Science.gov

Sample records for bioactive glass scaffolds

  1. Nano/macro porous bioactive glass scaffold

    NASA Astrophysics Data System (ADS)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  2. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties.

    PubMed

    Correia, Cristina O; Leite, Álvaro J; Mano, João F

    2015-06-01

    We propose a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce CHT/BG-NPs scaffolds that combine the shape memory properties of chitosan and the biomineralization ability of BG-NPs for applications in bone regeneration. The addition of BG-NPs prepared by a sol-gel route to the CHT polymeric matrix improved the bioactivity of the nanocomposite scaffold, as seen by the precipitation of bone-like apatite layer upon immersion in simulated body fluid (SBF). Shape memory tests were carried out while the samples were immersed in varying compositions of water/ethanol mixtures. Dehydration with ethanol enables to fix a temporary shape of a deformed scaffold that recovers the initial geometry upon water uptake. The scaffolds present good shape memory properties characterized by a recovery ratio of 87.5% for CHT and 89.9% for CHT/BG-NPs and a fixity ratio of 97.2% for CHT and 98.2% for CHT/BG-NPs (for 30% compressive deformation). The applicability of such structures was demonstrated by a good geometrical accommodation of a previously compressed scaffold in a bone defect. The results indicate that the developed CHT/BG-NPs nanocomposite scaffolds have potential for being applied in bone tissue engineering. PMID:25843832

  3. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica.

    PubMed

    Özarslan, Ali Can; Yücel, Sevil

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. PMID:27524030

  4. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    PubMed

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering. PMID:26592544

  5. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.

    PubMed

    Fiorilli, Sonia; Baino, Francesco; Cauda, Valentina; Crepaldi, Marco; Vitale-Brovarone, Chiara; Demarchi, Danilo; Onida, Barbara

    2015-01-01

    In this work, the coating of 3-D foam-like glass-ceramic scaffolds with a bioactive mesoporous glass (MBG) was investigated. The starting scaffolds, based on a non-commercial silicate glass, were fabricated by the polymer sponge replica technique followed by sintering; then, electrophoretic deposition (EPD) was applied to deposit a MBG layer on the scaffold struts. EPD was also compared with other techniques (dipping and direct in situ gelation) and it was shown to lead to the most promising results. The scaffold pore structure was maintained after the MBG coating by EPD, as assessed by SEM and micro-CT. In vitro bioactivity of the scaffolds was assessed by immersion in simulated body fluid and subsequent evaluation of hydroxyapatite (HA) formation. The deposition of a MBG coating can be a smart strategy to impart bioactive properties to the scaffold, allowing the formation of nano-structured HA agglomerates within 48 h from immersion, which does not occur on uncoated scaffold surfaces. The mechanical properties of the scaffold do not vary after the EPD (compressive strength ~19 MPa, fracture energy ~1.2 × 10(6) J m(-3)) and suggest the suitability of the prepared highly bioactive constructs as bone tissue engineering implants for load-bearing applications. PMID:25578700

  6. Bioactivity and Mechanical Stability of 45S5 Bioactive Glass Scaffolds Based on Natural Marine Sponges.

    PubMed

    Boccardi, E; Philippart, A; Melli, V; Altomare, L; De Nardo, L; Novajra, G; Vitale-Brovarone, C; Fey, T; Boccaccini, A R

    2016-06-01

    Bioactive glass (BG) based scaffolds (45S5 BG composition) were developed by the replica technique using natural marine sponges as sacrificial templates. The resulting scaffolds were characterized by superior mechanical properties (compression strength up to 4 MPa) compared to conventional BG scaffolds prepared using polyurethane (PU) packaging foam as a template. This result was ascribed to a reduction of the total scaffold porosity without affecting the pore interconnectivity (>99%). It was demonstrated that the reduction of total porosity did not affect the bioactivity of the BG-based scaffolds, tested by immersion of scaffolds in simulated body fluid (SBF). After 1 day of immersion in SBF, a homogeneous CaP deposit on the surface of the scaffolds was formed, which evolved over time into carbonate hydroxyapatite (HCA). Moreover, the enhanced mechanical properties of these scaffolds were constant over time in SBF; after an initial reduction of the maximum compressive strength upon 7 days of immersion in SBF (to 1.2 ± 0.2 MPa), the strength values remained almost constant and higher than those of BG-based scaffolds prepared using PU foam (<0.05 MPa). Preliminary cell culture tests with Saos-2 osteoblast cell line, namely direct and indirect tests, demonstrated that no toxic residues remained from the natural marine sponge templates and that cells were able to proliferate on the scaffold surfaces. PMID:27034242

  7. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration

    PubMed Central

    Zhang, Xingdi; Zeng, Deliang; Li, Nan; Wen, Jin; Jiang, Xinquan; Liu, Changsheng; Li, Yongsheng

    2016-01-01

    Mesoporous bioactive glass (MBG), which possesses excellent bioactivity, biocompatibility and osteoconductivity, has played an important role in bone tissue regeneration. However, it is difficult to prepare MBG scaffolds with high compressive strength for applications in bone regeneration; this difficulty has greatly hindered its development and use. To solve this problem, a simple powder processing technique has been successfully developed to fabricate a novel type of MBG scaffold (MBGS). Furthermore, amino or carboxylic groups could be successfully grafted onto MBGSs (denoted as N-MBGS and C-MBGS, respectively) through a post-grafting process. It was revealed that both MBGS and the functionalized MBGSs could significantly promote the proliferation and osteogenic differentiation of bMSCs. Due to its positively charged surface, N-MBGS presented the highest in vitro osteogenic capability of the three samples. Moreover, in vivo testing results demonstrated that N-MBGS could promote higher levels of bone regeneration compared with MBGS and C-MBGS. In addition to its surface characteristics, it is believed that the decreased degradation rate of N-MBGS plays a vital role in promoting bone regeneration. These findings indicate that MBGSs are promising materials with potential practical applications in bone regeneration, which can be successfully fabricated by combining a powder processing technique and post-grafting process. PMID:26763311

  8. Controlling ion release from bioactive glass foam scaffolds with antibacterial properties.

    PubMed

    Jones, Julian R; Ehrenfried, Lisa M; Saravanapavan, Priya; Hench, Larry L

    2006-11-01

    Bioactive glass scaffolds have been produced, which meet many of the criteria for an ideal scaffold for bone tissue engineering applications, by foaming sol-gel derived bioactive glasses. The scaffolds have a hierarchical pore structure that is very similar to that of cancellous bone. The degradation products of bioactive glasses have been found to stimulate the genes in osteoblasts. This effect has been found to be dose dependent. The addition of silver ions to bioactive glasses has also been investigated to produce glasses with bactericidal properties. This paper discusses how changes in the hierarchical pore structure affect the dissolution of the glass and therefore its bioactivity and rate of ion delivery and demonstrates that silver containing bioactive glass foam scaffolds can be synthesised. It was found that the rate of release of Si and Ca ions was more rapid for pore structures with a larger modal pore diameter, although the effect of tailoring the textural porosity on the rate of ion release was more pronounced. Bioactive glass scaffolds, containing 2 mol% silver, released silver ions at a rate that was similar to that which has previously been found to be bactericidal but not high enough to be cytotoxic to bone cells. PMID:17122909

  9. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass.

    PubMed

    Pourhaghgouy, Masoud; Zamanian, Ali; Shahrezaee, Mostafa; Masouleh, Milad Pourbaghi

    2016-01-01

    Chitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO2.28CaO.8P2O5) prepared by sol-gel method was approximately less than 20 nm. Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis showed proper interfacial bonding between BGNPs and chitosan polymers. Scanning Electron Microscopy (SEM) images depicted a unidirectional structure with homogenous distribution of BGNPs among chitosan matrix associated with the absence of pure chitosan scaffold's wall pores after addition of only 10 wt.% BGNPs. As the BGNP content increased from 0 to 50 wt.%, the compressive strength and compressive module values increased from 0.034 to 0.419 MPa and 0.41 to 10.77 MPa, respectively. Biodegradation study showed that increase in BGNP content leads to growth of weight loss amount. The in vitro biomineralization studies confirmed the bioactive nature of all nanocomposites. Amount of 30 wt.% BGNPs represented the best concentration for absorption capacity and bioactivity behaviors. PMID:26478301

  10. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives

    PubMed Central

    Fu, Qiang; Saiz, Eduardo; Rahaman, Mohamed N.; Tomsia, Antoni P.

    2011-01-01

    The repair and regeneration of large bone defects resulting from disease or trauma remains a significant clinical challenge. Bioactive glass has appealing characteristics as a scaffold material for bone tissue engineering, but the application of glass scaffolds for the repair of load-bearing bone defects is often limited by their low mechanical strength and fracture toughness. This paper provides an overview of recent developments in the fabrication and mechanical properties of bioactive glass scaffolds. The review reveals the fact that mechanical strength is not a real limiting factor in the use of bioactive glass scaffolds for bone repair, an observation not often recognized by most researchers and clinicians. Scaffolds with compressive strengths comparable to those of trabecular and cortical bones have been produced by a variety of methods. The current limitations of bioactive glass scaffolds include their low fracture toughness (low resistance to fracture) and limited mechanical reliability, which have so far received little attention. Future research directions should include the development of strong and tough bioactive glass scaffolds, and their evaluation in unloaded and load-bearing bone defects in animal models. PMID:21912447

  11. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles.

    PubMed

    Novajra, G; Boetti, N G; Lousteau, J; Fiorilli, S; Milanese, D; Vitale-Brovarone, C

    2016-10-01

    Novel bone glass fibre scaffolds were developed by thermally bonding phosphate glass fibres belonging to the P2O5-CaO-Na2O-SiO2-MgO-K2O-TiO2 system (TiPS2.5 glass). Scaffolds with fibres of 85 or 110μm diameter were fabricated, showing compressive strength in the range of 2-3.5MPa, comparable to that of the trabecular bone. The effect of different thermal treatments and fibre diameters and length on the final scaffold structure was investigated by means of micro-CT analysis. The change of the sintering time from 30 to 60min led to a decrease in the scaffold overall porosity from 58 to 21vol.% for the 85μm fibre scaffold and from 50 to 40vol.% when increasing the sintering temperature from 490 to 500°C for the 110μm fibre scaffold. The 85μm fibres resulted in an increase of the scaffold overall porosity, increased pore size and lower trabecular thickness; the use of different fibre diameters allowed the fabrication of a scaffold showing a porosity gradient. In order to impart bioactive properties to the scaffold, for the first time in the literature the introduction in these fibre scaffolds of a bioactive phase, a melt-derived bioactive glass (CEL2) powder or spray-dried mesoporous bioactive glass particles (SD-MBG) was investigated. The scaffold bioactivity was assessed through soaking in simulated body fluid. CEL2/glass fibre scaffold did not show promising results due to particle detachment from the fibres during soaking in simulated body fluid. Instead the use of mesoporous bioactive powders showed to be an effective way to impart bioactivity to the scaffold and could be further exploited in the future through the ability of mesoporous particles to act as systems for the controlled release of drugs. PMID:27287156

  12. Freeze casting of bioactive glass and ceramic scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Fu, Qiang

    The main objectives of this dissertation were to explore the production of bioactive ceramic and glass scaffolds with oriented pore architectures by unidirectional freezing of suspensions, and to characterize the mechanical and biological performance of the scaffolds. Freezing of aqueous suspensions of hydroxyapatite (HA) or bioactive 13-93 glass particles resulted in the formation of scaffolds with a lamellar-type microstructure (pore width = 5--30 microm). The addition of polar organic solvents (such as 60 wt% dioxane) to the aqueous suspensions markedly changed the morphology and size of the oriented pores, giving scaffolds with a columnar-type microstructure and larger pore width (90--110 microm). The scaffolds showed a unique 'elastic--plastic' mechanical response in compression along the orientation direction, with large strain for failure (>20%) and strain rate sensitivity. For a similar porosity, the bioactive glass scaffolds had a higher strength than the HA scaffolds, presumably because of better sintering characteristics. Columnar bioactive glass scaffolds (porosity = 55--60%) had a compressive strength of 25 +/- 3 MPa. The columnar scaffolds with the larger pore width showed better ability than the lamellar scaffolds to support the proliferation and function of murine osteoblastic cells (MLO-A5 or MC3T3-E1). Subcutaneous implantation in the dorsum of rats showed abundant tissue ingrowth into the pores of the columnar scaffolds and integration of the scaffolds with surrounding tissue. The results indicate that bioactive 13-93 glass scaffolds with the columnar microstructure could be used for the repair of segmental defects in load-bearing bones.

