Science.gov

Sample records for bio-impedance signal decomposer

  1. Decomposition method of an electrical bio-impedance signal into cardiac and respiratory components.

    PubMed

    Krivoshei, A; Kukk, V; Min, M

    2008-06-01

    The paper presents a method for adaptive decomposition of an electrical bio-impedance (BI) signal into two components: cardiac and respiratory. The decomposition of a BI signal is not a trivial process because of the non-stationarity of the signal components and overlapping of their harmonic spectra. An application specific orthonormal basis (ASOB) was designed to solve the decomposition task using the Jacobi weighting function in the standard Gram-Schmidt process. The key element of the bio-impedance signal decomposer (BISD) is a model of the cardiac BI signal, which is constructed from the components of the ASOB and is intended for use in the BISD for on-line tracking of the cardiac BI signal. It makes it possible to separate the cardiac and respiratory components of the total BI signal in non-stationary conditions. In combination with the signal-shape locked loop (SSLL), the BISD allows us to decompose the BI signals with partially overlapping spectra. The proposed BISD based method is accomplished as a PC software digital system, but it is oriented towards applications in portable and stationary cardiac devices and in clinical settings. PMID:18544800

  2. Process techniques for human thoracic electrical bio-impedance signal in remote healthcare systems.

    PubMed

    Rahman, Muhammad Zia Ur; Mirza, Shafi Shahsavar

    2016-06-01

    Analysis of thoracic electrical bio-impedance (TEB) facilitates heart stroke volume in sudden cardiac arrest. This Letter proposes several efficient and computationally simplified adaptive algorithms to display high-resolution TEB component. In a clinical environment, TEB signal encounters with various physiological and non-physiological phenomenon, which masks the tiny features that are important in identifying the intensity of the stroke. Moreover, computational complexity is an important parameter in a modern wearable healthcare monitoring tool. Hence, in this Letter, the authors propose a new signal conditioning technique for TEB enhancement in remote healthcare systems. For this, the authors have chosen higher order adaptive filter as a basic element in the process of TEB. To improve filtering capability, convergence speed, to reduce computational complexity of the signal conditioning technique, the authors apply data normalisation and clipping the data regressor. The proposed implementations are tested on real TEB signals. Finally, simulation results confirm that proposed regressor clipped normalised higher order filter is suitable for a practical healthcare system. PMID:27382481

  3. [A novel respiratory detecting system based on bio-impedance].

    PubMed

    Wang, Jian-bo; Deng, Qin-kai; Guo, Jin-song; Feng, Xue-ji

    2009-03-01

    This paper introduces the design and implementation of a novel respiratory detecting system based on bio-impedance method. By increasing electrodes in space, the system make multi-channel respiratory signals be superpositioned and filtered (SNR); Traditional filter methods by both hardware and software are also used to further increase anti-interference ability. A low consumption and portable instrument is designed based on MSP430 Micro Controller Unit (MCU), The experiment shows a better performance in the reduction of interference noises of heartbeat and blood flow especially the motion artifact. Also the system works stably. PMID:19565791

  4. Frequency Synchronization Analysis in Digital lock-in Methods for Bio-impedance Determination

    NASA Astrophysics Data System (ADS)

    Brajkovič, Robert; Žagar, Tomaž; Križaj, Dejan

    2014-12-01

    The lock-in method is one of the most frequently used methods for reconstruction of measured signals and as such frequently applied in the (bio)impedance method to determine the modulus and phase of the (bio)impedance. In implementation of the method in a (bio)impedance measurement device one has to consider possible non synchronized frequencies of the reference and the analyzed signals as well as potential sources of noise. In this work we analyzed these errors theoretically and experimentally. We show that both amplitude and phase errors depend on the relative difference of the frequencies of the reference and investigated signal as well as the number of integration periods. Theoretically, these errors vanish during the determination of the (bio)impedance modulus and phase. In practical implementation the inaccuracies appear at points of very low determined signal amplitudes due to the limited accuracy of analog to digital converters and are distributed around these points due to other sources of noise inherent in implementation of the measurement device.

  5. An evaluation of the influence of a magnetic field on a human subject with the use of bio-impedance

    NASA Astrophysics Data System (ADS)

    Papezova, S.; Papez, V.

    2010-01-01

    The influence of a magnetic field on a living human organism was monitored using a bio-impedance evaluation of vasodilatation effects. A quantitative evaluation of the influence of a magnetic field on a human being was implemented by means of a quantitative evaluation of changes in the bio-impedance of the tissue. The pulse of the magnetic field was controlled by a pseudo-random impulse signal using a power switch that controlled the current of the applicator coil. The peak magnetic field flux density was approximately 60 mT. The bio-impedance was measured by a four-electrode method by means of a radiofrequency narrow band vector bioimpedance meter. Experiments were performed on the magnetic exposure of the forearm of an exposed human subject. During exposure to a magnetic field, the bio-impedance change signal level increases above the normal level, and reaches the maximum level after about 10 minutes. The maximum value is approximately 50 % higher than the normal level.

  6. A Batteryless Sensor ASIC for Implantable Bio-Impedance Applications.

    PubMed

    Rodriguez, Saul; Ollmar, Stig; Waqar, Muhammad; Rusu, Ana

    2016-06-01

    The measurement of the biological tissue's electrical impedance is an active research field that has attracted a lot of attention during the last decades. Bio-impedances are closely related to a large variety of physiological conditions; therefore, they are useful for diagnosis and monitoring in many medical applications. Measuring living tissues, however, is a challenging task that poses countless technical and practical problems, in particular if the tissues need to be measured under the skin. This paper presents a bio-impedance sensor ASIC targeting a battery-free, miniature size, implantable device, which performs accurate 4-point complex impedance extraction in the frequency range from 2 kHz to 2 MHz. The ASIC is fabricated in 150 nm CMOS, has a size of 1.22 mm × 1.22 mm and consumes 165 μA from a 1.8 V power supply. The ASIC is embedded in a prototype which communicates with, and is powered by an external reader device through inductive coupling. The prototype is validated by measuring the impedances of different combinations of discrete components, measuring the electrochemical impedance of physiological solution, and performing ex vivo measurements on animal organs. The proposed ASIC is able to extract complex impedances with around 1 Ω resolution; therefore enabling accurate wireless tissue measurements. PMID:26372646

  7. Effect of psychological stress on gastric motility assessed by electrical bio-impedance

    PubMed Central

    Huerta-Franco, María Raquel; Vargas-Luna, Miguel; Montes-Frausto, Juana Berenice; Morales-Mata, Ismael; Ramirez-Padilla, Lorena

    2012-01-01

    AIM: To evaluate gastric motility using electrical bio-impedance (EBI) and gastric changes as a result of stress induced by psychological tests. METHODS: A group of 57 healthy women, aged 40-60 years, was recruited, and a clinical history and physical examination were performed. The women were free from severe anxiety, chronic or acute stress, severe depression, mental diseases and conditions that affect gastric activity. The women were evaluated under fasting conditions, and using a four-electrode configuration, the gastric signals were obtained through a BIOPAC MP-150 system. The volunteers were evaluated using the following paradigm: basal state, recording during the Stroop Test, intermediate resting period, recording during the Raven Test, and a final resting period. We analyzed the relative areas of the frequency spectrum: A1 (1-2 cpm), A2 (2-4 cpm), A3 (4-8 cpm), and A4 (8-12 cpm), as well as the median of area A2 + A3. The data were analyzed by an autoregressive method using a Butterworth filter with MatLab and Origin. Analysis of variance (ANOVA) and Friedman ANOVA (for nonparametric variables) were performed; in addition, pairs of groups were compared using the T dependent and Wilcoxon T tests. RESULTS: The results of the main values of area A2 were not significantly different comparing the five steps of the experimental paradigm. Nevertheless, there was a tendency of this A2 region to decrease during the stress tests, with recuperation at the final resting step. When an extended gastric region was considered (1-4 cpm), significant differences with the psychological stress tests were present (F = 3.85, P = 0.005). The A3 region also showed significant changes when the stress psychological tests were administered (F = 7.25, P < 0.001). These differences were influenced by the changes in the adjacent gastric region of A2. The parameter that we proposed in previous studies for the evaluation of gastric motility by electrical bio-impedance (EBI) was the median

  8. Bio-Impedance Characterization Technique with Implantable Neural Stimulator Using Biphasic Current Stimulus

    PubMed Central

    Lo, Yi-Kai; Chang, Chih-Wei; Liu, Wentai

    2016-01-01

    Knowledge of the bio-impedance and its equivalent circuit model at the electrode-electrolyte/tissue interface is important in the application of functional electrical stimulation. Impedance can be used as a merit to evaluate the proximity between electrodes and targeted tissues. Understanding the equivalent circuit parameters of the electrode can further be leveraged to set a safe boundary for stimulus parameters in order not to exceed the water window of electrodes. In this paper, we present an impedance characterization technique and implement a proof-of-concept system using an implantable neural stimulator and an off-the-shelf microcontroller. The proposed technique yields the parameters of the equivalent circuit of an electrode through large signal analysis by injecting a single low-intensity biphasic current stimulus with deliberately inserted inter-pulse delay and by acquiring the transient electrode voltage at three well-specified timings. Using low-intensity stimulus allows the derivation of electrode double layer capacitance since capacitive charge-injection dominates when electrode overpotential is small. Insertion of the inter-pulse delay creates a controlled discharge time to estimate the Faradic resistance. The proposed method has been validated by measuring the impedance of a) an emulated Randles cells made of discrete circuit components and b) a custom-made platinum electrode array in-vitro, and comparing estimated parameters with the results derived from an impedance analyzer. The proposed technique can be integrated into implantable or commercial neural stimulator system at low extra power consumption, low extra-hardware cost, and light computation. PMID:25569999

  9. Wavelet analysis to decompose a vibration simulation signal to improve pre-distribution testing of packaging

    NASA Astrophysics Data System (ADS)

    Griffiths, K. R.; Hicks, B. J.; Keogh, P. S.; Shires, D.

    2016-08-01

    In general, vehicle vibration is non-stationary and has a non-Gaussian probability distribution; yet existing testing methods for packaging design employ Gaussian distributions to represent vibration induced by road profiles. This frequently results in over-testing and/or over-design of the packaging to meet a specification and correspondingly leads to wasteful packaging and product waste, which represent 15bn per year in the USA and €3bn per year in the EU. The purpose of the paper is to enable a measured non-stationary acceleration signal to be replaced by a constructed signal that includes as far as possible any non-stationary characteristics from the original signal. The constructed signal consists of a concatenation of decomposed shorter duration signals, each having its own kurtosis level. Wavelet analysis is used for the decomposition process into inner and outlier signal components. The constructed signal has a similar PSD to the original signal, without incurring excessive acceleration levels. This allows an improved and more representative simulated input signal to be generated that can be used on the current generation of shaker tables. The wavelet decomposition method is also demonstrated experimentally through two correlation studies. It is shown that significant improvements over current international standards for packaging testing are achievable; hence the potential for more efficient packaging system design is possible.

  10. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Pliquett, Uwe

    2013-04-01

    . Structures down to sub-micrometer range and complex impedance measurements tools integrated at single chips are now affordable. Moreover, the introduction of alternative signals and data processing algorithms focuses on very fast and parallel electrical characterization which in turn pushes this technique to new applications and markets. Electrical impedance tomography today yields pictures in real time with a resolution that was impossible 10 years ago. The XVth International Conference on Electrical Bio-Impedance in conjunction with the XIVth Electrical Impedance Tomography ICEBI/EIT 2013 organized by the Institute for Bioprocessing and Analytical Measurement Techniques, Heilbad Heiligenstadt, Germany, together with the EIT-group at the University of Göttingen, Germany, brings world leading scientists in these fields together. It is a platform to present the latest developments in instrumentation and signal processing but also points to new applications, especially in the field of biosensors and non-linear phenomena. Two Keynote lectures will extend the view of the participants above the mainstream of bio-impedance measurement. Friederich Kremer (University of Leipzig) delivers the plenary lecture on broad bandwidth dielectric spectroscopy. New achievements in the research of ligand gated ionic channels will be presented by Klaus Benndorf (University of Jena). Leading scientists in the field of bio-impedance measurement, such as, Sverre Grimnes, Orjan Martinsen, Andrea Robitzki, Richard Bayford, Jan Gimsa and Mart Min will give lectures for students but also more experienced scientists in a pre-conference tutorial which is a good opportunity to learn or refresh the basics. List of committees Conference Chair Dr Uwe Pliquett Professor Dieter Beckmann Institut für Bioprozess- und Analysenmesstechnik eV, Rosenhof, Heilbad Heiligenstadt, Germany Technical Program Chair Maik Hiller Conventus Congressmanagement & Marketing GmbH, Carl-Pulfrich-Str. 1 - 07745 Jena Pre

  11. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Pliquett, Uwe

    2013-04-01

    . Structures down to sub-micrometer range and complex impedance measurements tools integrated at single chips are now affordable. Moreover, the introduction of alternative signals and data processing algorithms focuses on very fast and parallel electrical characterization which in turn pushes this technique to new applications and markets. Electrical impedance tomography today yields pictures in real time with a resolution that was impossible 10 years ago. The XVth International Conference on Electrical Bio-Impedance in conjunction with the XIVth Electrical Impedance Tomography ICEBI/EIT 2013 organized by the Institute for Bioprocessing and Analytical Measurement Techniques, Heilbad Heiligenstadt, Germany, together with the EIT-group at the University of Göttingen, Germany, brings world leading scientists in these fields together. It is a platform to present the latest developments in instrumentation and signal processing but also points to new applications, especially in the field of biosensors and non-linear phenomena. Two Keynote lectures will extend the view of the participants above the mainstream of bio-impedance measurement. Friederich Kremer (University of Leipzig) delivers the plenary lecture on broad bandwidth dielectric spectroscopy. New achievements in the research of ligand gated ionic channels will be presented by Klaus Benndorf (University of Jena). Leading scientists in the field of bio-impedance measurement, such as, Sverre Grimnes, Orjan Martinsen, Andrea Robitzki, Richard Bayford, Jan Gimsa and Mart Min will give lectures for students but also more experienced scientists in a pre-conference tutorial which is a good opportunity to learn or refresh the basics. List of committees Conference Chair Dr Uwe Pliquett Professor Dieter Beckmann Institut für Bioprozess- und Analysenmesstechnik eV, Rosenhof, Heilbad Heiligenstadt, Germany Technical Program Chair Maik Hiller Conventus Congressmanagement & Marketing GmbH, Carl-Pulfrich-Str. 1 - 07745 Jena Pre

  12. Multiple lead recordings improve accuracy of bio-impedance plethysmographic technique.

    PubMed

    Kauppinen, P K; Hyttinen, J A; Kööbi, T; Malmivuo, J

    1999-06-01

    We have developed the theory and instrumentation of multiple multi-electrode bio-impedance (BI) measurements based on lead field theoretical approach. To derive reliable information based on BI data, a quantity of measurements should be taken with electrode configurations possessing regional measurement sensitivity. An apparatus has been developed with an eye to the requirements imposed by the theoretical aspects of achieving multiple multi-electrode BI measurements. It has features compensating electrode-contact related errors and errors due to imbalance between the conductive pathways when multiple electrodes are utilised for BI measurement. The proposed design allows simultaneous multi-electrode BI and bioelectric recording with the same electrode system. Initial operation experiences in clinical environment indicate that the device functions as intended, and allows user-friendly utilisation of multiple BI measurements. Contributions presented to BI methodology and instrumentation improve the reliability of BI measurements. PMID:10576427

  13. Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields

    NASA Astrophysics Data System (ADS)

    Younis Yacoob Aldosky, Haval; Barwari, Waleed Jameel Omar; Salih Al-mlaly, Janan M.

    2012-12-01

    Rapid detection of viability and growth of pathogenic microorganisms is very important in many applications such as food and drug production, health care, and national defense. Measurements on the electrical characteristics of cells have been used successfully in the past to detect many different physiological events. The effect of electromagnetic fields on the growth of bacteria (Staphylococcus aureus) was studied with the bio-impedance technique. The growth situations of bacteria in the absence and presence of different intensities of static and alternative magnetic fields were examined and analyzed. The results show that the impedance of bacteria fell in the presence of DC magnetic fields. In contrast the impedance increased when the bacteria were exposed to AC magnetic fields. Based on these results the bacterial growth indicated by the change in the impedance is inhibited under DC magnetic fields and enhanced under AC fields.

  14. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    NASA Astrophysics Data System (ADS)

    O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.

    2015-03-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.

  15. Pulse wave detection method based on the bio-impedance of the wrist.

    PubMed

    He, Jianman; Wang, Mengjun; Li, Xiaoxia; Li, Gang; Lin, Ling

    2016-05-01

    The real-time monitoring of pulse rate can evaluate the heart health to some extent, and the measurement of bio-impedance has the potential in wearable health monitoring system. In this paper, an effective method, which contains self-balancing bridge, flexible electrode, and high-speed digital lock-in algorithm (DLIA) with over-sampling, was designed to detect the impedance pulse wave at the wrist. By applying the self-balancing bridge, the basic impedance can be compensated as much as possible, and the low amplitude of impedance variation related to heart pulse can be obtained more easily. And the flexible conductive rubber electrode used in our experiment is human-friendly. Besides, the over-sampling method and high-speed DLIA are used to enhance the effective resolution of the existing data sampled by analog to digital converter. With the high-speed data process and simple circuit above, this proposed method has the potential in wrist-band wearable systems and it can satisfy quests of small volume and low power consumption. PMID:27250460

  16. Pulse wave detection method based on the bio-impedance of the wrist

    NASA Astrophysics Data System (ADS)

    He, Jianman; Wang, Mengjun; Li, Xiaoxia; Li, Gang; Lin, Ling

    2016-05-01

    The real-time monitoring of pulse rate can evaluate the heart health to some extent, and the measurement of bio-impedance has the potential in wearable health monitoring system. In this paper, an effective method, which contains self-balancing bridge, flexible electrode, and high-speed digital lock-in algorithm (DLIA) with over-sampling, was designed to detect the impedance pulse wave at the wrist. By applying the self-balancing bridge, the basic impedance can be compensated as much as possible, and the low amplitude of impedance variation related to heart pulse can be obtained more easily. And the flexible conductive rubber electrode used in our experiment is human-friendly. Besides, the over-sampling method and high-speed DLIA are used to enhance the effective resolution of the existing data sampled by analog to digital converter. With the high-speed data process and simple circuit above, this proposed method has the potential in wrist-band wearable systems and it can satisfy quests of small volume and low power consumption.

  17. Prediction of body fat percentage from skinfold and bio-impedance measurements in Indian school children

    PubMed Central

    Kehoe, Sarah H.; Krishnaveni, Ghattu V.; Lubree, Himangi G.; Wills, Andrew K.; Guntupalli, Aravinda M.; Veena, Sargoor R.; Bhat, Dattatray S.; Kishore, Ravi; Fall, Caroline H.D.; Yajnik, Chittaranjan S.; Kurpad, Anura

    2011-01-01

    Background Few equations for calculating body fat percentage (BF%) from field methods have been developed in South Asian children. Objective To assess agreement between BF% derived from primary reference methods and that from skinfold equations and bio-impedance analysis (BIA) in Indian children. Methods We measured BF% in two groups of Indian children. In Pune, 570 rural children aged 6-8 years underwent dual-energy X-ray absorptiometry (DXA) scans. In Mysore 18O was administered to 59 urban children aged 7-9 years. We conducted BIA at 50kHz and anthropometry including subscapular and triceps skinfold thicknesses. We used the published equations of Wickramasinghe, Shaikh, Slaughter and Dezenburg to calculate BF% from anthropometric data and the manufacturer’s equation for BIA measurements. We assessed agreement with values derived from DXA and DLW using Bland Altman analysis. Results Children were light and thin compared to international standards. There was poor agreement between the reference BF% values and those from all equations. Assumptions for Bland Altman analysis were not met for Wickramasinghe, Shaikh and Slaughter equations. The Dezenberg equations under-predicted BF% for most children (mean difference in Pune −13.4, LOA −22.7, −4.0 and in Mysore −7.9, LOA −13.7 and −2.2). The mean bias for the BIA equation in Pune was +5.0% and in Mysore +1.95% and the LOA were wide; −5.0, 15.0 and −7.8, 11.7 respectively. Conclusions Currently available skinfold equations do not accurately predict BF% in Indian children. We recommend development of BIA equations in this population using a 4-compartment model. PMID:21731039

  18. Decomposing a signal into short-time narrow-banded modes

    NASA Astrophysics Data System (ADS)

    McNeill, S. I.

    2016-07-01

    An algorithm for nonparametric decomposition of a signal into the sum of short-time narrow-banded modes (components) is introduced. Specifically, the signal data is augmented with its Hilbert transform to obtain the analytic signal. Then the set of constituent amplitude and frequency modulated (AM-FM) analytic sinusoids, each with slowly varying amplitude and frequency, is sought. The method for obtaining the short-time narrow-banded modes is derived by minimizing an objective function comprised of three criteria: smoothness of the instantaneous amplitude envelope, smoothness of the instantaneous frequency and complete reconstruction of the signal data. A minimum of the objective function is approached using a sequence of suboptimal updates of amplitude and phase. The updates are intuitive, efficient and simple to implement. For a given mode, the amplitude and phase are extracted from the band-pass filtered residual (signal after the other modes are removed), where the band-pass filter is applied about the previous modal instantaneous frequency estimate. The method is demonstrated by application to random output-only vibration data and order tracking data. It is demonstrated that vibration modal responses can be estimated from single channel data and order tracking can be performed without measured tachometer data.

  19. A current-excited triple-time-voltage oversampling method for bio-impedance model for cost-efficient circuit system.

    PubMed

    Yan Hong; Yong Wang; Wang Ling Goh; Yuan Gao; Lei Yao

    2015-08-01

    This paper presents a mathematic method and a cost-efficient circuit to measure the value of each component of the bio-impedance model at electrode-electrolyte interface. The proposed current excited triple-time-voltage oversampling (TTVO) method deduces the component values by solving triple simultaneous electric equation (TSEE) at different time nodes during a current excitation, which are the voltage functions of time. The proposed triple simultaneous electric equations (TSEEs) allows random selections of the time nodes, hence numerous solutions can be obtained during a single current excitation. Following that, the oversampling approach is engaged by averaging all solutions of multiple TSEEs acquired after a single current excitation, which increases the practical measurement accuracy through the improvement of the signal-to-noise ratio (SNR). In addition, a print circuit board (PCB) that consists a switched current exciter and an analog-to-digital converter (ADC) is designed for signal acquisition. This presents a great cost reduction when compared against other instrument-based measurement data reported [1]. Through testing, the measured values of this work is proven to be in superb agreements on the true component values of the electrode-electrolyte interface model. This work is most suited and also useful for biological and biomedical applications, to perform tasks such as stimulations, recordings, impedance characterizations, etc. PMID:26736442

  20. Early Indication of Decompensated Heart Failure in Patients on Home-Telemonitoring: A Comparison of Prediction Algorithms Based on Daily Weight and Noninvasive Transthoracic Bio-impedance

    PubMed Central

    Bonomi, Alberto G; Goode, Kevin M; Reiter, Harald; Habetha, Joerg; Amft, Oliver; Cleland, John GF

    2016-01-01

    Background Heart Failure (HF) is a common reason for hospitalization. Admissions might be prevented by early detection of and intervention for decompensation. Conventionally, changes in weight, a possible measure of fluid accumulation, have been used to detect deterioration. Transthoracic impedance may be a more sensitive and accurate measure of fluid accumulation. Objective In this study, we review previously proposed predictive algorithms using body weight and noninvasive transthoracic bio-impedance (NITTI) to predict HF decompensations. Methods We monitored 91 patients with chronic HF for an average of 10 months using a weight scale and a wearable bio-impedance vest. Three algorithms were tested using either simple rule-of-thumb differences (RoT), moving averages (MACD), or cumulative sums (CUSUM). Results Algorithms using NITTI in the 2 weeks preceding decompensation predicted events (P<.001); however, using weight alone did not. Cross-validation showed that NITTI improved sensitivity of all algorithms tested and that trend algorithms provided the best performance for either measurement (Weight-MACD: 33%, NITTI-CUSUM: 60%) in contrast to the simpler rules-of-thumb (Weight-RoT: 20%, NITTI-RoT: 33%) as proposed in HF guidelines. Conclusions NITTI measurements decrease before decompensations, and combined with trend algorithms, improve the detection of HF decompensation over current guideline rules; however, many alerts are not associated with clinically overt decompensation. PMID:26892844

  1. Ozone decomposing filter

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Whinnery, Jr., LeRoy L.

    1999-01-01

    In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

  2. Ozone decomposing filter

    SciTech Connect

    Simandl, R.F.; Brown, J.D.; Whinnery, L.L. Jr.

    1999-11-02

    In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

  3. Examining the decomposed brain.

    PubMed

    MacKenzie, James Mackintosh

    2014-12-01

    Examination of the decomposed brain is a largely neglected area of forensic neuropathology. However, careful examination often yields valuable information that may assist in criminal proceedings. Decomposition encompasses the processes of autolysis, putrefaction, and decay. Most decomposed brains will be affected by both autolysis and putrefaction, resulting in a brain that may, at one end of the spectrum, be almost normal or, at the other end, pulpified, depending on the conditions in which the body remained after death and the postmortem interval. Naked eye examination may detect areas of hemorrhage and also guides appropriate sampling for histology. Histological appearances are often better than what would be predicted from the state of the brain. Histology often confirms macroscopic abnormalities and may also reveal other features such as ischemic injury. Silver staining demonstrates neuritic plaques, and immunocytochemistry for β-amyloid precursor protein and other molecules produces results comparable with those seen in well-preserved fixed brains. The usefulness of information derived from the examination of the decomposed brain in criminal proceedings is illustrated with 6 case reports drawn from the author's own practice. PMID:25384305

  4. Oral administration of SR-110, a peroxynitrite decomposing catalyst, enhances glucose homeostasis, insulin signaling, and islet architecture in B6D2F1 mice fed a high fat diet.

    PubMed

    Johns, Michael; Esmaeili Mohsen Abadi, Sakineh; Malik, Nehal; Lee, Joshua; Neumann, William L; Rausaria, Smita; Imani-Nejad, Maryam; McPherson, Timothy; Schober, Joseph; Kwon, Guim

    2016-04-15

    Peroxynitrite has been implicated in type 2 diabetes and diabetic complications. As a follow-up study to our previous work on SR-135 (Arch Biochem Biophys 577-578: 49-59, 2015), we provide evidence that this series of compounds are effective when administered orally, and their mechanisms of actions extend to the peripheral tissues. A more soluble analogue of SR-135, SR-110 (from a new class of Mn(III) bis(hydroxyphenyl)-dipyrromethene complexes) was orally administered for 2 weeks to B6D2F1 mice fed a high fat-diet (HFD). Mice fed a HFD for 4 months gained significantly higher body weights compared to lean diet-fed mice (52 ± 1.5 g vs 34 ± 1.3 g). SR-110 (10 mg/kg daily) treatment significantly reduced fasting blood glucose and insulin levels, and enhanced glucose tolerance as compared to HFD control or vehicle (peanut butter) group. SR-110 treatment enhanced insulin signaling in the peripheral organs, liver, heart, and skeletal muscle, and reduced lipid accumulation in the liver. Furthermore, SR-110 increased insulin content, restored islet architecture, decreased islet size, and reduced tyrosine nitration. These results suggest that a peroxynitrite decomposing catalyst is effective in improving glucose homeostasis and restoring islet morphology and β-cell insulin content under nutrient overload. PMID:26970045

  5. Forensic entomology of decomposing humans and their decomposing pets.

    PubMed

    Sanford, Michelle R

    2015-02-01

    Domestic pets are commonly found in the homes of decedents whose deaths are investigated by a medical examiner or coroner. When these pets become trapped with a decomposing decedent they may resort to feeding on the body or succumb to starvation and/or dehydration and begin to decompose as well. In this case report photographic documentation of cases involving pets and decedents were examined from 2009 through the beginning of 2014. This photo review indicated that in many cases the pets were cats and dogs that were trapped with the decedent, died and were discovered in a moderate (bloat to active decay) state of decomposition. In addition three cases involving decomposing humans and their decomposing pets are described as they were processed for time of insect colonization by forensic entomological approach. Differences in timing and species colonizing the human and animal bodies were noted as was the potential for the human or animal derived specimens to contaminate one another at the scene. PMID:25533575

  6. Decomposing global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  7. Our World without Decomposers: How Scary!

    ERIC Educational Resources Information Center

    Spring, Patty; Harr, Natalie

    2014-01-01

    Bugs, slugs, bacteria, and fungi are decomposers at the heart of every ecosystem. Fifth graders at Dodge Intermediate School in Twinsburg, Ohio, ventured outdoors to learn about the necessity of these amazing organisms. With the help of a naturalist, students explored their local park and discovered the wonder of decomposers and their…

  8. Simplified signal processing for impedance spectroscopy with spectrally sparse sequences

    NASA Astrophysics Data System (ADS)

    Annus, P.; Land, R.; Reidla, M.; Ojarand, J.; Mughal, Y.; Min, M.

    2013-04-01

    Classical method for measurement of the electrical bio-impedance involves excitation with sinusoidal waveform. Sinusoidal excitation at fixed frequency points enables wide variety of signal processing options, most general of them being Fourier transform. Multiplication with two quadrature waveforms at desired frequency could be easily accomplished both in analogue and in digital domains, even simplest quadrature square waves can be considered, which reduces signal processing task in analogue domain to synchronous switching followed by low pass filter, and in digital domain requires only additions. So called spectrally sparse excitation sequences (SSS), which have been recently introduced into bio-impedance measurement domain, are very reasonable choice when simultaneous multifrequency excitation is required. They have many good properties, such as ease of generation and good crest factor compared to similar multisinusoids. Typically, the usage of discrete or fast Fourier transform in signal processing step is considered so far. Usage of simplified methods nevertheless would reduce computational burden, and enable simpler, less costly and less energy hungry signal processing platforms. Accuracy of the measurement with SSS excitation when using different waveforms for quadrature demodulation will be compared in order to evaluate the feasibility of the simplified signal processing. Sigma delta modulated sinusoid (binary signal) is considered to be a good alternative for a synchronous demodulation.

  9. Decomposing Achievement Gaps among OECD Countries

    ERIC Educational Resources Information Center

    Zhang, Liang; Lee, Kristen A.

    2011-01-01

    In this study, we use decomposition methods on PISA 2006 data to compare student academic performance across OECD countries. We first establish an empirical model to explain the variation in academic performance across individuals, and then use the Oaxaca-Blinder decomposition method to decompose the achievement gap between each of the OECD…

  10. Scalable Domain Decomposed Monte Carlo Particle Transport

    SciTech Connect

    O'Brien, Matthew Joseph

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  11. Optimal decomposable witnesses without the spanning property

    SciTech Connect

    Augusiak, Remigiusz; Sarbicki, Gniewomir; Lewenstein, Maciej

    2011-11-15

    One of the unsolved problems in the characterization of the optimal entanglement witnesses is the existence of optimal witnesses acting on bipartite Hilbert spaces H{sub m,n}=C{sup m} x C{sup n} such that the product vectors obeying =0 do not span H{sub m,n}. So far, the only known examples of such witnesses were found among indecomposable witnesses, one of them being the witness corresponding to the Choi map. However, it remains an open question whether decomposable witnesses exist without the property of spanning. Here we answer this question affirmatively, providing systematic examples of such witnesses. Then, we generalize some of the recently obtained results on the characterization of 2 x n optimal decomposable witnesses [R. Augusiak et al., J. Phys. A 44, 212001 (2011)] to finite-dimensional Hilbert spaces H{sub m,n} with m,n{>=}3.

  12. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  13. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  14. Optimal decomposable witnesses without the spanning property

    NASA Astrophysics Data System (ADS)

    Augusiak, Remigiusz; Sarbicki, Gniewomir; Lewenstein, Maciej

    2011-11-01

    One of the unsolved problems in the characterization of the optimal entanglement witnesses is the existence of optimal witnesses acting on bipartite Hilbert spaces Hm,n=Cm⊗Cn such that the product vectors obeying =0 do not span Hm,n. So far, the only known examples of such witnesses were found among indecomposable witnesses, one of them being the witness corresponding to the Choi map. However, it remains an open question whether decomposable witnesses exist without the property of spanning. Here we answer this question affirmatively, providing systematic examples of such witnesses. Then, we generalize some of the recently obtained results on the characterization of 2⊗n optimal decomposable witnesses [R. Augusiak , J. Phys. APLRAAN1751-811310.1088/1751-8113/44/21/212001 44, 212001 (2011)] to finite-dimensional Hilbert spaces Hm,n with m,n≥3.

  15. Catalytic cartridge SO/sub 3/ decomposer

    DOEpatents

    Galloway, T.R.

    1980-11-18

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  16. Signature wood modifications reveal decomposer community history.

    PubMed

    Schilling, Jonathan S; Kaffenberger, Justin T; Liew, Feng Jin; Song, Zewei

    2015-01-01

    Correlating plant litter decay rates with initial tissue traits (e.g. C, N contents) is common practice, but in woody litter, predictive relationships are often weak. Variability in predicting wood decomposition is partially due to territorial competition among fungal decomposers that, in turn, have a range of nutritional strategies (rot types) and consequences on residues. Given this biotic influence, researchers are increasingly using culture-independent tools in an attempt to link variability more directly to decomposer groups. Our goal was to complement these tools by using certain wood modifications as 'signatures' that provide more functional information about decomposer dominance than density loss. Specifically, we used dilute alkali solubility (DAS; higher for brown rot) and lignin:density loss (L:D; higher for white rot) to infer rot type (binary) and fungal nutritional mode (gradient), respectively. We first determined strength of pattern among 29 fungi of known rot type by correlating DAS and L:D with mass loss in birch and pine. Having shown robust relationships for both techniques above a density loss threshold, we then demonstrated and resolved two issues relevant to species consortia and field trials, 1) spatial patchiness creating gravimetric bias (density bias), and 2) brown rot imprints prior or subsequent to white rot replacement (legacy effects). Finally, we field-tested our methods in a New Zealand Pinus radiata plantation in a paired-plot comparison. Overall, results validate these low-cost techniques that measure the collective histories of decomposer dominance in wood. The L:D measure also showed clear potential in classifying 'rot type' along a spectrum rather than as a traditional binary type (brown versus white rot), as it places the nutritional strategies of wood-degrading fungi on a scale (L:D=0-5, in this case). These information-rich measures of consequence can provide insight into their biological causes, strengthening the links

  17. Corrosion and repairs of ammonium carbamate decomposers

    SciTech Connect

    De Romero, M.F.; Galban, J.P.

    1996-05-01

    Corrosion-erosion problems occurred in the carbon steel base metal of the ammonium carbamate decomposers in an urea extraction process lined with type 316L (UNS S31603) urea grade stainless steel. The cladding was replaced by weld overlay using a semiautomatic gas metal arc welding process. The first layer was alloy 25%Cr-15%Ni-2%Mo (UNS W30923); the second layer was alloy 25%Cr-22%Ni-2%Mo (UNS W31020).

  18. Signature Wood Modifications Reveal Decomposer Community History

    PubMed Central

    Schilling, Jonathan S.; Kaffenberger, Justin T.; Liew, Feng Jin; Song, Zewei

    2015-01-01

    Correlating plant litter decay rates with initial tissue traits (e.g. C, N contents) is common practice, but in woody litter, predictive relationships are often weak. Variability in predicting wood decomposition is partially due to territorial competition among fungal decomposers that, in turn, have a range of nutritional strategies (rot types) and consequences on residues. Given this biotic influence, researchers are increasingly using culture-independent tools in an attempt to link variability more directly to decomposer groups. Our goal was to complement these tools by using certain wood modifications as ‘signatures’ that provide more functional information about decomposer dominance than density loss. Specifically, we used dilute alkali solubility (DAS; higher for brown rot) and lignin:density loss (L:D; higher for white rot) to infer rot type (binary) and fungal nutritional mode (gradient), respectively. We first determined strength of pattern among 29 fungi of known rot type by correlating DAS and L:D with mass loss in birch and pine. Having shown robust relationships for both techniques above a density loss threshold, we then demonstrated and resolved two issues relevant to species consortia and field trials, 1) spatial patchiness creating gravimetric bias (density bias), and 2) brown rot imprints prior or subsequent to white rot replacement (legacy effects). Finally, we field-tested our methods in a New Zealand Pinus radiata plantation in a paired-plot comparison. Overall, results validate these low-cost techniques that measure the collective histories of decomposer dominance in wood. The L:D measure also showed clear potential in classifying ‘rot type’ along a spectrum rather than as a traditional binary type (brown versus white rot), as it places the nutritional strategies of wood-degrading fungi on a scale (L:D=0-5, in this case). These information-rich measures of consequence can provide insight into their biological causes, strengthening the

  19. Domain-decomposed preconditionings for transport operators

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Gropp, William D.; Keyes, David E.

    1991-01-01

    The performance was tested of five different interface preconditionings for domain decomposed convection diffusion problems, including a novel one known as the spectral probe, while varying mesh parameters, Reynolds number, ratio of subdomain diffusion coefficients, and domain aspect ratio. The preconditioners are representative of the range of practically computable possibilities that have appeared in the domain decomposition literature for the treatment of nonoverlapping subdomains. It is shown that through a large number of numerical examples that no single preconditioner can be considered uniformly superior or uniformly inferior to the rest, but that knowledge of particulars, including the shape and strength of the convection, is important in selecting among them in a given problem.

  20. Decomposing generalized measurements into continuous stochastic processes

    SciTech Connect

    Varbanov, Martin; Brun, Todd A.

    2007-09-15

    One of the broadest concepts of measurement in quantum theory is the generalized measurement. Another paradigm of measurement--arising naturally in quantum optics, among other fields--is that of continuous-time measurements, which can be seen as the limit of a consecutive sequence of weak measurements. They are naturally described in terms of stochastic processes, or time-dependent random variables. We show that any generalized measurement can be decomposed as a sequence of weak measurements with a mathematical limit as a continuous stochastic process. We give an explicit construction for any generalized measurement, and prove that the resulting continuous evolution, in the long-time limit, collapses the state of the quantum system to one of the final states generated by the generalized measurement, being decomposed, with the correct probabilities. A prominent feature of the construction is the presence of a feedback mechanism--the instantaneous choice weak measurement at a given time depends on the outcomes of earlier measurements. For a generalized measurement with n outcomes, this information is captured by a real n-vector on an n-simplex, which obeys a simple classical stochastic evolution.

  1. Decomposing Solid Micropropulsion Nozzle Performance Issues

    NASA Technical Reports Server (NTRS)

    Reed, Brian

    2003-01-01

    Micropropulsion technology is essential to the success of miniaturized spacecraft and can provide ultra-precise propulsion for small spacecraft. NASA Glenn Research Center has envisioned a micropropulsion concept that utilizes decomposing solid propellants for a valveless, leak-free propulsion system. Among the technical challenges of this decomposing solid micropropulsion concept is optimization of miniature, rectangular nozzles. A number of flat micronozzles were tested with ambient-temperature nitrogen and helium gas in a vacuum facility. The thrusters were etched out of silicon and had throat widths on the order of 350 microns and throat depths on the order of 250 microns. While these were half-sections of thrusters (two would be bonded together before firing), testing provided the performance trend for nozzles of this scale and geometry. Area ratios from 1 to 25 were tested, with thrust measured using an inverted pendulum thrust stand for nitrogen flows and a torsional thrust stand for helium. In the nitrogen testing, peak nozzle performance was achieved around area ratio of 5. In the helium series, nozzle performance peaked for the smallest nozzle tested area ratio 1.5. For both gases, there was a secondary performance peak above area ratio 15. At low chamber pressures (< 1.6 atm), nitrogen provided higher nozzle performance than helium. The performance curve for helium was steeper, however, and it appeared that helium would provide better performance than nitrogen at higher chamber pressures.

  2. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  3. Process for decomposing nitrates in aqueous solution

    DOEpatents

    Haas, Paul A.

    1980-01-01

    This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.

  4. Decomposing trimmed surfaces using the Voronoie tesselation

    SciTech Connect

    Tsai, Po-Yu; Hamann, B.

    1996-12-31

    Many applications deal with the rendering of trimmed surfaces and the generation of grids for trimmed surfaces. Usually, a structured or unstructured grid must be constructed in the parameter space of the trimmed surface. Trimmed surfaces not only cause problems in the context of grid generation but also when exchanging data between different CAD systems. This paper describes a new approach for decomposing the valid part of the parameter space of a trimmed surface into a set of four-sided surfaces. The boundaries of these four-sided surfaces axe line segments, segments of the trimming curves themselves, and segments of bisecting curves that are defined by a generalized Voronoi diagram implied by the trimming curves in parameter space. We use a triangular background mesh for the approximation of the bisecting curves of the generalized Voronoi diagram.

  5. Supporting Knowledge Transfer through Decomposable Reasoning Artifacts

    SciTech Connect

    Pike, William A.; May, Richard A.; Turner, Alan E.

    2007-01-03

    Technology to support knowledge transfer and cooperative inquiry must offer its users the ability to effectively interpret knowledge structures produced by collaborators. Communicating the reasoning processes that underlie a finding is one method for enhancing interpretation, and can result in more effective evaluation and application of shared knowledge. In knowledge management tools, interpretation is aided by creating knowledge artifacts that can expose their provenance to scrutiny and that can be transformed into diverse representations that suit their consumers’ perspectives and preferences. We outline the information management needs of inquiring communities characterized by hypothesis generation tasks, and propose a model for communication, based in theories of hermeneutics, semiotics, and abduction, in which knowledge structures can be decomposed into the lower-level reasoning artifacts that produced them. We then present a proof-of-concept implementation for an environment to support the capture and communication of analytic products, with emphasis on the domain of intelligence analysis.

  6. Gypsum crystals formed on decomposing calcium citrate

    NASA Astrophysics Data System (ADS)

    Söhnel, O.; Křivánková, I.; Krčmář, S.; Jurčová, M.

    1991-06-01

    Particle size and the specific surface area of gypsum crystals formed on decomposing an aqueous suspension of solid calcium citrate tetrahydrate by diluted 50% sulphuric acid at 25, 40, 60, 80 and 100°C was studied. The size of the gypsum crystals increases with increasing temperature of decomposition. At a constant temperature within the range of 25 to 100°C the median of gypsum crystal size distribution (PSD) increases for approximately 4 h after commencing decomposition and then reaches a virtually constant value. The specific surface area of gypsum crystals decreases after commencement of the reaction for approximately 6 h before reaching a constant value. Gypsum crystal growth by solute deposition from the liquid is responsible for PSD changes for approximately one hour at the commencement of reaction. Then the growth of larger crystals at the expense of smaller crystals, i.e. ripening, is apparently responsible for further changes in the PSD.

  7. DCMDSM: a DICOM decomposed storage model

    PubMed Central

    Savaris, Alexandre; Härder, Theo; von Wangenheim, Aldo

    2014-01-01

    Objective To design, build, and evaluate a storage model able to manage heterogeneous digital imaging and communications in medicine (DICOM) images. The model must be simple, but flexible enough to accommodate variable content without structural modifications; must be effective on answering query/retrieval operations according to the DICOM standard; and must provide performance gains on querying/retrieving content to justify its adoption by image-related projects. Methods The proposal adapts the original decomposed storage model, incorporating structural and organizational characteristics present in DICOM image files. Tag values are stored according to their data types/domains, in a schema built on top of a standard relational database management system (RDBMS). Evaluation includes storing heterogeneous DICOM images, querying metadata using a variable number of predicates, and retrieving full-content images for different hierarchical levels. Results and discussion When compared to a well established DICOM image archive, the proposal is 0.6–7.2 times slower in storing content; however, in querying individual tags, it is about 48.0% faster. In querying groups of tags, DICOM decomposed storage model (DCMDSM) is outperformed in scenarios with a large number of tags and low selectivity (being 66.5% slower); however, when the number of tags is balanced with better selectivity predicates, the performance gains are up to 79.1%. In executing full-content retrieval, in turn, the proposal is about 48.3% faster. Conclusions DCMDSM is a model built for the storage of heterogeneous DICOM content, based on a straightforward database design. The results obtained through its evaluation attest its suitability as a storage layer for projects where DICOM images are stored once, and queried/retrieved whenever necessary. PMID:24491269

  8. Decomposability and mental representation of French verbs

    PubMed Central

    Estivalet, Gustavo L.; Meunier, Fanny E.

    2015-01-01

    In French, regardless of stem regularity, inflectional verbal suffixes are extremely regular and paradigmatic. Considering the complexity of the French verbal system, we argue that all French verbs are polymorphemic forms that are decomposed during visual recognition independently of their stem regularity. We conducted a behavioral experiment in which we manipulated the surface and cumulative frequencies of verbal inflected forms and asked participants to perform a visual lexical decision task. We tested four types of verbs with respect to their stem variants: a. fully regular (parler “to speak,” [parl-]); b. phonological change e/E verbs with orthographic markers (répéter “to repeat,” [répét-] and [répèt-]); c. phonological change o/O verbs without orthographic markers (adorer “to adore,” [ador-] and [adOr-]); and d. idiosyncratic (boire “to drink,” [boi-] and [buv-]). For each type of verb, we contrasted four conditions, forms with high and low surface frequencies and forms with high and low cumulative frequencies. Our results showed a significant cumulative frequency effect for the fully regular and idiosyncratic verbs, indicating that different stems within idiosyncratic verbs (such as [boi-] and [buv-]) have distinct representations in the mental lexicon as different fully regular verbs. For the phonological change verbs, we found a significant cumulative frequency effect only when considering the two forms of the stem together ([répét-] and [répèt-]), suggesting that they share a single abstract and under specified phonological representation. Our results also revealed a significant surface frequency effect for all types of verbs, which may reflect the recombination of the stem lexical representation with the functional information of the suffixes. Overall, these results indicate that all inflected verbal forms in French are decomposed during visual recognition and that this process could be due to the regularities of the French

  9. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    SciTech Connect

    Moore, Robert; Pickard, Paul S.; Parma, Jr., Edward J.; Vernon, Milton E.; Gelbard, Fred; Lenard, Roger X.

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  10. Procedures for Decomposing a Redox Reaction into Half-Reaction

    ERIC Educational Resources Information Center

    Fishtik, Ilie; Berka, Ladislav H.

    2005-01-01

    A simple algorithm for a complete enumeration of the possible ways a redox reaction (RR) might be uniquely decomposed into half-reactions (HRs) using the response reactions (RERs) formalism is presented. A complete enumeration of the possible ways a RR may be decomposed into HRs is equivalent to a complete enumeration of stoichiometrically…

  11. Decomposed gosling feet provide evidence of insecticide exposure

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Hulse, C.S.; Torrez, M.; Williams, B.I.; Leffel, R.

    2004-01-01

    Canada goose goslings were exposed to turf sprayed with D.Z.N(R) diazinon 50W application (2.24 kg a.i./ha). The control plot was subjected to a water application. One foot from each bird was placed outdoors for 7 d to decompose and the other foot was kept frozen. Diazinon residues were analyzed on both feet. Results showed that diazinon was detected from undecomposed and decomposed feet of the birds. Diazinon residues were below the level of detection (<0.01 ppm, a.i.) on the feet from the control goslings. Decomposed feet may be used for determining insecticide exposure when the traditional matrices are not available.

  12. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone. PMID:25078817

  13. Dust to dust - How a human corpse decomposes

    SciTech Connect

    Vass, Arpad Alexander

    2010-01-01

    After death, the human body decomposes through four stages. The final, skeleton stage may be reached as quickly as two weeks or as slowly as two years, depending on temperature, humidity and other environmental conditions where the body lies. Dead bodies emit a surprising array of chemicals, from benzene to freon, which can help forensic scientists find clandestine graves.

  14. Decomposing Curricular Objectives To Increase Specificity of Instruction.

    ERIC Educational Resources Information Center

    Marzano, Robert J.

    Advances in cognitive science have greatly increased our knowledge of how the human mind stores and uses information. That knowledge can be used to decompose curricular objectives so as to increase the specificity of instruction to a level of precision that should greatly enhance student writing. This article identifies some major types of…

  15. DEcomposed Software Pipelining: A new perspective and a new approach

    SciTech Connect

    Wang, J.; Eisenbeis, C.; Jourdan, M.; Su, B. )

    1994-06-01

    Software pipelining is an efficient instruction-level loop scheduling technique, but existing software pipelining approaches have not been widely used in practical and commercial compilers. This is mainly because resource constraints and the cyclic data dependencies make software pipelining very complicated and difficult to apply. In this paper we present a new perspective on software pipelining in which it is decomposed into two subproblems - one is free from cyclic data dependencies and can be effectively solved by the list scheduling technique, and the other is free from resource constraints and can be easily solved by classical polynomial-time algorithms of graph theory. Based on this new perspective, we develop a new instruction-level loop scheduling approach, called DEcomposed Software Pipelining (DESP).

  16. Domain decomposed preconditioners with Krylov subspace methods as subdomain solvers

    SciTech Connect

    Pernice, M.

    1994-12-31

    Domain decomposed preconditioners for nonsymmetric partial differential equations typically require the solution of problems on the subdomains. Most implementations employ exact solvers to obtain these solutions. Consequently work and storage requirements for the subdomain problems grow rapidly with the size of the subdomain problems. Subdomain solves constitute the single largest computational cost of a domain decomposed preconditioner, and improving the efficiency of this phase of the computation will have a significant impact on the performance of the overall method. The small local memory available on the nodes of most message-passing multicomputers motivates consideration of the use of an iterative method for solving subdomain problems. For large-scale systems of equations that are derived from three-dimensional problems, memory considerations alone may dictate the need for using iterative methods for the subdomain problems. In addition to reduced storage requirements, use of an iterative solver on the subdomains allows flexibility in specifying the accuracy of the subdomain solutions. Substantial savings in solution time is possible if the quality of the domain decomposed preconditioner is not degraded too much by relaxing the accuracy of the subdomain solutions. While some work in this direction has been conducted for symmetric problems, similar studies for nonsymmetric problems appear not to have been pursued. This work represents a first step in this direction, and explores the effectiveness of performing subdomain solves using several transpose-free Krylov subspace methods, GMRES, transpose-free QMR, CGS, and a smoothed version of CGS. Depending on the difficulty of the subdomain problem and the convergence tolerance used, a reduction in solution time is possible in addition to the reduced memory requirements. The domain decomposed preconditioner is a Schur complement method in which the interface operators are approximated using interface probing.

  17. N2O Decomposed by Discharge Plasma with Catalysts

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Huang, Hao; Xu, Jie; Yang, Qi; Tao, Gongkai

    2015-12-01

    A great deal of attention has been focused on discharge plasma as it can rapidly decompose N2O without additives, which is not only a kind of greenhouse gas but also a kind of damages to the ozone layer. The thermal equilibrium plasma is chosen to combine with catalysts to decompose N2O, and its characteristics are analyzed in the present paper. The results indicate that NO and NO2 were formed besides N2 and O2 during N2O decomposition when N2O was treated merely by discharge plasma. Concentration of NO declined greatly when the discharge plasma was combined with catalysts. Results of Raman spectra analysis on CeO2, Ce0.75Zr0.25O2 and Ce0.5Zr0.5O2 imply that the products selectivity has been obviously improved in discharge plasma decomposing N2O because of the existence of massive oxygen vacancies over the composite oxide catalysts. supported by National Natural Science Foundation of China (No. 50677026) and the Applied Basic Research Program of Wuhan, China (No. 2015060101010068)

  18. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    NASA Astrophysics Data System (ADS)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  19. Interface preconditionings for domain-decomposed convection-diffusion operators

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Keyes, David E.

    1990-01-01

    The performance of five different interface preconditionings for domain-decomposed convection-diffusion problems, including a novel one known as the spectral probe is tested in a three-dimensional parameter space consisting of mesh parameters, Reynolds number, and domain aspect ratio. The preconditioners are representative of the range of practically computable possibilities that have appeared in the literature for the treatment of nonoverlapping subdomains. Numerical examples show that no single preconditioner can be considered uniformly superior or uniformly inferior to the rest, but that knowledge of the particulars of the shape and strength of the convection is important in selecting among them in a given problem.

  20. Denoising, deconvolving, and decomposing photon observations. Derivation of the D3PO algorithm

    NASA Astrophysics Data System (ADS)

    Selig, Marco; Enßlin, Torsten A.

    2015-02-01

    The analysis of astronomical images is a non-trivial task. The D3PO algorithm addresses the inference problem of denoising, deconvolving, and decomposing photon observations. Its primary goal is the simultaneous but individual reconstruction of the diffuse and point-like photon flux given a single photon count image, where the fluxes are superimposed. In order to discriminate between these morphologically different signal components, a probabilistic algorithm is derived in the language of information field theory based on a hierarchical Bayesian parameter model. The signal inference exploits prior information on the spatial correlation structure of the diffuse component and the brightness distribution of the spatially uncorrelated point-like sources. A maximum a posteriori solution and a solution minimizing the Gibbs free energy of the inference problem using variational Bayesian methods are discussed. Since the derivation of the solution is not dependent on the underlying position space, the implementation of the D3PO algorithm uses the nifty package to ensure applicability to various spatial grids and at any resolution. The fidelity of the algorithm is validated by the analysis of simulated data, including a realistic high energy photon count image showing a 32 × 32 arcmin2 observation with a spatial resolution of 0.1 arcmin. In all tests the D3PO algorithm successfully denoised, deconvolved, and decomposed the data into a diffuse and a point-like signal estimate for the respective photon flux components. A copy of the code is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A74

  1. Transcranial Magnetic Stimulation: Decomposing the Processes Underlying Action Preparation.

    PubMed

    Bestmann, Sven; Duque, Julie

    2016-08-01

    Preparing actions requires the operation of several cognitive control processes that influence the state of the motor system to ensure that the appropriate behavior is ultimately selected and executed. For example, some form of competition resolution ensures that the right action is chosen among alternatives, often in the presence of conflict; at the same time, impulse control ought to be deployed to prevent premature responses. Here we review how state-changes in the human motor system during action preparation can be studied through motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the contralateral primary motor cortex (M1). We discuss how the physiological fingerprints afforded by MEPs have helped to decompose some of the dynamic and effector-specific influences on the motor system during action preparation. We focus on competition resolution, conflict and impulse control, as well as on the influence of higher cognitive decision-related variables. The selected examples demonstrate the usefulness of MEPs as physiological readouts for decomposing the influence of distinct, but often overlapping, control processes on the human motor system during action preparation. PMID:26163320

  2. VARIANCE ESTIMATION IN DOMAIN DECOMPOSED MONTE CARLO EIGENVALUE CALCULATIONS

    SciTech Connect

    Mervin, Brenden T; Maldonado, G. Ivan; Mosher, Scott W; Evans, Thomas M; Wagner, John C

    2012-01-01

    The number of tallies performed in a given Monte Carlo calculation is limited in most modern Monte Carlo codes by the amount of memory that can be allocated on a single processor. By using domain decomposition, the calculation is now limited by the total amount of memory available on all processors, allowing for significantly more tallies to be performed. However, decomposing the problem geometry introduces significant issues with the way tally statistics are conventionally calculated. In order to deal with the issue of calculating tally variances in domain decomposed environments for the Shift hybrid Monte Carlo code, this paper presents an alternative approach for reactor scenarios in which an assumption is made that once a particle leaves a domain, it does not reenter the domain. Particles that reenter the domain are instead treated as separate independent histories. This assumption introduces a bias that inevitably leads to under-prediction of the calculated variances for tallies within a few mean free paths of the domain boundaries. However, through the use of different decomposition strategies, primarily overlapping domains, the negative effects of such an assumption can be significantly reduced to within reasonable levels.

  3. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia.

    PubMed

    Tláskal, Vojtěch; Voříšková, Jana; Baldrian, Petr

    2016-11-01

    The decomposition of dead plant biomass contributes to the carbon cycle and is one of the key processes in temperate forests. While fungi in litter decomposition drive the chemical changes occurring in litter, the bacterial community appears to be important as well, especially later in the decomposition process when its abundance increases. In this paper, we describe the bacterial community composition in live Quercus petraea leaves and during the subsequent two years of litter decomposition. Members of the classes Alpha-, Beta- and Gammaproteobacteria and the phyla Actinobacteria, Bacteroidetes and Acidobacteria were dominant throughout the experiment. Bacteria present in the oak phyllosphere were rapidly replaced by other taxa after leaf senescence. There were dynamic successive changes in community composition, in which the early-stage (months 2-4), mid-stage (months 6-8) and late-stage (months 10-24) decomposer communities could be distinguished, and the diversity increased with time. Bacteria associated with dead fungal mycelium were important during initial decomposition, with sequence relative abundances of up to 40% of the total bacterial community in months 2 and 4 when the highest fungal biomass was observed. Cellulose-decomposing bacteria were less frequent, with abundance ranging from 4% to 15%. The bacterial community dynamics reflects changes in the availability of possible resources either of the plant or microbial origin. PMID:27543318

  4. Optimizing Non-Decomposable Loss Functions in Structured Prediction

    PubMed Central

    Ranjbar, Mani; Lan, Tian; Wang, Yang; Robinovitch, Steven N.; Li, Ze-Nian; Mori, Greg

    2012-01-01

    We develop an algorithm for structured prediction with non-decomposable performance measures. The algorithm learns parameters of Markov random fields and can be applied to multivariate performance measures. Examples include performance measures such as Fβ score (natural language processing), intersection over union (object category segmentation), Precision/Recall at k (search engines) and ROC area (binary classifiers). We attack this optimization problem by approximating the loss function with a piecewise linear function. The loss augmented inference forms a quadratic program (QP), which we solve using LP relaxation. We apply this approach to two tasks: object class-specific segmentation and human action retrieval from videos. We show significant improvement over baseline approaches that either use simple loss functions or simple scoring functions on the PASCAL VOC and H3D Segmentation datasets, and a nursing home action recognition dataset. PMID:22868650

  5. Mining functional modules in genetic networks with decomposable graphical models.

    PubMed

    Dejori, Mathäus; Schwaighofer, Anton; Tresp, Volker; Stetter, Martin

    2004-01-01

    In recent years, graphical models have become an increasingly important tool for the structural analysis of genome-wide expression profiles at the systems level. Here we present a new graphical modelling technique, which is based on decomposable graphical models, and apply it to a set of gene expression profiles from acute lymphoblastic leukemia (ALL). The new method explains probabilistic dependencies of expression levels in terms of the concerted action of underlying genetic functional modules, which are represented as so-called "cliques" in the graph. In addition, the method uses continuous-valued (instead of discretized) expression levels, and makes no particular assumption about their probability distribution. We show that the method successfully groups members of known functional modules to cliques. Our method allows the evaluation of the importance of genes for global cellular functions based on both link count and the clique membership count. PMID:15268775

  6. Decomposing the Unsteady Flow Routing in River Systems

    NASA Astrophysics Data System (ADS)

    Gomez Cunya, L. A.; Leon, A.; Gibson, N. L.; Vasylkivska, V.

    2014-12-01

    This work presents an optimization-based domain decomposition strategy for unsteady flow routing in complex river systems. This strategy couples the domain decomposition technique with a Precomputed Channel Hydraulics Ensemble approach, known also as HydraulicPerformance Graph (HPG), which utilizes precomputed solutions along reaches on a river system. These solutions are stored in a database. While efficient and robust, HPGs requires extensive memory allocation, especially for high resolution simulations. Decomposing the river system into subdomains reduces computer memory constraints as each sub-domain is solved independently. Further, an optimization method is used to couple the sub-domains using the stored precomputed solution. In turn, the computational efficiency of the HPG approach allows the optimization-based scheme to be competitive with a whole domain methodology. The combined strategy is expected to reduce the overall computational time for large-scale problems. This work discusses the results of the application to the Columbia River (Northwest USA).

  7. Fungal community on decomposing leaf litter undergoes rapid successional changes

    PubMed Central

    Voříšková, Jana; Baldrian, Petr

    2013-01-01

    Fungi are considered the primary decomposers of dead plant biomass in terrestrial ecosystems. However, current knowledge regarding the successive changes in fungal communities during litter decomposition is limited. Here we explored the development of the fungal community over 24 months of litter decomposition in a temperate forest with dominant Quercus petraea using 454-pyrosequencing of the fungal internal transcribed spacer (ITS) region and cellobiohydrolase I (cbhI) genes, which encode exocellulases, to specifically address cellulose decomposers. To quantify the involvement of phyllosphere fungi in litter decomposition, the fungal communities in live leaves and leaves immediately before abscission were also analysed. The results showed rapid succession of fungi with dramatic changes in the composition of the fungal community. Furthermore, most of the abundant taxa only temporarily dominated in the substrate. Fungal diversity was lowest at leaf senescence, increased until month 4 and did not significantly change during subsequent decomposition. Highly diverse community of phyllosphere fungi inhabits live oak leaves 2 months before abscission, and these phyllosphere taxa comprise a significant share of the fungal community during early decomposition up to the fourth month. Sequences assigned to the Ascomycota showed highest relative abundances in live leaves and during the early stages of decomposition. In contrast, the relative abundance of sequences assigned to the Basidiomycota phylum, particularly basidiomycetous yeasts, increased with time. Although cellulose was available in the litter during all stages of decomposition, the community of cellulolytic fungi changed substantially over time. The results indicate that litter decomposition is a highly complex process mediated by various fungal taxa. PMID:23051693

  8. Fungal community on decomposing leaf litter undergoes rapid successional changes.

    PubMed

    Voříšková, Jana; Baldrian, Petr

    2013-03-01

    Fungi are considered the primary decomposers of dead plant biomass in terrestrial ecosystems. However, current knowledge regarding the successive changes in fungal communities during litter decomposition is limited. Here we explored the development of the fungal community over 24 months of litter decomposition in a temperate forest with dominant Quercus petraea using 454-pyrosequencing of the fungal internal transcribed spacer (ITS) region and cellobiohydrolase I (cbhI) genes, which encode exocellulases, to specifically address cellulose decomposers. To quantify the involvement of phyllosphere fungi in litter decomposition, the fungal communities in live leaves and leaves immediately before abscission were also analysed. The results showed rapid succession of fungi with dramatic changes in the composition of the fungal community. Furthermore, most of the abundant taxa only temporarily dominated in the substrate. Fungal diversity was lowest at leaf senescence, increased until month 4 and did not significantly change during subsequent decomposition. Highly diverse community of phyllosphere fungi inhabits live oak leaves 2 months before abscission, and these phyllosphere taxa comprise a significant share of the fungal community during early decomposition up to the fourth month. Sequences assigned to the Ascomycota showed highest relative abundances in live leaves and during the early stages of decomposition. In contrast, the relative abundance of sequences assigned to the Basidiomycota phylum, particularly basidiomycetous yeasts, increased with time. Although cellulose was available in the litter during all stages of decomposition, the community of cellulolytic fungi changed substantially over time. The results indicate that litter decomposition is a highly complex process mediated by various fungal taxa. PMID:23051693

  9. Empirical mode decomposition for analyzing acoustical signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2005-01-01

    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  10. An algorithm to decompose ground reaction forces and moments from a single force platform in walking gait.

