the hAGT promoter. In conclusion, both USF1 and USF2 are essential for AGT transcriptional regulation, and distinct sex-specific and tissue-specific mechanisms are involved in the activities of these transcription factors in vivo. PMID:22547438

  12. Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells.

    PubMed Central

    Nestle, F. O.; Burg, G.; Fäh, J.; Wrone-Smith, T.; Nickoloff, B. J.

    1997-01-01

    Immune surveillance of skin cancer involves the stimulation of effector T cells by tumor-derived antigens and antigen-presenting cells (APCs). An effective APC must not only display processed antigen in the context of MHC molecules but also express co-stimulatory molecules that are required to fully activate T cells. One of the most common cutaneous neoplasms is basal cell carcinoma. To investigate expression of the co-stimulatory molecules CD80 (B7-1) and CD86 (B7-2) on tumor-associated dendritic cells (TADCs), cryosections from basal cell carcinomas were immunostained. In basal cell carcinomas, only 1 to 2% of intratumor and 5 to 10% of peritumor APCs expressed CD80 or CD86. In contrast, biopsies of immunological/inflammatory dermatoses revealed that 38 to 73% of APCs expressed CD80 and CD86. To further evaluate their phenotype and function, TADCs were isolated from tissue samples of basal cell carcinomas; they were non-adherent to plastic, displayed a typical dendritic morphology, and expressed high levels of major histocompatibility class II molecules on their surface. When TADCs were compared with dendritic cells from blood for presentation of superantigens (staphylococcal enterotoxins A and B) to resting autologous T cells, TADCs were consistently weaker stimulators of T cell proliferation than blood dendritic cells. When analyzed by flow cytometry, TADCs expressed high levels of HLA-DR, but only 5 to 10% co-expressed CD80 or CD86. A 3-day culture in granulocyte/macrophage colony-stimulating factor-containing medium partially reconstituted the TADC expression of CD80 and CD86 as well as their immunostimulatory capacity. Thus, in this common skin cancer, although there are prominent collections of HLA-DR-positive APCs in and around tumor cells, the TADCs are deficient in important co-stimulatory molecules as well as being weak stimulators of T cell proliferation. The paucity of co-stimulatory molecule expression and functional activity of TADCs may explain why

  13. Bio-switches: what makes them robust?

    PubMed

    Slepchenko, Boris M; Terasaki, Mark

    2004-08-01

    Ideas of how a system of interacting enzymes can act as a switch are based on the concept of bistability of a biochemical network. This means that, because of the very structure of a signaling pathway, the system can be in one of two stable steady states: active or inactive. Switching from one state to another may then occur in response to external stimuli or as a result of internal development. However, the bistability of a biochemical network might not be robust enough to be the sole mechanism behind bio-switching. On the basis of recent experimental data on the cell-cycle G2/M transition during starfish oocyte meiotic maturation, it is shown that cooperative phenomena--such as phase changes associated with clustering, dissolution of aggregates and so on--may play central roles in providing a decisive and irreversible transition. PMID:15261660

  14. Canine Distemper Virus Infection Leads to an Inhibitory Phenotype of Monocyte-Derived Dendritic Cells In Vitro with Reduced Expression of Co-Stimulatory Molecules and Increased Interleukin-10 Transcription

    PubMed Central

    Herder, Vanessa; Stein, Veronika M.; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper. PMID:24769532

  15. Thymus transplantation and disease prevention in the diabetes-prone Bio-Breeding rat

    SciTech Connect

    Georgiou, H.M.; Bellgrau, D.

    1989-05-15

    Bio-Breeding rat T lymphocytes proliferate poorly in response to alloantigen. Transplantation of Bio-Breeding rats with fetal thymus tissue from diabetes resistant rats leads to an improvement in the T cell proliferative response, but only if the thymus contains bone marrow-derived, radiation-resistant thymic antigen presenting cells of the diabetes-resistant phenotype. The current study provides evidence that thymus transplantation leading to the restoration of Bio-Breeding T cell proliferative function can also significantly reduce the incidence of insulitis and prevent the development of diabetes. It appears that a defect in the bone marrow-derived thymic APC population contributes to an abnormal maturation of Bio-Breeding T lymphocytes which in turn predisposes animals to insulitis and diabetic disease.

  16. The bio-terrorism threat and casualty prevention.

    SciTech Connect

    Noel, William P.

    1999-10-01

    The bio-terrorism threat has become the 'poor man's' nuclear weapon. The ease of manufacture and dissemination has allowed an organization with only rudimentary skills and equipment to pose a significant threat with high consequences. This report will analyze some of the most likely agents that would be used, the ease of manufacture, the ease of dissemination and what characteristics of the public health response that are particularly important to the successful characterization of a high consequence event to prevent excessive causalities.

  17. Bio-inspired Fillers for Mechanical Enhancement

    NASA Astrophysics Data System (ADS)

    Korley, Lashanda

    2012-02-01

    An examination of natural materials has offered a new perspective on the development of multi-functional materials with enhanced mechanical properties. One important lesson from nature is the utilization of composite structures to impart improved mechanical behavior and enhanced functionality using nanofillers. A relatively unexplored expansion of this bio-inspired, nanoscale filler approach to high performance materials is the incorporation of responsive, multi-functional reinforcing elements in polymeric composites with the goal of combining superior mechanical behavior that can be tuned with additional functionality, such as sensing and bioactivity. One approach is the use of self-assembling small molecules that form uniform, one-dimensional nanostructures as an emerging class of filler components. Another pathway toward mechanical enhancement is the incorporation of stimuli-responsive and high-modulus electrospun nanofibers. We have probed the utilization of high-aspect ratio, self-assembled small molecules and responsive electrospun nanofibers as all-organic nanofillers to achieve significant modulus changes within elastomeric matrices. The influence of matrix-filler interactions and the role of hierarchical organization in these nature-inspired composites will be discussed. Potential applications in barrier technology and drug delivery have also been explored.

  18. A high concentration of triiodothyronine attenuates the stimulatory effect on hemin-induced erythroid differentiation of human erythroleukemia K562 cells.

    PubMed

    Shiraishi, Mieno; Yamamoto, Yoritsuna; Hirooka, Nobutaka; Obuchi, Yasuhiro; Tachibana, Shoichi; Makishima, Makoto; Tanaka, Yuji

    2015-01-01

    Although thyroid hormone is a known stimulator of erythropoietic differentiation, severe anemia is sometimes observed in patients with hyperthyroidism and this mechanism is not fully understood. The aim of this study was to investigate the effect of triiodothyronine (T3) on hemin-induced erythropoiesis. Human erythroleukemia K562 cells were used as an erythroid differentiation model. Cell differentiation was induced by hemin and the effect of pre-incubation with T3 (0.1 to 100 nM) was analyzed by measuring the benzidine-positive rate, hemoglobin content, CD71 expression (transferrin receptor), and mRNA expression for transcription factors related to erythropoiesis and thyroid hormone receptors (TRs). Hemin, a promoter of erythroid differentiation, increased the levels of mRNAs for TRα, TRβ, and retinoid X receptor α (RXRα), as well as those for nuclear factor-erythroid 2 (NFE2), GATA-binding protein 1 (GATA1) and GATA-binding protein 2 (GATA2). Lower concentrations of T3 had a stimulatory effect on hemin-induced hemoglobin production (1 and 10 nM), CD71 expression (0.1 nM), and α-globin mRNA expression (1 nM), while a higher concentration of T3 (100 nM) abrogated the stimulatory effect on these parameters. T3 at 100 nM did not affect cell viability and proliferation, suggesting that the abrogation of erythropoiesis enhancement was not due to toxicity. T3 at 100 nM also significantly inhibited expression of GATA2 and RXRα mRNA, compared to 1 nM T3. We conclude that a high concentration of T3 attenuates the classical stimulatory effect on erythropoiesis exerted by a low concentration of T3 in hemin-induced K562 cells. PMID:25787723

  19. Action of AferBio (fermented food) in a rat inflammatory model

    PubMed Central

    Oliveira, Anna Eliza Maciel de Faria Mota; de Medeiros, Benedito Junior Lima; Favacho, Hugo Alexandre; Tavares Carvalho, José Carlos

    2012-01-01

    Background AferBio is a fermented prebiotic food that contains beta-glucans, which are oligosaccharides capable of stimulating the proliferation of beneficial bacteria in the gastrointestinal tract. The aim of this study was to evaluate the possible effects of this functional food on the inflammatory response in rats. Methods and results AferBio (900 mg/kg) inhibited edema formation by 34% compared to the control group. We also observed inhibition of the primary and secondary reactions of inflammation after the injection of Freund’s adjuvant in the animals fed AferBio. Daily administration of AferBio for 6 d inhibited the formation of granulomatous tissue by 37%; additionally, inhibition of 31% of neutrophil migration downstream of carrageenan-induced peritonitis was observed. An ulcerogenic potency assay revealed that indomethacin produced a higher number of lesions compared to treatment with AferBio. Anti-inflammatory potency analysis showed that indomethacin inhibited 39% of carrageenan-induced edema but produced a higher number of lesions. However, animals treated with AferBio had areas of hyperemia without ulcerative lesions and 21% of edema was inhibited. Conclusion Based on the results obtained in this study, AferBio appears to have anti-inflammatory activity during acute and chronic inflammatory processes. PMID:27186123

  20. New perspectives in signaling mediated by receptors coupled to stimulatory G protein: the emerging significance of cAMP efflux and extracellular cAMP-adenosine pathway

    PubMed Central

    Godinho, Rosely O.; Duarte, Thiago; Pacini, Enio S. A.

    2015-01-01

    G protein-coupled receptors (GPCRs) linked to stimulatory G (Gs) proteins (GsPCRs) mediate increases in intracellular cyclic AMP as consequence of activation of nine adenylyl cyclases , which differ considerably in their cellular distribution and activation mechanisms. Once produced, cyclic AMP may act via distinct intracellular signaling effectors such as protein kinase A and the exchange proteins activated by cAMP (Epacs). More recently, attention has been focused on the efflux of cAMP through a specific transport system named multidrug resistance proteins that belongs to the ATP-binding cassette transporter superfamily. Outside the cell, cAMP is metabolized into adenosine, which is able to activate four distinct subtypes of adenosine receptors, members of the GPCR family: A1, A2A, A2B, and A3. Taking into account that this phenomenon occurs in numerous cell types, as consequence of GsPCR activation and increment in intracellular cAMP levels, in this review, we will discuss the impact of cAMP efflux and the extracellular cAMP-adenosine pathway on the regulation of GsPCR-induced cell response. PMID:25859216

  1. A terracotta bio-battery.

    PubMed

    Ajayi, Folusho F; Weigele, Peter R

    2012-07-01

    Terracotta pots were converted into simple, single chamber, air-cathode bio-batteries. This bio-battery design used a graphite-felt anode and a conductive graphite coating without added catalyst on the exterior as a cathode. Bacteria enriched from river sediment served as the anode catalyst. These batteries gave an average OCV of 0.56 V ± 0.02, a Coulombic efficiency of 21 ± 5%, and a peak power of 1.06 mW ± 0.01(33.13 mW/m(2)). Stable current was also produced when the batteries were operated with hay extract in salt solution. The bacterial community on the anode of the batteries was tested for air tolerance and desiccation resistance over a period ranging from 2 days to 2 weeks. The results showed that the anode community could survive complete drying of the electrolyte for several days. These data support the further development of this technology as a potential power source for LED-based lighting in off-grid, rural communities. PMID:22609660

  2. Linking plasma kinetics to plasma-bio interactions

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter

    2015-05-01

    Cold non-equilibrium atmospheric pressure plasmas have received a lot of attention in the last decade due to their huge potential for biomedical applications. In my group, we have characterized an RF driven APPJ in great detail. The characterization includes electrical measurements, imaging, optical emission spectroscopy, (two photon enhanced) laser induced fluorescence, Thomson scattering, Rayleigh scattering, Raman scattering and mass spectrometry. This led to a detailed knowledge of the electron density, electron temperature, gas temperature, NO, O, OH, O3 densities, ionic species and air concentrations in the plasma effluent. Living organisms for in vitro studies are typically kept in complex solutions or culture media. Plasma-bio interactions involves not only the production of reactive species in the plasma gas phase but also transport to the liquid phase and plasma induced liquid phase chemistry and its impact on the living organisms. Reactive nitrogen and oxygen species have been identified as the key reactive species. Recent results of my group show that controlling the gas phase plasma chemistry can lead to significant different biological responses of the living organisms corresponding to different chemical pathways. The effect of plasma jet interaction with liquids containing mammalian cells, bacteria and virus will be discussed. The outcomes of these studies allow unraveling chemical pathways responsible for plasma-bio interactions and linking plasma kinetics to plasma-bio interactions.

  3. New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation.

    PubMed

    Eghlidospour, M; Mortazavi, S M J; Yousefi, F; Mortazavi, S A R

    2015-09-01

    Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure. PMID:26396965

  4. Alzheimer's disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners.

    PubMed

    Wollen, Keith A

    2010-09-01

    Alzheimer's disease (AD) is characterized by dysfunctional intracellular and extracellular biochemical processes that result in neuron death. This article summarizes hypotheses regarding cell dysfunction in AD and discusses the effectiveness of, and problems with, different therapies. Pharmaceutical therapies discussed include cholinesterase inhibitors, memantine, antihypertensive drugs, anti-inflammatory drugs, secretase inhibitors, insulin resistance drugs, etanercept, brain-derived neurotrophic factor, and immunization. Nutritional and botanical therapies included are huperzine A, polyphenols, Ginkgo, Panax ginseng, Withania somnifera, phosphatidylserine, alpha-lipoic acid, omega-3 fatty acids, acetyl L-carnitine, coenzyme Q10, various vitamins and minerals, and melatonin. Stimulatory therapies discussed are physical exercise, cognitive training, music, and socialization. Finally, treatment strategies are discussed in light of the benefits and drawbacks of different therapeutic approaches. It is concluded that potential risks of both approved and non-approved therapies should be weighed against the potential benefits and certain consequences of disease progression. Approaches that target several dysfunctions simultaneously and that emphasize nutritional, botanical, and stimulatory therapies may offer the most benefit at this time. PMID:21155625

  5. Stimulatory effect of an algal fucoidan on the release of vascular endothelial tissue-type plasminogen activator as a mechanism of fucoidan-mediated thrombolysis.

    PubMed

    Min, Soon-Ki; Han, Sung-Mi; Jang, Jae-Seok; Kim, Jong-Ki

    2016-07-01

    Identifying a pharmacological means for increasing the production of tissue-type plasminogen activator (t-PA) is always desirable to cure impaired production of this enzyme. An algal fucoidan has been shown to exhibit both novel thrombolytic and synergistic stimulatory effects in a mouse thrombosis model. The plasma levels of active t-PA were measured in mouse arterial thrombus models that were treated with various fucoidans to investigate the mechanism of thrombolysis. The mean plasma level of active t-PA after the infusion of fucoidan was 2.136 ± 0.231 ng/ml for nonthrombolytic Fucus fucoidan and 3.917 ± 0.0.529 ng/ml for thrombolytic Undaria fucoidan, which resulted in a 1.56-2.29-fold increase compared with the healthy control group (1.706 ± 0.194 ng/ml) and the untreated thrombus group (2.506 ± 0.301 ng/ml) (P < 0.01). An algal fucoidan has demonstrated to exert a thrombolytic and stimulatory effect via the induction of t-PA release in a dose-dependent manner in an arterial thrombosis model. PMID:26829364

  6. New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation

    PubMed Central

    Eghlidospour, M.; Mortazavi, S. M. J.; Yousefi, F.; Mortazavi, S. A. R.

    2015-01-01

    Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure. PMID:26396965

  7. Biosecurity--The Bio-Link Project.

    ERIC Educational Resources Information Center

    Johnson, Elaine A.

    2002-01-01

    Describes Bio-Link, the Advanced Technological Education (ATE) Center for Biotechnology established with funding from the National Science Foundation (NSF). Reports that Bio-Link, headquartered at City College of San Francisco, has created a national network and resource base for community colleges, industry, and others interested in biotechnology…

  8. 76 FR 53631 - BioPreferred Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ..., subpart V (48 FR 29115, June 24, 1983), this program is excluded from the scope of the Executive Order..., and 3202 RIN 0503-AA41 BioPreferred Program AGENCY: Office of Procurement and Property Management... final action to relocate the BioPreferred Program, established under the authority of section 9002...

  9. Advances in bio-lubricant development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-lubricants are those based on natural sources such as those harvested from farms. There is a great deal of interest in bio-lubricants because of their potential to provide a number of environmental, health, safety, and economic benefits over petroleum-based products. It is anticipated that wid...

  10. BioC interoperability track overview

    PubMed Central

    Comeau, Donald C.; Batista-Navarro, Riza Theresa; Dai, Hong-Jie; Islamaj Doğan, Rezarta; Jimeno Yepes, Antonio; Khare, Ritu; Lu, Zhiyong; Marques, Hernani; Mattingly, Carolyn J.; Neves, Mariana; Peng, Yifan; Rak, Rafal; Rinaldi, Fabio; Tsai, Richard Tzong-Han; Verspoor, Karin; Wiegers, Thomas C.; Wu, Cathy H.; Wilbur, W. John

    2014-01-01

    BioC is a new simple XML format for sharing biomedical text and annotations and libraries to read and write that format. This promotes the development of interoperable tools for natural language processing (NLP) of biomedical text. The interoperability track at the BioCreative IV workshop featured contributions using or highlighting the BioC format. These contributions included additional implementations of BioC, many new corpora in the format, biomedical NLP tools consuming and producing the format and online services using the format. The ease of use, broad support and rapidly growing number of tools demonstrate the need for and value of the BioC format. Database URL: http://bioc.sourceforge.net/ PMID:24980129

  11. Improved RNA extraction method using the BioMasher and BioMasher power-plus.

    PubMed

    Yamamoto, Takuji; Nakashima, Kentaro; Maruta, Yukio; Kiriyama, Tomomi; Sasaki, Michi; Sugiyama, Shunpei; Suzuki, Kana; Fujisaki, Hitomi; Sasaki, Jun; Kaku-Ushiki, Yuko; Tanida, Masatoshi; Irie, Shinkichi; Hattori, Shunji

    2012-12-01

    The BioMasher is a disposable homogenizer that was developed to homogenize bovine brain tissue for bovine spongiform encephalopathy diagnosis. Capable of preventing the biohazard risk from infectious samples, it also prevents cross-contamination among samples. The BioMasher is thus widely used in biochemical research, especially for RNA extraction. Here, we tested a novel BioMasher application for RNA extraction from animal and plant tissues. We also developed a grinding machine specific for the BioMasher, named the BioMasher Power-Plus. We developed RNA extraction protocols using the BioMasher combined with the BioMasher Power-Plus. We compared RNA extraction efficiency of the BioMasher with that of the FastPrep and the glass homogenizer. Though the RNA extraction efficiency by the BioMasher was nearly equivalent to that of the FastPrep and the glass homogenizer, sample preparation time was shorter for the BioMasher. The utility of RNA extraction by the BioMasher was examined in mouse, rat, and tomato tissue samples. In the rodent tissues, the highest extraction efficiency of total RNA was from liver, with lowest efficiency from fibrous tissues such as muscle. The quality of extracted total RNA was confirmed by agarose gel electrophoresis which produced highly visible clear bands of 18S and 28S rRNAs. Reproducibility among different operators in RNA extraction from tomato roots was improved by using the BioMasher Power-Plus. The BioMasher and BioMasher Power-Plus provide an effective and easy homogenization method for total RNA extraction from some rodent and plant tissues. PMID:22813946

  12. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  13. PacBio Sequencing and Its Applications

    PubMed Central

    Rhoads, Anthony; Au, Kin Fai

    2015-01-01

    Single-molecule, real-time sequencing developed by Pacific BioSciences offers longer read lengths than the second-generation sequencing (SGS) technologies, making it well-suited for unsolved problems in genome, transcriptome, and epigenetics research. The highly-contiguous de novo assemblies using PacBio sequencing can close gaps in current reference assemblies and characterize structural variation (SV) in personal genomes. With longer reads, we can sequence through extended repetitive regions and detect mutations, many of which are associated with diseases. Moreover, PacBio transcriptome sequencing is advantageous for the identification of gene isoforms and facilitates reliable discoveries of novel genes and novel isoforms of annotated genes, due to its ability to sequence full-length transcripts or fragments with significant lengths. Additionally, PacBio’s sequencing technique provides information that is useful for the direct detection of base modifications, such as methylation. In addition to using PacBio sequencing alone, many hybrid sequencing strategies have been developed to make use of more accurate short reads in conjunction with PacBio long reads. In general, hybrid sequencing strategies are more affordable and scalable especially for small-size laboratories than using PacBio Sequencing alone. The advent of PacBio sequencing has made available much information that could not be obtained via SGS alone. PMID:26542840

  14. BIO::Phylo-phyloinformatic analysis using perl

    PubMed Central

    2011-01-01

    Background Phyloinformatic analyses involve large amounts of data and metadata of complex structure. Collecting, processing, analyzing, visualizing and summarizing these data and metadata should be done in steps that can be automated and reproduced. This requires flexible, modular toolkits that can represent, manipulate and persist phylogenetic data and metadata as objects with programmable interfaces. Results This paper presents Bio::Phylo, a Perl5 toolkit for phyloinformatic analysis. It implements classes and methods that are compatible with the well-known BioPerl toolkit, but is independent from it (making it easy to install) and features a richer API and a data model that is better able to manage the complex relationships between different fundamental data and metadata objects in phylogenetics. It supports commonly used file formats for phylogenetic data including the novel NeXML standard, which allows rich annotations of phylogenetic data to be stored and shared. Bio::Phylo can interact with BioPerl, thereby giving access to the file formats that BioPerl supports. Many methods for data simulation, transformation and manipulation, the analysis of tree shape, and tree visualization are provided. Conclusions Bio::Phylo is composed of 59 richly documented Perl5 modules. It has been deployed successfully on a variety of computer architectures (including various Linux distributions, Mac OS X versions, Windows, Cygwin and UNIX-like systems). It is available as open source (GPL) software from http://search.cpan.org/dist/Bio-Phylo PMID:21352572

  15. The mechanism and properties of bio-photon emission and absorption in protein molecules in living systems

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-feng

    2012-05-01

    The mechanism and properties of bio-photon emission and absorption in bio-tissues were studied using Pang's theory of bio-energy transport, in which the energy spectra of protein molecules are obtained from the discrete dynamic equation. From the energy spectra, it was determined that the protein molecules could both radiate and absorb bio-photons with wavelengths of <3 μm and 5-7 μm, consistent with the energy level transitions of the excitons. These results were consistent with the experimental data; this consisted of infrared absorption data from collagen, bovine serum albumin, the protein-like molecule acetanilide, plasma, and a person's finger, and the laser-Raman spectra of acidity I-type collagen in the lungs of a mouse, and metabolically active Escherichia coli. We further elucidated the mechanism responsible for the non-thermal biological effects produced by the infrared light absorbed by the bio-tissues, using the above results. No temperature rise was observed; instead, the absorbed infrared light promoted the vibrations of amides as well the transport of the bio-energy from one place to other in the protein molecules, which changed their conformations. These experimental results, therefore, not only confirmed the validity of the mechanism of bio-photon emission, and the newly developed theory of bio-energy transport mentioned above, but also explained the mechanism and properties of the non-thermal biological effects produced by the absorption of infrared light by the living systems.

  16. Response

    ERIC Educational Resources Information Center

    Higgins, Chris

    2012-01-01

    This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…

  17. Antiherpetic potential of 6-bromoindirubin-3'-acetoxime (BIO-acetoxime) in human oral epithelial cells.

    PubMed

    Hsu, Mei-Ju; Hung, Shan-Ling

    2013-06-01

    Glycogen synthase kinase 3 (GSK-3) functions in the regulation of glycogen metabolism, in the cell cycle, and in immune responses and is targeted by some viruses to favor the viral life cycle. Inhibition of GSK-3 by 6-bromoindirubin-3'-acetoxime (BIO-acetoxime), a synthetic derivative of a compound from the Mediterranean mollusk Hexaplex trunculus, protects cells from varicella infection. In this study, we examined the effects of BIO-acetoxime against herpes simplex virus-1 (HSV-1) infection in human oral epithelial cells, which represent a natural target cell type. The results revealed that BIO-acetoxime relieves HSV-1-induced cytopathic effects and apoptosis. We also found that BIO-acetoxime reduced viral yields and the expression of different classes of viral proteins. Furthermore, addition of BIO-acetoxime before, simultaneously with or after HSV-1 infection significantly reduced viral yields. Collectively, BIO-acetoxime may suppress viral gene expression and protect oral epithelial cells from HSV-1 infection. These results suggest the possible involvement of GSK-3 in HSV-1 infection. PMID:23392633

  18. BioBlend.objects: metacomputing with Galaxy

    PubMed Central

    Leo, Simone; Pireddu, Luca; Cuccuru, Gianmauro; Lianas, Luca; Soranzo, Nicola; Afgan, Enis; Zanetti, Gianluigi

    2014-01-01

    Summary: BioBlend.objects is a new component of the BioBlend package, adding an object-oriented interface for the Galaxy REST-based application programming interface. It improves support for metacomputing on Galaxy entities by providing higher-level functionality and allowing users to more easily create programs to explore, query and create Galaxy datasets and workflows. Availability and implementation: BioBlend.objects is available online at https://github.com/afgane/bioblend. The new object-oriented API is implemented by the galaxy/objects subpackage. Contact: simone.leo@crs4.it PMID:24928211

  19. Chicken-Bio Nuggets Gasification process

    SciTech Connect

    Sheth, A.C.

    1996-12-31

    With the cost of landfill disposal skyrocketing and land availability becoming scarce, better options are required for managing our nation`s biomass waste. In response to this need, the University of Tennessee Space Institute (UTSI) is evaluating an innovative idea (described as Chicken-Bio Nuggets Gasification process) to gasify waste products from the poultry industry and industrial wood/biomass-based residues in {open_quotes}as-is{close_quotes} or aggregate form. The presence of potassium salts in the poultry waste as well as in the biomass can act as a catalyst in reducing the severity of the thermal gasification. As a result, the mixture of these waste products can be gasified at a much lower temperature (1,300-1,400{degrees}F versus 1,800-2,000{degrees}F for conventional thermal gasification). Also, these potassium salts act as a catalyst by accelerating the gasification reaction and enhancing the mediation reaction. Hence, the product gas from this UTSI concept can be richer in methane and probably can be used as a source of fuel (to replace propane in hard reach remote places) or as a chemical feed stock. Exxon Research and Engineering Company has tested a similar catalytic gasification concept in a fluid-bed gasifier using coal in a one ton/day pilot plant in Baytown, Texas. If found technically and economically feasible, this concept can be later on extended to include other kinds of waste products such as cow manure and wastes from swine, etc.

  20. Bio-aerosols in indoor environment: composition, health effects and analysis.

    PubMed

    Srikanth, Padma; Sudharsanam, Suchithra; Steinberg, Ralf

    2008-01-01

    Bio-aerosols are airborne particles that are living (bacteria, viruses and fungi) or originate from living organisms. Their presence in air is the result of dispersal from a site of colonization or growth. The health effects of bio-aerosols including infectious diseases, acute toxic effects, allergies and cancer coupled with the threat of bioterrorism and SARS have led to increased awareness on the importance of bio-aerosols. The evaluation of bio-aerosols includes use of variety of methods for sampling depending on the concentration of microorganisms expected. There have been problems in developing standard sampling methods, in proving a causal relationship and in establishing threshold limit values for exposures due to the complexity of composition of bio-aerosols, variations in human response to their exposure and difficulties in recovering microorganisms. Currently bio-aerosol monitoring in hospitals is carried out for epidemiological investigation of nosocomial infectious diseases, research into airborne microorganism spread and control, monitoring biohazardous procedures and use as a quality control measure. In India there is little awareness regarding the quality of indoor air, mould contamination in indoor environments, potential source for transmission of nosocomial infections in health care facilities. There is an urgent need to undertake study of indoor air, to generate baseline data and explore the link to nosocomial infections. This article is a review on composition, sources, modes of transmission, health effects and sampling methods used for evaluation of bio-aerosols, and also suggests control measures to reduce the loads of bio-aerosols. PMID:18974481

  1. Cognitive bio-radar: The natural evolution of bio-signals measurement.

    PubMed

    Malafaia, Daniel; Oliveira, Beatriz; Ferreira, Pedro; Varum, Tiago; Vieira, José; Tomé, Ana

    2016-10-01

    In this article we discuss a novel approach to Bio-Radar, contactless measurement of bio-signals, called Cognitive Bio-Radar. This new approach implements the Bio-Radar in a Software Defined Radio (SDR) platform in order to obtain awareness of the environment where it operates. Due to this, the Cognitive Bio-Radar can adapt to its surroundings in order to have an intelligent usage of the radio frequency spectrum to improve its performance. In order to study the feasibility of such implementation, a SDR based Bio-Radar testbench was developed and evaluated. The prototype is shown to be able to acquire the heartbeat activity and the respiratory effort. The acquired data is compared with the acquisitions from a Biopac research data acquisition system, showing coherent results for both heartbeat and breathing rate. PMID:27578058

  2. BioMEMS for mitochondria medicine

    NASA Astrophysics Data System (ADS)

    Padmaraj, Divya

    A BioMEMS device to study cell-mitochondrial physiological functionalities was developed. The pathogenesis of many diseases including obesity, diabetes and heart failure as well as aging has been linked to functional defects of mitochondria. The synthesis of Adenosine Tri Phosphate (ATP) is determined by the electrical potential across the inner mitochondrial membrane and by the pH difference due to proton flux across it. Therefore, electrical characterization by E-fields with complementary chemical testing was used here. The BioMEMS device was fabricated as an SU-8 based microfluidic system with gold electrodes on SiO2/Si wafers for electromagnetic interrogation. Ion Sensitive Field Effect Transistors (ISFETs) were incorporated for proton studies important in the electron transport chain, together with monitoring Na+, K+ and Ca++ ions for ion channel studies. ISFETs are chemically sensitive Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices and their threshold voltage is directly proportional to the electrolytic H+ ion variation. These ISFETs (sensitivity ˜55 mV/pH for H+) were further realized as specific ion sensitive Chemical Field Effect Transistors (CHEMFETs) by depositing a specific ion sensitive membrane on the gate. Electrodes for dielectric spectroscopy studies of mitochondria were designed as 2- and 4-probe structures for optimized operation over a wide frequency range. In addition, to limit polarization effects, a 4-electrode set-up with unique meshed pickup electrodes (7.5x7.5 mum2 loops with 4 mum wires) was fabricated. Sensitivity of impedance spectroscopy to membrane potential changes was confirmed by studying the influence of uncouplers and glucose on mitochondria. An electrical model was developed for the mitochondrial sample, and its frequency response correlated with impedance spectroscopy experiments of sarcolemmal mitochondria. Using the mesh electrode structure, we obtained a reduction of 83.28% in impedance at 200 Hz. COMSOL

  3. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3

    PubMed Central

    2013-01-01

    Background Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity. Methods The stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (N2a) cells. Neurite length was measured using Image-Pro Insight processor system. Neuritogenesis activity was further validated by fluorescence immunocytochemical staining of neurofilaments. In vitro cytotoxicity was investigated by using mouse embryonic fibroblast (BALB/3T3) and N2a cells for any embryo- and neuro-toxic effects; respectively. Results Aqueous extracts of Ganoderma lucidum, Lignosus rhinocerotis, Pleurotus giganteus and Grifola frondosa; as well as an ethanol extract of Cordyceps militaris significantly (p < 0.05) promoted the neurite outgrowth in N2a cells by 38.4 ± 4.2%, 38.1 ± 2.6%, 33.4 ± 4.6%, 33.7 ± 1.5%, and 35.8 ± 3.4%; respectively. The IC50 values obtained from tetrazolium (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) release assays showed no toxic effects following 24 h exposure of N2a and 3T3 cells to mushroom extracts. Conclusion Our results indicate that G. lucidum, L. rhinocerotis, P. giganteus, G. frondosa and C. militaris may be developed as safe and healthy dietary supplements for brain and cognitive health. PMID:24119256

  4. Nano-Electronics and Bio-Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Viewgraph presentation on Nano-Electronics and Bio-Electronics is discussed. Topics discussed include: NASA Ames nanotechnology program, Potential Carbon Nanotube (CNT) application, CNT synthesis,Computational Nanotechnology, and protein nanotubes.

  5. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing. PMID:25921944

  6. Negated bio-events: analysis and identification

    PubMed Central

    2013-01-01

    Background Negation occurs frequently in scientific literature, especially in biomedical literature. It has previously been reported that around 13% of sentences found in biomedical research articles contain negation. Historically, the main motivation for identifying negated events has been to ensure their exclusion from lists of extracted interactions. However, recently, there has been a growing interest in negative results, which has resulted in negation detection being identified as a key challenge in biomedical relation extraction. In this article, we focus on the problem of identifying negated bio-events, given gold standard event annotations. Results We have conducted a detailed analysis of three open access bio-event corpora containing negation information (i.e., GENIA Event, BioInfer and BioNLP’09 ST), and have identified the main types of negated bio-events. We have analysed the key aspects of a machine learning solution to the problem of detecting negated events, including selection of negation cues, feature engineering and the choice of learning algorithm. Combining the best solutions for each aspect of the problem, we propose a novel framework for the identification of negated bio-events. We have evaluated our system on each of the three open access corpora mentioned above. The performance of the system significantly surpasses the best results previously reported on the BioNLP’09 ST corpus, and achieves even better results on the GENIA Event and BioInfer corpora, both of which contain more varied and complex events. Conclusions Recently, in the field of biomedical text mining, the development and enhancement of event-based systems has received significant interest. The ability to identify negated events is a key performance element for these systems. We have conducted the first detailed study on the analysis and identification of negated bio-events. Our proposed framework can be integrated with state-of-the-art event extraction systems. The

  7. How bio-filaments twist membranes.

    PubMed

    Fierling, Julien; Johner, Albert; Kulić, Igor M; Mohrbach, Hervé; Müller, Martin Michael

    2016-06-29

    We study the deformations of a fluid membrane imposed by adhering stiff bio-filaments due to the torques they apply. In the limit of small deformations, we derive a general expression for the energy and the deformation field of the membrane. This expression is specialised to different important cases including closed and helical bio-filaments. In particular, we analyse interface-mediated interactions and membrane wrapping when the filaments apply a local torque distribution on a tubular membrane. PMID:27291854

  8. An Introduction to BioPerl.

    PubMed

    Stajich, Jason E

    2007-01-01

    The BioPerl toolkit provides a library of hundreds of routines for processing sequence, annotation, alignment, and sequence analysis reports. It often serves as a bridge between different computational biology applications assisting the user to construct analysis pipelines. This chapter illustrates how BioPerl facilitates tasks such as writing scripts summarizing information from BLAST reports or extracting key annotation details from a GenBank sequence record. PMID:18287711

  9. A stimulatory Mls-1 superantigen is destroyed by ultraviolet light while other Mtv-7 antigens remain intact

    SciTech Connect

    Dannecker, G.; Mecheri, S.; Clarke, K.; Dudhane, A.; Zhiqin Wang; Hoffmann, M.K. )

    1992-12-01

    Accessory cells present Ag together with costimulatory signals as immunogens and without costimulatory signals as tolerogens. Responsiveness and unresponsiveness are thus alternatives of T cell immune reactions to Ag. Superantigens appear to make an exception; being presented by accessory cells capable of providing costimulatory signals, these Ag induce a strong T cell response but leave T cells unresponsive to a secondary challenge (anergy). The authors show here that T cell anergy is not a mandatory consequence of superantigen-induced activation. Mls-1[sup [minus

  10. Wetting-controlled strategies: from theories to bio-inspiration.

    PubMed

    Song, Cheng; Zheng, Yongmei

    2014-08-01

    Creatures have evolved the unique wetting-controlled strategies on their surfaces to collect water for the sake of survival, such as Beetle back, spider silk and plant leaf as well, which inspires us to open the area of novel researches. In this feature article, we review the theoretical basis of wetting-controlling regarding of wettability and highlight the biological wetting-controlled strategies in water transport, and water collection, and also introduce some bio-inspired materials with water collection properties. It is significant to design the novel materials that would be used in the fields of responsive, smart catalysis, filtration and sensing besides water collection. PMID:24290249

  11. Late administration of murine CTLA-4 blockade prolongs CD8-mediated anti-tumor effects following stimulatory cancer immunotherapy

    PubMed Central

    Sckisel, Gail D.; Mirsoian, Annie; Bouchlaka, Myriam N.; Tietze, Julia K.; Chen, Mingyi; Blazar, Bruce R.