  13. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    NASA Astrophysics Data System (ADS)

    Mozafari, Masoud; Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied

    2010-12-01

    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO 2-CaO-P 2O 5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 μm and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  14. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.

    PubMed

    Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

    2014-01-01

    Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation. PMID:23241965

  15. Development of biodegradable polyurethane and bioactive glass nanoparticles scaffolds for bone tissue engineering applications.

    PubMed

    de Oliveira, Agda Aline Rocha; de Carvalho, Sandhra Maria; Leite, Maria de Fátima; Oréfice, Rodrigo Lambert; Pereira, Marivalda de Magalhães

    2012-07-01

    The development of polymer/bioactive glass has been recognized as a strategy to improve the mechanical behavior of bioactive glass-based materials. Several studies have reported systems based on bioactive glass/biopolymer composites. In this study, we developed a composite system based on bioactive glass nanoparticles (BGNP), obtained by a modified Stöber method. We also developed a new chemical route to obtain aqueous dispersive biodegradable polyurethane. The production of polyurethane/BGNP scaffolds intending to combine biocompatibility, mechanical, and physical properties in a material designed for tissue engineering applications. The composites obtained were characterized by structural, biological, and mechanical tests. The films presented 350% of deformation and the foams presented pore structure and mechanical properties adequate to support cell growth and proliferation. The materials presented good cell viability and hydroxyapatite layer formation upon immersion in simulated body fluid. PMID:22566477

  16. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds.

    PubMed

    Roohani-Esfahani, S I; Nouri-Khorasani, S; Lu, Z F; Appleyard, R C; Zreiqat, H

    2011-03-01

    Biphasic calcium phosphates (BCP) scaffolds are widely used for bone tissue regeneration. However, brittleness, low mechanical properties and compromised bioactivities are, at present, their major disadvantages. In this study we coated the struts of a BCP scaffold with a nanocomposite layer consisting of bioactive glass nanoparticles (nBG) and polycaprolactone (PCL) (BCP/PCL-nBG) to enhance its mechanical and biological behavior. The effect of various nBG concentrations (1-90 wt.%) on the mechanical properties and in vitro behavior of the scaffolds was comprehensively examined and compared with that for a BCP scaffold coated with PCL and hydroxyapatite nanoparticles (nHA) (BCP/PCL-nHA) and a BCP scaffold coated with only a PCL layer (BCP/PCL). Introduction of 1-90 wt.% nBG resulted in scaffolds with compressive strengths in the range 0.2-1.45 MPa and moduli in the range 19.3-49.4 MPa. This trend was also observed for BCP/PCL-nHA scaffolds, however, nBG induced even better bioactivity and a faster degradation rate. The maximum compressive strength (increased ∼14 times) and modulus (increased ∼3 times) were achieved when 30 wt.% nBG was added, compared with BCP scaffolds. Moreover, BCP/PCL-nBG scaffolds induced the differentiation of primary human bone-derived cells (HOBs), with significant up-regulation of osteogenic gene expression for Runx2, osteopontin and bone sialoprotein, compared with the other groups. PMID:20971219

  17. Fabrication of hydrogel based nanocomposite scaffold containing bioactive glass nanoparticles for myocardial tissue engineering.

    PubMed

    Barabadi, Zahra; Azami, Mahmoud; Sharifi, Esmaeel; Karimi, Roya; Lotfibakhshaiesh, Nasrin; Roozafzoon, Reza; Joghataei, Mohammad Taghi; Ai, Jafar

    2016-12-01

    Selecting suitable cell sources and angiogenesis induction are two important issues in myocardial tissue engineering. Human endometrial stromal cells (EnSCs) have been introduced as an abundant and easily available resource in regenerative medicine. Bioactive glass is an agent that induces angiogenesis and has been studied in some experiments. The aim of this study was to investigate in vitro differentiation capacity of endometrial stem cells into cardiomyocyte lineage and to evaluate capability of bioactive glass nanoparticles toward EnSCs differentiation into endothelial lineage and angiogenesis on hydrogel scaffold. Our findings suggests that endometrial stem cells could be programmed into cardiomyocyte linage and considered a suitable cell source for myocardial regeneration. This experiment also revealed that inclusion of bioactive glass nanoparticles in hydrogel scaffold could improve angiogenesis through differentiating EnSCs toward endothelial lineage and increasing level of vascular endothelial growth factor secretion. PMID:27612811

  18. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.

    PubMed

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-12-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (∼100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  19. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis

    NASA Astrophysics Data System (ADS)

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-11-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (~100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  20. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite.

    PubMed

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Tayebi, Lobat

    2015-04-01

    A reduction in the degradation rate of magnesium (Mg) and its alloys is in high demand to enable these materials to be used in orthopedic applications. For this purpose, in this paper, a biocompatible polymeric layer reinforced with a bioactive ceramic made of polycaprolactone (PCL) and bioactive glass (BG) was applied on the surface of Mg scaffolds using dip-coating technique under low vacuum. The results indicated that the PCL-BG coated Mg scaffolds exhibited noticeably enhanced bioactivity compared to the uncoated scaffold. Moreover, the mechanical integrity of the Mg scaffolds was improved using the PCL-BG coating on the surface. The stable barrier property of the coatings effectively delayed the degradation activity of Mg scaffold substrates. Moreover, the coatings induced the formation of apatite layer on their surface after immersion in the SBF, which can enhance the biological bone in-growth and block the microcracks and pore channels in the coatings, thus prolonging their protective effect. Furthermore, it was shown that a three times increase in the concentration of PCL-BG noticeably improved the characteristics of scaffolds including their degradation resistance and mechanical stability. Since bioactivity, degradation resistance and mechanical integrity of a bone substitute are the key factors for repairing and healing fractured bones, we suggest that PCL-BG is a suitable coating material for surface modification of Mg scaffolds. PMID:25686970

  1. Hierarchically biomimetic scaffold of a collagen-mesoporous bioactive glass nanofiber composite for bone tissue engineering.

    PubMed

    Hsu, Fu-Yin; Lu, Meng-Ru; Weng, Ru-Chun; Lin, Hsiu-Mei

    2015-04-01

    Mesoporous bioactive glass nanofibers (MBGNFs) were prepared by a sol-gel/electrospinning technique. Subsequently, a collagen-MBGNF (CM) composite scaffold that simultaneously possessed a macroporous structure and collagen nanofibers was fabricated by a gelation and freeze-drying process. Additionally, immersing the CM scaffold in a simulated body fluid resulted in the formation of bone-like apatite minerals on the surface. The CM scaffold provided a suitable environment for attachment to the cytoskeleton. Based on the measured alkaline phosphatase activity and protein expression levels of osteocalcin and bone sialoprotein, the CM scaffold promoted the differentiation and mineralization of MG63 osteoblast-like cells. In addition, the bone regeneration ability of the CM scaffold was examined using a rat calvarial defect model in vivo. The results revealed that CM is biodegradable and could promote bone regeneration. Therefore, a CM composite scaffold is a potential bone graft for bone tissue engineering applications. PMID:25805665

  2. Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications.

    PubMed

    Hoppe, Alexander; Jokic, Bojan; Janackovic, Djordje; Fey, Tobias; Greil, Peter; Romeis, Stefan; Schmidt, Jochen; Peukert, Wolfgang; Lao, Jonathan; Jallot, Edouard; Boccaccini, Aldo R

    2014-02-26

    Loading biomaterials with angiogenic therapeutics has emerged as a promising approach for developing superior biomaterials for engineering bone constructs. In this context, cobalt-releasing materials are of interest as Co is a known angiogenic agent. In this study, we report on cobalt-releasing three-dimensional (3D) scaffolds based on a silicate bioactive glass. Novel melt-derived "1393" glass (53 wt % SiO2, 6 wt % Na2O, 12 wt % K2O, 5 wt % MgO, 20 wt % CaO, and 4 wt % P2O5) with CoO substituted for CaO was fabricated and was used to produce a 3D porous scaffold by the foam replica technique. Glass structural and thermal properties as well as scaffold macrostructure, compressive strength, acellular bioactivity, and Co release in simulated body fluid (SBF) were investigated. In particular, detailed insights into the physicochemical reactions occurring at the scaffold-fluid interface were derived from advanced micro-particle-induced X-ray emission/Rutherford backscattering spectrometry analysis. CoO is shown to act in a concentration-dependent manner as both a network former and a network modifier. At a concentration of 5 wt % CoO, the glass transition point (Tg) of the glass was reduced because of the replacement of stronger Si-O bonds with Co-O bonds in the glass network. Compressive strengths of >2 MPa were measured for Co-containing 1393-derived scaffolds, which are comparable to values of human spongy bone. SBF studies showed that all glass scaffolds form a calcium phosphate (CaP) layer, and for 1393-1Co and 1393-5Co, CaP layers with incorporated traces of Co were observed. The highest Co concentrations of ∼12 ppm were released in SBF after reaction for 21 days, which are known to be within therapeutic ranges reported for Co(2+) ions. PMID:24476347

  3. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.

    PubMed

    Zhang, Jianhua; Zhao, Shichang; Zhu, Yufang; Huang, Yinjun; Zhu, Min; Tao, Cuilian; Zhang, Changqing

    2014-05-01

    In this study, we fabricated strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds with controlled architecture and enhanced mechanical strength using a three-dimensional (3-D) printing technique. The study showed that Sr-MBG scaffolds had uniform interconnected macropores and high porosity, and their compressive strength was ∼170 times that of polyurethane foam templated MBG scaffolds. The physicochemical and biological properties of Sr-MBG scaffolds were evaluated by ion dissolution, apatite-forming ability and proliferation, alkaline phosphatase activity, osteogenic expression and extracelluar matrix mineralization of osteoblast-like cells MC3T3-E1. The results showed that Sr-MBG scaffolds exhibited a slower ion dissolution rate and more significant potential to stabilize the pH environment with increasing Sr substitution. Importantly, Sr-MBG scaffolds possessed good apatite-forming ability, and stimulated osteoblast cells' proliferation and differentiation. Using dexamethasone as a model drug, Sr-MBG scaffolds also showed a sustained drug delivery property for use in local drug delivery therapy, due to their mesoporous structure. Therefore, the 3-D printed Sr-MBG scaffolds combined the advantages of Sr-MBG such as good bone-forming bioactivity, controlled ion release and drug delivery and enhanced mechanical strength, and had potential application in bone regeneration. PMID:24412143

  4. Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds.