    PubMed

    Villeger, David; Costes, Antony; Watier, Bruno; Moretto, Pierre

    2014-11-01

    In walking experimental conditions, subjects are sometimes unable to perform two steps on two different forceplates. This leads the authors to develop methods for discerning right and left ground reaction data while they are summed during the double support in walking. The aim of this study is to propose an adaptive transition function that considers the walking speed and ground reaction forces (GRF). A transition function is used to estimate left and right side GRF signals in double support. It includes a shape coefficient adjusted using single support GRF parameters. This shape coefficient is optimized by a non-linear least-square curve-fitting procedure to match the estimated signals with real GRF. A multiple regression is then performed to identify GRF parameters of major importance selected to compute the right and left GRF of the double support. Relative RMSE (RMSER), maximum GRF differences normalized to body mass and differences of center of pressure (CoP) are computed between real and decomposed signals. During double support, RMSER are 6%, 18%, 3.8%, 4.3%, 3%, and 12.3% for anterior force, lateral force, vertical force, frontal moment, sagittal moment and transverse moment, respectively. Maximum GRF differences normalized to body mass are lower than 1N/kg and mean CoP difference is 0.0135 m, when comparing real to decomposed signals during double support. This work shows the accuracy of an adaptive transition function to decompose GRF and moment of right and left sides. This method is especially useful to accurately discern right and left GRF data in single force platform configurations. PMID:25239287

  11. Using decision models to decompose anxiety-related bias in threat classification.

    PubMed

    White, Corey N; Skokin, Kimberly; Carlos, Brandon; Weaver, Alexandria

    2016-03-01

    Individuals with high levels of anxiety show preferential processing of threatening information, and this cognitive bias is thought to be an integral component of anxiety disorders. In threat classification tasks, this bias manifests as high-anxiety participants being more likely to classify stimuli as threatening than their low-anxiety counterparts. However, it is unclear which cognitive mechanisms drive this bias in threat classification. To better understand this phenomenon, threat classification data were analyzed with 2 decision models: a signal detection model and a drift-diffusion model. Signal detection models can dissociate measures of discriminability and bias, and diffusion models can further dissociate bias due to response preparation from bias due to stimulus evaluation. Individuals in the study completed a trait anxiety measure and classified threatening and neutral words based on whether they deemed them threatening. Signal detection analysis showed that high-anxiety participants had a bias driven by a weaker threat criterion than low-anxiety participants, but no differences in discriminability. Drift-diffusion analysis further decomposed the threat bias to show that it is driven by both an expectation bias that the threat response was more likely to be correct, and a stimulus bias driven by a weaker criterion for evaluating the stimuli under consideration. These model-based analyses provide valuable insight and show that multiple cognitive mechanisms underlie differential threat processing in anxiety. Implications for theories of anxiety are discussed. (PsycINFO Database Record PMID:26461247

  12. Tumebacillus algifaecis sp. nov., isolated from decomposing algal scum.

    PubMed

    Wu, Yu-Fan; Zhang, Bo; Xing, Peng; Wu, Qing-Long; Liu, Shuang-Jiang

    2015-07-01

    Bacterial strain THMBR28(T) was isolated from decomposing algal scum that was collected during an algal bloom in Taihu lake, China. Cells of strain THMBR28(T) were Gram-staining-positive, facultatively anaerobic and rod-shaped. Growth was observed at 20-45 °C (optimum, 30 °C), at pH 5.0-9.5 (optimum, pH 6.5-7.5), and in the presence of 0-1.0% (w/v) NaCl (optimum, 0.5%). Strain THMBR28(T) contained MK-7 as the major menaquinone and iso-C15 : 0 as the major cellular fatty acid. The polar lipid profile contained phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine and six unidentified polar lipids. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The DNA G+C content was 57.6 mol% (Tm). Phylogenetic analysis of 16S rRNA gene sequences showed that strain THMBR28(T) belonged to the genus Tumebacillus, most closely related to Tumebacillus ginsengisoli DSM 18389(T) (95.0%) and Tumebacillus permanentifrigoris Eur1 9.5(T) (93.4%). Based on phylogenetic and phenotypic characterization, it is concluded that strain THMBR28(T) represents a novel species of the genus Tumebacillus, for which the name Tumebacillus algifaecis sp. nov. is proposed, with THMBR28(T) ( = CGMCC 1.10949(T) = NBRC 108765(T)) as the type strain. PMID:25858243

  13. Decomposing the effect of crime on population changes.

    PubMed

    Foote, Andrew

    2015-04-01

    This article estimates the effect of crime on migration rates for counties in U.S. metropolitan areas and makes three contributions to the literature. First, I use administrative data on migration flows between counties, which gives me more precise estimates of population changes than data used in previous studies. Second, I am able to decompose net population changes into gross migration flows in order to identify how individuals respond to crime rate changes. Finally, I include county-level trends so that my identification comes from shocks away from the trend. I find effects that are one-fiftieth the size of the most prominent estimate in the literature; and although the long-run effects are somewhat larger, they are still only approximately one-twentieth as large. I also find that responses to crime rates differ by subgroups, and that increases in crime cause white households to leave the county, with effects almost 10 times as large as for black households. PMID:25754687

  14. Temperature effect on photolysis decomposing of perfluorooctanoic acid.

    PubMed

    Zhang, Tiliang; Pan, Gang; Zhou, Qin

    2016-04-01

    Perfluorooctanoic acid (PFOA) is recalcitrant to degrade and mineralize. Here, the effect of temperature on the photolytic decomposition of PFOA was investigated. The decomposition of PFOA was enhanced from 34% to 99% in 60min of exposure when the temperature was increased from 25 to 85°C under UV light (201-600nm). The limited degree of decomposition at 25°C was due to low quantum yield, which was increased by a factor of 12 at 85°C. Under the imposed conditions, the defluorination ratio increased from 8% at 25°C to 50% at 85°C in 60min. Production of perfluorinated carboxylic acids (PFCAs, C7-C5), PFCAs (C4-C3) and TFA (trifluoroacetic acid, C2) accelerated and attained a maximum within 30 to 90min at 85°C. However, these reactions did not occur at 25°C despite extended irradiation to 180min. PFOA was decomposed in a step-wise process by surrendering one CF2 unit. In each cyclical process, increased temperature enhanced the quantum yields of irradiation and reactions between water molecules and intermediates radicals. The energy consumption for removing each μmol of PFOA was reduced from 82.5kJ at 25°C to 10.9kJ at 85°C using photolysis. Photolysis coupled with heat achieved high rates of PFOA degradation and defluorination. PMID:27090703

  15. Toxic effects of decomposing red algae on littoral organisms

    NASA Astrophysics Data System (ADS)

    Eklund, Britta; Svensson, Andreas P.; Jonsson, Conny; Malm, Torleif

    2005-03-01

    Large masses of filamentous red algae of the genera Polysiphonia, Rhodomela, and Ceramium are regularly washed up on beaches of the central Baltic Sea. As the algal masses start to decay, red coloured effluents leak into the water, and this tinge may be traced several hundred meters off shore. In this study, possible toxic effects of these effluents were tested on littoral organisms from different trophic levels. Effects on fertilisation, germination and juvenile survival of the brown seaweed Fucus vesiculosus were investigated, and mortality tests were performed on the crustaceans Artemia salina and Idotea baltica, as well as on larvae and adults of the fish Pomatoschistus microps. Fucus vesiculosus was the most sensitive species of the tested organisms to the red algal extract. The survival of F. vesiculosus recruits was reduced with 50% (LC50) when exposed to a concentration corresponding to 1.7 g l -1 dw red algae. The lethal concentration for I. baltica, A. salina and P. microps were approximately ten times higher. The toxicity to A. salina was reduced if the algal extract was left to decompose during two weeks but the decline in toxicity was not affected by different light or temperature conditions. This study indicates that the filamentous red algae in the central Baltic Sea may produce and release compounds with negative effects on the littoral ecosystem. The effects may be particularly serious for the key species F. vesiculosus, which reproduce in autumn when filamentous red algal blooms are most severe.

  16. Characteristics of main chain decomposable STAR polymer for EUV resist

    NASA Astrophysics Data System (ADS)

    Iwashita, Jun; Hirayama, Taku; Takagi, Isamu; Matsuzawa, Kensuke; Suzuki, Kenta; Yoshizawa, Sachiko; Konno, Kenri; Yahagi, Masahito; Sato, Kazufumi; Tagawa, Seiichi; Enomoto, Kazuyuki; Oshima, Akihiro

    2011-04-01

    The concept of nonlinear acid diffusion coefficient would be emphasized to achieve better latent image quality, resulting in better lithographic performance. Focusing on realizing the concept, we previously reported about a main chain decomposable star shaped polymer (STAR polymer).STAR polymer consists of a core unit and several arm units which connect to the core unit with easily acid cleavable bonding. (Fig.1) The main chain decomposition system is ideal to achieve promoted acid diffusion at exposed area because it accompanies great molecular weight reduction at exposed area. The significance of the STAR system had been confirmed for partially protected poly(p-hydroxystyrene) (PHS) considering arm length and core structure. Employing p-hydroxy-α-methylstylene (PHOMS) for arm structure, novel STAR polymer with appropriate glass transition temperature (Tg) could be realized. (Fig.2) Poly PHOMS is known to undergo acid-catalyzed decomposition from the polymer end. Lithographic performance comparison between the STAR polymer and the linear polymer as a control using a Micro Exposure Tool (MET) would be exhibited. Thermal property change with exposure and dissolution charactersitic will be also discussed. Moreover main chain decomposition mechanism was investigated with flood EB irradiation.

  17. Reduced Toxicity Fuel Satellite Propulsion System Including Catalytic Decomposing Element with Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2002-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  18. Decomposing groundwater head variations into meteorological and pumping components: a synthetic study

    NASA Astrophysics Data System (ADS)

    Shapoori, V.; Peterson, T. J.; Western, A. W.; Costelloe, J. F.

    2015-11-01

    Time-series modeling is often used to decompose groundwater hydrographs into individual drivers such as pumping and meteorological factors. To date, there has been an assumption that a simulation fitting the total hydrograph produces reliable estimates of the impact from each driver. That is, assessment of the decomposition has not used an independent estimate of each decomposition result. To begin to address this, a synthetic study is undertaken so that the impact of each driver is known. In this study, 500 MODFLOW groundwater models of a one-layer unconfined aquifer were constructed. For each model, three hydrogeological properties (saturated hydraulic conductivity, storativity and depth to aquifer basement), the distance between observation and pumping bores, and extraction rate were set randomly and synthetic groundwater hydrographs were derived. For each hydrograph, the influence of individual drivers was estimated using six different time-series models. These estimates were then compared to the known meteorological and pumping influences derived from the MODFLOW models. The results demonstrate that hydrograph separations obtained from time-series models do not always result in reliable estimation of pumping and meteorological influences even when the overall hydrograph fit is good. However, when the time-series model represents the important processes (e.g. phreatic evaporation is included for shallow water tables) and the (head) variance of the pumping signal to the meteorological signal is between 0.1 and 10, the time-series model has the potential to adequately separate the influence of pumping and climate.

  19. Biogeochemical implications of decomposing jellyfish blooms in a changing climate

    NASA Astrophysics Data System (ADS)

    Chelsky, Ariella; Pitt, Kylie A.; Welsh, David T.

    2015-03-01

    Jellyfish often exhibit 'boom and bust' population dynamics whereby they proliferate rapidly and then die en masse and decompose. The few studies that have investigated post-bloom processes have not studied how changing ocean conditions will alter rates of decomposition. Climate change will result in warmer and more acidic waters, and studies therefore need to consider these factors in concert to determine their combined effect on decomposition processes. To quantify the effect, we measured oxygen consumption and nutrient regeneration rates during decomposition of Catostylus mosaicus in mesocosms at current average summer pH and temperature (pH 8.0 and 27 °C) as well as conditions projected for year 2100 (pH 7.8 and 30 °C) and compared these fluxes to control mesocosms without jellyfish over 12 days. We hypothesised that rates of jellyfish decomposition, as measured by oxygen demand and nutrient regeneration, would be accelerated in the end-of-century treatments, compared to present day treatments. Overall decomposition rates were only slightly elevated under end-of-century conditions, and the difference was only significant for ammonium fluxes from 19 h until 43 h after the experiment commenced. The difference between treatments was much smaller than would be expected due to the temperature increase, based on theoretical modelling of jellyfish decomposition which predicts a Q10 of 4.28, or a 1.5 fold increase in decomposition rates. This highlights the importance of investigating net effects on decomposition rates, as simultaneous shifts in temperature and pH may not follow patterns predicted due to one stressor alone. Ultimately, these results suggest that rates of oxygen consumption and nutrient regeneration resulting from collapsed jellyfish blooms may not change drastically over the next 100 years.

  20. Decomposer diversity and identity influence plant diversity effects on ecosystem functioning.

    PubMed

    Eisenhauer, Nico; Reich, Peter B; Isbell, Forest

    2012-10-01

    Plant productivity and other ecosystem functions often increase with plant diversity at a local scale. Alongside various plant-centered explanations for this pattern, there is accumulating evidence that multi-trophic interactions shape this relationship. Here, we investigated for the first time if plant diversity effects on ecosystem functioning are mediated or driven by decomposer animal diversity and identity using a double-diversity microcosm experiment. We show that many ecosystem processes and ecosystem multifunctionality (herbaceous shoot biomass production, litter removal, and N uptake) were affected by both plant and decomposer diversity, with ecosystem process rates often being maximal at intermediate to high plant and decomposer diversity and minimal at both low plant and decomposer diversity. Decomposers relaxed interspecific plant competition by enlarging chemical (increased N uptake and surface-litter decomposition) and spatial (increasing deep-root biomass) habitat space and by promoting plant complementarity. Anecic earthworms and isopods functioned as key decomposers; although decomposer diversity effects did not solely rely on these two decomposer species, positive plant net biodiversity and complementarity effects only occurred in the absence of isopods and the presence of anecic earthworms. Using a structural equation model, we explained 76% of the variance in plant complementarity, identified direct and indirect effect paths, and showed that the presence of key decomposers accounted for approximately three-quarters of the explained variance. We conclude that decomposer animals have been underappreciated as contributing agents of plant diversity-ecosystem functioning relationships. Elevated decomposer performance at high plant diversity found in previous experiments likely positively feeds back to plant performance, thus contributing to the positive relationship between plant diversity and ecosystem functioning. PMID:23185884

  1. FPGA-Based Filterbank Implementation for Parallel Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Berner, Stephan; DeLeon, Phillip

    1999-01-01

    One approach to parallel digital signal processing decomposes a high bandwidth signal into multiple lower bandwidth (rate) signals by an analysis bank. After processing, the subband signals are recombined into a fullband output signal by a synthesis bank. This paper describes an implementation of the analysis and synthesis banks using (Field Programmable Gate Arrays) FPGAs.

  2. Effects of decomposing rice straw on growth of and nitrogen fixation by Rhizobium

    SciTech Connect

    Rice, E.L.; Huang, C.Y.; Lin, C.Y.

    1981-03-01

    Five phenolic compounds produced in decomposing rice straw and sterile extracts of decomposing rice straw in soil were very inhibitory to growth of three strains of Rhizobium. The effects were additive and in several instances synergistic. The phenolic compounds also reduced nodule numbers and hemoglobin content of the nodules in two bean (Phaseohus vulgaris) varieties. Extracts of decomposing rice straw in soil (same concentration as in the soil) significantly reduced N/sub 2/ fixation (acetylene reduction) in Bush Black Seeded beans. This may explain in part the great reduction in soybean yields in Taiwan following rice crops when the rice stubble is left in the field.

  3. [Effect of cellulose-decomposing strain on microbial community of cow manure compost].

    PubMed

    Liu, Jia; Li, Wan; Xu, Xiu-Hong; Li, Hong-Tao

    2011-10-01

    Taking the cow dung and straw as composting raw materials, effect of cellulose-decomposing strain on microbial community of cow manure compost was investigated with the traditional culture method and PCR-DGGE technique. The results showed that the microbiological inocula showed a more rapid rate of temperature elevation at the start of composting and prolonged the time of high-temperature process and increased the number of microbial. The DGGE map of cellulose-decomposing strain compost was different from natural compost, the succession of microbial community in cellulose-decomposing strain was faster than natural compost. Sequence comparison revealed that the Pseudomonas sp. of bacterial appeared at the initial stage and Acinetobacter sp., Flavobacteria were existed at the high-temperature process in natural compost; while Arthrobacter sp. was appeared at the high-temperature process in cellulose-decomposing strain compost. Bacillus sp. was dominant species at middle and later stage in natural compost and cellulose-decomposing strain compost. Eimeriidae of fungal appeared in compost materials, Aspergillus and thermophilic fungi were dominant species at the high-temperature process in natural compost and cellulose-decomposing strain compost. Ascomycota appeared at middle and later stage in natural compost; while Basidiomycetes in cellulose-decomposing strain compost. Aspergillus was found throughout the process. This result suggested that the microbiological inocula were able to facilitate the bacterial microbial diversity of the compost; reduced the fungal microbial diversity of the compost. The aims of this study were to provide a scientific basis to the diversity of microbial community by monitoring the dynamics of microbial community in cellulose-decomposing strain compost and represent an important step towards the understanding of microbiological inocula and its function in the degradation process of compost. PMID:22279926

  4. Decomposed multidimensional control grid interpolation for common consumer electronic image processing applications

    NASA Astrophysics Data System (ADS)

    Zwart, Christine M.; Venkatesan, Ragav; Frakes, David H.

    2012-10-01

    Interpolation is an essential and broadly employed function of signal processing. Accordingly, considerable development has focused on advancing interpolation algorithms toward optimal accuracy. Such development has motivated a clear shift in the state-of-the art from classical interpolation to more intelligent and resourceful approaches, registration-based interpolation for example. As a natural result, many of the most accurate current algorithms are highly complex, specific, and computationally demanding. However, the diverse hardware destinations for interpolation algorithms present unique constraints that often preclude use of the most accurate available options. For example, while computationally demanding interpolators may be suitable for highly equipped image processing platforms (e.g., computer workstations and clusters), only more efficient interpolators may be practical for less well equipped platforms (e.g., smartphones and tablet computers). The latter examples of consumer electronics present a design tradeoff in this regard: high accuracy interpolation benefits the consumer experience but computing capabilities are limited. It follows that interpolators with favorable combinations of accuracy and efficiency are of great practical value to the consumer electronics industry. We address multidimensional interpolation-based image processing problems that are common to consumer electronic devices through a decomposition approach. The multidimensional problems are first broken down into multiple, independent, one-dimensional (1-D) interpolation steps that are then executed with a newly modified registration-based one-dimensional control grid interpolator. The proposed approach, decomposed multidimensional control grid interpolation (DMCGI), combines the accuracy of registration-based interpolation with the simplicity, flexibility, and computational efficiency of a 1-D interpolation framework. Results demonstrate that DMCGI provides improved interpolation

  5. Estimate of fine root production including the impact of decomposed roots in a Bornean tropical rainforest

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Khoon Koh, Lip; Kume, Tomonori; Makita, Naoki; Matsumoto, Kazuho; Ohashi, Mizue

    2016-04-01

    Considerable carbon is allocated belowground and used for respiration and production of roots. It is reported that approximately 40 % of GPP is allocated belowground in a Bornean tropical rainforest, which is much higher than those in Neotropical rainforests. This may be caused by high root production in this forest. Ingrowth core is a popular method for estimating fine root production, but recent study by Osawa et al. (2012) showed potential underestimates of this method because of the lack of consideration of the impact of decomposed roots. It is important to estimate fine root production with consideration for the decomposed roots, especially in tropics where decomposition rate is higher than other regions. Therefore, objective of this study is to estimate fine root production with consideration of decomposed roots using ingrowth cores and root litter-bag in the tropical rainforest. The study was conducted in Lambir Hills National Park in Borneo. Ingrowth cores and litter bags for fine roots were buried in March 2013. Eighteen ingrowth cores and 27 litter bags were collected in May, September 2013, March 2014 and March 2015, respectively. Fine root production was comparable to aboveground biomass increment and litterfall amount, and accounted only 10% of GPP in this study site, suggesting most of the carbon allocated to belowground might be used for other purposes. Fine root production was comparable to those in Neotropics. Decomposed roots accounted for 18% of fine root production. This result suggests that no consideration of decomposed fine roots may cause underestimate of fine root production.

  6. MicroCT detection of gunshot residue in fresh and decomposed firearm wounds.

    PubMed

    Cecchetto, Giovanni; Amagliani, Alessandro; Giraudo, Chiara; Fais, Paolo; Cavarzeran, Fabiano; Montisci, Massimo; Feltrin, Giampietro; Viel, Guido; Ferrara, Santo Davide

    2012-05-01

    Gunshot residue (GSR) evidence may be altered or obscured by after-death events such as putrefaction, autolysis, and/or damage by animals. The present study aimed at evaluating and comparing the amount and differential distribution of GSR utilizing microcomputed tomography (microCT) analysis of fresh and decomposed gunshot wounds. A total of 60 experimental shootings at three different firing distances (5, 15, and 30 cm) were performed on human calves surgically amputated for medical reasons. Thirty specimens (10 for each tested distance) were immediately formalin-fixed, while the other 30 specimens were enclosed in a cowshed for 15 days, before formalin fixation (air temperature ranging from 11°C to 38°C). MicroCT analysis with three-dimensional image reconstruction detected GSR particles in all the investigated entrance wounds. In fresh specimens, GSR was concentrated on the skin surface around the entrance hole and in the epidermis and dermis layers around the cavity, while in decomposed specimens, the high density particles were detected only in the dermis layer. No GSR was detected in exit wounds of both fresh and decomposed specimens regardless of the tested firing distance. Statistical analysis demonstrated that also in decomposed wounds the amount of GSR roughly correlated with the distance from which the gun was fired, exhibiting, however, a higher variability than in fresh samples. The obtained results suggest that microCT analysis can be a valid screening tool for differentiating decomposed entrance and exit gunshot wounds. PMID:22086714

  7. [The Implementation by PARAFAC Decompose Components Analysis in the Three-Dimensional Fluorescence Spectroscopy Data].

    PubMed

    Zhu, Peng; Liu, Cheng-lin; Zhu, Fei

    2015-06-01

    The paper systematically analyzes the implementation process of the parallel factor analysis (PARAFAC) method decompose matrix data. As example, The three dimensional fluorescence spectra of the water samples taken from the lake were analyzed by PARAFAC. According to the distribution of the core matrix elements, the core consistency, the degree of similarity between the model spectra and the original spectra, the physical meaning of the proposed decomposition components, the number of components was determined. Then the corresponding PARAFAC model was established. The components of the fluorescence material components dissolved in water samples can be decomposed by this PARAFAC model. PMID:26601377

  8. Relating soil pore geometry to soil water content dynamics decomposed at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Soil structure is a critical factor determining the response of soil water content to meteorological inputs such as precipitation. Wavelet analysis can be used to filter a signal into several wavelet components, each characterizing a given frequency. The purpose of this research was to investigate relationships between the geometry of soil pore systems and the various wavelet components derived from soil water content dynamics. The two study sites investigated were located in the state of São Paulo, Brazil. Each site was comprised of five soil profiles, the first site was situated along a 300-meter transect with about 10% slope in a tropical semi-deciduous forest, while the second one spanned 230-meter over a Brazilian savanna with a slope of about 6%. For each profile, between two to four Water Content Reflectometer CS615 (Campbell Scientific, Inc.) probes were installed according to horizonation at depths varying between 0.1 m and 2.3 m. Bulk soil, three soil cores, and one undisturbed soil block were sampled from selected horizons for determining particle size distributions, water retention curves, and pore geometry, respectively. Pore shape and size were determined from binary images obtained from resin-impregnated blocks and used to characterize pore geometry. Soil water contents were recorded at a 20-minute interval over a 4-month period. The Mexican hat wavelet was used to decompose soil water content measurements into wavelet components. The responses of wavelet components to wetting and drying cycles were characterized by the median height of the peaks in each wavelet component and were correlated with particular pore shapes and sizes. For instance, large elongated and irregular pores, largely responsible for the transmission of water, were significantly correlated with wavelet components at high frequencies (40 minutes to 48 hours) while rounded pores, typically associated to water retention, were only significantly correlated to lower frequency ranges

  9. Investigating the Sources of Teachers' Instructional Technology Use through the Decomposed Theory of Planned Behavior

    ERIC Educational Resources Information Center

    Shiue, Ya-Ming

    2007-01-01

    Based on the decomposed theory of planned behavior, this study used path analysis to examine the relative strength of the factors that influence teachers' use of instructional technology. The study focused on teachers' use of word processors, spreadsheets, presentation software, e-mail, and Web browsers. A path analysis was performed on…

  10. Comparison of Four Parallel Algorithms For Domain Decomposed Implicit Monte Carlo

    SciTech Connect

    Brunner, T; Urbatsch, T; Evans, T; Gentile, N

    2004-12-21

    Four different algorithms for domain decomposed Monte Carlo are outlined, and the performance of each is measured. These algorithms are implemented in the KULL IMC package [4] running inside of ALEGRA [1]. This package implements the Implicit Monte Carlo (IMC) scheme for thermal radiation transport of Fleck and Cummings [3].

  11. Inhibition of Phosphorus Sorption to Goethite, Gibbsite, and Kaolin by Fresh and Decomposed Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The direct effects of dissolved organic matter (DOM) on the sorption of orthophosphate onto gibbsite, goethite, and kaolin were examined using an one-point phosphorus sorption index and the linear Tempkin isotherm model. Dissolved organic matter extracted from fresh and decomposed agricultural resi...

  12. A Consulting System Assisting Naive Users In Decomposing And Constructing A Mechanical Object

    NASA Astrophysics Data System (ADS)

    Abe, Norihiro; Tsuji, Saburo

    1984-06-01

    A new consulting system using a natural language and a graphical interface is under construction to assist a naive user in decomposing and constructing a mechanical object with cylindrical bodies. Many trouble shooting systems have been developed so far, but most of them do not tell us the way for decomposing the object to find out trouble points. This system is built to assist naive user in decomposing a mechanical object and in constructing it after repairation. It is difficult for a computer to give him a series of operations necessary for exposing a trouble point by using just simple command suquences, then an integrated instruction facility using a natural language and a visual interface must be offered to users for specifying what portion of the object should be decomposed or constructed at the next stage, and for verifying whether what the user have done to the object is correct or incorrect. The present art of computer vision cannot verify if an act taken by the user is correct or not at each step, because mechanical objects sometimes have involved structures. This system leaves this verification process to the user by showing him two perspective views of the objects, and an explanation on the operation which causes these two views before and after decomposition or construction.

  13. Acute toxicity of live and decomposing green alga Ulva ( Enteromorpha) prolifera to abalone Haliotis discus hannai

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yu, Rencheng; Zhou, Mingjiang

    2011-05-01

    From 2007 to 2009, large-scale blooms of green algae (the so-called "green tides") occurred every summer in the Yellow Sea, China. In June 2008, huge amounts of floating green algae accumulated along the coast of Qingdao and led to mass mortality of cultured abalone and sea cucumber. However, the mechanism for the mass mortality of cultured animals remains undetermined. This study examined the toxic effects of Ulva ( Enteromorpha) prolifera, the causative species of green tides in the Yellow Sea during the last three years. The acute toxicity of fresh culture medium and decomposing algal effluent of U. prolifera to the cultured abalone Haliotis discus hannai were tested. It was found that both fresh culture medium and decomposing algal effluent had toxic effects to abalone, and decomposing algal effluent was more toxic than fresh culture medium. The acute toxicity of decomposing algal effluent could be attributed to the ammonia and sulfide presented in the effluent, as well as the hypoxia caused by the decomposition process.

  14. Gaze Fluctuations Are Not Additively Decomposable: Reply to Bogartz and Staub

    ERIC Educational Resources Information Center

    Kelty-Stephen, Damian G.; Mirman, Daniel

    2013-01-01

    Our previous work interpreted single-lognormal fits to inter-gaze distance (i.e., "gaze steps") histograms as evidence of multiplicativity and hence interactions across scales in visual cognition. Bogartz and Staub (2012) proposed that gaze steps are additively decomposable into fixations and saccades, matching the histograms better and…

  15. Anthropometric Predictors of Bio-Impedance Analysis (BIA) Phase Angle in Healthy Adults

    PubMed Central

    Khan, Sarfaraz Alam; Shoeb, Mohammad; Bose, Sukhwant

    2016-01-01

    Introduction Phase Angle (PhA) is a ratio of whole body reactance and resistance obtained from Bioelectrical Impedance Analysis (BIA). It indicates cellular health and integrity and is considered as prognostic tool in medical disorders. In spite of prognostic potentials of PhA, it has limited usefulness in clinical practice and in population studies because of non-availability of normal population reference limits for comparison. Moreover, it is influenced by various factors like age, sex, race and body composition (i.e. body fat, muscle mass, visceral fat, body cell mass, total body water, etc). Aim The aim of this study was to evaluate predictors of phase angle which will be useful in formulation of reference values for Indian population. Materials and Methods BIA was performed by Tanita Body Composition Analyser on healthy adults aged 17-24 years. The inbuilt software measured the phase angle by the formula: Phase angle (PhA) = Reactance (xc)/Resistance (R)* (180/π). Phase angle values were compared across categories of age, sex, weight, height, Body Mass Index (BMI), total fat, visceral fat and muscle mass. Results Mean value of phase angle was found to be 5.65. Phase angle was significantly (p< 0.001) higher in male than in female. Phase angle was significantly predicted from height (p< 0.001), weight (p< 0.002), muscle mass (p< 0.002) and visceral fat (p< 0.02) in multiple regression models. Conclusion Phase angle differs across anthropometric and body composition categories. Thus height, weight and muscle mass should also be taken into consideration while deriving population specific reference limits of phase angle. PMID:27504280

  16. Phase Angle Measurement in Healthy Human Subjects through Bio-Impedance Analysis

    PubMed Central

    Kumar, Satish; Dutt, Aswini; Hemraj, Sandhya; Bhat, Shankar; Manipadybhima, Bhat

    2012-01-01

    Objective(s) Bioelectrical impedance is the measure of impedance of the body. Impedance consists of electric resistance and reactance. Phase angle (PA) is the tan value of the ratio of reactance versus electric resistance. PA depends on cell membrane integrity and on body cell mass. There exists a correlation between PA values and body cell mass. The objective of this study was to compare the PA values of normal individuals and their anthropometric measurements. Materials and Methods Anthropometric measurements, Bioelectrical impedance analysis and PA measurements were done using Bodystat Quadscan 4000 machine on 42 healthy subjects between the age group of 18 to 50 yrs at a private hospital, Bangalore, Karnataka, India for eight months. Kolmogrov-Smirnov and Pearson’s correlation tests were used for data analysis. Results The PA values were 7.321.17º in healthy subjects. PA values were significantly positively correlated with body mass index (BMI) (r= 0.011, P<0.001). The phase angle values for males and females were 7.43±0.98º and 7.05±1.1.58º, respectively. Conclusion PA values positively correlated with BMI indicating the nutritional status of the study group. PA values were similar to the values to found in other studies. PMID:23653848

  17. Gastric Emptying Assessment in Frequency and Time Domain Using Bio-impedance: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, R.; Vargas-Luna, M.; Hernández, E.; Córdova, T.; Sosa, M.; Gutiérrez, G.; Reyes, P.; Mendiola, C.

    2006-09-01

    The impedance assessment to measure gastric emptying and in general gastric activity has been reported since 1985. The physiological interpretation of these measurements, is still under research. This technique usually uses a single frequency, and the conductivity parameter. The frequency domain and the Fourier analysis of the time domain behavior of the gastric impedance in different gastric conditions (fasting state, and after food administration) has not been explored in detail. This work presents some insights of the potentiality of these alternative methodologies to measure gastric activity.

  18. A robust adaptive autopilot design for decomposed bank to turn missiles

    NASA Astrophysics Data System (ADS)

    Song, Kwang Sub

    2001-07-01

    A decomposed robust adaptive controller design procedure is developed for 3-channel BTT missile systems. Three decomposed subsystems are constructed for highly nonlinear and coupled dynamic systems after parameter analysis is carried out. Appropriate adaptive optimal inner loop controllers are designed for accurate tracking performance to the reference command inputs of the respective subsystems. For robustness of systems, decomposed outer loop structures are introduced to minimize system coupling and to reduce nonlinear effects of BTT missile dynamic systems. The overall outer loop robust controller is designed to accommodate parameter variations and uncertainties with referenced model systems. The robust outer loop controller is designed by constructing decomposed stabilizing controllers in the form of the Youla parameterization. The results can be readily generalized to N-channel systems. The design procedure is built upon the J-spectral factorization approach to Hinfinity control. Instead of the centralized control, we employed decentralized controllers for reduced complexity in control implementations. In this research, a new concept for system modeling and decomposition, which uses the rate of system dynamics or the sensitivity of system parameter. After exhaustive classification and investigations of system characteristics, we can categorize several subsystems from overall system dynamic models. Subsystems are characterized by system dynamics with similar rates of changes. Once we get relatively small sized and homogeneous parameter groups, it is easier to design respective controllers. Otherwise, difficult trade offs must be made on control objectives for different kinds of dynamic characteristics of the whole system. The new idea is applied to a typical BTT missile system. Simulations results demonstrate that decomposed controller design is satisfactory for the BTT missile autopilot systems with good robustness and dynamic performances.

  19. Local thresholding de-noise speech signal

    NASA Astrophysics Data System (ADS)

    Luo, Haitao

    2013-07-01

    De-noise speech signal if it is noisy. Construct a wavelet according to Daubechies' method, and derive a wavelet packet from the constructed scaling and wavelet functions. Decompose the noisy speech signal by wavelet packet. Develop algorithms to detect beginning and ending point of speech. Construct polynomial function for local thresholding. Apply different strategies to de-noise and compress the decomposed terminal nodes coefficients. Reconstruct the wavelet packet tree. Re-build audio file using reconstructed data and compare the effectiveness of different strategies.

  20. Sparsity-regularized image reconstruction of decomposed K-edge data in spectral CT

    NASA Astrophysics Data System (ADS)

    Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A.; Schirra, Carsten O.

    2014-05-01

    The development of spectral computed tomography (CT) using binned photon-counting detectors has garnered great interest in recent years and has enabled selective imaging of K-edge materials. A practical challenge in CT image reconstruction of K-edge materials is the mitigation of image artifacts that arise from reduced-view and/or noisy decomposed sinogram data. In this note, we describe and investigate sparsity-regularized penalized weighted least squares-based image reconstruction algorithms for reconstructing K-edge images from few-view decomposed K-edge sinogram data. To exploit the inherent sparseness of typical K-edge images, we investigate use of a total variation (TV) penalty and a weighted sum of a TV penalty and an ℓ1-norm with a wavelet sparsifying transform. Computer-simulation and experimental phantom studies are conducted to quantitatively demonstrate the effectiveness of the proposed reconstruction algorithms.

  1. Why does Kevlar decompose, while Nomex does not, when treated with aqueous chlorine solutions?

    PubMed

    Akdag, Akin; Kocer, Hasan B; Worley, S D; Broughton, R M; Webb, T R; Bray, Travis H

    2007-05-24

    Kevlar and Nomex are high-performance polymers which have wide varieties of applications in daily life. Recently, they have been proposed to be biocidal materials when reacted with household bleach (sodium hypochlorite solution) because they contain amide moieties which can be chlorinated to generate biocidal N-halamine functional groups. Although Nomex can be chlorinated without any significant decomposition, Kevlar decomposes under the same chlorination conditions. In this study, two mimics for each of the polymers were synthesized to simulate the carboxylate and diaminophenylene components of the materials. It was found that the p-diaminophenylene component of the Kevlar mimic is oxidized to a quinone-type structure upon treatment with hypochlorous acid, which then decomposes. However, such a mechanism for the Nomex mimic is not possible. In this paper, based upon these observations, a plausible answer will be provided to the title question. PMID:17465537

  2. Delay-decomposing approach to robust stability for switched interval networks with state-dependent switching.

    PubMed

    Li, Ning; Cao, Jinde; Hayat, Tasawar

    2014-08-01

    This paper is concerned with a class of nonlinear uncertain switched networks with discrete time-varying delays . Based on the strictly complete property of the matrices system and the delay-decomposing approach, exploiting a new Lyapunov-Krasovskii functional decomposing the delays in integral terms, the switching rule depending on the state of the network is designed. Moreover, by piecewise delay method, discussing the Lyapunov functional in every different subintervals, some new delay-dependent robust stability criteria are derived in terms of linear matrix inequalities, which lead to much less conservative results than those in the existing references and improve previous results. Finally, an illustrative example is given to demonstrate the validity of the theoretical results. PMID:25009673

  3. Utilization of prey from the decomposer system by generalist predators of grassland.

    PubMed

    Oelbermann, Katja; Langel, Reinhard; Scheu, Stefan

    2008-03-01

    We investigated the linkage between the detrital subsystem and generalist predators of meadow ecosystems by manipulating prey availability in two different ways: we increased resource availability for the decomposer subsystem and thereby decomposer prey by adding mulch materials (detritus enhancement), and we added fruitflies (Drosophila melanogaster, Diptera; prey enhancement) to fenced plots. Both supplemented materials significantly differed in their (13)C/(12)C and (15)N/(14)N ratios from those of the natural litter. We measured density responses of detritivorous, herbivorous and predaceous arthropods to the increased resource supply. We used ratios of natural stable isotopes of N and C in arthropod tissues to trace the flux from the added resources to consumers and to relate density responses of consumers to changes in resource supply. Effects of resource enhancement propagated through at least two trophic levels, resulting in higher densities of major decomposer and predator taxa. Effects of detritus enhancement were much stronger than those of prey enhancement. Signatures of delta(13)C proved density responses of Collembola taxa to be related to the added mulch materials. Among generalist predators, densities of juvenile wolf spiders (Lycosidae) responded more to detritus-enhancement than to prey-enhancement treatments. In contrast, the density of the web-building linyphiid and the non-web gnaphosid spiders remained unaffected. Each spider taxon, including those which did not respond numerically, was significantly enriched in (13)C in detritus-enhancement treatments, suggesting that they gain energy from the decomposer system. Numbers of herbivores-cicadellids and aphids-were similar in each of the treatments, indicating that they were unaffected by changes in predator density. Our results indicate that the lack of a numerical response to resource supplementation is not necessarily due to the absence of a trophic linkage, but may be caused by compensatory

  4. Attitude estimation of earth orbiting satellites by decomposed linear recursive filters

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1975-01-01

    Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance.

  5. Persistence of spermatozoa on decomposing human skin: a scanning electron microscopy study.

    PubMed

    Gibelli, D; Mazzarelli, D; Rizzi, A; Kustermann, A; Cattaneo, C

    2013-09-01

    Finding spermatozoa is of the utmost importance in judicial cases involving both the living and the dead; however, most of literature actually deals with inner genitalia and does not take into consideration the chance of external deposition of semen on skin, which is not rare. In addition, the most advanced microscopic technologies such as scanning electron microscopy (SEM) have not been thoroughly investigated within this specific field of research. This study aims at applying SEM analysis to samples of decomposed skin in order to test its potential in detecting spermatozoa particularly in decomposed cadavers. A sample of skin was obtained at autopsy and divided into two thin strips; one of the samples was used as a negative control. Semen was then taken from a "donor" (with a normal spermiogram) and was spread onto the other skin sample. Every 3 days for the first 15 days (for a total of six samples), a standard slide was prepared from swabs on the treated and control skin and analyzed by standard light microscopy. In addition, every 7 days up to 91 days (3 months circa), a skin sample was taken from the positive and negative control and examined by SEM for a total of 14 samples. Results show that after 12 days, light microscopy failed in detecting spermatozoa, whereas they were still visible up to 84 days by SEM analysis. This study therefore suggests the persistence of sperm structures in time and in decomposing material as well as the possible application of SEM technology to decomposed skin in order to detect semen. PMID:23324810

  6. Soil and decomposer responses to grazing exclusion are weak in mountain snow-beds

    NASA Astrophysics Data System (ADS)

    Virtanen, Risto; Salminen, Janne; Strömmer, Rauni

    2008-03-01

    Most of the empirical evidence available from different types of ecosystems have shown that aboveground plant-based and belowground decomposer systems are interconnected, and change in one leads to a response in the other. We analyzed responses of the soil decomposer system and soil decomposition processes to grazing exclusion and associated vegetation changes in a mountain snowbed. These habitats are of low productivity supporting bryophyte and graminoid-rich vegetation which is grazed by the Norwegian lemming and reindeer. We measured bacteria, enchytraeids, fungi, nematodes, microbial respiration, soil nitrogen (ammonium and nitrate), and soil water content from exclosure treatment plots of 5 and 15 years, where the exclusion of grazers had led to considerable vegetation changes. Soil decomposer variables showed only weak responses to the exclosure treatments or changes in aboveground vegetation (biomass and dead organic matter). Only nematodes responded positively to the short-term grazing exclusion. This suggests that above- and belowground processes are not necessarily closely interconnected in snowbed habitats and that the decomposition of plant material is directly controlled by grazer activity.

  7. Multi-Temporal Decomposed Wind and Load Power Models for Electric Energy Systems

    NASA Astrophysics Data System (ADS)

    Abdel-Karim, Noha

    electricity market rules capable of providing the right incentives to manage uncertainties and of differentiating various technologies according to the rate at which they can respond to ever changing conditions. Given the overall need for modeling uncertainties in electric energy systems, we consider in this thesis the problem of multi-temporal modeling of wind and demand power, in particular. Historic data is used to derive prediction models for several future time horizons. Short-term prediction models derived can be used for look-ahead economic dispatch and unit commitment, while the long-term annual predictive models can be used for investment planning. As expected, the accuracy of such predictive models depends on the time horizons over which the predictions are made, as well as on the nature of uncertain signals. It is shown that predictive models obtained using the same general modeling approaches result in different accuracy for wind than for demand power. In what follows, we introduce several models which have qualitatively different patterns, ranging from hourly to annual. We first transform historic time-stamped data into the Fourier Transform (Fr) representation. The frequency domain data representation is used to decompose the wind and load power signals and to derive predictive models relevant for short-term and long-term predictions using extracted spectral techniques. The short-term results are interpreted next as a Linear Prediction Coding Model (LPC) and its accuracy is analyzed. Next, a new Markov-Based Sensitivity Model (MBSM) for short term prediction has been proposed and the dispatched costs of uncertainties for different predictive models with comparisons have been developed. Moreover, the Discrete Markov Process (DMP) representation is applied to help assess probabilities of most likely short-, medium- and long-term states and the related multi-temporal risks. In addition, this thesis discusses operational impacts of wind power integration in

  8. Comparison of Four Parallel Algorithms For Domain Decomposed Implicit Monte Carlo

    SciTech Connect

    Brunner, T A; Urbatsch, T J; Evans, T M; Gentile, N A

    2004-12-21

    We consider two existing asynchronous parallel algorithms for Implicit Monte Carlo (IMC) thermal radiation transport on spatially decomposed meshes. The two algorithms are from the production codes KULL from Lawrence Livermore National Laboratory and Milagro from Los Alamos National Laboratory. Both algorithms were considered and analyzed in an implementation of the KULL IMC package in ALEGRA, a Sandia National Laboratory high energy density physics code. Improvements were made to both algorithms. The improved Milagro algorithm performed the best by scaling nearly perfectly out to 244 processors.

  9. Comparison of four parallel algorithms for domain decomposed implicit Monte Carlo.

    SciTech Connect

    Evans, Thomas M.; Urbatsch, Todd J.; Brunner, Thomas A.; Gentile, Nicholas A.

    2005-06-01

    We consider four asynchronous parallel algorithms for Implicit Monte Carlo (IMC) thermal radiation transport on spatially decomposed meshes. Two of the algorithms are from the production codes KULL from Lawrence Livermore National Laboratory and Milagro from Los Alamos National Laboratory. Improved versions of each of the existing algorithms are also presented. All algorithms were analyzed in an implementation of the KULL IMC package in ALEGRA, a Sandia National Laboratory high energy density physics code. The improved Milagro algorithm performed the best by scaling almost linearly out to 244 processors for well load balanced problems.

  10. Comparison of four parallel algorithms for domain decomposed implicit Monte Carlo.

    SciTech Connect

    Evans, Thomas M. (Los Alamos National Laboratory, Los Alamos, NM); Urbatsch, Todd J. (Los Alamos National Laboratory, Los Alamos, NM); Brunner, Thomas A.; Gentile, Nicholas A. (Lawrence Livermore National Laboratory, Livermore, CA)

    2004-12-01

    We consider four asynchronous parallel algorithms for Implicit Monte Carlo (IMC) thermal radiation transport on spatially decomposed meshes. Two of the algorithms are from the production codes KULL from Lawrence Livermore National Laboratory and Milagro from Los Alamos National Laboratory. Improved versions of each of the existing algorithms are also presented. All algorithms were analyzed in an implementation of the KULL IMC package in ALEGRA, a Sandia National Laboratory high energy density physics code. The improved Milagro algorithm performed the best by scaling almost linearly out to 244 processors for well load balanced problems.

  11. Comparison of four parallel algorithms for domain decomposed implicit Monte Carlo

    SciTech Connect

    Brunner, Thomas A. . E-mail: TABRUNN@sandia.gov; Urbatsch, Todd J.; Evans, Thomas M.; Gentile, Nicholas A.

    2006-03-01

    We consider four asynchronous parallel algorithms for Implicit Monte Carlo (IMC) thermal radiation transport on spatially decomposed meshes. Two of the algorithms are from the production codes KULL from Lawrence Livermore National Laboratory and Milagro from Los Alamos National Laboratory. Improved versions of each of the existing algorithms are also presented. All algorithms were analyzed in an implementation of the KULL IMC package in ALEGRA, a Sandia National Laboratory high energy density physics code. The improved Milagro algorithm performed the best by scaling almost linearly out to 244 processors for well load balanced problems.

  12. Fluorimetric determination of the active form of tetracycline, chloretetracycline and oxytetracycline in partially decomposed solutions.

    PubMed

    Regosz, A

    1977-11-01

    The content of tetracycline (1), chlortetracycline (2) and oxytetracycline (3) has been determined by use of the fluorimetric method in partially decomposed acqueous solutions of different pH values. The procedure consisted in the extraction of fluorescent calcium and 5.5-diethyl-barbituric acid complexes of 1 and 3 (with 2 calcium complex only) into an organic solvent. In the method, only complexes with undecomposed 1--3 show a strong fluorescence. Products of decomposition of the antibiotics did not affect significantly analytical results. Comparative investigations have been carried out with 1--3 using t.l.c. and turbidimetry. PMID:24855

  13. "We All Have Something that Has to Do with Tens": Counting School Days, Decomposing Number, and Determining Place Value

    ERIC Educational Resources Information Center

    Goodrow, Anne M.; Kidd, Kasia

    2008-01-01

    This article looks at how the activity of decomposing number--having students write numerical expressions equivalent to the number of days in school--can help students develop understanding of place value. (Contains 3 figures.)

  14. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient

    EPA Science Inventory

    Identifying the biotic (e.g. decomposers, vegetation) and abiotic (e.g. temperature, moisture) mechanisms controlling litter decomposition is key to understanding ecosystem function, especially where variation in ecosystem structure due to successional processes may alter the str...

  15. Comparison of ATP and Ergosterol as Indicators of Fungal Biomass Associated with Decomposing Leaves in Streams

    PubMed Central

    Suberkropp, K.; Gessner, M. O.; Chauvet, E.

    1993-01-01

    ATP and ergosterol were compared as indicators of fungal biomass associated with leaves decomposing in laboratory microcosms and streams. In all studies, the sporulation rates of the fungi colonizing leaves were also determined to compare patterns of fungal reproductive activity with patterns of mycelial growth. During leaf degradation, ATP concentrations exhibited significant, positive correlations with ergosterol concentrations in the laboratory and when leaves had been air dried prior to being submerged in a stream. However, when freshly shed leaves were submerged in a stream, concentrations of ATP and ergosterol were negatively correlated during degradation. This appeared to be due to the persistence of leaf-derived ATP in freshly shed leaves during the first 1 to 2 weeks in the stream. Estimates of fungal biomass from ergosterol concentrations of leaf litter were one to three times those calculated from ATP concentrations. ATP, ergosterol, and sporulation data generally provided similar information about the fungi associated with decomposing leaves in streams during periods when fungi were growing. Ergosterol concentrations provide a more accurate indication of fungal biomass in situations in which other organisms make significant contributions to ATP pools. PMID:16349069

  16. Using red clump stars to decompose the galactic magnetic field with distance

    SciTech Connect

    Pavel, Michael D.

    2014-09-01

    A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry; however, the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line-of-sight structure of the sky-projected Galactic magnetic field. Two example lines of sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. Toward the outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. Toward the inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.

  17. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.

    PubMed

    Averill, Colin; Turner, Benjamin L; Finzi, Adrien C

    2014-01-23

    Soil contains more carbon than the atmosphere and vegetation combined. Understanding the mechanisms controlling the accumulation and stability of soil carbon is critical to predicting the Earth's future climate. Recent studies suggest that decomposition of soil organic matter is often limited by nitrogen availability to microbes and that plants, via their fungal symbionts, compete directly with free-living decomposers for nitrogen. Ectomycorrhizal and ericoid mycorrhizal (EEM) fungi produce nitrogen-degrading enzymes, allowing them greater access to organic nitrogen sources than arbuscular mycorrhizal (AM) fungi. This leads to the theoretical prediction that soil carbon storage is greater in ecosystems dominated by EEM fungi than in those dominated by AM fungi. Using global data sets, we show that soil in ecosystems dominated by EEM-associated plants contains 70% more carbon per unit nitrogen than soil in ecosystems dominated by AM-associated plants. The effect of mycorrhizal type on soil carbon is independent of, and of far larger consequence than, the effects of net primary production, temperature, precipitation and soil clay content. Hence the effect of mycorrhizal type on soil carbon content holds at the global scale. This finding links the functional traits of mycorrhizal fungi to carbon storage at ecosystem-to-global scales, suggesting that plant-decomposer competition for nutrients exerts a fundamental control over the terrestrial carbon cycle. PMID:24402225

  18. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers.

    PubMed

    Kuehn, Kevin A; Francoeur, Steven N; Findlay, Robert H; Neely, Robert K

    2014-03-01

    Microbial communities associated with submerged detritus in aquatic ecosystems often comprise a diverse mixture of autotrophic and heterotrophic microbes, including algae, bacteria, protozoa, and fungi. Recent studies have documented increased rates of plant litter mass loss when periphytic algae are present. We conducted laboratory and field experiments to assess potential metabolic interactions between natural autotrophic and heterotrophic microbial communities inhabiting submerged decaying plant litter of Typha angustifolia and Schoenoplectus acutus. In the field, submerged plant litter was either exposed to natural sunlight or placed under experimental canopies that manipulated light availability and growth of periphytic algae. Litter was collected and returned to the laboratory, where algal photosynthesis was manipulated (light/dark incubation), while rates of bacterial and fungal growth and productivity were simultaneously quantified. Bacteria and fungi were rapidly stimulated by exposure to light, thus establishing the potential for algal priming of microbial heterotrophic decay activities. Experimental incubations of decaying litter with 14C- and 13C-bicarbonate established that inorganic C fixed by algal photosynthesis was rapidly transferred to and assimilated by heterotrophic microbial decomposers. Periphytic algal stimulation of microbial heterotrophs, especially fungal decomposers, is an important and largely unrecognized interaction within the detrital microbial landscape, which may transform our current conceptual understanding of microbial secondary production and organic matter decomposition in aquatic ecosystems. PMID:24804458

  19. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors.

    PubMed

    Shah, Firoz; Nicolás, César; Bentzer, Johan; Ellström, Magnus; Smits, Mark; Rineau, Francois; Canbäck, Björn; Floudas, Dimitrios; Carleer, Robert; Lackner, Gerald; Braesel, Jana; Hoffmeister, Dirk; Henrissat, Bernard; Ahrén, Dag; Johansson, Tomas; Hibbett, David S; Martin, Francis; Persson, Per; Tunlid, Anders

    2016-03-01

    Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead. PMID:26527297

  20. Toenails as an alternative source material for the extraction of DNA from decomposed human remains.

    PubMed

    Schlenker, Andrew; Grimble, Katelyn; Azim, Arani; Owen, Rebecca; Hartman, Dadna

    2016-01-01

    The DNA identification of decomposed human remains for coronial investigations at the Victorian Institute of Forensic Medicine routinely requires the retrieval and processing of a bone sample obtained from the deceased. Bone is a difficult sample type to work with as it requires surgical removal from the deceased, refrigerated storage, and additional processing steps prior to DNA analysis in comparison to other samples types such as buccal swabs or blood stains. In an attempt to overcome the issues posed by bone, a DNA extraction method utilising toenails as an alternate source material was optimised and trialled. Two DNA extraction methods were optimised for digestion of toenail material, with the method utilising the QIAGEN DNA Investigator Kit selected for a casework trial. Single source DNA profiles, matching those of the conventional samples taken, were obtained for toenail samples collected from 28 of 30 coronial cases available for this study. Of these, 26 toenail samples produced full profiles. Although the overall DNA profile quality from the toenails was less than that of the conventional sample, the profiles from toenails met the reporting requirements for identification. Based on the results obtained, the Victorian Institute of Forensic Medicine will be implementing toenails as the primary sample type for collection from decomposed remains when blood is not a suitable sample type. PMID:26610200

  1. Studies on the interactions of bisphenols with anionic phospholipids of decomposer membranes in model systems.

    PubMed

    Broniatowski, Marcin; Sobolewska, Katarzyna; Flasiński, Michał; Wydro, Paweł

    2016-04-01

    Bisphenol A (BPA) and other bisphenols constitute a class of organic pollutants, which because of their estrogenic properties, low dose activity and bioaccumulation pose considerable risk for public health as well as for the environment. Accumulated in the sediment bisphenols can endanger the decomposers' populations being incorporated into their cellular membranes; however, the mechanism of their membrane activity is unknown. Therefore, to study these phenomena we applied anionic phospholipid Langmuir monolayers as simple but versatile models of decomposers biomembranes. Phosphatidylglycerols and cardiolipins are not only the main components of bacterial membranes but also of crucial importance in mitochondrial and thylakoid membranes in eukaryotic cells. In our investigations we applied five compounds of the bisphenol class most commonly detected in the environment. To characterize the bisphenols-model membrane interactions we applied multiple mutually independent methods of physical chemistry; namely: the Langmuir monolayer technique, surface potential measurements, Brewster angle microscopy for the visualization of the monolayers' texture and grazing incidence X-ray diffraction for the discussion of the phospholipids packing within the monolayers. Our studies indicated that all the investigated bisphenols interact with the model membrane, but the strength of the interactions is dependent on the bisphenol structure and hydrophobicity and the fluidity of the model membranes. We proved that bisphenol S often treated as the least toxic BPA analog can also be incorporated to the model membranes changing their structure and fluidity. PMID:26806160

  2. Increasing litter species richness reduces variability in a terrestrial decomposer system.

    PubMed

    Keith, Aidan M; Van der Wal, René; Brooker, Rob W; Osler, Graham H R; Chapman, Stephen J; Burslem, David F R P; Elston, David A

    2008-09-01

    Debate on the relationship between diversity and stability has been driven by the recognition that species loss may influence ecosystem properties and processes. We conducted a litterbag experiment in the Scottish Highlands, United Kingdom, to examine the effects of altering plant litter diversity on decomposition, microbial biomass, and microfaunal abundance. The design of treatments was fully factorial and included five species from an upland plant community (silver birch, Betula pendula; Scots' pine, Pinus sylvestris; heather, Calluna vulgaris; bilberry, Vaccinium myrtillus; wavy-hair grass, Deschampsia flexuosa); species richness ranged from one to five species. We tested the effects of litter species richness and composition on variable means, whether increasing litter species richness reduced variability in the decomposer system, and whether any richness-variability relationships were maintained over time (196 vs. 564 days). While litter species composition effects controlled variable means, we revealed reductions in variability with increasing litter species richness, even after accounting for differences between litter types. These findings suggest that higher plant species richness per se may result in more stable ecosystem processes (e.g., decomposition) and decomposer communities. Negative richness-variation relationships generally relaxed over time, presumably because properties of litter mixtures became more homogeneous. However, given that plant litter inputs continue to enter the belowground system over time, we conclude that variation in ecosystem properties may be buffered by greater litter species richness. PMID:18831186

  3. A timescale decomposed threshold regression downscaling approach to forecasting South China early summer rainfall

    NASA Astrophysics Data System (ADS)

    Song, Linye; Duan, Wansuo; Li, Yun; Mao, Jiangyu

    2016-09-01

    A timescale decomposed threshold regression (TSDTR) downscaling approach to forecasting South China early summer rainfall (SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data. It makes use of two distinct regression downscaling models corresponding to the interannual and interdecadal rainfall variability of SCESR. The two models are developed based on the partial least squares (PLS) regression technique, linking SCESR to SST modes in preceding months on both interannual and interdecadal timescales. Specifically, using the datasets in the calibration period 1915-84, the variability of SCESR and SST are decomposed into interannual and interdecadal components. On the interannual timescale, a threshold PLS regression model is fitted to interannual components of SCESR and March SST patterns by taking account of the modulation of negative and positive phases of the Pacific Decadal Oscillation (PDO). On the interdecadal timescale, a standard PLS regression model is fitted to the relationship between SCESR and preceding November SST patterns. The total rainfall prediction is obtained by the sum of the outputs from both the interannual and interdecadal models. Results show that the TSDTR downscaling approach achieves reasonable skill in predicting the observed rainfall in the validation period 1985-2006, compared to other simpler approaches. This study suggests that the TSDTR approach, considering different interannual SCESR-SST relationships under the modulation of PDO phases, as well as the interdecadal variability of SCESR associated with SST patterns, may provide a new perspective to improve climate predictions.

  4. Gauge-invariant dynamical quantities of QED with decomposed gauge potentials

    SciTech Connect

    Zhou Baohua; Huang Yongchang

    2011-09-15

    We discover an inner structure of the QED system; i.e., by decomposing the gauge potential into two orthogonal components, we obtain a new expansion of the Lagrangian for the electron-photon system, from which, we realize the orthogonal decomposition of the canonical momentum conjugate to the gauge potential with the canonical momentum's two components conjugate to the gauge potential's two components, respectively. Using the new expansion of Lagrangian and by the general method of field theory, we naturally derive the gauge invariant separation of the angular momentum of the electron-photon system from Noether theorem, which is the rational one and has the simplest form in mathematics, compared with the other four versions of the angular momentum separation available in literature. We show that it is only the longitudinal component of the gauge potential that is contained in the orbital angular momentum of the electron, as Chen et al. have said. A similar gauge invariant separation of the momentum is given. The decomposed canonical Hamiltonian is derived, from which we construct the gauge invariant energy operator of the electron moving in the external field generated by a proton [Phys. Rev. A 82, 012107 (2010)], where we show that the form of the kinetic energy containing the longitudinal part of the gauge potential is due to the intrinsic requirement of the gauge invariance. Our method provides a new perspective to look on the nucleon spin crisis and indicates that this problem can be solved strictly and systematically.

  5. Using Red Clump Stars to Decompose the Galactic Magnetic Field with Distance

    NASA Astrophysics Data System (ADS)

    Pavel, Michael D.

    2014-09-01

    A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry; however, the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line-of-sight structure of the sky-projected Galactic magnetic field. Two example lines of sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. Toward the outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. Toward the inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.

  6. Bioconversion of Straw into Improved Fodder: Fungal Flora Decomposing Rice Straw

    PubMed Central

    2005-01-01

    The fungal flora decomposing rice straw were investigated all over the soil of Sharkia Province, east of Nile Delta, Egypt, using the nylon net bag technique. Sixty-four straw-decomposing species belonging to 30 genera were isolated by the dilution plate method in ground rice straw-Czapek's agar medium at pH 6. The plates were incubated separately at 5℃, 25℃ and 45℃, respectively. Twenty nine species belonging to 14 genera were isolated at 5℃. The most frequent genus was Penicillium (seven species), and the next frequent genera were Acremonium (three species), Fusarium (three species), Alternaria, Chaetomium, Cladosporium, Mucor, Stachybotrys (two species) and Rhizopus stolonifer. At 25℃, 47 species belonging to 24 genera were isolated. The most frequent genus was Aspergillus (nine species), and the next frequent genera were ranked by Penicillium (five species), Chaetomium (three species), Fusarium (three species). Each of Alternaria, Cladosporium, Mucor, Myrothecium and Trichoderma was represented by two species. At 45℃, 15 species belonging to seven genera were isolated. These were seven species of Aspergillus, two species of Chaetomium and two species of Emericella, while Humicola, Malbranchea, Rhizomucor and Talaromyces were represented by one species respectively. The total counts of fungi the genera, and species per gram of dry straw were significantly affected by incubation temperature and soil analysis (P < 0.05). PMID:24049492

  7. [Effects of Phosphate Rock and Decomposed Rice Straw Application on Lead Immobilization in a Contaminated Soil].