    2016-01-01

    We have demonstrated that immunostimulatory therapies such as interleukin-2 (IL-2) and anti-CD40 (αCD40) can be combined to deliver synergistic anti-tumor effects. While this strategy has shown success, efficacy varies depending on a number of factors including tumor type and severe toxicities can be seen. We sought to determine whether blockade of negative regulators such as cytotoxic T lymphocyte antigen-4 (CTLA-4) could simultaneously prolong CD8+ T cell responses and augment T cell anti-tumor effects. We devised a regimen in which anti-CTLA-4 was administered late so as to delay contraction and minimize toxicities. This late administration both enhanced and prolonged CD8 T cell activation without the need for additional IL-2. The quality of the T cell response was improved with increased frequency of effector/effector memory phenotype cells along with improved lytic ability and bystander expansion. This enhanced CD8 response translated to improved anti-tumor responses both at the primary and metastatic sites. Importantly, toxicities were not exacerbated with combination. This study provides a platform for rational design of immunotherapy combinations to maximize anti-tumor immunity while minimizing toxicities. PMID:26423422

  12. A comparison of the stimulatory effects of metoclopramide and cinitapride in the guinea-pig isolated ileum.

    PubMed

    Massingham, R; Bou, J; Roberts, D J

    1985-03-01

    The pharmacological effects of a new benzamide derivative cinitapride, have been compared to those of metoclopramide in guinea-pig isolated ileum and longitudinal smooth muscle-myenteric plexus preparations treated with propranolol (3 microM). Cinitapride (EC50 = 0.74 microM) was 6 times more potent than metoclopramide (EC50 = 4.69 microM) in enhancing the twitch response of co-axially stimulated preparations and 11 times more potent in eliciting contractions in non-stimulated tissues, their respective EC50 values being 0.58 microM and 6.52 microM. These contractile effects of cinitapride and metoclopramide amounted to approximately 25% of the maximum response of the tissues to acetylcholine (1 microM). Neither cinitapride nor metoclopramide, in concentrations up to 10 microM, significantly affected concentration-response curves to exogenous acetylcholine or 5-hydroxytryptamine but both drugs elicited a concentration-dependent potentiation of the ileum responses to a fixed concentration (10 microM) of the ganglion stimulant dimethylphenylpiperazinium (DMPP). Analysis of the twitch-enhancing and contractile effects of cinitapride using a variety of drugs suggested that a common, prejunctional locus of action upon the cell bodies or axons of postganglionic, parasympathetic neurones of the myenteric plexus is involved in both of these responses. In hexamethonium (100 microM) and methysergide (0.1 microM)-treated longitudinal smooth muscle preparations desensitization or blockade of 5-hydroxytryptamine receptors using high concentrations of the same agonist (30 microM) or quipazine (10 microM) or the putative antagonists cocaine (30 microM) or tubocurarine (10 microM) produced small inhibitions (congruent to 20%) of the contractile responses to metoclopramide and cinitapride but did not affect twitch responses to these drugs. It is concluded that cinitapride is a more potent stimulant of guinea-pig intestinal smooth muscle than metoclopramide in vitro although the

  13. Possible involvement of phospholipase C and protein kinase C in stimulatory actions of L-leucine and its keto acid, alpha-ketoisocaproic acid, on protein synthesis in RLC-16 hepatocytes.

    PubMed

    Yagasaki, Kazumi; Morisaki-Tsuji, Naoko; Miura, Atsuhito; Funabiki, Ryuhei

    2002-11-01

    Effects of leucine and related compounds on protein synthesis were studied in RLC-16 hepatocytes. The incorporation of [(3)H] tyrosine into cellular protein was measured as an indexof protein synthesis. In leucine-depleted RLC-16 cells, L-leucineand its keto acid, alpha-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipase A(2) and C canceled stimulatory actions of L-leucine and KIC on protein synthesis, suggesting a possible involvement of either arachidonic acid metabolism by phospholipase A(2), cyclooxygenase or lipoxygenase, or phosphatidylinositol degradation by phospholipase C in the stimulatory actions of L-leucine and KIC.Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of protein kinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in RLC-16 cells via activation of phospholipase C and production of diacylglycerol and inositol triphosphate from phosphatidylinositol, which in turn activate protein kinase C. PMID:19003115

  14. A simple stimulatory device for evoking point-like tactile stimuli: a searchlight for LFP to spike transitions.

    PubMed

    Zippo, Antonio G; Nencini, Sara; Caramenti, Gian Carlo; Valente, Maurizio; Storchi, Riccardo; Biella, Gabriele E M

    2014-01-01

    Current neurophysiological research has the aim to develop methodologies to investigate the signal route from neuron to neuron, namely in the transitions from spikes to Local Field Potentials (LFPs) and from LFPs to spikes. LFPs have a complex dependence on spike activity and their relation is still poorly understood(1). The elucidation of these signal relations would be helpful both for clinical diagnostics (e.g. stimulation paradigms for Deep Brain Stimulation) and for a deeper comprehension of neural coding strategies in normal and pathological conditions (e.g. epilepsy, Parkinson disease, chronic pain). To this aim, one has to solve technical issues related to stimulation devices, stimulation paradigms and computational analyses. Therefore, a custom-made stimulation device was developed in order to deliver stimuli well regulated in space and time that does not incur in mechanical resonance. Subsequently, as an exemplification, a set of reliable LFP-spike relationships was extracted. The performance of the device was investigated by extracellular recordings, jointly spikes and LFP responses to the applied stimuli, from the rat Primary Somatosensory cortex. Then, by means of a multi-objective optimization strategy, a predictive model for spike occurrence based on LFPs was estimated. The application of this paradigm shows that the device is adequately suited to deliver high frequency tactile stimulation, outperforming common piezoelectric actuators. As a proof of the efficacy of the device, the following results were presented: 1) the timing and reliability of LFP responses well match the spike responses, 2) LFPs are sensitive to the stimulation history and capture not only the average response but also the trial-to-trial fluctuations in the spike activity and, finally, 3) by using the LFP signal it is possible to estimate a range of predictive models that capture different aspects of the spike activity. PMID:24686295

  15. A Simple Stimulatory Device for Evoking Point-like Tactile Stimuli: A Searchlight for LFP to Spike Transitions

    PubMed Central

    Zippo, Antonio G.; Nencini, Sara; Caramenti, Gian Carlo; Valente, Maurizio; Storchi, Riccardo; Biella, Gabriele E.M.

    2014-01-01

    Current neurophysiological research has the aim to develop methodologies to investigate the signal route from neuron to neuron, namely in the transitions from spikes to Local Field Potentials (LFPs) and from LFPs to spikes. LFPs have a complex dependence on spike activity and their relation is still poorly understood1. The elucidation of these signal relations would be helpful both for clinical diagnostics (e.g. stimulation paradigms for Deep Brain Stimulation) and for a deeper comprehension of neural coding strategies in normal and pathological conditions (e.g. epilepsy, Parkinson disease, chronic pain). To this aim, one has to solve technical issues related to stimulation devices, stimulation paradigms and computational analyses. Therefore, a custom-made stimulation device was developed in order to deliver stimuli well regulated in space and time that does not incur in mechanical resonance. Subsequently, as an exemplification, a set of reliable LFP-spike relationships was extracted. The performance of the device was investigated by extracellular recordings, jointly spikes and LFP responses to the applied stimuli, from the rat Primary Somatosensory cortex. Then, by means of a multi-objective optimization strategy, a predictive model for spike occurrence based on LFPs was estimated. The application of this paradigm shows that the device is adequately suited to deliver high frequency tactile stimulation, outperforming common piezoelectric actuators. As a proof of the efficacy of the device, the following results were presented: 1) the timing and reliability of LFP responses well match the spike responses, 2) LFPs are sensitive to the stimulation history and capture not only the average response but also the trial-to-trial fluctuations in the spike activity and, finally, 3) by using the LFP signal it is possible to estimate a range of predictive models that capture different aspects of the spike activity. PMID:24686295

  16. Bio-methanol from Bio-oil Reforming Syngas Using Dual-reactor

    NASA Astrophysics Data System (ADS)

    Ye, Tong-qi; Yan, Shi-zhi; Xu, Yong; Qiu, Song-bai; Liu, Yong; Li, Quan-xin

    2011-08-01

    A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalyst bed reactor, the catalytic conversion can effectively adjust the rich-CO2 crude bio-syngas into the CO-containing bio-syngas using the CuZnAlZr catalyst. After the on-line syngas conditioning at 450 °C, the CO2/CO ratio in the bio-syngas significantly decreased from 6.3 to 1.2. In the rearward catalyst bed reactor, the conversion of the conditioned bio-syngas to bio-methanol shows the maximum yield about 1.21 kg/(kgcatal·h) MeOH with a methanol selectivity of 97.9% at 260 °C and 5.05 MPa using conventional CuZnAl catalyst, which is close to the level typically obtained in the conventional methanol synthesis process using natural gas. The influences of temperature, pressure and space velocity on the bio-methanol synthesis were also investigated in detail.

  17. Bio-Organic Reaction Animations (BioORA): Student Performance, Student Perceptions, and Instructor Feedback

    ERIC Educational Resources Information Center

    Gunersel, Adalet Baris; Fleming, Steven

    2014-01-01

    Research shows that computer animations are especially helpful in fields such as chemistry and in this mixed-methods study, we investigate the educational effectiveness of Bio-Organic Reaction Animations (BioORA), a 3-D software, in four undergraduate biochemistry classes at different universities. Statistically significant findings indicate that…

  18. Promoting Bio-Ethanol in the United States by Incorporating Lessons from Brazil's National Alcohol Program

    ERIC Educational Resources Information Center

    Du, Yangbo

    2007-01-01

    Current U.S. energy policy supports increasing the use of bio-ethanol as a gasoline substitute, which Brazil first produced on a large scale in response to the 1970s energy crises. Brazil's National Alcohol Program stood out among its contemporaries regarding its success at displacing a third of Brazil's gasoline requirements, primarily due to…

  19. BioLab: Using Yeast Fermentation as a Model for the Scientific Method.

    ERIC Educational Resources Information Center

    Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.

    This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)

  20. The All Terrain Bio nano Gear for Space Radiation Detection System

    SciTech Connect

    Ummat, Ajay; Mavroidis, Constantinos

    2007-01-30

    This paper discusses about the relevance of detecting space radiations which are very harmful and pose numerous health issues for astronauts. There are many ways to detect radiations, but we present a non-invasive way of detecting them in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one such concept where we propose to detect various levels of space radiations depending on their intensity and warn the astronaut of probable biological damage. A basic framework for radiation detection system which utilizes bio-nano machines is discussed. This radiation detection system is termed as 'radiation-responsive molecular assembly' (RMA) for the detection of space radiations. Our objective is to create a device which could detect space radiations by creating an environment equivalent to human cells within its structure and bio-chemically sensing the effects induced therein. For creating such an environment and further bio-chemically sensing space radiations bio-nano systems could be potentially used. These bio-nano systems could interact with radiations and signal based on the intensity of the radiations their relative biological effectiveness. Based on the energy and kind of radiation encountered, a matrix of signals has to be created which corresponds to a particular biological effect. The key advantage of such a design is its ability to interact with the radiation at e molecular scale; characterize its intensity based on energy deposition and relate it to the relative biological effectiveness based on the correspondence established through molecular structures and bond strengths of the bio-nano system.

  1. BrisSynBio: a BBSRC/EPSRC-funded Synthetic Biology Research Centre

    PubMed Central

    Sedgley, Kathleen R.; Race, Paul R.; Woolfson, Derek N.

    2016-01-01

    BrisSynBio is the Bristol-based Biotechnology and Biological Sciences Research Council (BBSRC)/Engineering and Physical Sciences Research Council (EPSRC)-funded Synthetic Biology Research Centre. It is one of six such Centres in the U.K. BrisSynBio's emphasis is on rational and predictive bimolecular modelling, design and engineering in the context of synthetic biology. It trains the next generation of synthetic biologists in these approaches, to facilitate translation of fundamental synthetic biology research to industry and the clinic, and to do this within an innovative and responsible research framework. PMID:27284028

  2. A Comparative Study of the T Cell Stimulatory and Polarizing Capacity of Human Primary Blood Dendritic Cell Subsets

    PubMed Central

    Sittig, Simone P.; Bakdash, Ghaith; Weiden, Jorieke; Sköld, Annette E.; Tel, Jurjen; Figdor, Carl G.; de Vries, I. Jolanda M.

    2016-01-01

    Dendritic cells (DCs) are central players of immune responses; they become activated upon infection or inflammation and migrate to lymph nodes, where they can initiate an antigen-specific immune response by activating naive T cells. Two major types of naturally occurring DCs circulate in peripheral blood, namely, myeloid and plasmacytoid DCs (pDCs). Myeloid DCs (mDCs) can be subdivided based on the expression of either CD1c or CD141. These human DC subsets differ in surface marker expression, Toll-like receptor (TLR) repertoire, and transcriptional profile, suggesting functional differences between them. Here, we directly compared the capacity of human blood mDCs and pDCs to activate and polarize CD4+ T cells. CD141+ mDCs show an overall more mature phenotype over CD1c+ mDC and pDCs; they produce less IL-10 and more IL-12 than CD1c+ mDCs. Despite these differences, all subsets can induce the production of IFN-γ in naive CD4+ T cells. CD1c+ and CD141+ mDCs especially induce a strong T helper 1 profile. Importantly, naive CD4+ T cells are not polarized towards regulatory T cells by any subset. These findings further establish all three human blood DCs—despite their differences—as promising candidates for immunostimulatory effectors in cancer immunotherapy. PMID:27057096

  3. Bios-3: Siberian experiments in bioregenerative life support.

    PubMed

    Salisbury, F B; Gitelson, J I; Lisovsky, G M

    1997-10-01

    The Russian experience with the bioregenerative life support system Bios-3 at Krasnoyarsk, Siberia, is reviewed. A brief review of other bioregenerative systems examines Biosphere 2 in Oracle, Arizona, and the Bios-1 and Bios-2 systems that preceded Bios-3. Physical details of the Bios-3 facility are provided. The use of Chlorella and higher plants for gas exchange is examined. Long-term studies of human habitation are discussed. Other topics include microflora in Bios-3, the theory of closed systems, and problems for the future. PMID:11540303

  4. Bios-3: Siberian experiments in bioregenerative life support

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.; Gitelson, J. I.; Lisovsky, G. M.

    1997-01-01

    The Russian experience with the bioregenerative life support system Bios-3 at Krasnoyarsk, Siberia, is reviewed. A brief review of other bioregenerative systems examines Biosphere 2 in Oracle, Arizona, and the Bios-1 and Bios-2 systems that preceded Bios-3. Physical details of the Bios-3 facility are provided. The use of Chlorella and higher plants for gas exchange is examined. Long-term studies of human habitation are discussed. Other topics include microflora in Bios-3, the theory of closed systems, and problems for the future.

  5. Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity

    NASA Astrophysics Data System (ADS)

    Qi, Dianpeng; Zheng, Liyan; Cao, Xuebo; Jiang, Yueyue; Xu, Hongbo; Zhang, Yanyan; Yang, Bingjie; Sun, Yinghui; Hng, Huey Hoon; Lu, Nan; Chi, Lifeng; Chen, Xiaodong

    2013-11-01

    A bio-inspired antireflective hetero-nanojunction structure has been fabricated by the hydrothermal growth of ZnO nanorods on silicon micro-pyramids. It has been shown that this structure suppresses light reflection more effectively resulting in a high photocurrent response and good charge separation simultaneously. The strategy provides a means to enhance solar energy conversion.A bio-inspired antireflective hetero-nanojunction structure has been fabricated by the hydrothermal growth of ZnO nanorods on silicon micro-pyramids. It has been shown that this structure suppresses light reflection more effectively resulting in a high photocurrent response and good charge separation simultaneously. The strategy provides a means to enhance solar energy conversion. Electronic supplementary information (ESI) available: HRTEM image and XRD pattern of a ZnO nanorod; schematic representation of the photoanode behavior, as well as the concentration change of rhodamine 6G through the photodegradation process over many repeats. See DOI: 10.1039/c3nr04011a

  6. BioC viewer: a web-based tool for displaying and merging annotations in BioC

    PubMed Central

    Shin, Soo-Yong; Kim, Sun; Wilbur, W. John; Kwon, Dongseop

    2016-01-01

    BioC is an XML-based format designed to provide interoperability for text mining tools and manual curation results. A challenge of BioC as a standard format is to align annotations from multiple systems. Ideally, this should not be a major problem if users follow guidelines given by BioC key files. Nevertheless, the misalignment between text and annotations happens quite often because different systems tend to use different software development environments, e.g. ASCII vs. Unicode. We first implemented the BioC Viewer to assist BioGRID curators as a part of the BioCreative V BioC track (Collaborative Biocurator Assistant Task). For the BioC track, the BioC Viewer helped curate protein-protein interaction and genetic interaction pairs appearing in full-text articles. Here, we describe the BioC Viewer itself as well as improvements made to the BioC Viewer since the BioCreative V Workshop to address the misalignment issue of BioC annotations. While uploading BioC files, a BioC merge process is offered when there are files from the same full-text article. If there is a mismatch between an annotated offset and text, the BioC Viewer adjusts the offset to correctly align with the text. The BioC Viewer has a user-friendly interface, where most operations can be performed within a few mouse clicks. The feedback from BioGRID curators has been positive for the web interface, particularly for its usability and learnability. Database URL: http://viewer.bioqrator.org PMID:27515823

  7. BioC viewer: a web-based tool for displaying and merging annotations in BioC.

    PubMed

    Shin, Soo-Yong; Kim, Sun; Wilbur, W John; Kwon, Dongseop

    2016-01-01

    BioC is an XML-based format designed to provide interoperability for text mining tools and manual curation results. A challenge of BioC as a standard format is to align annotations from multiple systems. Ideally, this should not be a major problem if users follow guidelines given by BioC key files. Nevertheless, the misalignment between text and annotations happens quite often because different systems tend to use different software development environments, e.g. ASCII vs. Unicode. We first implemented the BioC Viewer to assist BioGRID curators as a part of the BioCreative V BioC track (Collaborative Biocurator Assistant Task). For the BioC track, the BioC Viewer helped curate protein-protein interaction and genetic interaction pairs appearing in full-text articles. Here, we describe the BioC Viewer itself as well as improvements made to the BioC Viewer since the BioCreative V Workshop to address the misalignment issue of BioC annotations. While uploading BioC files, a BioC merge process is offered when there are files from the same full-text article. If there is a mismatch between an annotated offset and text, the BioC Viewer adjusts the offset to correctly align with the text. The BioC Viewer has a user-friendly interface, where most operations can be performed within a few mouse clicks. The feedback from BioGRID curators has been positive for the web interface, particularly for its usability and learnability.Database URL: http://viewer.bioqrator.org. PMID:27515823

  8. Exposure to stimulatory CpG oligonucleotides during gestation induces maternal hypertension and excess vasoconstriction in pregnant rats.

    PubMed

    Goulopoulou, Styliani; Wenceslau, Camilla F; McCarthy, Cameron G; Matsumoto, Takayuki; Webb, R Clinton

    2016-04-15

    Bacterial infections increase risk for pregnancy complications, such as preeclampsia and preterm birth. Unmethylated CpG DNA sequences are present in bacterial DNA and have immunostimulatory effects. Maternal exposure to CpG DNA induces fetal demise and craniofacial malformations; however, the effects of CpG DNA on maternal cardiovascular health have not been examined. We tested the hypothesis that exposure to synthetic CpG oligonucleotides (ODNs) during gestation would increase blood pressure and cause vascular dysfunction in pregnant rats. Pregnant and nonpregnant female rats were treated with CpG ODN (ODN 2395) or saline (Veh) starting on gestationalday 14or corresponding day for the nonpregnant groups. Exposure to CpG ODN increased systolic blood pressure in pregnant (Veh: 121 ± 2 mmHg vs. ODN 2395: 134 ± 2 mmHg,P< 0.05) but not in nonpregnant rats (Veh: 111 ± 2 mmHg vs. ODN 2395: 108 ± 5 mmHg,P> 0.05). Mesenteric resistance arteries from pregnant CpG ODN-treated rats had increased contractile responses to U46619 [thromboxane A2(TxA2) mimetic] compared with arteries from vehicle-treated rats [Emax(%KCl), Veh: 87 ± 4 vs. ODN 2395: 104 ± 4,P< 0.05]. Nitric oxide synthase (NOS) inhibition increased contractile responses to U46619, and CpG ODN treatment abolished this effect in arteries from pregnant ODN 2395-treated rats. CpG ODN potentiated the involvement of cyclooxygenase (COX) to U46619-induced contractions. In conclusion, exposure to CpG ODN during gestation induces maternal hypertension, augments resistance artery contraction, increases the involvement of COX-dependent mechanisms and reduces the contribution of NOS-dependent mechanisms to TxA2-induced contractions in mesenteric resistance arteries. PMID:26873968

  9. Stimulatory Effects of Coumestrol on Embryonic and Fetal Development Through AKT and ERK1/2 MAPK Signal Transduction.

    PubMed

    Lim, Whasun; Song, Gwonhwa

    2016-12-01

    Successful establishment of pregnancy is required for fetal-maternal interactions regulating implantation, embryonic development and placentation. A uterine environment with insufficient growth factors and nutrients increases the incidence of intrauterine growth restriction (IUGR) leading to an impaired uterine environment. In the present study, we demonstrated the effects of the phytoestrogen coumestrol on conceptus development in the pig that is regarded as an excellent biomedical animal model for research on IUGR. Results of this study indicated that coumestrol induced migration of porcine trophectoderm (pTr) cells in a concentration-dependent manner. In response to coumestrol, the phosphorylation of AKT, P70S6K, S6, ERK1/2 MAPK, and P90RSK proteins were activated in pTr cells and ERK1/2 MAPK and P90RSK phosphorylation was prolonged for a longer period than for the other proteins. To identify the signal transduction pathway induced by coumestrol, pharmacological inhibitors U0126 (an ERK1/2 inhibitor) and LY294002 (a PI3K inhibitor) were used to pretreat pTr cells. The results showed that coumestrol-induced phosphorylation of ERK1/2 MAPK and P90RSK was blocked by U0126. In addition, the increased phosphorylation in response to coumestrol was completely inhibited following pre-treatment incubation of pTr cells in the presence of LY294002 and U0126. Furthermore, these two inhibitors suppressed the ability of coumestrol to induce migration of pTr cells. Collectively, these findings suggest that coumestrol affects embryonic development through activation of the PI3K/AKT and ERK1/2 MAPK cell signal transduction pathways and improvement in the uterine environment through coumestrol supplementation may provide beneficial effects of enhancing embryonic and fetal survival and development. J. Cell. Physiol. 231: 2733-2740, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991852

  10. Mesenchymal Stromal Cell-Like Cells Set the Balance of Stimulatory and Inhibitory Signals in Monocyte-Derived Dendritic Cells.

    PubMed

    Bacskai, Ildikó; Mázló, Anett; Kis-Tóth, Katalin; Szabó, Attila; Panyi, György; Sarkadi, Balázs; Apáti, Ágota; Rajnavölgyi, Éva

    2015-08-01

    The major reservoir of human multipotent mesenchymal stem/stromal cells (MSCs) is the bone marrow (BM) with the capability to control hematopoietic stem cell development. The regenerative potential of MSCs is associated with enhanced endogenous repair and healing mechanisms that modulate inflammatory responses. Our previous results revealed that MSC-like (MSCl) cells derived from pluripotent human embryonic stem cells resemble BM-derived MSCs in morphology, phenotype, and differentiating potential. In this study, we investigated the effects of MSCl cells on the phenotype and functions of dendritic cells (DCs). To assess how antiviral immune responses could be regulated by intracellular pattern recognition receptors of DCs in the presence of MSCl cells, we activated DCs with the specific ligands of retinoic acid-inducible gene-I (RIG-I) helicases and found that activated DCs cocultured with MSCl cells exhibited reduced expression of CD1a and CD83 cell surface molecules serving as phenotypic indicators of DC differentiation and activation, respectively. However, RIG-I-mediated stimulation of DCs through specific ligands in the presence of MSCl cells resulted in significantly higher expression of the costimulatory molecules, CD80 and CD86, than in the presence of BM-MSCs. In line with these results, the concentration of IL-6, IL-10, and CXCL8 was increased in the supernatant of the DC-MSCl cocultures, while the secretion of TNF-α, CXCL10, IL-12, and IFNγ was reduced. Furthermore, the concerted action of mechanisms involved in the regulation of DC migration resulted in the blockade of cell migration, indicating altered DC functionality mediated by MSCl cell-derived signals and mechanisms resulting in a suppressive microenvironment. PMID:25808140

  11. Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing.

    PubMed

    Sandeau, Laure; Vuillaume, Cassandre; Contié, Sylvain; Grinenval, Eva; Belloni, Federico; Rigneault, Hervé; Owens, Roisin M; Fournet, Margaret Brennan

    2015-02-01

    A novel CMOS bio-pixel array which integrates assay substrate and assay readout is demonstrated for multiplex and multireplicate detection of a triplicate of cytokines with single digit pg ml(-1) sensitivities. Uniquely designed large area bio-pixels enable individual assays to be dedicated to and addressed by single pixels. A capability to simultaneously measure a large number of targets is provided by the 128 available pixels. Chemiluminescent assays are carried out directly on the pixel surface which also detects the emitted chemiluminescent photons, facilitating a highly compact sensor and reader format. The high sensitivity of the bio-pixel array is enabled by the high refractive index of silicon based pixels. This in turn generates a strong supercritical angle luminescence response significantly increasing the efficiency of the photon collection over conventional farfield modalities. PMID:25490928

  12. Bio-Decontamination of Water and Surfaces by DC Discharges in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Machala, Zdenko; Tarabová, Barbora; Pelach, Michal; Šipoldová, Zuzana; Hensel, Karol; Janda, Mário; Šikurová, Libuša

    Two types of DC-driven atmospheric air discharges, including a streamer corona and a transient spark with short high current pulses of limited energy, were employed for bio-decontamination of water and various surfaces (agar plates, plastic foils, human teeth) contaminated by bacteria or spores (Salmonella typhimurium, Bacillus cereus). Both discharges generate cold non-equilibrium plasma. The discharges combined with the electro-spraying of the treated water through the needle electrode lead to fast and efficient bio-decontamination. Experiments comparing direct and indirect plasma effects, oxidation stress measurements in the cell membranes, and chemical changes induced in the treated water enable assessment of the plasma agents being responsible for microbial inactivation. Radicals and reactive oxygen species seem to be dominant biocidal agents, although deeper understanding of the plasma-induced water chemistry and of the temporal evolution of the bio-inactivation processes is needed.

  13. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer.

    PubMed

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO. PMID:25586328

  14. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO.

  15. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    PubMed Central

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO. PMID:25586328

  16. ezBioNet: A modeling and simulation system for analyzing biological reaction networks

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2012-10-01

    To achieve robustness against living environments, a living organism is composed of complicated regulatory mechanisms ranging from gene regulations to signal transduction. If such life phenomena are to be understand, an integrated analysis tool that should have modeling and simulation functions for biological reactions, as well as new experimental methods for measuring biological phenomena, is fundamentally required. We have designed and implemented modeling and simulation software (ezBioNet) for analyzing biological reaction networks. The software can simultaneously perform an integrated modeling of various responses occurring in cells, ranging from gene expressions to signaling processes. To support massive analysis of biological networks, we have constructed a server-side simulation system (VCellSim) that can perform ordinary differential equations (ODE) analysis, sensitivity analysis, and parameter estimates. ezBioNet integrates the BioModel database by connecting the european bioinformatics institute (EBI) servers through Web services APIs and supports the handling of systems biology markup language (SBML) files. In addition, we employed eclipse RCP (rich client platform) which is a powerful modularity framework allowing various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool, as well as a simulation system, to understand the control mechanism by monitoring the change of each component in a biological network. A researcher may perform the kinetic modeling and execute the simulation. The simulation result can be managed and visualized on ezBioNet, which is freely available at http://ezbionet.cbnu.ac.kr.

  17. Upscaling of Bio-mediated Soil Improvement

    SciTech Connect

    J. T. DeJong; B. C. Martinez; B. M. Mortensen; D. C. Nelson; J. T. Waller; M. H. Weil; T. R. Ginn; T. Weathers; T. Barkouki; Y. Fujita; G. Redden; C. Hunt; D. Major; B. Tunyu

    2009-10-01

    As demand for soil improvement continues to increase, new, sustainable, and innocuous methods are needed to alter the mechanical properties of soils. Recent research has demonstrated the potential of bio-mediated soil improvement for geotechnical applications (DeJong et al. 2006, Whiffin et al. 2007). Upscaling the bio-mediated treatment process for in situ implementation presents a number of challenges to be addressed, including soil and pore fluid interactions, bioaugmentation versus biostimulation of microbial communities, controlled distribution of mediated calcite precipitation, and permanence of the cementation. Current studies are utilizing large-scale laboratory experiments, non-destructive geophysical measurements, and modeling, to develop an optimized and predictable bio-mediated treatment method.

  18. Constraints to bio-energy development

    SciTech Connect

    Parsons, V.B.

    1980-01-01

    The energy crisis has prompted research and development of renewable, domestic, cost-effective and publicly acceptable energy alternatives. Among these are the bioconversion technologies. To date bio-energy research has been directed toward the mechanics of the conversion processes and technical assessment of the environmental impacts. However, there are other obstacles to overcome before biomass can be converted to more useful forms of energy that fit existing need. Barriers to bio-energy resource application in the US are identified. In addition, examples from several agricultural regions serve to illustrate site-specific resource problems.

  19. Fuel Cells on Bio-Gas (Presentation)

    SciTech Connect

    Remick, R. J.

    2009-03-04

    The conclusions of this presentation are: (1) Fuel cells operating on bio-gas offer a pathway to renewable electricity generation; (2) With federal incentives of $3,500/kW or 30% of the project costs, reasonable payback periods of less than five years can be achieved; (3) Tri-generation of electricity, heat, and hydrogen offers an alternative route to solving the H{sub 2} infrastructure problem facing fuel cell vehicle deployment; and (4) DOE will be promoting bio-gas fuel cells in the future under its Market Transformation Programs.

  20. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice.

    PubMed

    Nicolas, G; Bennoun, M; Devaux, I; Beaumont, C; Grandchamp, B; Kahn, A; Vaulont, S

    2001-07-17

    We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2(-/-) mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2(-/-) mice, we used suppressive subtractive hybridization between livers from Usf2(-/-) and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2(-/-) hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages. PMID:11447267

  1. Glucose uptake-stimulatory activity of Tinospora cordifolia stem extracts in Ehrlich ascites tumor cell model system.

    PubMed

    Joladarashi, Darukeshwara; Chilkunda, Nandini D; Salimath, Paramahans Veerayya

    2014-01-01

    Diabetes mellitus is a multifunctional disorder with several causes and multiple consequences. Nutraceuticals play a vital role in ameliorating diabetic condition. The stems of the plant, Tinospora cordifolia (T. cordifolia) are often used in Ayurvedic medicine for the management of diabetes. Earlier studies have shown that T. cordifolia to be a potent antidiabetic plant material by virtue of being rich in nutraceuticals. In the present study we were interested to know if, T. cordifolia stem extracts are able to promote glucose uptake through glucose transporters, 1 (GLUT1) and 3 (GLUT3), which are responsible for basal glucose uptake. Hence, Ehrlich ascites tumor (EAT) cells were chosen as a model which harbours both GLUT1 and GLUT3 and glucose uptake was measured using a fluorescent analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG). Serially, solvent extracted T. cordifolia stems, especially water, ethanol and methanol extracts showed glucose uptake activity. Uptake was stimulated in a dose dependent manner at dosages of 1-100 μg. Glucose-stimulating activity does not seem to be solely due to polyphenol content since methanol extract, with high amount of polyphenol content (9.5 ± 0.1 g kg(-1)), did not stimulate higher glucose uptake activity when compared to water extract. PMID:24426067

  2. T cell-mediated modulation of mast cell function: heterotypic adhesion-induced stimulatory or inhibitory effects.

    PubMed

    Mekori, Yoseph A; Hershko, Alon Y

    2012-01-01

    Close physical proximity between mast cells and T cells has been demonstrated in several T cell mediated inflammatory processes such as rheumatoid arthritis and sarcoidosis. However, the way by which mast cells are activated in these T cell-mediated immune responses has not been fully elucidated. We have identified and characterized a novel mast cell activation pathway initiated by physical contact with activated T cells, and showed that this pathway is associated with degranulation and cytokine release. The signaling events associated with this pathway of mast cell activation have also been elucidated confirming the activation of the Ras mitogen-activated protein kinase systems. More recently, we hypothesized and demonstrated that mast cells may also be activated by microparticles released from activated T cells that are considered as miniature version of a cell. By extension, microparticles might affect the activity of mast cells, which are usually not in direct contact with T cells at the inflammatory site. Recent works have also focused on the effects of regulatory T cells (Treg) on mast cells. These reports highlighted the importance of the cytokines IL-2 and IL-9, produced by mast cells and T cells, respectively, in obtaining optimal immune suppression. Finally, physical contact, associated by OX40-OX40L engagement has been found to underlie the down-regulatory effects exerted by Treg on mast cell function. PMID:22566892

  3. Pooling Bio-Specimens in the Presence of Measurement Error and Non-Linearity in Dose-Response: Simulation Study in the Context of a Birth Cohort Investigating Risk Factors for Autism Spectrum Disorders

    PubMed Central

    Heavner, Karyn; Newschaffer, Craig; Hertz-Picciotto, Irva; Bennett, Deborah; Burstyn, Igor

    2015-01-01

    We sought to determine the potential effects of pooling on power, false positive rate (FPR), and bias of the estimated associations between hypothetical environmental exposures and dichotomous autism spectrum disorders (ASD) status. Simulated birth cohorts in which ASD outcome was assumed to have been ascertained with uncertainty were created. We investigated the impact on the power of the analysis (using logistic regression) to detect true associations with exposure (X1) and the FPR for a non-causal correlate of exposure (X2, r = 0.7) for a dichotomized ASD measure when the pool size, sample size, degree of measurement error variance in exposure, strength of the true association, and shape of the exposure-response curve varied. We found that there was minimal change (bias) in the measures of association for the main effect (X1). There is some loss of power but there is less chance of detecting a false positive result for pooled compared to individual level models. The number of pools had more effect on the power and FPR than the overall sample size. This study supports the use of pooling to reduce laboratory costs while maintaining statistical efficiency in scenarios similar to the simulated prospective risk-enriched ASD cohort. PMID:26610532

  4. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  5. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  6. Stimulatory Influences of Far Infrared Therapy on the Transcriptome and Genetic Networks of Endothelial Progenitor Cells Receiving High Glucose Treatment

    PubMed Central

    Lin, Tzu-Chiao; Lin, Chin-Sheng; Tsai, Tsung-Neng; Cheng, Shu-Meng; Lin, Wei-Shiang; Cheng, Cheng-Chung; Wu, Chun-Hsien; Hsu, Chih-Hsueng

    2015-01-01

    Background Endothelial progenitor cells (EPCs) play a fundamental role in vascular repair and angiogenesis- related diseases. It is well-known that the process of angiogenesis is faulty in patients with diabetes. Long-term exposure of peripheral blood EPCs to high glucose (HG-EPCs) has been shown to impair cell proliferation and other functional competencies. Far infrared (FIR) therapy can promote ischemia-induced angiogenesis in diabetic mice and restore high glucose-suppressed endothelial progenitor cell functions both in vitro and in vivo. However, the detail mechanisms and global transcriptome alternations are still unclear. Methods In this study, we investigated the influences of FIR upon HG-EPC gene expressions. EPCs were obtained from the peripheral blood and treated with high glucose. These cells were then subjected to FIR irradiation and functional assays. Results Those genes responsible for fibroblast growth factors, Mitogen-activated protein kinases (MAPK), Janus kinase/signal transducer and activator of transcription and prostaglandin signaling pathways were significantly induced in HG-EPCs after FIR treatment. On the other hand, mouse double minute 2 homolog, genes involved in glycogen metabolic process, and genes involved in cardiac fibrosis were down-regulated. We also observed complex genetic networks functioning in FIR-treated HG-EPCs, in which several genes, such as GATA binding protein 3, hairy and enhancer of split-1, Sprouty Homolog 2, MAPK and Sirtuin 1, acted as hubs to maintain the stability and connectivity of the whole genetic network. Conclusions Deciphering FIR-affected genes will not only provide us with new knowledge regarding angiogenesis, but also help to develop new biomarkers for evaluating the effects of FIR therapy. Our findings may also be adapted to develop new methods to increase EPC activities for treating diabetes-related ischemia and metabolic syndrome-associated cardiovascular disorders. PMID:27122901

  7. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice

    PubMed Central

    Nicolas, Gaël; Bennoun, Myriam; Devaux, Isabelle; Beaumont, Carole; Grandchamp, Bernard; Kahn, Axel; Vaulont, Sophie

    2001-01-01

    We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2−/− mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2−/− mice, we used suppressive subtractive hybridization between livers from Usf2−/− and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2−/− hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages. PMID:11447267

  8. Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses

    PubMed Central

    2010-01-01

    Background Several Echinacea species have been used as nutraceuticals or botanical drugs for "immunostimulation", but scientific evidence supporting their therapeutic use is still controversial. In this study, a phytocompound mixture extracted from the butanol fraction (BF) of a stem and leaf (S+L) extract of E. purpurea ([BF/S+L/Ep]) containing stringently defined bioactive phytocompounds was obtained using standardized and published procedures. The transcriptomic and proteomic effects of this phytoextract on mouse bone marrow-derived dendritic cells (BMDCs) were analyzed using primary cultures. Results Treatment of BMDCs with [BF/S+L/Ep] did not significantly influence the phenotypic maturation activity of dendritic cells (DCs). Affymetrix DNA microarray and bioinformatics analyses of genes differentially expressed in DCs treated with [BF/S+L/Ep] for 4 or 12 h revealed that the majority of responsive genes were related to cell adhesion or motility (Cdh10, Itga6, Cdh1, Gja1 and Mmp8), or were chemokines (Cxcl2, Cxcl7) or signaling molecules (Nrxn1, Pkce and Acss1). TRANSPATH database analyses of gene expression and related signaling pathways in treated-DCs predicted the JNK, PP2C-α, AKT, ERK1/2 or MAPKAPK pathways as the putative targets of [BF/S+L/Ep]. In parallel, proteomic analysis showed that the expressions of metabolic-, cytoskeleton- or NF-κB signaling-related proteins were regulated by treatment with [BF/S+L/Ep]. In vitro flow cytometry analysis of chemotaxis-related receptors and in vivo cell trafficking assay further showed that DCs treated with [BF/S+L/Ep] were able to migrate more effectively to peripheral lymph node and spleen tissues than DCs treated as control groups. Conclusion Results from this study suggest that [BF/S+L/Ep] modulates DC mobility and related cellular physiology in the mouse immune system. Moreover, the signaling networks and molecules highlighted here are potential targets for nutritional or clinical application of Echinacea or

  9. Boron brings big benefits to bio-based blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solution to the problems with bio-based lubrication can be approached by a combination of blending and additive strategies. However, many additives do not show efficacy when used in bio-based lubricants. Additive addition also lowers the bio-based content of the blend, which in turn limits the a...