    PubMed

    Bi, Lianxiang; Zobell, Brett; Liu, Xin; Rahaman, Mohamed N; Bonewald, Lynda F

    2014-09-01

    The repair of structural bone defects such as segmental defects in the long bones of the limbs is a challenging clinical problem. In this study, the capacity of silicate (13-93) and borate (13-93B3) bioactive glass scaffolds (porosity=47-50%) to heal critical-size segmental defects in rat femurs was evaluated and compared with autografts. Defects were implanted with 13-93 and 13-93B3 scaffolds with a grid-like microstructure (compressive strength=86 MPa and 40 MPa, respectively), 13-93B3 scaffolds with an oriented microstructure (compressive strength=32 MPa) and autografts using intramedullary fixation. Twelve weeks post-implantation, the defects were harvested and evaluated using histomorphometric analysis. The percentage of new bone in the defects implanted with the three groups of glass scaffolds (25-28%) and the total von Kossa-positive area (32-38%) were not significantly different from the autografts (new bone=38%; von Kossa-positive area=40%) (p>0.05). New blood vessel area in the defects implanted with the glass scaffolds (4-8%) and the autografts (5%) showed no significant difference among the four groups. New cartilage formed in the 13-93 grid-like scaffolds (18%) was significantly higher than in 13-93B3 grid-like scaffolds (8%) and in the autografts (8%) (p=0.02). The results indicate that these strong porous bioactive glass scaffolds are promising synthetic implants for structural bone repair. PMID:25063184

  5. Degradation studies of 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate) - bioactive glass scaffolds for bone tissue repair applications

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2016-05-01

    Bio composite scaffolds prepared from polymer and bio glass provide necessary sites for bone tissue regeneration. In the presented work, bioactive glass scaffolds have been prepared from 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate) with different amount of bioactive glass powder by solvent casting method. Prepared scaffolds have been characterized by XRD, FTIR and FESEM techniques. Effect of content of bioactive glass on biodegradability has been investigated in detail.

  6. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds

    PubMed Central

    Poh, Patrina S.P.; Hutmacher, Dietmar W.; Holzapfel, Boris M.; Solanki, Anu K.; Woodruff, Maria A.

    2016-01-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period. PMID:27081669

  7. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.

    PubMed

    Poh, Patrina S P; Hutmacher, Dietmar W; Holzapfel, Boris M; Solanki, Anu K; Woodruff, Maria A

    2016-06-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period. PMID:27081669

  8. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds.

    PubMed

    Wang, Hui; Zhao, Shichang; Xiao, Wei; Xue, Jingzhe; Shen, Youqu; Zhou, Jie; Huang, Wenhai; Rahaman, Mohamed N; Zhang, Changqing; Wang, Deping

    2016-01-01

    Copper doped borosilicate glasses (BG-Cu) were studied by means of FT-IR, Raman, UV-vis and NMR spectroscopies to investigate the changes that appeared in the structure of borosilicate glass matrix by doping copper ions. Micro-fil and immunohistochemistry analysis were applied to study the angiogenesis of its derived scaffolds in vivo. Results indicated that the Cu ions significantly increased the B-O bond of BO4 groups at 980 cm(-1), while they decrease that of BO2O(-) groups at 1440-1470 cm(-1) as shown by Raman spectra. A negative shift was observed from (11)B and (29)Si NMR spectra. The (11)B NMR spectra exhibited a clear transformation from BO3 into BO4 groups, caused by the agglutination effect of the Cu ions and the charge balance of the agglomerate in the glass network, leading to a more stable glass network and lower ions release rate in the degradation process. Furthermore, the BG-Cu scaffolds significantly enhanced blood vessel formation in rat calvarial defects at 8 weeks post-implantation. Generally, it suggested that the introduction of Cu into borosilicate glass endowed glass and its derived scaffolds with good properties, and the cooperation of Cu with bioactive glass may pave a new way for tissue engineering. PMID:26478303

  9. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds.

    PubMed

    Bellucci, D; Sola, A; Cannillo, V

    2013-05-01

    Recently several attempts have been made to combine calcium phosphates, such as β-tricalcium phosphate (β-TCP) and, most of all, hydroxyapatite (HA), with bioactive glasses of different composition, in order to develop composites with improved biological and mechanical performance. Unfortunately, the production of such systems usually implies a high-temperature treatment (up to 1300 °C), which may result in several drawbacks, including crystallization of the original glass, decomposition of the calcium phosphate phase and/or reactions between the constituent phases, with non-trivial consequences in terms of microstructure, bioactivity and mechanical properties of the final samples. In the present contribution, novel binary composites have been obtained by sintering a bioactive glass, characterized by a low tendency to crystallize, with the addition of HA or β-TCP as the second phase. In particular, the composites have been treated at a relatively low temperature (818 °C and 830 °C, depending on the sample), thus preserving the amorphous structure of the glass and minimizing the interaction between the constituent phases. The effects of the glass composition, calcium phosphate nature and processing conditions on the composite microstructure, mechanical properties and in vitro bioactivity have been systematically discussed. To conclude, a feasibility study to obtain scaffolds for bone tissue regeneration has been proposed. PMID:23498242

  10. Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair.

    PubMed

    Gu, Yifei; Wang, Gang; Zhang, Xin; Zhang, Yadong; Zhang, Changqing; Liu, Xin; Rahaman, Mohamed N; Huang, Wenhai; Pan, Haobo

    2014-03-01

    Three-dimensional porous scaffolds of a borosilicate bioactive glass (designated 13-93B1), with the composition 6Na2O-8K2O-8MgO-22CaO-18B2O3-36SiO2-2P2O5 (mol%), were prepared using a foam replication technique and evaluated in vitro and in vivo. Immersion of the scaffolds for 30 days in a simulated body fluid in vitro resulted in partial conversion of the glass to a porous hydroxyapatite composed of fine needle-like particles. The capacity of the scaffolds to support bone formation in vivo was evaluated in non-critical sized defects created in the femoral head of rabbits. Eight weeks post-implantation, the scaffolds were partially converted to hydroxyapatite, and they were well integrated with newly-formed bone. When loaded with platelet-rich plasma (PRP), the scaffolds supported bone regeneration in segmental defects in the diaphysis of rabbit radii. The results indicate that these 13-93B1 scaffolds, loaded with PRP or without PRP, are beneficial for bone repair due to their biocompatibility, conversion to hydroxyapatite, and in vivo bone regenerative properties. PMID:24433915

  11. Periodontal regeneration using strontium-loaded mesoporous bioactive glass scaffolds in osteoporotic rats.

    PubMed

    Zhang, Yufeng; Wei, Lingfei; Wu, Chengtie; Miron, Richard J

    2014-01-01

    Recent studies demonstrate that the rate of periodontal breakdown significantly increased in patients compromised from both periodontal disease and osteoporosis. One pharmacological agent used for their treatment is strontium renalate due to its simultaneous ability to increase bone formation and halt bone resorption. The aim of the present study was to achieve periodontal regeneration of strontium-incorporated mesoporous bioactive glass (Sr-MBG) scaffolds in an osteoporotic animal model carried out by bilateral ovariectomy (OVX). 15 female Wistar rats were randomly assigned to three groups: control unfilled periodontal defects, 2) MBG alone and 3) Sr-MBG scaffolds. 10 weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar and assessed by micro-CT and histomorphometric analysis after 28 days. Periodontal fenestration defects treated with Sr-MBG scaffolds showed greater new bone formation (46.67%) when compared to MBG scaffolds (39.33%) and control unfilled samples (17.50%). The number of TRAP-positive osteoclasts was also significantly reduced in defects receiving Sr-MBG scaffolds. The results from the present study suggest that Sr-MBG scaffolds may provide greater periondontal regeneration. Clinical studies are required to fully characterize the possible beneficial effect of Sr-releasing scaffolds for patients suffering from a combination of both periodontal disease and osteoporosis. PMID:25116811

  12. Melt-electrospun polycaprolactone-strontium substituted bioactive glass scaffolds for bone regeneration.

    PubMed

    Ren, Jiongyu; Blackwood, Keith A; Doustgani, Amir; Poh, Patrina P; Steck, Roland; Stevens, Molly M; Woodruff, Maria A

    2013-10-01

    Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt-electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be non-cytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes. PMID:24123950

  13. Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration.

    PubMed

    Ren, Jiongyu; Blackwood, Keith A; Doustgani, Amir; Poh, Patrina P; Steck, Roland; Stevens, Molly M; Woodruff, Maria A

    2014-09-01

    Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium-substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here, we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be noncytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes. PMID:24133006

  14. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior.

    PubMed

    Shao, Huifeng; Yang, Xianyan; He, Yong; Fu, Jianzhong; Liu, Limin; Ma, Liang; Zhang, Lei; Yang, Guojing; Gao, Changyou; Gou, Zhongru

    2015-09-01

    The densification of pore struts in bioceramic scaffolds is important for structure stability and strength reliability. An advantage of ceramic ink writing is the precise control over the microstructure and macroarchitecture. However, the use of organic binder in such ink writing process would heavily affect the densification of ceramic struts and sacrifice the mechanical strength of porous scaffolds after sintering. This study presents a low-melt-point bioactive glass (BG)-assisted sintering strategy to overcome the main limitations of direct ink writing (extrusion-based three-dimensional printing) and to produce high-strength calcium silicate (CSi) bioceramic scaffolds. The 1% BG-added CSi (CSi-BG1) scaffolds with rectangular pore morphology sintered at 1080 °C have a very small BG content, readily induce apatite formation, and show appreciable linear shrinkage (∼21%), which is consistent with the composite scaffolds with less or more BG contents sintered at either the same or a higher temperature. These CSi-BG1 scaffolds also possess a high elastic modulus (∼350 MPa) and appreciable compressive strength (∼48 MPa), and show significant strength enhancement after exposure to simulated body fluid-a performance markedly superior to those of pure CSi scaffolds. Particularly, the honeycomb-pore CSi-BG1 scaffolds show markedly higher compressive strength (∼88 MPa) than the scaffolds with rectangular, parallelogram, and Archimedean chord pore structures. It is suggested that this approach can potentially facilitate the translation of ceramic ink writing and BG-assisted sintering of bioceramic scaffold technologies to the in situ bone repair. PMID:26355654

  15. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.

    PubMed

    Baino, Francesco; Ferraris, Monica; Bretcanu, Oana; Verné, Enrica; Vitale-Brovarone, Chiara

    2013-03-01

    Fabrication of 3-D highly porous, bioactive, and mechanically competent scaffolds represents a significant challenge of bone tissue engineering. In this work, Bioglass®-derived glass-ceramic scaffolds actually fulfilling this complex set of requirements were successfully produced through the sponge replication method. Scaffold processing parameters and sintering treatment were carefully designed in order to obtain final porous bodies with pore content (porosity above 70 %vol), trabecular architecture and mechanical properties (compressive strength up to 3 MPa) analogous to those of the cancellous bone. Influence of the Bioglass® particles size on the structural and mechanical features of the sintered scaffolds was considered and discussed. Relationship between porosity and mechanical strength was investigated and modeled. Three-dimensional architecture, porosity, mechanical strength and in vitro bioactivity of the optimized Bioglass®-derived scaffolds were also compared to those of CEL2-based glass-ceramic scaffolds (CEL2 is an experimental bioactive glass originally developed by the authors at Politecnico di Torino) fabricated by the same processing technique, in an attempt at understanding the role of different bioactive glass composition on the major features of scaffolds prepared by the same method. PMID:22207602

  16. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance

    PubMed Central

    Gao, Chengde; Liu, Tingting; Shuai, Cijun; Peng, Shuping

    2014-01-01

    Graphene is a novel material and currently popular as an enabler for the next-generation nanocomposites. Here, we report the use of graphene to improve the mechanical properties of nano-58S bioactive glass for bone repair and regeneration. And the composite scaffolds were fabricated by a homemade selective laser sintering system. Qualitative and quantitative analysis demonstrated the successful incorporation of graphene into the scaffold without obvious structural damage and weight loss. The optimum compressive strength and fracture toughness reached 48.65 ± 3.19 MPa and 1.94 ± 0.10 MPa·m1/2 with graphene content of 0.5 wt%, indicating significant improvements by 105% and 38% respectively. The mechanisms of pull-out, crack bridging, crack deflection and crack tip shielding were found to be responsible for the mechanical enhancement. Simulated body fluid and cell culture tests indicated favorable bioactivity and biocompatibility of the composite scaffold. The results suggest a great potential of graphene/nano-58S composite scaffold for bone tissue engineering applications. PMID:24736662