    PubMed

    Tang, Fan; Hu, Hong-qing; Su, Xiao-juan; Fu, Qing-ling; Zhu, Jun

    2015-08-01

    The soils treated with phosphate rock (PR) and oxalic acid activated phosphate rock (APR) mixed with decomposed rice straw were incubated in different moisture conditions for 60 days to study the effect on the basic property of the soil and on the speciation variation of Pb. The results showed that all these three types of immobilizing materials increased the pH, the Olsen-P, the exchangeable Ca and the soil cation exchange capacity, and APR showed more obvious effect; the pH and the exchangeable Ca of soil in the flooding treatment were higher than those in normal water treatment (70%), but the Olsen-P of soil in normal water treatment was a little bit more. These materials reduced exchangeable Ph fraction, and converted it into unavailable fraction. But the APR was better than raw PR in immobilizing lead, and the exchangeable Pb fraction was reduced by 40.3% and 24.2%, compared with the control, respectively, and the immobilization effect was positively correlated with the dosage. Decomposed rice straw could transform the exchangeable Ph fraction in soil into organic-bound fraction, while the flooding treatment changed it into the Fe-Mn oxide-bound and residue fractions. PMID:26592041

  8. First-principles study of SF6 decomposed gas adsorbed on Au-decorated graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Yu, Lei; Gui, Yingang; Hu, Weihua

    2016-03-01

    We theoretically investigated the decomposed gaseous components of sulfur hexafluoride (SF6), namely, H2S, SO2, SOF2, and SO2F2, adsorbed on pristine and Au-embedded graphene based on the revised Perdew-Burke-Ernzerhof calculation, which empirically includes a dispersion correction (DFT-D) for van der Waals interaction with standard generalized gradient approximation. Pristine graphene exhibits weak adsorption and absence of charge transfer, which indicates barely satisfactory sensing for decomposed components. The Au atom introduces magnetism to the pristine graphene after metal-embedded decoration as well as enhances conductivity. All four molecules induce certain hybridization between the molecules and Au-graphene, which results in chemical interactions. SOF2 and SO2F2 exhibit a strong chemisorption interaction with Au-graphene, while H2S and SO2 exhibit quasi-molecular binding effects. Only H2S exhibits n-type doping to Au-graphene, whereas the rest gases exhibit p-type doping. Magnetic moments fluctuate substantially in the original Au-graphene when H2S and SO2 are adsorbed. While the adsorption effects of SOF2 and SO2F2 generate magnetism quenching. The charge transfer mechanism is also discussed in this paper. These results will shed light on the valuable application of Au-embedded graphene for selective gas sensing and spintronics.

  9. Shared processing of perception and imagery of music in decomposed EEG.

    PubMed

    Schaefer, Rebecca S; Desain, Peter; Farquhar, Jason

    2013-04-15

    The current work investigates the brain activation shared between perception and imagery of music as measured with electroencephalography (EEG). Meta-analyses of four separate EEG experiments are presented, each focusing on perception and imagination of musical sound, with differing levels of stimulus complexity. Imagination and perception of simple accented metronome trains, as manifested in the clock illusion, as well as monophonic melodies are discussed, as well as more complex rhythmic patterns and ecologically natural music stimuli. By decomposing the data with principal component analysis (PCA), similar component distributions are found to explain most of the variance in each experiment. All data sets show a fronto-central and a more central component as the largest sources of variance, fitting with projections seen for the network of areas contributing to the N1/P2 complex. We expanded on these results using tensor decomposition. This allows us to add in the tasks to find shared activation, but does not make assumptions of independence or orthogonality and calculates the relative strengths of these components for each task. The components found in the PCA were shown to be further decomposable into parts that load primarily on to the perception or imagery task, or both, thereby adding more detail. It is shown that the frontal and central components have multiple parts that are differentially active during perception and imagination. A number of possible interpretations of these results are discussed, taking into account the different stimulus materials and measurement conditions. PMID:23298753

  10. Recalcitrance: An Inherent Relative Attribute of Plant Litter Describing Its Potential Decomposability

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Fulton-Smith, S.; Haddix, M. L.; Horton, A. J.; Soong, J.

    2014-12-01

    While the term "litter quality" is vague and can always be associated to a specific litter property (e.g., C:N, %lignin, decay rate), and thus should be replaced with the term that describes that property (e.g., stoichiometry, C-chemistry, recalcitrance), we defend the use of the term "recalcitrance" to describe the potential decomposability of litter, or its components. Recalcitrance can be quantified in laboratory incubations, by measuring the rate of production of CO2 from litter, under optimal environmental conditions. "Recalcitrance" is an inherent relative attribute of litter resulting from the synergistic interactions of several specific physic-chemical properties (e.g., stoichiometry, chemistry, energetic, physical structure) of that litter which in absence of environmental constraints (i.e., microbial limitation, physical aggregation, mineral-bonding) determine its potential rate of CO2 production. Because these environmental constraints often cannot be excluded in studies of soil organic matter (SOM), the term "recalcitrance" is not appropriate for SOM, and "persistence" is preferred. Recalcitrance is, of course, relative and requests a time scale of reference, since any litter eventually decomposes. We will illustrate this rational with examples from our latest laboratory incubations using: 1) a variety of plant litter types, 2) litter with differential isotopic enrichment of the metabolic and structural components, 3) soils containing isotopic enriched litter-derived organic matter.

  11. Does nutrient enrichment compensate fungicide effects on litter decomposition and decomposer communities in streams?

    PubMed

    Fernández, Diego; Tummala, Mallikarjun; Schreiner, Verena C; Duarte, Sofia; Pascoal, Cláudia; Winkelmann, Carola; Mewes, Daniela; Muñoz, Katherine; Schäfer, Ralf B

    2016-05-01

    Nutrient and pesticide pollution are widespread agricultural stressors. Fungicides may affect freshwater fungi, which play an important role in litter decomposition (LD), whereas moderate nutrient enrichment can stimulate LD. We examined potential interaction effects of nutrients and fungicides on decomposer communities and LD in a 14-day two-factorial (fungicide and nutrient treatments) mesocosm experiment. Fungicide exposure was limited to 4days to simulate episodic contamination. Only the microbial community responded significantly to the experimental factors, though non-significant increases >20% were found for invertebrate decomposer weight gain and LD under high-nutrient conditions. Fungal community structure responded more strongly to fungicides than sporulation. Sporulation responded strongest to nutrients. Bacterial community structure was affected by both factors, although only nutrients influenced bacterial density. Our results suggest effects from fungicides at field-relevant levels on the microbial community. Whether these changes propagate to invertebrate communities and LD remains unclear and should be analysed under longer and recurrent fungicide exposure. PMID:26963520

  12. Supervised Single-Channel Speech Separation via Sparse Decomposition Using Periodic Signal Models

    NASA Astrophysics Data System (ADS)

    Nakashizuka, Makoto; Okumura, Hiroyuki; Iiguni, Youji

    In this paper, we propose a method for supervised single-channel speech separation through sparse decomposition using periodic signal models. The proposed separation method employs sparse decomposition, which decomposes a signal into a set of periodic signals under a sparsity penalty. In order to achieve separation through sparse decomposition, the decomposed periodic signals have to be assigned to the corresponding sources. For the assignment of the periodic signal, we introduce clustering using a K-means algorithm to group the decomposed periodic signals into as many clusters as the number of speakers. After the clustering, each cluster is assigned to its corresponding speaker using preliminarily learnt codebooks. Through separation experiments, we compare our method with MaxVQ, which performs separation on the frequency spectrum domain. The experimental results in terms of signal-to-distortion ratio show that the proposed sparse decomposition method is comparable to the frequency domain approach and has less computational costs for assignment of speech components.

  13. Functional breadth and home-field advantage generate functional differences among soil microbial decomposers.

    PubMed

    Fanin, Nicolas; Fromin, Nathalie; Bertrand, Isabelle

    2016-04-01

    In addition to the effect of litter quality (LQ) on decomposition, increasing evidence is demonstrating that carbon mineralization can be influenced by the past resource history, mainly through following two processes: (1) decomposer communities from recalcitrant litter environments may have a wider functional ability to decompose a wide range of litter species than those originating from richer environments, i.e., the functional breadth (FB) hypothesis; and/or (2) decomposer communities may be specialized towards the litter they most frequently encounter, i.e., the home-field advantage (HFA) hypothesis. Nevertheless, the functional dissimilarities among contrasting microbial communities, which are generated by the FB and the HFA, have rarely been simultaneously quantified in the same experiment, and their relative contributions over time have never been assessed. To test these hypotheses, we conducted a reciprocal transplant decomposition experiment under controlled conditions using litter and soil originating from four ecosystems along a land-use gradient (forest, plantation, grassland, and cropland) and one additional treatment using 13C-labelled flax litter allowing us to assess the priming effect (PE) in each ecosystem. We found substantial effects of LQ on carbon mineralization (more than two-thirds of the explained variance), whereas the contribution of the soil type was fairly low (less than one-tenth), suggesting that the contrasting soil microbial communities play only a minor role in regulating decomposition rates. Although the results on PE showed that we overestimated litter-derived CO2 fluxes, litter-microbe interactions contributed significantly to the unexplained variance observed in carbon mineralization models. The magnitudes of FB and HFA were relatively similar, but the directions of these mechanisms were sometimes opposite depending on the litter and soil types. FB and HFA estimates calculated on parietal sugar mass loss were positively

  14. Impact of decomposing Cinnamomum septentrionale leaf litter on the growth of Eucalyptus grandis saplings.

    PubMed

    Huang, Weiwei; Hu, Tingxing; Chen, Hong; Wang, Qian; Hu, Hongling; Tu, Lihua; Jing, Liao

    2013-09-01

    A pot experiment was performed to study the impact of decomposing Cinnamomum septentrionale leaf litter on the growth of Eucalyptus grandis saplings. The experimental design scheme was 0 (CK), 40 (A1), 80 (A2) and 120 g pot(-1) (A3) of E. grandis leaves, and changes in the volatile oil chemical composition during litter decomposition were assessed in the present study. The results showed that C. septentrionale leaf litter inhibited the growth of E. grandis saplings, as determined by the height, basal diameter and chlorophyll content, after 69 d (T1). Five months after transplantation (T2), the height growth rate of the E. grandis saplings increased and then gradually reduced (A1: 40 g pot(-1) > A2: 80 g pot(-1) > A3: 120 g pot(-1) > CK: 0 g pot(-1)). After eleven months (T3), the variations in the height and basal diameter were the same as observed at T2, and the inhibition on leaf, branch, root and stem biomass increased with increasing leaf litter content. Gas chromatography-mass spectrometry (GC-MS) was used to identify the volatile compound composition. The results indicated that the C. septentrionale original leaf litter (S1) contained thirty-one volatile compounds, but the treated leaf litter S2 (which was mixed with soil for eleven months to simultaneously plant E. grandis saplings) only possessed fourteen volatile compounds, releasing many secondary metabolites in the soil during decomposition. Most of the volatile compounds were alcohols, monoterpenoids, sesquiterpenes, alkanes, alkene, esters and ketones. Most of the allelochemicals of C. septentrionale might be released during the initial decomposing process, inhibiting the growth of other plants, whereas some nutrients might be released later, promoting the height growth of plants. In conclusion, decomposing C. septentrionale leaf litter release of many allelochemicals in the soil that significantly inhibit the growth of E. grandis. PMID:23835358

  15. Are Bulges and Disks Real? Decomposing Spectral Data Cubes Into Their Astrophysical Components

    NASA Astrophysics Data System (ADS)

    Merrifield, Michael; Tabor, Martha; Aragon-Salamanca, Alfonso; Cappellari, Michele; Johnston, Evelyn

    2016-01-01

    Decomposing galaxies photometrically into bulge and disk components is now a well-established technique, but it remains unclear how distinct and real these components are, and how they relate to each other. To address these questions, we have been developing novel techniques to extract the various structural components from integral field unit (IFU) spectral observations of galaxies, in order to study simultaneously their spectral and spatial properties.As a first approach, by spatially decomposing each wavelength in a spectral data cube, we can discover how much light comes from the separate components as a function of wavelength, and hence derive unprecedentedly high quality spectra of bulge and disk for detailed analysis of their stellar populations.In addition, we have decomposed spectral data cubes by fitting the spectrum at each location with the sum of two components, with the spectral properties left entirely free to fit both kinematic and stellar population properties, subject only to the constraint that the relative flux contributions match those of a conventional bulge-disk decomposition.Initial results applied to MaNGA and other IFU surveys show the power of these techniques when applied to such high quality data. The first method allows us to understand the formation sequence of bulges and disks, with, for example, bulges showing the younger stellar populations in S0 galaxies, implying that this was where the last gasp of star formation occurred. The second technique reveals subtle population gradients within individual components, but also confirms that the decomposition into separate components is a credible procedure, as the resulting bulges and disks have entirely plausible kinematic properties that are in no way imposed by the decomposition.Although our initial application of these decomposition techniques has been to studying bulges and disks in S0 galaxies, the methods have much wider application to the spectral data cubes that MaNGA and other

  16. Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply

    PubMed Central

    Kazakou, Elena; Violle, Cyrille; Roumet, Catherine; Pintor, Cristina; Gimenez, Olivier; Garnier, Eric

    2009-01-01

    Background and Aims The rate of plant decomposition depends on both the decomposition environment and the functional traits of the individual species (e.g. leaf and litter quality), but their relative importance in determining interspecific differences in litter decomposition remains unclear. The aims of this study were to: (a) determine if species from different successional stages grown on soils with low and high nitrogen levels produce leaf and litter traits that decompose differently under identical conditions; and (b) assess which trait of living leaves best relates to litter quality and litter decomposability Methods The study was conducted on 17 herbaceous species representative of three stages of a Mediterranean successional sere of Southern France. Plants were grown in monocultures in a common garden under two nitrogen levels. To elucidate how different leaf traits affected litter decomposition a microcosm experiment was conducted to determine decomposability under standard conditions. Tests were also carried out to determine how successional stage and nitrogen supply affected functional traits of living leaves and how these traits then modified litter quality and subsequent litter decomposability. Key Results The results demonstrated that leaf traits and litter decomposability varied according to species and successional stage. It was also demonstrated that while nitrogen addition affected leaf and litter traits, it had no effect on decomposition rates. Finally, leaf dry matter content stood out as the leaf trait best related to litter quality and litter decomposability Conclusions In this study, species litter decomposability was affected by some leaf and litter traits but not by soil nitrogen supply. The results demonstrated the strength of a trait-based approach to predict changes in ecosystem processes as a result of species shifts in ecosystems. PMID:19710073

  17. Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives

    NASA Astrophysics Data System (ADS)

    Turkovic, Vida; Engmann, Sebastian; Tsierkezos, Nikos; Hoppe, Harald; Madsen, Morten; Rubahn, Horst-Günter; Ritter, Uwe; Gobsch, Gerhard

    2016-03-01

    Stability of organic solar cells (OPV) remains a big problem on the way to their commercialization. Different approaches are being investigated: development of intrinsically more photochemically stable materials, optimization of encapsulation, and implementation of getter and UV blocking layers. In this study, we investigate stabilization of OPV devices using hydroperoxide decomposers as stabilizing additives. A set of five commercially available additives of organophosphorus, organosulfur, Ni chelate, and blocked thiol type are compared, ternary blended into the active layer, under exposure to aging under ISOS-3 degradation conditions. Improvements in long-term performance of OPV devices were observed upon stabilization with Advapak NEO-1120, lifetime was prolonged by a factor of 1.7, and accumulated power generation increased by a factor of 1.4. The stabilizing mechanisms are discussed using spectroscopic and microscopic measurements.

  18. Bacteria in decomposing wood and their interactions with wood-decay fungi.

    PubMed

    Johnston, Sarah R; Boddy, Lynne; Weightman, Andrew J

    2016-11-01

    The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research. PMID:27559028

  19. Tangent linear super-parameterization: attributable, decomposable moist processes for tropical variability studies

    NASA Astrophysics Data System (ADS)

    Mapes, B. E.; Kelly, P.; Song, S.; Hu, I. K.; Kuang, Z.

    2015-12-01

    An economical 10-layer global primitive equation solver is driven by time-independent forcing terms, derived from a training process, to produce a realisting eddying basic state with a tracer q trained to act like water vapor mixing ratio. Within this basic state, linearized anomaly moist physics in the column are applied in the form of a 20x20 matrix. The control matrix was derived from the results of Kuang (2010, 2012) who fitted a linear response function from a cloud resolving model in a state of deep convecting equilibrium. By editing this matrix in physical space and eigenspace, scaling and clipping its action, and optionally adding terms for processes that do not conserve moist statice energy (radiation, surface fluxes), we can decompose and explain the model's diverse moist process coupled variability. Recitified effects of this variability on the general circulation and climate, even in strictly zero-mean centered anomaly physic cases, also are sometimes surprising.

  20. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    SciTech Connect

    Slattery, S. R.; Wilson, P. P. H.; Evans, T. M.

    2013-07-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  1. Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method

    PubMed Central

    Valle, Denis; Baiser, Benjamin; Woodall, Christopher W; Chazdon, Robin

    2014-01-01

    We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates of uncertainty. We illustrate our method using tree data for the eastern United States and from a tropical successional chronosequence. The model is able to detect pervasive declines in the oak community in Minnesota and Indiana, potentially due to fire suppression, increased growing season precipitation and herbivory. The chronosequence analysis is able to delineate clear successional trends in species composition, while also revealing that site-specific factors significantly impact these successional trajectories. The proposed method provides a means to decompose and track the dynamics of species assemblages along temporal and spatial gradients, including effects of global change and forest disturbances. PMID:25328064

  2. The plant cell wall decomposing machinery underlies the functional diversity of forest fungi

    SciTech Connect

    Eastwood, Daniel C.; Floudas, Dimitrios; Binder, Manfred; Majcherczyk, Andrzej; Schneider, Patrick; Aerts, Andrea; Asiegbu, Fred O.; Baker, Scott E.; Barry, Kerrie; Bendiksby, Mika; Blumentritt, Melanie; Coutinho, Pedro M.; Cullen, Dan; Vries, Ronald P. de; Gathman, Allen; Goodell, Barry; Henrissat, Bernard; Ihrmark, Katarina; Kauserud, Hä; vard,; Kohler, Annegret; LaButti, Kurt; Lapidus, Alla; Lavin, José; L.; Lee, Yong-Hwan; Lindquist, Erika; Lilly, Walt; Lucas, Susan; Morin, Emmanuelle; Murat, Claude; Oguiza, José; A.; Park, Jongsun; Pisabarro, Antonio G.; Riley, Robert; Rosling, Anna; Salamov, Asaf; Schmidt, Olaf; Schmutz, Jeremy; Skrede, Inger; Stenlid, Jan; Wiebenga, Ad; Xie, Xinfeng; Kü; es, Ursula; Hibbett, David S.; Hoffmeister, Dirk; Hö; gberg, Nils; Martin, Francis; Grigoriev, Igor V.; Watkinson, Sarah C.

    2011-05-01

    Brown rot decay removes cellulose and hemicellulose from wood?residual lignin contributing up to 30percent of forest soil carbon?and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the ?dry rot? fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota

  3. Macroscopic, microscopic, and chemical assessment of gunshot lesions on decomposed pig skin.

    PubMed

    Gibelli, Daniele; Brandone, Alberto; Andreola, Salvatore; Porta, Davide; Giudici, Elena; Grandi, Marco Aurelio; Cattaneo, Cristina

    2010-07-01

    Very little literature exists on gunshot wounds on decomposed material. In this study, seven pig heads underwent a shooting test. Entrance wounds from the first head underwent neutron activation analysis (NAA) and histological testing immediately after the firing test; the other six heads were exposed to two different environments (open air and soil) and analyzed by radiochemical and histological tests every 15 days. Gunshot wounds in air maintained their morphological characteristics, and those in soil showed severe alteration after 5 weeks. Microscopic testing verified positive results for lead in all gunshot wounds in open air, whereas in most of those in soil lead could not be detected. Radiochemical analysis performed by NAA yielded for all gunshot wounds but one antimony quantities in the range of 0.07-13.89 microg. In conclusion, it may be possible to detect residues of antimony even in degraded tissues. PMID:20384926

  4. Atomic iodine production in a gas flow by decomposing methyl iodide in a dc glow discharge

    SciTech Connect

    Mikheyev, P A; Shepelenko, A A; Voronov, A I; Kupryaev, Nikolai V

    2002-01-31

    The production of atomic iodine for an oxygen - iodine laser is studied by decomposing methyl iodide in a dc glow discharge in a vortex gas flow. The concentration of iodine atoms in discharge products was measured from the atomic iodine absorption of the radiation of a single-frequency tunable diode laser at a wavelength of 1.315 {mu}m. Atomic iodine concentrations sufficient for the operation of an oxygen - iodine laser were obtained. The concentration of atomic iodine amounted to 3.6 x 10{sup 15} cm{sup -3} for a pressure of the carrying argon gas of 15 Torr. The discharge stabilisation by a vortex gas flow allowed the glow discharge to be sustained in a strongly electronegative halogen-containing gas mixture for pressures up to 20 Torr. (active media)

  5. An autopsy case of a decomposed body with keyhole gunshot wound and secondary skull fractures.

    PubMed

    Harada, Kazuki; Kuroda, Ryohei; Nakajima, Makoto; Takizawa, Ayako; Yoshida, Ken-ichi

    2012-09-01

    The decomposed body of a 53 or 57-year-old male was found with a gun in a locked car parked in a coin-operated parking lot. During autopsy, the entrance wound in the frontal bone showed a characteristic keyhole defect with internal and external beveling. There was no exit wound. The fragmented bullet traveled downward within the calvarium and struck the right orbital plate. Two independent linear fractures were observed away from the entrance. These were believed to be secondary fractures resulting neither from internal ricochet of the bullet nor from direct blunt force to the head. Although decomposition complicated the evaluation of the gunshot wound characteristics, microscopic examination confirmed large quantities of soot along the wound tract, supporting our conclusion that the range of fire was contact. PMID:22633563

  6. Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method.

    PubMed

    Valle, Denis; Baiser, Benjamin; Woodall, Christopher W; Chazdon, Robin

    2014-12-01

    We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates of uncertainty. We illustrate our method using tree data for the eastern United States and from a tropical successional chronosequence. The model is able to detect pervasive declines in the oak community in Minnesota and Indiana, potentially due to fire suppression, increased growing season precipitation and herbivory. The chronosequence analysis is able to delineate clear successional trends in species composition, while also revealing that site-specific factors significantly impact these successional trajectories. The proposed method provides a means to decompose and track the dynamics of species assemblages along temporal and spatial gradients, including effects of global change and forest disturbances. PMID:25328064

  7. A Time-scale Decomposed Threshold Regression Downscaling Approach to Forecasting South China Early Summer Rainfall

    NASA Astrophysics Data System (ADS)

    Song, Linye; Duan, Wansuo; Li, Yun; Mao, Jiangyu

    2015-04-01

    A time-scale decomposed threshold regression (TSDTR) downscaling approach to forecasting South China early summer rainfall (SCESR) is described by using long-term observed station rainfall data and the National Oceanic and Atmospheric Administration Extended Reconstructed sea surface temperature (SST) data. It makes use of two distinct regression downscaling models corresponding to the interannual and interdecadal rainfall variability of SCESR. The two models were developed based on the partial least square (PLS) regression technique linking SCESR to SST modes in preceding months on both interannual and interdecadal timescales. Specially, using the datasets in the calibration period 1915-1984, the variability of SCESR and SST were decomposed into interannual and interdecadal components. On the interannual timescale, a threshold PLS regression model was fitted to interannual components of SCESR and March SST patterns by taking account of the modulation of negative and positive phases of the Pacific Decadal Oscillation (PDO). On the interdecadal timescale, a standard PLS regression model was fitted to the relationship between SCESR and preceding November SST patterns. The total rainfall prediction was obtained by the sum of the outputs from both interannual and interdecadal models. Results show that the TSDTR downscaling approach achieved a reasonable skill to predict the observed rainfall in the validation period 1985-2006, compared to other simpler approaches. This study suggests that the TSDTR approach considering different interannual SCESR-SST relationships under the modulation of PDO phases, as well as the interdecadal variability of SCESR associated with SST patterns may provide a new perspective to improve the climate predictions.

  8. Decomposing Scanned Assembly Meshes Based on Periodicity Recognition and Its Application to Kinematic Simulation Modeling

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Tomohiro; Kanai, Satoshi

    Along with the rapid growth of industrial X-ray CT scanning systems, it is now possible to non-destructively acquire the entire meshes of assemblies consisting of a set of parts. For the advanced inspections of the assemblies, such as estimation of their assembling errors or examinations of their behaviors in the motions, based on their CT scanned meshes, it is necessary to accurately decompose the mesh and to extract a set of partial meshes each of which correspond to a part. Moreover it is required to create models which can be used for the real-product based simulations. In this paper, we focus on CT scanned meshes of gear assemblies as examples and propose beneficial methods for establishing such advance inspections of the assemblies. We first propose a method that accurately decomposes the mesh into partial meshes each of which corresponds to a gear based on periodicity recognitions. The key idea is first to accurately recognize the periodicity of each gear and then to extract the partial meshes as sets of topologically connected mesh elements where periodicities are valid. Our method can robustly and accurately recognize periodicities from noisy scanned meshes. In contrast to previous methods, our method can deal with single-material CT scanned meshes and can estimate the correct boundaries of neighboring parts with no previous knowledge. Moreover it can efficiently extract the partial meshes from large scanned meshes containing about one million triangles in a few minutes. We also propose a method for creating simulation models which can be used for a gear teeth contact evaluation using extracted partial meshes and their periodicities. Such an evaluation of teeth contacts is one of the most important functions in kinematic simulations of gear assemblies for predicting the power transmission efficiency, noise and vibration. We demonstrate the effectiveness of our method on a variety of artificial and CT scanned meshes.

  9. Climatic effects on decomposing litter and substrate chemistry along climatological gradients.

    NASA Astrophysics Data System (ADS)

    Berg, B.

    2009-04-01

    Climatic effects on decomposing litter and substrate chemistry along climatological gradients. B. Berg, Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte San Angelo, via Cintia, I-80126 Napoli, Italy and Department of Forest Ecology, P.O. Box 27, University of Helsinki, FIN-00014, Helsinki, Finland. Studies of several processes, using climatic gradients do provide new information as compared with studies at e.g. a single site. Decomposition of plant litter in such gradients give response in decomposition rates to natural climate conditions. Thus Scots pine needle litter incubated in a climate gradient with annual average temperature (AVGT) ranging from -0.5 to 6.8oC had a highly significant increase in initial mass-loss rate with R2 = 0.591 (p<0.001) and a 5o increase in temperature doubled the mass-loss rate. As a contrast - needle litter of Norway spruce incubated in the same transect had no significant response to climate and for initial litter a 5o increase increased mass-loss rate c. 6%. For more decomposed Scots pine litter we could see that the effect of temperature on mass-loss rate gradually decreased until it disappeared. Long-term decomposition studies revealed differences in litter decomposition patterns along a gradient, even for the same type of litter. This could be followed by using an asymptotic function that gave, (i) a measure a maximum level of decomposition, (ii) the initial decomposition rate. Over a gradient the calculated maximum level of decomposition decreased with increasing AVGT. Other gradient studies revealed an effect of AVGT on litter chemical composition. Pine needle litter from stands under different climate conditions had nutrient concentrations related to AVGT. Thus N, P, K, and S were positively related to AVGT and Mn negatively, all of them significantly. This information may be used to explain the changing pattern in decomposition over the gradient.

  10. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region

    NASA Astrophysics Data System (ADS)

    Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.

    2014-06-01

    The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability, using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp: r2 = 0.63, n = 30 plots; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall inputs were generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry being more recalcitrant to decay.

  11. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region

    NASA Astrophysics Data System (ADS)

    Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.

    2014-09-01

    The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp.: r2 = 0.63, n = 30; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall input was generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry season being more recalcitrant to decay.

  12. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    SciTech Connect

    Hiroshi Fukui; Isao Minatsuki; Kazuo Ishino

    2006-07-01

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO{sub 2} gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9 m in height, 1.0 m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder

  13. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    NASA Astrophysics Data System (ADS)

    Minatsuki, Isao; Fukui, Hiroshi; Ishino, Kazuo

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO2 gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9m in height, 1.0m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder (slurry

  14. Carbon transferred from living to decomposing in the late April 2011 tornado outbreak

    NASA Astrophysics Data System (ADS)

    Peterson, C. J.; Cannon, J. B.; Hepinstall-Cymerman, J.

    2013-12-01

    Rare but extreme climatic events are difficult to study but likely have major impacts on the carbon cycle when they occur. Recent research has begun to reveal the carbon footprint of major hurricanes, but the impact of other types of wind disturbances remains unexplored. The late April 2011 tornado outbreak across the Southeastern U.S. was one of the largest in history. We have conducted detailed analyses of one long-track (64 km) tornado across northern Georgia, whose damage track was almost entirely in forest. This tornado, rated an EF-3, damaged a total of 4492.8 ha out of 12,875 ha. Using a supervised classification of aerial imagery, we quantified the forest area that experienced different severities of wind damage; the great majority of the damage was light (54.6% of the tornado track lost < 20% of standing basal area), and only ~ 1% of the track experienced > 80% basal area loss. We subsequently estimated the carbon transferred from living to decomposing from this one tornado track to be 0.212 Tg. We scaled the proportion of forest area experiencing different severities of damage to the entire outbreak (310 tornado segments surveyed by NWS teams), and used Google Earth imagery to calculate the linear length of forest within all of the late April 2011 tornado tracks. The outbreak tornadoes created 2691 km of linear damage track through forest (total track length through all land use types was much greater). Forested path length was converted to forest area using estimates of damage path width from NWS damage surveys, yielding an estimated total forest damage area of 123,434 ha for the outbreak. Assuming a similar distribution of damage severities to that seen in the north GA tornado track, we estimated the total area impacted at different severities. Finally, the areas experiencing these severities were converted to biomass using US Forest Service FIA data on county-by-county standing forest biomass, and then converted to carbon. Summing across all 310

  15. Signal subspace integration for improved seizure localization

    PubMed Central

    Stamoulis, Catherine; Fernández, Iván Sánchez; Chang, Bernard S.; Loddenkemper, Tobias

    2012-01-01

    A subspace signal processing approach is proposed for improved scalp EEG-based localization of broad-focus epileptic seizures, and estimation of the directions of source arrivals (DOA). Ictal scalp EEGs from adult and pediatric patients with broad-focus seizures were first decomposed into dominant signal modes, and signal and noise subspaces at each modal frequency, to improve the signal-to-noise ratio while preserving the original data correlation structure. Transformed (focused) modal signals were then resynthesized into wideband signals from which the number of sources and DOA were estimated. These were compared to denoised signals via principal components analysis (PCA). Coherent subspace processing performed better than PCA, significantly improved the localization of ictal EEGs and the estimation of distinct sources and corresponding DOAs. PMID:23366067

  16. Signal subspace integration for improved seizure localization.

    PubMed

    Stamoulis, Catherine; Fernández, Iván Sánchez; Chang, Bernard S; Loddenkemper, Tobias

    2012-01-01

    A subspace signal processing approach is proposed for improved scalp EEG-based localization of broad-focus epileptic seizures, and estimation of the directions of source arrivals (DOA). Ictal scalp EEGs from adult and pediatric patients with broad-focus seizures were first decomposed into dominant signal modes, and signal and noise subspaces at each modal frequency, to improve the signal-to-noise ratio while preserving the original data correlation structure. Transformed (focused) modal signals were then resynthesized into wideband signals from which the number of sources and DOA were estimated. These were compared to denoised signals via principal components analysis (PCA). Coherent subspace processing performed better than PCA, significantly improved the localization of ictal EEGs and the estimation of distinct sources and corresponding DOAs. PMID:23366067

  17. Decomposing retrieval and integration in memory for actions: a multinomial modeling approach.

    PubMed

    Steffens, Melanie C; Jelenec, Petra; Mecklenbräuker, Silvia; Thompson, Erin Marie

    2006-03-01

    Typically, action phrases are recalled better if participants are asked to enact the phrases than if they are just asked to remember them. When investigating which processes constitute this enactment effect a difficulty is that observable effects in standard memory tests are ambiguous because such tests require several processes. In the present article, we introduce a multinomial model that decomposes observable memory performance into a retrieval parameter and a parameter concerning the item-specific processing and integration of an action phrase. These parameters are estimated from free recall and cued recall performance. The model fitted the data of two experiments designed to test it. Experiment 1 demonstrated the basic usefulness of the model by showing expected differences in the integration parameter in the absence of unexpected differences in the retrieval parameter. Experiment 2 extended the conditions under which the model is useful by showing expected differences in the retrieval parameter even in the presence of unexpected differences in the integration parameter. Together, these findings support our theoretical framework according to which enactment generally boosts integration of action phrases, but increases retrieval only for phrases with context cues. PMID:16627356

  18. A phytotoxic active substance in the decomposing litter of the fern Gleichenia japonica.

    PubMed

    Kato-Noguchi, Hisashi; Saito, Yoshihumi; Ohno, Osamu; Suenaga, Kiyotake

    2015-03-15

    The fern Gleichenia japonica often dominates plant communities by forming large monospecific stands throughout the temperate to tropical Asia. The objective of this study was the investigation of allelopathic property and substances of the decomposing litter of the fern to evaluate the possible involvement of its allelopathy in the domination. An aqueous methanol extract of G. japonica litter inhibited the growth of garden cress (Lepidium sativum), lettuce (Lactuca sativa), barnyard grass (Echinochloa crus-galli), and ryegrass (Lolium multiflorum). This result suggests that G. japonica litter contains growth inhibitory substances. The extract was purified by chromatography while monitoring the inhibitory activity, and a growth inhibitory substance was isolated. The chemical structure of the substance was determined by spectral data to be a novel compound, 13-O-β-fucopyranosyl-3β-hydroxymanool. This compound inhibited root and shoot growth of garden cress and barnyard grass at concentrations ranging from 89.7 to 271 μM for 50% inhibition. In addition, the compound had potent growth inhibitory activity with the soil taken from near the colony. The concentration of the compound in soil under a pure colony of G. japonica was 790 μM, suggesting that the compound may contribute to the establishment of monocultural stands by this fern. PMID:25569852

  19. Decomposing time series data by a non-negative matrix factorization algorithm with temporally constrained coefficients.

    PubMed

    Cheung, Vincent C K; Devarajan, Karthik; Severini, Giacomo; Turolla, Andrea; Bonato, Paolo

    2015-08-01

    The non-negative matrix factorization algorithm (NMF) decomposes a data matrix into a set of non-negative basis vectors, each scaled by a coefficient. In its original formulation, the NMF assumes the data samples and dimensions to be independently distributed, making it a less-than-ideal algorithm for the analysis of time series data with temporal correlations. Here, we seek to derive an NMF that accounts for temporal dependencies in the data by explicitly incorporating a very simple temporal constraint for the coefficients into the NMF update rules. We applied the modified algorithm to 2 multi-dimensional electromyographic data sets collected from the human upper-limb to identify muscle synergies. We found that because it reduced the number of free parameters in the model, our modified NMF made it possible to use the Akaike Information Criterion to objectively identify a model order (i.e., the number of muscle synergies composing the data) that is more functionally interpretable, and closer to the numbers previously determined using ad hoc measures. PMID:26737046

  20. Impacts of warming on aquatic decomposers along a gradient of cadmium stress.

    PubMed

    Batista, D; Pascoal, C; Cássio, F

    2012-10-01

    We evaluated the effects of cadmium and temperature on plant-litter decomposition by examining diversity and activity of aquatic fungi and leaf consumption by Limnephilus sp., a typical invertebrate shredder of Iberian streams. Freshly fallen leaves were immersed in a stream to allow microbial colonization, and were exposed in microcosms to a gradient of cadmium (≤11 levels, ≤35 mg L(-1)). Microcosms were kept at 15 °C, a temperature typically found in Iberian streams in autumn, and at 21 °C to simulate a warming scenario. The increase in temperature stimulated leaf decomposition by microbes, fungal reproduction and leaf consumption by the shredder. Conversely, increased cadmium concentrations inhibited fungal reproduction and diversity, and leaf consumption by the invertebrate. Cadmium concentration inhibiting 50% of fungal reproduction, microbial decomposition and leaf consumption by the shredder was higher at 15 °C than at 21 °C, suggesting that higher temperatures can lead to increased metal toxicity to aquatic decomposers. PMID:22683478

  1. Diversity of Fungi, Bacteria, and Actinomycetes on Leaves Decomposing in a Stream▿

    PubMed Central

    Das, Mitali; Royer, Todd V.; Leff, Laura G.

    2007-01-01

    Although fungi, bacteria, and specific bacterial taxa, such as the actinomycetes, have been studied extensively in various habitats, few studies have examined them simultaneously, especially on decomposing leaves in streams. In this study, sugar maple and white oak leaves were incubated in a stream in northeastern Ohio for 181 days during which samples were collected at regular intervals. Following DNA extraction, PCR-denaturing gradient gel electrophoresis (DGGE) was performed using fungus-, bacterium-, and actinomycete-specific primers. In addition, fungal and bacterial biomass was estimated. Fungal biomass differed on different days but not between leaves of the two species and was always greater than bacterial biomass. There were significant differences in bacterial biomass through time and between leaf types on some days. Generally, on the basis of DGGE, few differences in community structure were found for different leaf types. However, the ribotype richness of fungi was significantly greater than those of the bacteria and actinomycetes, which were similar to each other. Ribotype richness decreased toward the end of the study for each group except bacteria. Lack of differences between the two leaf types suggests that the microorganisms colonizing the leaf biofilm were primarily generalists that could exploit the resources of the leaves of either species equally well. Thus, we conclude that factors, such as the ecological role of the taxa (generalists versus specialists), stage of decay, and time of exposure, appeared to be more important determinants of microbial community structure than leaf quality. PMID:17142366

  2. Decomposable decoding and display structure for scalable media visualization over advanced collaborative environments

    NASA Astrophysics Data System (ADS)

    Kim, JaeYoun; Kim, JongWon

    2005-10-01

    In this paper, we propose a scalable visualization system to offer high-resolution visualization on multiparty collaborative environments. The proposed system treats with a coordination technique to employ large-scale high-resolution display system and to display multiple high-quality videos effectively on systems with limited resources. To handle these, the proposed system includes the distributed visualization application under generic structure to enable high-resolution video format, such as DV (digital video) and HDV (high definition video) streaming, and under decomposable decoding and display structure to assign the separated visualization task (decoding/display) to different system resources. The system is based on high-performance local area network and the high-performance network between decoding and display task is utilized as the system bus to transfer the decoded large pixel data. The main focus in this paper is the decoupling technique of decoding and display based on high-performance network to handle multiple high-resolution videos effectively. We explore the possibility of the proposed system by implementing a prototype and evaluating it over a high-performance network. Finally, the experiment results verify the improved scalable display system through the proposed structure.

  3. Modelling soil nitrogen: the MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics.

    PubMed

    Oulehle, F; Cosby, B J; Wright, R F; Hruška, J; Kopáček, J; Krám, P; Evans, C D; Moldan, F

    2012-06-01

    We present a new formulation of the acidification model MAGIC that uses decomposer dynamics to link nitrogen (N) cycling to carbon (C) turnover in soils. The new model is evaluated by application to 15-30 years of water chemistry data at three coniferous-forested sites in the Czech Republic where deposition of sulphur (S) and N have decreased by >80% and 40%, respectively. Sulphate concentrations in waters have declined commensurately with S deposition, but nitrate concentrations have shown much larger decreases relative to N deposition. This behaviour is inconsistent with most conceptual models of N saturation, and with earlier versions of MAGIC which assume N retention to be a first-order function of N deposition and/or controlled by the soil C/N ratio. In comparison with earlier versions, the new formulation more correctly simulates observed short-term changes in nitrate leaching, as well as long-term retention of N in soils. The model suggests that, despite recent deposition reductions and recovery, progressive N saturation will lead to increased future nitrate leaching, ecosystem eutrophication and re-acidification. PMID:22459669

  4. Particle Communication and Domain Neighbor Coupling: Scalable Domain Decomposed Algorithms for Monte Carlo Particle Transport

    SciTech Connect

    O'Brien, M. J.; Brantley, P. S.

    2015-01-20

    In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.

  5. Decomposing the effects of children's health on mother's labor supply: is it time or money?

    PubMed

    Gould, Elise

    2004-06-01

    In this paper, I explore how children's health influences the wages and work hours of their mother. Some children have illnesses that require expensive medicine or treatment, but demand little parental time. Others require extraordinary amounts of time; and still others require care at unpredictable times of the day. I construct a theoretical model of mother's labor supply that explicitly incorporates the financial and time costs associated with the presence of unhealthy children. The model predicts that children with time-intensive illnesses and those with unpredictable illnesses negatively influence mother's labor supply, whereas children with illnesses with a strong financial component have a positive effect on mother's labor supply. In order to empirically test this, I organize a focus group of doctors to categorize illnesses and disabilities by the type of resources they require. Using the 1997 PSID Child Development Supplement, I estimate the effects of these requirements on mother's decision to work and work hours. After controlling for the financial burden of the illness, single mothers work fewer hours if their child has a time-intensive illness and married mothers are less likely to work and work fewer hours if their child has a severe condition with an unpredictable time component. These findings are consistent with the theoretical model and highlight the need to decompose the effects of child health on mother's work status. Model specifications that aggregate across illnesses are incapable of disentangling these effects and may therefore underestimate the welfare costs of having a sick child in the family. PMID:15185384

  6. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses

    PubMed Central

    Yang, Seung Hak; Lim, Joung Soo; Khan, Modabber Ahmed; Kim, Bong Soo; Choi, Dong Yoon; Lee, Eun Young; Ahn, Hee Kwon

    2015-01-01

    The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3–6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1–2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site. PMID:26500442

  7. Automatic algorithm to decompose discrete paths of fractional Brownian motion into self-similar intrinsic components

    NASA Astrophysics Data System (ADS)

    Vamoş, Călin; Crăciun, Maria; Suciu, Nicolae

    2015-10-01

    Fractional Brownian motion (fBm) is a nonstationary self-similar continuous stochastic process used to model many natural phenomena. A realization of the fBm can be numerically approximated by discrete paths which do not entirely preserve the self-similarity. We investigate the self-similarity at different time scales by decomposing the discrete paths of fBm into intrinsic components. The decomposition is realized by an automatic numerical algorithm based on successive smoothings stopped when the maximum monotonic variation of the averaged time series is reached. The spectral properties of the intrinsic components are analyzed through the monotony spectrum defined as the graph of the amplitudes of the monotonic segments with respect to their lengths (characteristic times). We show that, at intermediate time scales, the mean amplitude of the intrinsic components of discrete fBms scales with the mean characteristic time as a power law identical to that of the corresponding continuous fBm. As an application we consider hydrological time series of the transverse component of the transport process generated as a superposition of diffusive movements on advective transport in random velocity fields. We found that the transverse component has a rich structure of scales, which is not revealed by the analysis of the global variance, and that its intrinsic components may be self-similar only in particular cases.

  8. Does drought modify the decomposability of grassland species ? An incubation study

    NASA Astrophysics Data System (ADS)

    Gouskov, B.; Heim, A.; Abiven, S.

    2009-04-01

    Climate projections in Europe predict an increase in length and frequency of droughts within the next decades. This might be particularly an issue in sensitive ecosystems that are considered as carbon sink, like for example alpine grasslands. A variation in moisture content directly affects both litter decomposition and biomass production. Additionally, drought may alsopotentially affect the biochemical quality of plant litter reaching the soil. Under water limiting conditions, significant modifications of plant tissues composition have been observed (for example an increase of the cutin content), which could modify decomposition dynamics of the litter layer. In this study, we followed the decomposition of three grassland species (Poa pratensis L., Lolium multiflorum et Trifolium repens L.) that grew i/ under real climate and ii/ during an artificial drought. These plants were sampled on an experimental site (Chamau, Switzerland) during a three-year drought simulation experiment. The biochemical characteristics of the different plants were estimated by C, N content, water-soluble C, Diffuse Reflectance Infrared Fourier Transform Spectroscopy and lignin CuO oxidation. We followed the microbial community structure before and after the decomposition study using a Biolog system. The decomposition of the organic matter was followed under controlled conditions (23°C, water level regularly adjusted). The decomposition dynamics were measured by CO2 trapping in NaOH. First results show that Trifolium litter that grew under drought decomposes more slowly than one that grew under regular conditions. No significant difference was found for the other species.

  9. Decomposing the Drivers of Past, Present, and Future Land Use Change

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Wise, M. A.

    2015-12-01

    Over the past 500 years, global agricultural area has grown from 2 million km2 (1500) to 15 million km2 (2005), displacing forests and other natural ecosystems in the process (Hurtt et al., 2011). This expansion in area has been driven by changes in population, income, diet, and agricultural productivity. These factors will continue to evolve in the future; however, the effect of these changes on future land use, land cover, and emissions remains uncertain (e.g., Calvin et al., In Press). Additionally, future changes in land depend critically on the implementation of land-based mitigation options, such as bioenergy and afforestation (Wise et al., 2009; Reilly et al., 2012; Popp et al., 2013; Calvin et al., 2014). As all of these factors are uncertain in the future, the future evolution of land use and land cover is also uncertain. This presentation decomposes the drivers of past, present, and future land use change, characterizing the contribution of factors such as population, income, diet, agricultural productivity, and mitigation. In the historical period, we rely on a variety of land-based datasets (e.g., FAO, HYDE). For the future period, we analyze the integrated assessment modeling community's implementation of the Shared Socioeconomic Pathways (SSPs; O'Neill et al., In Press). The SSPs describe five different evolutions of socioeconomic development, varying several factors relevant to land use and land use change.

  10. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    SciTech Connect

    Slattery, Stuart R.; Evans, Thomas M.; Wilson, Paul P. H.

    2015-09-08

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear oper- ator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approxi- mation and the mean chord approximation are applied to estimate the leakage frac- tion of random walks from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem in numerical experiments to test the models for symmetric operators with spectral qualities similar to light water reactor problems. We find, in general, the derived approximations show good agreement with random walk lengths and leakage fractions computed by the numerical experiments.

  11. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    DOE PAGESBeta

    Slattery, Stuart R.; Evans, Thomas M.; Wilson, Paul P. H.

    2015-09-08

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear oper- ator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approxi- mation and the mean chord approximation are applied to estimate the leakagemore » frac- tion of random walks from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem in numerical experiments to test the models for symmetric operators with spectral qualities similar to light water reactor problems. We find, in general, the derived approximations show good agreement with random walk lengths and leakage fractions computed by the numerical experiments.« less

  12. Understanding E-Learning Adoption among Brazilian Universities: An Application of the Decomposed Theory of Planned Behavior

    ERIC Educational Resources Information Center

    Dos Santos, Luiz Miguel Renda; Okazaki, Shintaro

    2013-01-01

    This study sheds light on the organizational dimensions underlying e-learning adoption among Brazilian universities. We propose an organizational e-learning adoption model based on the decomposed theory of planned behavior (TPB). A series of hypotheses are posited with regard to the relationships among the proposed constructs. The model is…

  13. Insect-Damaged Corn Stalks Decompose at Rates Similar to Bt-Protected, Non-Damaged Corn Stalks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relative decomposability of corn (Zea mays L.) residues from insect (Bt)-protected hybrids and conventional hybrids cultivated under insect pressure was investigated in two studies. Above-ground biomass, residue macromolecular composition, and stalk physical strength were also measured. In the...

  14. Signal voter

    DOEpatents

    Goodwin, Roy L.

    1981-01-01

    A voter for providing a single accurate output signal that is derived from the closest two signal levels of three input signals, each of which signals represents a measurement of the same phenomena. By means of the voting circuit, the signals are first sorted by level of amplitude and then ranked as highest, middle or lowest. The highest or lowest signal that is furthest from the middle signal is rejected, while the other highest or lowest signal is selected for processing. The selected high or low signal is then averaged with the middle signal to provide the output signal.

  15. Is the brain a decomposable or nondecomposable system?. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Thompson, Evan

    2014-09-01

    Pessoa's review [4] casts new light on a deep and difficult question: is the brain a "decomposable" or "nondecomposable" system [1,5,7]? This question pertains to the functional organization of the brain as a cognitive system. In a decomposable system, each subsystem's operation is determined by the subsystem's intrinsic properties independent of the other subsystems, making the system's organization strongly modular. Modularity decreases depending on how strongly the subsystems interact, especially through feedback and reentrant or recursive processes. If the subsystems are only weakly coupled, such that the causal interactions within a subsystem play a stronger role in determining its operation than do the causal interactions between it and other subsystems, then the system is "nearly decomposable." If the subsystems are strongly coupled, then the functional organization of the system becomes less governed by the intrinsic properties of its subsystems and more governed by the ways the subsystems interact, making the system "minimally decomposable." In a "nondecomposable" system, the coupling is such that the subsystems no longer have clearly separable operations apart from the larger context of their interdependent operation. (Note that such strong coupling can involve weak local connections, as Pessoa discusses in Section 9.1.) The current debate about whether cognitive functions can be localized to specific brain regions [2], or whether cognitive functions need to be mapped onto dynamic networks instantiated in shifting coalitions or assemblies of regions [3,6], can be regarded also as a debate about the extent to which the brain's cognitive organization is decomposable (modular) or nondecomposable (nonmodular).

  16. Decomposing variation in dairy profitability: the impact of output, inputs, prices, labour and management.

    PubMed

    Wilson, P

    2011-08-01

    The UK dairy sector has undergone considerable structural change in recent years, with a decrease in the number of producers accompanied by an increased average herd size and increased concentrate use and milk yields. One of the key drivers to producers remaining in the industry is the profitability of their herds. The current paper adopts a holistic approach to decomposing the variation in dairy profitability through an analysis of net margin data explained by physical input-output measures, milk price variation, labour utilization and managerial behaviours and characteristics. Data are drawn from the Farm Business Survey (FBS) for England in 2007/08 for 228 dairy enterprises. Average yields are 7100 litres/cow/yr, from a herd size of 110 cows that use 0·56 forage ha/cow/yr and 43·2 labour h/cow/yr. An average milk price of 22·57 pence per litre (ppl) produced milk output of £1602/cow/yr, which after accounting for calf sales, herd replacements and quota leasing costs, gave an average dairy output of £1516/cow/yr. After total costs of £1464/cow/yr this left an economic return of £52/cow/yr (0·73 ppl) net margin profit. There is wide variation in performance, with the most profitable (as measured by net margin per cow) quartile of producers achieving 2000 litres/cow/yr more than the least profitable quartile, returning a net margin of £335/cow/yr compared to a loss of £361/cow/yr for the least profitable. The most profitable producers operate larger, higher yielding herds and achieve a greater milk price for their output. In addition, a significantly greater number of the most profitable producers undertake financial benchmarking within their businesses and operate specialist dairy farms. When examining the full data set, the most profitable enterprises included significantly greater numbers of organic producers. The most profitable tend to have a greater reliance on independent technical advice, but this finding is not statistically significant

  17. Influence of dose-death interval on colchicine and metabolite distribution in decomposed skeletal tissues.

    PubMed

    Imfeld, Anic B; Watterson, James H

    2016-03-01

    The semi-quantitative analysis of decomposed bone of rats exposed to colchicine and euthanized following different time intervals postexposure (i.e., dose-death interval, DDI) is described. Rats received colchicine (50 mg/kg, i.p.) and were euthanized 30 min (DDI1; n = 4), 60 min (DDI2; n = 4), or 180 min (DDI3; n = 4) postdose. Drug-free animals (n = 3) served as negative controls. Perimortem heart plasma was collected. Remains were decomposed to skeleton outdoors and then collected and sorted (skull, vertebrae, rib, pelvis, femur, tibia). Bones were dried, pulverized, and prepared by microwave-assisted extraction and microplate solid-phase extraction (MAE-MPSPE), followed by analysis for colchicine, 3-demethylcolchicine (3DMC), and 2-demethylcolchicine (2DMC) by ultra-high-performance liquid chromatography with photodiode array detection (UHPLC-PDA) at 350 nm. Bone type was a main effect (Kruskall-Wallis, p < 0.05) with respect to drug level (expressed as mass-normalized response ratio, RR/m) for each analyte, at each DDI. For all samples, DDI was a main effect (Kruskall-Wallis, p < 0.05) with respect to analyte level, and the ratio of analyte levels (RR3DMC/RRCOLCH, RR2DMC/RRCOLCH, and RR2DMC/RR3DMC). Bone COLCH levels varied by 19-fold, 12-fold, and 60-fold across all bone types in the DDI1, DDI2, and DDI3 groups, respectively. Bone 3DMC levels varied by 12-fold, 11-fold and 17-fold across all bone types in the DDI1, DDI2, and DDI3 groups, respectively. Bone 2DMC levels varied by 20-fold, 14-fold, and 14-fold across all bone types in the DDI1, DDI2, and DDI3 groups, respectively. Values of RR3DMC/RRCOLCH varied by 16-fold, 5-fold, and 5-fold across all bone types in the DDI1, DDI2, and DDI3 groups, respectively. Values of RR2DMC/RRCOLCH varied by 10-fold, 6-fold, and 12-fold across all bone types in the DDI1, DDI2, and DDI3 groups, respectively. Values of RR2DMC/RR3DMC varied by 3-fold, 5-fold, and 2-fold across all bone types in the DDI1, DDI2, and DDI3 groups

  18. Seasonal Variability May Affect Microbial Decomposers and Leaf Decomposition More Than Warming in Streams.

    PubMed

    Duarte, Sofia; Cássio, Fernanda; Ferreira, Verónica; Canhoto, Cristina; Pascoal, Cláudia

    2016-08-01

    Ongoing climate change is expected to affect the diversity and activity of aquatic microbes, which play a key role in plant litter decomposition in forest streams. We used a before-after control-impact (BACI) design to study the effects of warming on a forest stream reach. The stream reach was divided by a longitudinal barrier, and during 1 year (ambient year) both stream halves were at ambient temperature, while in the second year (warmed year) the temperature in one stream half was increased by ca. 3 °C above ambient temperature (experimental half). Fine-mesh bags containing oak (Quercus robur L.) leaves were immersed in both stream halves for up to 60 days in spring and autumn of the ambient and warmed years. We assessed leaf-associated microbial diversity by denaturing gradient gel electrophoresis and identification of fungal conidial morphotypes and microbial activity by quantifying leaf mass loss and productivity of fungi and bacteria. In the ambient year, no differences were found in leaf decomposition rates and microbial productivities either between seasons or stream halves. In the warmed year, phosphorus concentration in the stream water, leaf decomposition rates, and productivity of bacteria were higher in spring than in autumn. They did not differ between stream halves, except for leaf decomposition, which was higher in the experimental half in spring. Fungal and bacterial communities differed between seasons in both years. Seasonal changes in stream water variables had a greater impact on the activity and diversity of microbial decomposers than a warming regime simulating a predicted global warming scenario. PMID:27193000

  19. Ecological Dynamics of Two Distinct Viruses Infecting Marine Eukaryotic Decomposer Thraustochytrids (Labyrinthulomycetes, Stramenopiles).

    PubMed

    Takao, Yoshitake; Tomaru, Yuji; Nagasaki, Keizo; Honda, Daiske

    2015-01-01

    Thraustochytrids are cosmopolitan osmotrophic or heterotrophic microorganisms that are considered as important decomposers in coastal ecosystems. However, because of a lack of estimation method for each genus or systematic group of them, relatively little is known about their ecology in situ. Previously, we reported two distinct types of virus infecting thraustochytrids (AuRNAV: reported as SssRNAV, and SmDNAV) suggesting they have wide distributions in the host-virus systems of coastal environments. Here we conducted a field survey from 2004 through 2005 to show the fluctuation pattern of thraustochytrids and their viruses in Hiroshima Bay, Japan. During the field survey, we monitored the dynamics of the two types of thraustochytrid-infecting virus: small viruses causing lysis of Aurantiochytrium sp. NIBH N1-27 (identified as AuRNAV) and the large viruses of Sicyoidochytrium minutum NBRC 102975 (similar to SmDNAV in physiology and morphology). Fluctuation patterns of the two distinct types of virus were different from each other. This may reflect the difference in the preference of organic substrates; i.e., it may be likely the host of AuRNAV (Aurantiochytrium sp.) increases utilizing algal dead bodies or feeble cells as the virus shows a large increase in abundance following raphidophyte blooms; whereas, the trophic nutrient supply for S. minutum may primarily depend on other constantly-supplied organic compounds because it did not show any significant change in abundance throughout the survey. Further study concerning the population composition of thraustochytrids and their viruses may demonstrate the microbial ecology (especially concerning the detrital food web) of marine environments. PMID:26203654

  20. Ecological Dynamics of Two Distinct Viruses Infecting Marine Eukaryotic Decomposer Thraustochytrids (Labyrinthulomycetes, Stramenopiles)

    PubMed Central

    Takao, Yoshitake; Tomaru, Yuji; Nagasaki, Keizo; Honda, Daiske

    2015-01-01

    Thraustochytrids are cosmopolitan osmotrophic or heterotrophic microorganisms that are considered as important decomposers in coastal ecosystems. However, because of a lack of estimation method for each genus or systematic group of them, relatively little is known about their ecology in situ. Previously, we reported two distinct types of virus infecting thraustochytrids (AuRNAV: reported as SssRNAV, and SmDNAV) suggesting they have wide distributions in the host-virus systems of coastal environments. Here we conducted a field survey from 2004 through 2005 to show the fluctuation pattern of thraustochytrids and their viruses in Hiroshima Bay, Japan. During the field survey, we monitored the dynamics of the two types of thraustochytrid-infecting virus: small viruses causing lysis of Aurantiochytrium sp. NIBH N1-27 (identified as AuRNAV) and the large viruses of Sicyoidochytrium minutum NBRC 102975 (similar to SmDNAV in physiology and morphology). Fluctuation patterns of the two distinct types of virus were different from each other. This may reflect the difference in the preference of organic substrates; i.e., it may be likely the host of AuRNAV (Aurantiochytrium sp.) increases utilizing algal dead bodies or feeble cells as the virus shows a large increase in abundance following raphidophyte blooms; whereas, the trophic nutrient supply for S. minutum may primarily depend on other constantly-supplied organic compounds because it did not show any significant change in abundance throughout the survey. Further study concerning the population composition of thraustochytrids and their viruses may demonstrate the microbial ecology (especially concerning the detrital food web) of marine environments. PMID:26203654

  1. Forest Gaps Alter the Total Phenol Dynamics in Decomposing Litter in an Alpine Fir Forest

    PubMed Central

    Li, Han; Xu, Liya; Wu, Fuzhong; Yang, Wanqin; Ni, Xiangyin; He, Jie; Tan, Bo; Hu, Yi

    2016-01-01

    The total phenol content in decomposing litter not only acts as a crucial litter quality indicator, but is also closely related to litter humification due to its tight absorption to clay particles. However, limited attention has been focused on the total phenol dynamics in foliar litter in relation to forest gaps. Here, the foliar litter of six representative tree species was incubated on the forest floor from the gap center to the closed canopy of an alpine Minjiang fir (Abies faxoniana) forest in the upper reaches of the Yangtze River and eastern Tibetan Plateau. The dynamics of total phenol concentration in the incubated litter was measured from November 2012 to October 2014. Over two-year incubation, 78.22% to 94.06% of total phenols were lost from the foliar litter, but 52.08% to 86.41% of this occurred in the first year. Forest gaps accelerated the loss of total phenols in the foliar litter in the winter, although they inhibited the loss of total phenols during the growing season in the first year. In comparison with the effects of forest gaps, the variations of litter quality among different species were much stronger on the dynamics of total phenols in the second year. Overall, the loss of total phenols in the foliar litter was slightly higher in both the canopy gap and the expanded gap than in the gap center and under the closed canopy. The results suggest that the predicted decline in snow cover resulting from winter warming or vanishing gaps caused by forest regeneration will retard the loss of total phenol content in the foliar litter of alpine forest ecosystems, especially in the first decomposition year. PMID:26849120

  2. Modeling the influence of decomposing organic solids on sulfate reduction rates for iron precipitation.

    PubMed

    Hemsi, Paulo S; Shackelford, Charles D; Figueroa, Linda A

    2005-05-01

    The influence of decomposing organic solids on sulfate (S04(2-)) reduction rates for metals precipitation in sulfate-reducing systems, such as in bioreactors and permeable reactive barriers for treatment of acid mine drainage, is modeled. The results are evaluated by comparing the model simulations with published experimental data for two single-substrate and two multiple-substrate batch equilibrium experiments. The comparisons are based on the temporal trends in SO4(2-), ferrous iron (Fe2+), and hydrogen sulfide (H2S) concentrations, as well as on rates of sulfate reduction. The temporal behaviors of organic solid materials, dissolved organic substrates, and different bacterial populations also are simulated. The simulated results using Contois kinetics for polysaccharide decomposition, Monod kinetics for lactate-based sulfate reduction, instantaneous or kinetically controlled precipitation of ferrous iron mono-sulfide (FeS), and partial volatilization of H2S to the gas phase compare favorably with the experimental data. When Contois kinetics of polysaccharide decomposition is replaced by first-order kinetics to simulate one of the single-substrate batch experiments, a comparatively poorer approximation of the rates of sulfate reduction is obtained. The effect of sewage sludge in boosting the short-term rate of sulfate reduction in one of the multiple-substrate experiments also is approximated reasonably well. The results illustrate the importance of the type of kinetics used to describe the decomposition of organic solids on metals precipitation in sulfate-reducing systems as well as the potential application of the model as a predictive tool for assisting in the design of similar biochemical systems. PMID:15926572

  3. Microbial Decomposer Communities Are Mainly Structured by Trophic Status in Circumneutral and Alkaline Streams▿ †

    PubMed Central

    Duarte, Sofia; Pascoal, Cláudia; Garabétian, Frédéric; Cássio, Fernanda; Charcosset, Jean-Yves

    2009-01-01

    In streams, the release of nitrogen and phosphorus is reported to affect microbial communities and the ecological processes they govern. Moreover, the type of inorganic nitrogen (NO3, NO2, or NH4) may differently impact microbial communities. We aimed to identify the environmental factors that structure aquatic microbial communities and drive leaf litter decomposition along a gradient of eutrophication. We selected five circumneutral (Portuguese) and five alkaline (French) streams differing in nutrient concentrations to monitor mass loss of alder leaves, bacterial and fungal diversity by PCR-denaturing gradient gel electrophoresis, fungal biomass and reproduction, and bacterial biomass during 11 weeks of leaf immersion. The concentrations of inorganic nutrients in the stream water ranged from 5 to 300 μg liter−1 soluble reactive phosphorus, 0.30 to 5.50 mg liter−1 NO3-N, 2 to 103 μg liter−1 NO2-N, and <4 to 7,100 μg liter−1 NH4-N. Species richness was maximum in moderately anthropized (eutrophic) streams but decreased in the most anthropized (hypertrophic) streams. Different species assemblages were found in subsets of streams with different trophic statuses. In both geographic areas, the limiting nutrient, either nitrate or phosphate, stimulated the microbial activity in streams of intermediate trophic status. In the hypertrophic streams, fungal biomass and reproduction were significantly lower, and bacterial biomass dramatically decreased at the site with the highest ammonium concentration. The limiting nutrients that defined the trophic status were the main factor structuring fungal and bacterial communities, whatever the geographic area. A very high ammonium concentration in stream water most probably has negative impacts on microbial decomposer communities. PMID:19648371

  4. Decomposing metaphor processing at the cognitive and neural level through functional magnetic resonance imaging.

    PubMed

    Bambini, Valentina; Gentili, Claudio; Ricciardi, Emiliano; Bertinetto, Pier Marco; Pietrini, Pietro

    2011-10-10

    Prior neuroimaging studies on metaphor comprehension have tended to focus on the role of the right hemisphere, without reaching consensus and leaving aside the functional architecture of this process. The present work aimed to break down metaphor comprehension into its functional components. The study rationale is two-fold: on the one hand, the large-scale network model as emerging in cognitive neuroscience led us to a consideration of metaphor as supported by a distributed and bilateral network; on the other hand, we based on the accounts of figurative language put forward in pragmatics and cognitive science to postulate a decomposition of such a network into multiple sub-systems. During scanning, participants implicitly processed metaphorical (familiar and unfamiliar) and non-metaphorical passages, while being explicitly involved in an adjective matching task to be performed after reading the target passages. Several regions showed greater activity to metaphors as compared to non-metaphors, including left and right inferior frontal gyrus, right superior temporal gyrus, left angular gyrus, and anterior cingulate. This pattern of activations, markedly bilateral, can be decomposed into circumscribed functional sub-systems mediating different aspects of metaphor resolution, as foreseen in the pragmatic and cognitive literature: (a) the conceptual/pragmatic machinery in the bilateral inferior frontal gyrus and in the left angular gyrus, which supports the integration of linguistic material and world knowledge in context; (b) the attentional component in the anterior cingulate and prefrontal areas, which is set to monitor and filter for the relevant aspects of context and for the appropriate meanings; (c) the Theory of Mind system along the right superior temporal sulcus, which deals with the recognition of speakers' communicative intentions and is more extensively activated by unfamiliar metaphors. The results have several implications for the field of neuropragmatics

  5. Forest Gaps Alter the Total Phenol Dynamics in Decomposing Litter in an Alpine Fir Forest.

    PubMed

    Li, Han; Xu, Liya; Wu, Fuzhong; Yang, Wanqin; Ni, Xiangyin; He, Jie; Tan, Bo; Hu, Yi

    2016-01-01

    The total phenol content in decomposing litter not only acts as a crucial litter quality indicator, but is also closely related to litter humification due to its tight absorption to clay particles. However, limited attention has been focused on the total phenol dynamics in foliar litter in relation to forest gaps. Here, the foliar litter of six representative tree species was incubated on the forest floor from the gap center to the closed canopy of an alpine Minjiang fir (Abies faxoniana) forest in the upper reaches of the Yangtze River and eastern Tibetan Plateau. The dynamics of total phenol concentration in the incubated litter was measured from November 2012 to October 2014. Over two-year incubation, 78.22% to 94.06% of total phenols were lost from the foliar litter, but 52.08% to 86.41% of this occurred in the first year. Forest gaps accelerated the loss of total phenols in the foliar litter in the winter, although they inhibited the loss of total phenols during the growing season in the first year. In comparison with the effects of forest gaps, the variations of litter quality among different species were much stronger on the dynamics of total phenols in the second year. Overall, the loss of total phenols in the foliar litter was slightly higher in both the canopy gap and the expanded gap than in the gap center and under the closed canopy. The results suggest that the predicted decline in snow cover resulting from winter warming or vanishing gaps caused by forest regeneration will retard the loss of total phenol content in the foliar litter of alpine forest ecosystems, especially in the first decomposition year. PMID:26849120

  6. Litter dynamics in two Sierran mixed conifer forests. II. Nutrient release in decomposing leaf litter

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    1988-01-01

    The factors influencing leaf litter decomposition and nutrient release patterns were investigated for 3.6 years in two mixed conifer forests in the southern Sierra Nevada of California. The giant sequoia–fir forest was dominated by giant sequoia (Sequoiadendrongiganteum (Lindl.) Buchh.), white fir (Abiesconcolor Lindl. & Gord.), and sugar pine (Pinuslambertiana Dougl.). The fir–pine forest was dominated by white fir, sugar pine, and incense cedar (Calocedrusdecurrens (Torr.) Florin). Initial concentrations of nutrients and percent lignin, cellulose, and acid detergent fiber vary considerably in freshly abscised leaf litter of the studied species. Giant sequoia had the highest concentration of lignin (20.3%) and the lowest concentration of nitrogen (0.52%), while incense cedar had the lowest concentration of lignin (9.6%) and second lowest concentration of nitrogen (0.63%). Long-term (3.6 years) foliage decomposition rates were best correlated with initial lignin/N (r2 = 0.94, p r2 = 0.92, p r2 = 0.80, p < 0.05). Patterns of nutrient release were highly variable. Giant sequoia immobilized N and P, incense cedar immobilized N and to a lesser extent P, while sugar pine immobilized Ca. Strong linear or negative exponential relationships existed between initial concentrations of N, P, K, and Ca and percent original mass remaining of those nutrients after 3.6 years. This suggests efficient retention of these nutrients in the litter layer of these ecosystems. Nitrogen concentrations steadily increase in decomposing leaf litter, effectively reducing the C/N ratios from an initial range of 68–96 to 27–45 after 3.6 years.