  10. Bio-fuel Cropping Systems Effects on Soil Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of nutrient management practices on bio-fuel crop production, and to evaluate long term effects of bio-fuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on bio-fuel crops production were ...

  11. BioModels: ten-year anniversary

    PubMed Central

    Chelliah, Vijayalakshmi; Juty, Nick; Ajmera, Ishan; Ali, Raza; Dumousseau, Marine; Glont, Mihai; Hucka, Michael; Jalowicki, Gaël; Keating, Sarah; Knight-Schrijver, Vincent; Lloret-Villas, Audald; Natarajan, Kedar Nath; Pettit, Jean-Baptiste; Rodriguez, Nicolas; Schubert, Michael; Wimalaratne, Sarala M.; Zhao, Yangyang; Hermjakob, Henning; Le Novère, Nicolas; Laibe, Camille

    2015-01-01

    BioModels (http://www.ebi.ac.uk/biomodels/) is a repository of mathematical models of biological processes. A large set of models is curated to verify both correspondence to the biological process that the model seeks to represent, and reproducibility of the simulation results as described in the corresponding peer-reviewed publication. Many models submitted to the database are annotated, cross-referencing its components to external resources such as database records, and terms from controlled vocabularies and ontologies. BioModels comprises two main branches: one is composed of models derived from literature, while the second is generated through automated processes. BioModels currently hosts over 1200 models derived directly from the literature, as well as in excess of 140 000 models automatically generated from pathway resources. This represents an approximate 60-fold growth for literature-based model numbers alone, since BioModels’ first release a decade ago. This article describes updates to the resource over this period, which include changes to the user interface, the annotation profiles of models in the curation pipeline, major infrastructure changes, ability to perform online simulations and the availability of model content in Linked Data form. We also outline planned improvements to cope with a diverse array of new challenges. PMID:25414348

  12. Integrated Corn-Based Bio-Refinery

    SciTech Connect

    2006-04-01

    The Integrated Corn-Based Bio-Refinery (ICBR) process will use new technology to convert corn grain and stover into fermentable sugars for the parallel production of value-added chemicals such as 1,3-propanediol (PDO) and fuel ethanol.

  13. Immersive Protein Gaming for Bio Edutainment

    ERIC Educational Resources Information Center

    Cai, Yiyu; Lu, Baifang; Zheng, Jianmin; Li, Lin

    2006-01-01

    Games have long been used as a tool for teaching important subject matter, from concept building to problem solving. Through fun learning, students may further develop their curiosities and interest in their study. This article addresses the issue of learning biomolecular structures by virtual reality gaming. A bio edutainment solution featuring…

  14. Bio-gas production from alligator weeds

    NASA Technical Reports Server (NTRS)

    Latif, A.

    1976-01-01

    Laboratory experiments were conducted to study the effect of temperature, sample preparation, reducing agents, light intensity and pH of the media, on bio-gas and methane production from the microbial anaerobic decomposition of alligator weeds (Alternanthera philoxeroides. Efforts were also made for the isolation and characterization of the methanogenic bacteria.

  15. BioProject Number PRJNA230524

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This BioProject consists of raw genotyping-by-sequencing data collected in 96-plex format on an Illumina HiSeq 2000 sequencing system. There were four to six experimental replicates for each of the 46 plants. The development of tens of thousands of mapped SNP markers in wild tomato species was hig...

  16. BioNet Digital Communications Framework

    NASA Technical Reports Server (NTRS)

    Gifford, Kevin; Kuzminsky, Sebastian; Williams, Shea

    2010-01-01

    BioNet v2 is a peer-to-peer middleware that enables digital communication devices to talk to each other. It provides a software development framework, standardized application, network-transparent device integration services, a flexible messaging model, and network communications for distributed applications. BioNet is an implementation of the Constellation Program Command, Control, Communications and Information (C3I) Interoperability specification, given in CxP 70022-01. The system architecture provides the necessary infrastructure for the integration of heterogeneous wired and wireless sensing and control devices into a unified data system with a standardized application interface, providing plug-and-play operation for hardware and software systems. BioNet v2 features a naming schema for mobility and coarse-grained localization information, data normalization within a network-transparent device driver framework, enabling of network communications to non-IP devices, and fine-grained application control of data subscription band width usage. BioNet directly integrates Disruption Tolerant Networking (DTN) as a communications technology, enabling networked communications with assets that are only intermittently connected including orbiting relay satellites and planetary rover vehicles.

  17. A Review of BioTutor.

    ERIC Educational Resources Information Center

    Duhrkopf, Richard

    1994-01-01

    A review of BioTutor which is software to accompany the third edition of Neil Campbell's textbook, "Biology," is provided. The review includes a brief description of the software and a discussion of good and bad features of the software. In the closing words, the reviewer expresses a considerable amount of concern regarding the quality of this…

  18. Monkey Baker in bio-pack

    NASA Technical Reports Server (NTRS)

    1959-01-01

    A squirrel monkey, Baker, in bio-pack couch being readied for Jupiter (AM-18 flight). Jupiter, AM-18 mission, also carried an American-born rhesus monkey, Able into suborbit. The flight was successful and both monkeys were recovered in good condition. AM-18 was launched on May 28, 1959.

  19. Preparation of small bio-compatible microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1979-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such a hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  20. TMZ-BioShuttle – a reformulated Temozolomide

    PubMed Central

    Waldeck, Waldemar; Wiessler, Manfred; Ehemann, Volker; Pipkorn, Ruediger; Spring, Herbert; Debus, Juergen; Didinger, Bernd; Mueller, Gabriele; Langowski, Joerg; Braun, Klaus

    2008-01-01

    There is a large number of effective cytotoxic drugs whose side effect profile, efficacy, and long-term use in man are well understood and documented over decades of use in clinical routine e.g. in the treatment of recurrent glioblastoma multiforme (GBM) and the hormone-refractory prostate cancer (HRPC). Both cancers are insensitive against most chemotherapeutic interventions; they have low response rates and poor prognoses. Some cytotoxic agents can be significantly improved by using modern technology of drug delivery or formulation. We succeeded to enhance the pharmacologic potency with simultaneous reduction of unwanted adverse reactions of the highly efficient chemotherapeutic temozolomide (TMZ) as an example. The TMZ connection to transporter molecules (TMZ-BioShuttle) resulted in a much higher pharmacological effect in glioma cell lines while using reduced doses. This permits the conclusion that a suitable chemistry could realize the ligation of pharmacologically active, but sensitive and highly unstable pharmaceutical ingredients without functional deprivation. The re-formulation of TMZ to TMZ-BioShuttle achieved a nearly 10-fold potential of the established pharmaceutic TMZ far beyond the treatment of brain tumors cells and results in an attractive reformulated drug with enhanced therapeutic index. PMID:18797509

  1. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata.

    PubMed

    Barrett, Tanya; Clark, Karen; Gevorgyan, Robert; Gorelenkov, Vyacheslav; Gribov, Eugene; Karsch-Mizrachi, Ilene; Kimelman, Michael; Pruitt, Kim D; Resenchuk, Sergei; Tatusova, Tatiana; Yaschenko, Eugene; Ostell, James

    2012-01-01

    As the volume and complexity of data sets archived at NCBI grow rapidly, so does the need to gather and organize the associated metadata. Although metadata has been collected for some archival databases, previously, there was no centralized approach at NCBI for collecting this information and using it across databases. The BioProject database was recently established to facilitate organization and classification of project data submitted to NCBI, EBI and DDBJ databases. It captures descriptive information about research projects that result in high volume submissions to archival databases, ties together related data across multiple archives and serves as a central portal by which to inform users of data availability. Concomitantly, the BioSample database is being developed to capture descriptive information about the biological samples investigated in projects. BioProject and BioSample records link to corresponding data stored in archival repositories. Submissions are supported by a web-based Submission Portal that guides users through a series of forms for input of rich metadata describing their projects and samples. Together, these databases offer improved ways for users to query, locate, integrate and interpret the masses of data held in NCBI's archival repositories. The BioProject and BioSample databases are available at http://www.ncbi.nlm.nih.gov/bioproject and http://www.ncbi.nlm.nih.gov/biosample, respectively. PMID:22139929

  2. Two initiator-like elements are required for the combined activation of the human apolipoprotein C-III promoter by upstream stimulatory factor and hepatic nuclear factor-4.

    PubMed

    Pastier, Daniele; Lacorte, Jean-Marc; Chambaz, Jean; Cardot, Philippe; Ribeiro, Agnes

    2002-04-26

    Human apoC-III (-890/+24) promoter activity is strongly activated by hepatic nuclear factor (HNF)-4 through its binding to the proximal (-87/-72) element B. This site overlaps the binding site for an activity that we identified as the ubiquitously expressed upstream stimulatory factor (USF) (Ribeiro, A., Pastier, D., Kardassis, D., Chambaz, J., and Cardot, P. (1999) J. Biol. Chem. 274, 1216-1225). In the present study, we characterized the relationship between USF and HNF-4 in the activation of human apoC-III transcription. Although USF and HNF-4 binding to element B is mutually exclusive, co-transfection experiments in HepG2 cells surprisingly showed a combined effect of USF and HNF-4 in the transactivation of the (-890/+24) apoC-III promoter. This effect only requires the proximal region (-99/+24) of the apoC-III promoter and depends neither on USF binding to its cognate site in element B nor on a USF-dependent facilitation of HNF-4 binding to its site. By contrast, we found by electrophoretic mobility shift assay and footprinting analysis two USF low affinity binding sites, located within the proximal promoter at positions -58/-31 (element II) and -19/-4 (element I), which are homologous to initiator-like element sequence. Co-transfection experiments in HepG2 cells show that a mutation in element II reduces 2-fold the USF transactivation effect on the proximal promoter of apoC-III and that a mutation in element I inhibits the combined effect of USF and HNF-4. In conclusion, these initiator-like elements are directly involved in the transactivation of the apoC-III promoter by USF and are necessary to the combined effect between USF and HNF-4 for the apoC-III transcription. PMID:11839757

  3. Murine B-cell stimulatory factor 1 (interleukin 4) increases expression of the Fc receptor for IgE on mouse B cells.

    PubMed Central

    Hudak, S A; Gollnick, S O; Conrad, D H; Kehry, M R

    1987-01-01

    We have studied the activity of mouse B-cell stimulatory factor 1 (interleukin 4, IL-4) on resting splenic B cells and on a B-cell hybridoma. Purified T-cell-derived as well as recombinant IL-4 was shown to increase the expression of the low-affinity Fc receptor for IgE (Fc epsilon R) on a majority of B lymphocytes in a 24-hr culture period. Levels of Fc epsilon R expression increased 2- to 3-fold on splenic B cells and up to 6-fold on a B-cell hybridoma. The effect was inhibited by an anti-IL-4 monoclonal antibody and by mouse gamma-interferon. Other recombinant lymphokines exhibited no effect on either Fc epsilon R expression or the induction by IL-4. The presence of IgE during the stimulation with IL-4 resulted in an additional increase in Fc epsilon R expression. These data and results showing that IgE prevents Fc epsilon R turnover while IL-4 increases the rate of Fc epsilon R synthesis suggest that the mechanisms by which IgE and IL-4 increase Fc epsilon R expression are likely to be different. The starting population of splenic B cells expressed low levels of Fc epsilon R and was relatively uniform in size (small). After greater than 48 hr of culture with IL-4, viable B cells had not undergone DNA synthesis and consisted mainly of larger highly Fc epsilon R-positive cells (23%) and medium-sized Fc epsilon R-positive cells (60%). A possible role for Fc epsilon R in certain B-cell maturation pathways is discussed. Images PMID:2955412

  4. High dexamethasone concentration prevents stimulatory effects of TNF-alpha and LPS on IL-6 secretion from the precursors of human muscle regeneration.

    PubMed

    Prelovsek, Oja; Mars, Tomaz; Jevsek, Marko; Podbregar, Matej; Grubic, Zoran

    2006-12-01

    A frequent finding in patients surviving critical illness myopathy is chronic muscle dysfunction. Its pathogenesis is mostly unknown; one explanation could be that muscle regeneration, which normally follows myopathy, is insufficient in these patients because of a high glucocorticoid level in their blood. Glucocorticoids can prevent stimulatory effects of proinflammatory factors on the interleukin (IL)-6 secretion, diminishing in this way the autocrine and paracrine IL-6 actions known to stimulate proliferation at the earliest, myoblast stage of muscle formation. To test this hypothesis, we compared the effects of major proinflammatory agents [tumor necrosis factor (TNF)-alpha and endotoxin lipopolysaccharide (LPS)] on the IL-6 secretion from the muscle precursors and then studied the influence of dexamethasone (Dex) on these effects. Mononuclear myoblasts, which still proliferate, were compared with myotubes in which this capacity is already lost. For correct interpretation of results, cultures were examined for putative apoptosis and necrosis. We found that constitutive secretion of IL-6 did not differ significantly between myoblasts and myotubes; however, the TNF-alpha- and LPS-stimulated IL-6 release was more pronounced (P < 0.001) in myoblasts. Dex, applied at the 0.1-100 nM concentration range, prevented constitutive and TNF-alpha- and LPS-stimulated IL-6 release at both developmental stages but only at high concentration (P < 0.01). Although there are still missing links to it, our results support the concept that high concentrations of glucocorticoids, met in critically ill patients, prevent TNF-alpha- and LPS-stimulated IL-6 secretion. This results in reduced IL-6-mediated myoblast proliferation, leading to the reduced final mass of the regenerated muscle. PMID:16857895

  5. Relationship between Cerebral Sigma-1 Receptor Occupancy and Attenuation of Cocaine’s Motor Stimulatory Effects in Mice by PD144418

    PubMed Central

    Miller, Dennis K.; Fergason-Cantrell, Emily A.; Green, Caroline L.; Watkinson, Lisa D.; Carmack, Terry L.; Lever, Susan Z.

    2014-01-01

    Psychostimulant effects of cocaine are mediated partly by agonist actions at sigma-1 (σ1) receptors. Selective σ1 receptor antagonists attenuate these effects and provide a potential avenue for pharmacotherapy. However, the selective and high affinity σ1 antagonist PD144418 (1,2,3,6-tetrahydro-5-[3-(4-methylphenyl)-5-isoxazolyl]-1-propylpyridine) has been reported not to inhibit cocaine-induced hyperactivity. To address this apparent paradox, we evaluated aspects of PD144418 binding in vitro, investigated σ1 receptor and dopamine transporter (DAT) occupancy in vivo, and re-examined effects on locomotor activity. PD144418 displayed high affinity for σ1 sites (Ki 0.46 nM) and 3596-fold selectivity over σ2 sites (Ki 1654 nM) in guinea pig brain membranes. No appreciable affinity was noted for serotonin and norepinephrine transporters (Ki >100 μM), and the DAT interaction was weak (Ki 9.0 μM). In vivo, PD144418 bound to central and peripheral σ1 sites in mouse, with an ED50 of 0.22 μmol/kg in whole brain. No DAT occupancy by PD144418 (10.0 μmol/kg) or possible metabolites were observed. At doses that did not affect basal locomotor activity, PD144418 (1, 3.16, and 10 μmol/kg) attenuated cocaine-induced hyperactivity in a dose-dependent manner in mice. There was good correlation (r2 = 0.88) of hyperactivity reduction with increasing cerebral σ1 receptor occupancy. The behavioral ED50 of 0.79 μmol/kg corresponded to 80% occupancy. Significant σ1 receptor occupancy and the ability to mitigate cocaine’s motor stimulatory effects were observed for 16 hours after a single 10.0 μmol/kg dose of PD144418. PMID:25100754

  6. B Cells Are Critical to T-cell-Mediated Antitumor Immunity Induced by a Combined Immune-Stimulatory/Conditionally Cytotoxic Therapy for Glioblastoma12

    PubMed Central

    Candolfi, Marianela; Curtin, James F; Yagiz, Kader; Assi, Hikmat; Wibowo, Mia K; Alzadeh, Gabrielle E; Foulad, David; Muhammad, AKM G; Salehi, Sofia; Keech, Naomi; Puntel, Mariana; Liu, Chunyan; Sanderson, Nicholas R; Kroeger, Kurt M; Dunn, Robert; Martins, Gislaine; Lowenstein, Pedro R; Castro, Maria G

    2011-01-01

    We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6-/- mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6-/- mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression. PMID:22028620

  7. A Mutational Analysis of Residues in Cholera Toxin A1 Necessary for Interaction with Its Substrate, the Stimulatory G Protein Gsα

    PubMed Central

    Jobling, Michael G.; Gotow, Lisa F.; Yang, Zhijie; Holmes, Randall K.

    2015-01-01

    Pathogenesis of cholera diarrhea requires cholera toxin (CT)-mediated adenosine diphosphate (ADP)-ribosylation of stimulatory G protein (Gsα) in enterocytes. CT is an AB5 toxin with an inactive CTA1 domain linked via CTA2 to a pentameric receptor-binding B subunit. Allosterically activated CTA1 fragment in complex with NAD+ and GTP-bound ADP-ribosylation factor 6 (ARF6-GTP) differs conformationally from the CTA1 domain in holotoxin. A surface-exposed knob and a short α-helix (formed, respectively, by rearranging “active-site” and “activation” loops in inactive CTA1) and an ADP ribosylating turn-turn (ARTT) motif, all located near the CTA1 catalytic site, were evaluated for possible roles in recognizing Gsα. CT variants with one, two or three alanine substitutions at surface-exposed residues within these CTA1 motifs were tested for assembly into holotoxin and ADP-ribosylating activity against Gsα and diethylamino-(benzylidineamino)-guanidine (DEABAG), a small substrate predicted to fit into the CTA1 active site). Variants with single alanine substitutions at H55, R67, L71, S78, or D109 had nearly wild-type activity with DEABAG but significantly decreased activity with Gsα, suggesting that the corresponding residues in native CTA1 participate in recognizing Gsα. As several variants with multiple substitutions at these positions retained partial activity against Gsα, other residues in CTA1 likely also participate in recognizing Gsα. PMID:25793724

  8. Expression of two human beta-adrenergic receptors in Escherichia coli: functional interaction with two forms of the stimulatory G protein.

    PubMed Central

    Freissmuth, M; Selzer, E; Marullo, S; Schütz, W; Strosberg, A D

    1991-01-01

    When expressed in Escherichia coli, the human beta 1- and beta 2-adrenergic receptors retain their ligand binding specificity. Their functional integrity was investigated by analyzing receptor-guanine nucleotide-binding regulatory (G) protein coupling by using two splice variants of the alpha subunit of the stimulatory G protein Gs synthesized in E. coli (rGs alpha-S and rGs alpha-L) and the beta gamma subunits of G protein purified from bovine brain. In competition binding experiments with (-)-[125I]iodocyanopindolol and (-)-isoproterenol, rGs alpha-S.beta gamma and rGs alpha-L.beta gamma reconstituted guanine nucleotide-sensitive high-affinity agonist binding with comparable affinities, whereas rGs alpha PT, a mutant of rGs alpha-L with an altered carboxyl terminus, and a recombinant subtype of the alpha subunit of the inhibitory G protein, rGi alpha-1, were approximately 20- and approximately 200-fold less potent, respectively. A comparison of the beta 1- and beta 2-adrenergic receptor expressed in E. coli with the beta 2-receptor in S49 murine lymphoma cyc- cell membranes revealed a similar affinity of rGs alpha-S and rGs alpha-L for the recombinant and native receptors. After stable incorporation of rGs alpha-S.beta gamma into E. coli membranes, receptor-G protein coupling was also verified by determining the isoproterenol-mediated acceleration of the rate for guanine 5'-[gamma-[35S]thio]triphosphate binding. These results show that (i) receptor-G protein coupling can be reconstituted in E. coli using recombinant components and that (ii) such an approach may be more generally used to evaluate coupling preferences between defined molecular species of receptors and G-protein subunits. PMID:1656450

  9. A Role for Poly(ADP-ribose) Polymerase in the Transcriptional Regulation of the Melanoma Growth Stimulatory Activity (CXCL1) Gene Expression*

    PubMed Central

    Nirodi, Chaitanya; NagDas, Subir; Gygi, Steven P.; Olson, Gary; Aebersold, Ruedi; Richmond, Ann

    2012-01-01

    The melanoma growth stimulatory activity/growth-regulated protein, CXCL1, is constitutively expressed at high levels during inflammation and progression of melanocytes into malignant melanoma. It has been shown previously that CXCL1 overexpression in melanoma cells is due to increased transcription as well as stability of the CXCL1 message. The transcription of CXCL1 is regulated through several cis-acting elements including Sp1, NF-κB, HMGI(Y), and the immediate upstream region (IUR) element (nucleotides −94 to −78), which lies immediately upstream to the nuclear factor κB (NF-κB) element. Previously, it has been shown that the IUR is necessary for basal and cytokine-induced transcription of the CXCL1 gene. UV cross-linking and Southwestern blot analyses indicate that the IUR oligonucleotide probe selectively binds a 115-kDa protein. In this study, the IUR element has been further characterized. We show here that proximity of the IUR element to the adjacent NF-κB element is critical to its function as a positive regulatory element. Using binding site oligonucleotide affinity chromatography, we have selectively purified the 115-kDa IUR-F. Mass spectrometry/mass spectrometry/matrix-assisted laser desorption ionization/time of flight spectroscopy and amino acid analysis as well as microcapillary reverse phase chromatography electrospray ionization tandem mass spectrometry identified this protein as the 114-kDa poly(ADP-ribose) polymerase (PARP1). Furthermore, 3-aminobenzamide, an inhibitor of PARP-specific ADP-ribosylation, inhibits CXCL1 promoter activity and reduces levels of CXCL1 mRNA. The data point to the possibility that PARP may be a coactivator of CXCL1 transcription. PMID:11112786

  10. Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications.

    PubMed

    Jorfi, Mehdi; Roberts, Matthew N; Foster, E Johan; Weder, Christoph

    2013-02-01

    We report mechanically adaptive bionanocomposites based on poly(vinyl alcohol) (PVOH) and cellulose nanocrystals (CNCs), whose mechanical properties change significantly upon exposure to simulated physiological conditions. These nanocomposites were made using CNCs derived from tunicates (t-CNCs) and cotton (c-CNCs) to explore how aspect ratio, surface charge density, and filler content influence the mechanical properties. Dynamic mechanical analysis data reveal a significant enhancement of the tensile storage modulus (E') upon introduction of CNCs, which scaled with the CNC type and content. For example, in the dry, glassy state at 25 °C, E' increased up to 23% (for c-CNCs) and 88% (for t-CNCs) compared to the neat polymer. Exposing the materials to simulated physiological conditions caused a drastic softening of the materials, from 9.0 GPa to 1 MPa for c-CNCs and from 13.7 GPa to 160 MPa for t-CNCs. The data show that the swelling characteristics of the nanocomposites and the extent of mechanical switching could be influenced via the amount and type of CNCs and also the processing conditions. The high stiffness in the dry state and the ability to tailor the mechanical contrast via composition and processing makes the new materials particularly useful as basis for adaptive biomedical implants. PMID:23379302

  11. BioASF: a framework for automatically generating executable pathway models specified in BioPAX

    PubMed Central

    Haydarlou, Reza; Jacobsen, Annika; Bonzanni, Nicola; Feenstra, K. Anton; Abeln, Sanne; Heringa, Jaap

    2016-01-01

    Motivation: Biological pathways play a key role in most cellular functions. To better understand these functions, diverse computational and cell biology researchers use biological pathway data for various analysis and modeling purposes. For specifying these biological pathways, a community of researchers has defined BioPAX and provided various tools for creating, validating and visualizing BioPAX models. However, a generic software framework for simulating BioPAX models is missing. Here, we attempt to fill this gap by introducing a generic simulation framework for BioPAX. The framework explicitly separates the execution model from the model structure as provided by BioPAX, with the advantage that the modelling process becomes more reproducible and intrinsically more modular; this ensures natural biological constraints are satisfied upon execution. The framework is based on the principles of discrete event systems and multi-agent systems, and is capable of automatically generating a hierarchical multi-agent system for a given BioPAX model. Results: To demonstrate the applicability of the framework, we simulated two types of biological network models: a gene regulatory network modeling the haematopoietic stem cell regulators and a signal transduction network modeling the Wnt/β-catenin signaling pathway. We observed that the results of the simulations performed using our framework were entirely consistent with the simulation results reported by the researchers who developed the original models in a proprietary language. Availability and Implementation: The framework, implemented in Java, is open source and its source code, documentation and tutorial are available at http://www.ibi.vu.nl/programs/BioASF. Contact: j.heringa@vu.nl PMID:27307645

  12. Nano-bio effects: interaction of nanomaterials with cells

    NASA Astrophysics Data System (ADS)

    Cheng, Liang-Chien; Jiang, Xiumei; Wang, Jing; Chen, Chunying; Liu, Ru-Shi

    2013-04-01

    With the advancements in nanotechnology, studies on the synthesis, modification, application, and toxicology evaluation of nanomaterials are gaining increased attention. In particular, the applications of nanomaterials in biological systems are attracting considerable interest because of their unique, tunable, and versatile physicochemical properties. Artificially engineered nanomaterials can be well controlled for appropriate usage, and the tuned physicochemical properties directly influence the interactions between nanomaterials and cells. This review summarizes recently synthesized major nanomaterials that have potential biomedical applications. Focus is given on the interactions, including cellular uptake, intracellular trafficking, and toxic response, while changing the physicochemical properties of versatile materials. The importance of physicochemical properties such as the size, shape, and surface modifications of the nanomaterials in their biological effects is also highlighted in detail. The challenges of recent studies and future prospects are presented as well. This review benefits relatively new researchers in this area and gives them a systematic overview of nano-bio interaction, hopefully for further experimental design.

  13. A Systems Approach to Bio-Oil Stabilization - Final Technical Report

    SciTech Connect

    Brown, Robert C; Meyer, Terrence; Fox, Rodney; Submramaniam, Shankar; Shanks, Brent; Smith, Ryan G

    2011-12-23

    products: condensable vapors, non-condensable gases, and liquid aerosols. Traditionally these are recovered by a spray quencher or a conventional shell and tube condenser. The spray quencher or condenser is typically followed by an electrostatic precipitator to yield 1 or 2 distinct fractions of bio-oil. The pyrolyzer system developed at Iowa State University incorporates a proprietary fractionating condenser train. The system collects the bio-oil into five unique fractions. For conditions typical of fluidized bed pyrolyzers, stage fractions have been collected that are carbohydrate-rich (anhydrosugars), lignin-rich, and an aqueous solution of carboxylic acids and aldehydes. One important feature is that most of the water normally found in bio-oil appears in the last stage fraction along with several water-soluble components that are thought to be responsible for bio-oil aging (low molecular weight carboxylic acids and aldehydes). Research work on laser diagnostics for hot-vapor filtration and bio-oil recovery centered on development of analytical techniques for in situ measurements during fast pyrolysis, hot-vapor filtration, and fractionation relative to bio-oil stabilization. The methods developed in this work include laser-induced breakdown spectroscopy (LIBS), laser-induced incandescence (LII), and laser scattering for elemental analysis (N, O, H, C), detection of particulates, and detection of aerosols, respectively. These techniques were utilized in simulated pyrolysis environments and applied to a small-scale pyrolysis unit. Stability of Bio-oils is adversely affected by the presence of particulates that are formed as a consequence of thermal pyrolysis, improving the CFD simulations of moving bed granular filter (MBGF) is useful for improving the design of MBGF for bio-oil production. The current work uses fully resolved direct numerical simulation (where the flow past each granule is accurately represented) to calculate the filter efficiency that is used in the

  14. High performance bio-integrated devices

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Lee, Jongha; Park, Minjoon

    2014-06-01

    In recent years, personalized electronics for medical applications, particularly, have attracted much attention with the rise of smartphones because the coupling of such devices and smartphones enables the continuous health-monitoring in patients' daily life. Especially, it is expected that the high performance biomedical electronics integrated with the human body can open new opportunities in the ubiquitous healthcare. However, the mechanical and geometrical constraints inherent in all standard forms of high performance rigid wafer-based electronics raise unique integration challenges with biotic entities. Here, we describe materials and design constructs for high performance skin-mountable bio-integrated electronic devices, which incorporate arrays of single crystalline inorganic nanomembranes. The resulting electronic devices include flexible and stretchable electrophysiology electrodes and sensors coupled with active electronic components. These advances in bio-integrated systems create new directions in the personalized health monitoring and/or human-machine interfaces.

  15. Optofluidic Bio-Lasers: Concept and Applications

    PubMed Central

    Fan, Xudong; Yun, Seok-Hyun

    2014-01-01

    An optofluidic bio-laser integrates biological materials into the gain medium while forming an optical cavity in the fluidic environment, either on a microfluidic chip or within a biological system. The laser emission has characteristics fundamentally different from conventional fluorescence emission. It can be highly sensitive to a specific molecular change in the gain medium as the light-matter interaction is amplified by the resonance in the cavity. The enhanced sensitivity can be used to probe and quantify the underlying biochemical and biological processes in vitro in a microfluidic device, in situ in a cell (cytosol), or in vivo in a live organism. Here we describe the principle of the optofluidic bio-laser, review its recent progress and provide an outlook of this emerging technology. PMID:24481219

  16. BioShuttle-mediated Plasmid Transfer

    PubMed Central

    Braun, Klaus; von Brasch, Leonie; Pipkorn, Ruediger; Ehemann, Volker; Jenne, Juergen; Spring, Herbert; Debus, Juergen; Didinger, Bernd; Rittgen, Werner; Waldeck, Waldemar

    2007-01-01

    An efficient gene transfer into target tissues and cells is needed for safe and effective treatment of genetic diseases like cancer. In this paper, we describe the development of a transport system and show its ability for transporting plasmids. This non-viral peptide-based BioShuttle-mediated transfer system consists of a nuclear localization address sequence realizing the delivery of the plasmid phNIS-IRES-EGFP coding for two independent reporter genes into nuclei of HeLa cells. The quantification of the transfer efficiency was achieved by measurements of the sodium iodide symporter activity. EGFP gene expression was measured with Confocal Laser Scanning Microscopy and quantified with biostatistical methods by analysis of the frequency of the amplitude distribution in the CLSM images. The results demonstrate that the “BioShuttle”-Technology is an appropriate tool for an effective transfer of genetic material carried by a plasmid. PMID:18026568

  17. NETTAB 2012 on "Integrated Bio-Search"

    PubMed Central

    2014-01-01

    The NETTAB 2012 workshop, held in Como on November 14-16, 2012, was devoted to "Integrated Bio-Search", that is to technologies, methods, architectures, systems and applications for searching, retrieving, integrating and analyzing data, information, and knowledge with the aim of answering complex bio-medical-molecular questions, i.e. some of the most challenging issues in bioinformatics today. It brought together about 80 researchers working in the field of Bioinformatics, Computational Biology, Biology, Computer Science and Engineering. More than 50 scientific contributions, including keynote and tutorial talks, oral communications, posters and software demonstrations, were presented at the workshop. This preface provides a brief overview of the workshop and shortly introduces the peer-reviewed manuscripts that were accepted for publication in this Supplement. PMID:24564635

  18. Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material.

    PubMed

    Huhtinen, Reeta; Sandeman, Susan; Rose, Susanna; Fok, Elsie; Howell, Carol; Fröberg, Linda; Moritz, Niko; Hupa, Leena; Lloyd, Andrew

    2013-05-01

    Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 μm for 1-98 and 28-04a, 315-500 μm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth. PMID:23386212

  19. BioSAR Airborne Biomass Sensing System

    SciTech Connect

    Graham, R.L.; Johnson, P.

    2007-05-24

    This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

  20. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    PubMed

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products. PMID:25278112

  1. Bio Gas Oil Production from Waste Lard

    PubMed Central

    Hancsók, Jenő; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al2O3 catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280–380°C, P = 20–80 bar, LHSV = 0.75–3.0 h−1 and H2/lard ratio: 600 Nm3/m3). In case of the isomerization at the favourable process parameters (T = 360–370°C, P = 40 –50 bar, LHSV = 1.0 h−1 and H2/hydrocarbon ratio: 400 Nm3/m3) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms. PMID:21403875

  2. BIOMASS TO BIO-OIL BY LIQUEFACTION

    SciTech Connect

    Wang, Huamin; Wang, Yong

    2013-01-10

    Significant efforts have been devoted to develop processes for the conversion of biomass, an abundant and sustainable source of energy, to liquid fuels and chemicals, in order to replace diminishing fossil fuels and mitigate global warming. Thermochemical and biochemical methods have attracted the most attention. Among the thermochemical processes, pyrolysis and liquefaction are the two major technologies for the direct conversion of biomass to produce a liquid product, often called bio-oil. This chapter focuses on the liquefaction, a medium-temperature and high-pressure thermochemical process for the conversion of biomass to bio-oil. Water has been most commonly used as a solvent and the process is known as hydrothermal liquefaction (HTL). Fundamentals of HTL process, key factors determining HTL behavior, role of catalyst in HTL, properties of produced bio-oil, and the current status of the technology are summarized. The liquefaction of biomass by using organic solvents, a process called solvolysis, is also discussed. A wide range of biomass feedstocks have been tested for liquefaction including wood, crop residues, algae, food processing waste, and animal manure.

  3. Beclometasone oral--DOR BioPharma.

    PubMed

    2007-01-01

    orBec is an oral enteric-coated tablet formulation of the corticosteroid beclometasone, which has been developed by Enteron Pharmaceuticals, a subsidiary of Corporate Technology Development (now DOR BioPharma). orBec is being developed for the treatment of gastrointestinal graft-versus-host disease (GVHD) and an NDA has been filed in the US. DOR BioPharma has also filed an MAA in Europe for the same indication.orBec is designed to reduce the need for systemic immunosuppressive drugs, thereby improving the outcome of bone marrow and stem cell transplantation.DOR BioPharma may seek a marketing partner in the US and elsewhere for orBec in GVHD and will seek a partner for other potential indications of the drug.In December 2001, Corporate Technology Development was acquired by Endorex Corporation (now DOR BioPharma). In October 1998, Enteron Pharmaceuticals (DOR BioPharma) entered into an exclusive, worldwide, royalty bearing license agreement with George B. McDonald, MD, including the right to grant sublicenses, for the rights to the intellectual property and know-how relating to orBec. In January 2007, DOR BioPharma received $US3 million under a non-binding letter of intent from Sigma-Tau Pharmaceuticals. The agreement grants Sigma-Tau an exclusive right to negotiate terms and conditions for a possible business transaction or strategic alliance regarding orBec and potentially other DOR pipeline compounds until 1 March 2007. Under the terms of the agreement, Sigma-Tau purchased $US1 million of DOR's common stock, with an additional $US2 million paid in cash. If no agreement is reached by 1 March 2007, DOR will return the $US2 million to Sigma-Tau within 60 days. DOR BioPharma received an unsolicited proposal from Cell Therapeutics, Inc. to acquire DOR BioPharma in January 2007. Because of the non-binding agreement already signed with Sigma-Tau, DOR BioPharma's board of directors cannot consider Cell Therapeutics' merger proposal at this time. orBec has been filed for

  4. Bio-based Polymer Foam from Soyoil

    NASA Astrophysics Data System (ADS)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  5. [Bio-oil production from biomass pyrolysis in molten salt].

    PubMed

    Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

    2011-03-01

    In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt. PMID:21650030

  6. Physical oceanographic processes influence bio-optical properties in the Tasman Sea

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nagur; Davies, Peter L.; Brando, Vittorio E.; Anstee, Janet M.; Baird, Mark E.; Clementson, Lesley A.; Doblin, Martina A.

    2016-04-01

    Remote sensing observations show optical signatures to conform to the physical oceanographic patterns in the Tasman Sea. To test the link between physical oceanographic processes and bio-optical properties we investigated an in situ bio-optical dataset collected in the Tasman Sea. Analysis of in situ observations showed the presence of four different water masses in the Tasman Sea, formed by the relatively warm and saline East Australia Current (EAC) water, a mesoscale cold core eddy on the continental slope, cooler Tasman Sea water on the shelf and river plume water. The distribution of suspended substances and their inherent optical properties in these water masses were distinctly different. Light absorption and attenuation budgets indicate varying optical complexity between the water masses. Specific inherent optical properties of suspended particulate and dissolved substances in each group were different as they were influenced by physical and biogeochemical processes specific to that water mass. Remote sensing reflectance signature varied in response to changing bio-optical properties between the water masses; thus providing the link between physical oceanographic processes, bio-optical properties and the optical signature. Findings presented here extend our knowledge of the Tasman Sea, its optical environment and the role of physical oceanographic processes in influencing the inherent optical properties and remote sensing signature in this complex oceanographic region.