  17. Bone regeneration in strong porous bioactive glass (13–93) scaffolds with an oriented microstructure implanted in rat calvarial defects

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang

    2012-01-01

    There is a need for synthetic bone graft substitutes to repair large bone defects resulting from trauma, malignancy, and congenital diseases. Bioactive glass has attractive properties as a scaffold material but factors that influence its ability to regenerate bone in vivo are not well understood. In the present work, the ability of strong porous scaffolds of 13–93 bioactive glass with an oriented microstructure to regenerate bone was evaluated in vivo using a rat calvarial defect model. Scaffolds with an oriented microstructure of columnar pores (porosity = 50%; pore diameter = 50–150 µm) showed mostly osteoconductive bone regeneration, and new bone formation, normalized to the available pore area (volume) of the scaffolds, increased from 37% at 12 weeks to 55% at 24 weeks. Scaffolds of the same glass with a trabecular microstructure (porosity = 80%; pore width = 100–500 µm), used as the positive control, showed bone regeneration in the pores of 25% and 46% at 12 and 24 weeks, respectively. The brittle mechanical response of the as-fabricated scaffolds changed markedly to an elasto-plastic response in vivo at both implantation times. These results indicate that both groups of 13–93 bioactive glass scaffolds could potentially be used to repair large bone defects, but scaffolds with the oriented microstructure could also be considered for the repair of loaded bone. PMID:22922251

  18. Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate.

    PubMed

    Sriranganathan, Danujan; Kanwal, Nasima; Hing, Karin A; Hill, Robert G

    2016-02-01

    Porous bioactive glasses are attractive for use as bone scaffolds. There is increasing interest in strontium containing bone grafts, since strontium ions are known to up-regulate osteoblasts and down regulate osteoclasts. This paper investigates the influence of partial to full substitution of strontium for calcium on the dissolution and phase formation of a multicomponent high phosphate content bioactive glass. The glasses were synthesised by a high temperature melt quench route and ground to a powder of <38 microns. The dissolution of this powder and its ability to form apatite like phases after immersion in Tris buffer (pH 7.4) and simulated body fluid (SBF) was followed by inductively coupled plasma optical emission spectroscopy (ICP), Fourier transform infra red spectroscopy (FTIR), X-ray powder diffraction (XRD) and (31)P solid state nuclear magnetic resonance spectroscopy up to 42 days of immersion. ICP indicated that all three glasses dissolved at approximately the same rate. The all calcium (SP-0Sr-35Ca) glass showed evidence of apatite like phase formation in both Tris buffer and SBF, as demonstrated after 3 days by FTIR and XRD analysis of the precipitate that formed during the acellular dissolution bioactivity studies. The strontium substituted SP-17Sr-17Ca glass showed no clear evidence of apatite like phase formation in Tris, but evidence of an apatite like phase was observed after 7 days incubation in SBF. The SP-35Sr-0Ca glass formed a new crystalline phase termed "X Phase" in Tris buffer which FTIR indicated was a form of crystalline orthophosphate. The SP-35Sr-0Ca glass appeared to support apatite like phase formation in SBF by 28 days incubation. The results indicate that strontium substitution for calcium in high phosphate content bioactive glasses can retard apatite like phase formation. It is proposed that apatite formation with high phosphate bioactive glasses occurs via an octacalcium phosphate (OCP) precursor phase that subsequently

  19. Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering.

    PubMed

    Padilla, S; Sánchez-Salcedo, S; Vallet-Regí, M

    2007-04-01

    In this work, the conditions to obtain concentrated and fluid suspensions from a bioactive glass (55-SiO(2); 41-CaO; 4-P(2)O(5); mol %) were investigated. The influence of the heat treatment of the glass on the specific surface area, solubility, bioactivity, and finally on their dispersion characteristics was studied. Zeta potential and viscosity measurements were carried out, and based on the obtained results, the best dispersant was selected. The optimum concentration of dispersant, maximum content of solid and time of mixing were also investigated. Slurries containing 50 vol % could be obtained calcining the glass at 1100 degrees C and using Darvan 811 (sodium polyacrylate) as dispersant. Scaffolds with designed architecture were prepared from these suspensions combining the gelcasting method and the stereolithography technique. A polymeric negative (replica of the desired structure) was previously obtained by stereolithography. The slurry was cast into the molds and then polymerized (gelcasting method). The negative was eliminated by heat treatment. After sintering at 1300 degrees C, scaffolds with interconnected porosity and three-dimensional channels of 400-470 microm and macropores of 1.4 microm were obtained. PMID:17120207

  20. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-05-01

    Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  1. Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro.

    PubMed

    Midha, Swati; van den Bergh, Wouter; Kim, Taek B; Lee, Peter D; Jones, Julian R; Mitchell, Christopher A

    2013-03-01

    Remodelling of scaffolds and new bone formation is critical for effective bone regeneration. Herein is reported the first demonstration of resorption pits due to osteoclast activity on the surface of sol-gel bioactive glass foam scaffolds. Bioactive glass foam scaffolds are known to have osteogenic potential and suitable pore networks for bone regeneration. Degradation of the scaffolds is known to be initially solution mediated, but for effective bone regeneration, remodelling of the scaffold by osteoclasts and vascularisation of the scaffold is necessary. The culture of C7 macrophages on a bioactive glass scaffold induces the cells to differentiate into (TRAP(+ve) ) osteoclasts. They then form distinctive resorption pits within 3 weeks, while MC3T3-E1 pre-osteoblasts deposit mineralized osteoid on their surfaces in co-culture. The scaffolds are of the 70S30C (70 mol% SiO2 , 30 mol% CaO) composition, with modal pore and interconnect diameters of 373 μm and 172 μm respectively (quantified by X-ray micro-tomography and 3D image analysis). The release of soluble silica and calcium ions from 70S30C scaffolds induces an increase in osteoblast numbers as determined via the MTT assay. Scaffolds also support growth of endothelial cells on their surface and tube formation (characteristic of functional microvasculature) following 4 days in culture. This data supports the hypothesis that 70S30C bioactive glass scaffolds promote the differentiation of the 3 main cell types involved in vascularized bone regeneration. PMID:23184651

  2. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Bal, B Sonny; Brown, Roger F; Day, Delbert E

    2008-11-01

    A polymer foam replication technique was used to prepare porous scaffolds of 13-93 bioactive glass with a microstructure similar to that of human trabecular bone. The scaffolds, with a porosity of 85+/-2% and pore size of 100-500 microm, had a compressive strength of 11+/-1 MPa, and an elastic modulus of 3.0+/-0.5 GPa, approximately equal to the highest values reported for human trabecular bone. The strength was also considerably higher than the values reported for polymeric, bioactive glass-ceramic and hydroxyapatite constructs prepared by the same technique and with the equivalent level of porosity. The in vitro bioactivity of the scaffolds was observed by the conversion of the glass surface to a nanostructured hydroxyapatite layer within 7 days in simulated body fluid at 37 degrees C. Protein and MTT assays of in vitro cell cultures showed an excellent ability of the scaffolds to support the proliferation of MC3T3-E1 preosteoblastic cells, both on the surface and in the interior of the porous constructs. Scanning electron microscopy showed cells with a closely adhering, well-spread morphology and a continuous increase in cell density on the scaffolds during 6 days of culture. The results indicate that the 13-93 bioactive glass scaffolds could be applied to bone repair and regeneration. PMID:18519173

  3. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.

    PubMed

    Deliormanlı, Aylin M

    2015-02-01

    Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications. PMID:25631259

  4. Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration.

    PubMed

    Chen, Chen; Li, Hong; Pan, Jianfeng; Yan, Zuoqin; Yao, Zhenjun; Fan, Wenshuai; Guo, Changan

    2015-02-01

    Hemostasis in orthopedic osteotomy or bone cutting requires different methods and materials. The bleeding of bone marrow can be mostly stopped by bone wax. However, the wax cannot be absorbed, which leads to artificial prosthesis loosening, foreign matter reaction, and infection. Here, a bioactive glass/chitosan/carboxymethyl cellulose (BG/CS/CMC) composite scaffold was designed to replace traditional wax. WST-1 assay indicated the BG/CS/CMC composite resulted in excellent biocompatibility with no cytotoxicity. In vivo osteogenesis assessment revealed that the BG/CS/CMC composite played a dominant role in bone regeneration and hemostasis. The BG/CS/CMC composite had the same hemostasis effect as bone wax; in addition its biodegradation also led to the functional reconstruction of bone defects. Thus, BG/CS/CMC scaffolds can serve as a potential material for bone repair and hemostasis in critical-sized bone defects. PMID:25326173

  5. Europium-Containing Mesoporous Bioactive Glass Scaffolds for Stimulating in Vitro and in Vivo Osteogenesis.

    PubMed

    Wu, Chengtie; Xia, Lunguo; Han, Pingping; Mao, Lixia; Wang, Jiacheng; Zhai, Dong; Fang, Bing; Chang, Jiang; Xiao, Yin

    2016-05-11

    Bone tissue engineering offers a possible strategy for regenerating large bone defects, in which how to design beneficial scaffolds for accelerating bone formation remains significantly challenging. Europium, as an important rare earth element, has been used as a solid-state lighting material. However, there are few reports on whether Eu can be used for labeling bone tissue engineering scaffolds, and its biological effect on bone cells and bone tissue regeneration is unknown. In this study, we incorporated Eu into mesoporous bioactive glass (Eu-MBG) scaffolds by an in situ cotemplate method to achieve a bifunctional biomaterial with biolabeling and bone regeneration. The prepared Eu-MBG scaffolds have highly interconnective large pores (300-500 μm), a high specific surface area (140-290 m(2)/g), and well-ordered mesopores (5 nm) as well as uniformly distributed Eu. The incorporation of 2-5 mol % Eu into MBG scaffolds gives them a luminescent property. The in vitro degradation of Eu-MBG scaffolds has a functional effect on the change of the luminescence intensity. In addition, Eu-MBG can be used for labeling bone marrow stromal cells (BMSCs) in vitro and still presents a distinct luminescence signal in deep bone tissues in vivo to label new bone tissue via release of Eu ions. Furthermore, the incorporation of different contents of Eu (1, 2, and 5 mol %) into MBG scaffolds significantly enhances the osteogenic gene expression of BMSCs in the scaffolds. The Eu- and Si-containing ionic products released from Eu-MBG scaffolds distinctly promote the osteogenic differentiation of BMSCs. Critically sized femur defects in ovariectomized (OVX) rats are created to simulate an osteoporotic phenotype. The results show that Eu-MBG scaffolds significantly stimulate new bone formation in osteoporotic bone defects when compared to MBG scaffolds alone and Eu may be involved in the acceleration of bone regeneration in OVX rats. Our study for the first time reports that the

  6. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses.