  7. Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers

    PubMed Central

    Cobaugh, Kelly L.; Schaeffer, Sean M.; DeBruyn, Jennifer M.

    2015-01-01

    The ecological succession of microbes during cadaver decomposition has garnered interest in both basic and applied research contexts (e.g. community assembly and dynamics; forensic indicator of time since death). Yet current understanding of microbial ecology during decomposition is almost entirely based on plant litter. We know very little about microbes recycling carcass-derived organic matter despite the unique decomposition processes. Our objective was to quantify the taxonomic and functional succession of microbial populations in soils below decomposing cadavers, testing the hypotheses that a) periods of increased activity during decomposition are associated with particular taxa; and b) human-associated taxa are introduced to soils, but do not persist outside their host. We collected soils from beneath four cadavers throughout decomposition, and analyzed soil chemistry, microbial activity and bacterial community structure. As expected, decomposition resulted in pulses of soil C and nutrients (particularly ammonia) and stimulated microbial activity. There was no change in total bacterial abundances, however we observed distinct changes in both function and community composition. During active decay (7 - 12 days postmortem), respiration and biomass production rates were high: the community was dominated by Proteobacteria (increased from 15.0 to 26.1% relative abundance) and Firmicutes (increased from 1.0 to 29.0%), with reduced Acidobacteria abundances (decreased from 30.4 to 9.8%). Once decay rates slowed (10 - 23 d postmortem), respiration was elevated, but biomass production rates dropped dramatically; this community with low growth efficiency was dominated by Firmicutes (increased to 50.9%) and other anaerobic taxa. Human-associated bacteria, including the obligately anaerobic Bacteroides, were detected at high concentrations in soil throughout decomposition, up to 198 d postmortem. Our results revealed the pattern of functional and compositional succession

  8. [EEMD-ICA Applied in Signal Extraction in Functional Near-Infrared Spectroscopy].

    PubMed

    Zha, Yu-tong; Liu, Guang-da; Zhou, Run-dong; Zhang, Xiao-feng; Niu, Jun-qi; Yu, Yong; Wang, Wei

    2015-10-01

    Currently, functional near-infrared spectroscopy (fNIRS) is widely used in the field of Neuroimaging. To solve the signal-noise frequency spectrum aliasing in non-linear and non-stationary fNIRS characteristic signal extraction, a new joint multi-resolution algorithm, EEMD-ICA, is proposed based on combining Independent Component Analysis with Ensemble Empirical Mode Decomposing. After functional brain imaging instrument detected the multi-channel and multi-wavelength NIR optical density signals, EEMD was performed to decompose measurement signals into multiple intrinsic mode function according to the signal frequency component. Then ICA was applied to extract the interest data from IMFs into ICs. Finally, reconstructed signals were obtained by accumulating the ICs set. EEMD-ICA was applied in de-noising Valsalva test signals which were considered as original signals and compared with Empirical Mode Decomposing and Ensemble Empirical Mode Decomposing to illustrate validity of this algorithm. It is proved that useful information loss during de-noising and invalidity of noise elimination are completely solved by EEMD-ICA. This algorithm is more optimized than other two de-noising methods in error parameters and signal-noise-ratio analysis. PMID:26904811

  9. (A)synchronous Availabilities of N and P Regulate the Activity and Structure of the Microbial Decomposer Community

    PubMed Central

    Fanin, Nicolas; Hättenschwiler, Stephan; Chavez Soria, Paola F.; Fromin, Nathalie

    2016-01-01

    Nitrogen (N) and phosphorus (P) availability both control microbial decomposers and litter decomposition. However, these two key nutrients show distinct release patterns from decomposing litter and are unlikely available at the same time in most ecosystems. Little is known about how temporal differences in N and P availability affect decomposers and litter decomposition, which may be particularly critical for tropical rainforests growing on old and nutrient-impoverished soils. Here we used three chemically contrasted leaf litter substrates and cellulose paper as a widely accessible substrate containing no nutrients to test the effects of temporal differences in N and P availability in a microcosm experiment under fully controlled conditions. We measured substrate mass loss, microbial activity (by substrate induced respiration, SIR) as well as microbial community structure (using phospholipid fatty acids, PLFAs) in the litter and the underlying soil throughout the initial stages of decomposition. We generally found a stronger stimulation of substrate mass loss and microbial respiration, especially for cellulose, with simultaneous NP addition compared to a temporally separated N and P addition. However, litter types with a relatively high N to P availability responded more to initial P than N addition and vice versa. A third litter species showed no response to fertilization regardless of the sequence of addition, likely due to strong C limitation. Microbial community structure in the litter was strongly influenced by the fertilization sequence. In particular, the fungi to bacteria ratio increased following N addition alone, a shift that was reversed with complementary P addition. Opposite to the litter layer microorganisms, the soil microbial community structure was more strongly influenced by the identity of the decomposing substrate than by fertilization treatments, reinforcing the idea that C availability can strongly constrain decomposer communities

  10. (A)synchronous Availabilities of N and P Regulate the Activity and Structure of the Microbial Decomposer Community.

    PubMed

    Fanin, Nicolas; Hättenschwiler, Stephan; Chavez Soria, Paola F; Fromin, Nathalie

    2015-01-01

    Nitrogen (N) and phosphorus (P) availability both control microbial decomposers and litter decomposition. However, these two key nutrients show distinct release patterns from decomposing litter and are unlikely available at the same time in most ecosystems. Little is known about how temporal differences in N and P availability affect decomposers and litter decomposition, which may be particularly critical for tropical rainforests growing on old and nutrient-impoverished soils. Here we used three chemically contrasted leaf litter substrates and cellulose paper as a widely accessible substrate containing no nutrients to test the effects of temporal differences in N and P availability in a microcosm experiment under fully controlled conditions. We measured substrate mass loss, microbial activity (by substrate induced respiration, SIR) as well as microbial community structure (using phospholipid fatty acids, PLFAs) in the litter and the underlying soil throughout the initial stages of decomposition. We generally found a stronger stimulation of substrate mass loss and microbial respiration, especially for cellulose, with simultaneous NP addition compared to a temporally separated N and P addition. However, litter types with a relatively high N to P availability responded more to initial P than N addition and vice versa. A third litter species showed no response to fertilization regardless of the sequence of addition, likely due to strong C limitation. Microbial community structure in the litter was strongly influenced by the fertilization sequence. In particular, the fungi to bacteria ratio increased following N addition alone, a shift that was reversed with complementary P addition. Opposite to the litter layer microorganisms, the soil microbial community structure was more strongly influenced by the identity of the decomposing substrate than by fertilization treatments, reinforcing the idea that C availability can strongly constrain decomposer communities

  11. Do Nonnative Language Speakers "Chew the Fat" and "Spill the Beans" with Different Brain Hemispheres? Investigating Idiom Decomposability with the Divided Visual Field Paradigm

    ERIC Educational Resources Information Center

    Cieslicka, Anna B.

    2013-01-01

    The purpose of this study was to explore possible cerebral asymmetries in the processing of decomposable and nondecomposable idioms by fluent nonnative speakers of English. In the study, native language (Polish) and foreign language (English) decomposable and nondecomposable idioms were embedded in ambiguous (neutral) and unambiguous (biasing…

  12. Decomposing risk: landscape structure and wolf behavior generate different predation patterns in two sympatric ungulates.

    PubMed

    Gervasi, Vincenzo; Sand, Hakan; Zimmermann, Barbara; Mattisson, Jenny; Wabakken, Petter; Linnell, John D C

    2013-10-01

    Recolonizing carnivores can have a large impact on the status of wild ungulates, which have often modified their behavior in the absence of predation. Therefore, understanding the dynamics of reestablished predator-prey systems is crucial to predict their potential ecosystem effects. We decomposed the spatial structure of predation by recolonizing wolves (Canis lupus) on two sympatric ungulates, moose (Alces alces) and roe deer (Capreolus capreolus), in Scandinavia during a 10-year study. We monitored 18 wolves with GPS collars, distributed over 12 territories, and collected records from predation events. By using conditional logistic regression, we assessed the contributions of three main factors, the utilization patterns of each wolf territory, the spatial distribution of both prey species, and fine-scale landscape structure, in determining the spatial structure of moose and roe deer predation risk. The reestablished predator-prey system showed a remarkable spatial variation in kill occurrence at the intra-territorial level, with kill probabilities varying by several orders of magnitude inside the same territory. Variation in predation risk was evident also when a spatially homogeneous probability for a wolf to encounter a prey was simulated. Even inside the same territory, with the same landscape structure, and when exposed to predation by the same wolves, the two prey species experienced an opposite spatial distribution of predation risk. In particular, increased predation risk for moose was associated with open areas, especially clearcuts and young forest stands, whereas risk was lowered for roe deer in the same habitat types. Thus, fine-scale landscape structure can generate contrasting predation risk patterns in sympatric ungulates, so that they can experience large differences in the spatial distribution of risk and refuge areas when exposed to predation by a recolonizing predator. Territories with an earlier recolonization were not associated with a lower

  13. Microbial decomposer communities in Alaskan permafrost soils and their response to thaw

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Wickland, K.; Harden, J.; Striegl, R.; Aiken, G.

    2007-12-01

    Permafrost protected soil carbon in boreal forest ecosystems represents a significant portion of the approximately 500 Gt C in the soil organic matter of boreal regions. The magnitude of this thermally-protected carbon pool makes it a particularly important to the global C cycle within the context of global climatic change. Permafrost has acted as a C sink for thousands of years yet currently has been warming at a rate of 1°C per decade, making the C contained within it potentially available for decomposition. Thawing permafrost opens a latch into a globally important C reservoir that could be released to the atmosphere (as CO2) and rivers (as dissolved organic carbon, DOC), affecting greenhouse warming and aquatic chemistry. A gap in our current knowledge is the extent to which permafrost-protected C is available for microbial metabolism once soils thaw. Current indications are that organic matter contained within permafrost is relatively labile since it is not protected from decomposition by physical protection or humification mechanisms. However, we have little understanding of the microbiology of permafrost soils, which could significantly affect the rate of decomposition of permafrost C after thaw. Our aim was to use quantitative molecular techniques to examine the abundance of microbial decomposer functional groups in permafrost soils, the enzymes they encode, and their rates of respiration under both aerobic and anaerobic conditions in a simulated summer thaw at 5°C. We compared microbial and chemical characteristics of active layer and permafrost soils from black spruce stands in three distinct geographic regions: Coldfoot, Hess Creek, and Smith Lake, AK. We chose these regions because they span a range of permafrost conditions from shallow active layers and mineral-associated permafrost layers to thick active layers and deep organic permafrost soils. Soil carbon and nitrogen concentrations did not differ between active layer and permafrost soils within

  14. Self-decomposable Fibrous Bridging Additives for Temporary Cementitious Fracture Sealers in EGS Wells

    SciTech Connect

    Sugama T.; Pyatina, T.; Gill, S.; Kisslinger, K.; Iverson, B.; Bour, D.

    2012-11-01

    potential as a self-decomposable bridging additive in the SSASC cement sealer.

  15. Modelling the dissipation and leaching of two herbicides in decomposing mulch of crop residues

    NASA Astrophysics Data System (ADS)

    Aslam, Sohaib; Iqbal, Akhtar; Lafolie, François; Recous, Sylvie; Benoit, Pierre; Garnier, Patricia

    2013-04-01

    greater leaching from mulch than S-metolachlor because of its lower adsorption coefficients to organic mulch. Moreover, simulated results showed a much faster degradation of glyphosate but greater non-extractable residue formation for S-metolachlor. Keywords: Mulch; Pesticides; Transport; Degradation; Modeling; Pastis-mulch References Findeling, A., Garnier, P., Coppens, F., Lafolie, F., Recous, S., 2007. Modelling water, carbon and nitrogen dynamics in soil covered with decomposing mulch. European Journal of Soil Science 58, 196-206. Lashermes, G., Zhang, Y., Houot, S., Barriuso, E., Steyer, J.P., Patureau, D., Garnier, P., 2013. A model coupling organic carbon and organic pollutant dynamics during composting. Journal of Environmental Quality. In Press.

  16. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils.

    PubMed

    Kaiser, Christina; Franklin, Oskar; Richter, Andreas; Dieckmann, Ulf

    2015-01-01

    The chemical structure of organic matter has been shown to be only marginally important for its decomposability by microorganisms. The question of why organic matter does accumulate in the face of powerful microbial degraders is thus key for understanding terrestrial carbon and nitrogen cycling. Here we demonstrate, based on an individual-based microbial community model, that social dynamics among microbes producing extracellular enzymes ('decomposers') and microbes exploiting the catalytic activities of others ('cheaters') regulate organic matter turnover. We show that the presence of cheaters increases nitrogen retention and organic matter build-up by downregulating the ratio of extracellular enzymes to total microbial biomass, allowing nitrogen-rich microbial necromass to accumulate. Moreover, increasing catalytic efficiencies of enzymes are outbalanced by a strong negative feedback on enzyme producers, leading to less enzymes being produced at the community level. Our results thus reveal a possible control mechanism that may buffer soil CO2 emissions in a future climate. PMID:26621582

  17. Highly concentrated synthesis of copper-zinc-tin-sulfide nanocrystals with easily decomposable capping molecules for printed photovoltaic applications.

    PubMed

    Kim, Youngwoo; Woo, Kyoohee; Kim, Inhyuk; Cho, Yong Soo; Jeong, Sunho; Moon, Jooho

    2013-11-01

    Among various candidate materials, Cu2ZnSnS4 (CZTS) is a promising earth-abundant semiconductor for low-cost thin film solar cells. We report a facile, less toxic, highly concentrated synthetic method utilizing the heretofore unrecognized, easily decomposable capping ligand of triphenylphosphate, where phase-pure, single-crystalline, and well-dispersed colloidal CZTS nanocrystals were obtained. The favorable influence of the easily decomposable capping ligand on the microstructural evolution of device-quality CZTS absorber layers was clarified based on a comparative study with commonly used oleylamine-capped CZTS nanoparticles. The resulting CZTS nanoparticles enabled us to produce a dense and crack-free absorbing layer through annealing under a N2 + H2S (4%) atmosphere, demonstrating a solar cell with an efficiency of 3.6% under AM 1.5 illumination. PMID:24057000

  18. On the utility of the multi-level algorithm for the solution of nearly completely decomposable Markov chains

    NASA Technical Reports Server (NTRS)

    Leutenegger, Scott T.; Horton, Graham

    1994-01-01

    Recently the Multi-Level algorithm was introduced as a general purpose solver for the solution of steady state Markov chains. In this paper, we consider the performance of the Multi-Level algorithm for solving Nearly Completely Decomposable (NCD) Markov chains, for which special-purpose iteractive aggregation/disaggregation algorithms such as the Koury-McAllister-Stewart (KMS) method have been developed that can exploit the decomposability of the the Markov chain. We present experimental results indicating that the general-purpose Multi-Level algorithm is competitive, and can be significantly faster than the special-purpose KMS algorithm when Gauss-Seidel and Gaussian Elimination are used for solving the individual blocks.

  19. Method for decomposing observed line shapes resulting from multiple causes - Application to plasma charge-exchange-neutral spectra

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1979-01-01

    A method is given for decomposing the widths of observed spectral lines resulting from unresolved line splitting, additive kinetic processes of different types, instrumental broadening (slit function), Doppler broadening, etc. all superimposed. The second moments are used as measures of the various widths involved. The method is not applicable if dispersion type (Lorentz) broadening occurs. Application is made to plasma charge-exchange-neutral spectra of hydrogen, deuterium, and helium.

  20. The Influence of Time and Plant Species on the Composition of the Decomposing Bacterial Community in a Stream Ecosystem.

    PubMed

    Wymore, Adam S; Liu, Cindy M; Hungate, Bruce A; Schwartz, Egbert; Price, Lance B; Whitham, Thomas G; Marks, Jane C

    2016-05-01

    Foliar chemistry influences leaf decomposition, but little is known about how litter chemistry affects the assemblage of bacterial communities during decomposition. Here we examined relationships between initial litter chemistry and the composition of the bacterial community in a stream ecosystem. We incubated replicated genotypes of Populus fremontii and P. angustifolia leaf litter that differ in percent tannin and lignin, then followed changes in bacterial community composition during 28 days of decomposition using 16S rRNA gene-based pyrosequencing. Using a nested experimental design, the majority of variation in bacterial community composition was explained by time (i.e., harvest day) (R(2) = 0.50). Plant species, nested within harvest date, explained a significant but smaller proportion of the variation (R(2) = 0.03). Significant differences in community composition between leaf species were apparent at day 14, but no significant differences existed among genotypes. Foliar chemistry correlated significantly with community composition at day 14 (r = 0.46) indicating that leaf litter with more similar phytochemistry harbor bacterial communities that are alike. Bacteroidetes and β-proteobacteria dominated the bacterial assemblage on decomposing leaves, and Verrucomicrobia and α- and δ-proteobacteria became more abundant over time. After 14 days, bacterial diversity diverged significantly between leaf litter types with fast-decomposing P. fremontii hosting greater richness than slowly decomposing P. angustifolia; however, differences were no longer present after 28 days in the stream. Leaf litter tannin, lignin, and lignin: N ratios all correlated negatively with diversity. This work shows that the bacterial community on decomposing leaves in streams changes rapidly over time, influenced by leaf species via differences in genotype-level foliar chemistry. PMID:26879940

  1. Resonant x-ray reflectivity study of partial decomposed boron nitride thin films using Indus-1 synchrotron

    SciTech Connect

    Nayak, Maheswar Lodha, Gyanendra S.

    2014-04-24

    We determined the microstructural parameters and chemical composition profile of partial decomposed boron nitride thin films using x-ray reflectivity near the respective absorption edges. The elemental specificity and optical contrast variation properties of the resonant effect are utilized to combine chemical analysis with physical microstructure of thin films from x-ray scattered intensities. We demonstrated these aspects through calculations and experiments in the soft x-ray region near the boron K-absorption edge.

  2. Denoising ECG signal based on ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Zhi-dong, Zhao; Liu, Juan; Wang, Sheng-tao

    2011-10-01

    The electrocardiogram (ECG) has been used extensively for detection of heart disease. Frequently the signal is corrupted by various kinds of noise such as muscle noise, electromyogram (EMG) interference, instrument noise etc. In this paper, a new ECG denoising method is proposed based on the recently developed ensemble empirical mode decomposition (EEMD). Noisy ECG signal is decomposed into a series of intrinsic mode functions (IMFs). The statistically significant information content is build by the empirical energy model of IMFs. Noisy ECG signal collected from clinic recording is processed using the method. The results show that on contrast with traditional methods, the novel denoising method can achieve the optimal denoising of the ECG signal.

  3. Efficient elastic reverse-time migration for the decomposed P-wavefield using stress tensor in the time domain

    NASA Astrophysics Data System (ADS)

    Ha, Jiho; Shin, Sungryul; Shin, Changsoo; Chung, Wookeen

    2015-05-01

    Because complex mixed waves are typically generated in elastic media, wavefield decomposition is required for such media to obtain migration images accurately. In isotropic media, this is achieved according to the Helmholtz decomposition theorem; in particular, the divergence operator is commonly applied to P-wavefield decomposition. In this study, two types of elastic reverse-time migration algorithms are proposed for decomposition of the P-wavefield without requiring the divergence operator. The first algorithm involves formulation of the stress tensor by spatially differentiated displacement according to the stress-strain relationship and is utilized to construct an imaging condition for the decomposed P-wavefield. We demonstrate this approach through numerical testing. The second algorithm allows us to obtain emphasized interfaces through the application of the absolute value function to decomposed wavefield in imaging condition. Because reverse-time migration can be defined by a zero-lag cross-correlation relationship between the partial-derivative wavefield and the observed wavefield data, we derive the virtual source to construct the partial-derivative wavefield based on a 2D staggered-grid finite-difference modeling method in the time domain. The explicitly computed partial-derivative wavefield from virtual sources with the stress tensor is in agreement with the partial-derivative wavefield directly computed from residual by between with and without a perturbation point in the subsurface. Moreover, the back-propagation technique is used to enhance the computational efficiency. To validate our two types of imaging conditions, numerical tests are conducted. The migration images created according to our imaging conditions can represent the subsurface structure accurately. Thus, we can confirm the feasibility of obtaining migration images of the decomposed P-wavefield without requiring the application of the divergence operator.

  4. Highly concentrated synthesis of copper-zinc-tin-sulfide nanocrystals with easily decomposable capping molecules for printed photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Kim, Youngwoo; Woo, Kyoohee; Kim, Inhyuk; Cho, Yong Soo; Jeong, Sunho; Moon, Jooho

    2013-10-01

    Among various candidate materials, Cu2ZnSnS4 (CZTS) is a promising earth-abundant semiconductor for low-cost thin film solar cells. We report a facile, less toxic, highly concentrated synthetic method utilizing the heretofore unrecognized, easily decomposable capping ligand of triphenylphosphate, where phase-pure, single-crystalline, and well-dispersed colloidal CZTS nanocrystals were obtained. The favorable influence of the easily decomposable capping ligand on the microstructural evolution of device-quality CZTS absorber layers was clarified based on a comparative study with commonly used oleylamine-capped CZTS nanoparticles. The resulting CZTS nanoparticles enabled us to produce a dense and crack-free absorbing layer through annealing under a N2 + H2S (4%) atmosphere, demonstrating a solar cell with an efficiency of 3.6% under AM 1.5 illumination.Among various candidate materials, Cu2ZnSnS4 (CZTS) is a promising earth-abundant semiconductor for low-cost thin film solar cells. We report a facile, less toxic, highly concentrated synthetic method utilizing the heretofore unrecognized, easily decomposable capping ligand of triphenylphosphate, where phase-pure, single-crystalline, and well-dispersed colloidal CZTS nanocrystals were obtained. The favorable influence of the easily decomposable capping ligand on the microstructural evolution of device-quality CZTS absorber layers was clarified based on a comparative study with commonly used oleylamine-capped CZTS nanoparticles. The resulting CZTS nanoparticles enabled us to produce a dense and crack-free absorbing layer through annealing under a N2 + H2S (4%) atmosphere, demonstrating a solar cell with an efficiency of 3.6% under AM 1.5 illumination. Electronic supplementary information (ESI) available: Experimental methods for CZTS nanocrystal synthesis, device fabrication, and characterization; the size distribution and energy dispersive X-ray (EDX) spectra of the synthesized CZTS nanoparticles; UV-vis spectra of the

  5. Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots

    PubMed Central

    Lashermes, Gwenaëlle; Gainvors-Claisse, Angélique; Recous, Sylvie; Bertrand, Isabelle

    2016-01-01

    Soil microorganisms can control the soil cycles of carbon (C), and depending on their C-use efficiency (CUE), these microorganisms either contribute to C stabilization in soil or produce CO2 when decomposing organic matter. However, little is known regarding the enzyme investment of microbial decomposers and the effects on their CUE. Our objective was to elucidate the strategies of litter-decomposing fungi as a function of litter quality. Fungal biosynthesis and respiration were accounted for by quantifying the investment in enzyme synthesis and enzyme efficiency. The basidiomycete Phanerochaete chrysosporium was grown on the leaves, stems, and roots of maize over 126 days in controlled conditions. We periodically measured the fungal biomass, enzyme activity, and chemical composition of the remaining litter and continuously measured the evolved C–CO2. The CUE observed for the maize litter was highest in the leaves (0.63), intermediate in the roots (0.40), and lowest in the stems (0.38). However, the enzyme efficiency and investment in enzyme synthesis did not follow the same pattern. The amount of litter C decomposed per mole of C-acquiring hydrolase activity was 354 μg C in the leaves, 246 μg C in the roots, and 1541 μg C in the stems (enzyme efficiency: stems > leaves > roots). The fungus exhibited the highest investment in C-acquiring enzyme when grown on the roots and produced 40–80% less enzyme activity when grown on the stems and leaves (investment in enzymes: roots > leaves > stems). The CUE was dependent on the initial availability and replenishment of the soluble substrate fraction with the degradation products. The production of these compounds was either limited because of the low enzyme efficiency, which occurred in the roots, or because of the low investments in enzyme synthesis, which occurred in the stems. Fungal biosynthesis relied on the ability of the fungus to invest in enzyme synthesis and the efficient interactions between the enzymes

  6. Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots.

    PubMed

    Lashermes, Gwenaëlle; Gainvors-Claisse, Angélique; Recous, Sylvie; Bertrand, Isabelle

    2016-01-01

    Soil microorganisms can control the soil cycles of carbon (C), and depending on their C-use efficiency (CUE), these microorganisms either contribute to C stabilization in soil or produce CO2 when decomposing organic matter. However, little is known regarding the enzyme investment of microbial decomposers and the effects on their CUE. Our objective was to elucidate the strategies of litter-decomposing fungi as a function of litter quality. Fungal biosynthesis and respiration were accounted for by quantifying the investment in enzyme synthesis and enzyme efficiency. The basidiomycete Phanerochaete chrysosporium was grown on the leaves, stems, and roots of maize over 126 days in controlled conditions. We periodically measured the fungal biomass, enzyme activity, and chemical composition of the remaining litter and continuously measured the evolved C-CO2. The CUE observed for the maize litter was highest in the leaves (0.63), intermediate in the roots (0.40), and lowest in the stems (0.38). However, the enzyme efficiency and investment in enzyme synthesis did not follow the same pattern. The amount of litter C decomposed per mole of C-acquiring hydrolase activity was 354 μg C in the leaves, 246 μg C in the roots, and 1541 μg C in the stems (enzyme efficiency: stems > leaves > roots). The fungus exhibited the highest investment in C-acquiring enzyme when grown on the roots and produced 40-80% less enzyme activity when grown on the stems and leaves (investment in enzymes: roots > leaves > stems). The CUE was dependent on the initial availability and replenishment of the soluble substrate fraction with the degradation products. The production of these compounds was either limited because of the low enzyme efficiency, which occurred in the roots, or because of the low investments in enzyme synthesis, which occurred in the stems. Fungal biosynthesis relied on the ability of the fungus to invest in enzyme synthesis and the efficient interactions between the enzymes and

  7. Signal Words

    MedlinePlus

    ... Signal Words? Signal words are found on pesticide product labels, and they describe the acute (short-term) toxicity ... red letters on the front panel of the product label. 2,4 Acute Oral LD 50 Inhalation LC ...

  8. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    PubMed

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices. PMID:26225556

  9. Adsorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: a density functional theory study.

    PubMed

    Zhang, Xiaoxing; Chen, Qinchuan; Tang, Ju; Hu, Weihua; Zhang, Jinbin

    2014-01-01

    The detection of partial discharge by analyzing the components of SF6 gas in gas-insulated switchgears is important to the diagnosis and assessment of the operational state of power equipment. A gas sensor based on anatase TiO2 is used to detect decomposed gases in SF6. In this paper, first-principle density functional theory calculations are adopted to analyze the adsorption of SO2, SOF2, and SO2F2, the primary decomposition by-products of SF6 under partial discharge, on anatase (101) and (001) surfaces. Simulation results show that the perfect anatase (001) surface has a stronger interaction with the three gases than that of anatase (101), and both surfaces are more sensitive and selective to SO2 than to SOF2 and SO2F2. The selection of a defect surface to SO2, SOF2, and SO2F2 differs from that of a perfect surface. This theoretical result is corroborated by the sensing experiment using a TiO2 nanotube array (TNTA) gas sensor. The calculated values are analyzed to explain the results of the Pt-doped TNTA gas sensor sensing experiment. The results imply that the deposited Pt nanoparticles on the surface increase the active sites of the surface and the gas molecules may decompose upon adsorption on the active sites. PMID:24755845

  10. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community

    PubMed Central

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G.; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices. PMID:26225556

  11. Spinodally Decomposed PbSe-PbTe Nanoparticles for High-Performance Thermoelectrics: Enhanced Phonon Scattering and Unusual Transport Behavior.

    PubMed

    Kim, Min-Seok; Lee, Woo-Jin; Cho, Ki-Hyun; Ahn, Jae-Pyoung; Sung, Yun-Mo

    2016-07-26

    Dramatic enhancements in the figure of merit have been obtained in bulk thermoelectric materials by doping, band engineering, and nanostructuring. Especially, in p-type thermoelectrics, high figure of merits near 2.0 have been reported in a few papers through the reduction in lattice thermal conductivity and the advancement in power factors. However, there exists no report on the n-type systems showing high figure of merits because of their intrinsically low Seebeck coefficients. Here, we demonstrate that a nanostructured bulk n-type thermoelectric material that was assembled by sintering spinodally decomposed lead chalcogenide nanoparticles having a composition of PbSe0.5Te0.5 reaches a high figure of merit of 1.85. The spinodally decomposed nanoparticles permit our thermoelectric material to have extremely low lattice thermal conductivity and a high power factor as a result of nanostructuring, electronic optimization, insertion of an impurity phase and phase change in local areas. We propose that this interesting concept would be one of the promising approaches that overcome limitation arising from the fact that most parameters in the figure of merit are closely correlated. PMID:27397515

  12. Adsorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Chen, Qinchuan; Tang, Ju; Hu, Weihua; Zhang, Jinbin

    2014-04-01

    The detection of partial discharge by analyzing the components of SF6 gas in gas-insulated switchgears is important to the diagnosis and assessment of the operational state of power equipment. A gas sensor based on anatase TiO2 is used to detect decomposed gases in SF6. In this paper, first-principle density functional theory calculations are adopted to analyze the adsorption of SO2, SOF2, and SO2F2, the primary decomposition by-products of SF6 under partial discharge, on anatase (101) and (001) surfaces. Simulation results show that the perfect anatase (001) surface has a stronger interaction with the three gases than that of anatase (101), and both surfaces are more sensitive and selective to SO2 than to SOF2 and SO2F2. The selection of a defect surface to SO2, SOF2, and SO2F2 differs from that of a perfect surface. This theoretical result is corroborated by the sensing experiment using a TiO2 nanotube array (TNTA) gas sensor. The calculated values are analyzed to explain the results of the Pt-doped TNTA gas sensor sensing experiment. The results imply that the deposited Pt nanoparticles on the surface increase the active sites of the surface and the gas molecules may decompose upon adsorption on the active sites.

  13. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils

    PubMed Central

    Kaiser, Christina; Franklin, Oskar; Richter, Andreas; Dieckmann, Ulf

    2015-01-01

    The chemical structure of organic matter has been shown to be only marginally important for its decomposability by microorganisms. The question of why organic matter does accumulate in the face of powerful microbial degraders is thus key for understanding terrestrial carbon and nitrogen cycling. Here we demonstrate, based on an individual-based microbial community model, that social dynamics among microbes producing extracellular enzymes (‘decomposers') and microbes exploiting the catalytic activities of others (‘cheaters') regulate organic matter turnover. We show that the presence of cheaters increases nitrogen retention and organic matter build-up by downregulating the ratio of extracellular enzymes to total microbial biomass, allowing nitrogen-rich microbial necromass to accumulate. Moreover, increasing catalytic efficiencies of enzymes are outbalanced by a strong negative feedback on enzyme producers, leading to less enzymes being produced at the community level. Our results thus reveal a possible control mechanism that may buffer soil CO2 emissions in a future climate. PMID:26621582

  14. Application of supercritical water to decompose brominated epoxy resin and environmental friendly recovery of metals from waste memory module.

    PubMed

    Li, Kuo; Xu, Zhenming

    2015-02-01

    Waste Memory Modules (WMMs), a particular kind of waste printed circuit board (WPCB), contain a high amount of brominated epoxy resin (BER), which may bring a series of environmental and health problems. On the other hand, metals like gold and copper are very valuable and are important to recover from WMMs. In the present study, an effective and environmental friendly method using supercritical water (SCW) to decompose BER and recover metals from WMMs was developed instead of hydrometallurgy or pyrometallurgy simultaneously. Experiments were conducted under external-catalyst-free conditions with temperatures ranging from 350 to 550 °C, pressures from 25 to 40 MPa, and reaction times from 120 to 360 min in a semibatch-type reactor. The results showed that BER could be quickly and efficiently decomposed under SCW condition, and the mechanism was possibly free radical reaction. After the SCW treatments, the glass fibers and metal foils in the solid residue could be easily liberated and recovered, respectively. The metal recovery rate reached 99.80%. The optimal parameters were determined as 495 °C, 33 MPa, and 305 min on the basis of response surface methodology (RSM). This study provides an efficient and environmental friendly approach for WMMs recycling compared with electrolysis, pyrometallurgy, and hydrometallurgy. PMID:25582426

  15. Decomposition of indwelling EMG signals

    PubMed Central

    Nawab, S. Hamid; Wotiz, Robert P.; De Luca, Carlo J.

    2008-01-01

    Decomposition of indwelling electromyographic (EMG) signals is challenging in view of the complex and often unpredictable behaviors and interactions of the action potential trains of different motor units that constitute the indwelling EMG signal. These phenomena create a myriad of problem situations that a decomposition technique needs to address to attain completeness and accuracy levels required for various scientific and clinical applications. Starting with the maximum a posteriori probability classifier adapted from the original precision decomposition system (PD I) of LeFever and De Luca (25, 26), an artificial intelligence approach has been used to develop a multiclassifier system (PD II) for addressing some of the experimentally identified problem situations. On a database of indwelling EMG signals reflecting such conditions, the fully automatic PD II system is found to achieve a decomposition accuracy of 86.0% despite the fact that its results include low-amplitude action potential trains that are not decomposable at all via systems such as PD I. Accuracy was established by comparing the decompositions of indwelling EMG signals obtained from two sensors. At the end of the automatic PD II decomposition procedure, the accuracy may be enhanced to nearly 100% via an interactive editor, a particularly significant fact for the previously indecomposable trains. PMID:18483170

  16. Constraints Placed by Community Diversity on the Enzymatic Response of Microbial Decomposer Communities to Climate Change in Southern California

    NASA Astrophysics Data System (ADS)

    Baker, N. R.; Allison, S. D.

    2015-12-01

    The return of organic carbon to the atmosphere through terrestrial decomposition is mediated through the breakdown of complex organic polymers by extracellular enzymes produced by microbial decomposer communities. It is unclear how microbial diversity constrains enzymatic potential, making it difficult to predict future carbon cycling under climate change scenarios that could alter microbial community composition. To address this question, we deployed fine-pore nylon mesh "microbial cage" litterbags containing grassland litter with and without local inoculum across five sites in southern California, spanning a gradient of 4.0-24.5º C in mean annual temperature and 129-630 mm mean annual precipitation. Litterbags were deployed in October 2014 and collected in March and June 2015. Collected litterbags were assayed for mass loss and potential activity of nine extracellular enzyme classes. We hypothesized that extracellular enzyme potential would be greatest in litter transplanted to moister sites, given the importance of moisture as a driver of ecosystem function in southern California. We also hypothesized that litter inoculated with local microbiota would exhibit greater extracellular enzyme potential than litter containing only grassland microbes, with the assumption that local decomposer microbes would be more effective than grassland microbes at decomposing litter in their native environment. We found that potential extracellular enzyme activities varied significantly (p<0.01) by site for all nine enzyme classes. Six of the nine enzymes assayed (and six of the seven hydrolytic enzymes) failed to support our hypothesis, exhibiting significantly lower enzyme activity in the coldest and wettest site in comparison to the other four sites (p<0.01). Conversely, both oxidative enzymes assayed exhibited the greatest observed activity in the coldest, wettest site, supporting our hypothesis and indicating that hydrolytic and oxidative enzyme classes from the same

  17. The NIFTY way of Bayesian signal inference

    SciTech Connect

    Selig, Marco

    2014-12-05

    We introduce NIFTY, 'Numerical Information Field Theory', a software package for the development of Bayesian signal inference algorithms that operate independently from any underlying spatial grid and its resolution. A large number of Bayesian and Maximum Entropy methods for 1D signal reconstruction, 2D imaging, as well as 3D tomography, appear formally similar, but one often finds individualized implementations that are neither flexible nor easily transferable. Signal inference in the framework of NIFTY can be done in an abstract way, such that algorithms, prototyped in 1D, can be applied to real world problems in higher-dimensional settings. NIFTY as a versatile library is applicable and already has been applied in 1D, 2D, 3D and spherical settings. A recent application is the D{sup 3}PO algorithm targeting the non-trivial task of denoising, deconvolving, and decomposing photon observations in high energy astronomy.

  18. The NIFTy way of Bayesian signal inference

    NASA Astrophysics Data System (ADS)

    Selig, Marco

    2014-12-01

    We introduce NIFTy, "Numerical Information Field Theory", a software package for the development of Bayesian signal inference algorithms that operate independently from any underlying spatial grid and its resolution. A large number of Bayesian and Maximum Entropy methods for 1D signal reconstruction, 2D imaging, as well as 3D tomography, appear formally similar, but one often finds individualized implementations that are neither flexible nor easily transferable. Signal inference in the framework of NIFTy can be done in an abstract way, such that algorithms, prototyped in 1D, can be applied to real world problems in higher-dimensional settings. NIFTy as a versatile library is applicable and already has been applied in 1D, 2D, 3D and spherical settings. A recent application is the D3PO algorithm targeting the non-trivial task of denoising, deconvolving, and decomposing photon observations in high energy astronomy.

  19. Scalable control of graphene growth on 4H-SiC C-face using decomposing silicon nitride masks

    NASA Astrophysics Data System (ADS)

    Puybaret, Renaud; Hankinson, John; Palmer, James; Bouvier, Clément; Ougazzaden, Abdallah; Voss, Paul L.; Berger, Claire; de Heer, Walt A.

    2015-04-01

    Selective epitaxial graphene growth is achieved in pre-selected areas on the 4H-SiC(0 0 0 \\bar{1}) C-face with a SiN masking method. The mask decomposes during the growth process leaving a clean, resist free, high temperature annealed graphene surface, in a one-step process. Depending on the off-stoichiometry composition of a Si3 + xN4 mask evaporated on SiC prior to graphitization, the number of layers on the C-face increases (Si-rich) or decreases (N-rich). Graphene grown in masked areas shows excellent quality as observed by Raman spectroscopy, atomic force microscopy and transport data.

  20. Twisted K-theory constructions in the case of a decomposable Dixmier-Douady class II: Topological and equivariant models

    NASA Astrophysics Data System (ADS)

    Harju, Antti J.

    2014-08-01

    This is a study of twisted K-theory on a product space T×M. The twisting comes from a decomposable cup product class which applies the 1-cohomology of T and the 2-cohomology of M. In the case of a topological product, we give a concrete realization for the gerbe associated to a cup product characteristic class and use this to realize twisted K1-theory elements in terms of supercharge sections in a Fredholm bundle. The nontriviality of this construction is proved. Equivariant twisted K-theory and gerbes are studied in the product case as well. This part applies Lie groupoid theory. Superconnection formalism is used to provide a construction for characteristic polynomials which are used to extract information from the twisted K-theory classes.

  1. Decomposing the association between the amount of exposure and the frequency of self-reported involvement in a road crash

    PubMed Central

    Jiménez-Mejías, Eladio; Lardelli-Claret, Pablo; Jiménez-Moleón, José Juan; Amezcua-Prieto, Carmen; Pulido Manzanero, José; Luna-del-Castillo, Juan de Dios

    2013-01-01

    We tried to obtain preliminary evidence to test the hypothesis that the association between driving exposure and the frequency of reporting a road crash can be decomposed into two paths: direct and indirect (mediated by risky driving patterns). In a cross-sectional study carried out between 2007 and 2010, a sample of 1114 car drivers who were students at the University of Granada completed a questionnaire with items about driving exposure during the previous year, risk-related driving circumstances and involvement in road crashes. We applied the decomposition procedure proposed by Buis for logit models. The indirect path showed a strong dose-response relationship with the frequency of reporting a road crash, whereas the direct path did not. The decomposition procedure was able to identify the indirect path as the main explanatory mechanism for the association between exposure and the frequency of reporting a road crash. PMID:23129719

  2. Decomposing the association between the amount of exposure and the frequency of self-reported involvement in a road crash.

    PubMed

    Jiménez-Mejías, Eladio; Lardelli-Claret, Pablo; Jiménez-Moleón, José Juan; Amezcua-Prieto, Carmen; Pulido Manzanero, José; Luna-del-Castillo, Juan de Dios

    2013-08-01

    We tried to obtain preliminary evidence to test the hypothesis that the association between driving exposure and the frequency of reporting a road crash can be decomposed into two paths: direct and indirect (mediated by risky driving patterns). In a cross-sectional study carried out between 2007 and 2010, a sample of 1114 car drivers who were students at the University of Granada completed a questionnaire with items about driving exposure during the previous year, risk-related driving circumstances and involvement in road crashes. We applied the decomposition procedure proposed by Buis for logit models. The indirect path showed a strong dose-response relationship with the frequency of reporting a road crash, whereas the direct path did not. The decomposition procedure was able to identify the indirect path as the main explanatory mechanism for the association between exposure and the frequency of reporting a road crash. PMID:23129719

  3. Fate of bisphenol A during treatment with the litter-decomposing fungi Stropharia rugosoannulata and Stropharia coronilla.

    PubMed

    Kabiersch, Grit; Rajasärkkä, Johanna; Ullrich, René; Tuomela, Marja; Hofrichter, Martin; Virta, Marko; Hatakka, Annele; Steffen, Kari

    2011-04-01

    Bisphenol A is an endocrine disrupting compound, which is ubiquitous in the environment due to its wide use in plastic and resin production. Seven day old cultures of the litter-decomposing fungus Stropharia coronilla removed the estrogenic activity of bisphenol A (BPA) rapidly and enduringly. Treatment of BPA with purified neutral manganese peroxidase (MnP) from this fungus also resulted in 100% reduction of estrogenic activity, as analyzed using a bioluminescent yeast assay, and in the formation of polymeric compounds. In cultures of Stropharia rugosoannulata, estrogenic activity also quickly disappeared but temporarily re-emerged in the further course of cultivation. LC-MS analysis of the extracted estrogenic culture liquid revealed [M-H](-) ions with m/z values of 219 and 235. We hypothesize that these compounds are ring fission products of BPA, which still exhibit one intact hydroxyphenyl group to interact with estrogen receptors displayed by the yeast. PMID:21295326

  4. Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates

    NASA Astrophysics Data System (ADS)

    Paull, Charles K.; Ussler, William; Dallimore, Scott R.; Blasco, Steve M.; Lorenson, Thomas D.; Melling, Humfrey; Medioli, Barbara E.; Nixon, F. Mark; McLaughlin, Fiona A.

    2007-01-01

    The Arctic shelf is currently undergoing dramatic thermal changes caused by the continued warming associated with Holocene sea level rise. During this transgression, comparatively warm waters have flooded over cold permafrost areas of the Arctic Shelf. A thermal pulse of more than 10°C is still propagating down into the submerged sediment and may be decomposing gas hydrate as well as permafrost. A search for gas venting on the Arctic seafloor focused on pingo-like-features (PLFs) on the Beaufort Sea Shelf because they may be a direct consequence of gas hydrate decomposition at depth. Vibracores collected from eight PLFs had systematically elevated methane concentrations. ROV observations revealed streams of methane-rich gas bubbles coming from the crests of PLFs. We offer a scenario of how PLFs may be growing offshore as a result of gas pressure associated with gas hydrate decomposition.

  5. Cholesky-decomposed densities in Laplace-based second-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Zienau, Jan; Clin, Lucien; Doser, Bernd; Ochsenfeld, Christian

    2009-05-01

    Based on our linear-scaling atomic orbital second-order Møller-Plesset perturbation theory (AO-MP2) method [J. Chem. Phys. 130, 064107 (2009)], we explore the use of Cholesky-decomposed pseudodensity (CDD) matrices within the Laplace formulation. Numerically significant contributions are preselected using our multipole-based integral estimates as upper bounds to two-electron integrals so that the 1/R6 decay behavior of transformed Coulomb-type products is exploited. In addition, we combine our new CDD-MP2 method with the resolution of the identity (RI) approach. Even though the use of RI results in a method that shows a quadratic scaling behavior in the dominant steps, gains of up to one or two orders of magnitude vs. our original AO-MP2 method are observed in particular for larger basis sets.

  6. Effect of two systemic fungicides on cellulose decomposing fungi of tomato plants and on some enzymatic activities.

    PubMed

    Moharram, A M; Abdel-Hafez, S I I; El-Said, A H M; Saleem, A

    2004-01-01

    Kocide 101 (77% cupric hydroxide) and Ridomil plus (15% metalaxyl and 35% copper oxychloride) were used in the treatment of tomato plants. The two fungicides exerted a depressive effect on the total counts and on the individual cellulose decomposing fungal species associated with the roots and shoots of tomato. When these fungicides were incorporated in the liquid culture medium specified for growth and extracellular enzyme production by some selected fungal species, there was a significant reduction in mycelial growth as well as in amylase, cellulase, lipase and protease production by the fungi tested, particularly at the higher doses (200-400 ppm). Exceptions were observed with lower doses (50 and 100 ppm) especially in case of Aspergillus flavus, Cunninghamella echinulata, Penicillium chrysogenum and Fusarium oxysporum grown for amylase or cellulase production. PMID:15704330

  7. The Reaction Mechanism of Decomposing Chloroform by Bi-Metal Nano-Metallic Particles of Fe/Ni

    SciTech Connect

    Hsieh, Su-Hwei; Horng, Jao-Jia

    2004-03-31

    By adding Ni into the production of Fe/Ni nano-metallic particles, the acceleration of reduction ability of particles to decompose Chloroform is observed. The addition also could inhibit the shielding effect of pure iron compounds. This research studied the production and properties of the nano-particle metallic compounds of Fe and Ni, the decomposition of Chloroform by the particles and the mechanism of the decomposition processes. The experimental results indicated effective and rapid decomposition of chloroform by the Fe/Ni nano-particles on aluminum oxides, comparing to nano particles of iron in other researches. The reaction mechanism of Fe/Ni particles was pseudo first order with the half life about 0.7 hour, which was much shorter than the nano-Fe particles.

  8. Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates

    USGS Publications Warehouse

    Paull, C.K.; Ussler, W., III; Dallimore, S.R.; Blasco, S.M.; Lorenson, T.D.; Melling, H.; Medioli, B.E.; Nixon, F.M.; McLaughlin, F.A.

    2007-01-01

    The Arctic shelf is currently undergoing dramatic thermal changes caused by the continued warming associated with Holocene sea level rise. During this transgression, comparatively warm waters have flooded over cold permafrost areas of the Arctic Shelf. A thermal pulse of more than 10??C is still propagating down into the submerged sediment and may be decomposing gas hydrate as well as permafrost. A search for gas venting on the Arctic seafloor focused on pingo-like-features (PLFs) on the Beaufort Sea Shelf because they may be a direct consequence of gas hydrate decomposition at depth. Vibracores collected from eight PLFs had systematically elevated methane concentrations. ROV observations revealed streams of methane-rich gas bubbles coming from the crests of PLFs. We offer a scenario of how PLFs may be growing offshore as a result of gas pressure associated with gas hydrate decomposition. Copyright 2007 by the American Geophysical Union.

  9. Isolation and characterization of Streptomyces spp. strains F-6 and F-7 capable of decomposing alkali lignin.

    PubMed

    Yang, Y S; Zhou, J T; Lu, H; Yuan, Y L; Zhao, L H

    2012-12-01

    Biodegradation and bioconversion of lignin are the result of the combined action of fungi, bacteria and actinomycetes. Through screening from forest soil, two novel isolated actinomycete strains were identified as Streptomyces spp. strains F-6 and F-7 by their morphology, cultural characteristics and high homology to the 16S rRNA gene. Both strains possessed laccase and manganese peroxidase activities. Laccase activity produced by strain F-6 was up to 935.4 U g(-1) dry cell weight. More than 50% of alkali lignin was removed by strains F-6 and F-7 in 12 days of incubation. GC-MS analysis of the biodegraded products showed strain F-6 converted lignin into phenol and broken phenol compounds. The two strains could co-culture with white-rot fungus, and the combined actinonycete-fungus system decomposed alkali lignin effectively. PMID:23437660

  10. Biochemical and molecular characterization of an atypical manganese peroxidase of the litter-decomposing fungus Agrocybe praecox.

    PubMed

    Hildén, Kristiina; Mäkelä, Miia R; Steffen, Kari T; Hofrichter, Martin; Hatakka, Annele; Archer, David B; Lundell, Taina K

    2014-11-01

    Agrocybe praecox is a litter-decomposing Basidiomycota species of the order Agaricales, and is frequently found in forests and open woodlands. A. praecox grows in leaf-litter and the upper soil and is able to colonize bark mulch and wood chips. It produces extracellular manganese peroxidase (MnP) activities and mineralizes synthetic lignin. In this study, the A. praecox MnP1 isozyme was purified, cloned and enzymatically characterized. The enzyme catalysed the oxidation of Mn(2+) to Mn(3+), which is the specific reaction for manganese-dependent class II heme-peroxidases, in the presence of malonate as chelator with an activity maximum at pH 4.5; detectable activity was observed even at pH 7.0. The coding sequence of the mnp1 gene demonstrates a short-type of MnP protein with a slightly modified Mn(2+) binding site. Thus, A. praecox MnP1 may represent a novel group of atypical short-MnP enzymes. In lignocellulose-containing cultures composed of cereal bran or forest litter, transcription of mnp1 gene was followed by quantitative real-time RT-PCR. On spruce needle litter, mnp1 expression was more abundant than on leaf litter after three weeks cultivation. However, the expression was constitutive in wheat and rye bran cultures. Our data show that the atypical MnP of A. praecox is able to catalyse Mn(2+) oxidation, which suggests its involvement in lignocellulose decay by this litter-decomposer. PMID:24657475

  11. ENZYMATIC HYDROLYSIS OF YEAST CELL WALLS. I. ISOLATION OF WALL-DECOMPOSING ORGANISMS AND SEPARATION AND PURIFICATION OF LYTIC ENZYMES.

    PubMed

    TANAKA, H; PHAFF, H J

    1965-06-01

    Tanaka, Hirosato (University of California, Davis), and Herman J. Phaff. Enzymatic hydrolysis of yeast cell walls. I. Isolation of wall-decomposing organisms and separation and purification of lytic enzymes. J. Bacteriol. 89:1570-1580. 1965.-A number of microorganisms, able to decompose and grow on yeast cell walls, were isolated from soil. These isolates demonstrated various types of attack on yeast walls. A bacterium, identified as Bacillus circulans, and a species of Streptomyces produced clear, lysed zones when grown on an agar medium containing baker's yeast cell walls. The streptomycete formed glucanase, mannanase, and protease, but B. circulans produced only glucanases. Purified mannan could be prepared from the culture fluid of B. circulans grown on baker's yeast cell walls. In a liquid, mineral medium, extracellular lytic enzyme production by B. circulans was optimal after 3 days of aerobic growth at 30 C with 0.5% baker's yeast cell walls as the carbon source. Twelve other carbon sources were ineffective as inducers. Among a number of polysaccharides tested, the crude enzymes of B. circulans hydrolyzed only beta-1-->3 glucan (laminarin) and beta-1-->6 glucan (pustulan), both by a random mechanism, to a mixture of dimer and glucose. The beta-1-->3 and beta-1-->6 glucanases were separated from each other by diethylaminoethyl cellulose column chromatography. Water-soluble oat glucan, which contains in the linear chain both beta-1-->3 and beta-1-->4 bonds, was also hydrolyzed by the bacterial beta-1-->3 glucanase. The products of this reaction indicated that this enzyme hydrolyzes beta-1-->3 or beta-1-->4 glucosidic linkages, provided the beta-glucopyranosyl units composing these bonds are substituted in the 3 position by another glucose unit. PMID:14291597

  12. Canonical quantization theory of general singular QED system of Fermi field interaction with generally decomposed gauge potential

    SciTech Connect

    Zhang, Zhen-Lu; Huang, Yong-Chang

    2014-03-15

    Quantization theory gives rise to transverse phonons for the traditional Coulomb gauge condition and to scalar and longitudinal photons for the Lorentz gauge condition. We describe a new approach to quantize the general singular QED system by decomposing a general gauge potential into two orthogonal components in general field theory, which preserves scalar and longitudinal photons. Using these two orthogonal components, we obtain an expansion of the gauge-invariant Lagrangian density, from which we deduce the two orthogonal canonical momenta conjugate to the two components of the gauge potential. We then obtain the canonical Hamiltonian in the phase space and deduce the inherent constraints. In terms of the naturally deduced gauge condition, the quantization results are exactly consistent with those in the traditional Coulomb gauge condition and superior to those in the Lorentz gauge condition. Moreover, we find that all the nonvanishing quantum commutators are permanently gauge-invariant. A system can only be measured in physical experiments when it is gauge-invariant. The vanishing longitudinal vector potential means that the gauge invariance of the general QED system cannot be retained. This is similar to the nucleon spin crisis dilemma, which is an example of a physical quantity that cannot be exactly measured experimentally. However, the theory here solves this dilemma by keeping the gauge invariance of the general QED system. -- Highlights: •We decompose the general gauge potential into two orthogonal parts according to general field theory. •We identify a new approach for quantizing the general singular QED system. •The results obtained are superior to those for the Lorentz gauge condition. •The theory presented solves dilemmas such as the nucleon spin crisis.

  13. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources.

    PubMed

    Mooshammer, Maria; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2014-01-01

    Terrestrial microbial decomposer communities thrive on a wide range of organic matter types that rarely ever meet their elemental demands. In this review we synthesize the current state-of-the-art of microbial adaptations to resource stoichiometry, in order to gain a deeper understanding of the interactions between heterotrophic microbial communities and their chemical environment. The stoichiometric imbalance between microbial communities and their organic substrates generally decreases from wood to leaf litter and further to topsoil and subsoil organic matter. Microbial communities can respond to these imbalances in four ways: first, they adapt their biomass composition toward their resource in a non-homeostatic behavior. Such changes are, however, only moderate, and occur mainly because of changes in microbial community structure and less so due to cellular storage of elements in excess. Second, microbial communities can mobilize resources that meet their elemental demand by producing specific extracellular enzymes, which, in turn, is restricted by the C and N requirement for enzyme production itself. Third, microbes can regulate their element use efficiencies (ratio of element invested in growth over total element uptake), such that they release elements in excess depending on their demand (e.g., respiration and N mineralization). Fourth, diazotrophic bacteria and saprotrophic fungi may trigger the input of external N and P to decomposer communities. Theoretical considerations show that adjustments in element use efficiencies may be the most important mechanism by which microbes regulate their biomass stoichiometry. This review summarizes different views on how microbes cope with imbalanced supply of C, N and P, thereby providing a framework for integrating and linking microbial adaptation to resource imbalances to ecosystem scale fluxes across scales and ecosystems. PMID:24550895

  14. Analysis of the photoplethysmographic signal by means of the decomposition in principal components.

    PubMed

    Hong Enríquez, Rolando; Sautié Castellanos, Miguel; Falcón Rodríguez, Jersys; Hernández Cáceres, José Luis

    2002-08-01

    We study the plethysmographic signal using principal component analysis (PCA). By decomposing the signal using this method, we are able to regenerate it again, preserving in the process the functional relationships between the components. We have also found the relative contributions of each specific component to the signal. First return maps have been made for the series of residues of the decomposition. Further analysis using spectral methods has shown that the residues have a 1/f -like structure, which confirms the presence and conservation of this component in the signal and its relative independence with respect to the oscillating component (Hernández et al 2000 Rev. Cubana Inform. Medica 1 5). Our conclusions are that: (i) PCA is a good method to decompose the plethysmographic signal since it preserves the functional relationships in the variables, and this could be potentially useful in finding new clinically relevant indices; (ii) the 1/f process of the plethysmographic signal is preserved in the residues of the decomposed signal when PCA is used; (iii) clinically relevant parameters can potentially be obtained from photoplethysmographic signals when PCA is used. PMID:12214766

  15. Pingos, craters and methane-leaking seafloor in the central Barents Sea: signals of decomposing gas hydrate releasing gas from deeper hydrocarbon reservoirs?