  7. PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles.

    PubMed

    Rescignano, N; Fortunati, E; Montesano, S; Emiliani, C; Kenny, J M; Martino, S; Armentano, I

    2014-01-01

    The formation of a new generation of hybrid bio-nanocomposites is reported: these are intended at modulating the mechanical, thermal and biocompatibility properties of the poly(vinyl alcohol) (PVA) by the combination of cellulose nanocrystals (CNC) and poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) loaded with bovine serum albumin fluorescein isothiocynate conjugate (FITC-BSA). CNC were synthesized from microcrystalline cellulose by hydrolysis, while PLGA nanoparticles were produced by a double emulsion with subsequent solvent evaporation. Firstly, binary bio-nanocomposites with different CNC amounts were developed in order to select the right content of CNC. Next, ternary PVA/CNC/NPs bio-nanocomposites were developed. The addition of CNC increased the elongation properties without compromising the other mechanical responses. Thermal analysis underlined the nucleation effect of the synergic presence of cellulose and nanoparticles. Remarkably, bio-nanocomposite films are suitable to vehiculate biopolymeric nanoparticles to adult bone marrow mesenchymal stem cells successfully, thus representing a new tool for drug delivery strategies. PMID:24274478

  8. Surface modification of nanocrystalline zinc oxide for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Steeves, Diane M.; Ziegler, David; DeCristofano, Barry S.

    2006-10-01

    Zinc Oxide (ZnO) is a wide bandgap semiconductor that has been the subject of considerable research due to its potential applications in the areas of photonics, electronics and sensors. Nano-ZnO offers several advantages over existing biosensing platforms, most notably a large surface area for greater bio-functionalization and an inherent photoluminescence (PL) signal consisting of two emission peaks. One peak is in the UV, due to near band edge emission and the other is in the visible (green) region, due to oxygen vacancies caused by crystalline defects. Real-time detection of surface binding events may be possible if changes to the PL spectrum of a ZnO-based bio-sensor can be induced. Here we describe the surface modification of nanocrystalline zinc oxide (nano-ZnO) to introduce chemically reactive functionality for subsequent bio-functionalization. We have demonstrated through TEM-EDS that nano-ZnO powders have been surface modified with a heterobifunctional organosilane crosslinking agent that contains an amine-reactive aldehyde group. Furthermore, we have attached a fluorophore to the reactive aldehyde verifying the modified nano-ZnO surface is available for subsequent biomolecular covalent attachment. The introduction of a chemically reactive modifier to the surface of the nano-ZnO presents a template for the design of new, optically responsive bio-sensing platforms.

  9. Dynamic Landscape Connectivity, Threshold Behavior, and Scaling Frameworks for Hydrologic and Bio-geochemical Fluxes

    NASA Astrophysics Data System (ADS)

    Foufoula, E.; Zanardo, S.; Danesh-Yazdi, M.; Zaliapin, I.; Power, M.; Dietrich, W.

    2012-12-01

    The hydrologic connectivity of landscapes (the surface fluvial and non-fluvial flowpaths and the flowpaths in the sub-surface) is temporally and spatially changing as dictated by landscape features and precipitation. Developing simple conceptual frameworks for quantifying the response of a basin (hydrologic, sedimentologic, and bio-geochemical) based on theories of network dynamics is still an open problem with slow progress. In this talk two issues will be addressed: (1) scaling of peak flows in response to space-time variable rainfall of duration smaller than the time of concentration of the basin, and (2) predictive modeling and scaling of bio-geochemical fluxes using a spatially explicit model of light and nutrient availability, streamflow, and temperature on the connected network. Data from the Walnut Gulch watershed and the Eel river at Angelo Coast Range Reserve are used for model development and testing.

  10. Bio-Nanobattery Development and Characterization

    NASA Technical Reports Server (NTRS)

    King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Watt, Gerald D.; Lillehei, T.; Park, Yeonjoon; Elliott, James R.

    2005-01-01

    A bio-nanobattery is an electrical energy storage device that utilizes organic materials and processes on an atomic, or nanometer-scale. The bio-nanobattery under development at NASA s Langley Research Center provides new capabilities for electrical power generation, storage, and distribution as compared to conventional power storage systems. Most currently available electronic systems and devices rely on a single, centralized power source to supply electrical power to a specified location in the circuit. As electronic devices and associated components continue to shrink in size towards the nanometer-scale, a single centralized power source becomes impractical. Small systems, such as these, will require distributed power elements to reduce Joule heating, to minimize wiring quantities, and to allow autonomous operation of the various functions performed by the circuit. Our research involves the development and characterization of a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Synthesis and characterization of the Co-ferritin and Fe-ferritin electrodes were performed, including reducing capability and the half-cell electrical potentials. Electrical output of nearly 0.5 V for the battery cell was measured. Ferritin utilizing other metallic cores were also considered to increase the overall electrical output. Two dimensional ferritin arrays were produced on various substrates to demonstrate the feasibility of a thin-film nano-scaled power storage system for distributed power storage applications. The bio-nanobattery will be ideal for nanometerscaled electronic applications, due to the small size, high energy density, and flexible thin-film structure. A five-cell demonstration article was produced for concept verification and bio-nanobattery characterization. Challenges to be addressed include the development of a multi-layered thin-film, increasing the energy density, dry-cell bionanobattery

  11. Method to upgrade bio-oils to fuel and bio-crude

    DOEpatents

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  12. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  13. The Co-Stimulatory Effects of MyD88-Dependent Toll-Like Receptor Signaling on Activation of Murine γδ T Cells

    PubMed Central

    Xie, Guorui; Welte, Thomas; Saxena, Vandana; Wicker, Jason; Mann, Brian; Soong, Lynn; Barrett, Alan; Born, Willi; O'Brien, Rebecca; Wang, Tian

    2014-01-01

    γδ T cells express several different toll-like receptor (TLR)s. The role of MyD88- dependent TLR signaling in TCR activation of murine γδ T cells is incompletely defined. Here, we report that Pam3CSK4 (PAM, TLR2 agonist) and CL097 (TLR7 agonist), but not lipopolysaccharide (TLR4 agonist), increased CD69 expression and Th1-type cytokine production upon anti-CD3 stimulation of γδ T cells from young adult mice (6-to 10-week-old). However, these agonists alone did not induce γδ T cell activation. Additionally, we noted that neither PAM nor CL097 synergized with anti-CD3 in inducing CD69 expression on γδ T cells of aged mice (21-to 22-month-old). Compared to young γδ T cells, PAM and CL097 increased Th-1 type cytokine production with a lower magnitude from anti-CD3- stimulated, aged γδ T cells. Vγ1+ and Vγ4+ cells are two subpopulations of splenic γδ T cells. PAM had similar effects in anti-CD3-activated control and Vγ4+ subset- depleted γδ T cells; whereas CL097 induced more IFN-γ production from Vγ4+ subset-depleted γδ T cells than from the control group. Finally, we studied the role of MyD88-dependent TLRs in γδ T cell activation during West Nile virus (WNV) infection. γδ T cell, in particular, Vγ1+ subset expansion was significantly reduced in both MyD88- and TLR7- deficient mice. Treatment with TLR7 agonist induced more Vγ1+ cell expansion in wild-type mice during WNV infection. In summary, these results suggest that MyD88-dependent TLRs provide co-stimulatory signals during TCR activation of γδ T cells and these have differential effects on distinct subsets. PMID:25232836

  14. BioRuby: bioinformatics software for the Ruby programming language

    PubMed Central

    Goto, Naohisa; Prins, Pjotr; Nakao, Mitsuteru; Bonnal, Raoul; Aerts, Jan; Katayama, Toshiaki

    2010-01-01

    Summary: The BioRuby software toolkit contains a comprehensive set of free development tools and libraries for bioinformatics and molecular biology, written in the Ruby programming language. BioRuby has components for sequence analysis, pathway analysis, protein modelling and phylogenetic analysis; it supports many widely used data formats and provides easy access to databases, external programs and public web services, including BLAST, KEGG, GenBank, MEDLINE and GO. BioRuby comes with a tutorial, documentation and an interactive environment, which can be used in the shell, and in the web browser. Availability: BioRuby is free and open source software, made available under the Ruby license. BioRuby runs on all platforms that support Ruby, including Linux, Mac OS X and Windows. And, with JRuby, BioRuby runs on the Java Virtual Machine. The source code is available from http://www.bioruby.org/. Contact: katayama@bioruby.org PMID:20739307

  15. U.S. Dept. Veterans Affairs (VA) SMEC-bio Reporting for Leadership Decision Support

    PubMed Central

    Gamage, Shantini D.; Simbartl, Loretta A.; Kralovic, Stephen M.; Wallace, Katherine S.; Roselle, Gary A.

    2013-01-01

    Objective To assess Reports sent from the United States VA Subject Matter Expertise Center for Biological Events (SMEC-bio) – a proof-of-concept decision support initiative – to the VA Integrated Operations Center (VA IOC). Introduction VA is the U.S. federal agency responsible for providing services to America’s Veterans. Within VA, VHA is the organization responsible for administration of health care services. VHA, with 152 Medical Centers and over 900 outpatient clinics located throughout the U.S. and territories, provided care to over 5 million patients in 2011. After the 2009 H1N1 influenza pandemic, OSP, which oversees VA senior level briefing of preparedness issues, conceptualized and initiated SMEC-bio as a protocol-based mechanism to incorporate timely VHA subject matter expertise into leadership decision making via the VA IOC. Previous work has examined collection and integration of data from VA and interagency sources for trend and predictive analyses (1). This current work is an initial assessment of SMEC-bio reporting, which has been in development for the past year and functions on an ad hoc basis for decision support; needs and gaps can be assessed toward a formalized communication plan with the VA IOC. Methods In May, 2011, SMEC-bio designed a Report template. All SMEC-bio Reports submitted to the VA IOC using the template were assessed based on reason for the Report, timing, data sources used, and outcome. A gap analysis was conducted to identify areas for further improvement. Results Eight SMEC-bio Reports were produced since the template was initiated in May, 2011. The reasons for reporting fell into the following categories: 1) briefings of interagency protocol activations [e.g. National Biosurveillance Integration System (NBIS) protocol]; 2) Requests for Information (RFIs) from the VA IOC regarding specific biological events (e.g. 2012 H3N2v influenza associated with swine at fairs); 3) RFIs from the VA IOC on general infectious diseases

  16. BioC implementations in Go, Perl, Python and Ruby.

    PubMed

    Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W John; Comeau, Donald C

    2014-01-01

    As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ PMID:24961236

  17. BioC implementations in Go, Perl, Python and Ruby

    PubMed Central

    Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W. John; Comeau, Donald C.

    2014-01-01

    As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ PMID:24961236

  18. Overview of BioCreative II gene normalization

    PubMed Central

    Morgan, Alexander A; Lu, Zhiyong; Wang, Xinglong; Cohen, Aaron M; Fluck, Juliane; Ruch, Patrick; Divoli, Anna; Fundel, Katrin; Leaman, Robert; Hakenberg, Jörg; Sun, Chengjie; Liu, Heng-hui; Torres, Rafael; Krauthammer, Michael; Lau, William W; Liu, Hongfang; Hsu, Chun-Nan; Schuemie, Martijn; Cohen, K Bretonnel; Hirschman, Lynette

    2008-01-01

    Background: The goal of the gene normalization task is to link genes or gene products mentioned in the literature to biological databases. This is a key step in an accurate search of the biological literature. It is a challenging task, even for the human expert; genes are often described rather than referred to by gene symbol and, confusingly, one gene name may refer to different genes (often from different organisms). For BioCreative II, the task was to list the Entrez Gene identifiers for human genes or gene products mentioned in PubMed/MEDLINE abstracts. We selected abstracts associated with articles previously curated for human genes. We provided 281 expert-annotated abstracts containing 684 gene identifiers for training, and a blind test set of 262 documents containing 785 identifiers, with a gold standard created by expert annotators. Inter-annotator agreement was measured at over 90%. Results: Twenty groups submitted one to three runs each, for a total of 54 runs. Three systems achieved F-measures (balanced precision and recall) between 0.80 and 0.81. Combining the system outputs using simple voting schemes and classifiers obtained improved results; the best composite system achieved an F-measure of 0.92 with 10-fold cross-validation. A 'maximum recall' system based on the pooled responses of all participants gave a recall of 0.97 (with precision 0.23), identifying 763 out of 785 identifiers. Conclusion: Major advances for the BioCreative II gene normalization task include broader participation (20 versus 8 teams) and a pooled system performance comparable to human experts, at over 90% agreement. These results show promise as tools to link the literature with biological databases. PMID:18834494

  19. Development of a bio-inspired transformable robotic fin.

    PubMed

    Yang, Yikun; Xia, Yu; Qin, Fenghua; Xu, Min; Li, Weihua; Zhang, Shiwu

    2016-01-01

    Fish swim by oscillating their pectoral fins forwards and backwards in a cyclic motion such that their geometric parameters and aspect ratios change according to how fast or slow a fish wants to swim; these complex motions result in a complicated hydrodynamic response. This paper focuses on the dynamic change in the shape of a fin to improve the underwater propulsion of bio-inspired mechanism. To do this, a novel transformable robotic fin has been developed to investigate how this change in shape affects the hydrodynamic forces acting on the fin. This robotic fin has a multi-link frame and a flexible surface skin where changes in shape are activated by a purpose designed multi-link mechanism driven by a transformation motor. A drag platform has been designed to study the performance of this variable robotic fin. Numerous experiments were carried out to determine how various controlling modes affect the thrust capability of this fin. The kinematic parameters associated with this robotic fin include the oscillating frequency and amplitude, and the drag velocity. The fin has four modes to control the cyclic motion; these were also investigated in combination with the variable kinematic parameters. The results will help us understand the locomotion performance of this transformable robotic fin. Note that different controlling modes influence the propulsive performance of this robotic fin, which means its propulsive performance can be optimized in a changing environment by adapting its shape. This study facilitates the development of bio-inspired unmanned underwater vehicles with a very high swimming performance. PMID:27580003

  20. Research and fabrication of integrated bio-sensor for blood analysis based on µTAS

    NASA Astrophysics Data System (ADS)

    En, De; Wei, Jianxia; Tong, Zhengrong; Chen, Caihe; Cui, Yuming; Xu, Kexin; Si, Qin; Li, Chao; Liu, Jie

    2007-01-01

    For simultaneously detecting multi-parameters of blood in the clinical diagnosis, the analysis apparatus should be smaller in size, more reliable and sensitive. So a kind of integrated bio-sensor for blood analysis based on Micro Total Analysis System (μTAS) is presented. It provides modern bio-sensor prospect with a novel technology. A multi-parameters of blood analysis integration sensor is μTAS bio-sensor based on 4 groups of interdigital array (IDA)microelectrodes. The IDA microelectrodes are fabricated on glass substrates by photography, film deposition and other microfabrication techniques. Thin-film gold microelectrode with a thickness of 250nm is deposited on a chromium-adhesion layer. The finger microelectrode width and space are both 10μm. The work space is 2×2cm2. The concentration of Blood sugar, Total Cholesterol, Acetone body and Lactic acid is measured by detecting steady-state limiting currents in IDA microelectrodes modified with enzymes on the "generate-collect" mode. Blood distribution structure is designed and fabricated, to distribute blood and isolate reaction areas. By contrasting two kinds of process flow based on lift-off and etching, etching is adopted to preparation method of microelectrode. A multi-channel apparatus for current measurement is accompleted. The system characteristics of the bio-sensor are tested. The curve of the apparatus time to current response is achieved by testing on real-time. The relationships between parameter concentration and current are analyzed in detail. The experimental data indicates: current measurement dimension 0~40μA, certainty of measurement 0.1μA, the performances of the bio-sensor meets design requirement.

  1. Visualisation of BioPAX Networks using BioLayout Express 3D

    PubMed Central

    Wright, Derek W.; Angus, Tim; Enright, Anton J.; Freeman, Tom C.

    2014-01-01

    BioLayout Express 3D is a network analysis tool designed for the visualisation and analysis of graphs derived from biological data. It has proved to be powerful in the analysis of gene expression data, biological pathways and in a range of other applications. In version 3.2 of the tool we have introduced the ability to import, merge and display pathways and protein interaction networks available in the BioPAX Level 3 standard exchange format. A graphical interface allows users to search for pathways or interaction data stored in the Pathway Commons database. Queries using either gene/protein or pathway names are made via the cPath2 client and users can also define the source and/or species of information that they wish to examine. Data matching a query are listed and individual records may be viewed in isolation or merged using an ‘Advanced’ query tab. A visualisation scheme has been defined by mapping BioPAX entity types to a range of glyphs. Graphs of these data can be viewed and explored within BioLayout as 2D or 3D graph layouts, where they can be edited and/or exported for visualisation and editing within other tools. PMID:25949802

  2. Bio-objects and the media: the role of communication in bio-objectification processes

    PubMed Central

    Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia

    2013-01-01

    The representation of biological innovations in and through communication and media practices is vital for understanding the nature of “bio-objects” and the process we call “bio-objectification.” This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific. PMID:23771763

  3. Visualisation of BioPAX Networks using BioLayout Express (3D).

    PubMed

    Wright, Derek W; Angus, Tim; Enright, Anton J; Freeman, Tom C

    2014-01-01

    BioLayout Express (3D) is a network analysis tool designed for the visualisation and analysis of graphs derived from biological data. It has proved to be powerful in the analysis of gene expression data, biological pathways and in a range of other applications. In version 3.2 of the tool we have introduced the ability to import, merge and display pathways and protein interaction networks available in the BioPAX Level 3 standard exchange format. A graphical interface allows users to search for pathways or interaction data stored in the Pathway Commons database. Queries using either gene/protein or pathway names are made via the cPath2 client and users can also define the source and/or species of information that they wish to examine. Data matching a query are listed and individual records may be viewed in isolation or merged using an 'Advanced' query tab. A visualisation scheme has been defined by mapping BioPAX entity types to a range of glyphs. Graphs of these data can be viewed and explored within BioLayout as 2D or 3D graph layouts, where they can be edited and/or exported for visualisation and editing within other tools. PMID:25949802

  4. BioGRID REST Service, BiogridPlugin2 and BioGRID WebGraph: new tools for access to interaction data at BioGRID

    PubMed Central

    Winter, Andrew G.; Wildenhain, Jan; Tyers, Mike

    2011-01-01

    Summary: The Biological General Repository for Interaction Datasets (BioGRID) representational state transfer (REST) service allows full URL-based access to curated protein and genetic interaction data at the BioGRID database. Appending URL parameters allows filtering of data by various attributes including gene names and identifiers, PubMed ID and evidence type. We also describe two visualization tools that interface with the REST service, the BiogridPlugin2 for Cytoscape and the BioGRID WebGraph. Availability and implementation: BioGRID data and applications are completely free for commercial and non-commercial use. http://webservice.thebiogrid.org/resources/interactions (REST Service), http://wiki.thebiogrid.org/doku.php/biogridrest(REST Service parameter list and help), http://webservice.thebiogrid.org/resources/application.wadl(REST Service WADL), http://thebiogrid.org/download.php (BiogridPlugin2, v2.1 download), http://wiki.thebiogrid.org/doku.php/biogridplugin2 (BiogridPlugin2 help) and http://tyerslab.bio.ed.ac.uk/tools/BioGRID_webgraph.php(BioGRID WebGraph). Contact: andrew.winter@ed.ac.uk, m.tyers@ed.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21300700

  5. BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling

    PubMed Central

    Feng, Song; Ollivier, Julien F.; Swain, Peter S.; Soyer, Orkun S.

    2015-01-01

    Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. PMID:26101250

  6. Bio-effectors from waste materials as growth promoters for tomato plants, an agronomic and metabolomic study

    NASA Astrophysics Data System (ADS)

    Abou Chehade, Lara; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    In organic farming, where nutrient management is constrained and sustainability is claimed, bio-effectors pave their way. Considering selected bio-effectors, this study integrates metabolomics to agronomy in depicting induced relevant phenomena. Extracts of three agro-industrial wastes (Lemon processing residues, Fennel processing residues and Brewer's spent grain) are being investigated as sources of bio-effectors for the third trial consequently. Corresponding individual and mixture aqueous extracts are assessed for their synergistic and/or single agronomic and qualitative performances on soil-grown tomato, compared to both a control and humic acid treatments. A metabolomic profiling of tomato fruits via the Proton Nuclear Magnetic Resonance (NMR) spectroscopy, as holistic indicator of fruit quality and extract-induced responses, complements crop productivity and organoleptic/nutritional qualitative analyses. Results are expected to show mainly an enhancement of the fruit qualitative traits, and to confirm partly the previous results of better crop productivity and metabolism enhancement. Waste-derived bio-effectors could be, accordingly, demonstrated as potential candidates of plant-enhancing substances. Keywords: bio-effectors, organic farming, agro-industrial wastes, nuclear magnetic resonance (NMR), tomato.

  7. The bio-distribution of the antidepressant clomipramine is modulated by chronic stress in mice: effects on behavior

    PubMed Central

    Balsevich, Georgia; Namendorf, Christian; Gerlach, Tamara; Uhr, Manfred; Schmidt, Mathias V.

    2015-01-01

    Major depression (MD) is one of the most common psychiatric disorders, severely affecting the quality of life of millions of people worldwide. Despite the availability of several classes of antidepressants, treatment efficacy is still very variable and many patients do not respond to the treatment. Clomipramine (CMI), a classical and widely used antidepressant, shows widespread interindividual variability of efficacy, while the environmental factors contributing to such variability remain unclear. We investigated whether chronic stress modulates the bio-distribution of CMI, and as a result the behavioral response to CMI treatment in a mouse model of chronic social defeat stress (CSDS). Our results show that stress exposure increased anxiety-like and depressive-like behaviors and altered the stress response. Chronic defeat stress furthermore significantly altered CMI bio-distribution. Interestingly, CMI bio-distribution highly correlated with anxiety-like and depressive-like behaviors only under basal conditions. Taken together, we provide first evidence demonstrating that chronic stress exposure modulates CMI bio-distribution and behavioral responses. This may contribute to CMI’s broad interindividual variability, and is especially relevant in clinical practice. PMID:25610380

  8. Bio/chemoinformatics in India: an outlook.

    PubMed

    Gupta, Shipra; Chavan, Sonali; Deobagkar, Dileep N; Deobagkar, Deepti D

    2015-07-01

    With the advent of significant establishment and development of Internet facilities and computational infrastructure, an overview on bio/chemoinformatics is presented along with its multidisciplinary facts, promises and challenges. The Government of India has paved the way for more profound research in biological field with the use of computational facilities and schemes/projects to collaborate with scientists from different disciplines. Simultaneously, the growth of available biomedical data has provided fresh insight into the nature of redundant and compensatory data. Today, bioinformatics research in India is characterized by a powerful grid computing systems, great variety of biological questions addressed and the close collaborations between scientists and clinicians, with a full spectrum of focuses ranging from database building and methods development to biological discoveries. In fact, this outlook provides a resourceful platform highlighting the funding agencies, institutes and industries working in this direction, which would certainly be of great help to students seeking their career in bioinformatics. Thus, in short, this review highlights the current bio/chemoinformatics trend, educations, status, diverse applicability and demands for further development. PMID:25159593

  9. Bermuda Bio Optics Project. Chapter 14

    NASA Technical Reports Server (NTRS)

    Nelson, Norm

    2003-01-01

    The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda (N. Nelson, P.I.). The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.

  10. Overview of the TAC-BIO detector

    NASA Astrophysics Data System (ADS)

    Cabalo, Jerry; DeLucia, Marla; Goad, Aime; Lacis, John; Narayanan, Fiona; Sickenberger, David

    2008-10-01

    Ultra Violet (UV) induced fluorescence remains a core technique for the real time detection of biological aerosols. With this approach, the detection of an aerosolized biological event is based on the fluorescent and scattering signals observed from biological particles when exposed to one or more UV sources. In 2004, the Edgewood Chemical Biological Center (ECBC) initiated an effort to develop a low cost, small, lightweight, low power biological agent detector, identified as the TAC-BIO, based on this principle. Unlike previous laser based detectors, this program has capitalized on Semiconductor UV Optical Sources (SUVOS) being developed by the Defense Advanced Research Projects Agency (DARPA). Compared to the existing UV lasers, these SUVOS devices and their commercial counter-parts offered a means of achieving small, low cost, low power UV excitation sources. A general design philosophy of incorporating these devices with other low cost components has allowed ECBC to develop a detector that provides a credible degree of performance while maintaining the target size weight and power attributes. This paper presents an overview of the TAC-BIO and some of the findings to date.

  11. Optical properties of bio-inspired peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Handelman, Amir; Apter, Boris; Rosenman, Gil

    2016-04-01

    Supramolecular self-assembled bio-inspired peptide nanostructures are favorable to be implemented in diverse nanophotonics applications due to their superior physical properties such as wideband optical transparency, high second-order nonlinear response, waveguiding properties and more. Here, we focus on the optical properties found in di-phenylalanine peptide nano-architectures, with special emphasize on their linear and nonlinear optical waveguiding effects. Using both simulation and experiments, we show their ability to passively guide light at both fundamental and second-harmonic frequencies. In addition, we show that at elevated temperatures, 140-180°C, these native supramolecular structures undergo irreversible thermally induced transformation via re-assembling into completely new thermodynamically stable phase having nanofiber morphology similar to those of amyloid fibrils. In this new phase, the peptide nanofibers lose their second-order nonlinear response, while exhibit profound modification of optoelectronic properties followed by the appearance of visible (blue and green) photoluminescence (PL). Our study propose a new generation of multifunctional optical waveguides with variety of characteristics, which self-assembled into 1D-elongated nanostructures and could be used as building blocks of many integrated photonic devices.

  12. Bio-optical footprints created by mesoscale eddies in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Siegel, D. A.; Peterson, P.; McGillicuddy, D. J., Jr.; Maritorena, S.; Nelson, N. B.

    2011-07-01

    We investigate the bio-optical footprints made by mesoscale eddies in the Sargasso Sea and the processes that create them through an eddy-centric approach. Many (>10,000) eddies are identified and followed in time using satellite altimetry observations and the spatial ocean color patterns surrounding each eddy are assessed. We find through a sequence of statistical hypothesis tests that not one but several mechanisms (i.e., eddy pumping, eddy advection and eddy-Ekman pumping) are responsible for the spatial-temporal ocean color patterns following individual eddies. Both eddy pumping and the eddy-Ekman pumping mechanisms alter subsurface nutrient distributions thereby driving biogeochemical cycles, while the eddy advection mechanism to first order stirs existing horizontal gradients in bio-optical properties. This work illustrates both the promise and some of the limitations of satellite observations for assessing the biogeochemical impacts of mesoscale eddies.

  13. A novel concept for protein microarray: land-contrast BioCD

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Zhao, Ming; Nolte, David D.

    2009-02-01

    We present a new type of protein microarray called the Land-contrast (LC) BioCD in which imaging contrast is induced by a patterned substrate rather than by patterned protein. This is realized by etching spot patterns in a silicon wafer. On the spot region the silicon dioxide thickness is 140 nm and on the land it is 77 nm. The spot and the land have equal reflectance but opposite interferometric quadrature responses for protein layer. Protein is evenly immobilized on the entire chip and detected by reflectometry. Therefore there is no need for protein printing, nor spectrometers, nor high angles nor polarization control to image the surface-bound protein. The LC BioCD can facilitate research on protein microarrays.

  14. The BioSentinel Bioanalytical Microsystem: Characterizing DNA Radiation Damage in Living Organisms Beyond Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ricco, A. J.; Hanel, R.; Bhattacharya, S.; Boone, T.; Tan, M.; Mousavi, A.; Rademacher, A.; Schooley, A.; Klamm, B.; Benton, J.; Padgen, M.; Gentry, D.; Friedericks, C.; Defouw, G.; Parra, M.; Santa Maria, S.; Marina, D.; Swan, B. G.; Wheeler, S.; Gavalas, S.; Lewis, B.; Sanchez, H.; Chartres, J.; Lusby, T.

    2016-01-01

    We will present details and initial lab test results from an integrated bioanalytical microsystem designed to conduct the first biology experiments beyond low Earth orbit (LEO) since Apollo 17 (1972). The 14-kg, 12x24x37-cm BioSentinel spacecraft (Figure 1) assays radiation-responsive yeast in its science payload by measuring DNA double-strand breaks (DSBs) repaired via homologous recombination, a mechanism common to all eukaryotes including humans. S. cerevisiae (brewer's yeast) in 288 microwells are provided with nutrient and optically assayed for growth and metabolism via 3-color absorptimetry monthly during the 18-month mission. BioSentinel is one of several secondary payloads to be deployed by NASA's Exploration Mission 1 (EM-1) launch vehicle into approximately 0.95 AU heliocentric orbit in July 2018; it will communicate with Earth from up to 100 million km.

  15. Bio-inspired flapping UAV design: a university perspective

    NASA Astrophysics Data System (ADS)

    Han, Jae-Hung; Lee, Jun-Seong; Kim, Dae-Kwan

    2009-03-01

    Bio-inspired design to make artificial flappers fly does not just imitate biological systems as closely as possible, but also transferring the flappers' own functionalities to engineering solutions. This paper summarizes some key technical issues and the states-of-art of bio-inspired design of flapping UAVs with an introduction to authors' recent research results in this field.

  16. BioCom? Is that Like ChemCom?

    ERIC Educational Resources Information Center

    Leonard, William H.; And Others

    1996-01-01

    Describes the philosophy, development, content structure, and general instructional strategy of BioCom, an introductory biology curriculum for the heterogeneously mixed high school science classroom. Discusses recent recommendations by national commissions and science education research and similarities and differences between BioCom and ChemCom.…

  17. BioCapacitor--a novel category of biosensor.

    PubMed

    Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ferri, Stefano; Nakayama, Daisuke; Tomiyama, Masamitsu; Ikebukuro, Kazunori; Sode, Koji

    2009-03-15

    This research reports on the development of an innovative biosensor, known as BioCapacitor, in which biological recognition elements are combined with a capacitor functioning as the transducer. The analytical procedure of the BioCapacitor is based on the following principle: a biocatalyst, acting as a biological recognition element, oxidizes or reduces the analyte to generate electric power, which is then charged into a capacitor via a charge pump circuit (switched capacitor regulator) until the capacitors attains full capacity. Since the charging rate of the capacitor depends on the biocatalytic reaction of the analyte, the analyte concentration can be determined by monitoring the time/frequency required for the charge/discharge cycle of the BioCapacitor via a charge pump circuit. As a representative model, we constructed a BioCapacitor composed of FAD-dependent glucose dehydrogenase (FADGDH) as the anodic catalyst, and attempted a glucose measurement. Charge/discharge frequency of the BioCapacitor increased with the increasing glucose concentration, exhibiting good correlation with glucose concentration. We have also constructed a wireless sensing system using the BioCapacitor combined with an infrared light emitting diode (IRLED), an IR phototransistor system. In the presence of glucose, the IRLED signal was observed due to the discharge of the BioCapacitor and detected by an IR phototransistor in a wireless receiver. Therefore, a BioCapacitor employing FADGDH as its anodic catalyst can be operated as a self-powered enzyme sensor. PMID:19013784

  18. A Cognitively Oriented Psychologist Looks at Bio-feedback

    ERIC Educational Resources Information Center

    Lazarus, Richard S.

    1975-01-01

    It is advocated that bio-feedback research be approached within the larger context of emotion and adaption and oriented to the wide variety of mediators that affect the reaction pattern, rather than be treated as a special or unique kind of process limited to the bio-feedback laboratory. (EH)

  19. Nano-Bio Quantum Technology for Device-Specific Materials

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  20. Constructing Knowledge in the Context of BioWorld.

    ERIC Educational Resources Information Center

    Lajoie, Susanne P.; Lavigne, Nancy C.; Guerrera, Claudia; Munsie, Steven D.

    2001-01-01

    BioWorld is a computer-based environment for the high school biology curriculum that provides a hospital simulation where students can apply what they have learned to solve problems about diseases. Analyses of student actions and verbal dialogue were conducted to pinpoint within BioWorld that were most conducive to learning and scientific…

  1. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  2. Bio-Monitoring of Ozone by Young Students

    ERIC Educational Resources Information Center

    Lorenzini, Giacomo; Nali, Cristina

    2004-01-01

    An educational pilot project on the bio-monitoring of air quality was carried out in the Umbria Region of Central Italy. It involved about 1000 young students (ages 4 to 16) from 42 schools of 16 municipalities in active biomonitoring of tropospheric ozone with bio-indicator sensitive tobacco seedlings. Some 6500 raw biological readings were used…

  3. Bio-composites from mycelium reinforced agricultural substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need for biodegradable alternatives to the inert plastics and expanded foams currently used in in manufacturing processes and device components. The material focused on in this report is a bio-composite patented by Ecovative Design, LLC. The bio-composite utilizes the fungus mycelium to i...

  4. Bio-inspired synthesis of metal nanomaterials and applications.

    PubMed

    Huang, Jiale; Lin, Liqin; Sun, Daohua; Chen, Huimei; Yang, Dapeng; Li, Qingbiao

    2015-10-01

    This critical review focuses on recent advances in the bio-inspired synthesis of metal nanomaterials (MNMs) using microorganisms, viruses, plants, proteins and DNA molecules as well as their applications in various fields. Prospects in the design of bio-inspired MNMs for novel applications are also discussed. PMID:26083903

  5. Acidity of biomass fast pyrolysis bio-oils

    SciTech Connect

    Oasmaa, Anja; Elliott, Douglas C.; Korhonen, Jaana

    2010-12-17

    The use of the TAN method for measuring the acidity of biomass fast pyrolysis bio-oil was evaluated. Suggestions for carrying out the analysis have been made. The TAN method by ASTM D664 or D3339 can be used for measuring the acidity of fast pyrolysis bio-oils and their hydrotreating products. The main difference between the methods is that ASTM D664 is specified for higher TAN values than ASTM D3339. Special focus should be placed on the interpretation of the TAN curves because they differ significantly from those of mineral oils. The curve for bio-oils is so gentle that the automatic detection may not observe the end point properly and derivatization should be used. The acidity of fast pyrolysis bio-oils is mainly derived (60-70%) from volatile acids. Other groups of compounds in fast pyrolysis bio-oils that influence acidity include phenolics, fatty and resin acids, and hydroxy acids.

  6. Quercetin as natural stabilizing agent for bio-polymer

    NASA Astrophysics Data System (ADS)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-01

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  7. Quercetin as natural stabilizing agent for bio-polymer

    SciTech Connect

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-15

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  8. Increased potency of BioThrax anthrax vaccine with the addition of the C-class CpG oligonucleotide adjuvant CPG 10109.

    PubMed

    Gu, Mili; Hine, Paul M; James Jackson, W; Giri, Lallan; Nabors, Gary S

    2007-01-01

    The inclusion of an adjuvant, in addition to the existing aluminum hydroxide, in the formulation of the licensed anthrax vaccine BioThrax may have the potential to positively modify immune responses. Some potential desirable outcomes from the inclusion of an additional adjuvant include increased immune response kinetics, increased response rates, more prolonged antibody decay rates, and the ability to use less antigen per dose or fewer doses to achieve immunity. One promising group of adjuvants that is being investigated with a variety of vaccines and which has been shown to cause many of these effects are oligonucleotides which contain unmethylated CpG motifs. The C-class oligonucleotide CPG 10109, constructed of a mixed phosphorothioate/phosphodiester backbone and containing 3 CpG motifs, was added to various dilutions of BioThrax and used in mouse and guinea pig immunogenicity studies. Anti-protective antigen (PA) IgG ELISAs and the anthrax toxin neutralization assay (TNA) were performed on serum samples from both species. Anti-PA IgG and TNA responses were approximately 10-fold higher after a single dose of undiluted or diluted BioThrax upon addition of 100 microg CPG 10109 in the mouse regardless of the route of immunization. Responses were also significantly greater in the guinea pig after receiving CpG-adjuvanted undiluted BioThrax or CpG-adjuvanted BioThrax diluted 1:5, 1:10 or 1:30 compared to those achieved with BioThrax alone. A guinea pig spore challenge study showed that a single injection of BioThrax vaccine diluted 1:10 in the presence of 25 microg CPG 10109 was as protective as undiluted BioThrax, whereas a single injection of BioThrax diluted 1:10 was not protective. Taken together with the results from the immunogenicity studies, these results suggest that a CpG adjuvant could be used to reduce the dose of active ingredient required to elicit a protective response, and could lead to improved immune response kinetics. PMID:16973247

  9. cap alpha. /sub i/-3 cDNA encodes the. cap alpha. subunit of G/sub k/, the stimulatory G protein of receptor-regulated K/sup +/ channels

    SciTech Connect

    Codina, J.; Olate, J.; Abramowitz, J.; Mattera, R.; Cook, R.G.; Birnbaumer, L.

    1988-05-15

    cDNA cloning has identified the presence in the human genome of three genes encoding ..cap alpha.. subunits of pertussis toxin substrates, generically called G/sub i/. They are named ..cap alpha../sub i/-1, ..cap alpha../sub i/-2 and ..cap alpha../sub i/-3. However, none of these genes has been functionally identified with any of the ..cap alpha.. subunits of several possible G proteins, including pertussis toxin-sensitive G/sub p/'s, stimulatory to phospholipase C or A/sub 2/, G/sub i/, inhibitory to adenylyl cyclase, or G/sub k/, stimulatory to a type of K/sup +/ channels. The authors now report the nucleotide sequence and the complete predicted amino acid sequence of human liver ..cap alpha../sub i/-3 and the partial amino acid sequence of proteolytic fragments of the ..cap alpha.. subunit of human erythrocyte G/sub k/. The amino acid sequence of the proteolytic fragment is uniquely encoded by the cDNA of ..cap alpha../sub i/-3, thus identifying it as ..cap alpha../sub k/. The probable identity of ..cap alpha../sub i/-1 with ..cap alpha../sub p/ and possible roles for ..cap alpha../sub i/-2, as well as additional roles for ..cap alpha../sub i/-1 and ..cap alpha../sub i/-3 (..cap alpha../sub k/) are discussed.