    PubMed

    Gu, Yifei; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E

    2013-11-01

    Previous studies have evaluated the capacity of porous scaffolds composed of a single bioactive glass to regenerate bone. In the present study, scaffolds composed of a mixture of two different bioactive glasses (silicate 13-93 and borate 13-93B3) were created and evaluated for their response to osteogenic MLO-A5 cells in vitro and their capacity to regenerate bone in rat calvarial defects in vivo. The scaffolds, which have similar microstructures (porosity=58-67%) and contain 0, 25, 50 and 100 wt.% 13-93B3 glass, were fabricated by thermally bonding randomly oriented short fibers. The silicate 13-93 scaffolds showed a better capacity to support cell proliferation and alkaline phosphatase activity than the scaffolds containing borate 13-93B3 fibers. The amount of new bone formed in the defects implanted with the 13-93 scaffolds at 12 weeks was 31%, compared to values of 25, 17 and 20%, respectively, for the scaffolds containing 25, 50 and 100% 13-93B3 glass. The amount of new bone formed in the 13-93 scaffolds was significantly higher than in the scaffolds containing 50 and 100% 13-93B3 glass. While the 13-93 fibers were only partially converted to hydroxyapatite at 12 weeks, the 13-93B3 fibers were fully converted and formed a tubular morphology. Scaffolds composed of an optimized mixture of silicate and borate bioactive glasses could provide the requisite architecture to guide bone regeneration combined with a controllable degradation rate that could be beneficial for bone and tissue healing. PMID:23827095

  7. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering.

    PubMed

    Nadeem, Danish; Kiamehr, Mostafa; Yang, Xuebin; Su, Bo

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol-gel derived bioactive-glass (70S30C; 70% SiO2, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. PMID:23623083

  8. Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function.

    PubMed

    Li, Wei; Ding, Yaping; Rai, Ranjana; Roether, Judith A; Schubert, Dirk W; Boccaccini, Aldo R

    2014-08-01

    PHBV microsphere/45S5 bioactive glass (BG) composite scaffolds with drug release function were developed for bone tissue engineering. BG-based glass-ceramic scaffolds with high porosity (94%) and interconnected pore structure prepared by foam replication method were coated with PHBV microspheres (nominal diameter=3.5 μm) produced by water-in-oil-in-water double emulsion solvent evaporation method. A homogeneous microsphere coating throughout the porous structure of scaffolds was obtained by a simple dip coating method, using the slurry of PHBV microspheres in hexane. Compressive strength tests showed that the microsphere coating slightly improved the mechanical properties of the scaffolds. It was confirmed that the microsphere coating did not inhibit the bioactivity of the scaffolds in SBF. Hydroxyapatite crystals homogeneously grew not only on the struts of the scaffolds but also on the surface of microspheres within 7 days of immersion in SBF. Vancomycin was successfully encapsulated into the PHBV microspheres. The encapsulated vancomycin was released with a dual release profile involving a relatively low initial burst release (21%) and a sustained release (1 month), which is favorable compared to the high initial burst release (77%) and short release period (4 days) measured on uncoated scaffolds. The developed bioactive composite scaffold with drug delivery function has thus the potential to be used advantageously in bone tissue engineering. PMID:24907766

  9. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.

    PubMed

    Erol, M M; Mouriňo, V; Newby, P; Chatzistavrou, X; Roether, J A; Hupa, L; Boccaccini, Aldo R

    2012-02-01

    The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them in alginate solution. Scanning electron microscopy investigations indicated that the alginate effectively attached on the surface of the three-dimensional scaffolds leading to a homogeneous coating. It was confirmed that the scaffold structure remained amorphous after the sintering process and that the alginate coating improved the scaffold bioactivity and mechanical properties. Copper release studies showed that the alginate-coated scaffolds allowed controlled release of copper ions. The novel copper-releasing composite scaffolds represent promising candidates for bone regeneration. PMID:22040685

  10. Micro PIXE-RBS for the study of Sr release at bioactive glass scaffolds/biological medium interface

    NASA Astrophysics Data System (ADS)

    Lacroix, Joséphine; Lao, Jonathan; Nedelec, Jean-Marie; Jallot, Edouard

    2013-07-01

    Strontium is a very interesting element in bone regeneration as it can promote bone formation and limit bone resorption. Bone tissue engineering has a very high potential as a method for bone healing and it requires a 3D macroporous scaffold to serve as a support for cell growth. In that purpose, strontium containing bioactive glass foams made with the sol-gel foaming process are very promising scaffolds as they combine the high bioactivity of bioactive glasses, the beneficial effects of strontium on bone growth and a structure that would allow cell adhesion, cell invasion and vascularization. This paper reports the synthesis of such a material and its in vitro bioactivity study. The release of strontium ions from the material to the biological medium occurs quickly, as shown by ICP-AES results, with the delivery of quantities of Sr ions that should be adequate for bone regeneration. Ion microbeam techniques evidence a very specific behavior of strontium: it is rapidly removed from the inner part of the material but remains in the calcium phosphate layer that is deposited on the surface of the foam pores. It reveals the particular behavior of glass foams compared to other materials suitable for implantation like glass powders of same composition and highlights the interest of ion microbeam techniques in the study of strontium-containing bioactive glass scaffolds.

  11. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Hilmas, Gregory E.; Bal, B. Sonny

    2013-01-01

    There is a need to develop synthetic scaffolds for repairing large defects in load-bearing bones. Bioactive glasses have attractive properties as a scaffold material for bone repair, but data on their mechanical properties are limited. The objective of the present study was to comprehensively evaluate the mechanical properties of strong porous scaffolds of silicate 13-93 bioactive glass fabricated by robocasting. As-fabricated scaffolds with a grid-like microstructure (porosity = 47%; filament diameter = 330 μm; pore width = 300) were tested in compressive and flexural loading to determine their strength, elastic modulus, Weibull modulus, fatigue resistance, and fracture toughness. Scaffolds were also tested in compression after they were immersed in simulated body fluid (SBF) in vitro or implanted in a rat subcutaneous model in vivo. As fabricated, the scaffolds had a strength = 86 ± 9 MPa, elastic modulus = 13 ± 2 GPa, and a Weibull modulus = 12 when tested in compression. In flexural loading, the strength, elastic modulus, and Weibull modulus were 11 ± 3 MPa, 13 ± 2 GPa, and 6, respectively. In compression, the as-fabricated scaffolds had a mean fatigue life of ~106 cycles when tested in air at room temperature or in phosphate-buffered saline at 37 °C under cyclic stresses of 1–10 MPa or 2–20 MPa. The compressive strength of the scaffolds decreased markedly during the first 2 weeks of immersion in SBF or implantation in vivo, but more slowly thereafter. The brittle mechanical response of the scaffolds in vitro changed to an elasto-plastic response after implantation for longer than 2–4 weeks in vivo. In addition to providing critically needed data for designing bioactive glass scaffolds, the results are promising for the application of these strong porous scaffolds in loaded bone repair. PMID:23438862

  12. In vitro performance of 13-93 bioactive glass fiber and trabecular scaffolds with MLO-A5 osteogenic cells.

    PubMed

    Modglin, Vernon C; Brown, Roger F; Fu, Qiang; Rahaman, Mohamed N; Jung, Steven B; Day, Delbert E

    2012-10-01

    This in vitro study was performed to evaluate the ability of two types of porous bioactive glass scaffolds to support the growth and differentiation of an established osteogenic cell line. The two scaffold types tested included 13-93 glass fiber and trabecular-like scaffolds seeded with murine MLO-A5 cells and cultured for intervals of 2 to 12 days. Culture in MTT-containing medium showed metabolically active cells both on the surface and within the interior of the scaffolds. Scanning electron microscopy revealed well-attached cells on both types of scaffolds with a continual increase in cell density over a 6-day period. Protein measurements also showed a linear increase in cell density during the incubation. Activity of alkaline phosphatase, a key indicator of osteoblast differentiation, increased about 10-fold during the 6-day incubation with both scaffold types. The addition of mineralization media to MLO-A5 seeded scaffolds triggered extensive formation of alizarin red-positive mineralized extracellular material, additional evidence of cell differentiation and completion of the final step of bone formation on the constructs. Collectively, the results indicate that the 13-93 glass fiber and trabecular scaffolds promote the attachment, growth, and differentiation of MLO-A5 osteogenic cells and could potentially be used for bone tissue engineering applications. PMID:22528984

  13. Bioactive Copper-Doped Glass Scaffolds Can Stimulate Endothelial Cells in Co-Culture in Combination with Mesenchymal Stem Cells

    PubMed Central

    Rath, Subha N.; Brandl, Andreas; Hiller, Daniel; Hoppe, Alexander; Gbureck, Uwe; Horch, Raymund E.; Boccaccini, Aldo R.; Kneser, Ulrich

    2014-01-01

    Bioactive glass (BG) scaffolds are being investigated for bone tissue engineering applications because of their osteoconductive and angiogenic nature. However, to increase the in vivo performance of the scaffold, including enhancing the angiogenetic growth into the scaffolds, some researchers use different modifications of the scaffold including addition of inorganic ionic components to the basic BG composition. In this study, we investigated the in vitro biocompatibility and bioactivity of Cu2+-doped BG derived scaffolds in either BMSC (bone-marrow derived mesenchymal stem cells)-only culture or co-culture of BMSC and human dermal microvascular endothelial cells (HDMEC). In BMSC-only culture, cells were seeded either directly on the scaffolds (3D or direct culture) or were exposed to ionic dissolution products of the BG scaffolds, kept in permeable cell culture inserts (2D or indirect culture). Though we did not observe any direct osteoinduction of BMSCs by alkaline phosphatase (ALP) assay or by PCR, there was increased vascular endothelial growth factor (VEGF) expression, observed by PCR and ELISA assays. Additionally, the scaffolds showed no toxicity to BMSCs and there were healthy live cells found throughout the scaffold. To analyze further the reasons behind the increased VEGF expression and to exploit the benefits of the finding, we used the indirect method with HDMECs in culture plastic and Cu2+-doped BG scaffolds with or without BMSCs in cell culture inserts. There was clear observation of increased endothelial markers by both FACS analysis and acetylated LDL (acLDL) uptake assay. Only in presence of Cu2+-doped BG scaffolds with BMSCs, a high VEGF secretion was demonstrated by ELISA; and typical tubular structures were observed in culture plastics. We conclude that Cu2+-doped BG scaffolds release Cu2+, which in turn act on BMSCs to secrete VEGF. This result is of significance for the application of BG scaffolds in bone tissue engineering approaches. PMID

  14. A new composite scaffold of bioactive glass nanoparticles/graphene: Synchronous improvements of cytocompatibility and mechanical property.

    PubMed

    Fan, Zengjie; Wang, Jinqing; Liu, Fengzhen; Nie, Yingying; Ren, Liling; Liu, Bin

    2016-09-01

    This study presents a simple method of synthesizing bioactive glass nanoparticles/graphene nanosheets composite (BGs/GNS) scaffolds using the sol-gel and mold-compressing strategies. Characterizations of BGs/GNS scaffold revealed that BGs with an average diameter of 28.75nm were densely anchored onto both sides of GNS. When the mass ratio of BGs to graphene oxide was set as 10, this scaffold showed better cytocompatibility and higher osseointegration ability with surrounding tissues than the other scaffolds. The introduction of GNS also significantly enhanced the hardness and Young's modulus of BGs. Given the excellent performance of this scaffold, it has potential applications in bone regeneration and implantation. PMID:27232307

  15. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.

    PubMed

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration. PMID:26082632

  16. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration

    PubMed Central

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration. PMID:26082632

  17. Development and effect of different bioactive silicate glass scaffolds: in vitro evaluation for use as a bone drug delivery system.