    NASA Astrophysics Data System (ADS)

    Andreassen, K.; Plaza-Faverola, A. A.; Winsborrow, M.; Deryabin, A.; Mattingsdal, R.; Vadakkepuliyambatta, S.; Serov, P.; Mienert, J.; Bünz, S.

    2015-12-01

    A cluster of large craters and mounds appear on the gas-leaking sea floor in the central Barents Sea around the upper limit for methane hydrate stability, covering over 360 km2. We use multibeam bathymetry, single-beam echo sounder and high-resolution seismic data to reveal the detailed geomorphology and internal structure of craters and mounds, map the distribution gas in the water and to unravel the subsurface plumbing system and sources of gas leakage. Distinct morphologies and geophysical signatures of mounds and craters are inferred to reflect different development stages of shallow gas hydrate formation and dissociation. Over 600 gas flares extending from the sea floor into the water are mapped, many of these from the seafloor mounds and craters, but most from their flanks and surroundings. Analysis of geophysical data link gas flares in the water, craters and mounds to seismic indications of gas advection from deeper hydrocarbon reservoirs along faults and fractures. We present a conceptual model for formation of mounds, craters and gas leakage of the area.

  16. Phosphoinositide signaling.

    PubMed

    Boss, Wendy F; Im, Yang Ju

    2012-01-01

    "All things flow and change…even in the stillest matter there is unseen flux and movement." Attributed to Heraclitus (530-470 BC), from The Story of Philosophy by Will Durant. Heraclitus, a Greek philosopher, was thinking on a much larger scale than molecular signaling; however, his visionary comments are an important reminder for those studying signaling today. Even in unstimulated cells, signaling pathways are in constant metabolic flux and provide basal signals that travel throughout the organism. In addition, negatively charged phospholipids, such as the polyphosphorylated inositol phospholipids, provide a circuit board of on/off switches for attracting or repelling proteins that define the membranes of the cell. This template of charged phospholipids is sensitive to discrete changes and metabolic fluxes-e.g., in pH and cations-which contribute to the oscillating signals in the cell. The inherent complexities of a constantly fluctuating system make understanding how plants integrate and process signals challenging. In this review we discuss one aspect of lipid signaling: the inositol family of negatively charged phospholipids and their functions as molecular sensors and regulators of metabolic flux in plants. PMID:22404474

  17. Hedgehog signalling.

    PubMed

    Lee, Raymond Teck Ho; Zhao, Zhonghua; Ingham, Philip W

    2016-02-01

    The Hedgehog (Hh) signalling pathway is one of the key regulators of metazoan development. Hh proteins have been shown to play roles in many developmental processes and have become paradigms for classical morphogens. Dysfunction of the Hh pathway underlies a number of human developmental abnormalities and diseases, making it an important therapeutic target. Interest in Hh signalling thus extends across many fields, from evo-devo to cancer research and regenerative medicine. Here, and in the accompanying poster, we provide an outline of the current understanding of Hh signalling mechanisms, highlighting the similarities and differences between species. PMID:26839340

  18. Community structure and estimated contribution of primary consumers (Nematodes and Copepods) of decomposing plant litter (Juncus roemerianus and Rhizophora mangle) in South Florida

    SciTech Connect

    Fell, J.W.; Cefalu, R.

    1984-01-01

    The paper discusses the meiofauna associated with decomposing leaf litter from two species of coastal marshland plants: the black needle rush, Juncus roemerianus and the red mangrove, Rhizophora mangle. The following aspects were investigated: (1) types of meiofauna present, especially nematodes; (2) changes in meiofaunal community structures with regard to season, station location, and type of plant litter; (3) amount of nematode and copepod biomass present on the decomposing plant litter; and (4) an estimation of the possible role of the nematodes in the decomposition process. 28 references, 5 figures, 9 tables. (ACR)

  19. L2 speakers decompose morphologically complex verbs: fMRI evidence from priming of transparent derived verbs

    PubMed Central

    De Grauwe, Sophie; Lemhöfer, Kristin; Willems, Roel M.; Schriefers, Herbert

    2014-01-01

    In this functional magnetic resonance imaging (fMRI) long-lag priming study, we investigated the processing of Dutch semantically transparent, derived prefix verbs. In such words, the meaning of the word as a whole can be deduced from the meanings of its parts, e.g., wegleggen “put aside.” Many behavioral and some fMRI studies suggest that native (L1) speakers decompose transparent derived words. The brain region usually implicated in morphological decomposition is the left inferior frontal gyrus (LIFG). In non-native (L2) speakers, the processing of transparent derived words has hardly been investigated, especially in fMRI studies, and results are contradictory: some studies find more reliance on holistic (i.e., non-decompositional) processing by L2 speakers; some find no difference between L1 and L2 speakers. In this study, we wanted to find out whether Dutch transparent derived prefix verbs are decomposed or processed holistically by German L2 speakers of Dutch. Half of the derived verbs (e.g., omvallen “fall down”) were preceded by their stem (e.g., vallen “fall”) with a lag of 4–6 words (“primed”); the other half (e.g., inslapen “fall asleep”) were not (“unprimed”). L1 and L2 speakers of Dutch made lexical decisions on these visually presented verbs. Both region of interest analyses and whole-brain analyses showed that there was a significant repetition suppression effect for primed compared to unprimed derived verbs in the LIFG. This was true both for the analyses over L2 speakers only and for the analyses over the two language groups together. The latter did not reveal any interaction with language group (L1 vs. L2) in the LIFG. Thus, L2 speakers show a clear priming effect in the LIFG, an area that has been associated with morphological decomposition. Our findings are consistent with the idea that L2 speakers engage in decomposition of transparent derived verbs rather than processing them holistically. PMID:25346678

  20. L2 speakers decompose morphologically complex verbs: fMRI evidence from priming of transparent derived verbs.

    PubMed

    De Grauwe, Sophie; Lemhöfer, Kristin; Willems, Roel M; Schriefers, Herbert

    2014-01-01

    In this functional magnetic resonance imaging (fMRI) long-lag priming study, we investigated the processing of Dutch semantically transparent, derived prefix verbs. In such words, the meaning of the word as a whole can be deduced from the meanings of its parts, e.g., wegleggen "put aside." Many behavioral and some fMRI studies suggest that native (L1) speakers decompose transparent derived words. The brain region usually implicated in morphological decomposition is the left inferior frontal gyrus (LIFG). In non-native (L2) speakers, the processing of transparent derived words has hardly been investigated, especially in fMRI studies, and results are contradictory: some studies find more reliance on holistic (i.e., non-decompositional) processing by L2 speakers; some find no difference between L1 and L2 speakers. In this study, we wanted to find out whether Dutch transparent derived prefix verbs are decomposed or processed holistically by German L2 speakers of Dutch. Half of the derived verbs (e.g., omvallen "fall down") were preceded by their stem (e.g., vallen "fall") with a lag of 4-6 words ("primed"); the other half (e.g., inslapen "fall asleep") were not ("unprimed"). L1 and L2 speakers of Dutch made lexical decisions on these visually presented verbs. Both region of interest analyses and whole-brain analyses showed that there was a significant repetition suppression effect for primed compared to unprimed derived verbs in the LIFG. This was true both for the analyses over L2 speakers only and for the analyses over the two language groups together. The latter did not reveal any interaction with language group (L1 vs. L2) in the LIFG. Thus, L2 speakers show a clear priming effect in the LIFG, an area that has been associated with morphological decomposition. Our findings are consistent with the idea that L2 speakers engage in decomposition of transparent derived verbs rather than processing them holistically. PMID:25346678

  1. Decomposing Nekrasov decomposition

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Zenkevich, Y.

    2016-02-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair "interaction" is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  2. Decomposing Composing Conventions.

    ERIC Educational Resources Information Center

    Beers, Terry

    Recent research has invited critiques of the authoritative descriptions of composing found in many rhetoric textbooks. The concept of "convention" may be especially useful in rethinking the teleological basis of these textbook descriptions. Conventions found in composition textbooks need to be unmasked as arbitrary concepts which serve to…

  3. Application of adaptive subband coding for noisy bandlimited ECG signal processing

    NASA Astrophysics Data System (ADS)

    Aditya, Krishna; Chu, Chee-Hung H.; Szu, Harold H.

    1996-03-01

    An approach to impulsive noise suppression and background normalization of digitized bandlimited electrovcardiogram signals is presented. This approach uses adaptive wavelet filters that incorporate the band-limited a priori information and the shape information of a signal to decompose the data. Empirical results show that the new algorithm has good performance in wideband impulsive noise suppression and background normalization for subsequent wave detection, when compared with subband coding using Daubechie's D4 wavelet, without the bandlimited adaptive wavelet transform.

  4. Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    PubMed Central

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-01-01

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon−nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw. PMID:25775603

  5. Cerasibacillus quisquiliarum gen. nov., sp. nov., isolated from a semi-continuous decomposing system of kitchen refuse.

    PubMed

    Nakamura, Kohei; Haruta, Shin; Ueno, Shintaro; Ishii, Masaharu; Yokota, Akira; Igarashi, Yasuo

    2004-07-01

    A moderately thermophilic and alkaliphilic bacillus, which had been reported and designated BLx (Haruta et al., 2002), was isolated from a semi-continuous decomposing system of kitchen refuse. Cells of strain BLxT were strictly aerobic, rod-shaped, motile and spore forming. The optimum temperature and pH for growth were approximately 50 degrees C and pH 8-9. Strain BLxT was able to grow at NaCl concentrations from 0.5 to 7.5%, with optimum growth at 0.5% NaCl. The predominant menaquinone was MK-7, and the major fatty acid was iso-C(15 : 0). Phylogenetic analysis showed that strain BLxT was positioned in an independent lineage within the cluster that includes the genera Virgibacillus and Lentibacillus in Bacillus rRNA group 1. Strain BLxT exhibited 16S rDNA similarity of 92.8-94.8% to Virgibacillus species and 92.3% to Lentibacillus salicampi. Phenotypic, chemotaxonomic and phylogenetic analyses supported the classification of strain BLxT in a novel genus and species. Cerasibacillus quisquiliarum gen. nov., sp. nov. is proposed on the basis of phenotypic, chemotaxonomic and phylogenetic data. The type strain is BLxT (DSM 15825T=IAM15044T=KCTC 3815T). PMID:15280270

  6. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems

    PubMed Central

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-01

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664

  7. Permafrost carbon—climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    SciTech Connect

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon–nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  8. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics.

    PubMed

    Koven, Charles D; Lawrence, David M; Riley, William J

    2015-03-24

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw. PMID:25775603

  9. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-01

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  10. Nanocomposite Fe-Al Intermetallic Coating Obtained by Gas Detonation Spraying of Milled Self-Decomposing Powder

    NASA Astrophysics Data System (ADS)

    Senderowski, Cezary

    2014-10-01

    The nanocomposite structure of Fe-Al intermetallic coating, created in situ during gas detonation spraying (GDS) of as-milled self-decomposing powder and containing disordered 8 nm FeAl nanocrystals, was analyzed using scanning electron microscopy (SEM) with energy-dispersive x-ray (EDX) spectroscopy, transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and x-ray diffraction methods. It is found that the Fe-Al coating is characterized by a sublayer morphology consisting of flattened and partially melted splats containing a wide Al range from about 26 to 52 at.%, as well as Al2O3 oxides, created in situ at the internal interfaces of splats during the GDS process. The complex oxide films, identified as amorphous Al2O3, which are formed in the nanocrystalline Fe-Al matrix of the GDS coating behave like a composite reinforcement in the intermetallic Fe-Al coating. The combined presence of nanosized subgrains in the Fe-Al matrix and the Al2O3 nanoceramic dispersoids significantly increases the microhardness of the coating.

  11. Nitrogen cycling by wood decomposing soft-rot fungi in the “King Midas tomb,” Gordion, Turkey

    PubMed Central

    Filley, Timothy R.; Blanchette, Robert A.; Simpson, Elizabeth; Fogel, Marilyn L.

    2001-01-01

    Archaeological wood in ancient tombs is found usually with extensive degradation, limiting what can be learned about the diet, environment, health, and cultural practices of the tomb builders and occupants. Within Tumulus Midas Mound at Gordion, Turkey, thought to be the tomb of the Phrygian King Midas of the 8th century B.C., we applied a stable nitrogen isotope test to infer the paleodiet of the king and determine the nitrogen sources for the fungal community that decomposed the wooden tomb, cultural objects, and human remains. Here we show through analysis of the coffin, furniture, and wooden tomb structure that the principal degrader, a soft-rot fungus, mobilized the king's highly 15N-enriched nutrients, values indicative of a diet rich in meat, to decay wood throughout the tomb. It is also evident from the δ15N values of the degraded wood that the nitrogen needed for the decay of many of the artifacts in the tomb came from multiple sources, mobilized at potentially different episodes of decay. The redistribution of nutrients by the fungus was restricted by constraints imposed by the cellular structure of the different wood materials that apparently were used intentionally in the construction to minimize decay. PMID:11606731

  12. Permafrost carbon—climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    DOE PAGESBeta

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon–nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost regionmore » is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.« less

  13. Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes.

    PubMed

    Ohn, Tzu-Lun; Rutherford, Mark A; Jing, Zhizi; Jung, Sangyong; Duque-Afonso, Carlos J; Hoch, Gerhard; Picher, Maria Magdalena; Scharinger, Anja; Strenzke, Nicola; Moser, Tobias

    2016-08-01

    For sounds of a given frequency, spiral ganglion neurons (SGNs) with different thresholds and dynamic ranges collectively encode the wide range of audible sound pressures. Heterogeneity of synapses between inner hair cells (IHCs) and SGNs is an attractive candidate mechanism for generating complementary neural codes covering the entire dynamic range. Here, we quantified active zone (AZ) properties as a function of AZ position within mouse IHCs by combining patch clamp and imaging of presynaptic Ca(2+) influx and by immunohistochemistry. We report substantial AZ heterogeneity whereby the voltage of half-maximal activation of Ca(2+) influx ranged over ∼20 mV. Ca(2+) influx at AZs facing away from the ganglion activated at weaker depolarizations. Estimates of AZ size and Ca(2+) channel number were correlated and larger when AZs faced the ganglion. Disruption of the deafness gene GIPC3 in mice shifted the activation of presynaptic Ca(2+) influx to more hyperpolarized potentials and increased the spontaneous SGN discharge. Moreover, Gipc3 disruption enhanced Ca(2+) influx and exocytosis in IHCs, reversed the spatial gradient of maximal Ca(2+) influx in IHCs, and increased the maximal firing rate of SGNs at sound onset. We propose that IHCs diversify Ca(2+) channel properties among AZs and thereby contribute to decomposing auditory information into complementary representations in SGNs. PMID:27462107

  14. Classification of gas-liquid flow patterns by the norm entropy of wavelet decomposed pressure fluctuations across a bluff body

    NASA Astrophysics Data System (ADS)

    Sun, Zhiqiang; Chen, Yanping; Gong, Hui

    2012-12-01

    Identification of gas-liquid flow patterns remains one of the paramount needs in multiphase flow metering. It is hardly possible to realize accurate measurement and control of parameters in a gas-liquid flow system without a clear understanding of its flow pattern. Here we explore the characterization of gas-liquid flow patterns using the norm entropy extracted from the wavelet decomposed pressure fluctuations across a bluff body. Experiments on air-water two-phase flow at ambient temperature and atmospheric pressure are carried out in the bubble, plug, slug and annular flow patterns. On the basis of the experimental results, two original flow-pattern maps are constructed: one is coordinated with the average norm entropy versus the total mass flow rate, and the other is the average norm entropy versus the volumetric void fraction. Verification tests demonstrate that the overall identification rates of the flow-pattern maps developed exceed 95%. This approach provides an effective and simple solution to the classification of gas-liquid flow patterns.

  15. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems

    NASA Astrophysics Data System (ADS)

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-01

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change.

  16. Wavelet based recognition for pulsar signals

    NASA Astrophysics Data System (ADS)

    Shan, H.; Wang, X.; Chen, X.; Yuan, J.; Nie, J.; Zhang, H.; Liu, N.; Wang, N.

    2015-06-01

    A signal from a pulsar can be decomposed into a set of features. This set is a unique signature for a given pulsar. It can be used to decide whether a pulsar is newly discovered or not. Features can be constructed from coefficients of a wavelet decomposition. Two types of wavelet based pulsar features are proposed. The energy based features reflect the multiscale distribution of the energy of coefficients. The singularity based features first classify the signals into a class with one peak and a class with two peaks by exploring the number of the straight wavelet modulus maxima lines perpendicular to the abscissa, and then implement further classification according to the features of skewness and kurtosis. Experimental results show that the wavelet based features can gain comparatively better performance over the shape parameter based features not only in the clustering and classification, but also in the error rates of the recognition tasks.

  17. Complete Gabor transformation for signal representation.

    PubMed

    Yao, J

    1993-01-01

    Properties of the Gabor transformation used for image representation are discussed. The properties can be expressed in matrix notation, and the complete Gabor coefficients can be found by multiplying the inverse of the Gabor (1946) matrix and the signal vector. The Gabor matrix can be decomposed into the product of a sparse constant complex matrix and another sparse matrix that depends only on the window function. A fast algorithm is suggested to compute the inverse of the window function matrix, enabling discrete signals to be transformed into generalized nonorthogonal Gabor representations efficiently. A comparison is made between this method and the analytical method. The relation between the window function matrix and the biorthogonal functions is demonstrated. A numerical computation method for the biorthogonal functions is proposed. PMID:18296205

  18. Subgraph-Based Filterbanks for Graph Signals

    NASA Astrophysics Data System (ADS)

    Tremblay, Nicolas; Borgnat, Pierre

    2016-08-01

    We design a critically-sampled compact-support biorthogonal transform for graph signals, via graph filterbanks. Instead of partitioning the nodes in two sets so as to remove one every two nodes in the filterbank downsampling operations, the design is based on a partition of the graph in connected subgraphs. Coarsening is achieved by defining one "supernode" for each subgraph and the edges for this coarsened graph derives from the connectivity between the subgraphs. Unlike the "one every two nodes" downsampling on bipartite graphs, this coarsening operation does not have an exact formulation in the graph Fourier domain. Instead, we rely on the local Fourier bases of each subgraph to define filtering operations. We apply successfully this method to decompose graph signals, and show promising performance on compression and denoising.

  19. Gas Sensitivity and Sensing Mechanism Studies on Au-Doped TiO2 Nanotube Arrays for Detecting SF6 Decomposed Components

    PubMed Central

    Zhang, Xiaoxing; Yu, Lei; Tie, Jing; Dong, Xingchen

    2014-01-01

    The analysis to SF6 decomposed component gases is an efficient diagnostic approach to detect the partial discharge in gas-insulated switchgear (GIS) for the purpose of accessing the operating state of power equipment. This paper applied the Au-doped TiO2 nanotube array sensor (Au-TiO2 NTAs) to detect SF6 decomposed components. The electrochemical constant potential method was adopted in the Au-TiO2 NTAs' fabrication, and a series of experiments were conducted to test the characteristic SF6 decomposed gases for a thorough investigation of sensing performances. The sensing characteristic curves of intrinsic and Au-doped TiO2 NTAs were compared to study the mechanism of the gas sensing response. The results indicated that the doped Au could change the TiO2 nanotube arrays' performances of gas sensing selectivity in SF6 decomposed components, as well as reducing the working temperature of TiO2 NTAs. PMID:25330053

  20. Gibberellin signaling.

    PubMed

    Hartweck, Lynn M

    2008-12-01

    This review covers recent advances in gibberellin (GA) signaling. GA signaling is now understood to hinge on DELLA proteins. DELLAs negatively regulate GA response by activating the promoters of several genes including Xerico, which upregulates the abscisic acid pathway which is antagonistic to GA. DELLAs also promote transcription of the GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and indirectly regulate GA biosynthesis genes enhancing GA responsiveness and feedback control. A structural analysis of GID1 provides a model for understanding GA signaling. GA binds within a pocket of GID1, changes GID1 conformation and increases the affinity of GID1 for DELLA proteins. GA/GID1/DELLA has increased affinity for an F-Box protein and DELLAs are subsequently degraded via the proteasome. Therefore, GA induces growth through degradation of the DELLAs. The binding of DELLA proteins to three of the PHYTOCHROME INTERACTING FACTOR (PIF) proteins integrates light and GA signaling pathways. This binding prevents PIFs 3, 4, and 5 from functioning as positive transcriptional regulators of growth in the dark. Since PIFs are degraded in light, these PIFs can only function in the combined absence of light and presence of GA. New analyses suggest that GA signaling evolved at the same time or just after the plant vascular system and before plants acquired the capacity for seed reproduction. An analysis of sequences cloned from Physcomitrella suggests that GID1 and DELLAs were the first to evolve but did not initially interact. The more recently diverging spike moss Selaginella has all the genes required for GA biosynthesis and signaling, but the role of GA response in Selaginella physiology remains a mystery. PMID:18936962

  1. Heminested reverse-transcriptase polymerase chain reaction (hnRT-PCR) as a tool for rabies virus detection in stored and decomposed samples

    PubMed Central

    Araújo, Danielle B; Langoni, Helio; Almeida, Marilene F; Megid, Jane

    2008-01-01

    Background The use of methods, both sensitive and specific, for rabies diagnosis are important tools for the control and prophylaxis of the disease. Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR) has been used in rabies diagnosis with good results, even in decomposed materials. Additionally, molecular techniques have been used for epidemiological studies and to gain a better knowledge of viral epidemiology. Findings The aim of this work was to evaluate the RT-PCR and hnRT-PCR for rabies virus detection in original tissues stored at -20°C for different periods considering their use for rabies virus detection in stored and decomposed samples. RT-PCR and hnRT-PCR were evaluated in 151 brain samples from different animal species, thawed and left at room temperature for 72 hours for decomposition. The RT-PCR and hnRT-PCR results were compared with previous results from Direct Fluorescent Antibody Test and Mouse Inoculation Test. From the 50 positive fresh samples, 26 (52%) were positive for RT-PCR and 45 (90%) for hnRT-PCR. From the 48 positive decomposed samples, 17 (34, 3%) were positive for RT-PCR and 36 (75%) for hnRT-PCR. No false-positives results were found in the negatives samples evaluated to the molecular techniques. Conclusion These results show that the hnRT-PCR was more sensitive than RT-PCR, and both techniques presented lower sensibility in decomposed samples. The hnRT-PCR demonstrated efficacy in rabies virus detection in stored and decomposed materials suggesting it's application for rabies virus retrospective epidemiological studies. PMID:18710536

  2. Method and apparatus for automatically detecting patterns in digital point-ordered signals

    SciTech Connect

    Brudnoy, D.M.

    1996-12-31

    The present invention is a method and system for detecting a physical feature of a test piece by detecting a pattern in a signal representing data from inspection of the test piece. The pattern is detected by automated additive decomposition of a digital point-ordered signal which represents the data. The present invention can properly handle a non-periodic signal. A physical parameter of the test piece is measured. A digital point-ordered signal representative of the measured physical parameter is generated. The digital point-ordered signal is decomposed into a baseline signal, a background noise signal, and a peaks/troughs signal. The peaks/troughs from the peaks/troughs signal are located and peaks/troughs information indicating the physical feature of the test piece is output.

  3. Degradation of Benzo[a]pyrene by the Litter-Decomposing Basidiomycete Stropharia coronilla: Role of Manganese Peroxidase

    PubMed Central

    Steffen, Kari T.; Hatakka, Annele; Hofrichter, Martin

    2003-01-01

    The litter-decomposing basidiomycete Stropharia coronilla, which preferably colonizes grasslands, was found to be capable of metabolizing and mineralizing benzo[a]pyrene (BaP) in liquid culture. Manganese(II) ions (Mn2+) supplied at a concentration of 200 μM stimulated considerably both the conversion and the mineralization of BaP; the fungus metabolized and mineralized about four and twelve times, respectively, more of the BaP in the presence of supplemental Mn2+ than in the basal medium. This stimulating effect could be attributed to the ligninolytic enzyme manganese peroxidase (MnP), whose activity increased after the addition of Mn2+. Crude and purified MnP from S. coronilla oxidized BaP efficiently in a cell-free reaction mixture (in vitro), a process which was enhanced by the surfactant Tween 80. Thus, 100 mg of BaP liter−1 was converted in an in vitro reaction solution containing 1 U of MnP ml−1 within 24 h. A clear indication was found that BaP-1,6-quinone was formed as a transient metabolite, which disappeared over the further course of the reaction. The treatment of a mixture of 16 different polycyclic aromatic hydrocarbons (PAHs) selected by the U.S. Environmental Protection Agency as model standards for PAH analysis (total concentration, 320 mg liter−1) with MnP resulted in concentration decreases of 10 to 100% for the individual compounds, and again the stimulating effect of Tween 80 was observed. Probably due to their lower ionization potentials, poorly bioavailable, high-molecular-mass PAHs such as BaP, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene were converted to larger extents than low-molecular-mass ones (e.g., phenanthrene and fluoranthene). PMID:12839767

  4. Procedures to recover DNA from pre-molar and molar teeth of decomposed cadavers with different post-mortem intervals.

    PubMed

    Raimann, Paulo E; Picanço, Juliane B; Silva, Deborah S B S; Albuquerque, Trícia C K; Paludo, Francis Jackson O; Alho, Clarice S

    2012-11-01

    A task-force to resolve 26 pending forensic caseworks was carried out. We tested four different protocols to extract DNA from molar and pre-molar teeth from 26 cadavers with post-mortem intervals from 2 months to 12 years. We compared the amount of DNA and DNA profiles with the time elapsed between death and laboratory procedures. Molar or pre-molar teeth were removed from the corpses, cleaned, and DNA was extracted using 2 or 12h of incubation on lysis buffer and filtered using concentration column or precipitated with isopropanol. DNA profiles were obtained using PowerPlex16™ System PCR Amplification Kit, AmpFlSTR(®) Yfiler™ and/or mtDNA sequencing. Complete DNA profiles comparison and statistical evaluation allowed unambiguous identification of the 26 victims. No significant differences were observed in the amount of DNA obtained with the distinct incubation times. The use of concentration column resulted in an increased amount of DNA when compared to isopropanol. However, the lower concentration of DNA obtained with isopropanol seemed to have been compensated by the higher purity. No significant differences in the number of amplified loci were found. A non-significant tendency was found between the amount of total DNA recovered and the time elapsed between death and laboratory procedures. The increase of post-mortem time did not interfere in the analysed autosomal loci. In conclusion, molar and pre-molar teeth were shown to be good candidates to obtain satisfactory DNA profiles, suggesting the high potential of tooth samples as source for DNA typing independently of the decomposed corpse's time or laboratory procedures. PMID:23040740

  5. Environmental safety to decomposer invertebrates of azadirachtin (neem) as a systemic insecticide in trees to control emerald ash borer.

    PubMed

    Kreutzweiser, David; Thompson, Dean; Grimalt, Susana; Chartrand, Derek; Good, Kevin; Scarr, Taylor

    2011-09-01

    The non-target effects of an azadirachtin-based systemic insecticide used for control of wood-boring insect pests in trees were assessed on litter-dwelling earthworms, leaf-shredding aquatic insects, and microbial communities in terrestrial and aquatic microcosms. The insecticide was injected into the trunks of ash trees at a rate of 0.2 gazadirachtin cm(-1) tree diameter in early summer. At the time of senescence, foliar concentrations in most (65%) leaves where at or below detection (<0.01 mg kg(-1) total azadirachtin) and the average concentration among leaves overall at senescence was 0.19 mg kg(-1). Leaves from the azadirachtin-treated trees at senescence were added to microcosms and responses by test organisms were compared to those in microcosms containing leaves from non-treated ash trees (controls). No significant reductions were detected among earthworm survival, leaf consumption rates, growth rates, or cocoon production, aquatic insect survival and leaf consumption rates, and among terrestrial and aquatic microbial decomposition of leaf material in comparison to controls. In a further set of microcosm tests containing leaves from intentional high-dose trees, the only significant, adverse effect detected was a reduction in microbial decomposition of leaf material, and only at the highest test concentration (∼6 mg kg(-1)). Results indicated no significant adverse effects on litter-dwelling earthworms or leaf-shredding aquatic insects at concentrations up to at least 30 × the expected field concentrations at operational rates, and at 6 × expected field concentrations for adverse effects on microbial decomposition. We conclude that when azadirachtin is used as a systemic insecticide in trees for control of insect pests such as the invasive wood-boring beetle, emerald ash borer, resultant foliar concentrations in senescent leaf material are likely to pose little risk of harm to decomposer invertebrates. PMID:21531021

  6. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries

    PubMed Central

    Nyyssönen, Mari; Tran, Huu M.; Karaoz, Ulas; Weihe, Claudia; Hadi, Masood Z.; Martiny, Jennifer B. H.; Martiny, Adam C.; Brodie, Eoin L.

    2013-01-01

    Recent advances in sequencing technologies generate new predictions and hypotheses about the functional roles of environmental microorganisms. Yet, until we can test these predictions at a scale that matches our ability to generate them, most of them will remain as hypotheses. Function-based mining of metagenomic libraries can provide direct linkages between genes, metabolic traits and microbial taxa and thus bridge this gap between sequence data generation and functional predictions. Here we developed high-throughput screening assays for function-based characterization of activities involved in plant polymer decomposition from environmental metagenomic libraries. The multiplexed assays use fluorogenic and chromogenic substrates, combine automated liquid handling and use a genetically modified expression host to enable simultaneous screening of 12,160 clones for 14 activities in a total of 170,240 reactions. Using this platform we identified 374 (0.26%) cellulose, hemicellulose, chitin, starch, phosphate and protein hydrolyzing clones from fosmid libraries prepared from decomposing leaf litter. Sequencing on the Illumina MiSeq platform, followed by assembly and gene prediction of a subset of 95 fosmid clones, identified a broad range of bacterial phyla, including Actinobacteria, Bacteroidetes, multiple Proteobacteria sub-phyla in addition to some Fungi. Carbohydrate-active enzyme genes from 20 different glycoside hydrolase (GH) families were detected. Using tetranucleotide frequency (TNF) binning of fosmid sequences, multiple enzyme activities from distinct fosmids were linked, demonstrating how biochemically-confirmed functional traits in environmental metagenomes may be attributed to groups of specific organisms. Overall, our results demonstrate how functional screening of metagenomic libraries can be used to connect microbial functionality to community composition and, as a result, complement large-scale metagenomic sequencing efforts. PMID:24069019

  7. Quantifying the complexity of human colonic pressure signals using an entropy measure.

    PubMed

    Xu, Fei; Yan, Guozheng; Zhao, Kai; Lu, Li; Wang, Zhiwu; Gao, Jinyang

    2016-02-01

    Studying the complexity of human colonic pressure signals is important in understanding this intricate, evolved, dynamic system. This article presents a method for quantifying the complexity of colonic pressure signals using an entropy measure. As a self-adaptive non-stationary signal analysis algorithm, empirical mode decomposition can decompose a complex pressure signal into a set of intrinsic mode functions (IMFs). Considering that IMF2, IMF3, and IMF4 represent crucial characteristics of colonic motility, a new signal was reconstructed with these three signals. Then, the time entropy (TE), power spectral entropy (PSE), and approximate entropy (AE) of the reconstructed signal were calculated. For subjects with constipation and healthy individuals, experimental results showed that the entropies of reconstructed signals between these two classes were distinguishable. Moreover, the TE, PSE, and AE can be extracted as features for further subject classification. PMID:26043437

  8. Amyloid Plaque in the Human Brain Can Decompose from Aβ(1-40/1-42) by Spontaneous Nonenzymatic Processes.

    PubMed

    Lyons, Brian; Friedrich, Michael; Raftery, Mark; Truscott, Roger

    2016-03-01

    The degradation of long-lived proteins in the body is an important aspect of aging, and much of the breakdown is due to the intrinsic instability of particular amino acids. In this study, peptides were examined to discover if spontaneous nonenzymatic reactions could be responsible for the composition of Alzheimer's (AD) plaque in the human brain. The great majority of AD plaque consists of N-terminally truncated versions of Aβ(1-40/1-42), with the most abundant peptide commencing with Glu (residue 3 in Aβ1-40/1-42) that is present as pyroGlu. Several Asp residues are racemized in Aβ plaque, with residue 1 being predominantly l-isoAsp and peptide bond cleavage next to Ser 8 is also evident. In peptides, loss of the two N-terminal amino acids as a diketopiperazine was demonstrated at pH 7. For the Aβ N-terminal hexapeptide, AspAlaGluPheArgHis, this resulted in the removal of AspAla diketopiperazine and the generation of Glu as the new N-terminal residue. The Glu cyclized readily to pyroGlu. This pathway was altered significantly by zinc, which promoted pyroGlu formation but decreased AspAla diketopiperazine release. Zinc also facilitated cleavage on the N-terminal side of Ser 8. Racemization of the original N-terminal Asp to l-isoAsp was also detected and loss of one amino acid from the N-terminus. These data are therefore entirely consistent with plaque in the human brain forming from deposition of Aβ(1-40/1-42) and, over time, decomposing spontaneously. Since amyloid plaque is present in the human brain for years prior to the onset of AD, gradual spontaneous changes to the polypeptides within it will alter its properties and those of the oligomers that can diffuse from it. Such incremental changes in composition may therefore contribute to the origin of AD-associated cytotoxicity. PMID:26844590

  9. A new blind fault component separation algorithm for a single-channel mechanical signal mixture

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tse, Peter W.

    2012-10-01

    A vibration signal collected from a complex machine consists of multiple vibration components, which are system responses excited by several sources. This paper reports a new blind component separation (BCS) method for extracting different mechanical fault features. By applying the proposed method, a single-channel mixed signal can be decomposed into two parts: the periodic and transient subsets. The periodic subset is related to the imbalance, misalignment and eccentricity of a machine. The transient subset refers to abnormal impulsive phenomena, such as those caused by localized bearing faults. The proposed method includes two individual strategies to deal with these different characteristics. The first extracts the sub-Gaussian periodic signal by minimizing the kurtosis of the equalized signals. The second detects the super-Gaussian transient signal by minimizing the smoothness index of the equalized signals. Here, the equalized signals are derived by an eigenvector algorithm that is a successful solution to the blind equalization problem. To reduce the computing time needed to select the equalizer length, a simple optimization method is introduced to minimize the kurtosis and smoothness index, respectively. Finally, simulated multiple-fault signals and a real multiple-fault signal collected from an industrial machine are used to validate the proposed method. The results show that the proposed method is able to effectively decompose the multiple-fault vibration mixture into periodic components and random non-stationary transient components. In addition, the equalizer length can be intelligently determined using the proposed method.

  10. Do nonnative language speakers chew the fat and spill the beans with different brain hemispheres? Investigating idiom decomposability with the divided visual field paradigm.

    PubMed

    Cieślicka, Anna B

    2013-12-01

    The purpose of this study was to explore possible cerebral asymmetries in the processing of decomposable and nondecomposable idioms by fluent nonnative speakers of English. In the study, native language (Polish) and foreign language (English) decomposable and nondecomposable idioms were embedded in ambiguous (neutral) and unambiguous (biasing figurative meaning) context and presented centrally, followed by laterally presented target words related to the figurative meaning of the idiom or literal meaning of the last word of the idiom. The target appeared either immediately at sentence offset (Experiment 1), or 400 ms (Experiment 2) after sentence offset. Results are inconsistent with the Idiom Decomposition Hypothesis (Gibbs et al. in Mem Cogn 17:58-68, 1989a; J Mem Lang 28:576-593, 1989b) and only partially consistent with the idea of the differential cerebral involvement in processing (non)decomposable idioms [the Fine/Coarse Coding Theory, Beeman (Right hemisphere language comprehension: perspectives from cognitive neuroscience, Lawrence Erlbaum Associates, Mahwah, NJ, 1998)]. A number of factors, rather than compositionality per se, emerge as crucial in determining idiom processing, such as language status (native vs. nonnative), salience, or context. PMID:23161392

  11. Are leaves that fall from imidacloprid-treated maple trees to control Asian longhorned beetles toxic to non-target decomposer organisms?

    PubMed

    Kreutzweiser, David P; Good, Kevin P; Chartrand, Derek T; Scarr, Taylor A; Thompson, Dean G

    2008-01-01

    The systemic insecticide imidacloprid may be applied to deciduous trees for control of the Asian longhorned beetle, an invasive wood-boring insect. Senescent leaves falling from systemically treated trees contain imidacloprid concentrations that could pose a risk to natural decomposer organisms. We examined the effects of foliar imidacloprid concentrations on decomposer organisms by adding leaves from imidacloprid-treated sugar maple trees to aquatic and terrestrial microcosms under controlled laboratory conditions. Imidacloprid in maple leaves at realistic field concentrations (3-11 mg kg(-1)) did not affect survival of aquatic leaf-shredding insects or litter-dwelling earthworms. However, adverse sublethal effects at these concentrations were detected. Feeding rates by aquatic insects and earthworms were reduced, leaf decomposition (mass loss) was decreased, measurable weight losses occurred among earthworms, and aquatic and terrestrial microbial decomposition activity was significantly inhibited. Results of this study suggest that sugar maple trees systemically treated with imidacloprid to control Asian longhorned beetles may yield senescent leaves with residue levels sufficient to reduce natural decomposition processes in aquatic and terrestrial environments through adverse effects on non-target decomposer organisms. PMID:18396551

  12. Accumulation of Trace Metal Elements (Cu, Zn, Cd, and Pb) in Surface Sediment via Decomposed Seagrass Leaves: A Mesocosm Experiment Using Zostera marina L.

    PubMed Central

    Konuma, Susumu; Nakamura, Yoshiyuki

    2016-01-01

    Accumulation of Cu, Zn, Cd, and Pb in the sediment of seagrass ecosystems was examined using mesocosm experiments containing Zostera marina (eelgrass) and reference pools. Lead was approximately 20-fold higher in the surface sediment in the eelgrass pool than in eelgrass leaves and epiphytes on the eelgrass leaves, whereas zinc and cadmium were significantly lower in the surface sediment than in the leaves, with intermediate concentrations in epiphytes. Copper concentrations were similar in both the surface sediment and leaves but significantly lower in epiphytes. Carbon and nitrogen contents increased significantly with increasing δ13C in surface sediments of both the eelgrass and reference pools. Copper, Zn, Cd, and Pb also increased significantly with increasing δ13C in the surface sediment in the eelgrass pool but not in the reference pool. By decomposition of eelgrass leaves with epiphytes, which was examined in the eelgrass pool, copper and lead concentrations increased more than 2-fold and approximately a 10-fold, whereas zinc and cadmium concentrations decreased. The high copper and lead concentrations in the surface sediment result from accumulation in decomposed, shed leaves, whereas zinc and cadmium remobilized from decomposed shed leaves but may remain at higher concentrations in the leaves than in the original sediments. The results of our mesocosm study demonstrate that whether the accumulation or remobilization of trace metals during the decomposition of seagrass leaves is trace metal dependent, and that the decomposed seagrass leaves can cause copper and lead accumulation in sediments in seagrass ecosystems. PMID:27336306

  13. A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Tse, Peter W.

    2013-01-01

    Today, remote machine condition monitoring is popular due to the continuous advancement in wireless communication. Bearing is the most frequently and easily failed component in many rotating machines. To accurately identify the type of bearing fault, large amounts of vibration data need to be collected. However, the volume of transmitted data cannot be too high because the bandwidth of wireless communication is limited. To solve this problem, the data are usually compressed before transmitting to a remote maintenance center. This paper proposes a novel signal compression method that can substantially reduce the amount of data that need to be transmitted without sacrificing the accuracy of fault identification. The proposed signal compression method is based on ensemble empirical mode decomposition (EEMD), which is an effective method for adaptively decomposing the vibration signal into different bands of signal components, termed intrinsic mode functions (IMFs). An optimization method was designed to automatically select appropriate EEMD parameters for the analyzed signal, and in particular to select the appropriate level of the added white noise in the EEMD method. An index termed the relative root-mean-square error was used to evaluate the decomposition performances under different noise levels to find the optimal level. After applying the optimal EEMD method to a vibration signal, the IMF relating to the bearing fault can be extracted from the original vibration signal. Compressing this signal component obtains a much smaller proportion of data samples to be retained for transmission and further reconstruction. The proposed compression method were also compared with the popular wavelet compression method. Experimental results demonstrate that the optimization of EEMD parameters can automatically find appropriate EEMD parameters for the analyzed signals, and the IMF-based compression method provides a higher compression ratio, while retaining the bearing defect

  14. Wave-based signal processing

    NASA Astrophysics Data System (ADS)

    McClure, Mark Richard

    The efficacy of imbedding knowledge of wave-scattering phenomenology into the processing of remote-sensing data is examined. In particular, the processing of radar and sonar phase history and synthetic-aperture imagery is considered. Algorithms are developed for effecting signal denoising, feature extraction (for use in target identification/classification) and detection. Three classes of algorithms are presented: (1) superresolution, (2) adaptive-signal decomposition, and (3) template matching. A superresolution signal-processing algorithm is used for the identification of wavefronts from the fields scattered from several canonical targets. Particular wave objects that are examined are single and multiple edge diffraction, scattering from flat and curved surfaces, cone diffraction, and creeping waves. General properties of superresolution processing of such data--independent of the particular algorithm used--are assessed through examination of the Cramer-Rao bounds. The method of matching pursuits is used to effect data-adaptive signal decomposition. This algorithm utilizes a nonlinear iterative procedure to project a given waveform onto a particular dictionary. For scattering problems, the most appropriate dictionary is composed of waveobjects consistent with the underlying wave phenomenology. A signal scattered from most targets of interest can be decomposed in terms of wavefronts, resonances, and chirps--and each of these subclasses can be further subdivided based on characteristic wave physics. Here the efficacy of applying the method of matching pursuits with a wave-based dictionary is examined, for the processing of scattering data. Detection test statistics are derived based on matching-pursuits results from each dictionary separately as well as with the cumulative results from multiple dictionaries. Examples are presented using measured data, for wideband, time-domain acoustic scattering from a submerged elastic shell. Finally, a full-wave electromagnetic

  15. Preprocessing and analysis of the ECG signals

    NASA Astrophysics Data System (ADS)

    Zhu, Jianmin; Zhang, Xiaolan; Wang, Zhongyu; Wang, Xiaoling

    2008-10-01

    According to the request of automatic analysis and depressing high frequency interference of the ECG signals, this paper applies low-pass filter to preprocess ECG signals, and proposes a QRS complex detection method based on wavelet transform, which takes advantage of Marr wavelet to decompose and filter the ECG signals with Mallat algorithm, using the relationship between wavelet transform and signal singularity to detect QRS complex with amplitude threshold method in scale 3, and to detect P wave and R wave in scale 4. Meanwhile, compositive detection method is used for re-detection, thus to improving the detection accuracy ratio. At last, records from ECG database of MIT/BIH which is widely accepted in the world are used to test the algorithm. And the result shows that correction detecting ratio under this algorithm has been more than 99.8 percent. The detection method in this paper is simple and running fast, and is easy to be realized in the real-time detecting system using for clinical diagnosis.

  16. ECG signals denoising using wavelet transform and independent component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Manjin; Hui, Mei; Liu, Ming; Dong, Liquan; Zhao, Zhu; Zhao, Yuejin

    2015-08-01

    A method of two channel exercise electrocardiograms (ECG) signals denoising based on wavelet transform and independent component analysis is proposed in this paper. First of all, two channel exercise ECG signals are acquired. We decompose these two channel ECG signals into eight layers and add up the useful wavelet coefficients separately, getting two channel ECG signals with no baseline drift and other interference components. However, it still contains electrode movement noise, power frequency interference and other interferences. Secondly, we use these two channel ECG signals processed and one channel signal constructed manually to make further process with independent component analysis, getting the separated ECG signal. We can see the residual noises are removed effectively. Finally, comparative experiment is made with two same channel exercise ECG signals processed directly with independent component analysis and the method this paper proposed, which shows the indexes of signal to noise ratio (SNR) increases 21.916 and the root mean square error (MSE) decreases 2.522, proving the method this paper proposed has high reliability.

  17. Systemic silencing signal(s).

    PubMed

    Fagard, M; Vaucheret, H

    2000-06-01

    Grafting experiments have revealed that transgenic plants that undergo co-suppression of homologous transgenes and endogenous genes or PTGS of exogenous transgenes produce a sequence-specific systemic silencing signal that is able to propagate from cell to cell and at long distance. Similarly, infection of transgenic plants by viruses that carry (part of) a transgene sequence results in global silencing (VIGS) of the integrated transgenes although viral infection is localized. Systemic PTGS and VIGS strongly resemble recovery from virus infection in non-transgenic plants, leading to protection against secondary infection in newly emerging leaves and PTGS of transiently expressed homologous transgenes. The sequence-specific PTGS signal is probably a transgene product (for example, aberrant RNA) or a secondary product (for example, RNA molecules produced by an RNA-dependent RNA polymerase with transgene RNA as a matrix) that mimics the type of viral RNA that is targeted for degradation by cellular defence. Whether some particular cases of transgene TGS could also rely on the production of such a mobile molecule is discussed. PMID:10999411

  18. Automated EEG signal analysis for identification of epilepsy seizures and brain tumour.

    PubMed

    Sharanreddy, M; Kulkarni, P K

    2013-11-01

    Abstract Electroencephalography (EEG) is a clinical test which records neuro-electrical activities generated by brain structures. EEG test results used to monitor brain diseases such as epilepsy seizure, brain tumours, toxic encephalopathies infections and cerebrovascular disorders. Due to the extreme variation in the EEG morphologies, manual analysis of the EEG signal is laborious, time consuming and requires skilled interpreters, who by the nature of the task are prone to subjective judegment and error. Further, manual analysis of the EEG results often fails to detect and uncover subtle features. This paper proposes an automated EEG analysis method by combining digital signal processing and neural network techniques, which will remove error and subjectivity associated with manual analysis and identifies the existence of epilepsy seizure and brain tumour diseases. The system uses multi-wavelet transform for feature extraction in which an input EEG signal is decomposed in a sub-signal. Irregularities and unpredictable fluctuations present in the decomposed signal are measured using approximate entropy. A feed-forward neural network is used to classify the EEG signal as a normal, epilepsy or brain tumour signal. The proposed technique is implemented and tested on data of 500 EEG signals for each disease. Results are promising, with classification accuracy of 98% for normal, 93% for epilepsy and 87% for brain tumour. Along with classification, the paper also highlights the EEG abnormalities associated with brain tumour and epilepsy seizure. PMID:24116656

  19. Human Identification with Electrocardiogram Signals: a Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Wan, Yongbo; Yao, Jianchu

    2009-05-01

    This paper presents a neural network developed to identify human subjects using electrocardiogram (ECG) signals collected from an "in-house" wearable electrocardiogram (ECG) sensor. In this project, noises were first removed from the raw signals with wavelet filters. ECG cycles were then extracted from the filtered signals and decomposed into wavelet coefficient structures. These coefficient structures were used as input vectors to a 3-layer feedforward neural network that generates the identification results. In the current study, 61 datasets collected from 23 subjects were utilized to train the neural network, which thereafter was tested with 15 new datasets from 15 different subjects. All the 15 subjects in the experiment were successfully identified. The testing results demonstrate that the neural network is effective.

  20. Hybrid Feature Selection for Myoelectric Signal Classification Using MICA

    NASA Astrophysics Data System (ADS)

    Naik, Ganesh R.; Kumar, Dinesh K.

    2010-03-01

    This paper presents a novel method to enhance the performance of Independent Component Analysis (ICA) of myoelectric signal by decomposing the signal into components originating from different muscles. First, we use Multi run ICA (MICA) algorithm to separate the muscle activities. Pattern classification of the separated signal is performed in the second step with a back propagation neural network. The focus of this work is to establish a simple, yet robust system that can be used to identify subtle complex hand actions and gestures for control of prosthesis and other computer assisted devices. Testing was conducted using several single shot experiments conducted with five subjects. The results indicate that the system is able to classify four different wrist actions with near 100% accuracy.

  1. Acquisition signal transmitter

    NASA Technical Reports Server (NTRS)

    Friedman, Morton L. (Inventor)

    1989-01-01

    An encoded information transmitter which transmits a radio frequency carrier that is amplitude modulated by a constant frequency waveform and thereafter amplitude modulated by a predetermined encoded waveform, the constant frequency waveform modulated carrier constituting an acquisition signal and the encoded waveform modulated carrier constituting an information bearing signal, the acquisition signal providing enhanced signal acquisition and interference rejection favoring the information bearing signal. One specific application for this transmitter is as a distress transmitter where a conventional, legislated audio tone modulated signal is transmitted followed first by the acquisition signal and then the information bearing signal, the information bearing signal being encoded with, among other things, vehicle identification data. The acquistion signal enables a receiver to acquire the information bearing signal where the received signal is low and/or where the received signal has a low signal-to-noise ratio in an environment where there are multiple signals in the same frequency band as the information bearing signal.

  2. Analysis of dextromethorphan and dextrorphan in decomposed skeletal tissues by microwave assisted extraction, microplate solid-phase extraction and gas chromatography- mass spectrometry (MAE-MPSPE-GCMS).

    PubMed

    Fraser, Candice D; Cornthwaite, Heather M; Watterson, James H

    2015-08-01

    Analysis of decomposed skeletal tissues for dextromethorphan (DXM) and dextrorphan (DXT) using microwave assisted extraction (MAE), microplate solid-phase extraction (MPSPE) and gas chromatography-mass spectrometry (GC-MS) is described. Rats (n = 3) received 100 mg/kg DXM (i.p.) and were euthanized by CO2 asphyxiation roughly 20 min post-dose. Remains decomposed to skeleton outdoors and vertebral bones were recovered, cleaned, and pulverized. Pulverized bone underwent MAE using methanol as an extraction solvent in a closed microwave system, followed by MPSPE and GC-MS. Analyte stability under MAE conditions was assessed and found to be stable for at least 60 min irradiation time. The majority (>90%) of each analyte was recovered after 15 min. The MPSPE-GCMS method was fit to a quadratic response (R(2)  > 0.99), over the concentration range 10-10 000 ng⋅mL(-1) , with coefficients of variation <20% in triplicate analysis. The MPSPE-GCMS method displayed a limit of detection of 10 ng⋅mL(-1) for both analytes. Following MAE for 60 min (80 °C, 1200 W), MPSPE-GCMS analysis of vertebral bone of DXM-exposed rats detected both analytes in all samples (DXM: 0.9-1.5 µg⋅g(-1) ; DXT: 0.5-1.8 µg⋅g(-1) ). PMID:25487525

  3. From a conservative to a liberal welfare state: decomposing changes in income-related health inequalities in Germany, 1994-2011.

    PubMed

    Siegel, Martin; Vogt, Verena; Sundmacher, Leonie

    2014-05-01

    Individual socio-economic status and the respective socio-economic and political contexts are both important determinants of health. Welfare regimes may be linked with health and health inequalities through two potential pathways: first, they may influence the associations between socio-economic status and health. Second, they may influence the income-related distributions of socio-economic determinants of health within a society. Using the Socio-Economic Panel (SOEP) for the years 1994-2011, we analyze how income-related health inequalities evolved in the context of the transformation from a conservative to a liberal welfare system in Germany. We use the concentration index to measure health inequalities, and the annual concentration indices are decomposed to reveal how the contributions of the explanatory variables age, sex, income, education, and occupation changed over time. The changes in the contributions are further decomposed to distinguish whether changes in health inequalities stem from redistributions of the explanatory variables, from changes in their associations with health, or from changes in their means. Income-related health inequalities to the disadvantage of the economically deprived roughly doubled over time, which can largely be explained by changes in the contributions of individual characteristics representing weaker labor market positions, particularly income and unemployment. The social and labor market reforms coincide with the observed changes in the distributions of these characteristics and, to a lesser extent, with changes of their associations with health. PMID:24607705

  4. Applications of Hilbert Spectral Analysis for Speech and Sound Signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.

    2003-01-01

    A new method for analyzing nonlinear and nonstationary data has been developed, and the natural applications are to speech and sound signals. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time, which give sharp identifications of imbedded structures. This method invention can be used to process all acoustic signals. Specifically, it can process the speech signals for Speech synthesis, Speaker identification and verification, Speech recognition, and Sound signal enhancement and filtering. Additionally, as the acoustical signals from machinery are essentially the way the machines are talking to us. Therefore, the acoustical signals, from the machines, either from sound through air or vibration on the machines, can tell us the operating conditions of the machines. Thus, we can use the acoustic signal to diagnosis the problems of machines.

  5. An intelligent approach for variable size segmentation of non-stationary signals.

    PubMed

    Azami, Hamed; Hassanpour, Hamid; Escudero, Javier; Sanei, Saeid

    2015-09-01

    In numerous signal processing applications, non-stationary signals should be segmented to piece-wise stationary epochs before being further analyzed. In this article, an enhanced segmentation method based on fractal dimension (FD) and evolutionary algorithms (EAs) for non-stationary signals, such as electroencephalogram (EEG), magnetoencephalogram (MEG) and electromyogram (EMG), is proposed. In the proposed approach, discrete wavelet transform (DWT) decomposes the signal into orthonormal time series with different frequency bands. Then, the FD of the decomposed signal is calculated within two sliding windows. The accuracy of the segmentation method depends on these parameters of FD. In this study, four EAs are used to increase the accuracy of segmentation method and choose acceptable parameters of the FD. These include particle swarm optimization (PSO), new PSO (NPSO), PSO with mutation, and bee colony optimization (BCO). The suggested methods are compared with other most popular approaches (improved nonlinear energy operator (INLEO), wavelet generalized likelihood ratio (WGLR), and Varri's method) using synthetic signals, real EEG data, and the difference in the received photons of galactic objects. The results demonstrate the absolute superiority of the suggested approach. PMID:26425359

  6. Harmonic signal extraction from noisy chaotic interferencebased on synchrosqueezed wavelet transform

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Li; Wang, Wen-Bo

    2015-08-01

    For the harmonic signal extraction from chaotic interference, a harmonic signal extraction method is proposed based on synchrosqueezed wavelet transform (SWT). First, the mixed signal of chaotic signal, harmonic signal, and noise is decomposed into a series of intrinsic mode-type functions by synchrosqueezed wavelet transform (SWT) then the instantaneous frequency of intrinsic mode-type functions is analyzed by using of Hilbert transform, and the harmonic extraction is realized. In experiments of harmonic signal extraction, the Duffing and Lorenz chaotic signals are selected as interference signal, and the mixed signal of chaotic signal and harmonic signal is added by Gauss white noises of different intensities. The experimental results show that when the white noise intensity is in a certain range, the extracting harmonic signals measured by the proposed SWT method have higher precision, the harmonic signal extraction effect is obviously superior to the classical empirical mode decomposition method. Project supported by the National Natural Science Foundation of China (Grant No. 61171075), the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFB424), the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science, China (Grant No. Z201303).

  7. Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications.

    PubMed

    Lin, Chin-Feng; Zhu, Jin-De

    2012-03-01

    Hilbert-Huang transformation, wavelet transformation, and Fourier transformation are the principal time-frequency analysis methods. These transformations can be used to discuss the frequency characteristics of linear and stationary signals, the time-frequency features of linear and non-stationary signals, the time-frequency features of non-linear and non-stationary signals, respectively. The Hilbert-Huang transformation is a combination of empirical mode decomposition and Hilbert spectral analysis. The empirical mode decomposition uses the characteristics of signals to adaptively decompose them to several intrinsic mode functions. Hilbert transforms are then used to transform the intrinsic mode functions into instantaneous frequencies, to obtain the signal's time-frequency-energy distributions and features. Hilbert-Huang transformation-based time-frequency analysis can be applied to natural physical signals such as earthquake waves, winds, ocean acoustic signals, mechanical diagnosis signals, and biomedical signals. In previous studies, we examined Hilbert-Huang transformation-based time-frequency analysis of the electroencephalogram FPI signals of clinical alcoholics, and 'sharp I' wave-based Hilbert-Huang transformation time-frequency features. In this paper, we discuss the application of Hilbert-Huang transformation-based time-frequency analysis to biomedical signals, such as electroencephalogram, electrocardiogram signals, electrogastrogram recordings, and speech signals. PMID:22558835

  8. [Epileptic EEG signal classification based on wavelet packet transform and multivariate multiscale entropy].

    PubMed

    Xu, Yonghong; Li, Xingxing; Zhao, Yong

    2013-10-01

    In this paper, a new method combining wavelet packet transform and multivariate multiscale entropy for the classification of epilepsy EEG signals is introduced. Firstly, the original EEG signals are decomposed at multi-scales with the wavelet packet transform, and the wavelet packet coefficients of the required frequency bands are extracted. Secondly, the wavelet packet coefficients are processed with multivariate multiscale entropy algorithm. Finally, the EEG data are classified by support vector machines (SVM). The experimental results on the international public Bonn epilepsy EEG dataset show that the proposed method can efficiently extract epileptic features and the accuracy of classification result is satisfactory. PMID:24459973

  9. Sub-Audible Speech Recognition Based upon Electromyographic Signals

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C. (Inventor); Lee, Diana D. (Inventor); Agabon, Shane T. (Inventor)

    2012-01-01

    Method and system for processing and identifying a sub-audible signal formed by a source of sub-audible sounds. Sequences of samples of sub-audible sound patterns ("SASPs") for known words/phrases in a selected database are received for overlapping time intervals, and Signal Processing Transforms ("SPTs") are formed for each sample, as part of a matrix of entry values. The matrix is decomposed into contiguous, non-overlapping two-dimensional cells of entries, and neural net analysis is applied to estimate reference sets of weight coefficients that provide sums with optimal matches to reference sets of values. The reference sets of weight coefficients are used to determine a correspondence between a new (unknown) word/phrase and a word/phrase in the database.

  10. Reiteration of Hankel singular value decomposition for modeling of complex-valued signal

    NASA Astrophysics Data System (ADS)

    Staniszewski, Michał; Skorupa, Agnieszka; Boguszewicz, Łukasz; Wicher, Magdalena; Konopka, Marek; Sokół, Maria; Polański, Andrzej

    2016-06-01

    Modeling signal which forms complex values is a common scientific problem, which is present in many applications, i.e. in medical signals, computer graphics and vision. One of the possible solution is utilization of Hankel Singular Value Decomposition. In the first step complex-valued signal is arranged in a special form called Hankel matrix, which is in the next step decomposed in operation of Singular Value Decomposition. Obtained matrices can be then reformulated in order to get parameters describing system. Basic method can be applied for fitting whole signal but it fails in modeling each particular component of signal. Modification of basic HSVD method, which relies on reiteration and is used for main components, and application of prior knowledge solves presented problem.

  11. Detecting laser-range-finding signals in surveying converter lining based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Li, Hongsheng; Yang, Xiaofei; Shi, Tielin; Yang, Shuzi

    1998-08-01

    The precision of the laser range finding subsystem has important influences on the performances of the whole measurement system applied to survey the steelmaking converter lining erosion state. In the system, the object of laser beams is some rough lighting surfaces in high temperature. the laser range finding signals to reach the microcomputer system would be submerged in intense disturb environments. Common laser range finding devices could not work normally. This paper presents a method based on the wavelet transform to test solving the problem. The idea of this method includes encoding the measuring signals, decomposing the encoded received signals of components in different frequency scales and time domains by the wavelet transform method, extracting the features of encoded signals according to queer points to confirm the arrival of signals, and accurately calculating out the measured distances. In addition, the method is also helpful to adopt some digital filter algorithms in time. It could make further in improvement on the precision.

  12. Matching Pursuit with Asymmetric Functions for Signal Decomposition and Parameterization

    PubMed Central

    Spustek, Tomasz; Jedrzejczak, Wiesław Wiktor; Blinowska, Katarzyna Joanna

    2015-01-01

    The method of adaptive approximations by Matching Pursuit makes it possible to decompose signals into basic components (called atoms). The approach relies on fitting, in an iterative way, functions from a large predefined set (called dictionary) to an analyzed signal. Usually, symmetric functions coming from the Gabor family (sine modulated Gaussian) are used. However Gabor functions may not be optimal in describing waveforms present in physiological and medical signals. Many biomedical signals contain asymmetric components, usually with a steep rise and slower decay. For the decomposition of this kind of signal we introduce a dictionary of functions of various degrees of asymmetry – from symmetric Gabor atoms to highly asymmetric waveforms. The application of this enriched dictionary to Otoacoustic Emissions and Steady-State Visually Evoked Potentials demonstrated the advantages of the proposed method. The approach provides more sparse representation, allows for correct determination of the latencies of the components and removes the "energy leakage" effect generated by symmetric waveforms that do not sufficiently match the structures of the analyzed signal. Additionally, we introduced a time-frequency-amplitude distribution that is more adequate for representation of asymmetric atoms than the conventional time-frequency-energy distribution. PMID:26115480

  13. Application of the Huang-Hilbert transform and natural time to the analysis of seismic electric signal activities

    SciTech Connect

    Papadopoulou, K. A.; Skordas, E. S.

    2014-12-01

    The Huang method is applied to Seismic Electric Signal (SES) activities in order to decompose them into their components, named Intrinsic Mode Functions (IMFs). We study which of these components contribute to the basic characteristics of the signal. The Hilbert transform is then applied to the IMFs in order to determine their instantaneous amplitudes. The results are compared with those obtained from the analysis in a new time domain termed natural time, after having subtracted the magnetotelluric background from the original signal. It is shown that these instantaneous amplitudes, when combined with the natural time analysis, can be used for the distinction of SES from artificial noises.

  14. Involvement of the Ligninolytic System of White-Rot and Litter-Decomposing Fungi in the Degradation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Pozdnyakova, Natalia N.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are natural and anthropogenic aromatic hydrocarbons with two or more fused benzene rings. Because of their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, PAHs are a significant environmental concern. Ligninolytic fungi, such as Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus, have the capacity of PAH degradation. The enzymes involved in the degradation of PAHs are ligninolytic and include lignin peroxidase, versatile peroxidase, Mn-peroxidase, and laccase. This paper summarizes the data available on PAH degradation by fungi belonging to different ecophysiological groups (white-rot and litter-decomposing fungi) under submerged cultivation and during mycoremediation of PAH-contaminated soils. The role of the ligninolytic enzymes of these fungi in PAH degradation is discussed. PMID:22830035

  15. Shelters of leaf-tying herbivores decompose faster than leaves damaged by free-living insects: Implications for nutrient turnover in polluted habitats.