  10. Green bio-oil extraction for oil crops

    NASA Astrophysics Data System (ADS)

    Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.

    2016-06-01

    The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.

  11. A Survey of Business Trends at BioOne Publishing Partners and its Implications for BioOne

    ERIC Educational Resources Information Center

    Carpenter, Todd A.; Joseph, Heather; Waltham, Mary

    2004-01-01

    This paper describes a survey of BioOne participating publishers that was conducted during the fall of 2003. In that survey, BioOne collected data from 18 not-for-profit publishers on circulation levels, scholarly output in terms of pages and articles produced, revenues, and expenditures. From eight of the publishers, complete profit, loss, and…

  12. Microanalytical Methods for Bio-Forensics Investigations

    SciTech Connect

    Brewer, L N; Weber, P K; Grant, R P; Ghosal, S; Michael, J R

    2006-02-10

    Forensics investigations of bio-crime or bio-terrorism incidents require careful analysis of collected evidentiary material. Although the biological markers in the evidentiary material are important (e.g. genomic signatures, protein markers), the elemental make-up of the organisms themselves and the surrounding non-biological material is extremely useful for attributing a specific process and, perhaps, specific persons to the production of the biological agent. This talk will describe the coordinated use of microanalytical techniques such as SEM-EDX, STEM-EDX, and NanoSIMS for generating compositional signatures for bio-forensics investigations. These analytical techniques span length scales from the 50 {micro}m range to the 5nm range. The range of analytical sensitivities spans from {approx}.5wt% for EDX down to parts per billion for SIMS techniques. In addition, we will discuss the use of spectrum imaging techniques for rapidly extracting the key elemental signatures from large scale data sets. Spectrum imaging techniques combined with multivariate statistical analysis allow for the collection and interrogation or enormous quantities of data without pre-biasing the answer.[1] Spectrum imaging has been used successfully in EDX microanalysis[1] (both in the SEM and TEM) and TOF-SIMS[2]. In this study, a set of test biological agents, ?-irradiated Bacillus thuringiensis (Bt), were examined using the aforementioned microanalytical techniques. The sample set included a number of processing conditions to gauge the ability of these techniques to identify the production methods of these simulated agents. Complementary but distinct forensic signatures were obtained by all three analytical techniques. Figure 1 shows two types of silicate particles observed among the spore material itself. At this length scale, the spores themselves cannot be resolved, but the presence of these silicates is key marker for distinguishing this production route. A STEM-EDX spectrum image from

  13. The Future of Bio-technology

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan

    2005-01-01

    Hosts of technologies, most notably in electronics, have been on the path of miniaturization for decades and in 2005 they have crossed the threshold of the nano-scale. Crossing the nano-scale threshold is a milestone in miniaturization, setting impressive new standards for component-packing densities. It also brings technology to a scale at which quantum effects and fault tolerance play significant roles and approaches the feasible physical limit form many conventional "top-down" manufacturing methods. I will suggest that the most formidable manufacturing problems in nanotechnology will be overcome and major breakthroughs will occur in a host of technologies, when nanotechnology converges with bio-technology; i.e. I will argue that the future of bio-technology is in nanotechnology. In 2005, methods in molecular biology, microscopy, bioinformatics, biochemistry, and genetic engineering have focused considerable attention on the nano-scale. On this scale, biology is a kind of recursive chemistry in which molecular recognition, self-assembly, self-organization and self-referencing context-control lead to the emergence of the complexity of structures and processes that are fundamental to all life forms. While we are still far from understanding this complexity, we are on the threshold of being able to use at least some of these biological properties for .technology. I will discuss the use of biomolecules, such as DNA, RNA, and proteins as "tools" for the bio-technologist of the future. More specifically, I will present in some detail an example of how we are using a genetically engineered 60-kDa protein (HSP60) from an organism living in near boiling sulfuric acid to build nano-scale templates for arranging metallic nanoparticles. These "extremophile" HSP60s self-assemble into robust double-ring structures called "chaperonins," which further assemble into filaments and arrays with nanometer accuracy. I will discuss our efforts to use chaperonins to organize quantum

  14. The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing.

    PubMed

    Ip, Blanche C; Cui, Francis; Tripathi, Anubhav; Morgan, Jeffrey R

    2016-06-01

    We previously developed the Bio-Pick, Place, and Perfuse (Bio-P3) instrument to fabricate large perfusable tissue constructs by stacking and aligning scaffold-free living microtissues with integrated lumens. The Bio-P3 required an actuating mechanism to manipulate living microtissues of various sizes and shapes that are fragile, and must remain in an aqueous environment. The optical transparency of the Bio-P3 gripping device was essential to provide unobstructed visuals for accurate alignment of microtissues. We previously engineered a pilot fluid force-driven bio-gripper that can pick-and-place microtissue in planar position without causing cellular damage by pulling culture medium through track-etched membrane-integrated cell culture inserts. In this study, we invented a new flexible bio-gripper design that maximized the bio-gripper utilities. We utilized experimental approaches, multivariate analyzes, and theoretical modeling to elucidate how membrane characteristics (pore size, pore density, membrane thickness, membrane area, and surface chemistry) altered bio-gripper robustness and the flow rate (Q(c)) required for successful gripping. We devised two standardized tests and synthetic parts that mimicked microtissues, to systematically quantify bio-gripper performance. All thirteen syringe pump-driven bio-grippers except one successfully gripped and released synthetic parts with values of Q(c) that coincided with our mathematical simulation of the fluid mechanics of gripping. The bio-gripper could grip synthetic parts of various sizes, shapes and masses, demonstrating the robustness of the actuating mechanism. Multivariate analysis of experimental data indicated that both membrane porosity and thickness modulated Q(c), and in addition, revealed that membrane pore density determined membrane optical transparency. Fabricating large tissue constructs requires repeated stacking of microtissues. We showed that one bio-gripper could pick-and-place living microtissues

  15. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils. Final Report

    SciTech Connect

    George W. Huber; Upadhye, Aniruddha A.; Ford, David M.; Bhatia, Surita R.; Badger, Phillip C.

    2012-10-19

    with model AFBO excluding guaiacol were also conducted. NF membranes showed retention factors of glucose greater than 80% and of acetic acid less than 15% when operated at transmembrane pressures near 60 bar. Task 3.0 Acid Removal by Catalytic Processing It was found that the TAN reduction in bio-oil was very difficult using low temperature hydrogenation in flow and batch reactors. Acetic acid is very resilient to hydrogenation and we could only achieve about 16% conversion for acetic acid. Although it was observed that acetic acid was not responsible for instability of aqueous fraction of bio-oil during ageing studies (described in task 5). The bimetallic catalyst PtRe/ceria-zirconia was found to be best catalyst because its ability to convert the acid functionality with low conversion to gas phase carbon. Hydrogenation of the whole bio-oil was carried out at 125°C, 1450 psi over Ru/C catalyst in a flow reactor. Again, negligible acetic acid conversion was obtained in low temperature hydrogenation. Hydrogenation experiments with whole bio-oil were difficult to perform because of difficulty to pumping the high viscosity oil and reactor clogging. Task 4.0 Acid Removal using Ion Exchange Resins DOWEX M43 resin was used to carry out the neutralization of bio-oil using a packed bed column. The pH of the bio-oil increased from 2.43 to 3.7. The GC analysis of the samples showed that acetic acid was removed from the bio-oil during the neutralization and recovered in the methanol washing. But it was concluded that process would not be economical at large scale as it is extremely difficult to regenerate the resin once the bio-oil is passed over it. Task 5.0 Characterization of Upgraded Bio-oils We investigated the viscosity, microstructure, and chemical composition of bio-oils prepared by a fast pyrolysis approach, upon aging these fuels at 90ºC for periods of several days. Our results suggest that the viscosity increase is not correlated with the acids or char present in the

  16. Bio-Rad’s Bio-Plex® suspension array system, xMAP technology overview

    PubMed Central

    Houser, Brett

    2012-01-01

    The Bio-Plex® system utilizes xMAP technology to permit the multiplexing of up to 100 different analytes. Multiplex analysis gives researchers the ability to look at analytes simultaneously providing more information from less sample volume in less time than traditional immunoassay methods. Similar to ELISA, xMAP utilizes an antibody sandwich for detection but differs from ELISA in capture substrate and detection method. Rather than a flat surface, Bio-Plex®assays make use of differentially detectable bead sets as a substrate capturing analytes in solution and employs fluorescent methods for detection. These bead sets identify the analytes and detection antibodies are used to measure the quantity of analyte. The use of differentially detectable beads enables the simultaneous identification and quantification of many analytes in the same sample. PMID:22852821

  17. LivBioSig: development of a toolbox for online bio-signals processing and experimentation.

    PubMed

    Lorrain, T; Niazi, I K; Thibergien, O; Jiang, N; Farina, D

    2011-01-01

    Various research fields, such as brain computer interface, requires online acquisition and analysis of biological data to validate assumptions or to help obtaining insights into the physiological processes of the human body. In this paper we introduce the LivBioSig toolbox for online bio-signals processing and experimentation. This open source and modularized MATLAB toolbox allows performing various experiment paradigms involving online signal processing. These currently include synchronous and asynchronous BCI experiments, and event related stimulation experiments. The use of Graphic User Interfaces (GUI) makes the system suitable even for beginner Matlab users, and the experiments easily configurable. The modularized structure allows advanced users to develop the toolbox further to adapt it to the needs of the research fields. PMID:22256025

  18. Bio-inspired networks for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Han, Bing; Huang, Yuanlin; Li, Ruopeng; Peng, Qiang; Luo, Junyi; Pei, Ke; Herczynski, Andrzej; Kempa, Krzysztof; Ren, Zhifeng; Gao, Jinwei

    2014-11-01

    Modern optoelectronics needs development of new materials characterized not only by high optical transparency and electrical conductivity, but also by mechanical strength, and flexibility. Recent advances employ grids of metallic micro- and nanowires, but the overall performance of the resulting material composites remains unsatisfactory. In this work, we propose a new strategy: application of natural scaffoldings perfected by evolution. In this context, we study two bio-inspired networks for two specific optoelectronic applications. The first network, intended for solar cells, light sources and similar devices, has a quasi-fractal structure and is derived directly from a chemically extracted leaf venation system. The second network is intended for touch screens and flexible displays, and is obtained by metalizing a spider’s silk web. We demonstrate that each of these networks attain an exceptional optoelectonic and mechanical performance for its intended purpose, providing a promising direction in the development of more efficient optoelectronic devices.

  19. Corporate profile: Sangamo BioSciences, Inc.

    PubMed

    Wolffe, Elizabeth

    2016-06-01

    Sangamo BioSciences, Inc., (CA, USA) is the pioneer and leader in the next phase of molecular medicine; genome editing. The company's proprietary platform is based on a human DNA-binding motif, the zinc finger DNA-binding protein (ZFP). Sangamo engineers ZFPs to bind to virtually any DNA sequence with exquisite specificity, making the platform uniquely suitable for therapeutic applications. Zinc finger nucleases can be designed to enable therapeutic genome editing, to knockout a gene or add a DNA sequence to an investigator-chosen site in the genome. The company is focused on developing novel ZFP Therapeutics(®) as potentially curative therapies for genetic and infectious diseases, including hemophilia, lysosomal storage disorders, hemoglobinopathies and HIV/AIDS. Sangamo is the only company with human clinical trials of this novel technology. PMID:27226083

  20. Tough, bio-inspired hybrid materials

    SciTech Connect

    Munch, Etienne; Launey, Maximimilan E.; Alsem, Daan H.; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2008-10-06

    The notion of mimicking natural structures in the synthesis of new structural materials has generated enormous interest but has yielded few practical advances. Natural composites achieve strength and toughness through complex hierarchical designs extremely difficult to replicate synthetically. Here we emulate Nature's toughening mechanisms through the combination of two ordinary compounds, aluminum oxide and polymethylmethacrylate, into ice-templated structures whose toughness can be over 300 times (in energy terms) that of their constituents. The final product is a bulk hybrid ceramic material whose high yield strength and fracture toughness ({approx}200 MPa and {approx}30 MPa{radical}m) provide specific properties comparable to aluminum alloys. These model materials can be used to identify the key microstructural features that should guide the synthesis of bio-inspired ceramic-based composites with unique strength and toughness.

  1. Aurelia aurita bio-inspired tilt sensor

    NASA Astrophysics Data System (ADS)

    Smith, Colin; Villanueva, Alex; Priya, Shashank

    2012-10-01

    The quickly expanding field of mobile robots, unmanned underwater vehicles, and micro-air vehicles urgently needs a cheap and effective means for measuring vehicle inclination. Commonly, tilt or inclination has been mathematically derived from accelerometers; however, there is inherent error in any indirect measurement. This paper reports a bio-inspired tilt sensor that mimics the natural balance organ of jellyfish, called the ‘statocyst’. Biological statocysts from the species Aurelia aurita were characterized by scanning electron microscopy to investigate the morphology and size of the natural sensor. An artificial tilt sensor was then developed by using printed electronics that incorporates a novel voltage divider concept in conjunction with small surface mount devices. This sensor was found to have minimum sensitivity of 4.21° with a standard deviation of 1.77°. These results open the possibility of developing elegant tilt sensor architecture for both air and water based platforms.

  2. Bio-based polycarbonate as synthetic toolbox.

    PubMed

    Hauenstein, O; Agarwal, S; Greiner, A

    2016-01-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity. PMID:27302694

  3. Bio-based polycarbonate as synthetic toolbox

    PubMed Central

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-01-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity. PMID:27302694

  4. Update on active chem-bio sensing

    NASA Astrophysics Data System (ADS)

    Swim, Cynthia; Vanderbeek, Richard; Emge, Darren; Wong, Anna

    2005-05-01

    The US Army Edgewood Chemical Biological Center (ECBC) is the leader in development of military systems for chemical and biological defense, in collaboration with all Services, other Government laboratories, academia, and industry. Chemical and biological optical sensing principles, unique capabilities, state-of-the-art sensors, and emerging technologies will be discussed. In order to acquire highly quantified data, study the effects of variables such as particle size distribution on backscatter coefficients, perform iterative aerosol algorithm development, and characterize breadboards, a novel "windowless" Vortex Chamber utilizing air curtains was developed and built at ECBC. The chamber has been successfully shown to contain a cloud of known size, concentration, and particle size distribution for 10-15 minutes. Near-term plans are focused on characterization of breadboards for standoff bio discrimination and deducing absolute backscatter coefficients from Vortex Chamber data.

  5. Bio-medical flow sensor. [intrvenous procedures

    NASA Technical Reports Server (NTRS)

    Winkler, H. E. (Inventor)

    1981-01-01

    A bio-medical flow sensor including a packageable unit of a bottle, tubing and hypodermic needle which can be pre-sterilized and is disposable. The tubing has spaced apart tubular metal segments. The temperature of the metal segments and fluid flow therein is sensed by thermistors and at a downstream location heat is input by a resistor to the metal segment by a control electronics. The fluids flow and the electrical power required for the resisto to maintain a constant temperature differential between the tubular metal segments is a measurable function of fluid flow through the tubing. The differential temperature measurement is made in a control electronics and also can be used to control a flow control valve or pump on the tubing to maintain a constant flow in the tubing and to shut off the tubing when air is present in the tubing.

  6. Modelling approaches for bio-manufacturing operations.

    PubMed

    Chhatre, Sunil

    2013-01-01

    Fast and cost-effective methods are needed to reduce the time and money needed for drug commercialisation and to determine the risks involved in adopting specific manufacturing strategies. Simulations offer one such approach for exploring design spaces before significant process development is carried out and can be used from the very earliest development stages through to scale-up and optimisation of operating conditions and resource deployment patterns both before and after plant start-up. The advantages this brings in terms of financial savings can be considerable, but to achieve these requires a full appreciation of the complexities of processes and how best to represent them mathematically within the context of in silico software. This chapter provides a summary of some of the work that has been carried out in the areas of mathematical modelling and discrete event simulations for production, recovery and purification operations when designing bio-pharmaceutical processes, looking at both financial and technical modelling. PMID:23183689

  7. DCE Bio Detection System Final Report

    SciTech Connect

    Lind, Michael A.; Batishko, Charles R.; Morgen, Gerald P.; Owsley, Stanley L.; Dunham, Glen C.; Warner, Marvin G.; Willett, Jesse A.

    2007-12-01

    The DCE (DNA Capture Element) Bio-Detection System (Biohound) was conceived, designed, built and tested by PNNL under a MIPR for the US Air Force under the technical direction of Dr. Johnathan Kiel and his team at Brooks City Base in San Antonio Texas. The project was directed toward building a measurement device to take advantage of a unique aptamer based assay developed by the Air Force for detecting biological agents. The assay uses narrow band quantum dots fluorophores, high efficiency fluorescence quenchers, magnetic micro-beads beads and selected aptamers to perform high specificity, high sensitivity detection of targeted biological materials in minutes. This final report summarizes and documents the final configuration of the system delivered to the Air Force in December 2008

  8. Bio-based polycarbonate as synthetic toolbox

    NASA Astrophysics Data System (ADS)

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-06-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity.

  9. Review of Bio-EMC Studies

    NASA Astrophysics Data System (ADS)

    Watanabe, Soichi; Wake, Kanako; Fukunaga, Kaori; Yamanaka, Yukio

    2001-12-01

    Biological aspects of electromagnetic compatibility (Bio-EMC) have been studied by EMC Research Group of CRL. There are two main subjects in the field. One is related to rules and regulations of electromagnetic-wave hazards, especially development of standard estimation methods of electromagnetic power deposited in human bodies exposed to microwaves from cellular telephones or VHF-band radio waves. Another is development of exposure setups for laboratory animals used in biological studies on health effects of electromagnetic waves and their dosimetry. Novel phantoms are also being developed in order to perform highly accurate dosimetry in above studies. It is expected that these studies contribute development of compliance tests for radiofrequency protection guidelines and improvement of rationale of those guidelines, which consequently provides safety environment including appropriate radio wave applications.

  10. Bio-inspired odor-based navigation

    NASA Astrophysics Data System (ADS)

    Porter, Maynard J., III; Vasquez, Juan R.

    2006-05-01

    The ability of many insects, especially moths, to locate either food or a member of the opposite sex is an amazing achievement. There are numerous scenarios where having this ability embedded into ground-based or aerial vehicles would be invaluable. This paper presents results from a 3-D computer simulation of an Unmanned Aerial Vehicle (UAV) autonomously tracking a chemical plume to its source. The simulation study includes a simulated dynamic chemical plume, 6-degree of freedom, nonlinear aircraft model, and a bio-inspired navigation algorithm. The emphasis of this paper is the development and analysis of the navigation algorithm. The foundation of this algorithm is a fuzzy controller designed to categorize where in the plume the aircraft is located: coming into the plume, in the plume, exiting the plume, or out of the plume.

  11. Polarimetric bio-aerosol detection: numerical simulation

    NASA Astrophysics Data System (ADS)

    Snow, J. William; Bicknell, W. Ed; Burke, Hsiao-hua K.

    2005-11-01

    This paper examines the use of bi-static lidar to remotely detect the release of aerosolized biological agent. The detection scheme exploits bio-aerosol induced changes in the Stokes parameters of scattered radiation in comparison to scattered radiation from ambient background aerosols alone. A polarization distance metric is introduced to discriminate between changes caused by the two types of aerosols. Scattering code computations are the information source. Three application scenarios are considered: outdoor arena, indoor auditorium, and building heating-ventilation-air-conditioning (HVAC) system. Numerical simulations are employed to determine sensitivity of detection to laser wavelength and to particle physical properties. Results of the study are described and details are given for the specific example of a 1.50 μm lidar system operating outdoors over a 1000-m range.

  12. Four principles of bio-musicology

    PubMed Central

    Fitch, W. Tecumseh

    2015-01-01

    As a species-typical trait of Homo sapiens, musicality represents a cognitively complex and biologically grounded capacity worthy of intensive empirical investigation. Four principles are suggested here as prerequisites for a successful future discipline of bio-musicology. These involve adopting: (i) a multicomponent approach which recognizes that musicality is built upon a suite of interconnected capacities, of which none is primary; (ii) a pluralistic Tinbergian perspective that addresses and places equal weight on questions of mechanism, ontogeny, phylogeny and function; (iii) a comparative approach, which seeks and investigates animal homologues or analogues of specific components of musicality, wherever they can be found; and (iv) an ecologically motivated perspective, which recognizes the need to study widespread musical behaviours across a range of human cultures (and not focus solely on Western art music or skilled musicians). Given their pervasiveness, dance and music created for dancing should be considered central subcomponents of music, as should folk tunes, work songs, lullabies and children's songs. Although the precise breakdown of capacities required by the multicomponent approach remains open to debate, and different breakdowns may be appropriate to different purposes, I highlight four core components of human musicality—song, drumming, social synchronization and dance—as widespread and pervasive human abilities spanning across cultures, ages and levels of expertise. Each of these has interesting parallels in the animal kingdom (often analogies but in some cases apparent homologies also). Finally, I suggest that the search for universal capacities underlying human musicality, neglected for many years, should be renewed. The broad framework presented here illustrates the potential for a future discipline of bio-musicology as a rich field for interdisciplinary and comparative research. PMID:25646514

  13. Four principles of bio-musicology.

    PubMed

    Fitch, W Tecumseh

    2015-03-19

    As a species-typical trait of Homo sapiens, musicality represents a cognitively complex and biologically grounded capacity worthy of intensive empirical investigation. Four principles are suggested here as prerequisites for a successful future discipline of bio-musicology. These involve adopting: (i) a multicomponent approach which recognizes that musicality is built upon a suite of interconnected capacities, of which none is primary; (ii) a pluralistic Tinbergian perspective that addresses and places equal weight on questions of mechanism, ontogeny, phylogeny and function; (iii) a comparative approach, which seeks and investigates animal homologues or analogues of specific components of musicality, wherever they can be found; and (iv) an ecologically motivated perspective, which recognizes the need to study widespread musical behaviours across a range of human cultures (and not focus solely on Western art music or skilled musicians). Given their pervasiveness, dance and music created for dancing should be considered central subcomponents of music, as should folk tunes, work songs, lullabies and children's songs. Although the precise breakdown of capacities required by the multicomponent approach remains open to debate, and different breakdowns may be appropriate to different purposes, I highlight four core components of human musicality--song, drumming, social synchronization and dance--as widespread and pervasive human abilities spanning across cultures, ages and levels of expertise. Each of these has interesting parallels in the animal kingdom (often analogies but in some cases apparent homologies also). Finally, I suggest that the search for universal capacities underlying human musicality, neglected for many years, should be renewed. The broad framework presented here illustrates the potential for a future discipline of bio-musicology as a rich field for interdisciplinary and comparative research. PMID:25646514

  14. Process attributes in bio-ontologies

    PubMed Central

    2012-01-01

    Background Biomedical processes can provide essential information about the (mal-) functioning of an organism and are thus frequently represented in biomedical terminologies and ontologies, including the GO Biological Process branch. These processes often need to be described and categorised in terms of their attributes, such as rates or regularities. The adequate representation of such process attributes has been a contentious issue in bio-ontologies recently; and domain ontologies have correspondingly developed ad hoc workarounds that compromise interoperability and logical consistency. Results We present a design pattern for the representation of process attributes that is compatible with upper ontology frameworks such as BFO and BioTop. Our solution rests on two key tenets: firstly, that many of the sorts of process attributes which are biomedically interesting can be characterised by the ways that repeated parts of such processes constitute, in combination, an overall process; secondly, that entities for which a full logical definition can be assigned do not need to be treated as primitive within a formal ontology framework. We apply this approach to the challenge of modelling and automatically classifying examples of normal and abnormal rates and patterns of heart beating processes, and discuss the expressivity required in the underlying ontology representation language. We provide full definitions for process attributes at increasing levels of domain complexity. Conclusions We show that a logical definition of process attributes is feasible, though limited by the expressivity of DL languages so that the creation of primitives is still necessary. This finding may endorse current formal upper-ontology frameworks as a way of ensuring consistency, interoperability and clarity. PMID:22928880

  15. Membrane process designs in the recovery of bio-fuels and bio-chemicals

    SciTech Connect

    Leeper, S.A.

    1990-01-01

    In this presentation, the emerging membrane unit operations and process designs that can be used in recovery of fuels and organic chemicals produced via bioconversion are briefly summarized. Product recovery costs are a major barrier to increased use of bioconversion for the production of fuels and chemicals. The integration of developing membrane unit operations into product recovery schemes may reduce process energy requirements and cost. Membrane unit operations that are used or studied in recovery of bio-fuels and organic chemicals include pervaporation (PV), vapor permeation (VPe), reverse osmosis (RO), membrane extraction, and electrodialysis (ED). Although it can be argued that ultrafiltration (UF) is used to purify bio-fuels and bio-chemicals, UF is not included in this survey for two reasons: (1) the primary uses of UF in bioprocessing are to clarify fermentation broth and to retain cells/enzymes in bioreactors and (2) the literature on UF in biotechnology is expansive. Products of bioconversion for which data are compiled include ethanol, acetone, butanol, glycerol, isopropanol, ethyl acetate, fusel oils, acetaldehyde, acetic acid, butyric acid, citric acid, propionic acid, succinic acid, and tartaric acid. 13 refs.

  16. Bio and health informatics meets cloud : BioVLab as an example.

    PubMed

    Chae, Heejoon; Jung, Inuk; Lee, Hyungro; Marru, Suresh; Lee, Seong-Whan; Kim, Sun

    2013-01-01

    The exponential increase of genomic data brought by the advent of the next or the third generation sequencing (NGS) technologies and the dramatic drop in sequencing cost have driven biological and medical sciences to data-driven sciences. This revolutionary paradigm shift comes with challenges in terms of data transfer, storage, computation, and analysis of big bio/medical data. Cloud computing is a service model sharing a pool of configurable resources, which is a suitable workbench to address these challenges. From the medical or biological perspective, providing computing power and storage is the most attractive feature of cloud computing in handling the ever increasing biological data. As data increases in size, many research organizations start to experience the lack of computing power, which becomes a major hurdle in achieving research goals. In this paper, we review the features of publically available bio and health cloud systems in terms of graphical user interface, external data integration, security and extensibility of features. We then discuss about issues and limitations of current cloud systems and conclude with suggestion of a biological cloud environment concept, which can be defined as a total workbench environment assembling computational tools and databases for analyzing bio/medical big data in particular application domains. PMID:25825658

  17. Hair flow sensors: from bio-inspiration to bio-mimicking—a review

    NASA Astrophysics Data System (ADS)

    Tao, Junliang; (Bill Yu, Xiong

    2012-11-01

    A great many living beings, such as aquatics and arthropods, are equipped with highly sensitive flow sensors to help them survive in challenging environments. These sensors are excellent sources of inspiration for developing application-driven artificial flow sensors with high sensitivity and performance. This paper reviews the bio-inspirations on flow sensing in nature and the bio-mimicking efforts to emulate such sensing mechanisms in recent years. The natural flow sensing systems in aquatics and arthropods are reviewed to highlight inspirations at multiple levels such as morphology, sensing mechanism and information processing. Biomimetic hair flow sensors based on different sensing mechanisms and fabrication technologies are also reviewed to capture the recent accomplishments and to point out areas where further progress is necessary. Biomimetic flow sensors are still in their early stages. Further efforts are required to unveil the sensing mechanisms in the natural biological systems and to achieve multi-level bio-mimicking of the natural system to develop their artificial counterparts.

  18. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    NASA Astrophysics Data System (ADS)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  19. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    SciTech Connect

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  20. The BioGRID Interaction Database: 2011 update.

    PubMed

    Stark, Chris; Breitkreutz, Bobby-Joe; Chatr-Aryamontri, Andrew; Boucher, Lorrie; Oughtred, Rose; Livstone, Michael S; Nixon, Julie; Van Auken, Kimberly; Wang, Xiaodong; Shi, Xiaoqi; Reguly, Teresa; Rust, Jennifer M; Winter, Andrew; Dolinski, Kara; Tyers, Mike

    2011-01-01

    The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein interaction data from model organisms and humans (http://www.thebiogrid.org). BioGRID currently holds 347,966 interactions (170,162 genetic, 177,804 protein) curated from both high-throughput data sets and individual focused studies, as derived from over 23,000 publications in the primary literature. Complete coverage of the entire literature is maintained for budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe) and thale cress (Arabidopsis thaliana), and efforts to expand curation across multiple metazoan species are underway. The BioGRID houses 48,831 human protein interactions that have been curated from 10,247 publications. Current curation drives are focused on particular areas of biology to enable insights into conserved networks and pathways that are relevant to human health. The BioGRID 3.0 web interface contains new search and display features that enable rapid queries across multiple data types and sources. An automated Interaction Management System (IMS) is used to prioritize, coordinate and track curation across international sites and projects. BioGRID provides interaction data to several model organism databases, resources such as Entrez-Gene and other interaction meta-databases. The entire BioGRID 3.0 data collection may be downloaded in multiple file formats, including PSI MI XML. Source code for BioGRID 3.0 is freely available without any restrictions. PMID:21071413

  1. The BioGRID interaction database: 2013 update.

    PubMed

    Chatr-Aryamontri, Andrew; Breitkreutz, Bobby-Joe; Heinicke, Sven; Boucher, Lorrie; Winter, Andrew; Stark, Chris; Nixon, Julie; Ramage, Lindsay; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Breitkreutz, Ashton; Sellam, Adnane; Chen, Daici; Chang, Christie; Rust, Jennifer; Livstone, Michael; Oughtred, Rose; Dolinski, Kara; Tyers, Mike

    2013-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http//thebiogrid.org) is an open access archive of genetic and protein interactions that are curated from the primary biomedical literature for all major model organism species. As of September 2012, BioGRID houses more than 500 000 manually annotated interactions from more than 30 model organisms. BioGRID maintains complete curation coverage of the literature for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the model plant Arabidopsis thaliana. A number of themed curation projects in areas of biomedical importance are also supported. BioGRID has established collaborations and/or shares data records for the annotation of interactions and phenotypes with most major model organism databases, including Saccharomyces Genome Database, PomBase, WormBase, FlyBase and The Arabidopsis Information Resource. BioGRID also actively engages with the text-mining community to benchmark and deploy automated tools to expedite curation workflows. BioGRID data are freely accessible through both a user-defined interactive interface and in batch downloads in a wide variety of formats, including PSI-MI2.5 and tab-delimited files. BioGRID records can also be interrogated and analyzed with a series of new bioinformatics tools, which include a post-translational modification viewer, a graphical viewer, a REST service and a Cytoscape plugin. PMID:23203989

  2. The BioGRID interaction database: 2015 update.

    PubMed

    Chatr-Aryamontri, Andrew; Breitkreutz, Bobby-Joe; Oughtred, Rose; Boucher, Lorrie; Heinicke, Sven; Chen, Daici; Stark, Chris; Breitkreutz, Ashton; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Nixon, Julie; Ramage, Lindsay; Winter, Andrew; Sellam, Adnane; Chang, Christie; Hirschman, Jodi; Theesfeld, Chandra; Rust, Jennifer; Livstone, Michael S; Dolinski, Kara; Tyers, Mike

    2015-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein interactions curated from the primary biomedical literature for all major model organism species and humans. As of September 2014, the BioGRID contains 749,912 interactions as drawn from 43,149 publications that represent 30 model organisms. This interaction count represents a 50% increase compared to our previous 2013 BioGRID update. BioGRID data are freely distributed through partner model organism databases and meta-databases and are directly downloadable in a variety of formats. In addition to general curation of the published literature for the major model species, BioGRID undertakes themed curation projects in areas of particular relevance for biomedical sciences, such as the ubiquitin-proteasome system and various human disease-associated interaction networks. BioGRID curation is coordinated through an Interaction Management System (IMS) that facilitates the compilation interaction records through structured evidence codes, phenotype ontologies, and gene annotation. The BioGRID architecture has been improved in order to support a broader range of interaction and post-translational modification types, to allow the representation of more complex multi-gene/protein interactions, to account for cellular phenotypes through structured ontologies, to expedite curation through semi-automated text-mining approaches, and to enhance curation quality control. PMID:25428363

  3. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-01

    It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2wt% bio-oil, having a high heating value of 32.35MJ/kg and a viscosity of 305cp, and 22wt% solid residue were realized at a liquefaction temperature of 250°C, a reaction time of 60min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels. PMID:26013692

  4. Fragment-Based Exploration of Binding Site Flexibility in Mycobacterium tuberculosis BioA

    PubMed Central

    Dai, Ran; Geders, Todd W.; Liu, Feng; Park, Sae Woong; Schnappinger, Dirk; Aldrich, Courtney C.; Finzel, Barry C.

    2015-01-01

    The PLP-dependent transaminase (BioA) of Mycobacterium tuberculosis and other pathogens that catalyzes the second step of biotin biosynthesis is a now well-validated target for antibacterial development. Fragment screening by differential scanning fluorimetry has been performed to discover new chemical scaffolds and promote optimization of existing inhibitors. Calorimetry confirms binding of six molecules with high ligand efficiency. Thermodynamic data identifies which molecules bind with the enthalpy driven stabilization preferred in compounds that represent attractive starting points for future optimization. Crystallographic characterization of complexes with these molecules reveals the dynamic nature of the BioA active site. Different side chain conformational states are stabilized in response to binding by different molecules. A detailed analysis of conformational diversity in available BioA structures is presented, resulting in the identification of two states that might be targeted with molecular scaffolds incorporating well-defined conformational attributes. This new structural data can be used as part of a scaffold hopping strategy to further optimize existing inhibitors or create new small molecules with improved therapeutic potential. PMID:26068403

  5. Radiobiologically guided optimisation of the prescription dose and fractionation scheme in radiotherapy using BioSuite

    PubMed Central

    Uzan, J; Nahum, A E

    2012-01-01

    Objective Radiobiological models provide a means of evaluating treatment plans. Keeping in mind their inherent limitations, they can also be used prospectively to design new treatment strategies which maximise therapeutic ratio. We propose here a new method to customise fractionation and prescription dose. Methods To illustrate our new approach, two non-small cell lung cancer treatment plans and one prostate plan from our archive are analysed using the in-house software tool BioSuite. BioSuite computes normal tissue complication probability and tumour control probability using various radiobiological models and can suggest radiobiologically optimal prescription doses and fractionation schemes with limited toxicity. Results Dose–response curves present varied aspects depending on the nature of each case. The optimisation process suggests doses and fractionation schemes differing from the original ones. Patterns of optimisation depend on the degree of conformality, the behaviour of the normal tissue (i.e. “serial” or “parallel”), the volume of the tumour and the parameters of clonogen proliferation. Conclusion Individualising the prescription dose and number of fractions with the help of BioSuite results in improved therapeutic ratios as evaluated by radiobiological models. PMID:22457318

  6. Design and Fabrication of Piezoresistive Based Encapsulated Poly-Si Cantilevers for Bio/chemical Sensing

    NASA Astrophysics Data System (ADS)

    Krishna, N. P. Vamsi; Murthy, T. R. Srinivasa; Reddy, K. Jayaprakash; Sangeeth, K.; Hegde, G. M.

    Cantilever-based sensing is a growing research field not only within micro regime but also in nano technology. The technology offers a method for rapid, on-line and in-situ monitoring of specific bio/chemical substances by detecting the nanomechanical responses of a cantilever sensor. Cantilever with piezoresistive based detection scheme is more attractive because of its electronics compatibility. Majority of commercially available micromachined piezoresistive sensors are bulk micromachined devices and are fabricated using single crystal silicon wafers. As substrate properties are not important in surface micromachining, the expensive silicon wafers can be replaced by cheaper substrates, such as poly-silicon, glass or plastic. Here we have designed SU-8 based bio/chemical compatible micro electro mechanical device that includes an encapsulated polysilicon piezoresistor for bio/chemical sensing. In this paper we report the design, fabrication and analysis of the encapsulated poly-Si cantilevers. Design and theoretical analysis are carried out using Finite Element Analysis software. For fabrication of poly-silicon piezoresistive cantilevers we followed the surface micromachining process steps. Preliminary characterization of the cantilevers is presented.

  7. How Events at the Nano/Bio Interface Determine Good and Adverse Biological Outcomes

    NASA Astrophysics Data System (ADS)

    Nel, Andre

    2014-03-01

    We have come to recognize that much of biology is executed at the nanoscale level, therefore providing a rational approach to using discovery about the structure and function of engineered nanomaterials (ENMs) at the nano/bio interface for interrogation of disease, diagnosis, treatment, and imaging at levels of sophistication not possible before. Moreover, the behavior of ENM's at the nano/bio interface also constitutes the basis for hazard generation and is therefore key for understanding the safety assessment and safer design of nanomaterials. In this overview, I will discuss how discovery at the molecular, cellular, organ and systemic nano/bio interfaces has helped us to my progress progress in the fields of nanomedicine and nanotoxicology. I will explain how the physicochemical properties of nanomaterials relate to nanoscale interactions at the membrane, intracellular organelles, tissues and organs in response to exposure to a variety of commercial ENMs as well as for therapeutic nanocarriers. I will delineate how the use of high throughput screening to establish structure-activity relationships can be used for the design of improved nanocarriers for cancer treatment as well as hazard and risk ranking of large categories of commercial ENMs on their way to the marketplace.