    PubMed

    Soundrapandian, Chidambaram; Mahato, Arnab; Kundu, Biswanath; Datta, Someswar; Sa, Biswanath; Basu, Debebrata

    2014-12-01

    Local drug delivery systems to bone have attracted appreciable attention due to their efficacy to improve drug delivery, healing and regeneration. In this paper, development and characterization of new formulations of bioactive glass into a porous scaffold has been reported for its suitability to act as a drug delivery system in the management of bone infections, in vitro. Two new glass compositions based on SiO2-Na2O-ZnO-CaO-MgO-P2O5 system (BGZ and MBG) have been developed which after thorough chemical and phase evaluation, studied for acellular static in vitro bioactivity in SBF. Porous scaffolds made of these glasses have been fabricated and characterized thoroughly for bioactivity study, SEM, XRD, in vitro cytotoxicity, MTT assay and wound healing assay using human osteocarcoma cells. Finally, gatifloxacin was loaded into the porous scaffold by vacuum infiltration method and in vitro drug release kinetics have been studied with varying parameters including dissolution medium (PBS and SBF) and with/without impregnation chitosan. Suitable model has also been proposed for the kinetics. 63-66% porous and 5-50μm almost unimodal porous MBG and BGZ bioactive glass scaffolds were capable of releasing drugs successfully for 43 days at concentrations to treat orthopedic infections. In addition, it was also observed that the release of drug followed Peppas-Korsmeyer release pattern based on Fickian diffusion, while 0.5-1% chitosan coating on the scaffolds decreased the burst release and overall release of drug. The results also indicated that MBG based scaffolds were bioactive, biocompatible, noncytotoxic and exhibited excellent wound healing potential while BGZ was mildly cytotoxic with moderate wound healing potential. These results strongly suggest that MBG scaffolds appear to be a suitable bone drug delivery system in orthopedic infections treatment and as bone void fillers, but BGZ should be handled with caution or studied elaborately in detail further to ascertain

  18. Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration.

    PubMed

    Yang, Shengbing; Wang, Jing; Tang, Liangji; Ao, Haiyong; Tan, Honglue; Tang, Tingting; Liu, Changsheng

    2014-04-01

    Scaffolds play a critical role in bone tissue engineering. Composite scaffolds made of biodegradable polymers and bioactive inorganic compounds have demonstrated superior properties in bone defect repair. In this study, highly bioactive, resorbable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)-based scaffolds were prepared using combinational 3-dimensional (3D) printing and surface-doping protocol. Structural and morphological characterization of the composite scaffolds demonstrated the homogenous surface-coating of mesoporous bioactive glass (MBG) throughout their porous framework. These hierarchical scaffolds showed bioactivity superior to that of scaffolds made of pure PHBHHx. MBG coating appeared to provide a better environment for human mesenchymal stem cells (hMSCs) attachment, activity, and osteogenic differentiation. Our study indicates that MBG-coated PHBHHx (PHBM) scaffolds may be excellent candidates for use in bone tissue engineering. PMID:24441182

  19. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  20. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.

    PubMed

    Zhao, Shichang; Wang, Hui; Zhang, Yadong; Huang, Wenhai; Rahaman, Mohamed N; Liu, Zhongtang; Wang, Deping; Zhang, Changqing

    2015-03-01

    There is growing interest in the use of synthetic biomaterials to deliver inorganic ions that are known to stimulate angiogenesis and osteogenesis in vivo. In the present study, we investigated the effects of varying amounts of copper in a bioactive glass on the response of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and on blood vessel formation and bone regeneration in rat calvarial defects in vivo. Porous scaffolds of a borosilicate bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5, mol.%) doped with 0.5, 1.0 and 3.0wt.% CuO were created using a foam replication method. When immersed in simulated body fluid, the scaffolds released Cu ions into the medium and converted to hydroxyapatite. At the concentrations used, the Cu in the glass was not toxic to the hBMSCs cultured on the scaffolds in vitro. The alkaline phosphatase activity of the hBMSCs and the expression levels of angiogenic-related genes (vascular endothelial growth factor and basic fibroblast growth factor) and osteogenic-related genes (runt-related transcription factor 2, bone morphogenetic protein-2 and osteopontin) increased significantly with increasing amount of Cu in the glass. When implanted in rat calvarial defects in vivo, the scaffolds (3wt.% CuO) significantly enhanced both blood vessel formation and bone regeneration in the defects at 8weeks post-implantation. These results show that doping bioactive glass implants with Cu is a promising approach for enhancing angiogenesis and osteogenesis in the healing of osseous defects. PMID:25534470

  1. Porous and strong bioactive glass (13–93) scaffolds prepared by unidirectional freezing of camphene-based suspensions

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang; Tomsia, Antoni P.

    2011-01-01

    Scaffolds of 13–93 bioactive glass (6Na2O, 12K2O, 5MgO, 20CaO, 4P2O5, 53SiO2; wt %) with an oriented pore architecture were formed by unidirectional freezing of camphene-based suspensions, followed by thermal annealing of the frozen constructs to grow the camphene crystals. After sublimation of the camphene, the constructs were sintered (1 h at 700 °C) to produce a dense glass phase with oriented macropores. The objective of this work was to study how constant freezing rates (1–7 °C/min) during the freezing step influenced the pore orientation and mechanical response of the scaffolds. When compared to scaffolds prepared by freezing the suspensions on a substrate kept at a constant temperature of 3 °C (time-dependent freezing rate), higher freezing rates resulted in better pore orientation, a more homogeneous microstructure, and a marked improvement in the mechanical response of the scaffolds in compression. Scaffolds fabricated using a constant freezing rate of 7 °C/min (porosity = 50 ± 4%; average pore diameter = 100 μm), had a compressive strength of 47 ± 5 MPa and an elastic modulus of 11 ± 3 GPa (in the orientation direction). In comparison, scaffolds prepared by freezing on the constant-temperature substrate had strength and modulus values of 35 ± 11 MPa and 8 ± 3 GPa, respectively. These oriented bioactive glass scaffolds prepared by the constant freezing rate route could potentially be used for the repair of defects in load-bearing bones, such as segmental defects in the long bones. PMID:21855661

  2. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects.

    PubMed

    Zhao, Shichang; Zhang, Jianhua; Zhu, Min; Zhang, Yadong; Liu, Zhongtang; Tao, Cuilian; Zhu, Yufang; Zhang, Changqing

    2015-01-01

    The development of a new generation of biomaterials with high osteogenic ability for fast osseointegration with host bone is being intensively investigated. In this study, we have fabricated three-dimensional (3-D) strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds by a 3-D printing technique. Sr-MBG scaffolds showed uniform interconnected macropores (∼400μm), high porosity (∼70%) and enhanced compressive strength (8.67±1.74MPa). Using MBG scaffolds as a control, the biological properties of Sr-MBG scaffolds were evaluated by apatite-forming ability, adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteoblast-like cells MC3T3-E1. Furthermore, Sr-MBG scaffolds were used to repair critical-sized rat calvarial defects. The results showed that Sr-MBG scaffolds possessed good apatite-forming ability and stimulated MC3T3-E1 cell proliferation and differentiation. Importantly, the in vivo results revealed that Sr-MBG scaffolds had good osteogenic capability and stimulated new blood vessel formation in critical-sized rat calvarial defects within 8 weeks. Therefore, 3-D printed Sr-MBG scaffolds with favorable pore structure and high osteogenic ability have more potential applications in bone regeneration. PMID:25449915

  3. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    PubMed Central

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra

    2016-01-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering. PMID:27604654

  4. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds.

    PubMed

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K; Mandal, Chitra

    2016-01-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering. PMID:27604654

  5. Evaluation of 3D nano-macro porous bioactive glass scaffold for hard tissue engineering.

    PubMed

    Wang, S; Falk, M M; Rashad, A; Saad, M M; Marques, A C; Almeida, R M; Marei, M K; Jain, H

    2011-05-01

    Recently, nano-macro dual-porous, three-dimensional (3D) glass structures were developed for use as bioscaffolds for hard tissue regeneration, but there have been concerns regarding the interconnectivity and homogeneity of nanopores in the scaffolds, as well as the cytotoxicity of the environment deep inside due to limited fluid access. Therefore, mercury porosimetry, nitrogen absorption, and TEM have been used to characterize nanopore network of the scaffolds. In parallel, viability of MG 63 human osteosarcoma cells seeded on scaffold surface was investigated by fluorescence, confocal and electron microscopy methods. The results show that cells attach, migrate and penetrate inside the glass scaffold with high proliferation and viability rate. Additionally, scaffolds were implanted under the skin of a male New Zealand rabbit for in vivo animal test. Initial observations show the formation of new tissue with blood vessels and collagen fibers deep inside the implanted scaffolds with no obvious inflammatory reaction. Thus, the new nano-macro dual-porous glass structure could be a promising bioscaffold for use in regenerative medicine and tissue engineering for bone regeneration. PMID:21445655

  6. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.

    PubMed

    Filipowska, J; Pawlik, J; Cholewa-Kowalska, K; Tylko, G; Pamula, E; Niedzwiedzki, L; Szuta, M; Laczka, M; Osyczka, A M

    2014-12-01

    In this study, 3D porous bioactive composite scaffolds were produced and evaluated for their physico-chemical and biological properties. Polymer poly-L-lactide-co-glycolide (PLGA) matrix scaffolds were modified with sol-gel-derived bioactive glasses (SBGs) of CaO-SiO2-P2O5 systems. We hypothesized that SBG incorporation into PLGA matrix would improve the chemical and biological activity of composite materials as well as their mechanical properties. We applied two bioactive glasses, designated as S2 or A2, differing in the content of SiO2 and CaO (i.e. 80 mol% SiO2, 16 mol% CaO for S2 and 40 mol% SiO2, 52 mol% CaO for A2). The composites were characterized for their porosity, bioactivity, microstructure and mechanical properties. The osteoinductive properties of these composites were evaluated in human bone marrow stromal cell (hBMSC) cultures grown in either standard growth medium or treated with recombinant human bone morphogenetic protein-2 (rhBMP-2) or dexamethasone (Dex). After incubation in simulated body fluid, calcium phosphate precipitates formed inside the pores of both A2-PLGA and S2-PLGA scaffolds. The compressive strength of the latter was increased slightly compared to PLGA. Both composites promoted superior hBMSC attachment to the material surface and stimulated the expression of several osteogenic markers in hBMSC compared to cells grown on unmodified PLGA. There were also marked differences in the response of hBMSC to composite scaffolds, depending on chemical compositions of the scaffolds and culture treatments. Compared to silica-rich S2-PLGA, hBMSC grown on calcium-rich A2-PLGA were overall less responsive to rhBMP-2 or Dex and the osteoinductive properties of these A2-PLGA scaffolds seemed partially dependent on their ability to induce BMP signaling in untreated hBMSC. Thus, beyond the ability of currently studied composites to enhance hBMSC osteogenesis, it may become possible to modulate the osteogenic response of hBMSC, depending on the

  7. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Fu, Hailuo; Liu, Xin

    2010-10-01

    Bioactive glass scaffolds with a microstructure similar to that of dry human trabecular bone but with three different compositions were evaluated for potential applications in bone repair. The preparation of the scaffolds and the effect of the glass composition on the degradation and conversion of the scaffolds to a hydroxyapatite (HA)-type material in a simulated body fluid (SBF) are reported here (Part I). The in vitro response of osteogenic cells to the scaffolds and the in vivo evaluation of the scaffolds in a rat subcutaneous implantation model are described in Part II. Scaffolds (porosity = 78-82%; pore size = 100-500 microm) were prepared using a polymer foam replication technique. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. The conversion rate of the scaffolds to HA in the SBF increased markedly with the B2O3 content of the glass. Concurrently, the pH of the SBF also increased with the B2O3 content of the scaffolds. The compressive strengths of the as-prepared scaffolds (5-11 MPa) were in the upper range of values reported for trabecular bone, but they decreased markedly with immersion time in the SBF and with increasing B2O3 content of the glass. The results show that scaffolds with a wide range of bioactivity and degradation rate can be achieved by replacing varying amounts of SiO(2) in silicate bioactive glass with B2O3. PMID:20544804

  8. Microstructural and in vitro characterization of SiO2-Na2O-CaO-MgO glass-ceramic bioactive scaffolds for bone substitutes.