    PubMed

    Kozlov, Mikhail V; Zverev, Vitali; Zvereva, Elena L

    2016-10-15

    Leaf-eating insects can influence decomposition processes by modifying quality of leaf litter, and this impact can be especially pronounced in habitats where leaf-eating insects reach high densities, for example in heavily polluted areas. We hypothesized that the decomposition rate is faster for shelters of leaf-tying larvae than for leaves damaged by free-living insects, in particular due to the accumulation of larval frass within shelters. We exposed litter bags containing samples of three different compositions (shelters built by moth larvae, leaves damaged by free-living insects and intact leaves of mountain birch, Betula pubescens ssp. czerepanovii) for one year at two heavily polluted sites near the nickel-copper smelter at Monchegorsk in north-western Russia and at two unpolluted sites. The decomposition rate of leaves damaged by free-living insects was 91% of that of undamaged leaves, whereas the mass loss of leaves composing shelters did not differ of that of undamaged leaves. These differences between leaves damaged by different guilds of herbivorous insects were uniform across the study sites, although the decomposition rate in polluted sites was reduced to 77% of that in unpolluted sites. Addition of larval frass to undamaged leaves had no effect on the subsequent decomposition rate. Therefore we suggest that damaged leaves tied by shelter-building larvae decompose faster than untied damaged leaves due to a looser physical structure of the litter, which creates favourable conditions for detritivores and soil decomposers. Thus, while leaf damage by insects per se reduces litter quality and its decomposition rate, structuring of litter by leaf-tying insects counterbalances these negative effects. We conclude that leaf-tying larvae, in contrast to free-living defoliators, do not impose negative effects on nutrient turnover rate even at their high densities, which are frequently observed in heavily polluted sites. PMID:27288287

  16. Signal processor for processing ultrasonic receiver signals

    DOEpatents

    Fasching, George E.

    1980-01-01

    A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.

  17. Signal verification can promote reliable signalling.

    PubMed

    Broom, Mark; Ruxton, Graeme D; Schaefer, H Martin

    2013-11-22

    The central question in communication theory is whether communication is reliable, and if so, which mechanisms select for reliability. The primary approach in the past has been to attribute reliability to strategic costs associated with signalling as predicted by the handicap principle. Yet, reliability can arise through other mechanisms, such as signal verification; but the theoretical understanding of such mechanisms has received relatively little attention. Here, we model whether verification can lead to reliability in repeated interactions that typically characterize mutualisms. Specifically, we model whether fruit consumers that discriminate among poor- and good-quality fruits within a population can select for reliable fruit signals. In our model, plants either signal or they do not; costs associated with signalling are fixed and independent of plant quality. We find parameter combinations where discriminating fruit consumers can select for signal reliability by abandoning unprofitable plants more quickly. This self-serving behaviour imposes costs upon plants as a by-product, rendering it unprofitable for unrewarding plants to signal. Thus, strategic costs to signalling are not a prerequisite for reliable communication. We expect verification to more generally explain signal reliability in repeated consumer-resource interactions that typify mutualisms but also in antagonistic interactions such as mimicry and aposematism. PMID:24068354

  18. Signal verification can promote reliable signalling

    PubMed Central

    Broom, Mark; Ruxton, Graeme D.; Schaefer, H. Martin

    2013-01-01

    The central question in communication theory is whether communication is reliable, and if so, which mechanisms select for reliability. The primary approach in the past has been to attribute reliability to strategic costs associated with signalling as predicted by the handicap principle. Yet, reliability can arise through other mechanisms, such as signal verification; but the theoretical understanding of such mechanisms has received relatively little attention. Here, we model whether verification can lead to reliability in repeated interactions that typically characterize mutualisms. Specifically, we model whether fruit consumers that discriminate among poor- and good-quality fruits within a population can select for reliable fruit signals. In our model, plants either signal or they do not; costs associated with signalling are fixed and independent of plant quality. We find parameter combinations where discriminating fruit consumers can select for signal reliability by abandoning unprofitable plants more quickly. This self-serving behaviour imposes costs upon plants as a by-product, rendering it unprofitable for unrewarding plants to signal. Thus, strategic costs to signalling are not a prerequisite for reliable communication. We expect verification to more generally explain signal reliability in repeated consumer–resource interactions that typify mutualisms but also in antagonistic interactions such as mimicry and aposematism. PMID:24068354

  19. Retroactive Signaling in Short Signaling Pathways

    PubMed Central

    Sepulchre, Jacques-Alexandre; Merajver, Sofía D.; Ventura, Alejandra C.

    2012-01-01

    In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles. PMID:22848403

  20. Multiplexing oscillatory biochemical signals.

    PubMed

    de Ronde, Wiet; ten Wolde, Pieter Rein

    2014-04-01

    In recent years it has been increasingly recognized that biochemical signals are not necessarily constant in time and that the temporal dynamics of a signal can be the information carrier. Moreover, it is now well established that the protein signaling network of living cells has a bow-tie structure and that components are often shared between different signaling pathways. Here we show by mathematical modeling that living cells can multiplex a constant and an oscillatory signal: they can transmit these two signals simultaneously through a common signaling pathway, and yet respond to them specifically and reliably. We find that information transmission is reduced not only by noise arising from the intrinsic stochasticity of biochemical reactions, but also by crosstalk between the different channels. Yet, under biologically relevant conditions more than 2 bits of information can be transmitted per channel, even when the two signals are transmitted simultaneously. These observations suggest that oscillatory signals are ideal for multiplexing signals. PMID:24685537

  1. Retained energy-based coding for EEG signals.

    PubMed

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cárdenas-Barrera, Julián; Cruz-Roldán, Fernando

    2012-09-01

    The recent use of long-term records in electroencephalography is becoming more frequent due to its diagnostic potential and the growth of novel signal processing methods that deal with these types of recordings. In these cases, the considerable volume of data to be managed makes compression necessary to reduce the bit rate for transmission and storage applications. In this paper, a new compression algorithm specifically designed to encode electroencephalographic (EEG) signals is proposed. Cosine modulated filter banks are used to decompose the EEG signal into a set of subbands well adapted to the frequency bands characteristic of the EEG. Given that no regular pattern may be easily extracted from the signal in time domain, a thresholding-based method is applied for quantizing samples. The method of retained energy is designed for efficiently computing the threshold in the decomposition domain which, at the same time, allows the quality of the reconstructed EEG to be controlled. The experiments are conducted over a large set of signals taken from two public databases available at Physionet and the results show that the compression scheme yields better compression than other reported methods. PMID:22056794

  2. Vibration signal classification by wavelet packet energy flow manifold learning

    NASA Astrophysics Data System (ADS)

    He, Qingbo

    2013-04-01

    This paper proposes a new study to explore the wavelet packet energy (WPE) flow characteristics of vibration signals by using the manifold learning technique. This study intends to discover the nonlinear manifold information from the WPE flow map of vibration signals to characterize and discriminate different classes. A new feature, called WPE manifold feature, is achieved by three main steps: first, the wavelet packet transform (WPT) is conducted to decompose multi-class signals into a library of time-frequency subspaces; second, the WPE is calculated in each subspace to produce a feature vector for each signal; and finally, low-dimensional manifold features carrying class information are extracted from the WPE library for either training or testing samples by using the manifold learning algorithm. The new feature reveals the nonlinear WPE flow structure among various redundant time-frequency subspaces. It combines the benefits of time-frequency characteristics and nonlinear information, and hence exhibits valuable properties for vibration signal classification. The effectiveness and the merits of the proposed method are confirmed by case studies on vibration analysis-based machine fault classification.

  3. ERK Signals: Scaffolding Scaffolds?

    PubMed Central

    Casar, Berta; Crespo, Piero

    2016-01-01

    ERK1/2 MAP Kinases become activated in response to multiple intra- and extra-cellular stimuli through a signaling module composed of sequential tiers of cytoplasmic kinases. Scaffold proteins regulate ERK signals by connecting the different components of the module into a multi-enzymatic complex by which signal amplitude and duration are fine-tuned, and also provide signal fidelity by isolating this complex from external interferences. In addition, scaffold proteins play a central role as spatial regulators of ERKs signals. In this respect, depending on the subcellular localization from which the activating signals emanate, defined scaffolds specify which substrates are amenable to be phosphorylated. Recent evidence has unveiled direct interactions among different scaffold protein species. These scaffold-scaffold macro-complexes could constitute an additional level of regulation for ERK signals and may serve as nodes for the integration of incoming signals and the subsequent diversification of the outgoing signals with respect to substrate engagement. PMID:27303664

  4. Sending Signals Dynamically

    PubMed Central

    Smock, Robert G.; Gierasch, Lila M.

    2010-01-01

    Proteins mediate transmission of signals along intercellular and intracellular pathways and between the exterior and the interior of a cell. The dynamic properties of signaling proteins are crucial to their functions. We discuss emerging paradigms for the role of protein dynamics in signaling. A central tenet is that proteins fluctuate among many states on evolutionarily selected energy landscapes. Upstream signals remodel this landscape, causing signaling proteins to transmit information to downstream partners. New methods provide insight into the dynamic properties of signaling proteins at the atomic scale. The next stages in the signaling hierarchy—how multiple signals are integrated and how cellular signaling pathways are organized in space and time—present exciting challenges for the future, requiring bold multidisciplinary approaches. PMID:19359576

  5. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China.

    PubMed

    Sun, Zhigao; Mou, Xiaojie

    2016-03-01

    From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year(-1), S0), current sediment burial (100 mm year(-1), S10), and strong sediment burial (200 mm year(-1), S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day(-1)) ≈ S20 (0.001710 day(-1)) > S0 (0.000768 day(-1)) (p < 0.05). The macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p > 0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis

  6. Capacity of microorganisms to decompose organic carbon affected by an increasing content of reactive mineral phases in a podzolic soil chronosequence

    NASA Astrophysics Data System (ADS)

    Vermeire, Marie-Liesse; Doetterl, Sebastian; Bode, Samuel; Delmelle, Pierre; Van Oost, Kristof; Cornelis, Jean-Thomas

    2014-05-01

    Soil organic matter stabilization has received considerable interest in the last decades due to the importance of the soil organic carbon (SOC) pool in the global C budget. There is increasing evidence that the formation of organo-mineral associations play a major role in the mechanisms of organic carbon stabilization, indicating that the persistence of organic matter in soils relates primarily to soil physico-chemical and biological conditions than to intrinsic recalcitrance. Al and Fe oxy-hydroxides and short-range ordered aluminosilicates are known for their high capacity to sorb organic carbon. However, the impact of the evolution of these reactive mineral phases over short time scale on the distribution of microorganisms and their ability to decompose SOC is still poorly understood. To further study the short-term evolution of organo-mineral associations, we investigated a 500-year podzolic soil chronosequence which is characterized by an increasing amount of secondary reactive mineral phases with pedogenesis and soil age, and thus by increased organo-mineral associations. In order to determine the impact of these secondary mineral phases on the degradation of SOC by microorganisms, an incubation experiment was carried out using soil horizons up to 1m deep from 6 profiles of different ages along the chronosequence. Furthermore, we used amino sugars and phospholipid fatty acids as tracers of dead and living microbial biomass, respectively, in the incubated samples. Our results show that SOC mineralization was significantly lower in the illuvial Bh/Bhs horizons (which contain more reactive mineral phases) compared to the surface E horizons (depleted in reactive mineral phases), although the content in amino sugars is similar in these horizons. In the deeper Bw and BC horizons, as well as in the young profiles (<300 yrs) that have not yet undergone podzolization and related formation of organo-mineral associations, SOC mineralization rates were the highest. These

  7. On the application of optimal wavelet filter banks for ECG signal classification

    NASA Astrophysics Data System (ADS)

    Hadjiloucas, S.; Jannah, N.; Hwang, F.; Galvão, R. K. H.

    2014-03-01

    This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier.

  8. Computer implemented empirical mode decomposition method, apparatus, and article of manufacture for two-dimensional signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2001-01-01

    A computer implemented method of processing two-dimensional physical signals includes five basic components and the associated presentation techniques of the results. The first component decomposes the two-dimensional signal into one-dimensional profiles. The second component is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF's) from each profile based on local extrema and/or curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the profiles. In the third component, the IMF's of each profile are then subjected to a Hilbert Transform. The fourth component collates the Hilbert transformed IMF's of the profiles to form a two-dimensional Hilbert Spectrum. A fifth component manipulates the IMF's by, for example, filtering the two-dimensional signal by reconstructing the two-dimensional signal from selected IMF(s).

  9. Decomposable Mandrel Project. Progress report

    SciTech Connect

    Letts, S.A.; Fearon, E.; Allison, L.; Buckley, S.; Saculla, M.; Cook, R.

    1995-05-08

    We report on our progress in developing a new technology to produce both Nova and NIF scale capsules using a depolymerizable mandrel. In this technique we use poly({alpha}-methylstyrene) (PAMS) beads or shells as mandrels which are overcoated with plasma polymer. The poly({alpha}-methylstyrene) mandrel is then thermally depolymerized to gas phase monomer which diffuses away through the more thermally stable plasma polymer coating, leaving a hollow shell. Since our last report we have concentrated on characterization of the final shell. Starting with PAMS bead mandrels leads to distorted pyrolyzed shells because of thermally induced creep of the CH coating. We found that plasma polymer coatings on hollow shell mandrels shrink isotropically during pyrolysis and maintain sphericity. We are now concentrating our efforts on the use of microencapsulated shells to prepare targets with buried diagnostic layers or inner wall surface texture.

  10. Signal sciences workshop proceedings

    SciTech Connect

    Candy, J.V.

    1997-05-01

    This meeting is aimed primarily at signal processing and controls. The technical program for the 1997 Workshop includes a variety of efforts in the Signal Sciences with applications in the Microtechnology Area a new program at LLNL and a future area of application for both Signal/Image Sciences. Special sessions organized by various individuals in Seismic and Optical Signal Processing as well as Micro-Impulse Radar Processing highlight the program, while the speakers at the Signal Processing Applications session discuss various applications of signal processing/control to real world problems. For the more theoretical, a session on Signal Processing Algorithms was organized as well as for the more pragmatic, featuring a session on Real-Time Signal Processing.

  11. Diversity of Fungi on Decomposing Leaf Litter in a Sugarcane Plantation and Their Response to Tillage Practice and Bagasse Mulching: Implications for Management Effects on Litter Decomposition.

    PubMed

    Miura, Toshiko; Niswati, Ainin; Swibawa, I G; Haryani, Sri; Gunito, Heru; Shimano, Satoshi; Fujie, Koichi; Kaneko, Nobuhiro

    2015-10-01

    To minimize the degradation of soil organic matter (SOM) content in conventional sugarcane cropping, it is important to understand how the fungal community contributes to SOM dynamics during the decomposition of sugarcane leaf litter. However, our knowledge of fungal diversity in tropical agroecosystems is currently limited. Thus, we determined the fungal community structure on decomposing sugarcane leaf litter and their response to different soil management systems using the internal transcribed spacer region 1 (ITS1) amplicon sequencing method afforded by Ion Torrent Personal Genome Machine (PGM). The results indicate that no-tillage had positive effects on the relative abundance of Zygomycota and of some taxa that may prefer a moist environment over conventional tillage, whereas bagasse mulching decreased the richness of operational taxonomic units (OTUs) and had positive effect on the relative abundance of slow-growing taxa, which may prefer poor nutrient substrates. Furthermore, a combination of no-tillage and bagasse mulching increased the abundance of unique OTUs. We suggest that the alteration of fungal communities through the changes in soil management practices produces an effect on litter decomposition. PMID:25933637

  12. Dipolar-dephasing 13C NMR studies of decomposed wood and coalified xylem tissue: Evidence for chemical structural changes associated with defunctionalization of lignin structural units during coalification

    USGS Publications Warehouse

    Hatcher, P.G.

    1988-01-01

    A series of decomposed and coalified gymnosperm woods was examined by conventional solid-state 13C nuclear magnetic resonance (NMR) and by dipolar-dephasing NMR techniques. The results of these NMR studies for a histologically related series of samples provide clues as to the nature of codification reactions that lead to the defunctionalization of lignin-derived aromatic structures. These reactions sequentially involve the following: (1) loss of methoxyl carbons from guaiacyl structural units with replacement by hydroxyls and increased condensation; (2) loss of hydroxyls or aryl ethers with replacement by hydrogen as rank increases from lignin to high-volatile bituminous coal; (3) loss of alkyl groups with continued replacement by hydrogen. The dipolar-dephasing data show that the early stages of coalification in samples examined (lignin to lignite) involve a decreasing degree of protonation on aromatic rings and suggest that condensation is significant during coalification at this early stage. An increasing degree of protonation on aromatic rings is observed as the rank of the sample increases from lignite to anthracite.

  13. Cholesky-decomposed density MP2 with density fitting: Accurate MP2 and double-hybrid DFT energies for large systems

    SciTech Connect

    Maurer, Simon A.; Clin, Lucien; Ochsenfeld, Christian

    2014-06-14

    Our recently developed QQR-type integral screening is introduced in our Cholesky-decomposed pseudo-densities Møller-Plesset perturbation theory of second order (CDD-MP2) method. We use the resolution-of-the-identity (RI) approximation in combination with efficient integral transformations employing sparse matrix multiplications. The RI-CDD-MP2 method shows an asymptotic cubic scaling behavior with system size and a small prefactor that results in an early crossover to conventional methods for both small and large basis sets. We also explore the use of local fitting approximations which allow to further reduce the scaling behavior for very large systems. The reliability of our method is demonstrated on test sets for interaction and reaction energies of medium sized systems and on a diverse selection from our own benchmark set for total energies of larger systems. Timings on DNA systems show that fast calculations for systems with more than 500 atoms are feasible using a single processor core. Parallelization extends the range of accessible system sizes on one computing node with multiple cores to more than 1000 atoms in a double-zeta basis and more than 500 atoms in a triple-zeta basis.

  14. SR-135, a Peroxynitrite Decomposing Catalyst, Enhances β-cell Function and Survival in B6D2F1 Mice Fed a High Fat Diet

    PubMed Central

    Johns, Michael; Fyalka, Robert; Shea, Jennifer A.; Neumann, William L.; Rausaria, Smita; Msengi, Eliwaza Naomi; Imani-Nejad, Maryam; Zollars, Harry; McPherson, Timothy; Schober, Joseph; Wooten, Joshua; Kwon, Guim

    2015-01-01

    Peroxynitrite has been implicated in β-cell dysfunction and insulin resistance in obesity. Chemical catalysts that destroy peroxynitrite, therefore, may have therapeutic value for treating type 2 diabetes. To this end, we have recently demonstrated that Mn(III) bis(hydroxyphenyl)-dipyrromethene complexes, SR-135 and its analogues, can effectively catalyze the decomposition of peroxynitrite in vitro and in vivo through a 2-electron mechanism (Rausaria et al. 2011). To study the effects of SR-135 on glucose homeostasis in obesity, B6D2F1 mice were fed with a high fat-diet (HFD) for 12 weeks and treated with vehicle, SR-135 (5 mg/kg), or a control drug SRB for 2 weeks. SR-135 significantly reduced fasting blood glucose and insulin levels, and enhanced glucose tolerance as compared to HFD control, vehicle or SRB. SR-135 also enhanced glucose-stimulated insulin secretion based on ex vivo studies. Moreover, SR-135 increased insulin content, restored islet architecture, decreased islet size, and reduced tyrosine nitration and apoptosis. These results suggest that a peroxynitrite decomposing catalyst enhances β-cell function and survival under nutrient overload. PMID:25935364

  15. Unified Generic Geometric-Decompositions for Consensus or Flocking Systems of Cooperative Agents and Fast Recalculations of Decomposed Subsystems Under Topology-Adjustments.

    PubMed

    Li, Wei

    2016-06-01

    This paper considers a unified geometric projection approach for: 1) decomposing a general system of cooperative agents coupled via Laplacian matrices or stochastic matrices and 2) deriving a centroid-subsystem and many shape-subsystems, where each shape-subsystem has the distinct properties (e.g., preservation of formation and stability of the original system, sufficiently simple structures and explicit formation evolution of agents, and decoupling from the centroid-subsystem) which will facilitate subsequent analyses. Particularly, this paper provides an additional merit of the approach: considering adjustments of coupling topologies of agents which frequently occur in system design (e.g., to add or remove an edge, to move an edge to a new place, and to change the weight of an edge), the corresponding new shape-subsystems can be derived by a few simple computations merely from the old shape-subsystems and without referring to the original system, which will provide further convenience for analysis and flexibility of choice. Finally, such fast recalculations of new subsystems under topology adjustments are provided with examples. PMID:26955056

  16. Dipterans Associated with a Decomposing Animal Carcass in a Rainforest Fragment in Brazil: Notes on the Early Arrival and Colonization by Necrophagous Species

    PubMed Central

    Vasconcelos, Simao D.; Cruz, Tadeu M.; Salgado, Roberta L.; Thyssen, Patricia J.

    2013-01-01

    This study aimed to provide the first checklist of forensically-important dipteran species in a rainforest environment in Northeastern Brazil, a region exposed to high rates of homicides. Using a decomposing pig, Sus scrofa L. (Artiodactyla: Suidae), carcass as a model, adult flies were collected immediately after death and in the early stages of carcass decomposition. To confirm actual colonization of the carcass, insects that completed their larval development on the resource were also collected and reared until adult stage. A diverse assemblage of dipterans composed of at least 28 species from seven families with necrophagous habits was observed within minutes after death. Besides Calliphoridae and Sarcophagidae, species from forensically-important families such as Phoridae, Anthomyiidae, and Fanniidae were also registered. Eleven species were shown to complete their development on the carcass. The majority of individuals emerged from larvae collected at the dry stage of decomposition. Hemilucilia segmentaria Fabricius (Diptera: Calliphoridae), H. semidiaphana (Rondani), and Ophyra chalcogaster (Wiedemann) (Muscidae) were the dominant species among the colonizers, which supports their importance as forensic evidence in Brazil. PMID:24787899

  17. Enhanced dewatering of excess activated sludge through decomposing its extracellular polymeric substances by a Fe@Fe2O3-based composite conditioner.

    PubMed

    He, Dong-Qin; Luo, Hong-Wei; Huang, Bao-Cheng; Qian, Chen; Yu, Han-Qing

    2016-10-01

    Efficient sludge dewatering methods are highly desired by municipal wastewater treatment plants. In this study, Fe@Fe2O3 nanomaterial, combined with polydiallyldimethylammonium chloride (PDMDAAC) and H2SO4, was used for sludge dewatering. This composite conditioner exhibited an excellent dewatering capability. By using uniform design, the optimized dosages of Fe@Fe2O3, H2SO4 and PDMDAAC were determined to be 40, 136 and 4.8mg/gDS (dry solids), respectively. The moisture content of sludge cake decreased from 78.1% to 64.8%, and the capillary suction time from 56 to 21s. The sludge extracellular polymeric substances (EPS) were decomposed, resulting in greater conversion of the bound water into free water and the release of free water. The electron spin resonance results show that the molecular oxygen activation process induced by Fe@Fe2O3 produced hydroxyl radicals, which were mainly responsible for the EPS decomposition. In this way, an efficient composite conditioner for enhancing sludge dewatering was developed. PMID:27395000

  18. A novel method to decompose two potent greenhouse gases: photoreduction of SF6 and SF5CF3 in the presence of propene.

    PubMed

    Huang, Li; Shen, Yan; Dong, Wenbo; Zhang, Renxi; Zhang, Jianliang; Hou, Huiqi

    2008-03-01

    SF5CF3 and SF6 are the most effective greenhouse gases on a per molecule basis in the atmosphere. Original laboratory trial for photoreduction of them by use of propene as a reactant was performed to develop a novel technique to destroy them. The highly reductive radicals produced during the photolysis of propene at 184.9 nm, such as .CH3, .C2H3, and .C3H5, could efficiently decompose SF6 and SF5CF3 to CH4, elemental sulfur and trace amounts of fluorinated organic compounds. It was further demonstrated that the destruction and removal efficiency (DRE) of SF5X (X represented F or CF3) was highly dependent on the initial propene-to-SF5X ratio. The addition of certain amounts of oxygen and water vapor not only enhanced the DRE but avoided the generation of deposits. In both systems, employment nitrogen as dilution gas lessened the DRE slightly. Given the advantage of less toxic products, the technique might contribute to SF5X remediation. PMID:17640803

  19. Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis.

    PubMed

    Saidi, Lotfi; Ali, Jaouher Ben; Fnaiech, Farhat

    2014-09-01

    Empirical mode decomposition (EMD) has been widely applied to analyze vibration signals behavior for bearing failures detection. Vibration signals are almost always non-stationary since bearings are inherently dynamic (e.g., speed and load condition change over time). By using EMD, the complicated non-stationary vibration signal is decomposed into a number of stationary intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal. Bi-spectrum, a third-order statistic, helps to identify phase coupling effects, the bi-spectrum is theoretically zero for Gaussian noise and it is flat for non-Gaussian white noise, consequently the bi-spectrum analysis is insensitive to random noise, which are useful for detecting faults in induction machines. Utilizing the advantages of EMD and bi-spectrum, this article proposes a joint method for detecting such faults, called bi-spectrum based EMD (BSEMD). First, original vibration signals collected from accelerometers are decomposed by EMD and a set of IMFs is produced. Then, the IMF signals are analyzed via bi-spectrum to detect outer race bearing defects. The procedure is illustrated with the experimental bearing vibration data. The experimental results show that BSEMD techniques can effectively diagnosis bearing failures. PMID:24975564

  20. Signal Processing, Analysis, & Display

    SciTech Connect

    Lager, Darrell; Azevado, Stephen

    1986-06-01

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.

  1. Neural signals encoding shifts in beliefs.

    PubMed

    Schwartenbeck, Philipp; FitzGerald, Thomas H B; Dolan, Ray

    2016-01-15

    Dopamine is implicated in a diverse range of cognitive functions including cognitive flexibility, task switching, signalling novel or unexpected stimuli as well as advance information. There is also longstanding line of thought that links dopamine with belief formation and, crucially, aberrant belief formation in psychosis. Integrating these strands of evidence would suggest that dopamine plays a central role in belief updating and more specifically in encoding of meaningful information content in observations. The precise nature of this relationship has remained unclear. To directly address this question we developed a paradigm that allowed us to decompose two distinct types of information content, information-theoretic surprise that reflects the unexpectedness of an observation, and epistemic value that induces shifts in beliefs or, more formally, Bayesian surprise. Using functional magnetic-resonance imaging in humans we show that dopamine-rich midbrain regions encode shifts in beliefs whereas surprise is encoded in prefrontal regions, including the pre-supplementary motor area and dorsal cingulate cortex. By linking putative dopaminergic activity to belief updating these data provide a link to false belief formation that characterises hyperdopaminergic states associated with idiopathic and drug induced psychosis. PMID:26520774

  2. Neural signals encoding shifts in beliefs

    PubMed Central

    Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Dolan, Ray

    2016-01-01

    Dopamine is implicated in a diverse range of cognitive functions including cognitive flexibility, task switching, signalling novel or unexpected stimuli as well as advance information. There is also longstanding line of thought that links dopamine with belief formation and, crucially, aberrant belief formation in psychosis. Integrating these strands of evidence would suggest that dopamine plays a central role in belief updating and more specifically in encoding of meaningful information content in observations. The precise nature of this relationship has remained unclear. To directly address this question we developed a paradigm that allowed us to decompose two distinct types of information content, information-theoretic surprise that reflects the unexpectedness of an observation, and epistemic value that induces shifts in beliefs or, more formally, Bayesian surprise. Using functional magnetic-resonance imaging in humans we show that dopamine-rich midbrain regions encode shifts in beliefs whereas surprise is encoded in prefrontal regions, including the pre-supplementary motor area and dorsal cingulate cortex. By linking putative dopaminergic activity to belief updating these data provide a link to false belief formation that characterises hyperdopaminergic states associated with idiopathic and drug induced psychosis. PMID:26520774

  3. Reliable Signal Transduction

    NASA Astrophysics Data System (ADS)

    Wollman, Roy

    Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation - that is dynamics - to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2 +)) , and nuclear factor kappa-B (NF- κB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.

  4. Mitochondria and cell signalling

    PubMed Central

    Tait, Stephen W. G.; Green, Douglas R.

    2012-01-01

    Mitochondria have long been considered as crucial organelles, primarily for their roles in biosynthetic reactions such as ATP synthesis. However, it is becoming increasingly apparent that mitochondria are intimately involved in cell signalling pathways. Mitochondria perform various signalling functions, serving as platforms to initiate cell signalling, as well as acting as transducers and effectors in multiple processes. Here, we discuss the active roles that mitochondria have in cell death signalling, innate immunity and autophagy. Common themes of mitochondrial regulation emerge from these diverse but interconnected processes. These include: the outer mitochondrial membrane serving as a major signalling platform, and regulation of cell signalling through mitochondrial dynamics and by mitochondrial metabolites, including ATP and reactive oxygen species. Importantly, defects in mitochondrial control of cell signalling and in the regulation of mitochondrial homeostasis might underpin many diseases, in particular age-related pathologies. PMID:22448037

  5. Mechanisms of Antarctic net precipitation climate change signals

    NASA Astrophysics Data System (ADS)

    Grieger, Jens; Leckebusch, Gregor C.; Ulbrich, Uwe

    2015-04-01

    This study investigates mechanisms leading to climate change signals of Antarctic net precipitation (E-P) simulated by three members of one CMIP3 coupled atmosphere-ocean general circulation model (AOGCM). Net precipitation is calculated with the divergence of the vertically integrated moisture flux. Generally, moisture flux changes are dominated by increased humidity in the atmosphere due to temperature increase in the future climate projections. This contribution presents an approach to distinguish between thermodynamical and dynamical influences on moisture flux. A physical interpretation of the changing flux signal due to dynamics is given by decomposing atmospheric waves into different length scales and temporal variations. Climate change of moisture transport is compared with fluctuations of geopotential height fields as well as climate signals of extra-tropical cyclones. Synoptic length scale moisture flux variability with temporal variations between 2.5 and 8 days can be assigned to the SH stormtrack, which shows a distinctive poleward shift in the future projection. This signal can also be found for extra-tropical cyclones, whereas changing wave activity can be better understood if strong cyclones separately are taken into account, which intensify especially on the Eastern Hemisphere. Changing moisture transport towards Antarctica leads to climate change signals of net precipitation inside a spherical cap around the continent. Generally, an increasing signal of net precipitation can be found whereas the dynamical part decreases. This is due to the low variability component of synoptic scale waves, which show a decreasing climate change signal, especially off-coast of West Antarctica. This is discussed to be connected to changing variability of the Amundsen-Bellingshausen Sea Low.

  6. Empirical Mode Decomposition of simulated and real ultrasonic Doppler signals of periodic fetal activity.

    PubMed

    Kaluzynski, Krzysztof

    2014-07-01

    Simulated signals comprising components (trains of Gaussian packets) resulting from cardiac movements and from pseudorespiratory movements with added white noise were submitted to Empirical Mode Decomposition. The increase of sampling frequency fs (from 0.5 kHz to 5 kHz) for given signal to noise ratio SNR moves signal components toward higher order intrinsic mode functions (IMFs) and increases their number. The increase of the SNR (from -5 dB to 10 dB, fixed fs) moves the signal components to lower order IMFs. The separation of components is most efficient for SNR≥5 dB and fs not exceeding 1 kHz, for lower SNRs fs should be at least 2 kHz. SNR=∞ results in erroneous decomposition and therefore limited noise level is beneficial. Recommended number of sifting iterations is 10. Fetal data obtained using 2 MHz emission frequency and sampled at 2 kHz were decomposed. The cardiac signal always appears in IMF3, frequently also in IMF1 and IMF2. The pseudobreathing signal, appearing mainly in IMF4-6, is easy to separate. Signals resulting from fetal displacements due to maternal respiration appear in IMF7 or IMF8. The EMD performs better than the classic linear filtering as a tool for separation of the pseudorespiration signals and provides inferior results in terms of separation of the cardiac signals. PMID:24746537

  7. Time-frequency analysis of non-stationary fusion plasma signals using an improved Hilbert-Huang transform

    SciTech Connect

    Liu, Yangqing Tan, Yi; Xie, Huiqiao; Wang, Wenhao; Gao, Zhe

    2014-07-15

    An improved Hilbert-Huang transform method is developed to the time-frequency analysis of non-stationary signals in tokamak plasmas. Maximal overlap discrete wavelet packet transform rather than wavelet packet transform is proposed as a preprocessor to decompose a signal into various narrow-band components. Then, a correlation coefficient based selection method is utilized to eliminate the irrelevant intrinsic mode functions obtained from empirical mode decomposition of those narrow-band components. Subsequently, a time varying vector autoregressive moving average model instead of Hilbert spectral analysis is performed to compute the Hilbert spectrum, i.e., a three-dimensional time-frequency distribution of the signal. The feasibility and effectiveness of the improved Hilbert-Huang transform method is demonstrated by analyzing a non-stationary simulated signal and actual experimental signals in fusion plasmas.

  8. Application of empirical mode decomposition to very low frequency signals for identification of seismic-ionospheric precursor phenomena

    NASA Astrophysics Data System (ADS)

    Skeberis, Christos; Xenos, Dimitrios T.; Xenos, Thomas D.; Contadakis, Michael E.; Arabelos, Dimitrios; Chatzopoulou, Georgia

    2012-05-01

    This study investigates the application of empirical mode decomposition to signals from very low frequency transmitters in Europe that were received in Thessaloniki, Greece, to provide a method for depicting seismic-ionospheric precursor phenomena that occur prior to an earthquake. The basis for ionosphere interactions with seismic phenomena has been well documented in past studies, and the depiction of disturbances applied from the earthionosphere waveguide on the received signals was the purpose of this study. Empirical mode decomposition is a method for processing of nonlinear and nonstationary signals, to decompose them into their functional components, known as intrinsic mode functions. This method can provide high pass filtering to signals, thus depicting a clearer image of any abnormal disturbances in the signals that are not part of the normal noise content. Observations of such precursor phenomena are presented and correlated to earthquakes, to demonstrate the effectiveness of this method.

  9. Analysis of ideal observer signal detectability in phase-contrast imaging employing linear shift-invariant optical systems

    PubMed Central

    Anastasio, Mark A.; Chou, Cheng-Ying; Zysk, Adam M.; Brankov, Jovan G.

    2010-01-01

    Phase-contrast imaging methods exploit variations in an object’s refractive index distribution to permit the visualization of subtle features that may have very similar optical absorption properties. Although phase-contrast is often viewed as being desirable in many biomedical applications, its relative influence on signal detectability when both absorption- and phase-contrast are present remains relatively unexplored. In this work, we investigate the ideal Bayesian observer signal to noise ratio (SNR) in phase-contrast imaging for a signal-known-exactly/background-known exactly detection task involving a weak signal. We demonstrate that this signal detectability measure can be decomposed into three contributions that have distinct interpretations associated with the imaging physics. PMID:21119750

  10. Reconstruction of an evolving magnetic flux rope in the solar wind: Decomposing spatial and temporal variations from single-spacecraft data

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hiroshi; Sonnerup, Bengt U. Ö.; Hu, Qiang; Nakamura, Takuma

    2014-01-01

    We present a novel single-spacecraft method for decomposing spatial and temporal variations of physical quantities at points along the path of a spacecraft in space-time. The method is designed for use in the reconstruction of evolving two-dimensional, approximately magnetohydrostatic structures in a space plasma. It is an extension of the one developed by Sonnerup and Hasegawa (2010) and Hasegawa et al. (2010), in which it was assumed that variations in the time series of data, recorded as the structures move past the spacecraft, are all due to spatial effects. In reality, some of the observed variations are usually caused by temporal evolution of the structure during the time it moves past the observing spacecraft; the information in the data about the spatial structure is aliased by temporal effects. The purpose here is to remove this time aliasing from the reconstructed maps of field and plasma properties. Benchmark tests are performed by use of synthetic data taken by a virtual spacecraft as it traverses, at a constant velocity, a magnetic flux rope growing sufficiently slowly (relative to the Alfvén speed) in a two-dimensional magnetohydrodynamic simulation of magnetic reconnection. These tests show that the new method can better recover the space-time behavior of the flux rope than does the original version, in which time-aliasing effects had not been removed. An application of the new method to a solar wind flux rope, observed by the ACE spacecraft, suggests that the cross-sectional shape of the core part of the flux rope was varying.

  11. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    NASA Astrophysics Data System (ADS)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  12. High quality draft genome sequence of Flavobacterium rivuli type strain WB 3.3-2T (DSM 21788T), a valuable source of polysaccharide decomposing enzymes

    SciTech Connect

    Hahnke, Richard L.; Stackebrandt, Erko; Meier-Kolthoff, Jan P.; Tindall, Brian J.; Huang, Sixing; Rohde, Manfred; Lapidus, Alla; Han, James; Trong, Stephan; Haynes, Matthew; Reddy, T. B. K.; Huntemann, Marcel; Pati, Amrita; Ivanova, Natalia N.; Mavromatis, Konstantinos; Markowitz, Victor; Woyke, Tanja; Göker, Markus; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2015-07-30

    Flavobacterium rivuli Ali et al. 2009 emend. Dong et al. 2013 is one of about 100 species in the genus Flavobacterium (family Flavobacteriacae, phylum Bacteroidetes) with a validly published name, and has been isolated from the spring of a hard water rivulet in Northern Germany. Including all type strains of the genus Myroides and Flavobacterium into the 16S rRNA gene sequence phylogeny revealed a clustering of members of the genus Myroides as a monophyletic group within the genus Flavobacterium. Furthermore, F. rivuli WB 3.3-2T and its next relatives seem more closely related to the genus Myroides than to the type species of the genus Flavobacterium, F. aquatile. The 4,489,248 bp long genome with its 3,391 protein-coding and 65 RNA genes is part of the G enomic E ncyclopedia of B acteria and A rchaea project. The genome of F. rivuli has almost as many genes encoding carbohydrate active enzymes (151 CAZymes) as genes encoding peptidases (177). Peptidases comprised mostly metallo (M) and serine (S) peptidases. Among CAZymes, 30 glycoside hydrolase families, 10 glycosyl transferase families, 7 carbohydrate binding module families and 7 carbohydrate esterase families were identified. Furthermore, we found four polysaccharide utilization loci (PUL) and one large CAZy rich gene cluster that might enable strain WB 3.3-2T to decompose plant and algae derived polysaccharides. In conclusion, based on these results we propose F. rivuli as an interesting candidate for further physiological studies and the role of Bacteroidetes in the decomposition of complex polymers in the environment.

  13. High quality draft genome sequence of Flavobacterium rivuli type strain WB 3.3-2T (DSM 21788T), a valuable source of polysaccharide decomposing enzymes

    DOE PAGESBeta

    Hahnke, Richard L.; Stackebrandt, Erko; Meier-Kolthoff, Jan P.; Tindall, Brian J.; Huang, Sixing; Rohde, Manfred; Lapidus, Alla; Han, James; Trong, Stephan; Haynes, Matthew; et al

    2015-07-30

    Flavobacterium rivuli Ali et al. 2009 emend. Dong et al. 2013 is one of about 100 species in the genus Flavobacterium (family Flavobacteriacae, phylum Bacteroidetes) with a validly published name, and has been isolated from the spring of a hard water rivulet in Northern Germany. Including all type strains of the genus Myroides and Flavobacterium into the 16S rRNA gene sequence phylogeny revealed a clustering of members of the genus Myroides as a monophyletic group within the genus Flavobacterium. Furthermore, F. rivuli WB 3.3-2T and its next relatives seem more closely related to the genus Myroides than to the typemore » species of the genus Flavobacterium, F. aquatile. The 4,489,248 bp long genome with its 3,391 protein-coding and 65 RNA genes is part of the G enomic E ncyclopedia of B acteria and A rchaea project. The genome of F. rivuli has almost as many genes encoding carbohydrate active enzymes (151 CAZymes) as genes encoding peptidases (177). Peptidases comprised mostly metallo (M) and serine (S) peptidases. Among CAZymes, 30 glycoside hydrolase families, 10 glycosyl transferase families, 7 carbohydrate binding module families and 7 carbohydrate esterase families were identified. Furthermore, we found four polysaccharide utilization loci (PUL) and one large CAZy rich gene cluster that might enable strain WB 3.3-2T to decompose plant and algae derived polysaccharides. In conclusion, based on these results we propose F. rivuli as an interesting candidate for further physiological studies and the role of Bacteroidetes in the decomposition of complex polymers in the environment.« less

  14. Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model

    NASA Astrophysics Data System (ADS)

    Tang, Liling; Cheng, Li; Ji, Hongli; Qiu, Jinhao

    2016-07-01

    Acoustics Black Hole (ABH) effect shows promising features for potential vibration control and energy harvesting applications. The phenomenon occurs in a structure with diminishing thickness which gradually reduces the phase velocity of flexural waves. The coupling between the tailored ABH structure and the damping layer used to compensate for the adverse effect of the unavoidable truncation is critical and has not been well apprehended by the existing models. This paper presents a semi-analytical model to analyze an Euler-Bernoulli beam with embedded ABH feature and its full coupling with the damping layers coated over its surface. By decomposing the transverse displacement field of the beam over the basis of a set of Mexican hat wavelets, the extremalization of the Hamiltonian via Lagrange's equation yields a set of linear equations, which can be solved for structural responses. Highly consistent with the FEM and experimental results, numerical simulations demonstrate that the proposed wavelet-based model is particularly suitable to characterize the ABH-induced drastic wavelength fluctuation phenomenon. The ABH feature as well as the effect of the wedge truncation and that of the damping layers on the vibration response of the beam is analyzed. It is shown that the mass of the damping layers needs particular attention when their thickness is comparable to that of the ABH wedge around the tip area. Due to its modular and energy-based feature, the proposed framework offers a general platform allowing embodiment of other control or energy harvesting elements into the model to guide ABH structural design for various applications.

  15. Telephone multiline signaling using common signal pair

    NASA Technical Reports Server (NTRS)

    Goodloe, R. R.; Toole, P. C.; Belt, J. L.; Leininger, D. B. (Inventor)

    1979-01-01

    An operator can rapidly and automatically produce coded electrical signals by manipulating mechanical thumb wheel switches so as to instruct a service center to connect any number of telephone lines to the console thus enabling the operator to listen and/or talk over several lines simultaneously. The system includes an on-site console having several mechanically operated thumb wheel switches to which the desired lines to be connected can be dialed in. Electrical coded signals are fed to a number of banks of line AND gates representing units, tens and hundreds, a group of channel gates, and a command gate. These signals are gated out in a controlled manner to an encoder which generates tones that are transmitted over a single line to a communication service center.

  16. Measurand transient signal suppressor

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A transient signal suppressor for use in a controls system which is adapted to respond to a change in a physical parameter whenever it crosses a predetermined threshold value in a selected direction of increasing or decreasing values with respect to the threshold value and is sustained for a selected discrete time interval is presented. The suppressor includes a sensor transducer for sensing the physical parameter and generating an electrical input signal whenever the sensed physical parameter crosses the threshold level in the selected direction. A manually operated switch is provided for adapting the suppressor to produce an output drive signal whenever the physical parameter crosses the threshold value in the selected direction of increasing or decreasing values. A time delay circuit is selectively adjustable for suppressing the transducer input signal for a preselected one of a plurality of available discrete suppression time and producing an output signal only if the input signal is sustained for a time greater than the selected suppression time. An electronic gate is coupled to receive the transducer input signal and the timer output signal and produce an output drive signal for energizing a control relay whenever the transducer input is a non-transient signal which is sustained beyond the selected time interval.

  17. Highly Scalable Matching Pursuit Signal Decomposition Algorithm

    NASA Technical Reports Server (NTRS)

    Christensen, Daniel; Das, Santanu; Srivastava, Ashok N.

    2009-01-01

    Matching Pursuit Decomposition (MPD) is a powerful iterative algorithm for signal decomposition and feature extraction. MPD decomposes any signal into linear combinations of its dictionary elements or atoms . A best fit atom from an arbitrarily defined dictionary is determined through cross-correlation. The selected atom is subtracted from the signal and this procedure is repeated on the residual in the subsequent iterations until a stopping criterion is met. The reconstructed signal reveals the waveform structure of the original signal. However, a sufficiently large dictionary is required for an accurate reconstruction; this in return increases the computational burden of the algorithm, thus limiting its applicability and level of adoption. The purpose of this research is to improve the scalability and performance of the classical MPD algorithm. Correlation thresholds were defined to prune insignificant atoms from the dictionary. The Coarse-Fine Grids and Multiple Atom Extraction techniques were proposed to decrease the computational burden of the algorithm. The Coarse-Fine Grids method enabled the approximation and refinement of the parameters for the best fit atom. The ability to extract multiple atoms within a single iteration enhanced the effectiveness and efficiency of each iteration. These improvements were implemented to produce an improved Matching Pursuit Decomposition algorithm entitled MPD++. Disparate signal decomposition applications may require a particular emphasis of accuracy or computational efficiency. The prominence of the key signal features required for the proper signal classification dictates the level of accuracy necessary in the decomposition. The MPD++ algorithm may be easily adapted to accommodate the imposed requirements. Certain feature extraction applications may require rapid signal decomposition. The full potential of MPD++ may be utilized to produce incredible performance gains while extracting only slightly less energy than the

  18. Robust decomposition of single-channel intramuscular EMG signals at low force levels

    NASA Astrophysics Data System (ADS)

    Marateb, Hamid R.; Muceli, Silvia; McGill, Kevin C.; Merletti, Roberto; Farina, Dario

    2011-10-01

    This paper presents a density-based method to automatically decompose single-channel intramuscular electromyogram (EMG) signals into their component motor unit action potential (MUAP) trains. In contrast to most previous decomposition methods, which require pre-setting and (or) tuning of multiple parameters, the proposed method takes advantage of the data-dependent strategies in the pattern recognition procedures. In this method, outliers (superpositions) are excluded prior to classification and MUAP templates are identified by an adaptive density-based clustering procedure. MUAP trains are then identified by a novel density-based classifier that incorporates MUAP shape and discharge time information. MUAP trains are merged by a fuzzy system that incorporates expert human knowledge. Finally, superimpositions are resolved to fill the gaps in the MUAP trains. The proposed decomposition algorithm has been experimentally tested on signals from low-force (<=30% maximal) isometric contractions of the vastus medialis obliquus, vastus lateralis, biceps femoris long-head and tibialis anterior muscles. Comparison with expert manual decomposition that had been verified using a rigorous statistical analysis showed that the algorithm identified 80% of the total 229 motor unit trains with an accuracy greater than 90%. The algorithm is robust and accurate, and therefore it is a promising new tool for decomposing single-channel multi-unit signals.

  19. Requirements for security signalling

    SciTech Connect

    Pierson, L.G.; Tarman, T.D.

    1995-02-05

    There has been some interest lately in the need for ``authenticated signalling``, and the development of signalling specifications by the ATM Forum that support this need. The purpose of this contribution is to show that if authenticated signalling is required, then supporting signalling facilities for directory services (i.e. key management) are also required. Furthermore, this contribution identifies other security related mechanisms that may also benefit from ATM-level signalling accommodations. For each of these mechanisms outlined here, an overview of the signalling issues and a rough cut at the required fields for supporting Information Elements are provided. Finally, since each of these security mechanisms are specified by a number of different standards, issues pertaining to the selection of a particular security mechanism at connection setup time (i.e. specification of a required ``Security Quality of Service``) are also discussed.

  20. Signal Processing, Analysis, & Display

    Energy Science and Technology Software Center (ESTSC)

    1986-06-01

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible andmore » are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less

  1. Implemented Wavelet Packet Tree based Denoising Algorithm in Bus Signals of a Wearable Sensorarray

    NASA Astrophysics Data System (ADS)

    Schimmack, M.; Nguyen, S.; Mercorelli, P.

    2015-11-01

    This paper introduces a thermosensing embedded system with a sensor bus that uses wavelets for the purposes of noise location and denoising. From the principle of the filter bank the measured signal is separated in two bands, low and high frequency. The proposed algorithm identifies the defined noise in these two bands. With the Wavelet Packet Transform as a method of Discrete Wavelet Transform, it is able to decompose and reconstruct bus input signals of a sensor network. Using a seminorm, the noise of a sequence can be detected and located, so that the wavelet basis can be rearranged. This particularly allows for elimination of any incoherent parts that make up unavoidable measuring noise of bus signals. The proposed method was built based on wavelet algorithms from the WaveLab 850 library of the Stanford University (USA). This work gives an insight to the workings of Wavelet Transformation.

  2. Multimodal signalling in the North American barn swallow: a phenotype network approach.

    PubMed

    Wilkins, Matthew R; Shizuka, Daizaburo; Joseph, Maxwell B; Hubbard, Joanna K; Safran, Rebecca J

    2015-10-01

    Complex signals, involving multiple components within and across modalities, are common in animal communication. However, decomposing complex signals into traits and their interactions remains a fundamental challenge for studies of phenotype evolution. We apply a novel phenotype network approach for studying complex signal evolution in the North American barn swallow (Hirundo rustica erythrogaster). We integrate model testing with correlation-based phenotype networks to infer the contributions of female mate choice and male-male competition to the evolution of barn swallow communication. Overall, the best predictors of mate choice were distinct from those for competition, while moderate functional overlap suggests males and females use some of the same traits to assess potential mates and rivals. We interpret model results in the context of a network of traits, and suggest this approach allows researchers a more nuanced view of trait clustering patterns that informs new hypotheses about the evolution of communication systems. PMID:26423842

  3. Digital signal processing the Tevatron BPM signals

    SciTech Connect

    Cancelo, G.; James, E.; Wolbers, S.; /Fermilab

    2005-05-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented.

  4. Precision signal power measurement

    NASA Technical Reports Server (NTRS)

    Winkelstein, R.

    1972-01-01

    Accurate estimation of signal power is an important Deep Space Network (DSN) consideration. Ultimately, spacecraft power and weight is saved if no reserve transmitter power is needed to compensate for inaccurate measurements. Spectral measurement of the received signal has proved to be an effective method of estimating signal power over a wide dynamic range. Furthermore, on-line spectral measurements provide an important diagnostic tool for examining spacecraft anomalies. Prototype equipment installed at a 64-m-diameter antenna site has been successfully used to make measurements of carrier power and sideband symmetry of telemetry signals received from the Mariner Mars 1971 spacecraft.

  5. Slit-Robo signaling.

    PubMed

    Blockus, Heike; Chédotal, Alain

    2016-09-01

    Slits are secreted proteins that bind to Roundabout (Robo) receptors. Slit-Robo signaling is best known for mediating axon repulsion in the developing nervous system. However, in recent years the functional repertoire of Slits and Robo has expanded tremendously and Slit-Robo signaling has been linked to roles in neurogenesis, angiogenesis and cancer progression among other processes. Likewise, our mechanistic understanding of Slit-Robo signaling has progressed enormously. Here, we summarize new insights into Slit-Robo evolutionary and system-dependent diversity, receptor-ligand interactions, signaling crosstalk and receptor activation. PMID:27578174

  6. A Modular Analysis of the Auxin Signalling Network

    PubMed Central

    Farcot, Etienne; Lavedrine, Cyril; Vernoux, Teva

    2015-01-01

    Auxin is essential for plant development from embryogenesis onwards. Auxin acts in large part through regulation of transcription. The proteins acting in the signalling pathway regulating transcription downstream of auxin have been identified as well as the interactions between these proteins, thus identifying the topology of this network implicating 54 Auxin Response Factor (ARF) and Aux/IAA (IAA) transcriptional regulators. Here, we study the auxin signalling pathway by means of mathematical modeling at the single cell level. We proceed analytically, by considering the role played by five functional modules into which the auxin pathway can be decomposed: the sequestration of ARF by IAA, the transcriptional repression by IAA, the dimer formation amongst ARFs and IAAs, the feedback loop on IAA and the auxin induced degradation of IAA proteins. Focusing on these modules allows assessing their function within the dynamics of auxin signalling. One key outcome of this analysis is that there are both specific and overlapping functions between all the major modules of the signaling pathway. This suggests a combinatorial function of the modules in optimizing the speed and amplitude of auxin-induced transcription. Our work allows identifying potential functions for homo- and hetero-dimerization of transcriptional regulators, with ARF:IAA, IAA:IAA and ARF:ARF dimerization respectively controlling the amplitude, speed and sensitivity of the response and a synergistic effect of the interaction of IAA with transcriptional repressors on these characteristics of the signaling pathway. Finally, we also suggest experiments which might allow disentangling the structure of the auxin signaling pathway and analysing further its function in plants. PMID:25807071

  7. Multi-frequency weak signal detection based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance

    NASA Astrophysics Data System (ADS)

    Han, Dongying; li, Pei; An, Shujun; Shi, Peiming

    2016-03-01

    In actual fault diagnosis, useful information is often submerged in heavy noise, and the feature information is difficult to extract. A novel weak signal detection method aimed at the problem of detecting multi-frequency signals buried under heavy background noise is proposed based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance (SR). First, the noisy signal is processed by parameter compensation, with the noise and system parameters expanded 10 times to counteract the effect of the damping term. The processed signal is decomposed into multiple signals of different scale frequencies by wavelet transform. Following this, we adjust the size of the scaled signals' amplitudes and reconstruct the signals; the weak signal frequency components are then enhanced by multi-stable stochastic resonance. The enhanced components of the signal are processed through a band-pass filter, leaving the enhanced sections of the signal. The processed signal is analyzed by FFT to achieve detection of the multi-frequency weak signals. The simulation and experimental results show that the proposed method can enhance the signal amplitude, can effectively detect multi-frequency weak signals buried under heavy noise and is valuable and usable for bearing fault signal analysis.

  8. Coherence specific signal detection via chiral pump-probe spectroscopy.

    PubMed

    Holdaway, David I H; Collini, Elisabetta; Olaya-Castro, Alexandra

    2016-05-21

    We examine transient circular dichroism (TRCD) spectroscopy as a technique to investigate signatures of exciton coherence dynamics under the influence of structured vibrational environments. We consider a pump-probe configuration with a linearly polarized pump and a circularly polarized probe, with a variable angle θ between the two directions of propagation. In our theoretical formalism the signal is decomposed in chiral and achiral doorway and window functions. Using this formalism, we show that the chiral doorway component, which beats during the population time, can be isolated by comparing signals with different values of θ. As in the majority of time-resolved pump-probe spectroscopy, the overall TRCD response shows signatures of both excited and ground state dynamics. However, we demonstrate that the chiral doorway function has only a weak ground state contribution, which can generally be neglected if an impulsive pump pulse is used. These findings suggest that the pump-probe configuration of optical TRCD in the impulsive limit has the potential to unambiguously probe quantum coherence beating in the excited state. We present numerical results for theoretical signals in an example dimer system. PMID:27208941

  9. Recovery of an evolving magnetic flux rope in the solar wind: Decomposing spatial and temporal variations from single-spacecraft data

    NASA Astrophysics Data System (ADS)

    Hasegawa, H.; Sonnerup, B.; Hu, Q.; Nakamura, T.

    2013-12-01

    We present a novel single-spacecraft data analysis method for decomposing spatial and temporal variations of physical quantities at points along the path of a spacecraft in spacetime. The method is designed for use in the reconstruction of slowly evolving two-dimensional, magneto-hydrostatic structures (Grad-Shafranov equilibria) in a space plasma. It is an extension of the one developed by Sonnerup and Hasegawa [2010] and Hasegawa et al. [2010], in which it was assumed that variations in the time series of data, recorded as the structures move past the spacecraft, are all due to spatial effects. In reality, some of the observed variations are usually caused by temporal evolution of the structure during the time it moves past the observing spacecraft; the information in the data about the spatial structure is aliased by temporal effects. The purpose here is to remove this time aliasing from the reconstructed maps of field and plasma properties. Benchmark tests are performed by use of synthetic data taken by a virtual spacecraft as it traverses, at a constant velocity, a slowly growing magnetic flux rope in a two-dimensional magnetohydrodynamic simulation of magnetic reconnection. These tests show that the new method can better recover the spacetime behavior of the flux rope than does the original version, in which time aliasing effects had not been removed. An application of the new method to a solar wind flux rope, observed by the ACE spacecraft, suggests that it was evolving in a significant way during the ~17 hour interval of the traversal. References Hasegawa, H., B. U. Ö. Sonnerup, and T. K. M. Nakamura (2010), Recovery of time evolution of Grad-Shafranov equilibria from single-spacecraft data: Benchmarking and application to a flux transfer event, J. Geophys. Res., 115, A11219, doi:10.1029/2010JA015679. Sonnerup, B. U. Ö., and H. Hasegawa (2010), On slowly evolving Grad-Shafranov equilibria, J. Geophys. Res., 115, A11218, doi:10.1029/2010JA015678. Magnetic

  10. Comparative Analysis of the Chemical Composition of Mixed and Pure Cultures of Green Algae and Their Decomposed Residues by 13C Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Zelibor, J. L.; Romankiw, L.; Hatcher, P. G.; Colwell, R. R.

    1988-01-01

    It is known that macromolecular organic matter in aquatic environments, i.e., humic substances, is highly aliphatic. These aliphatic macromolecules, predominantly paraffinic in structure, are prevalent in marine and lacustrine sediments and are believed to originate from algae or bacteria. A comparative study of mixed and pure cultures of green algae and their decomposed residues was performed by using solid-state 13C nuclear magnetic resonance spectroscopy as the primary analytical method. Results obtained in this study confirm the presence of components that are chemically refractory and that are defined as alghumin and hydrolyzed alghumin. These were detected in heterogeneous, homogeneous, and axenic biomasses composed of several genera of Chlorophyta. Although the chemical composition of algal biomass varied with culture conditions, the chemical structure of the alghumin and hydrolyzed alghumin, demonstrated by 13C nuclear magnetic resonance spectroscopy appeared to be constant for members of the Chlorophyta examined in this study. The alghumin was dominated by carbohydrate-carbon, with minor amounts of amide or carboxyl carbon and paraffinic carbon, the latter surviving strong hydrolysis by 6 N HCI (hydrolyzed alghumin). Bacterial decomposition of heterogeneous algal biomass labeled with 13C was conducted under both aerobic and anaerobic conditions to determine chemical structure and stability of the refractory material. The refractory fraction ranged from 33% in aerobic to 44% in anaerobic cultures. The refractory fraction recovered from either aerobic or anaerobic degradation comprised 40% alghumin, which represented an enrichment by 10% relative to the proportion of alghumin derived from whole cells of algae. The paraffinic component in the hydrolyzed alghumin of whole algal cells was found to be 1.8% and increased to 5.1 and 6.9% after aerobic and anaerobic bacterial degradation, respectively. It is concluded that members of the Chlorophyta contain a

  11. Signaling by Gasotransmitters

    PubMed Central

    Mustafa, Asif K.; Gadalla, Moataz M.; Snyder, Solomon H.

    2009-01-01

    Nitric oxide is well established as a major signaling molecule. Evidence is accumulating that carbon monoxide and hydrogen sulfide also are physiologic mediators in the cardiovascular, immune, and nervous systems. This Review focuses on mechanisms whereby they signal by binding to metal centers in metalloproteins, such as in guanylyl cyclase, or modifying sulfhydryl groups in protein targets. PMID:19401594

  12. Seismic signal of avalanches

    NASA Astrophysics Data System (ADS)

    Pesaresi, Damiano; Ravanat, Xavier; Thibert, Emmanuel

    2010-05-01

    The characterization of avalanches with seismic signals is an important task. For risk mitigation, estimating remotely avalanche activity by means of seismic signals is a good alternative to direct observations that are often limited by visual conditions and observer's availability. In seismology, the main challenge is to discriminate avalanche signals within the natural earth seismic activity and background noise. Some anthropogenic low frequency (infra-sound) sources like helicopters also generate seismic signals. In order to characterize an avalanche seismic signal, a 3-axis broad band seismometer (Guralp 3T) has been set-up on a real scale avalanche test site in Lautaret (France). The sensor is located in proximity of 2 avalanche paths where avalanches can be artificially released. Preliminary results of seismic records are presented, correlated with avalanche physical parameters (volume released, velocity, energy).

  13. Bioelectric Signal Measuring System

    NASA Astrophysics Data System (ADS)

    Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.

    2015-01-01

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.