  8. Small-Angle Scattering and Neutron Contrast Variation for Studying Bio-Molecular Complexes

    NASA Astrophysics Data System (ADS)

    Whitten, Andrew E.; Trewhella, Jill

    Structural molecular biology over the past several decades has progressed from studies of the individual proteins, subunits, and domains that accomplish specific biochemistry to seeking to understand the dynamic bio-molecular complexes and assemblies that are responsible for biological function. This progress has led to an expansion of the structural analysis “tool box” to include methods that complement the mainstay techniques of the field: X-ray crystallography, nuclear magnetic resonance (NMR), and cryo-electron microscopy. Small-angle scattering of X-rays or neutrons is one such complementary technique that provides information on the size and shape of scattering particles in solution. This low-resolution structural information can be a powerful complement to high-resolution structural data, especially for the study of bio-molecular interactions with ligands or each other. Further, exploitation of the different neutron-scattering properties of the stable isotopes of hydrogen (1H and 2H) can be used to enrich the information available from the small-angle scattering data, especially for bio-molecular complexes.

  9. [A history and philosophy of bio-medical ethics seen from a dentist's point of view].

    PubMed

    Kang, Shinik

    2002-01-01

    When we think about ethics or morals, we tend to look at them from the viewpoint of here and now. Actual implications of then and there, however, could be different. That is why we should study history of bio-ethics along with philosophy involved in it. Bio-medical ethics is situated in spatial and cultural dimension as well as temporal and historical. Dentistry has been in a peculiar situation in that although it has evolved from the same root as medicine, it has become a separate discipline. Ethical implications of dentistry, however, share the historical and philosophical background with its mother discipline, i.e., medicine, surgery, barber-surgery and even smithery. This paper tries to grasp the main ideas of bio-medical ethics from the ancient Greek and China, and picks up three of them as guiding principles, i.e., deontology and teleology from the west and self-cultivation from the east. It also tracks down the contents of modern biomedical ethics; from etiquette to ethics, from morals to contract (ethics of autonomy), and ethics of professional responsibility. Finally it reviews and analyzes two different traditions of dental professional regulation from the legal and ethical point of view (U.S. and Europe), and proposes a new direction for the construction of dental ethics in Korea. PMID:12825602

  10. Quantitative and qualitative analysis of hemicellulose, cellulose and lignin bio-oils by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.

    PubMed

    Michailof, Chrysoula; Sfetsas, Themistoklis; Stefanidis, Stylianos; Kalogiannis, Konstantinos; Theodoridis, Georgios; Lappas, Angelos

    2014-11-21

    Thermal and catalytic pyrolysis are efficient processes for the transformation of biomass to bio-oil, a liquid energy carrier and a general source of chemicals. The elucidation of the bio-oil's composition is essential for a rational design of both its production and utilization process. However, the complex composition of bio-oils hinders their complete qualitative and quantitative analysis, and conventional chromatographic techniques lack the necessary separation power. Two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-ToFMS) is considered a suitable technique for bio-oil analysis due to its increased separation and resolution capacity. This work presents the tentative qualitative and quantitative analysis of bio-oils resulting from the thermal and catalytic pyrolysis of standard xylan, cellulose, lignin and their mixture by GC×GC-ToFMS. Emphasis is placed on the development of the quantitative method using phenol-d6 as internal standard. During the method development, a standard solution of 39 compounds was used for the determination of the respective Relative Response Factors (RRF) employing statistical methods, ANOVA and WLSLR, for verification of the data. The developed method was applied to the above mentioned bio-oils and their detailed analysis is presented. The different compounds produced and their diverse concentration allows for an elucidation of the pyrolysis mechanism and highlight the effect of the catalyst. PMID:25441082

  11. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber.

    PubMed

    Mushtaq, Faisal; Abdullah, Tuan Amran Tuan; Mat, Ramli; Ani, Farid Nasir

    2015-08-01

    In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products. PMID:25794811

  12. Pyrolysis of sunflower seed hulls for obtaining bio-oils.

    PubMed

    Casoni, Andrés I; Bidegain, Maximiliano; Cubitto, María A; Curvetto, Nestor; Volpe, María A

    2015-02-01

    Bio-oils from pyrolysis of as received sunflower seed hulls (SSH), hulls previously washed with acid (SSHA) and hulls submitted to a mushroom enzymatic attack (BSSH) were analyzed. The concentration of lignin, hemicellulose and cellulose varied with the pre-treatment. The liquid corresponding to SSH presented a relatively high concentration of acetic acid and a high instability to storage. The bio-oil from SSHA showed a high concentration of furfural and an appreciable amount of levoglucosenone. Lignin was degraded upon enzymatic activity, for this reason BSSH led to the highest yield of bio-oil, with relative high concentration of acetic acid and stability to storage. PMID:25500616

  13. A traffic flow model for bio-polymerization processes

    PubMed Central

    Davis, Lisa; Gedeon, Jakub; Thorenson, Jennifer

    2013-01-01

    Bio-polymerization processes like transcription and translation are central to proper function of a cell. The speed at which the bio-polymer grows is affected both by the number of pauses of elongation machinery, as well the number of bio-polymers due to crowding effects. In order to quantify these effects in fast transcribing ribosome genes, we rigorously show that a classical traffic flow model is the limit of a mean occupancy ODE model. We compare the simulation of this model to a stochastic model and evaluate the combined effect of the polymerase density and the existence of pauses on the instantaneous transcription rate of ribosomal genes. PMID:23404039

  14. Atomistic modeling of bio-based polymeric fibers

    NASA Astrophysics Data System (ADS)

    Yeh, In-Chul; Rinderspacher, B. Christopher; Andzelm, Jan W.; Cureton, Lashonda T.; La Scala, John

    2013-03-01

    We performed molecular dynamics simulations on the amorphous phase of two bio-based polymers, poly (butylene furanamide) and poly (hexamethylene furanamide). Simulations of corresponding petroleum-based polymers, nylon 4, 6 and nylon 6, 6, were also performed. Glass transition temperatures estimated from a series of simulations were in good agreement with experimental measurements. Stress-strain relationships under uniaxial deformation were also analyzed. Bio-based polymers show higher glass transition temperatures and comparable yield points despite having overall weaker hydrogen bonds compared with their counterparts nylons. This result suggests that the furan ring plays an important role in the thermodynamic and mechanical properties of bio-based polymers.

  15. Bio-objects’ political capacity: a research agenda

    PubMed Central

    Maeseele, Pieter; Hendrickx, Kim; Pavone, Vincenzo; Van Hoyweghen, Ine

    2013-01-01

    This article explores the merits of foregrounding the dichotomy of politicization vs de-politicization for our understanding of bio-objects in order to study their production, circulation, and governance in European societies. By asking how bio-objects are configured in science, policy, public, and media discourses and practices, we focus on the role of socio-technical configurations in generating political relations. The bio-object thereby serves as an entry point to approach and conceptualize “the political” in an innovative way. PMID:23630150

  16. Smart sensor chip based on bioMEMS

    NASA Astrophysics Data System (ADS)

    Madan, Rajesh; Kumar, Sandeep; Bagga, Ellis; Bajpai, Ram P.; Bharadwaj, Lalit M.

    2004-03-01

    The smart sensor chip for simultaneous detection of a large number of disease markers is the most recent interest in the field of nanobiotechnology. Potential applications include miniaturized sensors to detect biological agents and diseases, biocompatible and improved systems for drug delivery. They are the simplest biomicroelectromechanical system (BioMEMS) devices that offer a very promising future to the development of novel physical, chemical and biological sensors. They can simultaneously detect a large number of antigens, antibodies, DNA molecules, trace metals, hormones, proteins, gases, microorganisms, toxins, chemical warfare agents, explosives etc. in gaseous, vacuum and liquid medium. Smart sensor chips would be of greater use in intensive care units (ICUs) where multiple disease markers are to be assessed precisely in very less time. These sensors employ highly specific biochemical reactions between complementary biomolecules in the same way that nature has used in our body to detect, diagnose and treat various types of diseases. They have aroused considerable interest because of their high specificity, ultra-high sensitivity, simplicity, low cost, less analyte requirement (in μl), less steps involved, non-hazardous procedure, quick response, low power requirement and a unique capability of detecting a large number of analytes simultaneously in a single step.

  17. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  18. BioEnergy Feasibility in South Africa

    NASA Astrophysics Data System (ADS)

    Hugo, Wim

    2015-04-01

    The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural

  19. Bio-Inspired Engineering of Exploration Systems

    NASA Technical Reports Server (NTRS)

    Thakoor, Sanita

    2003-01-01

    The multidisciplinary concept of "bioinspired engineering of exploration systems" (BEES) is described, which is a guiding principle of the continuing effort to develop biomorphic explorers as reported in a number of articles in the past issues of NASA Tech Briefs. The intent of BEES is to distill from the principles found in successful nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods but that are accomplished rather deftly in nature by biological organisms. The intent is not just to mimic operational mechanisms found in a specific biological organism but to imbibe the salient principles from a variety of diverse bio-organisms for the desired crucial function. Thereby, we can build explorer systems that have specific capabilities endowed beyond nature, as they will possess a combination of the best nature-tested mechanisms for that particular function. The approach consists of selecting a crucial function, for example, flight or some selected aspects of flight, and develop an explorer that combines the principles of those specific attributes as seen in diverse flying species into one artificial entity. This will allow going beyond biology and achieving unprecedented capability and adaptability needed in encountering and exploring what is as yet unknown. A classification of biomorphic flyers into two main classes of surface and aerial explorers is illustrated in the figure, with examples of a variety of biological organisms that provide the inspiration in each respective subclass. Such biomorphic explorers may possess varied mobility modes: surface-roving, burrowing, hopping, hovering, or flying, to accomplish surface, subsurface, and aerial exploration. Preprogrammed for a specific function, they could serve as one-way communicating beacons, spread over the exploration site, autonomously looking for/at the targets of interest. In a hierarchical organization, these biomorphic explorers would report to the next

  20. Study on compressive strength characteristics of Bio-Coal

    SciTech Connect

    Liu Weijun; Fu Guomin; Zhang Shuhua; Li Songsheng

    1997-07-01

    In this paper, we aim at dealing with the compressive strength characteristics of Bio-Coal including theoretical analysis and experimental research. The essential theoretical analysis is based up on particulates and intermolecular forces mechanics. The orthogonality design principle proves to be useful in the scientific arranging experimentions. The method of making use of deviation analysis is capable of providing some useful conclusions. Namely, the main influence factors of Bio-Coal on compressive strength characteristics are found out. From our orthogonality design experiments, the authors come to realize the primary and secondary sequence of influence on compressive strength of Bio-Coal. In addition, the formula of best compressive strength was found out. And then recent single factor experiments in this area suggested that the actual regularity of the influence on compressive strength of Bio-Coal was consistent with its theoretical analysis.

  1. Optical closure of parameterized bio-optical relationships

    NASA Astrophysics Data System (ADS)

    He, Shuangyan; Fischer, Jürgen; Schaale, Michael; He, Ming-xia

    2014-03-01

    An optical closure study on bio-optical relationships was carried out using radiative transfer model matrix operator method developed by Freie Universität Berlin. As a case study, the optical closure of bio-optical relationships empirically parameterized with in situ data for the East China Sea was examined. Remote-sensing reflectance ( R rs) was computed from the inherent optical properties predicted by these biooptical relationships and compared with published in situ data. It was found that the simulated R rs was overestimated for turbid water. To achieve optical closure, bio-optical relationships for absorption and scattering coefficients for suspended particulate matter were adjusted. Furthermore, the results show that the Fournier and Forand phase functions obtained from the adjusted relationships perform better than the Petzold phase function. Therefore, before bio-optical relationships are used for a local sea area, the optical closure should be examined.

  2. Past, Present, and Future Production of Bio-oil

    SciTech Connect

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    2009-04-01

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen content (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers

  3. Bio-based polyurethane foams from renewable resources

    NASA Astrophysics Data System (ADS)

    Stanzione, M.; Russo, V.; Sorrentino, A.; Tesser, R.; Lavorgna, M.; Oliviero, M.; Di Serio, M.; Iannace, S.; Verdolotti, L.

    2016-05-01

    In the last decades, bio-derived natural materials, such as vegetable oils, polysaccharides and biomass represent a rich source of hydroxyl precursors for the synthesis of polyols which can be potentially used to synthesize "greener" polyurethane foams. Herein a bio-based precursor (obtained from succinic acid) was used as a partial replacement of conventional polyol to synthesize PU foams. A mixture of conventional and bio-based polyol in presence of catalysts, silicone surfactant and diphenylmethane di-isocyanate (MDI) was expanded in a mold and cured for two hours at room temperature. Experimental results highlighted the suitability of this bio-precursor to be used in the production of flexible PU foams. Furthermore the chemo-physical characterization of the resulting foams show an interesting improvement in thermal stability and elastic modulus with respect to the PU foams produced with conventional polyol.

  4. Bio-Functional Au/Si Nanorods for Pathogen Detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract Nanotechnology applications for food safety and biosecurity, especially development of nanoscale sensors for foodborne pathogen measurement are emerging. A novel bio-functional nanosensor for Salmonella detection was developed using hetero-nanorods. The silica nanorods were fabr...

  5. BioTorrents: A File Sharing Service for Scientific Data

    PubMed Central

    Langille, Morgan G. I.; Eisen, Jonathan A.

    2010-01-01

    The transfer of scientific data has emerged as a significant challenge, as datasets continue to grow in size and demand for open access sharing increases. Current methods for file transfer do not scale well for large files and can cause long transfer times. In this study we present BioTorrents, a website that allows open access sharing of scientific data and uses the popular BitTorrent peer-to-peer file sharing technology. BioTorrents allows files to be transferred rapidly due to the sharing of bandwidth across multiple institutions and provides more reliable file transfers due to the built-in error checking of the file sharing technology. BioTorrents contains multiple features, including keyword searching, category browsing, RSS feeds, torrent comments, and a discussion forum. BioTorrents is available at http://www.biotorrents.net. PMID:20418944

  6. The BioPAX community standard for pathway

    SciTech Connect

    Syed, Mustafa H

    2010-01-01

    Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.

  7. BioNSi: A Discrete Biological Network Simulator Tool.

    PubMed

    Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny

    2016-08-01

    Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found. PMID:27354160

  8. Bio-logging of physiological parameters in higher marine vertebrates

    NASA Astrophysics Data System (ADS)

    Ponganis, Paul J.

    2007-02-01

    Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (P) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed.

  9. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    SciTech Connect

    Zheng, Ji-Lu Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  10. Dual-functional bio-derived nanoparticulates for apoptotic antitumor therapy.

    PubMed

    Ding, Yang; Wang, Yazhe; Opoku-Damoah, Yaw; Wang, Cheng; Shen, Lingjia; Yin, Lifang; Zhou, Jianping

    2015-12-01

    The application of bio-derived nanoparticulates has gained a remarkable degree of interest as a promising sustained-release, site-targeted and completely biodegradable delivery system for chemotherapeutics. We hereby introduce a dual-functionalized biomimetic nanovector, cell-penetrating peptide (CPP)-anchored recombinant high density lipoproteins (cp-rHDL), which affords high payload and improved targeting of gambogic acid (GA), a therapeutic agent for apoptotic antitumor therapy. GA-loaded cp-rHDL nanoparticles (cp-rHDL/GA) consisted of hydrophobic core modulating GA, apolipoprotein A-I (apo A-I) for attractive integrating and tumor-homing, and lipophilic anchored R6H4 (RRRRRRHHHH, a pH-responsive CPP) offering a pH-controlled penetrating potential. Upon stepwise incubation with apo A-I and R6H4, cp-rHDL/GA presented several merits, including desirable physicochemical properties, superior biostability, and favorable buffering capacity resulting in proton sponge effect. Synergistic intracellular mechanism for scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, and pH-responsive R6H4 associated endocytotic pathway with rapid endo-lysosomal escape was also observed. This tailored cp-rHDL/GA displayed remarkable cytotoxicity and apoptotic effect via triggering p53 pathway, and provided approximately 5-fold increase in IC50 compared to free GA. Moreover, this rational biomimetic therapeutic strategy attained superior tumor accumulation and significant inhibition of tumor growth in HepG2 xenograft tumor animal models without measurable adverse effect. Results of this study demonstrated that bio-derived cp-rHDL/GA presents pH-responsive penetrating potential and efficient cellular internalization. This dual-functionalization model will open an avenue for exploration of multi-functional bio-derived drug delivery, thereby rendering potential broad applications in apoptotic anticancer therapy. PMID:26344366

  11. Water repellency: a whole-farm bio-economic perspective

    NASA Astrophysics Data System (ADS)

    Abadi Ghadim, A. K.

    2000-05-01

    A whole-farm bio-economic model was used to assess the profitability of innovations aimed at improving agricultural production on the non-wetting sands of wheatbelt farms of Western Australia. It was found that amelioration of water repellency might be an economical option for some farms in the northern wheatbelt of Western Australia. It was shown that a minimum of 30% increase in lupin yields and a 10% increase in wheat yields would be required before expenditure on innovations aimed at improving production on non-wetting soils could be justified. However, due to costs of amelioration of repellency much higher crop yield responses may be required for economical adoption of such innovations on most farms. The decision to ameliorate water repellency depends not only on the consideration of direct benefits and costs per hectare of ameliorated sand but also on other whole-farm factors. One such factor found to be important was the scale of relevance or the soil mix of the farm. It was found that farms with proportionately large areas of non-wetting sands were more likely to benefit from adoption of innovations aimed at amelioration of repellency. Another important factor in the decision to adopt innovations for amelioration of water repellency is availability of alternative enterprises on the non-wetting soils. In particular, whether or not sandplain lupins ( lupinus cosentinii) and tagasaste ( chamaecystisus proliferus) were options that a farmer could consider determined the profitability of taking remedial measures against water repellency. This study identified, through a series of sensitivity analyses, the magnitude of production responses that may be required for profitable amelioration of water repellency. Some gaps in our knowledge of biological and economic parameters related to costs and benefits of various innovations have also been highlighted and discussed.

  12. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.

    PubMed

    Cen, L; Erturk, A

    2013-03-01

    This paper investigates fish-like aquatic robotics using flexible bimorphs made of macro-fiber composite (MFC) piezoelectric laminates for carangiform locomotion. In addition to noiseless and efficient actuation over a range of frequencies, geometric scalability, and simple design, bimorph propulsors made of MFCs offer a balance between the actuation force and velocity response for performance enhancement in bio-inspired swimming. The experimental component of the presented work focuses on the characterization of an elastically constrained MFC bimorph propulsor for thrust generation in quiescent water as well as the development of a robotic fish prototype combining a microcontroller and a printed-circuit-board amplifier to generate high actuation voltage for untethered locomotion. From the theoretical standpoint, a distributed-parameter electroelastic model including the hydrodynamic effects and actuator dynamics is coupled with the elongated-body theory for predicting the mean thrust in quiescent water. In-air and underwater experiments are performed to verify the incorporation of hydrodynamic effects in the linear actuation regime. For electroelastically nonlinear actuation levels, experimentally obtained underwater vibration response is coupled with the elongated-body theory to predict the thrust output. The measured mean thrust levels in quiescent water (on the order of ∼10 mN) compare favorably with thrust levels of biological fish. An untethered robotic fish prototype that employs a single bimorph fin (caudal fin) for straight swimming and turning motions is developed and tested in free locomotion. A swimming speed of 0.3 body-length/second (7.5 cm s⁻¹ swimming speed for 24.3 cm body length) is achieved at 5 Hz for a non-optimized main body-propulsor bimorph combination under a moderate actuation voltage level. PMID:23348365

  13. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview

    SciTech Connect

    Calabrese, Edward J. . E-mail: edwardc@schoolph.umass.edu; Blain, Robyn

    2005-02-01

    A relational retrieval database has been developed compiling toxicological studies assessing the occurrence of hormetic dose responses and their quantitative characteristics. This database permits an evaluation of these studies over numerous parameters, including study design and dose-response features and physical/chemical properties of the agents. The database contains approximately 5600 dose-response relationships satisfying evaluative criteria for hormesis across over approximately 900 agents from a broadly diversified spectrum of chemical classes and physical agents. The assessment reveals that hormetic dose-response relationships occur in males and females of numerous animal models in all principal age groups as well as across species displaying a broad range of differential susceptibilities to toxic agents. The biological models are extensive, including plants, viruses, bacteria, fungi, insects, fish, birds, rodents, and primates, including humans. The spectrum of endpoints displaying hormetic dose responses is also broad being inclusive of growth, longevity, numerous metabolic parameters, disease incidences (including cancer), various performance endpoints such as cognitive functions, immune responses among others. Quantitative features of the hormetic dose response reveal that the vast majority of cases display a maximum stimulatory response less than two-fold greater than the control while the width of the stimulatory response is typically less than 100-fold in dose range immediately contiguous with the toxicological NO(A)EL. The database also contains a quantitative evaluation component that differentiates among the various dose responses concerning the strength of the evidence supporting a hormetic conclusion based on study design features, magnitude of the stimulatory response, statistical significance, and reproducibility of findings.

  14. Security enhanced BioEncoding for protecting iris codes

    NASA Astrophysics Data System (ADS)

    Ouda, Osama; Tsumura, Norimichi; Nakaguchi, Toshiya

    2011-06-01

    Improving the security of biometric template protection techniques is a key prerequisite for the widespread deployment of biometric technologies. BioEncoding is a recently proposed template protection scheme, based on the concept of cancelable biometrics, for protecting biometric templates represented as binary strings such as iris codes. The main advantage of BioEncoding over other template protection schemes is that it does not require user-specific keys and/or tokens during verification. Besides, it satisfies all the requirements of the cancelable biometrics construct without deteriorating the matching accuracy. However, although it has been shown that BioEncoding is secure enough against simple brute-force search attacks, the security of BioEncoded templates against more smart attacks, such as record multiplicity attacks, has not been sufficiently investigated. In this paper, a rigorous security analysis of BioEncoding is presented. Firstly, resistance of BioEncoded templates against brute-force attacks is revisited thoroughly. Secondly, we show that although the cancelable transformation employed in BioEncoding might be non-invertible for a single protected template, the original iris code could be inverted by correlating several templates used in different applications but created from the same iris. Accordingly, we propose an important modification to the BioEncoding transformation process in order to hinder attackers from exploiting this type of attacks. The effectiveness of adopting the suggested modification is validated and its impact on the matching accuracy is investigated empirically using CASIA-IrisV3-Interval dataset. Experimental results confirm the efficacy of the proposed approach and show that it preserves the matching accuracy of the unprotected iris recognition system.

  15. Multi-culture solar heated bio-shelter. Final report

    SciTech Connect

    Not Available

    1985-01-01

    A rooftop greenhouse (bio-shelter) that is heated with active and passive solar systems is presented. The intent of the greenhouse is to grow vegetables hydroponically the year-round using a nutrient flow technique; and to growth the giant tropical Malaysian prawn Macrobrachium rosenbergii in a recycling raceway water system heated with solar power. The produce grown was continuously monitored and the harvests weighed in order to estimate the year-round production potential of the bio-shelter greenhouse.

  16. The phosphodiesterase 4 inhibitor roflumilast augments the Th17-promoting capability of dendritic cells by enhancing IL-23 production, and impairs their T cell stimulatory activity due to elevated IL-10.

    PubMed

    Bros, Matthias; Montermann, Evelyn; Cholaszczyńska, Anna; Reske-Kunz, Angelika B

    2016-06-01

    Phosphodiesterase 4 (PDE4) inhibitors serve to prevent degradation of the intracellular second messenger cAMP, resulting in broad anti-inflammatory effects on different cell types including immune cells. Agents that elevate cAMP levels via activation of adenylate cyclase have been shown to imprint a Th17-promoting capacity in dendritic cells (DCs). Therefore, we studied the potential of therapeutically relevant PDE inhibitors to induce a pronounced Th17-skewing capacity in DCs. Here we show that mouse bone marrow-derived (BM-) DCs when treated with the PDE4 inhibitor roflumilast (ROF, trade name: Daxas) in the course of stimulation with LPS (ROF-DCs) evoked elevated IL-17 levels in cocultured allogeneic T cells. In addition, as compared with control settings, levels of IFN-γ remained unaltered, while contents of Th2 cytokines (IL-5, IL-10) were diminished. ROF enhanced expression of the Th17-promoting factor IL-23 in BM-DCs. In line, neutralizing antibodies specific for IL-23 or IL-6 when applied to DC/T cell cocultures partially inhibited the IL17-promoting effect of ROF-DCs. Furthermore, ROF-DCs displayed a markedly diminished allogeneic T cell stimulatory capacity due to enhanced production of IL-10, which was restored upon application of IL-10 specific neutralizing antibody to DC/T cell cocultures. Both the IL-17-inducing and impaired T cell stimulatory capacity of BM-DCs were mimicked by a specific activator of protein kinase A, while stimulation of EPACs (exchange proteins of activated cAMP) did not yield such effects. Taken together, our findings suggest that PDE4 inhibitors aside from their broad overall anti-inflammatory effects may enhance the Th17-polarizing capacity in DCs as an unwanted side effect. PMID:27070502

  17. BioID Identification of Lamin-Associated Proteins.

    PubMed

    Mehus, Aaron A; Anderson, Ruthellen H; Roux, Kyle J

    2016-01-01

    A- and B-type lamins support the nuclear envelope, contribute to heterochromatin organization, and regulate a myriad of nuclear processes. The mechanisms by which lamins function in different cell types and the mechanisms by which lamin mutations cause over a dozen human diseases (laminopathies) remain unclear. The identification of proteins associated with lamins is likely to provide fundamental insight into these mechanisms. BioID (proximity-dependent biotin identification) is a unique and powerful method for identifying protein-protein and proximity-based interactions in living cells. BioID utilizes a mutant biotin ligase from bacteria that is fused to a protein of interest (bait). When expressed in living cells and stimulated with excess biotin, this BioID-fusion protein promiscuously biotinylates directly interacting and vicinal endogenous proteins. Following biotin-affinity capture, the biotinylated proteins can be identified using mass spectrometry. BioID thus enables screening for physiologically relevant protein associations that occur over time in living cells. BioID is applicable to insoluble proteins such as lamins that are often refractory to study by other methods and can identify weak and/or transient interactions. We discuss the use of BioID to elucidate novel lamin-interacting proteins and its applications in a broad range of biological systems, and provide detailed protocols to guide new applications. PMID:26778550

  18. Catalytic Hydroprocessing of Chemical Models for Bio-oil

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.

    2008-12-12

    Bio-oil (product liquids from fast pyrolysis of biomass) is a complex mixture of oxygenates derived from the thermal breakdown of the bio-polymers in biomass. In the case of lignocellulosic biomass, the structures of three major components, cellulose, hemicellulose and lignin, are well represented by the bio-oil components. In order to study the chemical mechanisms of catalytic hydroprocessing of bio-oil, three model compounds were chosen to represent those components. Guaiacol represents the large number of mono- and di-methoxy phenols found in bio-oil derived from softwood or hardwood, respectively. Furfural represents a major pyrolysis product group from cellulosics. Acetic acid is a major product from biomass pyrolysis, derived from the hemicellulose, which has important impacts on the further processing of the bio-oil because of the acidic character. These three compounds were processed using palladium or ruthenium catalyst over a temperature range from 150°C to 300°C. The batch reactor was sampled during each test over a period of four hours. The samples were analyzed by gas chromatography with both a mass selective detector and a flame ionization detector. The products were determined and the reaction pathways for their formation are suggested based on these results. Both temperature and catalyst metal have significant effects on the product composition.

  19. Programming cell fate on bio-functionalized silicon.

    PubMed

    Premnath, Priyatha; Tan, Bo; Venkatakrishnan, Krishnan

    2015-04-01

    Controlling the growth of cells on the surface of silicon without an additive layer or topographical modification is unexplored. This research article delineates the discovery of unique properties of a bio-functionalized silicon substrate, programmed to repel or control cells, generated by ultrafast femtosecond pulse interaction with silicon. Remarkably, bio-functionalization in any shape or size without change in topology or morphology is observed indicating only sub-surface phase transformations. Material characterization reveals the presence of a unique mixture of phases of SiO2 and Si. Consequently, these variations in phase alter the physicochemical characteristics on the surface of silicon resulting in its bio-functionalization. The culture of mouse embryonic fibroblasts shows unique adhesion characteristics on these bio-functionalized silicon surfaces that include cell controlling, cell trapping, and cell shaping. Furthermore, the directionality of fibroblasts is restrained parallel to bio-functionalized zones as evidenced by changes in cytoskeleton. The controlling of proliferation, migration and adhesion of cells is attributed to unique phase bio-functionalization. This method presents considerable promise in a myriad of applications such as tissue engineering, MEMS, and lab-on-a-chip devices. PMID:25731099

  20. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  1. Subdaily Hydrologic Alteration due to Hydropower Operations in the Bio-Bio river in Southern Chile

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.; Fernandez, M.; Benavides, C.; Palma, R.

    2012-12-01

    Hydropower plants can inexpensively respond to short-term changes in power demand. This can cause fluctuating operations at a subdaily scale. This work includes an assessment of the degree of subdaily hydrologic alteration (SDHA) due to operation two reservoir hydropower plants in the Bio-Bio river in southern Chile. Alternative operational constraints in the form of minimum instream flows (MIFs) and maximum ramping rates (MRRs) were defined and included into an economic dispatch model for hydrothermal scheduling with hourly stages and a weekly horizon. The model minimizes weekly total costs -including thermal production costs, failure costs, and expected future cost of water- over the entire grid (Chile's Central Interconnected System). Subdaily hydrologic alteration was assessed by computing a set of indicators compiled by Zimmerman et al. (2010). These indicators are obtained from hourly time series for 24-hour periods. Assessment of SDHA was based on a comparison of the indicador values obtained for actual recent operations to those obtained for a natural subdaily flow regime derived from hydrologic techniques and flow gage records. Results showed that current operations cause a downstream subdaily flow regime which deviates significatly from its natural counterpart. In other words, hydropower operations cause a significant degree of subdaily hydrologic alteration in the Bio-Bio river. Environmental constraints were imposed to the downstream reservoir operations. MIFs constraints took values between 30% and 60% of historical monthly average flows, whereas MRRs were set to values between 14 m3/s/hour and 68 m3/s/hour. Results indicate that both types of constraints improve the indicators of subdaily hydrologic alteration. However, under MIF constraints alone, improvement is only observed during some seasons in the year. MRR constraints improve the indicators all year round. Additionally, it was observed that the effect of environmental constraints on the

  2. High throughput detection of antibody self-interaction by bio-layer interferometry.

    PubMed

    Sun, Tingwan; Reid, Felicia; Liu, Yuqi; Cao, Yuan; Estep, Patricia; Nauman, Claire; Xu, Yingda

    2013-01-01

    Self-interaction of an antibody may lead to aggregation, low solubility or high viscosity. Rapid identification of highly developable leads remains challenging, even though progress has been made with the introduction of techniques such as self-interaction chromatography (SIC) and cross-interaction chromatography (CIC). Here, we report a high throughput method to detect antibody clone self-interaction (CSI) using bio-layer interferometry (BLI) technology. Antibodies with strong self-interaction responses in the CSI-BLI assay also show delayed retention times in SIC and CIC. This method allows hundreds of candidates to be screened in a matter of hours with minimal material consumption. PMID:23995620

  3. Economic Assessment of FMDv Releases from the National Bio and Agro Defense Facility

    PubMed Central

    Pendell, Dustin L.; Marsh, Thomas L.; Coble, Keith H.; Lusk, Jayson L.; Szmania, Sara C.

    2015-01-01

    This study evaluates the economic consequences of hypothetical foot-and-mouth disease releases from the future National Bio and Agro Defense Facility in Manhattan, Kansas. Using an economic framework that estimates the impacts to agricultural firms and consumers, quantifies costs to non-agricultural activities in the epidemiologically impacted region, and assesses costs of response to the government, we find the distribution of economic impacts to be very significant. Furthermore, agricultural firms and consumers bear most of the impacts followed by the government and the regional non-agricultural firms. PMID:26114546

  4. Economic Assessment of FMDv Releases from the National Bio and Agro Defense Facility.

    PubMed

    Pendell, Dustin L; Marsh, Thomas L; Coble, Keith H; Lusk, Jayson L; Szmania, Sara C

    2015-01-01

    This study evaluates the economic consequences of hypothetical foot-and-mouth disease releases from the future National Bio and Agro Defense Facility in Manhattan, Kansas. Using an economic framework that estimates the impacts to agricultural firms and consumers, quantifies costs to non-agricultural activities in the epidemiologically impacted region, and assesses costs of response to the government, we find the distribution of economic impacts to be very significant. Furthermore, agricultural firms and consumers bear most of the impacts followed by the government and the regional non-agricultural firms. PMID:26114546

  5. Bio-Inspired Self-Cleaning Surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Kesong; Jiang, Lei

    2012-08-01

    Self-cleaning surfaces have drawn a lot of interest for both fundamental research and practical applications. This review focuses on the recent progress in mechanism, preparation, and application of self-cleaning surfaces. To date, self-cleaning has been demonstrated by the following four conceptual approaches: (a) TiO2-based superhydrophilic self-cleaning, (b) lotus effect self-cleaning (superhydrophobicity with a small sliding angle), (c) gecko setae-inspired self-cleaning, and (d) underwater organisms-inspired antifouling self-cleaning. Although a number of self-cleaning products have been commercialized, the remaining challenges and future outlook of self-cleaning surfaces are also briefly addressed. Through evolution, nature, which has long been a source of inspiration for scientists and engineers, has arrived at what is optimal. We hope this review will stimulate interdisciplinary collaboration among material science, chemistry, biology, physics, nanoscience, engineering, etc., which is essential for the rational design and reproducible construction of bio-inspired multifunctional self-cleaning surfaces in practical applications.

  6. Terahertz signature characterization of bio-simulants

    NASA Astrophysics Data System (ADS)

    Majewski, Alexander J.; Miller, Peter; Abreu, Rene; Grotts, Jeffrey; Globus, Tatiana; Brown, Elliott

    2005-05-01

    Collaboration with the University of Virginia (UVa) and the University of California, Santa Barbara (UCSB) has resulted in the collection of signature data in the THz region of the spectrum for ovalbumin, Bacillus Subtilis (BG) and RNA from MS2 phage. Two independent experimental measurement systems were used to characterize the bio-simulants. Prior to our efforts, only a limited signature database existed. The goal was to evaluate a larger ensemble of biological agent simulants (BG, MS2 and ovalbumin) by measuring their THz absorption spectra. UCSB used a photomixer spectrometer and UVa a Fourier Transform spectrometer to measure absorption spectra. Each group used different sample preparation techniques and made multiple measurements to provide reliable statistics. Data processing culminated in applying proprietary algorithms to develop detection filters for each simulant. Through a covariance matrix approach, the detection filters extract signatures over regions with strong absorption and ignore regions with large signature variation (noise). The discrimination capability of these filters was also tested. The probability of detection and false alarm for each simulant was analyzed by each simulant specific filter. We analyzed a limited set of Bacillus thuringiensis (BT) data (a near neighbor to BG) and were capable of discriminating between BT and BG. The signal processing and filter construction demonstrates signature specificity and filter discrimination capabilities.

  7. Bio-Inspired Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Warncke, Kurt

    2009-11-01

    The areas of solar-powered catalysts for energy rich fuels formation and bio-inspired molecular assemblies for integrating photon-to-fuels pathways have been identified by the Office of Basic Energy Sciences of the U. S. Department of Energy as challenges for the next generation of sustainable, high-efficiency solar energy conversion systems [1]. The light-harvesting, energy-transducing and carbon compound-synthesizing (carbon dioxide-fixing) reactions that are encompassed by natural photosynthesis offer molecular paradigms for efficient free energy capture and storage. We seek to emulate these features in cell-free, protein-based systems. Our goal is to transform the robust (alpha,beta)8-barrel fold of an enzyme that naturally catalyzes radical reactions into a catalytic module for the reduction of carbon dioxide to formate, by using the cobalt-containing cobalamins and other organocobalt centers. The activation of the catalytic center will be driven by photo-reduction, by using soluble and attached organic or semiconductor architectures. Progress on the biochemical, chemical, physical, and molecular biological (including rational design of high binding affinity and reactivity towards carbon dioxide) approaches to the development of the photocatalytic system will be presented.[4pt] [1] Lewis, N.; Crabtree, G. In: Basic Research Needs for Solar Energy Utilization, Basic Energy Sciences Workshop on Solar Energy Utilization, Energy, U.S. Department of Energy, Office of Science: 2005.

  8. Nanomaterials for bio-imaging and therapeutics

    NASA Astrophysics Data System (ADS)

    Liu, Yu-San

    2007-12-01

    In this thesis we studied the applications of colloidal nanocrystal quantum dots (QD) in bio-medical studies. We investigate the synthesis of QD and report a relatively simple method for synthesizing QD. To produce QDs that are more stable and have higher fluorescent quantum efficiency than those produced by other methods (typically CdSe/ZnS core/shell structures), we developed a CdSe/ZnSe/ZnS (core/shell/shell) nanocrystal complex, capped with the small molecule mercaptoacetic acid (MAA) for aqueous solubilization and low toxicity. These MAA-capped QDs can be used as the visualization aid for a multi-functional probe combining the functions of viruses and carbon nanotubes (CNT). A mild method of tagging virus through a polycationic solution, Polybrene, at 4°C is developed. This method can preserve most viral infectivity. The probes can be used to induce higher death rate in cells under near-infrared laser irradiation than in the cells without them, and thus, after additional improvements, may find applications in the study of cancer therapy. The optical properties of MAA-capped QDs are pH dependent. In particular, the fluorescence intensity increases with pH (pH between 4 and 10) of the environment. The results lead to a new venue to exploit QD as nano-scale sensors for localized physical and chemical properties in cells.