    PubMed

    Vitale-Brovarone, C; Vernè, E; Bosetti, M; Appendino, P; Cannas, M

    2005-10-01

    In the present research work, the preparation and characterization of bioactive glass-ceramic scaffolds for bone substitutes are described. The scaffolds were prepared by starch consolidation of bioactive glass powders belonging to the SiO2-Na2O-CaO-MgO system using three different organic starches (corn, potatoes and rice) as reported in a previous screening process. The scaffolds, characterized by scanning electron microscopy, showed a porous structure with highly interconnected pores. The pores sizes assessed by mercury intrusion porosimetry put in evidence the presence of pores of 50-100 microm. The structure of the scaffolds was investigated by X-ray diffraction and revealed the glass-ceramic nature of the obtained material. The mechanical properties of the scaffolds were evaluated by means of compressive tests on cubic samples and the obtained results demonstrated their good mechanical strength. The in vitro bioactivity of the scaffolds was tested by soaking them in a simulated body fluid (SBF) and by subsequently characterizing the soaked surfaces by SEM, EDS and X-ray diffraction. Good in vitro bioactivity was found for the starting glass and for the obtained scaffolds. Moreover, the scaffold bioresorption, tested by measuring the samples weight loss in SBF at different periods of time, showed a partial resorption of the scaffolds. Cell culture testing of the three different scaffolds indicated no differences in cell number and in alkaline phosphatase activity; the morphology of the osteoblasts showed good spreading, comparable to bulk material which was used as the control. PMID:16167099

  9. Synthesis and Characterization of Poly(lactic-co-glycolic) Acid Nanoparticles-Loaded Chitosan/Bioactive Glass Scaffolds as a Localized Delivery System in the Bone Defects

    PubMed Central

    Nazemi, K.; Moztarzadeh, F.; Jalali, N.; Asgari, S.; Mozafari, M.

    2014-01-01

    The functionality of tissue engineering scaffolds can be enhanced by localized delivery of appropriate biological macromolecules incorporated within biodegradable nanoparticles. In this research, chitosan/58S-bioactive glass (58S-BG) containing poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been prepared and then characterized. The effects of further addition of 58S-BG on the structure of scaffolds have been investigated to optimize the characteristics of the scaffolds for bone tissue engineering applications. The results showed that the scaffolds had high porosity with open pores. It was also shown that the porosity decreased with increasing 58S-BG content. Furthermore, the PLGA nanoparticles were homogenously distributed within the scaffolds. According to the obtained results, the nanocomposites could be considered as highly bioactive bone tissue engineering scaffolds with the potential of localized delivery of biological macromolecules. PMID:24949477

  10. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings.

    PubMed

    Mantsos, T; Chatzistavrou, X; Roether, J A; Hupa, L; Arstila, H; Boccaccini, A R

    2009-10-01

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO(2), 22.6 CaO, 5.9 Na(2)O, 4 P(2)O(5), 12 K(2)O, 5.3 MgO and 0.2 B(2)O(3). The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 degrees C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly((D,L)-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications. PMID:19776493

  11. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application

    PubMed Central

    Fereshteh, Zeinab; Nooeaid, Patcharakamon; Fathi, Mohammadhossein; Bagri, Akbar; Boccaccini, Aldo R.

    2015-01-01

    This article presents data related to the research article entitled “The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering” [1]. We provide data on mechanical properties, in vitro bioactivity and drug release of bioactive glass (BG) scaffolds coated by poly (ε-caprolactone) (PCL) and zein used as a controlled release device for tetracycline hydrochloride (TCH). By coating the BG scaffolds with PCL or PCL/zein blend the mechanical properties of the scaffolds were substantially improved, i.e., the compressive strength increased from 0.004±0.001 MPa (uncoated BG scaffolds) to 0.15±0.02 MPa (PCL/zein coated BG scaffolds). A dense bone-like apatite layer formed on the surface of PCL/zein coated scaffolds immersed for 14 days in simulated body fluid (SBF). The data describe control of drug release and in vitro degradation behavior of coating by engineering the concentration of zein. Thus, the developed scaffolds exhibit attractive properties for application in bone tissue engineering research. PMID:26966716

  12. Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Liu, Yongxing; Bal, B. Sonny; Bonewald, Lynda F.

    2013-01-01

    The repair of large bone defects, such as segmental defects in the long bones of the limbs, is a challenging clinical problem. Our recent work has shown the ability to create porous scaffolds of silicate 13-93 bioactive glass by robocasting which have compressive strengths comparable to human cortical bone. The objective of this study was to evaluate the capacity of those strong porous scaffolds with a grid-like microstructure (porosity = 50%; filament width = 330 μm; pore width = 300 μm) to regenerate bone in a rat calvarial defect model. Six weeks postimplantation, the amount of new bone formed within the implants was evaluated using histomorphometric analysis. The amount of new bone formed in implants composed of the as-fabricated scaffolds was 32% of the available pore space (area). Pretreating the as-fabricated scaffolds in an aqueous phosphate solution for 1, 3, and 6 days, to convert a surface layer to hydroxyapatite prior to implantation, enhanced new bone formation to 46%, 57%, and 45%, respectively. New bone formation in scaffolds pretreated for 1, 3, and 6 days and loaded with bone morphogenetic protein-2 (BMP-2) (1 μg/defect) was 65%, 61%, and 64%, respectively. The results show that converting a surface layer of the glass to hydroxyapatite or loading the surface-treated scaffolds with BMP-2 can significantly improve the capacity of 13-93 bioactive glass scaffolds to regenerate bone in an osseous defect. Based on their mechanical properties evaluated previously and their capacity to regenerate bone found in this study, these 13-93 bioactive glass scaffolds, pretreated or loaded with BMP-2, are promising in structural bone repair. PMID:23567939

  13. Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo.

    PubMed

    Westhauser, Fabian; Weis, Christian; Prokscha, Matthäus; Bittrich, Leonie A; Li, Wei; Xiao, Kai; Kneser, Ulrich; Kauczor, Hans-Ulrich; Schmidmaier, Gerhard; Boccaccini, Aldo R; Moghaddam, Arash

    2016-07-01

    45S5-type bioactive glasses are a promising alternative to established substitutes for the treatment of bone defects. Because the three-dimensional (3D) structure of bone substitutes is crucial for bone ingrowth and formation, we evaluated the osteoinductive properties of different polymer coated 3D-45S5 bioactive glass (BG) scaffolds seeded with human mesenchymal stem cells (hMSC) in vivo. BG scaffolds coated with gelatin, cross-linked gelatin, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) were seeded with hMSC prior to implantation into severe combined immunodeficiency mice. Newly formed bone was evaluated with histomorphometry and micro-computed tomography. Bone formation was detectable in all groups, whereas the gelatin-coated BG scaffolds showed the best results and should be considered in further studies. PMID:27272901

  14. Antibacterial and bioactive alpha- and beta-chitin hydrogel/nanobioactive glass ceramic/nano silver composite scaffolds for periodontal regeneration.

    PubMed

    Srinivasan, Sowmya; Kumar, P T Sudheesh; Nair, Sreeja V; Nair, Shantikumar V; Chennazhi, K P; Jayakumar, R

    2013-11-01

    Alveolar bone loss and bone defects are the commonly encountered periodontal problems. Large defects do not heal spontaneously and thus require surgical interventions with bone substitutes. Bone grafts have the disadvantages of eliciting an immunologic response with subsequent graft rejection. The success rate of Guided Tissue Regeneration (GTR) is variable because of high susceptibility to infection. Thus emerged the important role of synthetic biomaterials and hence for this purpose we developed a nanocomposite scaffold, using alpha- and beta-chitin hydrogel with bioactive glass ceramic nanoparticles (nBGC) and silver nanoparticles (nAg) by lyophilization technique (aalpha and beta-chitin hydrogel/nBGC/nAg nanocomposite scaffold). The prepared nanoparticles and nanocomposite scaffolds were characterized. In addition, the porosity, swelling, mechanical properties, antibacterial activity, in vitro degradation and biomineralization, cell viability, cell attachment and cell proliferation ability of the prepared composite scaffolds were also evaluated. The results showed that alpha- and beta-chitin/nBGC/nAg composite scaffolds were porous and have the capacity to absorb fluids and swell. The composite scaffolds also showed enhanced antibacterial activity, bioactivity and controlled degradation in comparison to the control scaffolds. Cell viability studies proved the non-toxic nature of the nanocomposite scaffolds. Cell attachment and cell proliferation studies revealed the attachment and spreading nature of cells. All these studies revealed that, these antibacterial nanocomposite scaffolds could be a promising approach for the management of periodontal defects. PMID:24059080

  15. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering.

    PubMed

    Ding, Yaping; Li, Wei; Müller, Teresa; Schubert, Dirk W; Boccaccini, Aldo R; Yao, Qingqing; Roether, Judith A

    2016-07-13

    Electrospinning of biopolymer and inorganic substances is one of the efficient ways to combine various advantageous properties in one single fibrous structure with potential for tissue engineering applications. In the present study, to integrate the high stiffness of polyhydroxybutyrate (PHB), the flexibility of poly(ε-caprolactone) (PCL) and the bioactivity of 58S bioactive glass, PHB/PCL/58S sol-gel bioactive glass hybrid scaffolds were fabricated using combined electrospinning and sol-gel method. Physical features such as fiber diameter distribution, mechanical strength and Young's modulus were characterized thoroughly. FTIR analysis demonstrated the successful incorporation of 58S bioactive glass into the blend polymers, which greatly improved the hydrophilicity of PHB/PCL fibermats. The primary biological response of MG-63 osteoblast-like cells on the prepared fibrous scaffolds was evaluated, proving that the 58S glass sol containing hybrid scaffold were not only favorable to MG-63 cell adhesion but also slightly enhanced cell viability and significantly increased alkaline phosphate activity . PMID:27295496

  16. Porous SiO2 nanofiber grafted novel bioactive glass-ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant.

    PubMed

    Das, Indranee; De, Goutam; Hupa, Leena; Vallittu, Pekka K

    2016-05-01

    A composite bioactive glass-ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. PMID:26952416

  17. Composite scaffolds of mesoporous bioactive glass and polyamide for bone repair

    PubMed Central

    Su, Jiacan; Cao, Liehu; Yu, Baoqing; Song, Shaojun; Liu, Xinwei; Wang, Zhiwei; Li, Ming

    2012-01-01

    A bone-implanted porous scaffold of mesoporous bioglass/polyamide composite (m-BPC) was fabricated, and its biological properties were investigated. The results indicate that the m-BPC scaffold contained open and interconnected macropores ranging 400–500 μm, and exhibited a porosity of 76%. The attachment ratio of MG-63 cells on m-BPC was higher than polyamide scaffolds at 4 hours, and the cells with normal phenotype extended well when cultured with m-BPC and polyamide scaffolds. When the m-BPC scaffolds were implanted into bone defects of rabbit thighbone, histological evaluation confirmed that the m-BPC scaffolds exhibited excellent biocompatibility and osteoconductivity, and more effective osteogenesis than the polyamide scaffolds in vivo. The results indicate that the m-BPC scaffolds improved the efficiency of new bone regeneration and, thus, have clinical potential for bone repair. PMID:22679367

  18. Composite scaffolds of mesoporous bioactive glass and polyamide for bone repair.

    PubMed

    Su, Jiacan; Cao, Liehu; Yu, Baoqing; Song, Shaojun; Liu, Xinwei; Wang, Zhiwei; Li, Ming