  14. Exosomes in developmental signalling.

    PubMed

    McGough, Ian John; Vincent, Jean-Paul

    2016-07-15

    In order to achieve coordinated growth and patterning during development, cells must communicate with one another, sending and receiving signals that regulate their activities. Such developmental signals can be soluble, bound to the extracellular matrix, or tethered to the surface of adjacent cells. Cells can also signal by releasing exosomes - extracellular vesicles containing bioactive molecules such as RNA, DNA and enzymes. Recent work has suggested that exosomes can also carry signalling proteins, including ligands of the Notch receptor and secreted proteins of the Hedgehog and WNT families. Here, we describe the various types of exosomes and their biogenesis. We then survey the experimental strategies used so far to interfere with exosome formation and critically assess the role of exosomes in developmental signalling. PMID:27436038

  15. Biological signals as handicaps.

    PubMed

    Grafen, A

    1990-06-21

    An ESS model of Zahavi's handicap principle is constructed. This allows a formal exposition of how the handicap principle works, and shows that its essential elements are strategic. The handicap model is about signalling, and it is proved under fairly general conditions that if the handicap principle's conditions are met, then an evolutionarily stable signalling equilibrium exists in a biological signalling system, and that any signalling equilibrium satisfies the conditions of the handicap principle. Zahavi's major claims for the handicap principle are thus vindicated. The place of cheating is discussed in view of the honesty that follows from the handicap principle. Parallel signalling models in economics are discussed. Interpretations of the handicap principle are compared. The models are not fully explicit about how females use information about male quality, and, less seriously, have no genetics. A companion paper remedies both defects in a model of the handicap principle at work in sexual selection. PMID:2402153

  16. Mitochondrial emitted electromagnetic signals mediate retrograde signaling.

    PubMed

    Bagkos, Georgios; Koufopoulos, Kostas; Piperi, Christina

    2015-12-01

    Recent evidence shows that mitochondria regulate nuclear transcriptional activity both in normal and cell stress conditions, known as retrograde signaling. Under normal mitochondrial function, retrograde signaling is associated with mitochondrial biogenesis, normal cell phenotype and metabolic profile. In contrast, mitochondrial dysfunction leads to abnormal (oncogenic) cell phenotype and altered bio-energetic profile (nucleus reprogramming). Despite intense research efforts, a concrete mechanism through which mitochondria determine the group of genes expressed by the nucleus is still missing. The present paper proposes a novel hypothesis regarding retrograde signaling. More specifically, it reveals the mitochondrial membrane potential (MMP) and the accompanied strong electromagnetic field (EF) as key regulatory factors of nuclear activity. Mitochondrial emitted EFs extend in long distance and affect the function of nuclear membrane receptors. Depending on their frequencies, EFs can directly activate or deactivate different groups of nuclear receptors and so determine nuclear gene expression. One of the key features of the above hypothesis is that nuclear membrane receptors, besides their own endogenous or chemical ligands (hormones, lipids, etc.), can also be activated by electromagnetic signals. Moreover, normal MMP values (about -140 mV) are associated with the production of high ATP quantities and small levels of reactive oxygen species (ROS) while the hyperpolarization observed in all cancer cell types leads to a dramatic fall in ATP production and an analogous increase in ROS. The diminished ATP and increased ROS production negatively affect the function of all cellular systems including nucleus. Restoration of mitochondrial function, which is characterized by the fluctuation of MMP and EF values within a certain (normal) range, is proposed as a necessary condition for normal nuclear function and cancer therapy. PMID:26474928

  17. Identification of Buried Objects in GPR Using Amplitude Modulated Signals Extracted from Multiresolution Monogenic Signal Analysis.

    PubMed

    Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu

    2015-01-01

    It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146

  18. Identification of Buried Objects in GPR Using Amplitude Modulated Signals Extracted from Multiresolution Monogenic Signal Analysis

    PubMed Central

    Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu

    2015-01-01

    It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146

  19. RTG1- and RTG2-dependent retrograde signaling controls mitochondrial activity and stress resistance in Saccharomyces cerevisiae.

    PubMed

    Torelli, Nicole Quesada; Ferreira-Júnior, José Ribamar; Kowaltowski, Alicia J; da Cunha, Fernanda Marques

    2015-04-01

    Mitochondrial retrograde signaling is a communication pathway between the mitochondrion and the nucleus that regulates the expression of a subset of nuclear genes that codify mitochondrial proteins, mediating cell response to mitochondrial dysfunction. In Saccharomyces cerevisiae, the pathway depends on Rtg1p and Rtg3p, which together form the transcription factor that regulates gene expression, and Rtg2p, an activator of the pathway. Here, we provide novel studies aimed at assessing the functional impact of the lack of RTG-dependent signaling on mitochondrial activity. We show that mutants defective in RTG-dependent retrograde signaling present higher oxygen consumption and reduced hydrogen peroxide release in the stationary phase compared to wild-type cells. Interestingly, RTG mutants are less able to decompose hydrogen peroxide or maintain viability when challenged with hydrogen peroxide. Overall, our results indicate that RTG signaling is involved in the hormetic induction of antioxidant defenses and stress resistance. PMID:25578655

  20. Hedgehog signaling and steroidogenesis.

    PubMed

    Finco, Isabella; LaPensee, Christopher R; Krill, Kenneth T; Hammer, Gary D

    2015-01-01

    Since its discovery nearly 30 years ago, the Hedgehog (Hh) signaling pathway has been shown to be pivotal in many developmental and pathophysiological processes in several steroidogenic tissues, including the testis, ovary, adrenal cortex, and placenta. New evidence links the evolutionarily conserved Hh pathway to the steroidogenic organs, demonstrating how Hh signaling can influence their development and homeostasis and can act in concert with steroids to mediate physiological functions. In this review, we highlight the role of the components of the Hh signaling pathway in steroidogenesis of endocrine tissues. PMID:25668018

  1. Plant Cyclic Nucleotide Signalling

    PubMed Central

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc

    2007-01-01

    The presence of the cyclic nucleotides 3′,5′-cyclic adenyl monophosphate (cAMP) and 3′,5′-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed. PMID:19704553

  2. Signal processing for microcalorimeters

    NASA Astrophysics Data System (ADS)

    Szymkowiak, A. E.; Kelley, R. L.; Moseley, S. H.; Stahle, C. K.

    1993-11-01

    Most of the power in the signals from microcalorimeters occurs at relatively low frequencies. At these frequencies, typical amplifiers will have significant amounts of 1/f noise. Our laboratory systems can also suffer from pickup at several harmonics of the AC power line, and from microphonic pickup at frequencies that vary with the configuration of the apparatus. We have developed some optimal signal processing techniques in order to construct the best possible estimates of our pulse heights in the presence of these non-ideal effects. In addition to a discussion of our laboratory systems, we present our plans for providing this kind of signal processing in flight experiments.

  3. Extracting Independent Local Oscillatory Geophysical Signals by Geodetic Tropospheric Delay

    NASA Technical Reports Server (NTRS)

    Botai, O. J.; Combrinck, L.; Sivakumar, V.; Schuh, H.; Bohm, J.

    2010-01-01

    Zenith Tropospheric Delay (ZTD) due to water vapor derived from space geodetic techniques and numerical weather prediction simulated-reanalysis data exhibits non-linear and non-stationary properties akin to those in the crucial geophysical signals of interest to the research community. These time series, once decomposed into additive (and stochastic) components, have information about the long term global change (the trend) and other interpretable (quasi-) periodic components such as seasonal cycles and noise. Such stochastic component(s) could be a function that exhibits at most one extremum within a data span or a monotonic function within a certain temporal span. In this contribution, we examine the use of the combined Ensemble Empirical Mode Decomposition (EEMD) and Independent Component Analysis (ICA): the EEMD-ICA algorithm to extract the independent local oscillatory stochastic components in the tropospheric delay derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) over six geodetic sites (HartRAO, Hobart26, Wettzell, Gilcreek, Westford, and Tsukub32). The proposed methodology allows independent geophysical processes to be extracted and assessed. Analysis of the quality index of the Independent Components (ICs) derived for each cluster of local oscillatory components (also called the Intrinsic Mode Functions (IMFs)) for all the geodetic stations considered in the study demonstrate that they are strongly site dependent. Such strong dependency seems to suggest that the localized geophysical signals embedded in the ZTD over the geodetic sites are not correlated. Further, from the viewpoint of non-linear dynamical systems, four geophysical signals the Quasi-Biennial Oscillation (QBO) index derived from the NCEP/NCAR reanalysis, the Southern Oscillation Index (SOI) anomaly from NCEP, the SIDC monthly Sun Spot Number (SSN), and the Length of Day (LoD) are linked to the extracted signal components from ZTD. Results from the synchronization

  4. Signal Decomposition of Transmembrane Voltage-Sensitive Dye Fluorescence Using a Multiresolution Wavelet Analysis

    PubMed Central

    Asfour, Huda; Swift, Luther M.; Sarvazyan, Narine; Doroslovački, Miloš; Kay, Matthew W.

    2013-01-01

    Fluorescence imaging of transmembrane voltage-sensitive dyes is used to study electrical activation in cardiac tissue. However, the fluorescence signals, typically, have low SNRs and may be contaminated with motion artifact. In this report, we introduce a new processing approach for fluoresced transmembrane potentials (fTmps) that is based upon a discrete wavelet transform. We show how fTmp signals can be decomposed and reconstructed to form three subsignals that contain signal noise (noise signal), the early depolarization phase of the action potential (rTmp signal), and motion artifact (rMA signal). A coiflet4 wavelet is used for fTmp decomposition and reconstruction of these subsignals. Results using fTmp signals that are contaminated with motion artifact indicate that the approach is a useful processing step to remove baseline drift, reduce noise, and reveal wavefronts. It streamlines the preprocessing of fTmps for the subsequent measurement of activation times and conduction velocities. It is a promising approach for studying wavefronts without aggressive mechanical tissue constraint or electromechanical uncoupling agents and is, useful for single-camera systems that do not provide for ratiometric imaging. PMID:21511560

  5. Powerline noise elimination in biomedical signals via blind source separation and wavelet analysis.

    PubMed

    Akwei-Sekyere, Samuel

    2015-01-01

    The distortion of biomedical signals by powerline noise from recording biomedical devices has the potential to reduce the quality and convolute the interpretations of the data. Usually, powerline noise in biomedical recordings are extinguished via band-stop filters. However, due to the instability of biomedical signals, the distribution of signals filtered out may not be centered at 50/60 Hz. As a result, self-correction methods are needed to optimize the performance of these filters. Since powerline noise is additive in nature, it is intuitive to model powerline noise in a raw recording and subtract it from the raw data in order to obtain a relatively clean signal. This paper proposes a method that utilizes this approach by decomposing the recorded signal and extracting powerline noise via blind source separation and wavelet analysis. The performance of this algorithm was compared with that of a 4th order band-stop Butterworth filter, empirical mode decomposition, independent component analysis and, a combination of empirical mode decomposition with independent component analysis. The proposed method was able to expel sinusoidal signals within powerline noise frequency range with higher fidelity in comparison with the mentioned techniques, especially at low signal-to-noise ratio. PMID:26157639

  6. Powerline noise elimination in biomedical signals via blind source separation and wavelet analysis

    PubMed Central

    2015-01-01

    The distortion of biomedical signals by powerline noise from recording biomedical devices has the potential to reduce the quality and convolute the interpretations of the data. Usually, powerline noise in biomedical recordings are extinguished via band-stop filters. However, due to the instability of biomedical signals, the distribution of signals filtered out may not be centered at 50/60 Hz. As a result, self-correction methods are needed to optimize the performance of these filters. Since powerline noise is additive in nature, it is intuitive to model powerline noise in a raw recording and subtract it from the raw data in order to obtain a relatively clean signal. This paper proposes a method that utilizes this approach by decomposing the recorded signal and extracting powerline noise via blind source separation and wavelet analysis. The performance of this algorithm was compared with that of a 4th order band-stop Butterworth filter, empirical mode decomposition, independent component analysis and, a combination of empirical mode decomposition with independent component analysis. The proposed method was able to expel sinusoidal signals within powerline noise frequency range with higher fidelity in comparison with the mentioned techniques, especially at low signal-to-noise ratio. PMID:26157639

  7. [Pattern recognition of surface electromyography signal based on multi-scale fuzzy entropy].

    PubMed

    Zou, Xiaoyang; Lei, Min

    2012-12-01

    Action surface electromyography (SEMG) signals can be acquired from human skin surface. Its pattern recognition plays a very important role in practical applications such as human prosthesis and human-computer interface systems. For the purpose of increasing the recognition accuracy, we proposed a new recognition method combining fuzzy entropy (FuzzyEn) with multi-scale analysis. Considering the nonlinear and non-stationary characteristics of the SEMG, a multi-scale fuzzy entropy (MSFuzzyEn) feature was introduced and applied to the pattern recognition of six type action SEMG signals of the forearm. Firstly, multi-scale decomposition was applied to original signal using wavelet decomposition. Then MSFuzzyEn of the decomposed signals were calculated and inputted to support vector machine (SVM) for classification as feature vectors. The mean recognition accuracy reached 97%, which was 3% greater than that when FuzzyEn of original signal is applied to the classification of SEMG signals. The results have proved that the MSFuzzyEn is effective and precise in the classification of action SEMG signals. PMID:23469553

  8. Sparse deconvolution method for ultrasound images based on automatic estimation of reference signals.

    PubMed

    Jin, Haoran; Yang, Keji; Wu, Shiwei; Wu, Haiteng; Chen, Jian

    2016-04-01

    Sparse deconvolution is widely used in the field of non-destructive testing (NDT) for improving the temporal resolution. Generally, the reference signals involved in sparse deconvolution are measured from the reflection echoes of standard plane block, which cannot accurately describe the acoustic properties at different spatial positions. Therefore, the performance of sparse deconvolution will deteriorate, due to the deviations in reference signals. Meanwhile, it is inconvenient for automatic ultrasonic NDT using manual measurement of reference signals. To overcome these disadvantages, a modified sparse deconvolution based on automatic estimation of reference signals is proposed in this paper. By estimating the reference signals, the deviations would be alleviated and the accuracy of sparse deconvolution is therefore improved. Based on the automatic estimation of reference signals, regional sparse deconvolution is achievable by decomposing the whole B-scan image into small regions of interest (ROI), and the image dimensionality is significantly reduced. Since the computation time of proposed method has a power dependence on the signal length, the computation efficiency is therefore improved significantly with this strategy. The performance of proposed method is demonstrated using immersion measurement of scattering targets and steel block with side-drilled holes. The results verify that the proposed method is able to maintain the vertical resolution enhancement and noise-suppression capabilities in different scenarios. PMID:26773787

  9. Noise reduction in Doppler ultrasound signals using an adaptive decomposition algorithm.

    PubMed

    Zhang, Yufeng; Wang, Le; Gao, Yali; Chen, Jianhua; Shi, Xinling

    2007-07-01

    A novel de-noising method for improving the signal-to-noise ratio (SNR) of Doppler ultrasound blood flow signals, called the matching pursuit method, has been proposed. Using this method, the Doppler ultrasound signal was first decomposed into a linear expansion of waveforms, called time-frequency atoms, which were selected from a redundant dictionary named Gabor functions. Subsequently, a decay parameter-based algorithm was employed to determine the decomposition times. Finally, the de-noised Doppler signal was reconstructed using the selected components. The SNR improvements, the amount of the lost component in the original signal and the maximum frequency estimation precision with simulated Doppler blood flow signals, have been used to evaluate a performance comparison, based on the wavelet, the wavelet packets and the matching pursuit de-noising algorithms. From the simulation and clinical experiment results, it was concluded that the performance of the matching pursuit approach was better than those of the DWT and the WPs methods for the Doppler ultrasound signal de-noising. PMID:16996774

  10. Multiresolution analysis of precipitation teleconnections with large-scale climate signals: A case study in South Australia

    NASA Astrophysics Data System (ADS)

    He, Xinguang; Guan, Huade

    2013-10-01

    Climatic teleconnections are often used to interpret and sometimes to predict precipitation temporal variability at various time scales. However, the teleconnections are intertwined between the effects of multiple large-scale climate signals which are often interdependent. Each climate signal is composed of multitemporal components, which may result in different teleconnection patterns. The time lags of precipitation response may vary with climate signals and their multitemporal components. In order to effectively address these problems, a multiresolution analysis (MRA) with a discrete wavelet transform is utilized, and a stepwise linear regression model based on MRA and cross correlation analysis is developed in this study. The method is applied to examine monthly precipitation teleconnections in South Australia (SA) with five large-scale climate signals. The MRA first decomposes each of original monthly precipitation anomaly and climate signals into several component series at different temporal scales. Then the hierarchical lag relationships between them are determined for regression modeling using cross-correlation analysis. The results indicate that the MRA-based method is able to reveal at which time scale(s) and with what time lag(s) the teleconnections occur, and their spatial patterns. The method is also useful to examine the time-scale patterns of the interdependence between climate signals. These altogether make the MRA-based method a promising tool to address the difficulties in the climate teleconnection studies. The multiple linear regression based on MRA-decomposed climate signals is expected to better interpret monthly precipitation temporal variability than that based on the original climate signals.

  11. Signal processing in SETI

    NASA Technical Reports Server (NTRS)

    Cullers, D. K.; Linscott, I. R.; Oliver, B. M.

    1985-01-01

    It is believed that the Galaxy might contain ten billion potential life sites. In view of the physical inaccessibility of extraterrestrial life on account of the vast distances involved, a logical first step in a search for extraterrestrial intelligence (SETI) appears to be an attempt to detect signals already being radiated. The characteristics of the signals to be expected are discussed together with the search strategy of a NASA program. It is pointed out that all presently planned searches will use existing radio-astronomy antennas. If no extraterrestrial intelligence signals are discovered, society will have to decide whether SETI justifies a dedicated facility of much greater collecting area. Attention is given to a multichannel spectrum analyzer, CW signal detection, pulse detection, the pattern detector, and details of SETI system operation.

  12. GNSS Ocean Reflected Signals

    NASA Astrophysics Data System (ADS)

    Hoeg, P.

    2012-12-01

    Ocean reflected signals from the GNSS satellites (received at low-Earth orbiting satellites, airplanes and fixed mountain locations) describe the ocean surface mean height, waves, roughness, spectral reflectivity and emissivity. The estimated accuracy of the average surface height is of the order of 10 cm for smooth conditions. Thus global observations could be an important new contribution to long-term variations of the ocean mean height as well as the monitoring of ocean mesoscale eddies, which result in sea-height changes much larger than the accuracy of the GNSS technique for reflected signals. The ocean reflected signals can be divided into two set of measurements, 1) high elevation measurements (equal to low incidence angles) and 2) low elevation grazing angle measurements. For the first type the ocean reflection cross-section has a limited extent. The reflected signal is coherent with smaller errors due to ocean waves, sampling rate and the internal processing method of the receiver. For low elevations, the signal reveals the incoherent scatter process at the reflection zone. To quantify the potential of the GNSS signals for determining spectral reflectivity at low elevations, we present ocean reflection GPS measurements from the Haleakala Summit on Maui, Hawaii, revealing the spectral characteristics of both the direct satellite signal and the ocean reflected signal for low elevation angles. The characteristics of the reflected signal depend on the scattering properties of the sea surface and the footprint of the reflection zone. While the footprint size and shape in turn depends on the signal incidence angle, the ocean mean tilt, and the relative velocities of transmitter and receiver to the reflection point. Thus the scattering properties of the sea surface are related to the sea surface roughness. We present the spectral properties of the signals as received by a high precision GPS instrument, simultaneously in both phase-locked mode and open-loop raw

  13. Signals and Receptors.

    PubMed

    Heldin, Carl-Henrik; Lu, Benson; Evans, Ron; Gutkind, J Silvio

    2016-04-01

    Communication between cells in a multicellular organism occurs by the production of ligands (proteins, peptides, fatty acids, steroids, gases, and other low-molecular-weight compounds) that are either secreted by cells or presented on their surface, and act on receptors on, or in, other target cells. Such signals control cell growth, migration, survival, and differentiation. Signaling receptors can be single-span plasma membrane receptors associated with tyrosine or serine/threonine kinase activities, proteins with seven transmembrane domains, or intracellular receptors. Ligand-activated receptors convey signals into the cell by activating signaling pathways that ultimately affect cytosolic machineries or nuclear transcriptional programs or by directly translocating to the nucleus to regulate transcription. PMID:27037414

  14. Audio signal processor

    NASA Technical Reports Server (NTRS)

    Hymer, R. L.

    1970-01-01

    System provides automatic volume control for an audio amplifier or a voice communication system without introducing noise surges during pauses in the input, and without losing the initial signal when the input resumes.

  15. Signals from the Cosmos.

    ERIC Educational Resources Information Center

    Lichtman, Jeffrey M.

    1991-01-01

    Introduces the basics of radio astronomy and describes how to assemble several simple systems for receiving radio signals from the cosmos. Includes schematics, parts lists, working drawings, and contact information for radio astronomy suppliers. (11 references) (Author/JJK)

  16. IRAK signalling in cancer.

    PubMed

    Rhyasen, G W; Starczynowski, D T

    2015-01-20

    Innate immune signalling has an essential role in inflammation, and the dysregulation of signalling components of this pathway is increasingly being recognised as an important mediator in cancer initiation and progression. In some malignancies, dysregulation of inflammatory toll-like receptor (TLR) and interleukin-1 receptor (IL1R) signalling is typified by increased NF-κB activity, and it occurs through somatic mutations, chromosomal deletions, and/or transcriptional deregulation. Interleukin-1 receptor-associated kinase (IRAK) family members are mediators of TLR/IL1R superfamily signalling, and mounting evidence implicates these kinases as viable cancer targets. Although there have been previous efforts aimed at the development of IRAK kinase inhibitors, this is currently an area of renewed interest for cancer drug development. PMID:25290089

  17. Quantifying Ubiquitin Signaling

    PubMed Central

    Ordureau, Alban; Münch, Christian; Harper, J. Wade

    2015-01-01

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850

  18. Advanced signal processing

    NASA Astrophysics Data System (ADS)

    Creasey, D. J.

    1985-12-01

    A collection of papers on advanced signal processing in radar, sonar, and communications is presented. The topics addressed include: transmitter aerials, high-power amplifier design for active sonar, radar transmitters, receiver array technology for sonar, new underwater acoustic detectors, diversity techniques in communications receivers, GaAs IC amplifiers for radar and communication receivers, integrated optical techniques for acoustooptic receivers, logarithmic receivers, CCD processors for sonar, acoustooptic correlators, designing in silicon, very high performance integrated circuits, and digital filters. Also discussed are: display types, scan converters in sonar, display ergonomics, simulators, high throughput sonar processors, optical fiber systems for signal processing, satellite communications, VLSI array processor for image and signal processing, ADA, future of cryogenic devices for signal processing applications, advanced image understanding, and VLSI architectures for real-time image processing.

  19. Modularity in signaling systems

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Domitilla

    2012-08-01

    Modularity is a property by which the behavior of a system does not change upon interconnection. It is crucial for understanding the behavior of a complex system from the behavior of the composing subsystems. Whether modularity holds in biology is an intriguing and largely debated question. In this paper, we discuss this question taking a control system theory view and focusing on signaling systems. In particular, we argue that, despite signaling systems being constituted of structural modules, such as covalent modification cycles, modularity does not hold in general. As in any engineering system, impedance-like effects, called retroactivity, appear at interconnections and alter the behavior of connected modules. We further argue that while signaling systems have evolved sophisticated ways to counter-act retroactivity and enforce modularity, retroactivity may also be exploited to finely control the information processing of signaling pathways. Testable predictions and experimental evidence are discussed with their implications.

  20. Error-prone signalling.

    PubMed

    Johnstone, R A; Grafen, A

    1992-06-22

    The handicap principle of Zahavi is potentially of great importance to the study of biological communication. Existing models of the handicap principle, however, make the unrealistic assumption that communication is error free. It seems possible, therefore, that Zahavi's arguments do not apply to real signalling systems, in which some degree of error is inevitable. Here, we present a general evolutionarily stable strategy (ESS) model of the handicap principle which incorporates perceptual error. We show that, for a wide range of error functions, error-prone signalling systems must be honest at equilibrium. Perceptual error is thus unlikely to threaten the validity of the handicap principle. Our model represents a step towards greater realism, and also opens up new possibilities for biological signalling theory. Concurrent displays, direct perception of quality, and the evolution of 'amplifiers' and 'attenuators' are all probable features of real signalling systems, yet handicap models based on the assumption of error-free communication cannot accommodate these possibilities. PMID:1354361

  1. Signal-light nomogram

    NASA Technical Reports Server (NTRS)

    Gordon, J. I.; Edgerton, C. F.; Duntley, S. Q.

    1975-01-01

    A nomogram is presented for predicting the sighting range for white, steady-burning signal lights. The theoretical and experimental bases are explained and instructions are provided for its use for a variety of practical problems concerning the visibility of signal lights. The nomogram is appropriate for slant path as well as horizontal sightings, and the gain of range achieved by utilizing binoculars can be predicted by use of it.

  2. Wnt Signaling in Bone

    PubMed Central

    Kubota, Takuo; Michigami, Toshimi; Ozono, Keiichi

    2010-01-01

    Wnt signaling is involved not only in embryonic development but also in maintenance of homeostasis in postnatal tissues. Multiple lines of evidence have increased understanding of the roles of Wnt signaling in bone since mutations in the LRP5 gene were identified in human bone diseases. Canonical Wnt signaling promotes mesenchymal progenitor cells to differentiate into osteoblasts. The canonical Wnt/β-catenin pathway possibly through Lrp6, a co-receptor for Wnts as well as Lrp5, in osteoblasts regulates bone resorption by increasing the OPG/RANKL ratio. However, endogenous inhibitors of Wnt signaling including sclerostin block bone formation. Regulation of sclerostin appears to be one of the mechanisms of PTH anabolic actions on bone. Since sclerostin is almost exclusively expressed in osteocytes, inhibition of sclerostin is the most promising design. Surprisingly, Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum, but not by directly promoting bone formation. Pharmacological intervention may be considered in many components of the canonical Wnt signaling pathway, although adverse effects and tumorigenicity to other tissues are important. More studies will be needed to fully understand how the Wnt signaling pathway actually influences bone metabolism and to assure the safety of new interventions. PMID:23926379

  3. Sucrose signaling in plants

    PubMed Central

    Tognetti, Jorge A.; Pontis, Horacio G.; Martínez-Noël, Giselle M.A.

    2013-01-01

    The role of sucrose as a signaling molecule in plants was originally proposed several decades ago. However, recognition of sucrose as a true signal has been largely debated and only recently this role has been fully accepted. The best-studied cases of sucrose signaling involve metabolic processes, such as the induction of fructan or anthocyanin synthesis, but a large volume of scattered information suggests that sucrose signals may control a vast array of developmental processes along the whole life cycle of the plant. Also, wide gaps exist in our current understanding of the intracellular steps that mediate sucrose action. Sucrose concentration in plant tissues tends to be directly related to light intensity, and inversely related to temperature, and accordingly, exogenous sucrose supply often mimics the effect of high light and cold. However, many exceptions to this rule seem to occur due to interactions with other signaling pathways. In conclusion, the sucrose role as a signal molecule in plants is starting to be unveiled and much research is still needed to have a complete map of its significance in plant function. PMID:23333971

  4. Semaphorin signaling in bone.

    PubMed

    Verlinden, Lieve; Vanderschueren, Dirk; Verstuyf, Annemieke

    2016-09-01

    Semaphorin molecules regulate cell adhesion and motility in a wide variety of cell types and are therefore involved in numerous processes including axon guidance, angiogenesis, cardiogenesis, tumor growth, and immune response. Increasing evidence points to a role of transmembrane, membrane-associated and soluble semaphorins during bone development as well as in the control of normal bone homeostasis. Within bone, semaphorins are implicated in the communication between different cell types by relaying signals in an autocrine or paracrine way. Semaphorins are not only involved in bone resorption but also in bone formation. Therefore, targeting semaphorin-induced signaling in bone may constitute an interesting new therapeutic strategy in osteoporosis. However, all the pioneering research on semaphorins is performed in mice and it remains to be established to what extent semaphorin signaling pathways are conserved between mice and men. In addition, knowledge of semaphorin signaling in bone mostly arises from loss/gain of function studies of one single semaphorin and/or receptor. However, different semaphorin molecules are co-expressed in bone and their signaling pathways are likely to interact in a complex and coherent way that needs proper understanding before targeting semaphorin signaling can be therapeutically exploited. PMID:26365296

  5. Pulse code modulated signal synchronizer

    NASA Technical Reports Server (NTRS)

    Kobayashi, H. S. (Inventor)

    1974-01-01

    A bit synchronizer for a split phase PCM transmission is reported that includes three loop circuits which receive incoming phase coded PCM signals. In the first loop, called a Q-loop, a generated, phase coded, PCM signal is multiplied with the incoming signals, and the frequency and phase of the generated signal are nulled to that of the incoming subcarrier signal. In the second loop, called a B-loop, a circuit multiplies a generated signal with incoming signals to null the phase of the generated signal in a bit phase locked relationship to the incoming signal. In a third loop, called the I-loop, a phase coded PCM signal is multiplied with the incoming signals for decoding the bit information from the PCM signal. A counter means is used for timing of the generated signals and timing of sample intervals for each bit period.

  6. Calcium signaling and cytotoxicity.

    PubMed Central

    Kass, G E; Orrenius, S

    1999-01-01

    The divalent calcium cation Ca(2+) is used as a major signaling molecule during cell signal transduction to regulate energy output, cellular metabolism, and phenotype. The basis to the signaling role of Ca(2+) is an intricate network of cellular channels and transporters that allow a low resting concentration of Ca(2+) in the cytosol of the cell ([Ca(2+)]i) but that are also coupled to major dynamic and rapidly exchanging stores. This enables extracellular signals from hormones and growth factors to be transduced as [Ca(2+)]i spikes that are amplitude and frequency encoded. There is considerable evidence that a number of toxic environmental chemicals target these Ca(2+) signaling processes, alter them, and induce cell death by apoptosis. Two major pathways for apoptosis will be considered. The first one involves Ca(2+)-mediated expression of ligands that bind to and activate death receptors such as CD95 (Fas, APO-1). In the second pathway, Ca(2+) has a direct toxic effect and its primary targets include the mitochondria and the endoplasmic reticulum (ER). Mitochondria may respond to an apoptotic Ca(2+) signal by the selective release of cytochrome c or through enhanced production of reactive oxygen species and opening of an inner mitochondrial membrane pore. Toxic agents such as the environmental pollutant tributyltin or the natural plant product thapsigargin, which deplete the ER Ca(2+) stores, will induce as a direct result of this effect the opening of plasma membrane Ca(2+) channels and an ER stress response. In contrast, under some conditions, Ca(2+) signals may be cytoprotective and antagonize the apoptotic machinery. Images Figure 1 Figure 2 Figure 3 PMID:10229704

  7. Respiration signals from photoplethysmography.

    PubMed

    Nilsson, Lena M

    2013-10-01

    Pulse oximetry is based on the technique of photoplethysmography (PPG) wherein light transmitted through tissues is modulated by the pulse. In addition to variations in light modulation by the cardiac cycle, the PPG signal contains a respiratory modulation and variations associated with changing tissue blood volume of other origins. Cardiovascular, respiratory, and neural fluctuations in the PPG signal are of different frequencies and can all be characterized according to their sinusoidal components. PPG was described in 1937 to measure blood volume changes. The technique is today increasingly used, in part because of developments in semiconductor technology during recent decades that have resulted in considerable advances in PPG probe design. Artificial neural networks help to detect complex nonlinear relationships and are extensively used in electronic signal analysis, including PPG. Patient and/or probe-tissue movement artifacts are sources of signal interference. Physiologic variations such as vasoconstriction, a deep gasp, or yawn also affect the signal. Monitoring respiratory rates from PPG are often based on respiratory-induced intensity variations (RIIVs) contained in the baseline of the PPG signal. Qualitative RIIV signals may be used for monitoring purposes regardless of age, gender, anesthesia, and mode of ventilation. Detection of breaths in adult volunteers had a maximal error of 8%, and in infants the rates of overdetected and missed breaths using PPG were 1.5% and 2.7%, respectively. During central apnea, the rhythmic RIIV signals caused by variations in intrathoracic pressure disappear. PPG has been evaluated for detecting airway obstruction with a sensitivity of 75% and a specificity of 85%. The RIIV and the pulse synchronous PPG waveform are sensitive for detecting hypovolemia. The respiratory synchronous variation of the PPG pulse amplitude is an accurate predictor of fluid responsiveness. Pleth variability index is a continuous measure of the

  8. Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox

    NASA Astrophysics Data System (ADS)

    Cai, Gaigai; Chen, Xuefeng; He, Zhengjia

    2013-12-01

    Localized faults in gearboxes tend to result in periodic shocks and thus arouse periodic responses in vibration signals. Feature extraction has always been a key problem for localized fault diagnosis. This paper proposes a new fault feature extraction technique for gearboxes by using sparsity-enabled signal decomposition method. The sparsity-enabled signal decomposition method separates signals based on the oscillatory behavior of the signal rather than the frequency or scale. Thus, the fault feature can be nonlinearly extracted from vibration signals. During the implementation of the proposed method, tunable Q-factor wavelet transform, for which the Q-factor can be easily specified, is adopted to represent vibration signals in a sparse way, and then morphological component analysis (MCA) is employed to estimate and separate the distinct components. The corresponding optimization problem of MCA is solved by the split augmented Lagrangian shrinkage algorithm (SALSA). With the proposed method, vibration signals of the faulty gearbox can be nonlinearly decomposed into high-oscillatory component and low-oscillatory component which is the fault feature of gearboxes. To evaluate the performance of the proposed method, this paper investigates the effect of two parameters pertinent to MCA and SALSA: the Lagrange multiplier and the penalty parameter. The effectiveness of the proposed method is verified by both the simulated and practical gearbox vibration signals. Results show the proposed method outperforms empirical mode decomposition and spectral kurtosis in extracting fault features of gearboxes.

  9. Alternative Wired and 60-GHz Wireless Full Duplex Access Based on a Polarization Orthogonal Dual-Tone Optical Millimeter-Wave Signal

    NASA Astrophysics Data System (ADS)

    Ma, Jianxin; Zhang, Ruijiao; Zhang, Junjie; Xin, Xiangjun

    2015-11-01

    A novel full duplex fiber wireless link providing alternative wired and 60-GHz wireless access is proposed based on a polarization orthogonal dual-tone optical millimeter-wave signal. In a hybrid optical network unit, the downlink optical signal can be decomposed as a single-sideband optical millimeter-wave signal (baseband optical signal) for wireless (wired) access by a polarization controller and polarization beam splitter. The uplink optical carrier abstracted from the downlink optical signal makes the hybrid optical network unit free from the optical source. The simulation results show that both downlinks and uplinks for either wired or wireless access can maintain quite good performance over 60 km of fiber.

  10. Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating

    NASA Astrophysics Data System (ADS)

    Wen-Bo, Wang; Xiao-Dong, Zhang; Yuchan, Chang; Xiang-Li, Wang; Zhao, Wang; Xi, Chen; Lei, Zheng

    2016-01-01

    In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. Project supported by the National Science and Technology, China (Grant No. 2012BAJ15B04), the National Natural Science Foundation of China (Grant Nos. 41071270 and 61473213), the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFB424), the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science, China (Grant No. Z201303), and the Hubei Key Laboratory Foundation of Transportation Internet of Things, Wuhan University of Technology, China (Grant No.2015III015-B02).

  11. Design of tree structured matched wavelet for HRV signals of menstrual cycle.

    PubMed

    Rawal, Kirti; Saini, B S; Saini, Indu

    2016-07-01

    An algorithm is presented for designing a new class of wavelets matched to the Heart Rate Variability (HRV) signals of the menstrual cycle. The proposed wavelets are used to find HRV variations between phases of menstrual cycle. The method finds the signal matching characteristics by minimising the shape feature error using Least Mean Square method. The proposed filter banks are used for the decomposition of the HRV signal. For reconstructing the original signal, the tree structure method is used. In this approach, decomposed sub-bands are selected based upon their energy in each sub-band. Thus, instead of using all sub-bands for reconstruction, sub-bands having high energy content are used for the reconstruction of signal. Thus, a lower number of sub-bands are required for reconstruction of the original signal which shows the effectiveness of newly created filter coefficients. Results show that proposed wavelets are able to differentiate HRV variations between phases of the menstrual cycle accurately than standard wavelets. PMID:27022717

  12. Sphingosine 1-phosphate signalling.

    PubMed

    Mendelson, Karen; Evans, Todd; Hla, Timothy

    2014-01-01

    Sphingosine 1-phosphate (S1P) is a lipid mediator formed by the metabolism of sphingomyelin. In vertebrates, S1P is secreted into the extracellular environment and signals via G protein-coupled S1P receptors to regulate cell-cell and cell-matrix adhesion, and thereby influence cell migration, differentiation and survival. The expression and localization of S1P receptors is dynamically regulated and controls vascular development, vessel stability and immune cell trafficking. In addition, crucial events during embryogenesis, such as angiogenesis, cardiogenesis, limb development and neurogenesis, are regulated by S1P signalling. Here, and in the accompanying poster, we provide an overview of S1P signalling in development and in disease. PMID:24346695

  13. Signal peptide of cellulase.

    PubMed

    Yan, Shaomin; Wu, Guang

    2014-06-01

    Cellulase is an enzyme playing a crucial role in biotechnology industries ranging from textile to biofuel because of tremendous amount of cellulose produced in plant. In order to improve cellulase productivity, huge resource has been spent in search for good cellulases from microorganism in remote areas and in creation of ideal cellulase by engineering. However, not much attention is given to the secretion of cellulases from cell into extracellular space, where a cellulase plays its enzymatic role. In this minireview, the signal peptides, which lead secreted proteins to specific secretion systems and scatter in literature, are reviewed. The patterns of signal peptides are checked against 4,101 cellulases documented in UniProtKB, the largest protein database in the world, to determine how these cellulases are secreted. Simultaneous review on both literature and cellulases from the database not only provides updated knowledge on signal peptides but also indicates the gap in our research. PMID:24743986

  14. Telemetry Ranging: Signal Processing

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2016-02-01

    This article describes the details of the signal processing used in a telemetry ranging system in which timing information is extracted from the downlink telemetry signal in order to compute spacecraft range. A previous article describes telemetry ranging concepts and architecture, which are a slight variation of a scheme published earlier. As in that earlier work, the telemetry ranging concept eliminates the need for a dedicated downlink ranging signal to communicate the necessary timing information. The present article describes the operation and performance of the major receiver functions on the spacecraft and the ground --- many of which are standard tracking loops already in use in JPL's flight and ground radios --- and how they can be used to provide the relevant information for making a range measurement. It also describes the implementation of these functions in software, and performance of an end-to-end software simulation of the telemetry ranging system.

  15. Endocytosis, Signaling, and Beyond

    PubMed Central

    Di Fiore, Pier Paolo; von Zastrow, Mark

    2014-01-01

    The endocytic network comprises a vast and intricate system of membrane-delimited cell entry and cargo sorting routes running between biochemically and functionally distinct intracellular compartments. The endocytic network caters to the organization and redistribution of diverse subcellular components, and mediates appropriate shuttling and processing of materials acquired from neighboring cells or the extracellular milieu. Such trafficking logistics, despite their importance, represent only one facet of endocytic function. The endocytic network also plays a key role in organizing, mediating, and regulating cellular signal transduction events. Conversely, cellular signaling processes tightly control the endocytic pathway at different steps. The present article provides a perspective on the intimate relationships that exist between particular endocytic and cellular signaling processes in mammalian cells, within the context of understanding the impact of this nexus on integrated physiology. PMID:25085911

  16. Separation of Climate Signals

    SciTech Connect

    Kamath, C; Fodor, I

    2002-11-13

    Understanding changes in global climate is a challenging scientific problem. Simulated and observed data include signals from many sources, and untangling their respective effects is difficult. In order to make meaningful comparisons between different models, and to understand human effects on global climate, we need to isolate the effects of different sources. Recent eruptions of the El Chichon and Mt. Pinatubo volcanoes coincided with large El Nino and Southern Oscillation (ENSO) events, which complicates the separation of their contributions on global temperatures. Current approaches for separating volcano and ENSO signals in global mean data involve parametric models and iterative techniques [3]. We investigate alternative methods based on principal component analysis (PCA) [2] and independent component analysis (ICA) [1]. Our goal is to determine if such techniques can automatically identify the signals corresponding to the different sources, without relying on parametric models.

  17. Honest signalling with costly gambles

    PubMed Central

    Meacham, Frazer; Perlmutter, Aaron; Bergstrom, Carl T.

    2013-01-01

    Costly signalling theory is commonly invoked as an explanation for how honest communication can be stable when interests conflict. However, the signal costs predicted by costly signalling models often turn out to be unrealistically high. These models generally assume that signal cost is determinate. Here, we consider the case where signal cost is instead stochastic. We examine both discrete and continuous signalling games and show that, under reasonable assumptions, stochasticity in signal costs can decrease the average cost at equilibrium for all individuals. This effect of stochasticity for decreasing signal costs is a fundamental mechanism that probably acts in a wide variety of circumstances. PMID:23904587

  18. PKD signaling and pancreatitis

    PubMed Central

    Yuan, Jingzhen; Pandol, Stephen J.

    2016-01-01

    Background Acute pancreatitis is a serious medical disorder with no current therapies directed to the molecular pathogenesis of the disorder. Inflammation, inappropriate intracellular activation of digestive enzymes, and parenchymal acinar cell death by necrosis are the critical pathophysiologic processes of acute pancreatitis. Thus, it is necessary to elucidate the key molecular signals that mediate these pathobiologic processes and develop new therapeutic strategies to attenuate the appropriate signaling pathways in order to improve outcomes for this disease. A novel serine/threonine protein kinase D (PKD) family has emerged as key participants in signal transduction, and this family is increasingly being implicated in the regulation of multiple cellular functions and diseases. Methods This review summarizes recent findings of our group and others regarding the signaling pathway and the biological roles of the PKD family in pancreatic acinar cells. In particular, we highlight our studies of the functions of PKD in several key pathobiologic processes associated with acute pancreatitis in experimental models. Results Our findings reveal that PKD signaling is required for NF-κB activation/inflammation, intracellular zymogen activation, and acinar cell necrosis in rodent experimental pancreatitis. Novel small-molecule PKD inhibitors attenuate the severity of pancreatitis in both in vitro and in vivo experimental models. Further, this review emphasizes our latest advances in the therapeutic application of PKD inhibitors to experimental pancreatitis after the initiation of pancreatitis. Conclusions These novel findings suggest that PKD signaling is a necessary modulator in key initiating pathobiologic processes of pancreatitis, and that it constitutes a novel therapeutic target for treatments of this disorder. PMID:26879861

  19. Packaging signals in alphaviruses.

    PubMed

    Frolova, E; Frolov, I; Schlesinger, S

    1997-01-01

    Alphaviruses synthesize large amounts of both genomic and subgenomic RNA in infected cells, but usually only the genomic RNA is packaged. This implies the existence of an encapsidation or packaging signal which would be responsible for selectivity. Previously, we had identified a region of the Sindbis virus genome that interacts specifically with the viral capsid protein. This 132-nucleotide (nt) fragment lies within the coding region of the nsP1 gene (nt 945 to 1076). We proposed that the 132-mer is important for capsid recognition and initiates the formation of the viral nucleocapsid. To study the encapsidation of Sindbis virus RNAs in infected cells, we designed a new assay that uses the self-replicating Sindbis virus genomes (replicons) which lack the viral structural protein genes and contain heterologous sequences under the control of the subgenomic RNA promoter. These replicons can be packaged into viral particles by using defective helper RNAs that contain the structural protein genes (P. Bredenbeek, I. Frolov, C. M. Rice, and S. Schlesinger, J. Virol. 67:6439-6446, 1993). Insertion of the 132-mer into the subgenomic RNA significantly increased the packaging of this RNA into viral particles. We have used this assay and defective helpers that contain the structural protein genes of Ross River virus (RRV) to investigate the location of the encapsidation signal in the RRV genome. Our results show that there are several fragments that could act as packaging signals. They are all located in a different region of the genome than the signal for the Sindbis virus genome. For RRV, the strongest packaging signal lies between nt 2761 and 3062 in the nsP2 gene. This is the same region that was proposed to contain the packaging signal for Semliki Forest virus genomic RNA. PMID:8985344

  20. Interactive Effects of Climate Change and Decomposer Communities on the Stabilization of Wood-Derived Carbon Pools: Catalyst for a New Study

    SciTech Connect

    Resh, Sigrid C.

    2014-11-17

    importance of root and buried wood for ecosystem C retention. This strong chip location effect on wood-derived C loss was significantly modified by soil texture, soil temperature, decomposer communities, and wood quality as effected by potential future CO2 and O3 levels.

  1. Multichannel signal enhancement

    DOEpatents

    Lewis, Paul S.

    1990-01-01

    A mixed adaptive filter is formulated for the signal processing problem where desired a priori signal information is not available. The formulation generates a least squares problem which enables the filter output to be calculated directly from an input data matrix. In one embodiment, a folded processor array enables bidirectional data flow to solve the recursive problem by back substitution without global communications. In another embodiment, a balanced processor array solves the recursive problem by forward elimination through the array. In a particular application to magnetoencephalography, the mixed adaptive filter enables an evoked response to an auditory stimulus to be identified from only a single trial.

  2. Mechanisms of auxin signaling.

    PubMed

    Lavy, Meirav; Estelle, Mark

    2016-09-15

    The plant hormone auxin triggers complex growth and developmental processes. Its underlying molecular mechanism of action facilitates rapid switching between transcriptional repression and gene activation through the auxin-dependent degradation of transcriptional repressors. The nuclear auxin signaling pathway consists of a small number of core components. However, in most plants each component is represented by a large gene family. The modular construction of the pathway can thus produce diverse transcriptional outputs depending on the cellular and environmental context. Here, and in the accompanying poster, we outline the current model for TIR1/AFB-dependent auxin signaling with an emphasis on recent studies. PMID:27624827

  3. Array signal processing

    SciTech Connect

    Haykin, S.; Justice, J.H.; Owsley, N.L.; Yen, J.L.; Kak, A.C.

    1985-01-01

    This is the first book to be devoted completely to array signal processing, a subject that has become increasingly important in recent years. The book consists of six chapters. Chapter 1, which is introductory, reviews some basic concepts in wave propagation. The remaining five chapters deal with the theory and applications of array signal processing in (a) exploration seismology, (b) passive sonar, (c) radar, (d) radio astronomy, and (e) tomographic imaging. The various chapters of the book are self-contained. The book is written by a team of five active researchers, who are specialists in the individual fields covered by the pertinent chapters.

  4. JNK Signaling in Apoptosis

    PubMed Central

    Dhanasekaran, Danny N.; Reddy, E. Premkumar

    2011-01-01

    Jun N-terminal kinases or JNKs play a critical role in death receptor-initiated extrinsic as well as mitochondrial intrinsic apoptotic pathways. JNKs activate apoptotic signaling by the upregulation pro-apoptotic genes via the transactivation of specific transcription factors or by directly modulating the activities of mitochondrial pro- and anti-apoptotic proteins through distinct phosphorylation events. This review analyzes our present understanding of the role of JNK in apoptotic signaling and the various mechanisms by which JNK promotes apoptosis PMID:18931691

  5. Noninvasive vital signal monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Zenan; Chee, Jonny; Chua, Kok Poo; Chen, ZhouDe

    2010-05-01

    Vital signals of patients, such as heart rate, temperature and movement are crucial to monitor patients in hospital. Current heart rate measurement is obtained by using Electrocardiograph, which normally applies electrodes to the patient's body. As electrodes are extremely uncomfortable to ware and hinder patient's movement, a non-invasive vital signal-monitoring device will be a better solution. Similar to Electrocardiograph, the device detects the voltage difference across the heart by using concept of capacitance, which can be obtained by two conductive fiber sewing on the bed sheet. Simultaneous temperature reading can also be detected by using surface mounted temperature sensor. This paper will mainly focus on the heart rate monitoring.

  6. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Hallberg, Carl; Medelius, Pedro J.

    1994-01-01

    Engineers at NASA's Kennedy Space Center have designed a signal conditioning amplifier which automatically matches itself to almost any kind of transducer. The product, called Universal Signal Conditioning Amplifier (USCA), uses state-of-the-art technologies to deliver high accuracy measurements. USCA's features which can be either programmable or automated include: voltage, current, or pulsed excitation, unlimited resolution gain, digital filtering and both analog and digital output. USCA will be used at Kennedy Space Center's launch pads for environmental measurements such as vibrations, strains, temperatures and overpressures. USCA is presently being commercialized through a co-funded agreement between NASA, the State of Florida, and Loral Test and Information Systems, Inc.

  7. Assay of SF/sub 6/ and spark-decomposed SF/sub 6/ for mutagenic activity in the CHO/HGPRT (Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase) mammalian cell system

    SciTech Connect

    Kurka, K.; Griffin, G.D.

    1987-01-01

    The potential mutagenic (and cytotoxic) activity of SF/sub 6/ and spark-decomposed SF/sub 6/ was investigated in an in vitro mammalian cell culture system using Chinese Hamster Ovary (CHO) cells. The CHO cells were exposed to the gases in vacutainer tubes which were constantly rotated. After a 4 h exposure the mutagenic and cytotoxic activity was assayed with the CHO/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) system. Results indicated that SF/sub 6/ was neither cytotoxic nor mutagenic to CHO cells. Spark-decomposed SF/sub 6/ was found to be strongly cytotoxic (-80% cell death following 4 h exposure to 2 kJ spark discharge in 60 cm/sup 3/ at 1000 torr of SF/sub 6/) but not mutagenic. Increasing spark energy increased cytotoxicity but the spark samples remained nonmutagenic. The CHO/HGPRT system was coupled with a metabolic activation (S9 fraction) system used for detecting promutagens. When exposures were carried out in the presence of S9 fraction, SF/sub 6/ was still neither cytotoxic nor mutagenic; spark-decomposed SF/sub 6/ was again strongly cytotoxic but not mutagenic. It appears that SF/sub 6/ and sparked SF/sub 6/ are neither promutagens nor direct acting mutagens in the CHO/HGPRT system. Studies have begun using a more mutagenically sensitive subclone of the CHO cells known as CHO-AS/sub 52/. The results of initial experiments using the CHO-AS/sub 52/ cells remain unchanged. 9 refs., 1 tab.

  8. 29 CFR 1926.1422 - Signals-hand signal chart.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Signals-hand signal chart. 1926.1422 Section 1926.1422 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Construction § 1926.1422 Signals—hand signal chart. Hand signal charts must be either posted on the...

  9. 29 CFR 1926.1422 - Signals-hand signal chart.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Signals-hand signal chart. 1926.1422 Section 1926.1422 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Construction § 1926.1422 Signals—hand signal chart. Hand signal charts must be either posted on the...

  10. 29 CFR 1926.1422 - Signals-hand signal chart.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Signals-hand signal chart. 1926.1422 Section 1926.1422 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Construction § 1926.1422 Signals—hand signal chart. Hand signal charts must be either posted on the...

  11. 29 CFR 1926.1422 - Signals-hand signal chart.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Signals-hand signal chart. 1926.1422 Section 1926.1422 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Construction § 1926.1422 Signals—hand signal chart. Hand signal charts must be either posted on the...

  12. Simultaneous decomposition of multiple hyperspectral data sets: signal recovery of unknown fluorophores in the retinal pigment epithelium.

    PubMed

    Smith, R Theodore; Post, Robert; Johri, Ansh; Lee, Michele D; Ablonczy, Zsolt; Curcio, Christine A; Ach, Thomas; Sajda, Paul

    2014-12-01

    Upon excitation with different wavelengths of light, biological tissues emit distinct but related autofluorescence signals. We used non-negative matrix factorization (NMF) to simultaneously decompose co-registered hyperspectral emission data from human retinal pigment epithelium/Bruch's membrane specimens illuminated with 436 and 480 nm light. NMF analysis was initialized with Gaussian mixture model fits and constrained to provide identical abundance images for the two excitation wavelengths. Spectra recovered this way were smoother than those obtained separately; fluorophore abundances more clearly localized within tissue compartments. These studies provide evidence that leveraging multiple co-registered hyperspectral emission data sets is preferential for identifying biologically relevant fluorophore information. PMID:25574430

  13. Multicomponent Signal Unmixing from Nanoheterostructures: Overcoming the Traditional Challenges of Nanoscale X-ray Analysis via Machine Learning

    PubMed Central

    2015-01-01

    The chemical composition of core–shell nanoparticle clusters have been determined through principal component analysis (PCA) and independent component analysis (ICA) of an energy-dispersive X-ray (EDX) spectrum image (SI) acquired in a scanning transmission electron microscope (STEM). The method blindly decomposes the SI into three components, which are found to accurately represent the isolated and unmixed X-ray signals originating from the supporting carbon film, the shell, and the bimetallic core. The composition of the latter is verified by and is in excellent agreement with the separate quantification of bare bimetallic seed nanoparticles. PMID:25760234

  14. Multicomponent signal unmixing from nanoheterostructures: overcoming the traditional challenges of nanoscale X-ray analysis via machine learning.

    PubMed

    Rossouw, David; Burdet, Pierre; de la Peña, Francisco; Ducati, Caterina; Knappett, Benjamin R; Wheatley, Andrew E H; Midgley, Paul A

    2015-04-01

    The chemical composition of core-shell nanoparticle clusters have been determined through principal component analysis (PCA) and independent component analysis (ICA) of an energy-dispersive X-ray (EDX) spectrum image (SI) acquired in a scanning transmission electron microscope (STEM). The method blindly decomposes the SI into three components, which are found to accurately represent the isolated and unmixed X-ray signals originating from the supporting carbon film, the shell, and the bimetallic core. The composition of the latter is verified by and is in excellent agreement with the separate quantification of bare bimetallic seed nanoparticles. PMID:25760234

  15. Hybrid ECG signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Circuit with high common-mode rejection has ability to filter and amplify accepted analog electrocardiogram (ECG) signals of varying amplitude, shape, and polarity. In addition, low power circuit develops standardized pulses that can be counted and averaged by heart/breath rate processor.

  16. Pulsed Terahertz Signal Reconstruction

    NASA Astrophysics Data System (ADS)

    Fletcher, J. R.; Swift, G. P.; Dai, DeChang; Chamberlain, J. M.; Upadhya, P. C.

    2007-12-01

    A procedure is outlined which can be used to determine the response of an experimental sample to a single, simple broadband frequency pulse in terahertz frequency time domain spectroscopy (TDS). The advantage that accrues from this approach is that oscillations and spurious signals (arising from a variety of sources in the TDS system or from ambient water vapor) can be suppressed. In consequence, small signals (arising from the interaction of the radiation with the sample) can be more readily observed in the presence of noise. Procedures for choosing key parameters and methods for eliminating further artifacts are described. In particular, the use of input functions which are based on the binomial distribution is described. These binomial functions are used to unscramble the sample response to a simple pulse: they have sufficient flexibility to allow for variations in the spectra of different terahertz sources, some of which have low frequency as well as high frequency cutoffs. The signal processing procedure is validated by simple reflection and transmission experiments using a gap between polytetrafluoroethylene (PTFE) plates to mimic a void within a larger material. It is shown that a resolution of 100μm is easily achievable in reflection geometry after signal processing.

  17. Signaling by Sensory Receptors

    PubMed Central

    Julius, David; Nathans, Jeremy

    2012-01-01

    Sensory systems detect small molecules, mechanical perturbations, or radiation via the activation of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled receptors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR-based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illustrate the integration of diverse modulatory signals at the receptor, as seen in the thermosensory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous examples in which gene duplication and sequence divergence have created novel sensory specificities. This is the evolutionary basis for the observed diversity in temperature- and ligand-dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche. The many specialized anatomic structures, such as the eye and ear, that house primary sensory neurons further enhance the detection of relevant stimuli. PMID:22110046

  18. Intersection auxiliary signal system

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    1995-12-01

    Many intersection accidents are related to drivers' inappropriate responses to an amber signal light, due to their misjudgment on the traffic situation and/or their aggressive behavior. To reduce intersection accidents of this nature, this paper proposes the Intersection Auxiliary Signal System (IAS). IAS can be installed at selected intersections, where information regarding signal phasing, intersection geometry and speed limit is transmitted from an ultrasonic/infra-red transmitter. An on-vehicle device receivers and processes the information, the provides the driver with explicit suggestions on the correct action to take (continue to pass or decelerate to stop), or warnings against on-going incorrect actions. IAS is expected to be more effective in suburban intersections, which are usually characterized by greater dimension, longer amber phases, and higher vehicle speeds. Both the intersection transmitters and the on-vehicle processors are expected to have simple structures and low costs. Simulation results show that IAS has a significant effect on reducing red signal violation, especially when there is no significant dilemma zones.

  19. Communication Signals in Lizards.

    ERIC Educational Resources Information Center

    Carpenter, Charles C.

    1983-01-01

    Discusses mechanisms and functional intent of visual communication signals in iguanid/agamid lizards. Demonstrated that lizards communicate with each other by using pushups and head nods and that each species does this in its own way, conveying different types of information. (JN)

  20. Signal processing in SETI.

    PubMed

    Cullers, D K; Linscott, I R; Oliver, B M

    1985-11-01

    The development of a multi-channel spectrum analyzer (MCSA) for the SETI program is described. The spectrum analyzer is designed for both all-sky surveys and targeted searches. The mechanisms of the MCSA are explained and a diagram is provided. Detection of continuous wave signals, pulses, and patterns is examined. PMID:11542023

  1. Hedgehog signaling update.

    PubMed

    Cohen, M Michael

    2010-08-01

    In vertebrate hedgehog signaling, hedgehog ligands are processed to become bilipidated and then multimerize, which allows them to leave the signaling cell via Dispatched 1 and become transported via glypicans and megalin to the responding cells. Hedgehog then interacts with a complex of Patched 1 and Cdo/Boc, which activates endocytic Smoothened to the cilium. Patched 1 regulates the activity of Smoothened (1) via Vitamin D3, which inhibits Smoothened in the absence of hedgehog ligand or (2) via oxysterols, which activate Smoothened in the presence of hedgehog ligand. Hedgehog ligands also interact with Hip1, Patched 2, and Gas1, which regulate the range as well as the level of hedgehog signaling. In vertebrates, Smoothened is shortened at its C-terminal end and lacks most of the phosphorylation sites of importance in Drosophila. Cos2, also of importance in Drosophila, plays no role in mammalian transduction, nor do its homologs Kif7 and Kif27. The cilium may provide a function analogous to that of Cos2 by linking Smoothened to the modulation of Gli transcription factors. Disorders associated with the hedgehog signaling network follow, including nevoid basal cell carcinoma syndrome, holoprosencephaly, Smith-Lemli-Opitz syndrome, Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, Carpenter syndrome, and Rubinstein-Taybi syndrome. PMID:20635334

  2. Signals: Applying Academic Analytics

    ERIC Educational Resources Information Center

    Arnold, Kimberly E.

    2010-01-01

    Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…

  3. Detection of Attention-to-Rest Transition from EEG Signals with the Help of Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Ng, Cheng Man; Vai, Mang I.

    In this paper, an empirical mode decomposition (EMD) scheme is applied to analyze the steady-state visually evoked potentials (SSVEP) in electroencephalogram (EEG). Based on EMD method, the oscillatory activities of the decomposed SSVEP signal are analyzed. It is observed that the 6th IMF showed the features of the attention-to-rest transition response. In other words, high powers are observed instantly after the volunteer turns from an attentively focusing stage into an unfocused attention stage. Having made the point that the 6th IMF of the SSVEP signals corresponds to very low frequency (0.5 - 2 Hz), this drives us to look into that frequency range of the SSVEP signal. All of this reflects that a very low frequency seems to occur during the attention-to-rest transitions. Experiments are performed with different people. The result shows that the attention-to-rest transition can be detected with an accuracy of 82.6%.

  4. Wnt signaling in osteosarcoma.

    PubMed

    Lin, Carol H; Ji, Tao; Chen, Cheng-Fong; Hoang, Bang H

    2014-01-01

    Osteosarcoma (OS) is the most common primary bone malignancy diagnosed in children and adolescents with a high propensity for local invasion and distant metastasis. Despite current multidisciplinary treatments, there has not been a drastic change in overall prognosis within the last two decades. With current treatments, 60-70 % of patients with localized disease survive. Given a propensity of Wnt signaling to control multiple cellular processes, including proliferation, cell fate determination, and differentiation, it is a critical pathway in OS disease progression. At the same time, this pathway is extremely complex with vast arrays of cross-talk. Even though decades of research have linked the role of Wnt to tumorigenesis, there are still outstanding areas that remain poorly understood and even controversial. The canonical Wnt pathway functions to regulate the levels of the transcriptional co-activator β-catenin, which ultimately controls key developmental gene expressions. Given the central role of this mediator, inhibition of Wnt/β-catenin signaling has been investigated as a potential strategy for cancer control. In OS, several secreted protein families modulate the Wnt/β-catenin signaling, including secreted Frizzled-related proteins (sFRPs), Wnt inhibitory protein (WIF), Dickkopf proteins (DKK-1,2,3), sclerostin, and small molecules. This chapter focuses on our current understanding of Wnt/β-catenin signaling in OS, based on recent in vitro and in vivo data. Wnt activates noncanonical signaling pathways as well that are independent of β-catenin which will be discussed. In addition, stem cells and their association with Wnt/β-catenin are important factors to consider. Ultimately, the multiple canonical and noncanonical Wnt/β-catenin agonists and antagonists need to be further explored for potential targeted therapies. PMID:24924167

  5. Detection of the Third Heart Sound Based on Nonlinear Signal Decomposition and Time-Frequency Localization.

    PubMed

    Barma, Shovan; Chen, Bo-Wei; Ji, Wen; Rho, Seungmin; Chou, Chih-Hung; Wang, Jhing-Fa

    2016-08-01

    This study presents a precise way to detect the third ( S3 ) heart sound, which is recognized as an important indication of heart failure, based on nonlinear single decomposition and time-frequency localization. The detection of the S3 is obscured due to its significantly low energy and frequency. Even more, the detected S3 may be misunderstood as an abnormal second heart sound with a fixed split, which was not addressed in the literature. To detect such S3, the Hilbert vibration decomposition method is applied to decompose the heart sound into a certain number of subcomponents while intactly preserving the phase information. Thus, the time information of all of the decomposed components are unchanged, which further expedites the identification and localization of any module/section of a signal properly. Next, the proposed localization step is applied to the decomposed subcomponents by using smoothed pseudo Wigner-Ville distribution followed by the reassignment method. Finally, based on the positional information, the S3 is distinguished and confirmed by measuring time delays between the S2 and S3. In total, 82 sets of cardiac cycles collected from different databases including Texas Heart Institute database are examined for evaluation of the proposed method. The result analysis shows that the proposed method can detect the S3 correctly, even when the normalized temporal energy of S3 is larger than 0.16, and the frequency of those is larger than 34 Hz. In a performance analysis, the proposed method demonstrates that the accuracy rate of S3 detection is as high as 93.9%, which is significantly higher compared with the other methods. Such findings prove the robustness of the proposed idea for detecting substantially low-energized S3 . PMID:26584485

  6. Electronic signal generators: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Electronic signal generator data based on solid state concepts were simplified or refined to meet requirements, such as reliability, simplicity, fail-safe characteristics, and the capability of withstanding environmental extremes. Pulse generators, high voltage pulse generators, oscillators, analog signal generators, square wave signal generators, and special function signal generators are described.