  9. BIO-Plex Information System Concept

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Boulanger, Richard; Arnold, James O. (Technical Monitor)

    1999-01-01

    This paper describes a suggested design for an integrated information system for the proposed BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) at Johnson Space Center (JSC), including distributed control systems, central control, networks, database servers, personal computers and workstations, applications software, and external communications. The system will have an open commercial computing and networking, architecture. The network will provide automatic real-time transfer of information to database server computers which perform data collection and validation. This information system will support integrated, data sharing applications for everything, from system alarms to management summaries. Most existing complex process control systems have information gaps between the different real time subsystems, between these subsystems and central controller, between the central controller and system level planning and analysis application software, and between the system level applications and management overview reporting. An integrated information system is vitally necessary as the basis for the integration of planning, scheduling, modeling, monitoring, and control, which will allow improved monitoring and control based on timely, accurate and complete data. Data describing the system configuration and the real time processes can be collected, checked and reconciled, analyzed and stored in database servers that can be accessed by all applications. The required technology is available. The only opportunity to design a distributed, nonredundant, integrated system is before it is built. Retrofit is extremely difficult and costly.

  10. O electrolyte for bio-application

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Almariri, A.

    2014-09-01

    Porous silicon (PS) has been prepared in the dark by anodic etching of n+-type (111) silicon substrate in a HF:HCl:C2H5OH:H2O2:H2O electrolyte. The processed PS layer is characterized by means of photoluminescence (PL) spectroscopy, scanning electron microscope (SEM), water contact angle (CA) measurements, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and micro-Raman scattering. The CA of fresh PS layer is found to be ~142°. On aging at ambient conditions, the CA decreases gently to reach ~133° after 3 month, and then it is stabilized for a prolonged time of aging. The visible PL emission from the PS layer also exhibits a good stability against aging time. The FTIR and XPS measurements and analysis show that the stable aged PS layer has rather SiO2-rich surface. The micro/nanostructure nature of the PS layer is revealed from SEM and micro-Raman results and correlated to CA results. Stable hydrophobic surface of oxidized PS layer is attractive for bio-applications. The efficiency of the produced PS layers as an entrapping template for specific immobilization of IgG2a antibody via physical absorption process is demonstrated.

  11. Acceptability of bio-engineered vaccines.

    PubMed

    Danner, K

    1997-01-01

    For hundreds of years bacterial and viral vaccines have been-in a way-bioengineered and were generally well received by the public, the authorities, and the medical profession. Today, additional tools, e.g. molecular biology, enable new approaches to the development of better and safer products. Various vaccines derived from gene technology have now been licensed for commercial use and are acknowledged within the scientific community. Acceptance by the public and the politicians is, however, negatively influenced by the discussions encompassing gene manipulation in man and animals, transgenic plant, and "novel food". Lack of information leads to confusion and fear. Concurrently, the absence of spectacular and life-threatening epidemics limits the perceived value of immune prophylaxis and its benefits. Scientists in institutes and industry are in a position to stimulate acceptability of bio-engineered vaccines by following some simple rule: (1) adherence to the principles of safety; (2) establishment of analytical and control methods; (3) well functioning regulatory and reporting systems; (4) demonstration of usefulness and economic benefits; (5) open communication; and (6) correct and prudent wording. PMID:9023035

  12. Bio-functionalized silk hydrogel microfluidic systems.

    PubMed

    Zhao, Siwei; Chen, Ying; Partlow, Benjamin P; Golding, Anne S; Tseng, Peter; Coburn, Jeannine; Applegate, Matthew B; Moreau, Jodie E; Omenetto, Fiorenzo G; Kaplan, David L

    2016-07-01

    Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 μm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogel-based microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems. PMID:27077566

  13. Catalytic applications of bio-inspired nanomaterials

    NASA Astrophysics Data System (ADS)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  14. Field-effect-based multifunctional hybrid sensor module for the determination of both (bio-)chemical and physical parameters

    NASA Astrophysics Data System (ADS)

    Schoening, Michael J.; Poghossian, Arshak; Schultze, J. Walter; Lueth, Hans

    2002-02-01

    Sensor systems for multi-parameter detection in fluidics usually combine different sensors, which are designed to detect either a physical or (bio-)chemical parameter. Therefore, such systems include a more complicated fabrication technology and measuring set-up. In this work, an ISFET (ion-sensitive field-effect transistor), which is well known as a (bio-)chemical sensor, is utilized as transducer for the detection of both (bio-)chemical and physical parameters. A multifunctional hybrid module for the determination of two (bio-)chemical parameters (pH, penicillin concentration) and three physical parameters (temperature, flow velocity and flow direction) using only two sensor structures, an ion generator and a reference electrode, is realized and its performance has been investigated. Here, a multifunctionality of the sensor system is achieved by means of different sensor arrangements and/or different operation modes. A Ta2O5-gate ISFET was used as transducer for all sensors. A novel time-of-flight type ISFET-based flow-velocity (flow rate) and flow-direction sensor using in-situ electrochemical generation of chemical tracers is presented. Due to the fast response of the ISFET (usually in the millisecond range), an ISFET-based flow sensor is suitable for the measurement of the flow velocity in a wide range. With regard to practical applications, pH measurements with this ISFET were performed in rain droplets.

  15. Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events

    PubMed Central

    Flood, Ann Barry; Boyle, Holly K.; Du, Gaixin; Demidenko, Eugene; Nicolalde, Roberto J.; Williams, Benjamin B.; Swartz, Harold M.

    2014-01-01

    Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100–1 000 000) and two rates for initiating processing of the marker (15 or 15 000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans. PMID:24729594

  16. Bio-preparates support the productivity of potato plants grown under desert farming conditions of north Sinai: Five years of field trials.

    PubMed

    Abbas, Mohammed T; Hamza, Mervat A; Youssef, Hanan H; Youssef, Gehan H; Fayez, Mohamed; Monib, Mohamed; Hegazi, Nabil A

    2014-01-01

    Organic agriculture as well as good agricultural practices (GAPs) intrigues the concern of both consumers and producers of agricultural commodities. Bio-preparates of various rhizospheric microorganisms (RMOs) are potential sources of biological inputs supporting plant nutrition and health. The response of open-field potatoes to the application of RMO bio-preparates, the biofertilizer "Biofertile" and the bioagent "Biocontrol", were experimented over 5 successive years under N-hunger of north Sinai desert soils. Both vegetative and tuber yields of a number of tested cultivars were significantly improved due to rhizobacterial treatments. In the majority of cases, the biofertilizer "Biofertile" did successfully supply ca. 50% of plant N requirements, as the yield of full N-fertilized plants was comparable to those received 50% N simultaneously with bio-preparates treatment. The magnitude of inoculation was cultivar-dependent; cvs. Valor and Oceania were among the most responsive ones. Bio-preparate introduction to the plant-soil system was successful via soaking of tubers and/or spraying the plant canopy. The "Biocontrol" formulation was supportive in controlling plant pathogens and significantly increased the fruit yields. The cumulative effect of both bio-preparates resulted in tuber yield increases of ca. 25% over control. PMID:25685470

  17. Licensing the future: report on BioMed Central's public consultation on open data in peer-reviewed journals.

    PubMed

    Hrynaszkiewicz, Iain; Busch, Stefan; Cockerill, Matthew J

    2013-01-01

    We report the outcomes of BioMed Central's public consultation on implementing open data-compliant licensing in peer-reviewed open access journals. Respondents (42) to the 2012 consultation were six to one in favor (29 in support; 5 against; 8 abstentions) of changing our authors' default open access copyright license agreement, to introduce the Creative Commons CC0 public domain waiver for data published in BioMed Central's journals. We summarize the different questions we received in response to the consultation and our responses to them - matters such as citation, plagiarism, patient privacy, and commercial use were raised. In light of the support for open data in our journals we outline our plans to implement, in September 2013, a combined Creative Commons Attribution license for published articles (papers) and Creative Commons CC0 waiver for published data. PMID:23962139

  18. Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism

    PubMed Central

    Feng, Youjun; Kumar, Ritesh; Ravcheev, Dmitry A; Zhang, Huimin

    2015-01-01

    Recently, we determined that BioR, the GntR family of transcription factor, acts as a repressor for biotin metabolism exclusively distributed in certain species of α-proteobacteria, including the zoonotic agent Brucella melitensis and the plant pathogen Agrobacterium tumefaciens. However, the scenario is unusual in Paracoccus denitrificans, another closely related member of the same phylum α-proteobacteria featuring with denitrification. Not only does it encode two BioR homologs Pden_1431 and Pden_2922 (designated as BioR1 and BioR2, respectively), but also has six predictive BioR-recognizable sites (the two bioR homolog each has one site, whereas the two bio operons (bioBFDAGC and bioYB) each contains two tandem BioR boxes). It raised the possibility that unexpected complexity is present in BioR-mediated biotin regulation. Here we report that this is the case. The identity of the purified BioR proteins (BioR1 and BioR2) was confirmed with LC-QToF-MS. Phylogenetic analyses combined with GC percentage raised a possibility that the bioR2 gene might be acquired by horizontal gene transfer. Gel shift assays revealed that the predicted BioR-binding sites are functional for the two BioR homologs, in much similarity to the scenario seen with the BioR site of A. tumefaciens bioBFDAZ. Using the A. tumefaciens reporter system carrying a plasmid-borne LacZ fusion, we revealed that the two homologs of P. denitrificans BioR are functional repressors for biotin metabolism. As anticipated, not only does the addition of exogenous biotin stimulate efficiently the expression of bioYB operon encoding biotin transport/uptake system BioY, but also inhibits the transcription of the bioBFDAGC operon resembling the de novo biotin synthetic pathway. EMSA-based screening failed to demonstrate that the biotin-related metabolite is involved in BioR-DNA interplay, which is consistent with our former observation with Brucella BioR. Our finding defined a complex regulatory network for biotin

  19. DC-STAMP knock-down deregulates cytokine production and T-cell stimulatory capacity of LPS-matured dendritic cells

    PubMed Central

    2011-01-01

    Background Dendritic cells (DCs) are the highly specialized antigen presenting cells of the immune system that play a key role in regulating immune responses. DCs can efficiently initiate immune responses or induce tolerance. Due to this dual function, DCs are studied in the context of immunotherapy for both cancer and autoimmune diseases. Characterization of DC-specific genes, leading to better understanding of DC immunobiology, will help to guide their use in clinical settings. We previously identified DC-STAMP, a multi-membrane spanning protein preferentially expressed by DCs. DC-STAMP resides in the endoplasmic reticulum (ER) of immature DCs and translocates towards the Golgi compartment upon maturation. In this study we knocked down DC-STAMP in mouse bone marrow-derived DCs (mBMDCs) to determine its function. Results We demonstrate that DC-STAMP knock-down mBMDCs secrete less IL-6, IL-12, TNF-α and IL-10 while IL-1 production is enhanced. Moreover, LPS-matured DC-STAMP knock-down mBMDCs show impaired T cell activation potential and induction of Th1 responses in an alloreaction. Conclusions We show that DC-STAMP plays an important role in cytokine production by mBMDCs following LPS exposure. Our results reveal a novel function of DC-STAMP in regulating DC-initiated immune responses. PMID:21978263

  20. Label-free multi-analyte detection using a BioCD

    NASA Astrophysics Data System (ADS)

    Varma, Manoj M.; Peng, Leilei; Regnier, Fred E.; Nolte, David D.

    2005-03-01

    We previously reported the application of spinning-disk interferometry, implemented in a compact optical sensor format called the BioCD, in the detection of antigen-antibody recognition. The BioCD consists of interferometers micro-fabricated on the surface of a 2" laser mirror disk, which can spin up to 6000 rpm resulting in high data acquisition rates. The interferometric elements are fabricated by evaporating gold ridges on the mirror substrate operating in the linear sensitivity regime of the interferometer defined as quadrature. Antibodies or proteins are immobilized on the gold interferometric structures through alkanethiols, and the target molecules are immobilized by application of reagents or samples to the disk while it is spinning. The centrifugal force distributes the sample over the sensor surface, causing a change in the optical phase of the interferometric elements, which is detected in real time using a lock-in amplifier with small detection bandwidth. We detected the binding of Mouse IgG by immobilized Anti-Mouse IgG using the BioCD with a detection limit of 1 ng/ml and low non-specific binding. Furthermore, the selectivity of specific binding was found to be greater than 1 in 10000, determined using the response curve of the BioCD to exposures of specific and non-specific analytes of varying concentrations. This opens up the possibility of simultaneous detection of several analytes with the same sensor while maintaining high selectivity. In this paper we demonstrate simultaneous detection of Rabbit and Mouse IgG on the same disk. The sensitivity limit for multi-analyte detection remains the same as that for a single analyte. In addition to the ability to do simultaneous detection, the current detection scheme presents a way to reference the results of one track with respect to others, thus increasing the reliability of the data. Used in conjunction with high-density protein patterning techniques, the BioCD has the potential to be a highly

  1. [Determination of lead in microemulsified rapeseed oil and bio-diesel oil by GFAAS].

    PubMed

    Li, Sheng-qing; He, Xiao-min; Du, Ping; Wang, Min; Chen, Hao; Wu, Mou-cheng

    2008-10-01

    Bio-diesel oil has attracted much attention as a substitutable energy sources for its renewable and eco-friendly property. However, problems of lead contamination in fuel are also emphasized increasingly at present. So it was of quite significance to determine the contents of lead in bio-diesel oil and its raw material rapeseed oil. An effective method was developed for the rapid determination of lead in rapeseed oil and bio-diesel oil by graphite furnace atomic absorption spectrometry (GFAAS) after their stabilization as microemulsions. In this research work, polyethyleneglycol octyl phenyl ether and n-butanol were used for emulsifier and auxiliary emulsifying agent, respectively. For Pb, efficient thermal stabilization was obtained using NH4H2PO4 as matrix modifier. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization and the influence of the microemulsion composition on the GFAAS response were observed by mixing different organic solvents. The ashing and atomization temperature and ramp rate influenced the sensitivity obtained for Ph. Take this into account, the optimum conditions of the graphite furnace atomic absorption spectrometric determination of Pb in rapeseed oil and bio-diesel oil samples were investigated. The results showed that the microemulsion was quite stable when the value of V(20% polyethyleneglycol octyl phenyl ether), V(n-butanol), V(oil) and V(water) was 0.1: 8.9: 0.5: 0.5, without matrix interference effect. The determination limit of the proposed method was 126.2 microg x L(-1) for Pb, comfortably below the values found in the analyzed samples. The recoveries were from 81.8% to 109.0%, which performed using the addition of different concentrations of lead to bio-diesel oil, rapeseed oil and petrochemical diesel samples. The relative standard deviation of determination was 5.84%. This work showed the great efficiency of the microemulsion

  2. Dose-response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products.

    PubMed

    Ortiz de García, Sheyla; García-Encina, Pedro A; Irusta-Mata, Rubén

    2016-01-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a real and widespread concern in recent years. Therefore, the primary goal of this study was to investigate 20 common and widely used PPCPs to assess their individual and combined effect on an important species in one trophic level, i.e., bacteria. The ecotoxicological effects of PPCPs at two different concentration ranges were determined in the bacterium Vibrio fischeri using Microtox(®) and were statistically analyzed using three models in the GraphPad Prism 6 program for Windows, v.6.03. A four-parameter model best fit the majority of the compounds. The half maximal effective concentration (EC50) of each PPCP was estimated using the best-fitting model and was compared with the results from a recent study. Comparative analysis indicated that most compounds showed the same level of toxicity. Moreover, the stimulatory effects of PPCPs at environmental concentrations (low doses) were assessed. These results indicated that certain compounds have traditional inverted U- or J-shaped dose-response curves, and 55% of them presented a stimulatory effect below the zero effect-concentration point. Effective concentrations of 0 (EC0), 5 (EC5) and 50% (EC50) were calculated for each PPCP as the ecotoxicological points. All compounds that presented narcosis as a mode of toxic action at high doses also exhibited stimulation at low concentrations. The maximum stimulatory effect of a mixture was higher than the highest stimulatory effect of each individually tested compound. Moreover, when the exposure time was increased, the hormetic effect decreased. Hormesis is being increasingly included in dose-response studies because this may have a harmful, beneficial or indifferent effect in an environment. Despite the results obtained in this research, further investigations need to be conducted to elucidate the behavior of PPCPs in aquatic environments. PMID:26518677

  3. A Bio-Realistic Analog CMOS Cochlea Filter With High Tunability and Ultra-Steep Roll-Off.

    PubMed

    Wang, Shiwei; Koickal, Thomas Jacob; Hamilton, Alister; Cheung, Rebecca; Smith, Leslie S

    2015-06-01

    This paper presents the design and experimental results of a cochlea filter in analog very large scale integration (VLSI) which highly resembles physiologically measured response of the mammalian cochlea. The filter consists of three specialized sub-filter stages which respectively provide passive response in low frequencies, actively tunable response in mid-band frequencies and ultra-steep roll-off at transition frequencies from pass-band to stop-band. The sub-filters are implemented in balanced ladder topology using floating active inductors. Measured results from the fabricated chip show that wide range of mid-band tuning including gain tuning of over 20 dB, Q factor tuning from 2 to 19 as well as the bio-realistic center frequency shift are achieved by adjusting only one circuit parameter. Besides, the filter has an ultra-steep roll-off reaching over 300 dB/dec. By changing biasing currents, the filter can be configured to operate with center frequencies from 31 Hz to 8 kHz. The filter is 9th order, consumes 59.5 ∼ 90.0 μW power and occupies 0.9 mm2 chip area. A parallel bank of the proposed filter can be used as the front-end in hearing prosthesis devices, speech processors as well as other bio-inspired auditory systems owing to its bio-realistic behavior, low power consumption and small size. PMID:25099631

  4. What is life? Bio-physical perspectives.

    PubMed

    Gladyshev, G P

    2009-01-01

    Life arises and develops in gravitationally bound atomic systems, under certain conditions, in the presence of the inflow of energy. A condition of structural dynamic reactivity to the energy inflow qualifies what are anthropomorphically considered as "alive objects". Alive objects, in this perspective, include such rudimentary animate atomic structures as the retinal molecule C20H28o to the herpes simplex virus C102H152N26o29 to the human being, a twenty-six element atomic structure, which can be quantified further as thermodynamic quasi-closed supramolecular systems, which are part of natural open systems. These systems appear and evolve in periodic conditions near to internal equilibrium. This systems attribute of dynamic life can be understood further by the determination and use of mathematical "state functions", which are functions that quantify the state of a system defined by the ensemble of physical quantities: temperature, pressure, composition, etc., which characterize the system, but neither by its surroundings nor by its history. In this view, the phenomenon of a life is easily understood as a general consequence of the laws of the universe, in particular, the laws of thermodynamics, which in the geocentric perspective translate to a formulation of "hierarchical thermodynamics" and a "principle of substance stability". The formation of living thermodynamic structures, in short, arises on the nanolevel by a constantly varying environment that causes variety of living forms. The definition of a life as the bio-chemical-physical phenomenon can thus be given on the basis of the exact sciences, i. e. chemistry, physics, and thermodynamics, without mention of numerous private attributes of a living substance and without physically baseless models of mathematical modeling, such as Prigoginean thermodynamics. PMID:19947386

  5. BioEnergy Feasibility in South Africa

    NASA Astrophysics Data System (ADS)

    Hugo, Wim

    2015-04-01

    The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural

  6. Genome sequence of "Candidatus Microthrix parvicella" Bio17-1, a long-chain-fatty-acid-accumulating filamentous actinobacterium from a biological wastewater treatment plant.

    PubMed

    Muller, Emilie E L; Pinel, Nicolás; Gillece, John D; Schupp, James M; Price, Lance B; Engelthaler, David M; Levantesi, Caterina; Tandoi, Valter; Luong, Khai; Baliga, Nitin S; Korlach, Jonas; Keim, Paul S; Wilmes, Paul

    2012-12-01

    "Candidatus Microthrix" bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: "Candidatus Microthrix parvicella" strain Bio17-1. PMID:23144412

  7. Genome Sequence of “Candidatus Microthrix parvicella” Bio17-1, a Long-Chain-Fatty-Acid-Accumulating Filamentous Actinobacterium from a Biological Wastewater Treatment Plant

    PubMed Central

    Muller, Emilie E. L.; Pinel, Nicolás; Gillece, John D.; Schupp, James M.; Price, Lance B.; Engelthaler, David M.; Levantesi, Caterina; Tandoi, Valter; Luong, Khai; Baliga, Nitin S.; Korlach, Jonas; Keim, Paul S.

    2012-01-01

    “Candidatus Microthrix” bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: “Candidatus Microthrix parvicella” strain Bio17-1. PMID:23144412

  8. Principle of bio-inspired insect wing rotational hinge design

    NASA Astrophysics Data System (ADS)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  9. Gradient packing bed bio-filter for landfill methane mitigation.

    PubMed

    Obulisamy, Parthiba Karthikeyan; Sim Yan May, Jane; Rajasekar, Balasubramanian

    2016-10-01

    We assessed the suitability of various biogenic materials for development of a gradient packed bed bio-filter to mitigate the methane (CH4) emission from landfills. Five different biogenic materials (windrow compost-WC; vermicompost-VC; landfill top cover-LTC; landfill bottom soil-LBS; and river soil sediment-SS) were screened. Among these materials, the VC showed a better CH4 oxidation potential (MOP) of 12.6μg CH4 gdw(-1)h(-1). Subsequently, the VC was used as a packing material along with wood chips in proto-type bio-filters. Wood chips were mixed at 5-15% to form three distinct gradients in a test bio-filter. Under the three different CH4 loading rates of 33, 44 and 55 gCH4 m(-3)h(-1), the achieved MOPs were 31, 41, and 47gCH4 m(-3)h(-1), respectively. The gradient packed bed bio-filter is effective for landfill CH4 mitigation than the conventional bio-filter as the latter shows gas channeling effects with poor MOPs. PMID:26883060

  10. Computational Metabolomics Operations at BioCyc.org

    PubMed Central

    Karp, Peter D.; Billington, Richard; Holland, Timothy A.; Kothari, Anamika; Krummenacker, Markus; Weaver, Daniel; Latendresse, Mario; Paley, Suzanne

    2015-01-01

    BioCyc.org is a genome and metabolic pathway web portal covering 5500 organisms, including Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae and Escherichia coli. These organism-specific databases have undergone variable degrees of curation. The EcoCyc (Escherichia coli Encyclopedia) database is the most highly curated; its contents have been derived from 27,000 publications. The MetaCyc (Metabolic Encyclopedia) database within BioCyc is a “universal” metabolic database that describes pathways, reactions, enzymes and metabolites from all domains of life. Metabolic pathways provide an organizing framework for analyzing metabolomics data, and the BioCyc website provides computational operations for metabolomics data that include metabolite search and translation of metabolite identifiers across multiple metabolite databases. The site allows researchers to store and manipulate metabolite lists using a facility called SmartTables, which supports metabolite enrichment analysis. That analysis operation identifies metabolite sets that are statistically over-represented for the substrates of specific metabolic pathways. BioCyc also enables visualization of metabolomics data on individual pathway diagrams and on the organism-specific metabolic map diagrams that are available for every BioCyc organism. Most of these operations are available both interactively and as programmatic web services. PMID:26011592

  11. Biology Intensive Orientation for Students (BIOS): a biology "boot camp".

    PubMed

    Wischusen, Sheri Maples; Wischusen, E William

    2007-01-01

    The Biology Intensive Orientation for Students (BIOS) Program was designed to assess the impact of a 5-d intensive prefreshman program on success and retention of biological science majors at Louisiana State University. The 2005 pilot program combined content lectures and examinations for BIOL 1201, Introductory Biology for Science Majors, as well as learning styles assessments and informational sessions to provide the students with a preview of the requirements of biology and the pace of college. Students were tracked after their BIOS participation, and their progress was compared with a control group composed of students on the BIOS waiting list and a group of BIOL 1201 students who were identified as the academic matches to the BIOS participants (high school GPA, ACT score, and gender). The BIOS participants performed significantly better on the first and second exams, they had a higher course average, and they had a higher final grade than the control group. These students also had higher success rates (grade of "A," "B," or "C") during both the fall and spring semesters and remained on track through the first semester of their sophomore year to graduate in 4 yr at a significantly higher rate than the control group. PMID:17548879

  12. The importance of assessing self-reported HIV status in bio-behavioural surveys.

    PubMed

    Johnston, Lisa G; Sabin, Miriam Lewis; Prybylski, Dimitri; Sabin, Keith; McFarland, Willi; Baral, Stefan; Kim, Andrea A; Raymond, H Fisher

    2016-08-01

    In bio-behavioural surveys measuring prevalence of infection with human immunodeficiency virus (HIV), respondents should be asked the results of their last HIV test. However, many government authorities, nongovernmental organizations, researchers and other civil society stakeholders have stated that respondents involved in such surveys should not be asked to self-report their HIV status. The reasons offered for not asking respondents to report their status are that responses may be inaccurate and that asking about HIV status may violate the respondents' human rights and exacerbate stigma and discrimination. Nevertheless, we contend that, in the antiretroviral therapy era, asking respondents in bio-behavioural surveys to self-report their HIV status is essential for measuring and improving access to - and coverage of - services for the care, treatment and prevention of HIV infection. It is also important for estimating the true size of the unmet needs in addressing the HIV epidemic and for interpreting the behaviours associated with the acquisition and transmission of HIV infection correctly. The data available indicate that most participants in health-related surveys are willing to respond to a question about HIV status - as one of possibly several sensitive questions about sexual and drug use behaviours. Ultimately, normalizing the self-reporting of HIV status could help the global community move from an era of so-called exceptionalism to one of destigmatization - and so improve the epidemic response worldwide. PMID:27516638

  13. The importance of assessing self-reported HIV status in bio-behavioural surveys

    PubMed Central

    Johnston, Lisa G; Sabin, Miriam Lewis; Prybylski, Dimitri; McFarland, Willi; Baral, Stefan; Kim, Andrea A; Raymond, H Fisher

    2016-01-01

    Abstract In bio-behavioural surveys measuring prevalence of infection with human immunodeficiency virus (HIV), respondents should be asked the results of their last HIV test. However, many government authorities, nongovernmental organizations, researchers and other civil society stakeholders have stated that respondents involved in such surveys should not be asked to self-report their HIV status. The reasons offered for not asking respondents to report their status are that responses may be inaccurate and that asking about HIV status may violate the respondents’ human rights and exacerbate stigma and discrimination. Nevertheless, we contend that, in the antiretroviral therapy era, asking respondents in bio-behavioural surveys to self-report their HIV status is essential for measuring and improving access to – and coverage of – services for the care, treatment and prevention of HIV infection. It is also important for estimating the true size of the unmet needs in addressing the HIV epidemic and for interpreting the behaviours associated with the acquisition and transmission of HIV infection correctly. The data available indicate that most participants in health-related surveys are willing to respond to a question about HIV status – as one of possibly several sensitive questions about sexual and drug use behaviours. Ultimately, normalizing the self-reporting of HIV status could help the global community move from an era of so-called exceptionalism to one of destigmatization – and so improve the epidemic response worldwide. PMID:27516638

  14. Graphene Quantum Dots Interfaced with Single Bacterial Spore for Bio-Electromechanical Devices: A Graphene Cytobot

    PubMed Central

    Sreeprasad, T. S.; Nguyen, Phong; Alshogeathri, Ahmed; Hibbeler, Luke; Martinez, Fabian; McNeil, Nolan; Berry, Vikas

    2015-01-01

    The nanoarchitecture and micromachinery of a cell can be leveraged to fabricate sophisticated cell-driven devices. This requires a coherent strategy to derive cell's mechanistic abilities, microconstruct, and chemical-texture towards such microtechnologies. For example, a microorganism's hydrophobic membrane encapsulating hygroscopic constituents allows it to sustainably withhold a high aquatic pressure. Further, it provides a rich surface chemistry available for nano-interfacing and a strong mechanical response to humidity. Here we demonstrate a route to incorporate a complex cellular structure into microelectromechanics by interfacing compatible graphene quantum dots (GQDs) with a highly responsive single spore microstructure. A sensitive and reproducible electron-tunneling width modulation of 1.63 nm within a network of GQDs chemically-secured on a spore was achieved via sporal hydraulics with a driving force of 299.75 Torrs (21.7% water at GQD junctions). The electron-transport activation energy and the Coulomb blockade threshold for the GQD network were 35 meV and 31 meV, respectively; while the inter-GQD capacitance increased by 1.12 folds at maximum hydraulic force. This is the first example of nano/bio interfacing with spores and will lead to the evolution of next-generation bio-derived microarchitectures, probes for cellular/biochemical processes, biomicrorobotic-mechanisms, and membranes for micromechanical actuation. PMID:25774962

  15. Graphene Quantum Dots Interfaced with Single Bacterial Spore for Bio-Electromechanical Devices: A Graphene Cytobot

    NASA Astrophysics Data System (ADS)

    Sreeprasad, T. S.; Nguyen, Phong; Alshogeathri, Ahmed; Hibbeler, Luke; Martinez, Fabian; McNeil, Nolan; Berry, Vikas

    2015-03-01

    The nanoarchitecture and micromachinery of a cell can be leveraged to fabricate sophisticated cell-driven devices. This requires a coherent strategy to derive cell's mechanistic abilities, microconstruct, and chemical-texture towards such microtechnologies. For example, a microorganism's hydrophobic membrane encapsulating hygroscopic constituents allows it to sustainably withhold a high aquatic pressure. Further, it provides a rich surface chemistry available for nano-interfacing and a strong mechanical response to humidity. Here we demonstrate a route to incorporate a complex cellular structure into microelectromechanics by interfacing compatible graphene quantum dots (GQDs) with a highly responsive single spore microstructure. A sensitive and reproducible electron-tunneling width modulation of 1.63 nm within a network of GQDs chemically-secured on a spore was achieved via sporal hydraulics with a driving force of 299.75 Torrs (21.7% water at GQD junctions). The electron-transport activation energy and the Coulomb blockade threshold for the GQD network were 35 meV and 31 meV, respectively; while the inter-GQD capacitance increased by 1.12 folds at maximum hydraulic force. This is the first example of nano/bio interfacing with spores and will lead to the evolution of next-generation bio-derived microarchitectures, probes for cellular/biochemical processes, biomicrorobotic-mechanisms, and membranes for micromechanical actuation.

  16. Lessons learned from U.S. Department of Defense 911-Bio Advanced Concept Technology Demonstrations.

    SciTech Connect

    Baldwin, T.; Gasper, W.; Lacher, L.; Newsom, D.; Yantosik, G.

    1999-07-06

    The US Department of Defense (DoD), in cooperation with other federal agencies, has taken many initiatives to improve its ability to support civilian response to a domestic biological terrorism incident. This paper discusses one initiative, the 911-Bio Advanced Concept Technology Demonstrations (ACTDs), conducted by the Office of the Secretary of Defense during 1997 to better understand: (1) the capability of newly developed chemical and biological collection and identification technologies in a field environment; (2) the ability of specialized DoD response teams to use these new technologies within the structure of cooperating DoD and civilian consequence management organizations; and (3) the adequacy of current modeling tools for predicting the dispersal of biological hazards. This paper discusses the experience of the ACTDs from the civilian community support perspective. The 911-Bio ACTD project provided a valuable opportunity for DoD and civilian officials to learn how they should use their combined capabilities to manage the aftermath of a domestic biological terrorism incident.

  17. Flow Type Bio-Chemical Calorimeter with Micro Differential Thermopile Sensor.

    PubMed

    Saito, Masataka; Nakabeppu, Osamu

    2015-04-01

    Bio-chemical calorimeters with a MEMS (Micro-Electro-Mechanical Systems) thermopile sensor have been studied for monitoring detailed processes of the biochemical reactions of a minute sample with a high temporal resolution. The bio-calorimeters are generally divided into a batch-type and a flow-type. We developed a highly sensitive batch-type calorimeter which can detect a 100 nW level thermal reaction. However it shows a long settling time of 2 hours because of the heat capacity of a whole calorimeter. Thus, the flow-type calorimeters in passive and active mode have been studied for measuring the thermal reactions in an early stage after starting an analysis. The flow-type calorimeter consists of the MEMS differential thermopile sensor, a pair of micro channel reactor in a PDMS (polydimethylsiloxane) sheet in a three-fold thermostat chamber. The calorimeter in the passive mode was tested with dilution reactions of ethanol to water and NaCl aqueous solution to water. It was shown that the calorimeter detects exo- and endothermic reaction over 250 nW at solution flow rate of 0.05 ~ 1 µl/min with a settling time of about 4 minutes. In the active mode, a response test was conducted by using heat removal by water flow from the reactor channel. The active calorimetry enhances the response time about three to four times faster. PMID:26353514

  18. Image Formation in Bio-optical Sensing

    NASA Astrophysics Data System (ADS)

    Miller, Eric

    2012-02-01

    Over the past two decades a number of optical sensing methods have emerged with potential to provide complementary information to traditional medical imaging modalities in application areas ranging from basic science to disease diagnosis and treatment monitoring. Though still largely in the research and development stage, modalities including diffuse optical tomography (DOT), fluorescence molecular tomography (FMT), photo-acoustic tomography (PAT), and bio-luminescence tomography (BLT) have excited much interest due to their natural functional imaging capability, their relatively low cost, and the fact that none required the use of ionizing radiation. These advantages however are tempered by a number of challenges associated with the processing of these data. Specifically, these data types all rely in one way or another on the interaction of light with tissue. The diffusive nature of this interaction inherently limits the spatial resolution of these modalities. As a result the process of forming an image is a far more delicate task than is the case with more standard imaging modalities such as X-ray computed tomography (CT). Two basic methods have been explored to address the ill-posedness of these problems in order to improve the information content in the resulting images. The optical data may be augmented either through the use of spectral diversity or by attempting to integrate optical data types with information from other modalities such as CT or MRI. Alternatively, a mathematical technique known as regularization can be used to impose physically-based constraints on the reconstruction. In this talk, I shall provide an overview of the work in my group in optical image formation within the contexts of DOT for breast cancer imaging and FMT for small animal imaging. The focus of the talk will be on methods that integrate data augmentation and mathematical regularization. In the case of FMT, we shall discuss our work in combining the optical data with information

  19. Astragalus Root and Elderberry Fruit Extracts Enhance the IFN-β Stimulatory Effects of Lactobacillus acidophilus in Murine-Derived Dendritic Cells

    PubMed Central

    Frøkiær, Hanne; Henningsen, Louise; Metzdorff, Stine Broeng; Weiss, Gudrun; Roller, Marc; Flanagan, John; Fromentin, Emilie; Ibarra, Alvin

    2012-01-01

    Many foods and food components boost the immune system, but little data are available regarding the mechanisms by which they do. Bacterial strains have disparate effects in stimulating the immune system. Indendritic cells, the gram-negative bacteria Escherichia coli upregulates proinflammatory cytokines, whereas gram-positive Lactobacillus acidophilus induces a robust interferon (IFN)-β response. The immune-modulating effects of astragalus root and elderberry fruit extracts were examined in bone marrow-derived murine dendritic cells that were stimulated with L. acidophilus or E. coli. IFN-β and other cytokines were measured by ELISA and RT-PCR. Endocytosis of fluorescence-labeled dextran and L. acidophilus in the presence of elderberry fruit or astragalus root extract was evaluated in dendritic cells. Our results show that both extracts enhanced L. acidophilus-induced IFN-β production and slightly decreased the proinflammatory response to E. coli. The enhanced IFN-β production was associated with upregulation of toll-like receptor 3 and to a varying degree, the cytokines IL-12, IL-6, IL-1β and TNF-α. Both extracts increased endocytosis in immature dendritic cells, and only slightly influenced the viability of the cells. In conclusion, astragalus root and elderberry fruit extracts increase the IFN-β inducing activity of L. acidophilus in dendritic cells, suggesting that they may exert antiviral and immune-enhancing activity. PMID:23118903

  20. A highly sensitive, integrable, multimode, interferometric, evanescent-wave chem/bio sensor

    NASA Astrophysics Data System (ADS)

    Lillie, Jeffrey J.

    SL, and thus the sensitivity. The chemo-optic response of the 'substituted polynorbornene' polymer, hexaflouro-isopropanol substituted polynorbornene to methanol, water, iso-propanol, and benzene has been measured. Also, its thermo-optic response has been measured. Athermal interferometric chem/bio sensors have then been suggested.

  1. Bio-assays for microchemical environmental contaminants

    PubMed Central

    Warner, Richard E.

    1967-01-01

    A solution of the problem of environmental contamination must be based on accurate measurement of the extent of the contamination and of the resulting hazards. This paper reviews the methods for the estimation of microchemical contaminants in water with the aid of living organisms. The methods are grouped according to the nature of the response of the organism to the contaminant—namely, acute response (usually death), behavioural change, physiological change, biochemical and histochemical change, ecological change, embryological and regenerational change, growth change, histological change and perception by man or aquatic organisms. Finally, the following problems are discussed: selection of appropriate tests and standardization, the dangers of sequential concentration and the need for multi-parametric assays (assays involving several responses of a single organism, or responses of several organisms) for complete characterization of the effects of a contaminant on the environment. ImagesFIG. 2FIG. 3FIG. 4FIG. 5FIG. 6 PMID:5299747

  2. Analytical development of a binuclear oxo-manganese complex bio-inspired on oxidase enzyme for doping control analysis of acetazolamide.

    PubMed

    Machini, Wesley B S; Teixeira, Marcos F S

    2016-05-15

    A bio-inspired electrochemical sensor using a binuclear oxo-manganese complex was evaluated and applied in the detection of a substance associated with doping in sports: acetazolamide (ACTZ). Investigation was made of the influence of different experimental variables on the electrocatalytic oxidation of ACTZ by the bio-inspired sensor, such as pH and interfering species. The bio-inspired sensor showed the best response in the range from 5.00×10(-9) to 7.00×10(-8) mol L(-1) ACTZ, with a linear range from 5.00×10(-9) to 2.50×10(-8) mol L(-1) and a detection limit of 4.76×10(-9) mol L(-1). The sensor exhibited characteristics similar to the Michaelis-Menten model of an enzymatic electrode, due to the use of a multinucleated complex of manganese with μ-oxo units, which was able to mimic the properties of enzymes with manganese as a cofactor in their composition, such as Mn-containing oxidase. The determination of ACTZ with the bio-inspired sensor was evaluated using three different synthetic biological fluids (plasma, saliva, and urine), demonstrating its viability for use with real samples. The analysis of ACTZ in real urine samples using the bio-inspired sensor, simulating the method adopted by the World Anti-Doping Agency, which revealed viable, suggesting a new and promising platform to be used in these analysis. PMID:26745790

  3. BlenX4Bio - BlenX for Biologists

    NASA Astrophysics Data System (ADS)

    Priami, Corrado; Ballarini, Paolo; Quaglia, Paola

    We introduce BlenX4Bio, a high-level interface for the programming language BlenX. BlenX4Bio allows biologists to write BlenX programs without having any programming skills. The main elements of a biological model are specified by filling in a number of tables. Such tables include descriptions of both static and dynamic aspects of the biological system at hand and can then be automatically mapped to BlenX programs for simulation and analysis by means of the CoSBi Lab software platform. In this paper we illustrate the main characteristics of BlenX4Bio through examples taken from biology textbooks.

  4. [(Bio)artificial liver support: ready for the patient?].

    PubMed

    Chamuleau, R A F M

    2016-05-01

    In 2016, an intensive-care physician has at his disposal a number of artificial organs for the support of patients with organ failure. Examples are the artificial kidney and the heart-lung machine. Artificial livers are being developed for patients with severe liver failure whose lives can only be saved at the present time by a transplant with a donor liver. These artificial livers are based either on a device that removes toxic materials from the patient's blood with, for example, albumin dialysis, or make use of bio-reactors filled with functioning liver cells, the so-called bio-artificial liver. In theory, the bio-artificial liver has the greatest potential to increase life expectancy. The results of clinical studies are also very promising. They are not yet sufficient, however, to permit general clinical use. PMID:27166453

  5. Bio-orthogonally Deciphered Binary Nanoemitters for Tumor Diagnostics.

    PubMed

    An, Hong-Wei; Qiao, Sheng-Lin; Li, Li-Li; Yang, Chao; Lin, Yao-Xin; Wang, Yi; Qiao, Zeng-Ying; Wang, Lei; Wang, Hao

    2016-08-01

    Bioinspired design concept has been recognized as one of the most promising strategies for discovering new biomaterials. However, smart biomaterials that are of growing interests in biomedical field need biological processability to meet their emergent applications in vivo. Herein, a new bio-orthogonally deciphered approach has been demonstrated for modulating optical properties of nanomaterials in living systems. The self-assembled nanoemitters based on cyanine-pyrene molecule 1 with inert optical property are designed and prepared. The structure and optical feature of the nanoemitters 1 can be efficiently and reliably modulated by a unique bio-orthogonal mechanism with abundant glutathione (GSH) as an activator. As a result, the self-assembled nanoemitters 1 spontaneously exhibits binary emissions for high-performance tumor imaging in vivo. We believe that this bio-orthogonally deciphered strategy opens a new avenue for designing variable smart biomaterials or devices in biomedical applications. PMID:27434548

  6. Bio-enhanced repair of the anterior cruciate ligament

    PubMed Central

    Proffen, Benedikt L.; Sieker, Jakob T.; Murray, Martha

    2015-01-01

    Suture repair of the ACL has been widely abandoned in favor of ACL reconstruction, largely due to the high rates of failure and unreliability of the outcomes following suture repair. However, there have been recent basic science studies which suggest that combining a suture repair with a biologic adjunct may improve the results of suture repair of the ACL, with several studies in large animal models showing equivalent strength of an ACL treated with bio-enhanced repaired with that of an ACL graft at 3, 6 and 12 months after surgery. In addition, the groups treated with bio-enhanced repair had significantly less osteoarthritis when compared with the animals undergoing ACL reconstruction. These findings have led to a renewed interest in bio-enhanced primary repair as a way to make repair of the ACL a viable option for a select group of patients in the future. PMID:25595694

  7. The BioHome: A spinoff of space technology

    NASA Technical Reports Server (NTRS)

    Johnson, Anne

    1990-01-01

    The discussion of the BioHome is prefaced with some information about the work done at the environmental lab over the past 15 years concerning environmental issues related to biological life support such as the use of water hyacinths for wastewater purification, artificial marshes, indoor polluted air revitalization, and the reduction of organic contaminants using a biological system comprised of plants and microorganisms. One of the main concerns, especially with respect to a closed environment, is whether or not these systems are expelling microorganisms into the air. Analyses are being conducted to determine the numbers and types of microbes that are emitted. The BioHome is a 650 sq ft habitat that will enable the evaluation of the efficiency of bioregenerative technology in a closed system. This BioHome system is described and its functions discussed.

  8. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  9. Hydroprocessing Bio-oil and Products Separation for Coke Production

    SciTech Connect

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2013-04-01

    Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

  10. BioFET-SIM Web Interface: Implementation and Two Applications

    PubMed Central

    Hediger, Martin R.; Jensen, Jan H.; De Vico, Luca

    2012-01-01

    We present a web interface which allows us to conveniently set up calculations based on the BioFET-SIM model. With the interface, the signal of a BioFET sensor can be calculated depending on its parameters, as well as the signal dependence on pH. As an illustration, two case studies are presented. In the first case, a generic peptide with opposite charges on both ends is inverted in orientation on a semiconducting nanowire surface leading to a corresponding change in sign of the computed sensitivity of the device. In the second case, the binding of an antibody/antigen complex on the nanowire surface is studied in terms of orientation and analyte/nanowire surface distance. We demonstrate how the BioFET-SIM web interface can aid in the understanding of experimental data and postulate alternative ways of antibody/antigen orientation on the nanowire surface. PMID:23056201

  11. C-MEMS for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Song, Yin; Agrawal, Richa; Wang, Chunlei

    2015-05-01

    Developing highly sensitive, selective, and reproducible miniaturized bio-sensing platforms require reliable biointerface which should be compatible with microfabrication techniques. In this study, we have fabricated pyrolyzed carbon arrays with high surface area as a bio-sensing electrode, and developed the surface functionalization methods to increase biomolecules immobilization efficiency and further understand electrochemical phenomena at biointerfaces. The carbon microelectrode arrays with high aspect ratio have been fabricated by carbon microelectromechanical systems (C-MEMS) and nanomaterials such as graphene have been integrated to further increase surface area. To achieve the efficient covalent immobilization of biomolecules, various oxidation and reduction functionalization methods have been investigated. The oxidation treatment in this study includes vacuum ultraviolet, electrochemical activation, UV/Ozone and oxygen RIE. The reduction treatment includes direct amination and diazonium grafting. The developed bio-sensing platform was then applied for several applications, such as: DNA sensor; H2O2 sensor; aptamer sensor and HIV sensor.

  12. Mathematical Modelling of Bacterial Populations in Bio-remediation Processes

    NASA Astrophysics Data System (ADS)

    Vasiliadou, Ioanna A.; Vayenas, Dimitris V.; Chrysikopoulos, Constantinos V.

    2011-09-01

    An understanding of bacterial behaviour concerns many field applications, such as the enhancement of water, wastewater and subsurface bio-remediation, the prevention of environmental pollution and the protection of human health. Numerous microorganisms have been identified to be able to degrade chemical pollutants, thus, a variety of bacteria are known that can be used in bio-remediation processes. In this study the development of mathematical models capable of describing bacterial behaviour considered in bio-augmentation plans, such as bacterial growth, consumption of nutrients, removal of pollutants, bacterial transport and attachment in porous media, is presented. The mathematical models may be used as a guide in designing and assessing the conditions under which areas contaminated with pollutants can be better remediated.

  13. Bio-nano interactions detected by nanochannel electrophoresis.

    PubMed

    Luan, Binquan

    2016-08-01

    Engineered nanoparticles have been widely used in industry and are present in many consumer products. However, their bio-safeties especially in a long term are largely unknown. Here, a nanochannel-electrophoresis-based method is proposed for detecting the potential bio-nano interactions that may further lead to damages to human health and/or biological environment. Through proof-of-concept molecular dynamics simulations, it was demonstrated that the transport of a protein-nanoparticle complex is very different from that of a protein along. By monitoring the change of ionic currents induced by a transported analyte as well as the transport velocities of the analyte, the complex (with bio-nano interaction) can be clearly distinguished from the protein alone (with no interaction with tested nanoparticles). PMID:27334561

  14. BioSpider: a web server for automating metabolome annotations.

    PubMed

    Knox, Craig; Shrivastava, Savita; Stothard, Paul; Eisner, Roman; Wishart, David S

    2007-01-01

    One of the growing challenges in life science research lies in finding useful, descriptive or quantitative data about newly reported biomolecules (genes, proteins, metabolites and drugs). An even greater challenge is finding information that connects these genes, proteins, drugs or metabolites to each other. Much of this information is scattered through hundreds of different databases, abstracts or books and almost none of it is particularly well integrated. While some efforts are being undertaken at the NCBI and EBI to integrate many different databases together, this still falls short of the goal of having some kind of human-readable synopsis that summarizes the state of knowledge about a given biomolecule - especially small molecules. To address this shortfall, we have developed BioSpider. BioSpider is essentially an automated report generator designed specifically to tabulate and summarize data on biomolecules - both large and small. Specifically, BioSpider allows users to type in almost any kind of biological or chemical identifier (protein/gene name, sequence, accession number, chemical name, brand name, SMILES string, InCHI string, CAS number, etc.) and it returns an in-depth synoptic report (approximately 3-30 pages in length) about that biomolecule and any other biomolecule it may target. This summary includes physico-chemical parameters, images, models, data files, descriptions and predictions concerning the query molecule. BioSpider uses a web-crawler to scan through dozens of public databases and employs a variety of specially developed text mining tools and locally developed prediction tools to find, extract and assemble data for its reports. Because of its breadth, depth and comprehensiveness, we believe BioSpider will prove to be a particularly valuable tool for researchers in metabolomics. BioSpider is available at: www.biospider.ca PMID:17990488

  15. The water footprint of sweeteners and bio-ethanol.

    PubMed

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Y

    2012-04-01

    An increasing demand for food together with a growing demand for energy crops result in an increasing demand for and competition over water. Sugar cane, sugar beet and maize are not only essential food crops, but also important feedstock for bio-ethanol. Crop growth requires water, a scarce resource. This study aims to assess the green, blue and grey water footprint (WF) of sweeteners and bio-ethanol from sugar cane, sugar beet and maize in the main producing countries. The WFs of sweeteners and bio-ethanol are mainly determined by the crop type that is used as a source and by agricultural practise and agro-climatic conditions; process water footprints are relatively small. The weighted global average WF of sugar cane is 209 m(3)/tonne; for sugar beet this is 133 m(3)/tonne and for maize 1222 m(3)/tonne. Large regional differences in WFs indicate that WFs of crops for sweeteners and bio-ethanol can be improved. It is more favourable to use maize as a feedstock for sweeteners or bio-ethanol than sugar beet or sugar cane. The WF of sugar cane contributes to water stress in the Indus and Ganges basins. In the Ukraine, the large grey WF of sugar beet contributes to water pollution. In some western European countries, blue WFs of sugar beet and maize need a large amount of available blue water for agriculture. The allocation of the limited global water resources to bio-energy on a large scale will be at the cost of water allocation to food and nature. PMID:21802146

  16. Optimization of the bio-functionalized area of magnetic biosensors

    NASA Astrophysics Data System (ADS)

    Albisetti, Edoardo; Petti, Daniela; Damin, Francesco; Cretich, Marina; Bagnati, Marta; Sola, Laura; Chiari, Marcella; Bertacco, Riccardo

    2013-06-01

    In this work, calculations and preliminary experimental data for determining the optimal condition for the selective bio-functionalization of magnetic tunneling junction (MTJ)-based biosensors are presented. Results on the detection of biomolecular recognition events employing MTJ-based sensor and magnetic beads are presented and interpreted through calculations, taking into account the dependence of the signal on the distribution of the beads with respect to the sensor. Furthermore, it is demonstrated by calculations that a significant increase in the sensor sensitivity and quantification capability can be achieved by selectively bio-functionalizing an area which corresponds to the sensor active area.

  17. BioData: a national aquatic bioassessment database

    USGS Publications Warehouse

    MacCoy, Dorene

    2011-01-01

    BioData is a U.S. Geological Survey (USGS) web-enabled database that for the first time provides for the capture, curation, integration, and delivery of bioassessment data collected by local, regional, and national USGS projects. BioData offers field biologists advanced capabilities for entering, editing, and reviewing the macroinvertebrate, algae, fish, and supporting habitat data from rivers and streams. It offers data archival and curation capabilities that protect and maintain data for the long term. BioData provides the Federal, State, and local governments, as well as the scientific community, resource managers, the private sector, and the public with easy access to tens of thousands of samples collected nationwide from thousands of stream and river sites. BioData also provides the USGS with centralized data storage for delivering data to other systems and applications through automated web services. BioData allows users to combine data sets of known quality from different projects in various locations over time. It provides a nationally aggregated database for users to leverage data from many independent projects that, until now, was not feasible at this scale. For example, from 1991 to 2011, the USGS Idaho Water Science Center collected more than 816 bioassessment samples from 63 sites for the National Water Quality Assessment (NAWQA) Program and more than 477 samples from 39 sites for a cooperative USGS and State of Idaho Statewide Water Quality Network (fig. 1). Using BioData, 20 years of samples collected for both of these projects can be combined for analysis. BioData delivers all of the data using current taxonomic nomenclature, thus relieving users of the difficult and time-consuming task of harmonizing taxonomy among samples collected during different time periods. Fish data are reported using the Integrated Taxonomic Information Service (ITIS) Taxonomic Serial Numbers (TSN's). A simple web-data input interface and self-guided, public data

  18. BioModels: Content, Features, Functionality, and Use

    PubMed Central

    Juty, N; Ali, R; Glont, M; Keating, S; Rodriguez, N; Swat, MJ; Wimalaratne, SM; Hermjakob, H; Le Novère, N; Laibe, C; Chelliah, V

    2015-01-01

    BioModels is a reference repository hosting mathematical models that describe the dynamic interactions of biological components at various scales. The resource provides access to over 1,200 models described in literature and over 140,000 models automatically generated from pathway resources. Most model components are cross-linked with external resources to facilitate interoperability. A large proportion of models are manually curated to ensure reproducibility of simulation results. This tutorial presents BioModels' content, features, functionality, and usage. PMID:26225232

  19. Bio-inspired supramolecular self-assembly towards soft nanomaterials

    PubMed Central

    LIN, Yiyang; MAO, Chuanbin

    2011-01-01

    Supramolecular self-assembly has proven to be a reliable approach towards versatile nanomaterials based on multiple weak intermolecular forces. In this review, the development of bio-inspired supramolecular self-assembly into soft materials and their applications are summarized. Molecular systems used in bio-inspired “bottom-up self-assembly” involve small organic molecules, peptides or proteins, nucleic acids, and viruses. Self-assembled soft nanomaterials have been exploited in various applications such as inorganic nanomaterial synthesis, drug or gene delivery, tissue engineering, and so on. PMID:21980594

  20. Phaeodactylum tricornutum photosynthesis and Thalassiosira pseudonana bio-silica formation genes nucleotide fluctuations

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Marchese, P.; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Sullivan, R.; Schneider, P.; Flamholz, A.; Huerta, M.; Lieberman, D.; Cheung, T.

    2008-08-01

    Diatom bioactivity has been reported to be responsible for about 20% of carbon fixation globally and together with other photosynthetic organisms, the bioactivity can be monitored via satellite ocean imaging. The bioinformatics embedded in the nucleotide fluctuations of photosynthesis and bio-silicate genes in diatoms were studied. The recently reported phosphoenolpyruvate carboxylase PEPC1 and PEPC2 C4-like photosynthesis genes in Phaeodactylum tricornutum were found to have similar fractal dimensions of about 2.01. In comparison, the green alga Chlamydomonas reinhardtii PEPC1 and PEPC2 genes have fractal dimensions of about 2.05. The PEPC CpG dinucleotide content is 8% in P. tricornutum and 10% in C. reinhardtii. Further comparison of the cell wall protein gene showed that the VSP1 gene sequence in C. reinhardtii has a fractal dimension of 2.03 and the bio-silica formation silaffin gene in Thalassiosira pseudonana has a fractal dimension of 2.01. The phosphoenolpyruvate carboxylase PPC1 and PPC2 in T. pseudonana were found to have fractal dimensions and CpG dinucleotide content similar to that of P. tricornutum. The fractal dimension of the dnaB replication helicase gene is about 1.98 for both diatoms as well as for the alga Heterosigma akashiwo. In comparison, the E. coli dnaB gene has a fractal dimension of about 2.03. Given that high fractal dimension and CpG dinucleotide content sequences have been associated with the presence of selective pressures, the relatively low fractal dimension gene sequences of the two unique properties of Earth-bound diatoms (photosynthesis and bio-silica cell wall) suggests the potential for the development of high fractal dimension sequences for adaptation in harsh environments.

  1. Bio-Imaging of Colorectal Cancer Models Using Near Infrared Labeled Epidermal Growth Factor

    PubMed Central

    Cohen, Gadi; Lecht, Shimon; Arien-Zakay, Hadar; Ettinger, Keren; Amsalem, Orit; Oron-Herman, Mor; Yavin, Eylon; Prus, Diana; Benita, Simon; Nissan, Aviram; Lazarovici, Philip

    2012-01-01

    Novel strategies that target the epidermal growth factor receptor (EGFR) have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC) but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI) methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR) for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR) reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues. PMID:23144978

  2. Bio-Refineries Bioprocess Technologies for Waste-Water Treatment, Energy and Product Valorization

    NASA Astrophysics Data System (ADS)

    Keith Cowan, A.

    2010-04-01

    Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also, potable water is becoming a scarce resource in many parts of the world, and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non-GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food, fiber, and other biology-based products, including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific-attribute raw materials for differentiated markets, we can argue that processes such as mass cultivation of microalgae and the concept of bio-refineries be seen as part of a `new' agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste-water treatment, water polishing and endocrine disruptor (EDC) removal, sustainable energy production, and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings, and for commercial extraction of bulk commodities such as bio-oils and lecithin. This presentation will address efforts to establish a fully operational solar-driven microalgae bio-refinery for use not only in waste remediation but to transform waste and biomass to energy, fuels, and other useful materials (valorisation), with particular focus on environmental quality and sustainability goals.

  3. BioSig: A bioinformatic system for studying the mechanism of intra-cell signaling

    SciTech Connect

    Parvin, B.; Cong, G.; Fontenay, G.; Taylor, J.; Henshall, R.; Barcellos-Hoff, M.H.

    2000-12-15

    Mapping inter-cell signaling pathways requires an integrated view of experimental and informatic protocols. BioSig provides the foundation of cataloging inter-cell responses as a function of particular conditioning, treatment, staining, etc. for either in vivo or in vitro experiments. This paper outlines the system architecture, a functional data model for representing experimental protocols, algorithms for image analysis, and the required statistical analysis. The architecture provides remote shared operation of an inverted optical microscope, and couples instrument operation with images acquisition and annotation. The information is stored in an object-oriented database. The algorithms extract structural information such as morphology and organization, and map it to functional information such as inter-cellular responses. An example of usage of this system is included.

  4. Design and performance analysis of a bio-optical sub-assembly for diffuse optical technologies

    NASA Astrophysics Data System (ADS)

    Jeong, Je-Myung; Park, Kyoungsu; Kim, Sehwan

    2014-11-01

    This paper presents a compact, multi-wavelength, and high-frequency-response light source named the bio-optical sub-assembly (BiOSA). The BiOSA is used to measure the absorption and the reduced scattering coefficients from diffuse optics-based biomedical systems. It is equipped with six laser diodes and one optical fiber with a 400- μm diameter core. Simulations can be used to determine the design parameters and to confirm the feasibility of the BiOSA. The evaluation results indicate that the coupling efficiency of the fabricated BiOSA is 80 ˜ 85%, and the frequency response is up to 3.38 GHz.

  5. Potential for Finding Evidence of Bio/Organic Compounds in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Hinman, N. W.; Richardson, C. D.; Aspden, D.; Kouri, K.; Kotler, J. M.; McHenry, L. J.; Scott, J. R.

    2010-04-01

    Results contribute to improved ability to detect bio/organic compounds and determine their biogenicity, predict which landing sites are most likely to provide evidence for life, and detect bio/organic compounds for decontamination procedures for planetary protection.

  6. 76 FR 24504 - Agency Information Collection Activities: BioWatch Filter Holder Log

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... information from BioWatch jurisdictions. The BioWatch Program operates aerosol collector equipment in... installing and removing filters from aerosol collection devices and transportation to local laboratories...

  7. Establishment of a biorepository for migraine research: the experience of Interinstitutional Multidisciplinary BioBank (BioBIM).

    PubMed

    Palmirotta, Raffaele; Barbanti, Piero; Ludovici, Giorgia; Egeo, Gabriella; Aurilia, Cinzia; Fofi, Luisa; De Marchis, Maria Laura; Spila, Antonella; Ferroni, Patrizia; Della-Morte, David; Guadagni, Fiorella

    2013-09-01

    The development of Biobanks and recent advances in molecular biology have enhanced the possibility to accelerate translational research studies. The Interinstitutional Multidisciplinary BioBank (BioBIM) is organized in a large healthy donors collection and pathology-based biobanks with the aim to provide a service for development of interdisciplinary studies. A new pathology-based biobank has been organized to specifically collect biospecimen from patients affected by migraine, with the final goal to centralize data, collect blood, plasma, serum, DNA and RNA of patients with this disease. The BioBIM is fully equipped for the automation of sampling/processing, storage and tracking of biospecimens. Standard Operating Procedures have been developed for processing and storage phases as well as archive of clinical data. The availability of biospecimens and clinical data will constitute a resource for various research projects. PMID:23354611

  8. Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches.

    PubMed

    Anzalone, Andrew V; Lin, Annie J; Zairis, Sakellarios; Rabadan, Raul; Cornish, Virginia W

    2016-05-01

    Protein synthesis in eukaryotes is regulated by diverse reprogramming mechanisms that expand the coding capacity of individual genes. Here, we exploit one such mechanism, termed -1 programmed ribosomal frameshifting (-1 PRF), to engineer ligand-responsive RNA switches that regulate protein expression. First, efficient -1 PRF stimulatory RNA elements were discovered by in vitro selection; then, ligand-responsive switches were constructed by coupling -1 PRF stimulatory elements to RNA aptamers using rational design and directed evolution in Saccharomyces cerevisiae. We demonstrate that -1 PRF switches tightly control the relative stoichiometry of two distinct protein outputs from a single mRNA, exhibiting consistent ligand response across whole populations of cells. Furthermore, -1 PRF switches were applied to build single-mRNA logic gates and an apoptosis module in yeast. Together, these results showcase the potential for harnessing translation-reprogramming mechanisms for synthetic biology, and they establish -1 PRF switches as powerful RNA tools for controlling protein synthesis in eukaryotes. PMID:26999002

  9. Neurite outgrowth stimulatory effects of myco synthesized AuNPs from Hericium erinaceus (Bull.: Fr.) Pers. on pheochromocytoma (PC-12) cells

    PubMed Central

    Raman, Jegadeesh; Lakshmanan, Hariprasath; John, Priscilla A; Zhijian, Chan; Periasamy, Vengadesh; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Background Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs) has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12) cells. Methods The formation of AuNPs was characterized by UV–visible spectrum, energy dispersive X-ray (EDX), field-emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), particle size distribution, and Fourier transform-infrared spectroscopy (FTIR). Furthermore, the neurite extension study of synthesized AuNPs was evaluated by in vitro assay. Results The AuNPs exhibited maximum absorbance between 510 and 600 nm in UV–visible spectrum. FESEM and TEM images showed the existence of nanoparticles with sizes of 20–40 nm. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. The purity and the crystalline properties were confirmed by EDX diffraction analysis, which showed strong signals with energy peaks in the range of 2–2.4 keV, indicating the existence of gold atoms. The synthesized AuNPs showed significant neurite extension on PC-12 cells. Nerve growth factor 50 ng/mL was used as a positive control. Treatment with different concentrations (nanograms) of AuNPs resulted in neuronal differentiation and neuronal elongation. AuNPs induced maximum neurite outgrowth of 13% at 600 ng/mL concentration. Conclusion In this study, the AuNPs synthesis was achieved by a simple, low-cost, and rapid bioreduction approach. AuNPs were shown to have potential neuronal differentiation and

  10. Bio-photosensors based on monolithic integration of light sensitive proteins with semiconductor devices and integrated circuits

    NASA Astrophysics Data System (ADS)

    Xu, Jian

    This Ph.D. work is aimed to study the integration of a suitably engineered protein, bacteriorhodopsin (BR), with semiconductor optoelectronic devices and circuits. A detailed study was carried out on the coupling mechanism at the protein-semiconductor interface. It was found that electrophoretic deposition of dried protein membranes is best suited for reliable integration with semiconductor devices. In the course of this study, the photoelectric response time was directly measured by a femtosecond electro-optic sampling technique. The measured transient response time of 4.5 picosecond, gives valuable information in the photocycle and kinetic processes associated with the photoisomerization. A highly sensitive bio-photosensor was designed and demonstrated, for the first time, based on the monolithic integration of bacteriorhodopsin and GaAs/AlGaAs modulation doped field effect transistors (MODFET). In this device, the small photovoltage generated by the protein is applied to the gate of the transistor embedded underneath, and therefore amplified and transformed into a large current signal. A light responsivity of 3.8 A/W was measured. Following this, double stage high gain MODFET-based transimpedance amplifier circuits were designed and monolithically integrated with the BR/FET bio-photosensors. The integrated bio-photoreceiver circuit exhibits a high responsivity of 175 V/W. The photoresponse was measured to be linear within several orders of magnitudes of the peak intensity of the light pulses. Unlike most semiconductor photodetectors, this bio-photosensor exhibits high sensitivity to change in incident light intensities, which is the essence of motion and edge detection. Polarization sensitive detection with the bio-photosensors was also demonstrated. This was achieved by photochemically modifying the molecular arrangement of the protein molecules inside the protein membrane. In addition, a dual focus electro-optic micro-Fresnel lens was developed for an

  11. A new paradigm: innate immune sensing of viruses via the unfolded protein response.

    PubMed

    Smith, Judith A

    2014-01-01

    THE IMMUNE SYSTEM DEPENDS UPON COMBINATIONS OF SIGNALS TO MOUNT APPROPRIATE RESPONSES: pathogen specific signals in the context of co-stimulatory "danger" signals drive immune strength and accuracy. Viral infections trigger anti-viral type I interferon (IFN) responses by stimulating endosomal and cytosolic pattern recognition receptors (PRRs). However, viruses have also evolved many strategies to counteract IFN responses. Are there intracellular danger signals that enhance immune responses to viruses? During infection, viruses place a heavy demand on the protein folding machinery of the host endoplasmic reticulum (ER). To survive ER stress, host cells mount an unfolded protein response (UPR) to decrease ER protein load and enhance protein-folding capacity. Viruses also directly elicit the UPR to enhance their replication. Increasing evidence supports an intersection between the host UPR and inflammation, in particular the production of pro-inflammatory cytokines and type I IFN. The UPR directly activates pro-inflammatory cytokine transcription factors and dramatically enhances cytokine production in response to viral PRR engagement. Additionally, viral PRR engagement may stimulate specific pathways within the UPR to enhance cytokine production. Through these mechanisms, viral detection via the UPR and inflammatory cytokine production are intertwined. Consequently, the UPR response is perfectly poised to act as an infection-triggered "danger" signal. The UPR may serve as an internal "co-stimulatory" signal that (1) provides specificity and (2) critically augments responses to overcome viral subterfuge. Further work is needed to test this hypothesis during viral infections. PMID:24904537

  12. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char.

    PubMed

    Leng, Lijian; Yuan, Xingzhong; Shao, Jianguang; Huang, Huajun; Wang, Hou; Li, Hui; Chen, Xiaohong; Zeng, Guangming

    2016-01-01

    Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS. PMID:26512854

  13. Rotenone exerts similar stimulatory effects on H2O2 production by isolated brain mitochondria from young-adult and old rats.

    PubMed

    Michelini, Luiz G B; Figueira, Tiago R; Siqueira-Santos, Edilene S; Castilho, Roger F

    2015-03-01

    Chronic and systemic treatment of rodents with rotenone, a classical inhibitor of mitochondrial respiratory complex I, results in neurochemical, behavioral, and neuropathological features of Parkinson's disease. The aim of the present study was to evaluate whether brain mitochondria from old rats (24 months old) would be more susceptible to rotenone-induced inhibition of oxygen consumption and increased generation of H2O2 than mitochondria from young-adult rats (3-4 months old). Isolated brain mitochondria were incubated in the presence of different rotenone concentrations (5, 10, and 100nM), and oxygen consumption and H2O2 production were measured during respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration). Respiratory state 3 and citrate synthase activity were significantly lower in mitochondria from old rats. Mitochondria from young-adult and old rats showed similar sensitivity to rotenone-induced inhibition of oxygen consumption. Similarly, H2O2 production rates by both types of mitochondria were dose-dependently stimulated to the same extent by increasing concentrations of rotenone. We conclude that rotenone exerts similar effects on oxygen consumption and H2O2 production by isolated brain mitochondria from young-adult and old rats. Therefore, aging does not increase the mitochondrial H2O2 generation in response to complex I inhibition. PMID:25596437

  14. BioGraph: unsupervised biomedical knowledge discovery via automated hypothesis generation

    PubMed Central

    2011-01-01

    We present BioGraph, a data integration and data mining platform for the exploration and discovery of biomedical information. The platform offers prioritizations of putative disease genes, supported by functional hypotheses. We show that BioGraph can retrospectively confirm recently discovered disease genes and identify potential susceptibility genes, outperforming existing technologies, without requiring prior domain knowledge. Additionally, BioGraph allows for generic biomedical applications beyond gene discovery. BioGraph is accessible at http://www.biograph.be. PMID:21696594

  15. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    SciTech Connect

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G. )

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.

  16. Dysregulated co-stimulatory molecule expression in a Sjögren's syndrome mouse model with potential implications by microRNA-146a.

    PubMed

    Gauna, Adrienne E; Park, Yun-Jong; Nayar, Gautam; Onate, Marelys; Jin, Jun-o; Stewart, Carol M; Yu, Qing; Cha, Seunghee

    2015-12-01

    Sjögren's syndrome (SjS) is an autoimmune condition that primarily affects salivary and lacrimal glands, causing loss of secretion. We have previously shown that microRNA-146a (miR-146a) is over-expressed in the salivary glands and peripheral blood mononuclear cells (PBMC) of SjS-prone mice (C57BL/6.NOD-Aec1Aec2, B6DC) and in PBMC of SjS patients. The purpose of this research was to identify a target molecule of miR-146a and identify subpopulations of cells affected by altered miR-146a in the salivary glands of SjS-prone mice. In silico analyses identified costimulatory molecule CD80 as a potential target of miR-146a. Luciferase assay of the human CD80 3'untranslated region demonstrated miR-146a directly inhibited CD80 protein expression as indicated by reduced luciferase reporter expression and an examination of B6DC salivary glands revealed a reduction in CD80 protein. More interestingly, the specific reduction in CD80 protein was detected from the salivary gland epithelial cell population and in interstitial dendritic cells in the glands as well. The reduction in CD80 protein levels in salivary gland epithelial cells were negatively associated with elevated miR-146a expression. Therefore, this study provides the first indication that salivary gland epithelial cells may be critically involved in SjS progression by altering CD86:CD80 protein ratio in response to miR-146a upregulation. PMID:26505653

  17. Immuno-Stimulatory Activity of Escherichia coli Mutants Producing Kdo2-Monophosphoryl-Lipid A or Kdo2-Pentaacyl-Monophosphoryl-Lipid A

    PubMed Central

    Wang, Biwen; Han, Yaning; Li, Ye; Li, Yanyan; Wang, Xiaoyuan

    2015-01-01

    Lipid A is the active center of lipopolysaccharide which also known as endotoxin. Monophosphoryl-lipid A (MPLA) has less toxicity but retains potent immunoadjuvant activity; therefore, it can be developed as adjuvant for improving the strength and duration of the immune response to antigens. However, MPLA cannot be chemically synthesized and can only be obtained by hydrolyzing lipopolysaccharide (LPS) purified from Gram-negative bacteria. Purifying LPS is difficult and time-consuming and can damage the structure of MPLA. In this study, Escherichia coli mutant strains HWB01 and HWB02 were constructed by deleting several genes and integrating Francisella novicida gene lpxE into the chromosome of E. coli wild type strain W3110. Compared with W3110, HWB01 and HWB02 synthesized very short LPS, Kdo2-monophosphoryl-lipid A (Kdo2-MPLA) and Kdo2-pentaacyl-monophosphoryl-lipid A (Kdo2-pentaacyl-MPLA), respectively. Structural changes of LPS in the outer membranes of HWB01 and HWB02 increased their membrane permeability, surface hydrophobicity, auto-aggregation ability and sensitivity to some antibiotics, but the abilities of these strains to activate the TLR4/MD-2 receptor of HKE-Blue hTLR4 cells were deceased. Importantly, purified Kdo2-MPLA and Kdo2-pentaacyl-MPLA differed from wild type LPS in their ability to stimulate the mammalian cell lines THP-1 and RAW264.7. The purification of Kdo2-MPLA and Kdo2-pentaacyl-MPLA from HWB01 and HWB02, respectively, is much easier than the purification of LPS from W3110, and these lipid A derivatives could be important tools for developing future vaccine adjuvants. PMID:26710252

  18. Chemicals derived from pyrolysis bio-oils as antioxidants in fuels and lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Softwood and hardwood lignins and hardwood were pyrolyzed to produce bio-oils to produce lignin-derived bio-oils of which phenols were the major component. These bio-oils were extracted with alkali to yield a range of lignin-related phenols having molecular weights (MWs) from 110 to 344. When tested...

  19. Negotiating Liberalism and Bio-Politics: Stylizing Power in Defense of the Mall Curfew

    ERIC Educational Resources Information Center

    Amsden, Brian

    2008-01-01

    While Michel Foucault's "technologies of the self" are useful in explaining the convergence of liberalism and bio-politics, they fail to account for the appeal of juridical mechanisms that administer the conventions of bio-political control. A productive site from which to explore this convergence is provided by the "mall curfew," a bio-political…

  20. Natural product derivative BIO promotes recovery after myocardial infarction via unique modulation of the cardiac microenvironment

    PubMed Central

    Kim, Yong Sook; Jeong, Hye-yun; Kim, Ah Ra; Kim, Woong-Hee; Cho, Haaglim; Um, JungIn; Seo, Youngha; Kang, Wan Seok; Jin, Suk-Won; Kim, Min Chul; Kim, Yong-Chul; Jung, Da-Woon; Williams, Darren R.; Ahn, Youngkeun

    2016-01-01

    The cardiac microenvironment includes cardiomyocytes, fibroblasts and macrophages, which regulate remodeling after myocardial infarction (MI). Targeting this microenvironment is a novel therapeutic approach for MI. We found that the natural compound derivative, BIO ((2′Z,3′E)-6-Bromoindirubin-3′-oxime) modulated the cardiac microenvironment to exert a therapeutic effect on MI. Using a series of co-culture studies, BIO induced proliferation in cardiomyocytes and inhibited proliferation in cardiac fibroblasts. BIO produced multiple anti-fibrotic effects in cardiac fibroblasts. In macrophages, BIO inhibited the expression of pro-inflammatory factors. Significantly, BIO modulated the molecular crosstalk between cardiac fibroblasts and differentiating macrophages to induce polarization to the anti-inflammatory M2 phenotype. In the optically transparent zebrafish-based heart failure model, BIO induced cardiomyocyte proliferation and completely recovered survival rate. BIO is a known glycogen synthase kinase-3β inhibitor, but these effects could not be recapitulated using the classical inhibitor, lithium chloride; indicating novel therapeutic effects of BIO. We identified the mechanism of BIO as differential modulation of p27 protein expression and potent induction of anti-inflammatory interleukin-10. In a rat MI model, BIO reduced fibrosis and improved cardiac performance. Histological analysis revealed modulation of the cardiac microenvironment by BIO, with increased presence of anti-inflammatory M2 macrophages. Our results demonstrate that BIO produces unique effects in the cardiac microenvironment to promote recovery post-MI. PMID:27510556