  7. Compressive sampling of swallowing accelerometry signals using time-frequency dictionaries based on modulated discrete prolate spheroidal sequences

    NASA Astrophysics Data System (ADS)

    Sejdić, Ervin; Can, Azime; Chaparro, Luis F.; Steele, Catriona M.; Chau, Tom

    2012-12-01

    Monitoring physiological functions such as swallowing often generates large volumes of samples to be stored and processed, which can introduce computational constraints especially if remote monitoring is desired. In this article, we propose a compressive sensing (CS) algorithm to alleviate some of these issues while acquiring dual-axis swallowing accelerometry signals. The proposed CS approach uses a time-frequency dictionary where the members are modulated discrete prolate spheroidal sequences (MDPSS). These waveforms are obtained by modulation and variation of discrete prolate spheroidal sequences (DPSS) in order to reflect the time-varying nature of swallowing acclerometry signals. While the modulated bases permit one to represent the signal behavior accurately, the matching pursuit algorithm is adopted to iteratively decompose the signals into an expansion of the dictionary bases. To test the accuracy of the proposed scheme, we carried out several numerical experiments with synthetic test signals and dual-axis swallowing accelerometry signals. In both cases, the proposed CS approach based on the MDPSS yields more accurate representations than the CS approach based on DPSS. Specifically, we show that dual-axis swallowing accelerometry signals can be accurately reconstructed even when the sampling rate is reduced to half of the Nyquist rate. The results clearly indicate that the MDPSS are suitable bases for swallowing accelerometry signals.

  8. Analog and digital signal processing

    NASA Astrophysics Data System (ADS)

    Baher, H.

    The techniques of signal processing in both the analog and digital domains are addressed in a fashion suitable for undergraduate courses in modern electrical engineering. The topics considered include: spectral analysis of continuous and discrete signals, analysis of continuous and discrete systems and networks using transform methods, design of analog and digital filters, digitization of analog signals, power spectrum estimation of stochastic signals, FFT algorithms, finite word-length effects in digital signal processes, linear estimation, and adaptive filtering.

  9. Microglia Ontology and Signaling

    PubMed Central

    ElAli, Ayman; Rivest, Serge

    2016-01-01

    Microglia constitute the powerhouse of the innate immune system in the brain. It is now widely accepted that they are monocytic-derived cells that infiltrate the developing brain at the early embryonic stages, and acquire a resting phenotype characterized by the presence of dense branching processes, called ramifications. Microglia use these dynamic ramifications as sentinels to sense and detect any occurring alteration in brain homeostasis. Once a danger signal is detected, such as molecular factors associated to brain damage or infection, they get activated by acquiring a less ramified phenotype, and mount adequate responses that range from phagocyting cell debris to secreting inflammatory and trophic factors. Here, we review the origin of microglia and we summarize the main molecular signals involved in controlling their function under physiological conditions. In addition, their implication in the pathogenesis of multiple sclerosis and stress is discussed. PMID:27446922

  10. General stress response signaling

    PubMed Central

    Huo, Yi-Xin; Rosenthal, Adam Z.; Gralla, Jay D.

    2008-01-01

    E. coli responds to stress by a combination of specific and general transcription signaling pathways. The general pathways typically require the master stress regulator sigma38 (rpoS). Here we show that the signaling from multiple stresses that relax DNA is processed by a non-conserved 8 amino acid tail of the sigma 38 C-terminal domain (CTD). By contrast, responses to stresses that accumulate potassium glutamate do not rely on this short tail, but still require the overall CTD. In vitro transcription and footprinting studies suggest that multiple stresses can target a poised RNA polymerase and activate it by unwrapping DNA from a nucleosome-like state, allowing the RNA polymerase to escape into productive mode. This transition can be accomplished by either the DNA relaxation or potassium glutamate accumulation that characterizes many stresses. PMID:18761624

  11. Digital signal processing

    NASA Astrophysics Data System (ADS)

    Meyer, G.

    The theory, realization techniques, and applications of digital filtering are surveyed, with an emphasis on the development of software, in a handbook for advanced students of electrical and electronic engineering and practicing development engineers. The foundations of the theory of discrete signals and systems are introduced. The design of one-dimensional linear systems is discussed, and the techniques are expanded to the treatment of two-dimensional discrete and multidimensional analog systems. Numerical systems, quantification and limitation, and the characteristics of particular signal-processing devices are considered in a section on design realization. An appendix contains definitions of the basic mathematical concepts, derivations and proofs, and tables of integration and differentiation formulas.

  12. Tailpulse signal generator

    DOEpatents

    Baker, John; Archer, Daniel E.; Luke, Stanley John; Decman, Daniel J.; White, Gregory K.

    2009-06-23

    A tailpulse signal generating/simulating apparatus, system, and method designed to produce electronic pulses which simulate tailpulses produced by a gamma radiation detector, including the pileup effect caused by the characteristic exponential decay of the detector pulses, and the random Poisson distribution pulse timing for radioactive materials. A digital signal process (DSP) is programmed and configured to produce digital values corresponding to pseudo-randomly selected pulse amplitudes and pseudo-randomly selected Poisson timing intervals of the tailpulses. Pulse amplitude values are exponentially decayed while outputting the digital value to a digital to analog converter (DAC). And pulse amplitudes of new pulses are added to decaying pulses to simulate the pileup effect for enhanced realism in the simulation.

  13. Regulation of inflammasome signaling

    PubMed Central

    Rathinam, Vijay A K; Vanaja, Sivapriya Kailasan; Fitzgerald, Katherine A

    2012-01-01

    Innate immune responses have the ability to both combat infectious microbes and drive pathological inflammation. Inflammasome complexes are a central component of these processes through their regulation of interleukin 1β (IL-1β), IL-18 and pyroptosis. Inflammasomes recognize microbial products or endogenous molecules released from damaged or dying cells both through direct binding of ligands and indirect mechanisms. The potential of the IL-1 family of cytokines to cause tissue damage and chronic inflammation emphasizes the importance of regulating inflammasomes. Many regulatory mechanisms have been identified that act as checkpoints for attenuating inflammasome signaling at multiple steps. Here we discuss the various regulatory mechanisms that have evolved to keep inflammasome signaling in check to maintain immunological balance. PMID:22430786

  14. Underdetermined Blind Source Separation with Variational Mode Decomposition for Compound Roller Bearing Fault Signals

    PubMed Central

    Tang, Gang; Luo, Ganggang; Zhang, Weihua; Yang, Caijin; Wang, Huaqing

    2016-01-01

    In the condition monitoring of roller bearings, the measured signals are often compounded due to the unknown multi-vibration sources and complex transfer paths. Moreover, the sensors are limited in particular locations and numbers. Thus, this is a problem of underdetermined blind source separation for the vibration sources estimation, which makes it difficult to extract fault features exactly by ordinary methods in running tests. To improve the effectiveness of compound fault diagnosis in roller bearings, the present paper proposes a new method to solve the underdetermined problem and to extract fault features based on variational mode decomposition. In order to surmount the shortcomings of inadequate signals collected through limited sensors, a vibration signal is firstly decomposed into a number of band-limited intrinsic mode functions by variational mode decomposition. Then, the demodulated signal with the Hilbert transform of these multi-channel functions is used as the input matrix for independent component analysis. Finally, the compound faults are separated effectively by carrying out independent component analysis, which enables the fault features to be extracted more easily and identified more clearly. Experimental results validate the effectiveness of the proposed method in compound fault separation, and a comparison experiment shows that the proposed method has higher adaptability and practicability in separating strong noise signals than the commonly-used ensemble empirical mode decomposition method. PMID:27322268

  15. A wavelet decomposition analysis of vibration signal for bearing fault detection

    NASA Astrophysics Data System (ADS)

    Nizwan, C. K. E.; Ong, S. A.; Yusof, M. F. M.; Baharom, M. Z.

    2013-12-01

    This paper presents a study of vibrational signal analysis for bearing fault detection using Discrete Wavelet Transform (DWT). In this study, the vibration data was acquired from three different types of bearing defect i.e. corroded, outer race defect and point defect. The experiments were carried out at three different speeds which are 10%, 50% and 90% of the maximum motor speed. The time domain vibration data measured from accelerometer was then transformed into frequency domain using a frequency analyzer in order to study the frequency characteristics of the signal. The DWT was utilized to decomposed signal at different frequency scale. Then, root mean square (RMS) for every decomposition level was calculated to detect the defect features in vibration signals by referring to the trend of vibrational energy retention at every decomposition. Based on the result, the defective bearings show significant deviation in retaining RMS value after a few levels of decomposition. The findings indicate that Wavelet decomposition analysis can be used to develop an effective bearing condition monitoring tool. This signal processing analysis is recommended in on-line monitoring while the machine is on operation.

  16. Underdetermined Blind Source Separation with Variational Mode Decomposition for Compound Roller Bearing Fault Signals.

    PubMed

    Tang, Gang; Luo, Ganggang; Zhang, Weihua; Yang, Caijin; Wang, Huaqing

    2016-01-01

    In the condition monitoring of roller bearings, the measured signals are often compounded due to the unknown multi-vibration sources and complex transfer paths. Moreover, the sensors are limited in particular locations and numbers. Thus, this is a problem of underdetermined blind source separation for the vibration sources estimation, which makes it difficult to extract fault features exactly by ordinary methods in running tests. To improve the effectiveness of compound fault diagnosis in roller bearings, the present paper proposes a new method to solve the underdetermined problem and to extract fault features based on variational mode decomposition. In order to surmount the shortcomings of inadequate signals collected through limited sensors, a vibration signal is firstly decomposed into a number of band-limited intrinsic mode functions by variational mode decomposition. Then, the demodulated signal with the Hilbert transform of these multi-channel functions is used as the input matrix for independent component analysis. Finally, the compound faults are separated effectively by carrying out independent component analysis, which enables the fault features to be extracted more easily and identified more clearly. Experimental results validate the effectiveness of the proposed method in compound fault separation, and a comparison experiment shows that the proposed method has higher adaptability and practicability in separating strong noise signals than the commonly-used ensemble empirical mode decomposition method. PMID:27322268

  17. RASSP signal processing architectures

    NASA Astrophysics Data System (ADS)

    Shirley, Fred; Bassett, Bob; Letellier, J. P.

    1995-06-01

    The rapid prototyping of application specific signal processors (RASSP) program is an ARPA/tri-service effort to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are specified, designed, documented, manufactured, and supported. The domain of embedded signal processing was chosen because it is important to a variety of military and commercial applications as well as for the challenge it presents in terms of complexity and performance demands. The principal effort is being performed by two major contractors, Lockheed Sanders (Nashua, NH) and Martin Marietta (Camden, NJ). For both, improvements in methodology are to be exercised and refined through the performance of individual 'Demonstration' efforts. The Lockheed Sanders' Demonstration effort is to develop an infrared search and track (IRST) processor. In addition, both contractors' results are being measured by a series of externally administered (by Lincoln Labs) six-month Benchmark programs that measure process improvement as a function of time. The first two Benchmark programs are designing and implementing a synthetic aperture radar (SAR) processor. Our demonstration team is using commercially available VME modules from Mercury Computer to assemble a multiprocessor system scalable from one to hundreds of Intel i860 microprocessors. Custom modules for the sensor interface and display driver are also being developed. This system implements either proprietary or Navy owned algorithms to perform the compute-intensive IRST function in real time in an avionics environment. Our Benchmark team is designing custom modules using commercially available processor ship sets, communication submodules, and reconfigurable logic devices. One of the modules contains multiple vector processors optimized for fast Fourier transform processing. Another module is a fiberoptic interface that accepts high-rate input data from the sensors and provides video-rate output data to a

  18. Digital signal processing

    NASA Astrophysics Data System (ADS)

    Morgera, Salvatore D.; Krishna, Hari

    Computationally efficient digital signal-processing algorithms over finite fields are developed analytically, and the relationship of these algorithms to algebraic error-correcting codes is explored. A multidisciplinary approach is employed, in an effort to make the results accessible to engineers, mathematicians, and computer scientists. Chapters are devoted to systems of bilinear forms, efficient finite-field algorithms, multidimensional methods, a new class of linear codes, and a new error-control scheme.

  19. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. PMID:26374891

  20. Phytosulfokine peptide signalling.

    PubMed

    Sauter, Margret

    2015-08-01

    Phytosulfokine (PSK) belongs to the group of plant peptide growth factors. It is a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, suggestive of universal functions. Processing of the preproprotein involves sulfonylation by a tyrosylprotein sulfotransferase in the trans-golgi and proteolytic cleavage in the apoplast. The secreted peptide is perceived at the cell surface by a membrane-bound receptor kinase of the leucine-rich repeat family. The PSK receptor PSKR1 from Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signal outputs. Receptor activity is regulated by calmodulin. While PSK may be an autocrine growth factor, it also acts non-cell autonomously by promoting growth of cells that are receptor-deficient. In planta, PSK has multiple functions. It promotes cell growth, acts in the quiescent centre cells of the root apical meristem, contributes to funicular pollen tube guidance, and differentially alters immune responses depending on the pathogen. It has been suggested that PSK integrates growth and defence signals to balance the competing metabolic costs of these responses. This review summarizes our current understanding of PSK synthesis, signalling, and activity. PMID:25754406

  1. Integrin endosomal signalling suppresses anoikis.

    PubMed

    Alanko, Jonna; Mai, Anja; Jacquemet, Guillaume; Schauer, Kristine; Kaukonen, Riina; Saari, Markku; Goud, Bruno; Ivaska, Johanna

    2015-11-01

    Integrin-containing focal adhesions transmit extracellular signals across the plasma membrane to modulate cell adhesion, signalling and survival. Although integrins are known to undergo continuous endo/exocytic traffic, the potential impact of endocytic traffic on integrin-induced signals is unknown. Here, we demonstrate that integrin signalling is not restricted to cell-ECM adhesions and identify an endosomal signalling platform that supports integrin signalling away from the plasma membrane. We show that active focal adhesion kinase (FAK), an established marker of integrin-ECM downstream signalling, localizes with active integrins on endosomes. Integrin endocytosis positively regulates adhesion-induced FAK activation, which is early endosome antigen-1 and small GTPase Rab21 dependent. FAK binds directly to purified endosomes and becomes activated on them, suggesting a role for endocytosis in enhancing distinct integrin downstream signalling events. Finally, endosomal integrin signalling contributes to cancer-related processes such as anoikis resistance, anchorage independence and metastasis. PMID:26436690

  2. Model-Based Signal Processing: Correlation Detection With Synthetic Seismograms

    SciTech Connect

    Rodgers, A; Harris, D; Pasyanos, M; Blair, S; Matt, R

    2006-08-30

    Recent applications of correlation methods to seismological problems illustrate the power of coherent signal processing applied to seismic waveforms. Examples of these applications include detection of low amplitude signals buried in ambient noise and cross-correlation of sets of waveforms to form event clusters and accurately measure delay times for event relocation and/or earth structure. These methods rely on the exploitation of the similarity of individual waveforms and have been successfully applied to large sets of empirical observations. However, in cases with little or no empirical event data, such as aseismic regions or exotic event types, correlation methods with observed seismograms will not be possible due to the lack of previously observed similar waveforms. This study uses model-based signals computed for three-dimensional (3D) Earth models to form the basis for correlation detection. Synthetic seismograms are computed for fully 3D models estimated from the Markov Chain Monte-Carlo (MCMC) method. MCMC uses stochastic sampling to fit multiple seismological data sets. Rather than estimate a single ''optimal'' model, MCMC results in a suite of models that sample the model space and incorporates uncertainty through variability of the models. The variability reflects our ignorance of Earth structure, due to limited resolution, data and modeling errors, and produces variability in the seismic waveform response. Model-based signals are combined using a subspace method where the synthetic signals are decomposed into an orthogonal basis by singular-value decomposition (SVD) and the observed waveforms are represented with a linear combination of a sub-set of eigenvectors (signals) associated with the most significant eigenvalues. We have demonstrated the method by modeling long-period (80-10 seconds) regional seismograms for a moderate (M{approx}5) earthquake near the China-North Korea border. Synthetic seismograms are computed with the Spectral Element Method

  3. Seasonal signal capturing in time series of up coordinates by means of adaptive filters

    NASA Astrophysics Data System (ADS)

    Yalvac, S.; Ustun, A.

    2013-12-01

    Digital filters, is a system that performs mathematical operations on a sampled or discrete time signals. Adaptive filters designed for noise canceling are capable tools of decomposing correlated parts of data sets. This kind of filters which optimize itself using Least Mean Square (LMS) algorithm is a powerful tool for understand the truth hidden into the complex data sets like time series in Geosciences. The complex data sets such as CGPS (Continuously operating reference station) station's time series can be understood better with adaptive noise canceling by means of decompose coherent (seasonal effect, tectonic plate motion) and incoherent (noise; site-specific effects) parts of data. In this study, it is aimed to model the subsidence caused by groundwater withdrawal based on the seasonal correlation between consecutive years of CGPS time series. For this purpose, two stations where located into subsidence area of 3 year time series have analyzed with adaptive noise canceling filter. According to the results, the annual movement of these two stations have strong relationship. Also, subsidence behavior are correlated with annual rainfall data. BELD station one year filtered movement KAMN station one year filtered movements

  4. Interplant signalling through hyphal networks.

    PubMed

    Johnson, David; Gilbert, Lucy

    2015-03-01

    Mycorrhizal fungi can form common mycelial networks (CMNs) that interconnect plants. Here, we provide an insight into recent findings demonstrating that CMNs can be conduits for interplant signalling, influencing defence against insect herbivores and foliar necrotrophic fungi. A likely mechanism is direct transfer of signalling molecules within hyphae. However, electrical signals, which can be induced by wounding, may also enable signalling over relatively long distances, because the biophysical constraints imposed by liquid transport in hyphae and interaction with soil are relieved. We do not yet understand the ecological, evolutionary and agronomic implications of interplant signalling via CMNs. Identifying the mechanism of interplant signalling will help to address these gaps. PMID:25421970

  5. Digital processing of bandpass signals

    NASA Astrophysics Data System (ADS)

    Jackson, M. C.; Matthewson, P.

    Modern radar and radio systems rely on digital signal processing to enhance the quality of received signals. Prior to such processing, these signals must be converted to digital form. The historical development of signal digitization is briefly discussed in this paper and leads to a description of some current work on digital mixing. A method of directly sampling a band-limited intermediate frequency (i.f.) signal is presented, using a pair of digital mixer channels to produce complex low-pass samples of the signal envelope. The method is found to produce well matched channel outputs. Finally, the applicability of the method to radar is discussed.

  6. Nonlinear Analysis of Auscultation Signals in TCM Using the Combination of Wavelet Packet Transform and Sample Entropy

    PubMed Central

    Yan, Jian-Jun; Wang, Yi-Qin; Guo, Rui; Zhou, Jin-Zhuan; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Yong

    2012-01-01

    Auscultation signals are nonstationary in nature. Wavelet packet transform (WPT) has currently become a very useful tool in analyzing nonstationary signals. Sample entropy (SampEn) has recently been proposed to act as a measurement for quantifying regularity and complexity of time series data. WPT and SampEn were combined in this paper to analyze auscultation signals in traditional Chinese medicine (TCM). SampEns for WPT coefficients were computed to quantify the signals from qi- and yin-deficient, as well as healthy, subjects. The complexity of the signal can be evaluated with this scheme in different time-frequency resolutions. First, the voice signals were decomposed into approximated and detailed WPT coefficients. Then, SampEn values for approximated and detailed coefficients were calculated. Finally, SampEn values with significant differences in the three kinds of samples were chosen as the feature parameters for the support vector machine to identify the three types of auscultation signals. The recognition accuracy rates were higher than 90%. PMID:22690242

  7. Fast methods for computing scene raw signals in millimeter-wave sensor simulations

    NASA Astrophysics Data System (ADS)

    Olson, Richard F.; Reynolds, Terry M.; Satterfield, H. Dewayne

    2010-04-01

    Modern millimeter wave (mmW) radar sensor systems employ wideband transmit waveforms and efficient receiver signal processing methods for resolving accurate measurements of targets embedded in complex backgrounds. Fast Fourier Transform processing of pulse return signal samples is used to resolve range and Doppler locations, and amplitudes of scattered RF energy. Angle glint from RF scattering centers can be measured by performing monopulse arithmetic on signals resolved in both delta and sum antenna channels. Environment simulations for these sensors - including all-digital and hardware-in-the-loop (HWIL) scene generators - require fast, efficient methods for computing radar receiver input signals to support accurate simulations with acceptable execution time and computer cost. Although all-digital and HWIL simulations differ in their representations of the radar sensor (which is itself a simulation in the all-digital case), the signal computations for mmW scene modeling are closely related for both types. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) have developed various fast methods for computing mmW scene raw signals to support both HWIL scene projection and all-digital receiver model input signal synthesis. These methods range from high level methods of decomposing radar scenes for accurate application of spatially-dependent nonlinear scatterer phase history, to low-level methods of efficiently computing individual scatterer complex signals and single precision transcendental functions. The efficiencies of these computations are intimately tied to math and memory resources provided by computer architectures. The paper concludes with a summary of radar scene computing performance on available computer architectures, and an estimate of future growth potential for this computational performance.

  8. Accurate identification of motor unit discharge patterns from high-density surface EMG and validation with a novel signal-based performance metric

    NASA Astrophysics Data System (ADS)

    Holobar, A.; Minetto, M. A.; Farina, D.

    2014-02-01

    Objective. A signal-based metric for assessment of accuracy of motor unit (MU) identification from high-density surface electromyograms (EMG) is introduced. This metric, so-called pulse-to-noise-ratio (PNR), is computationally efficient, does not require any additional experimental costs and can be applied to every MU that is identified by the previously developed convolution kernel compensation technique. Approach. The analytical derivation of the newly introduced metric is provided, along with its extensive experimental validation on both synthetic and experimental surface EMG signals with signal-to-noise ratios ranging from 0 to 20 dB and muscle contraction forces from 5% to 70% of the maximum voluntary contraction. Main results. In all the experimental and simulated signals, the newly introduced metric correlated significantly with both sensitivity and false alarm rate in identification of MU discharges. Practically all the MUs with PNR > 30 dB exhibited sensitivity >90% and false alarm rates <2%. Therefore, a threshold of 30 dB in PNR can be used as a simple method for selecting only reliably decomposed units. Significance. The newly introduced metric is considered a robust and reliable indicator of accuracy of MU identification. The study also shows that high-density surface EMG can be reliably decomposed at contraction forces as high as 70% of the maximum.

  9. Notch Signaling Components

    PubMed Central

    Liu, Zhi-Yan; Wu, Tao; Li, Qing; Wang, Min-Cong; Jing, Li; Ruan, Zhi-Ping; Yao, Yu; Nan, Ke-Jun; Guo, Hui

    2016-01-01

    Abstract Non-small-cell lung cancer (NSCLC) is a lethal and aggressive malignancy. Currently, the identities of prognostic and predictive makers of NSCLC have not been fully established. Dysregulated Notch signaling has been implicated in many human malignancies, including NSCLC. However, the prognostic value of measuring Notch signaling and the utility of developing Notch-targeted therapies in NSCLC remain inconclusive. The present study investigated the association of individual Notch receptor and ligand levels with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) prognosis using the Kaplan-Meier plotte database. This online database encompasses 2437 lung cancer samples. Hazard ratios with 95% confidence intervals were calculated. The results showed that higher Notch1, Notch2, JAG1, and DLL1 mRNA expression predicted better overall survival (OS) in lung ADC, but showed no significance in SCC patients. Elevated Notch3, JAG2, and DLL3 mRNA expression was associated with poor OS of ADC patients, but not in SCC patients. There was no association between Notch4 and OS in either lung ADC or SCC patients. In conclusion, the set of Notch1, Notch2, JAG1, DLL1 and that of Notch3, JAG2, DLL3 played opposing prognostic roles in lung ADC patients. Neither set of Notch receptors and ligands was indicative of lung SCC prognosis. Notch signaling could serve as promising marker to predict outcomes in lung ADC patients. The distinct features of lung cancer subtypes and Notch components should be considered when developing future Notch-targeted therapies. PMID:27196489

  10. Biphonation in voice signals

    SciTech Connect

    Herzel, H.; Reuter, R.

    1996-06-01

    Irregularities in voiced speech are often observed as a consequence of vocal fold lesions, paralyses, and other pathological conditions. Many of these instabilities are related to the intrinsic nonlinearities in the vibrations of the vocal folds. In this paper, a specific nonlinear phenomenon is discussed: The appearance of two independent fundamental frequencies termed biphonation. Several narrow-band spectrograms are presented showing biphonation in signals from voice patients, a newborn cry, a singer, and excised larynx experiments. Finally, possible physiological mechanisms of instabilities of the voice source are discussed. {copyright} {ital 1996 American Institute of Physics.}

  11. Neural Membrane Signaling Platforms

    PubMed Central

    Wallace, Ron

    2010-01-01

    Throughout much of the history of biology, the cell membrane was functionally defined as a semi-permeable barrier separating aqueous compartments, and an anchoring site for proteins. Little attention was devoted to its possible regulatory role in intracellular molecular processes and neuron electrical signaling. This article reviews the history of membrane studies and the current state of the art. Emphasis is placed on natural and artificial membrane studies of electric field effects on molecular organization, especially as these may relate to impulse propagation in neurons. Implications of these studies for new designs in artificial intelligence are briefly examined. PMID:20640161

  12. Growth hormone signaling pathways.

    PubMed

    Carter-Su, Christin; Schwartz, Jessica; Argetsinger, Lawrence S

    2016-06-01

    Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight. PMID:26421979

  13. Sphingosine in apoptosis signaling.

    PubMed

    Cuvillier, Olivier

    2002-12-30

    The sphingolipid metabolites ceramide, sphingosine, and sphingosine 1-phosphate contribute to controlling cell proliferation and apoptosis. Ceramide and its catabolite sphingosine act as negative regulators of cell proliferation and promote apoptosis. Conversely, sphingosine 1-phosphate, formed by phosphorylation of sphingosine by a sphingosine kinase, has been involved in stimulating cell growth and inhibiting apoptosis. As the phosphorylation of sphingosine diminishes apoptosis, while dephosphorylation of sphingosine 1-phosphate potentiates it, the role of sphingosine as a messenger of apoptosis is of importance. Herein, the effects of sphingosine on diverse signaling pathways implicated in the apoptotic process are reviewed. PMID:12531549

  14. Signal quality of endovascular electroencephalography

    NASA Astrophysics Data System (ADS)

    He, Bryan D.; Ebrahimi, Mosalam; Palafox, Leon; Srinivasan, Lakshminarayan

    2016-02-01

    Objective, Approach. A growing number of prototypes for diagnosing and treating neurological and psychiatric diseases are predicated on access to high-quality brain signals, which typically requires surgically opening the skull. Where endovascular navigation previously transformed the treatment of cerebral vascular malformations, we now show that it can provide access to brain signals with substantially higher signal quality than scalp recordings. Main results. While endovascular signals were known to be larger in amplitude than scalp signals, our analysis in rabbits borrows a standard technique from communication theory to show endovascular signals also have up to 100× better signal-to-noise ratio. Significance. With a viable minimally-invasive path to high-quality brain signals, patients with brain diseases could one day receive potent electroceuticals through the bloodstream, in the course of a brief outpatient procedure.

  15. Recurrent Infections May Signal Immunodeficiencies

    MedlinePlus

    ... Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Library ▸ Primary Immunodeficiency Disease Library ▸ Recurrent Infections May Signal Immunodeficiencies Share | Recurrent Infections May Signal Immunodeficiencies This article has been reviewed by Thanai Pongdee, MD, FAAAAI ...

  16. Calcium Signaling in the Liver

    PubMed Central

    Amaya, Maria Jimena; Nathanson, Michael H.

    2014-01-01

    Intracellular free Ca2+ ([Ca2+]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca2+ signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca2+ signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca2+ signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca2+]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca2+ signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca2+ signaling in the liver, and the role of Ca2+ signaling in liver disease. PMID:23720295

  17. [Signal systems of plant immunity].

    PubMed

    Dmitriev, A P

    2002-01-01

    Plants can recognise the penetrating pathogen and respond to the attack with an array of defense reactions. Signal transduction from receptor in plasma membrane to genome is necessary to activate these reactions. Plant cell signaling systems which take part in signal transduction were discovered and identified recently. The obtained results suggest that plant cells have complex and well coordinated signal network which regulates their immune potential. PMID:12187855

  18. Signal processing in magnetoencephalography.

    PubMed

    Vrba, J; Robinson, S E

    2001-10-01

    The subject of this article is detection of brain magnetic fields, or magnetoencephalography (MEG). The brain fields are many orders of magnitude smaller than the environmental magnetic noise and their measurement represent a significant metrological challenge. The only detectors capable of resolving such small fields and at the same time handling the large dynamic range of the environmental noise are superconducting quantum interference devices (or SQUIDs). The SQUIDs are coupled to the brain magnetic fields using combinations of superconducting coils called flux transformers (primary sensors). The environmental noise is attenuated by a combination of shielding, primary sensor geometry, and synthetic methods. One of the most successful synthetic methods for noise elimination is synthetic higher-order gradiometers. How the gradiometers can be synthesized is shown and examples of their noise cancellation effectiveness are given. The MEG signals measured on the scalp surface must be interpreted and converted into information about the distribution of currents within the brain. This task is complicated by the fact that such inversion is nonunique. Additional mathematical simplifications, constraints, or assumptions must be employed to obtain useful source images. Methods for the interpretation of the MEG signals include the popular point current dipole, minimum norm methods, spatial filtering, beamformers, MUSIC, and Bayesian techniques. The use of synthetic aperture magnetometry (a class of beamformers) is illustrated in examples of interictal epileptic spiking and voluntary hand-motor activity. PMID:11812209

  19. TGIF inhibits retinoid signaling.

    PubMed

    Bartholin, Laurent; Powers, Shannon E; Melhuish, Tiffany A; Lasse, Samuel; Weinstein, Michael; Wotton, David

    2006-02-01

    TGIF (TG-interacting factor) represses transforming growth factor beta (TGF-beta)-activated gene expression and can repress transcription via a specific retinoid response element. Mutations in human TGIF are associated with holoprosencephaly, a severe defect of craniofacial development with both genetic and environmental causes. Both TGF-beta and retinoic acid signaling are implicated in craniofacial development. Here, we analyze the role of TGIF in regulating retinoid responsive gene expression. We demonstrate that TGIF interacts with the ligand binding domain of the RXRalpha retinoid receptor and represses transcription from retinoid response elements. TGIF recruits the general corepressor, CtBP, to RXRalpha, and this recruitment is required for full repression by TGIF. Interaction between TGIF and RXRalpha is reduced by the addition of retinoic acid, consistent with a role for TGIF as an RXRalpha transcriptional corepressor. We created a Tgif null mutation in mice and tested the sensitivity of mutant mice to increased levels of retinoic acid. Tgif mutant embryos are more sensitive to retinoic acid-induced teratogenesis, and retinoid target genes are expressed at a higher level in tissues from Tgif null mice. These results demonstrate an important role for TGIF as a transcriptional corepressor, which regulates developmental signaling by retinoic acid, and raises the possibility that TGIF may repress other RXR-dependent transcriptional responses. PMID:16428452

  20. Endocannabinoid Signaling in Autism.

    PubMed

    Chakrabarti, Bhismadev; Persico, Antonio; Battista, Natalia; Maccarrone, Mauro

    2015-10-01

    Autism spectrum disorder (ASD) is a complex behavioral condition with onset during early childhood and a lifelong course in the vast majority of cases. To date, no behavioral, genetic, brain imaging, or electrophysiological test can specifically validate a clinical diagnosis of ASD. However, these medical procedures are often implemented in order to screen for syndromic forms of the disorder (i.e., autism comorbid with known medical conditions). In the last 25 years a good deal of information has been accumulated on the main components of the "endocannabinoid (eCB) system", a rather complex ensemble of lipid signals ("endocannabinoids"), their target receptors, purported transporters, and metabolic enzymes. It has been clearly documented that eCB signaling plays a key role in many human health and disease conditions of the central nervous system, thus opening the avenue to the therapeutic exploitation of eCB-oriented drugs for the treatment of psychiatric, neurodegenerative, and neuroinflammatory disorders. Here we present a modern view of the eCB system, and alterations of its main components in human patients and animal models relevant to ASD. This review will thus provide a critical perspective necessary to explore the potential exploitation of distinct elements of eCB system as targets of innovative therapeutics against ASD. PMID:26216231

  1. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Hallberg, Carl; Cecil, Jim

    1994-01-01

    A state-of-the-art instrumentation amplifier capable of being used with most types of transducers has been developed at the Kennedy Space Center. This Universal Signal Conditioning Amplifier (USCA) can eliminate costly measurement setup item and troubleshooting, improve system reliability and provide more accurate data than conventional amplifiers. The USCA can configure itself for maximum resolution and accuracy based on information read from a RAM chip attached to each transducer. Excitation voltages or current are also automatically configured. The amplifier uses both analog and digital state-of-the-art technology with analog-to-digital conversion performed in the early stages in order to minimize errors introduced by offset and gain drifts in the analog components. A dynamic temperature compensation scheme has been designed to achieve and maintain 12-bit accuracy of the amplifier from 0 to 70 C. The digital signal processing section allows the implementation of digital filters up to 511th order. The amplifier can also perform real-time linearizations up to fourth order while processing data at a rate of 23.438 kS/s. Both digital and analog outputs are available from the amplifier.

  2. TLR-signaling Networks

    PubMed Central

    Brown, J.; Wang, H.; Hajishengallis, G.N.; Martin, M.

    2011-01-01

    Toll-like receptors play a critical role in innate immunity by detecting invading pathogens. The ability of TLRs to engage different intracellular signaling molecules and cross-talk with other regulatory pathways is an important factor in shaping the type, magnitude, and duration of the inflammatory response. The present review will cover the fundamental signaling pathways utilized by TLRs and how these pathways regulate the innate immune response to pathogens. Abbreviations: TLR, Toll-like receptor; PRR, pattern recognition receptor; PAMP, pathogen-associated molecular pattern; LPS, lipopolysaccharide; APC, antigen-presenting cell; IL, interleukin; TIR, Toll/IL-1R homology; MyD88, myeloid differentiation factor 88; IFN, interferon; TRIF, TIR-domain-containing adapter-inducing interferon-β; IRAK, IL-1R-associated kinase; TAK1, TGF-β-activated kinase; TAB1, TAK1-binding protein; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B-cells; MAPK, mitogen-activated protein kinase; NLR, NOD-like receptors; LRR, leucine-rich repeats; DC, dendritic cell; PI3K, phosphoinositide 3-kinases; GSK3, glycogen synthase kinase-3; mTOR, mammalian target of rapamycin; DAF, decay-accelerating factor; IKK, IκB kinase; IRF, interferon regulatory factors; TBK1, TANK-binding kinase 1; CARD, caspase activation and recruitment domain; PYD, pyrin N-terminal homology domain; ATF, activating transcription factor; and PTEN, phosphatase and tensin homolog. PMID:20940366

  3. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  4. Signal and Image Processing Operations

    Energy Science and Technology Software Center (ESTSC)

    1995-05-10

    VIEW is a software system for processing arbitrary multidimensional signals. It provides facilities for numerical operations, signal displays, and signal databasing. The major emphasis of the system is on the processing of time-sequences and multidimensional images. The system is designed to be both portable and extensible. It runs currently on UNIX systems, primarily SUN workstations.

  5. Isolated transfer of analog signals

    NASA Technical Reports Server (NTRS)

    Bezdek, T.

    1974-01-01

    Technique transfers analog signal levels across high isolation boundary without circuit performance being affected by magnetizing reactance or leakage inductance. Transfers of analog information across isolated boundary are made by interrupting signal flow, with switch, in such a manner as to produce alternating signal which is applied to transformer.

  6. Multiple source navigation signal generator

    NASA Astrophysics Data System (ADS)

    Bojda, Petr

    2010-09-01

    The paper presents a FPGA based digital VOR/LOC signal generator. It provides the composite signal, which consists of the particular signals of several predefined navigation sources - VOR beacons. Design of the generator is implemented into the two different FPGA DSP platforms.

  7. SIG. Signal Processing, Analysis, & Display

    SciTech Connect

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.

  8. SIG. Signal Processing, Analysis, & Display

    SciTech Connect

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG; a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a `repeat` sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.

  9. SIG. Signal Processing, Analysis, & Display

    SciTech Connect

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time-and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.

  10. Asymmetry In Biphase Data Signals

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1992-01-01

    Report presents analysis of some effects of asymmetry in Manchester (biphase) binary data signal transmitted by phase modulation of sinusoidal carrier signal. Report extends analysis described in article, "Effects of Asymmetry of NRZ Data Signals on Performance" (NPO-18261), to include case where data biphase-modulated directly on residual carrier.

  11. Spatiotemporal spike encoding of a continuous external signal.

    PubMed

    Masuda, Naoki; Aihara, Kazuyuki

    2002-07-01

    Interspike intervals of spikes emitted from an integrator neuron model of sensory neurons can encode input information represented as a continuous signal from a deterministic system. If a real brain uses spike timing as a means of information processing, other neurons receiving spatiotemporal spikes from such sensory neurons must also be capable of treating information included in deterministic interspike intervals. In this article, we examine functions of neurons modeling cortical neurons receiving spatiotemporal spikes from many sensory neurons. We show that such neuron models can encode stimulus information passed from the sensory model neurons in the form of interspike intervals. Each sensory neuron connected to the cortical neuron contributes equally to the information collection by the cortical neuron. Although the incident spike train to the cortical neuron is a superimposition of spike trains from many sensory neurons, it need not be decomposed into spike trains according to the input neurons. These results are also preserved for generalizations of sensory neurons such as a small amount of leak, noise, inhomogeneity in firing rates, or biases introduced in the phase distributions. PMID:12079548

  12. Elucidating the Functional Roles of Spatial Organization in Cross-Membrane Signal Transduction by a Hybrid Simulation Method.

    PubMed

    Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao

    2016-07-01

    The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional

  13. Binary-Signal Recovery

    NASA Technical Reports Server (NTRS)

    Griebeler, Elmer L.

    2011-01-01

    Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition

  14. Site-specific Effects of DUOX1-Related Peroxidase on Intercellular Apoptosis Signaling.

    PubMed

    Heinzelmann, Sonja; Bauer, Georg

    2015-11-01

    Intercellular apoptosis-inducing HOCl signaling is known as an interplay between superoxide anions/H₂O₂ of transformed target cells and dual oxidase 1 (DUOX1)-related peroxidase that is released from neighboring non-transformed or transformed effector cells. Effector cells are dispensable when the release of the peroxidase domain of DUOX1 from target cells is prevented through inhibition of matrix metalloproteinase (MMP) activity. Membrane-associated peroxidase is then co-localized to NADPH oxidase 1 (NOX1) and establishes HOCl signaling specifically in transformed cells, using the same biochemical pathways as classical intercellular HOCl signaling. Membrane-associated peroxidase protects against exogenous HOCl through reversal of the peroxidase reaction. In addition, membrane-associated peroxidase protects against NO/peroxynitrite signaling as it oxidates NO and decomposes peroxynitrite. The protective function of membrane-associated peroxidase (in the absence of MMP) is analogous to that of catalase, whereas the destructive effect of the enzyme, i.e. the synthesis of HOCl, is independent of its localization and of MMP activity. PMID:26504019

  15. New delay-integration method for resolving individual components of a pair of composite signals

    SciTech Connect

    Petrek, Derek J.; Bhushan, Bharat

    2007-08-15

    Many scientific measurements are actually a composite of two or more indirectly measured values. A distance measurement, for example, is actually a measurement of the true distance and some amount of error added together. A new method for decomposing a pair of such composite signals into their individual components in certain situations is described. The method utilizes a delay time difference between the components in each of the two composite signals to provide information necessary to reconstruct the individual components. This decomposition would allow for the possible removal of one of the components, such as in the case of unwanted noise. The method is able to distinguish between two signals with similar frequencies and amplitudes, making it a viable solution in situations where simple low- or high-pass filtering would remove needed signal information. Three successful applications of the method are described, including measurement of lateral tape motion (LTM) in a magnetic data storage tape drive and removal of additive noise from both an electrical and a mechanical system.

  16. Enhanced magnetic flux density mapping using coherent steady state equilibrium signal in MREIT

    NASA Astrophysics Data System (ADS)

    Jeong, Woo Chul; Lee, Mun Bae; Sajib, Saurav Z. K.; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2016-03-01

    Measuring the z-component of magnetic flux density B = (Bx, By, Bz) induced by transversally injected current, magnetic resonance electrical impedance tomography (MREIT) aims to visualize electrical property (current density and/or conductivity distribution) in a three-dimensional imaging object. For practical implementations of MREIT technique, it is critical to reduce injection of current pulse within safety requirements. With the goal of minimizing the noise level in measured Bz data, we propose a new method to enhance the measure Bz data using steady-state coherent gradient multi-echo (SSC-GME) MR pulse sequence combining with injection current nonlinear encoding (ICNE) method in MREIT, where the ICNE technique injects current during a readout gradient to maximize the signal intensity of phase signal including Bz. The total phase offset in SSC-GME includes additional magnetic flux density due to the injected current, which is different from the phase signal for the conventional spoiled MR pulse sequence. We decompose the magnetization precession phase from the total phase offset including Bz and optimize Bz data using the steady-state equilibrium signal. Results from a real phantom experiment including different kinds of anomalies demonstrated that the proposed method enhanced Bz comparing to a conventional spoiled pulse sequence.

  17. Automated Classification of Medical Percussion Signals for the Diagnosis of Pulmonary Injuries

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Md Moinuddin

    Used for centuries in the clinical practice, audible percussion is a method of eliciting sounds by areas of the human body either by finger tips or by a percussion hammer. Despite its advantages, pulmonary diagnostics by percussion is still highly subjective, depends on the physician's skills, and requires quiet surroundings. Automation of this well-established technique could help amplify its existing merits while removing the above drawbacks. In this study, an attempt is made to automatically decompose clinical percussion signals into a sum of Exponentially Damped Sinusoids (EDS) using Matrix Pencil Method, which in this case form a more natural basis than Fourier harmonics and thus allow for a more robust representation of the signal in the parametric space. It is found that some EDS represent transient oscillation modes of the thorax/abdomen excited by the percussion event, while others are associated with the noise. It is demonstrated that relatively few EDS are usually enough to accurately reconstruct the original signal. It is shown that combining the frequency and damping parameters of these most significant EDS allows for efficient classification of percussion signals into the two main types historically known as "resonant" and "tympanic". This classification ability can provide a basis for the automated objective diagnostics of various pulmonary pathologies including pneumothorax.

  18. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  19. Fault Detection of a Roller-Bearing System through the EMD of a Wavelet Denoised Signal

    PubMed Central

    Ahn, Jong-Hyo; Kwak, Dae-Ho; Koh, Bong-Hwan

    2014-01-01

    This paper investigates fault detection of a roller bearing system using a wavelet denoising scheme and proper orthogonal value (POV) of an intrinsic mode function (IMF) covariance matrix. The IMF of the bearing vibration signal is obtained through empirical mode decomposition (EMD). The signal screening process in the wavelet domain eliminates noise-corrupted portions that may lead to inaccurate prognosis of bearing conditions. We segmented the denoised bearing signal into several intervals, and decomposed each of them into IMFs. The first IMF of each segment is collected to become a covariance matrix for calculating the POV. We show that covariance matrices from healthy and damaged bearings exhibit different POV profiles, which can be a damage-sensitive feature. We also illustrate the conventional approach of feature extraction, of observing the kurtosis value of the measured signal, to compare the functionality of the proposed technique. The study demonstrates the feasibility of wavelet-based de-noising, and shows through laboratory experiments that tracking the proper orthogonal values of the covariance matrix of the IMF can be an effective and reliable measure for monitoring bearing fault. PMID:25196008

  20. Signaling Pathways in Osteoclast Differentiation.

    PubMed

    Kim, Jung Ha; Kim, Nacksung

    2016-01-01

    Osteoclasts are multinucleated cells of hematopoietic origin that are responsible for the degradation of old bone matrix. Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-κB ligand (RANKL). M-CSF and RANKL bind to their respective receptors c-Fms and RANK to stimulate osteoclast differentiation through regulation of delicate signaling systems. Here, we summarize the critical or essential signaling pathways for osteoclast differentiation including M-CSF-c-Fms signaling, RANKL-RANK signaling, and costimulatory signaling for RANK. PMID:26865996

  1. Emerging Trends in Retrograde Signaling.

    PubMed

    Suvarna, Yashasvi; Maity, Nivedita; Shivamurthy, M C

    2016-05-01

    Retrograde signaling is defined as the signaling events leading from the plastids to the nucleus in plants and across the chemical synapse, from the postsynaptic neuron to the presynaptic neuron in animals. The discovery of various retrograde messengers has opened many avenues and clouds of thoughts as to the role of retrograde signaling. They have been implicated particularly in long-term potentiation (LTP) and synaptic plasticity. But the basic assumptions about retrograde signaling have not been studied upon for many years. This review focuses on established facts and hypothesis put forward in retrograde signaling. PMID:26081150

  2. Notch Signaling in Pancreatic Development

    PubMed Central

    Li, Xu-Yan; Zhai, Wen-Jun; Teng, Chun-Bo

    2015-01-01

    The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways. PMID:26729103

  3. Eph/ephrin signaling: networks

    PubMed Central

    Arvanitis, Dina; Davy, Alice

    2008-01-01

    Bidirectional signaling has emerged as an important signature by which Ephs and ephrins control biological functions. Eph/ephrin signaling participates in a wide spectrum of developmental processes, and cross-regulation with other communication pathways lies at the heart of the complexity underlying their function in vivo. Here, we review in vitro and in vivo data describing molecular, functional, and genetic interactions between Eph/ephrin and other cell surface signaling pathways. The complexity of Eph/ephrin function is discussed in terms of the pathways that regulate Eph/ephrin signaling and also the pathways that are regulated by Eph/ephrin signaling. PMID:18281458

  4. Interactive digital signal processor

    NASA Technical Reports Server (NTRS)

    Mish, W. H.; Wenger, R. M.; Behannon, K. W.; Byrnes, J. B.

    1982-01-01

    The Interactive Digital Signal Processor (IDSP) is examined. It consists of a set of time series analysis Operators each of which operates on an input file to produce an output file. The operators can be executed in any order that makes sense and recursively, if desired. The operators are the various algorithms used in digital time series analysis work. User written operators can be easily interfaced to the sysatem. The system can be operated both interactively and in batch mode. In IDSP a file can consist of up to n (currently n=8) simultaneous time series. IDSP currently includes over thirty standard operators that range from Fourier transform operations, design and application of digital filters, eigenvalue analysis, to operators that provide graphical output, allow batch operation, editing and display information.

  5. [Signal Processing Suite Design

    NASA Technical Reports Server (NTRS)

    Sahr, John D.; Mir, Hasan; Morabito, Andrew; Grossman, Matthew

    2003-01-01

    Our role in this project was to participate in the design of the signal processing suite to analyze plasma density measurements on board a small constellation (3 or 4) satellites in Low Earth Orbit. As we are new to space craft experiments, one of the challenges was to simply gain understanding of the quantity of data which would flow from the satellites, and possibly to interact with the design teams in generating optimal sampling patterns. For example, as the fleet of satellites were intended to fly through the same volume of space (displaced slightly in time and space), the bulk plasma structure should be common among the spacecraft. Therefore, an optimal, limited bandwidth data downlink would take advantage of this commonality. Also, motivated by techniques in ionospheric radar, we hoped to investigate the possibility of employing aperiodic sampling in order to gain access to a wider spatial spectrum without suffering aliasing in k-space.

  6. Collider Signal I :. Resonance

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.

    2010-08-01

    These TASI lectures were part of the summer school in 2008 and cover the collider signal associated with resonances in models of physics beyond the Standard Model. I begin with a review of the Z boson, one of the best-studied resonances in particle physics, and review how the Breit-Wigner form of the propagator emerges in perturbation theory and discuss the narrow width approximation. I review how the LEP and SLAC experiments could use the kinematics of Z events to learn about fermion couplings to the Z. I then make a brief survey of models of physics beyond the Standard Model which predict resonances, and discuss some of the LHC observables which we can use to discover and identify the nature of the BSM physics. I finish up with a discussion of the linear moose that one can use for an effective theory description of a massive color octet vector particle.

  7. Signalling by tips.

    PubMed

    Feijó, José A; Costa, Sílvia S; Prado, Ana Margarida; Becker, Jörg D; Certal, Ana Catarina

    2004-10-01

    New molecules, including protein kinases, lipids and molecules that have neurotransmitter activities in animals have emerged as important players in tip-growing cells. Transcriptomics analysis reveals that the largest single class of genes expressed in pollen tubes encode signal transducers, reflecting the necessity to decode complex and diverse pathways that are associated with tip growth. Many of these pathways may use common intracellular second messengers, with ions and reactive oxygen species emerging as two major common denominators in many of the processes involved in tip growth. These second messengers might influence the actin cytoskeleton through known interactions with actin-binding proteins. In turn, changes in the dynamic properties of the cytoskeleton would define the basic polarity events needed to shape and modify tip-growing cells. PMID:15337103

  8. Olfactory receptor signaling.

    PubMed

    Antunes, Gabriela; Simoes de Souza, Fabio Marques

    2016-01-01

    The guanine nucleotide protein (G protein)-coupled receptors (GPCRs) superfamily represents the largest class of membrane protein in the human genome. More than a half of all GPCRs are dedicated to interact with odorants and are termed odorant-receptors (ORs). Linda Buck and Richard Axel, the Nobel Prize laureates in physiology or medicine in 2004, first cloned and characterized the gene family that encode ORs, establishing the foundations to the understanding of the molecular basis for odor recognition. In the last decades, a lot of progress has been done to unravel the functioning of the sense of smell. This chapter gives a general overview of the topic of olfactory receptor signaling and reviews recent advances in this field. PMID:26928542

  9. Signal conditioning system

    NASA Technical Reports Server (NTRS)

    Zahzah, Mohamad (Inventor); Korkosz, Gregory J. (Inventor); Bohr, Gerald (Inventor)

    2000-01-01

    A current-driven signal conditioning system comprising a first terminal, a second terminal, a strain gauge, and an instrumentation amplifier is disclosed. The strain gauge is adapted to measure a deformation of a structure and to generate a resistance which corresponds to the measured deformation. The instrumentation amplifier is adapted to be connected between the first terminal and the second terminal. The instrumentation amplifier is further adapted to be connected to the strain gauge and to place an output current on the second terminal. The output current is proportional to the resistance generated by the strain gauge. An output resister is coupled between the strain gauge and the second terminal, and a capacitor is coupled between the resister and the first terminal. A zenor diode is coupled between the first terminal and the strain gauge, and a diode is also coupled between the first terminal and the strain gauge.

  10. Elementary signals in ptychography.

    PubMed

    da Silva, Julio Cesar; Menzel, Andreas

    2015-12-28

    Ptychographic imaging has gained popularity for its high resolving power and sensitivity as well as for its ability to map simultaneously the sample's complex-valued refractive index and the illumination. Yet, despite significant progress that allows for reliable practical implementation, some of the technique's fundamentals remain poorly understood, and oftentimes successful data acquisition is either overly conservative or relies more on experimenters experience than on rational data acquisition strategies. Here, we propose a theoretical framework of ptychography, which is based on Gabor's notion of decomposition into elementary signals and the concept of frames. We demonstrate how this framework can straightforwardly be used to derive sampling requirements or to provide arguments on how to optimize the ptychographic scan. More generally, our theoretical framework can serve as a bridge between the experimental technique and the rich and well established mathematical disciplines of wavelets decomposition and spectrogram analysis. PMID:26832042

  11. Epigenetic signaling in schizophrenia.

    PubMed

    Ibi, Daisuke; González-Maeso, Javier

    2015-10-01

    Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Psychiatric disorders such as schizophrenia and depression are complex and heterogeneous diseases with multiple and independent factors that may contribute to their pathophysiology, making challenging to find a link between specific elements and the underlying mechanisms responsible for the disorder and its treatment. Growing evidences suggest that epigenetic modifications in certain brain regions and neural circuits represent a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of psychiatric conditions throughout life. This review focuses on recent advances that directly implicate epigenetic modifications in schizophrenia and antipsychotic drug action. PMID:26120009

  12. Quantitative measures for redox signaling.

    PubMed

    Pillay, Ché S; Eagling, Beatrice D; Driscoll, Scott R E; Rohwer, Johann M

    2016-07-01

    Redox signaling is now recognized as an important regulatory mechanism for a number of cellular processes including the antioxidant response, phosphokinase signal transduction and redox metabolism. While there has been considerable progress in identifying the cellular machinery involved in redox signaling, quantitative measures of redox signals have been lacking, limiting efforts aimed at understanding and comparing redox signaling under normoxic and pathogenic conditions. Here we have outlined some of the accepted principles for redox signaling, including the description of hydrogen peroxide as a signaling molecule and the role of kinetics in conferring specificity to these signaling events. Based on these principles, we then develop a working definition for redox signaling and review a number of quantitative methods that have been employed to describe signaling in other systems. Using computational modeling and published data, we show how time- and concentration- dependent analyses, in particular, could be used to quantitatively describe redox signaling and therefore provide important insights into the functional organization of redox networks. Finally, we consider some of the key challenges with implementing these methods. PMID:27151506

  13. Signaling on the endocytic pathway.

    PubMed

    McPherson, P S; Kay, B K; Hussain, N K

    2001-06-01

    Ligand binding to receptor tyrosine kinases and G-protein-coupled receptors initiates signal transduction events and induces receptor endocytosis via clathrin-coated pits and vesicles. While receptor-mediated endocytosis has been traditionally considered an effective mechanism to attenuate ligand-activated responses, more recent studies demonstrate that signaling continues on the endocytic pathway. In fact, certain signaling events, such as the activation of the extracellular signal-regulated kinases, appear to require endocytosis. Protein components of signal transduction cascades can assemble at clathrin coated pits and remain associated with endocytic vesicles following their dynamin-dependent release from the plasma membrane. Thus, endocytic vesicles can function as a signaling compartment distinct from the plasma membrane. These observations demonstrate that endocytosis plays an important role in the activation and propagation of signaling pathways. PMID:11389765

  14. EEG signal analysis: a survey.

    PubMed

    Subha, D Puthankattil; Joseph, Paul K; Acharya U, Rajendra; Lim, Choo Min

    2010-04-01

    The EEG (Electroencephalogram) signal indicates the electrical activity of the brain. They are highly random in nature and may contain useful information about the brain state. However, it is very difficult to get useful information from these signals directly in the time domain just by observing them. They are basically non-linear and nonstationary in nature. Hence, important features can be extracted for the diagnosis of different diseases using advanced signal processing techniques. In this paper the effect of different events on the EEG signal, and different signal processing methods used to extract the hidden information from the signal are discussed in detail. Linear, Frequency domain, time - frequency and non-linear techniques like correlation dimension (CD), largest Lyapunov exponent (LLE), Hurst exponent (H), different entropies, fractal dimension(FD), Higher Order Spectra (HOS), phase space plots and recurrence plots are discussed in detail using a typical normal EEG signal. PMID:20433058

  15. Resolution issues in the analysis of radar signals via Fourier approaches

    NASA Astrophysics Data System (ADS)

    Flores, Benjamin C.; Ochoa, Hector A.; Thomas, Gabriel

    2004-08-01

    Classical work in the field of high-resolution radar often assumes that an echo signal is made of a number of components that can be decomposed via Fourier analysis. Adjacent components are said to be resolved in the frequency domain if the intensity between them drops at least 3 decibels. This working definition is an extension of Lord Rayleigh's criterion for optical resolution. The problem with this approach is that whereas Rayleigh's criterion assumes signal incoherence, thus allowing for the addition of power components, a high-resolution radar signal is often the coherent sum of sinusoids, which implies voltage addition. The purpose of this paper is to discuss the consequences of using Rayleigh's criterion in the analysis of radar signals. Specifically, computer simulations using a complex signal are analyzed via the periodogram as the relative phase between the two components of the signal is allowed to change. The net effect introduced by this phase variation is to reduce or increase the spacing and intensity between two adjacent spectral peaks. These changes are due to constructive or destructive interference of spectral cross terms that cannot be ignored when attempting to resolve frequency components from one another. For instance, the simulations show that when using the averaged periodogram, the intensity in-between two adjacent components is above the -3 decibel threshold for a phase range of 1.2π radians, although the standard resolution criterion of c/2β is satisfied. Similar results are obtained when using a number of windows that are known to control sidelobe levels. Thus, the use of Rayleigh's criterion to define the resolution of a high-resolution radar system is technically inconsistent and undermines our ability to perform quantitative comparisons of target profiles, Doppler profiles and range-Doppler images. In this light, the authors promote the adoption of alternative criteria for judging resolution gains based on the norm of the signal

  16. Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals

    PubMed Central

    Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F.

    2014-01-01

    Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2–3 days and used 1–2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory. PMID:24904402

  17. Cross-correlation analysis and time delay estimation of a homologous micro-seismic signal based on the Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Sun, Hong-Mei; Jia, Rui-Sheng; Du, Qian-Qian; Fu, You

    2016-06-01

    A micro-seismic signal's transient features are non-stationary. The traditional weighted generalized cross-correlation (GCC) algorithm is based on the cross-power spectrum density. This algorithm diminishes the performance of the time delay estimation for homologous micro-seismic signals. This paper analyzed the influence of calculation error on the cross-power spectrum density of a non-stationary signal and proposed a new cross-correlation analysis and time delay estimation method for homologous micro-seismic signals based on the Hilbert-Huang transform (HHT). First, the original signals are decomposed into intrinsic mode function (IMF) components using empirical mode decomposition (EMD) for de-noising. Subsequently, the IMF components and the original signals are analyzed using a cross-correlation analysis. The IMF components are subsequently remodeled at different scales using the Hilbert transform. The marginal spectrum density is obtained via a time integration of the remodeled components. The cross-marginal spectrum density of the two signals can also be obtained. Finally, the cross-marginal spectrum density is used in the weighted GCC algorithm for time delay estimation instead of the cross-power spectrum density. The time delay estimation is determined by searching for the weighted GCC function peak. The experiments demonstrated the superior time delay estimation performance of the new method for non-stationary transient signals. Therefore, a new time delay estimation method for non-stationary random signals is presented in this paper.

  18. Investigating complex patterns of blocked intestinal artery blood pressure signals by empirical mode decomposition and linguistic analysis

    NASA Astrophysics Data System (ADS)

    Yeh, J.-R.; Lin, T.-Y.; Shieh, J.-S.; Chen, Y.; Huang, N. E.; Wu, Z.; Peng, C.-K.

    2008-02-01

    In this investigation, surgical operations of blocked intestinal artery have been conducted on pigs to simulate the condition of acute mesenteric arterial occlusion. The empirical mode decomposition method and the algorithm of linguistic analysis were applied to verify the blood pressure signals in simulated situation. We assumed that there was some information hidden in the high-frequency part of the blood pressure signal when an intestinal artery is blocked. The empirical mode decomposition method (EMD) has been applied to decompose the intrinsic mode functions (IMF) from a complex time series. But, the end effects and phenomenon of intermittence damage the consistence of each IMF. Thus, we proposed the complementary ensemble empirical mode decomposition method (CEEMD) to solve the problems of end effects and the phenomenon of intermittence. The main wave of blood pressure signals can be reconstructed by the main components, identified by Monte Carlo verification, and removed from the original signal to derive a riding wave. Furthermore, the concept of linguistic analysis was applied to design the blocking index to verify the pattern of riding wave of blood pressure using the measurements of dissimilarity. Blocking index works well to identify the situation in which the sampled time series of blood pressure signal was recorded. Here, these two totally different algorithms are successfully integrated and the existence of the existence of information hidden in high-frequency part of blood pressure signal has been proven.

  19. Integrin endosomal signalling suppresses anoikis

    PubMed Central

    Alanko, Jonna; Mai, Anja; Jacquemet, Guillaume; Schauer, Kristine; Kaukonen, Riina; Saari, Markku; Goud, Bruno; Ivaska, Johanna

    2016-01-01

    Integrin containing focal adhesions (FAs) transmit extracellular signals across the plasma membrane to modulate cell adhesion, signalling and survival. Although integrins are known to undergo continuous endo/exocytic traffic, potential impact of endocytic traffic on integrin-induced signals is unknown. Here, we demonstrate that integrin signalling is not restricted to cell-ECM adhesions and identify an endosomal signalling platform that supports integrin signalling away from the plasma membrane. We show that active focal adhesion kinase (FAK), an established marker of integrin-ECM downstream signalling, localises with active integrins on endosomes. Integrin endocytosis positively regulates adhesion-induced FAK activation, which is early endosome antigen-1 (EEA1) and small GTPase Rab21 dependent. FAK binds directly to purified endosomes and becomes activated on them, suggesting a role for endocytosis in enhancing distinct integrin downstream signalling events. Finally, endosomal integrin signalling contributes to cancer-related processes such as anoikis resistance, anchorage-independence and metastasis. Integrins are heterodimeric cell surface adhesion receptors functioning as integrators of the extra-cellular matrix (ECM) driven cues, the cellular cytoskeleton and the cellular signalling apparatus 1.Upon adhesion, integrins trigger the formation of plasma-membrane proximal large mechanosensing and signal-transmitting protein clusters depicted as “adhesomes” 2, 3. In addition, integrins undergo constant endocytic traffic to facilitate focal adhesion turnover, cell migration, invasion and cytokinesis 4. For other receptor systems it is well established that endocytic membrane traffic regulates bioavailability of cell-surface molecules and therefore the intensity and/or specificity of receptor-initiated signals 5, 6. Although active integrins and their ligands have been detected in endosomes 7–9 and increased integrin recycling to the plasma membrane contributes

  20. Efficient signal transmission by synchronization through compound chaotic signal

    NASA Astrophysics Data System (ADS)

    Murali, K.; Lakshmanan, M.

    1997-07-01

    The idea of synchronization of chaotic systems is further extended to the case where all the drive system variables are combined suitably to obtain a compound chaotic signal. An appropriate feedback loop is constructed in the response system to achieve synchronization among the variables of the drive and response systems. We apply this approach to transmit both analog and digital data signals in which the quality of the recovered signal is higher and the encoding is more secure.