    2012-01-01

    A bone-implanted porous scaffold of mesoporous bioglass/polyamide composite (m-BPC) was fabricated, and its biological properties were investigated. The results indicate that the m-BPC scaffold contained open and interconnected macropores ranging 400-500 μm, and exhibited a porosity of 76%. The attachment ratio of MG-63 cells on m-BPC was higher than polyamide scaffolds at 4 hours, and the cells with normal phenotype extended well when cultured with m-BPC and polyamide scaffolds. When the m-BPC scaffolds were implanted into bone defects of rabbit thighbone, histological evaluation confirmed that the m-BPC scaffolds exhibited excellent biocompatibility and osteoconductivity, and more effective osteogenesis than the polyamide scaffolds in vivo. The results indicate that the m-BPC scaffolds improved the efficiency of new bone regeneration and, thus, have clinical potential for bone repair. PMID:22679367

  19. Bioactivity of degradable polymer sutures coated with bioactive glass.

    PubMed

    Bretcanu, Oana; Verné, Enrica; Borello, Luisa; Boccaccini, Aldo R

    2004-08-01

    Novel bioactive materials have been prepared by coating violet resorbable Vicryl sutures with a bioactive glass powder derived from a co-precipitation method. Two techniques have been chosen for the composite preparation: pressing the sutures in a bed of glass powder and slurry-dipping of sutures in liquid suspensions of bioactive glass powders. The uniformity and thickness of the coatings obtained by the two methods were compared. The bioactivity of the sutures with and without bioactive glass coating was tested by soaking in an inorganic acellular simulated body fluid (SBF). The composite sutures were characterised by XRD, SEM and FTIR analyses before and after soaking in SBF solution to assess the formation of hydroxyapatite on their surfaces, which is a qualitative measure of their bioactivity. The possible use of bioactive sutures to produce tissue engineering scaffolds and as reinforcement of resorbable calcium phosphates is discussed. PMID:15477741

  20. Creation of bioactive glass (13-93) scaffolds for structural bone repair using a combined finite element modeling and rapid prototyping approach.

    PubMed

    Xiao, Wei; Zaeem, Mohsen Asle; Bal, B Sonny; Rahaman, Mohamed N

    2016-11-01

    There is a clinical need for synthetic bioactive materials that can reliably repair intercalary skeletal tissue loss in load-bearing bones. Bioactive glasses have been investigated as one such material but their mechanical response has been a concern. Previously, we created bioactive silicate glass (13-93) scaffolds with a uniform grid-like microstructure which showed a compressive strength comparable to human cortical bone but a much lower flexural strength. In the present study, finite element modeling (FEM) was used to re-design the scaffold microstructure to improve its flexural strength without significantly lowering its compressive strength and ability to support bone infiltration in vivo. Then scaffolds with the requisite microstructures were created by a robotic deposition method and tested in four-point bending and compression to validate the FEM simulations. In general, the data validated the predictions of the FEM simulations. Scaffolds with a porosity gradient, composed of a less porous outer region and a more porous inner region, showed a flexural strength (34±5MPa) that was more than twice the value for the uniform grid-like microstructure (15±5MPa) and a higher compressive strength (88±20MPa) than the grid-like microstructure (72±10MPa). Upon implantation of the scaffolds for 12weeks in rat calvarial defects in vivo, the amount of new bone that infiltrated the pore space of the scaffolds with the porosity gradient (37±16%) was similar to that for the grid-like scaffolds (35±6%). These scaffolds with a porosity gradient that better mimics the microstructure of human long bone could provide more reliable implants for structural bone repair. PMID:27524065

  1. Sol-gel derived bioactive glasses with low tendency to crystallize: synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds.

    PubMed

    Bellucci, Devis; Sola, Antonella; Salvatori, Roberta; Anesi, Alexandre; Chiarini, Luigi; Cannillo, Valeria

    2014-10-01

    A new sol-gel (SG) method is proposed to produce special bioactive glasses (BG_Ca family) characterized by a low tendency to devitrify. These formulations, derived from 45S5 Bioglass®, are characterized by a high content of CaO (45.6 mol%) and by a partial or complete substitution of sodium oxide with potassium oxide (total amount of alkaline oxides: 4.6 mol%), which increases the crystallization temperature up to 900°C. In this way, it is possible to produce them by SG preserving their amorphous nature, in spite of the calcination at 850°C. The sintering behavior of the obtained SG powders is thoroughly investigated and the properties of the sintered bodies are compared to those of the melt-derived (M) counterparts. Furthermore, the SG glass powders are successfully used to produce scaffolds by means of a modified replication technique based on the combined use of polyurethane sponges and polyethylene particles. Finally, in the view of a potential application for bone tissue engineering, the cytotoxicity of the produced materials is evaluated in vitro. PMID:25175252

  2. On the mechanical properties of PLC-bioactive glass scaffolds fabricated via BioExtrusion.

    PubMed

    Fiedler, T; Videira, A C; Bártolo, P; Strauch, M; Murch, G E; Ferreira, J M F

    2015-12-01

    This paper addresses the mechanical characterization of polycaprolactone (PCL)-bioglass (FastOs®BG) composites and scaffolds intended for use in tissue engineering. Tissue engineering scaffolds support the self-healing mechanism of the human body and promote the regrowth of damaged tissue. These implants can dissolve after successful tissue regeneration minimising the immune reaction and the need for revision surgery. However, their mechanical properties should match surrounding tissue in order to avoid strain concentration and possible separation at the interface. Therefore, an extensive experimental testing programme of this advanced material using uni-axial compressive testing was conducted. Tests were performed at low strain rates corresponding to quasi-static loading conditions. The initial elastic gradient, plateau stress and densification strain were obtained. Tested specimens varied according to their average density and material composition. In total, four groups of solid and robocast porous PCL samples containing 0, 20, 30, and 35% bioglass, respectively were tested. The addition of bioglass was found to slightly decrease the initial elastic gradient and the plateau stress of the biomaterial scaffolds. PMID:26354266

  3. Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications

    PubMed Central

    Coletta, D.J.; Lozano, D.; Rocha-Oliveira, A.A.; Mortarino, P.; Bumaguin, G.E.; Vitelli, E.; Vena, R.; Missana, L.; Jammal, M. V.; Portal-Núñez, S.; Pereira, M.; Esbrit, P.; Feldman, S.

    2014-01-01

    Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds PMID:24772196

  4. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    PubMed

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-01

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications. PMID:26836444

  5. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    PubMed

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials. PMID:25935647

  6. Nano-Structured Gelatin/Bioactive Glass Hybrid Scaffolds for the Enhancement of Odontogenic Differentiation of Human Dental Pulp Stem Cells

    PubMed Central

    Qu, Tiejun; Liu, Xiaohua

    2013-01-01

    Tooth decay is one of the most common chronic disorders throughout the world. Regenerating decayed dentin/pulp structure requires the design of novel scaffolding materials that mimic the architecture of natural dental extracellular matrix (ECM) and provide suitable environments for the attachment, proliferation, differentiation, and biomineralization of dental pulp stem cells (DPSCs). In this work, we developed an approach to prepare three-dimensional (3D) nano-fibrous gelatin/silica bioactive glass (NF-gelatin/SBG) hybrid scaffolds that mimic the nano-structured architecture and chemical composition of natural dental ECM. This approach involved the combination of a thermally induced phase separation, sol-gel, and porogen leaching process, and synthesized hybrid scaffolds possessing natural ECM-like architecture, high porosity, well-defined pore size and interconnectivity, and improved mechanical strength. An in vitro cell culture study showed that human DPSCs had a significantly higher proliferation rate on NF-gelatin/SBG scaffolds compared to NF-gelatin scaffolds under the same conditions. Furthermore, the integration of SBG into the hybrid scaffold significantly promoted the differentiation and biomineralization of the human DPSCs. The alkaline phosphatase (ALP) activity and expressions of marker genes for odontogenic differentiation (Col I, ALP, OCN, DSPP and DMP-1) were all significantly higher in the NF-gelatin/SBG than in the NF-gelatin group. Those results were further confirmed by hematoxylin and eosin (H&E) and von Kossa staining, as evidenced by greater ECM secretion and mineral deposition in the hybrid scaffold. In summary, the biomimetic NF-gelatin/SBG hybrid scaffolds provide an excellent environment for the growth and differentiation of human DPSCs and are promising candidates for dentin/pulp tissue regeneration. PMID:24098854

  7. Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang

    2010-01-01

    Scaffolds of 13-93 bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 2P2O5, 54SiO2; mol %), containing oriented pores with controllable diameter, were prepared by unidirectional freezing of camphene-based suspensions (10 vol% particles) on a cold substrate (−196°C or 3°C). By varying the annealing time (0–72 h) to coarsen the camphene phase, constructs with the same porosity (86 ± 1%) but with controllable pore diameters (15–160 μm) were obtained after sublimation of the camphene. The pore diameters had a self-similar distribution that could be fitted by a diffusion-controlled coalescence model. Sintering (1 h at 690°C) was accompanied by a decrease in the porosity and pore diameter, the magnitude of which depended on the pore size of the green constructs, giving scaffolds with a porosity of 20–60% and average pore diameter of 6–120 μm. The compressive stress vs. deformation response of the sintered scaffolds in the orientation direction was linear, followed by failure. The compressive strength and elastic modulus in the orientation direction varied from 180 MPa and 25 GPa, respectively, (porosity = 20%) to 16 MPa and 4 GPa, respectively, (porosity = 60%), which were 2–3 times larger than the values in the direction perpendicular to the orientation. The potential use of these 13-93 bioactive glass scaffolds for the repair of large defects in load-bearing bones, such as segmental defects in long bones, is discussed. PMID:20807594

  8. Effects of chitosan and bioactive glass modifications of knitted and rolled polylactide-based 96/4 L/D scaffolds on chondrogenic differentiation of adipose stem cells.

    PubMed

    Ahtiainen, Katja; Sippola, Laura; Nurminen, Manu; Mannerström, Bettina; Haimi, Suvi; Suuronen, Riitta; Hyttinen, Jari; Ylikomi, Timo; Kellomäki, Minna; Miettinen, Susanna

    2015-01-01

    The performance of biodegradable knitted and rolled 3-dimensional (3D) polylactide-based 96/4 scaffolds modified with bioactive glass (BaG) 13-93, chitosan and both was compared with regard to the viability, proliferation and chondrogenic differentiation of rabbit adipose stem cells (ASCs). Scaffold porosities were determined by micro-computed tomography (μCT). Water absorption and degradation of scaffolds were studied during 28-day hydrolysis in Tris-buffer. Viability, number and differentiation of ASCs in PLA96/4 scaffolds were examined in vitro. The dimensions of the scaffolds were maintained during hydrolysis and mass loss was detected only in the BaG13-93 containing scaffolds. ASCs adhered and proliferated on each scaffold type. Cell aggregation and expression of chondral matrix components improved in all scaffold types in chondrogenic medium. Signs of hypertrophy were detected in the modified scaffolds but not in the plain PLA96/4 scaffold. Chondrogenic differentiation was most enhanced in the presence of chitosan. These findings indicate that the plain P scaffold provided a good 3D-matrix for ASC proliferation whereas the addition of chitosan to the PLA96/4 scaffold induced chondrogenic differentiation independent of the medium. Accordingly, a PLA96/4 scaffold modified by chitosan could provide a functional and bioactive basis for tissue-engineered chondral implants. PMID:23086809

  9. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold

    PubMed Central

    Chen, Xiaohui; Zhao, Yanbing; Geng, Shinan; Miron, Richard J; Zhang, Qiao; Wu, Chengtie; Zhang, Yufeng

    2015-01-01

    Purpose In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG) scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo. Patients and methods To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation. Results Results from the present study demonstrate that PIB nanogels/B-MBG composites showed greater improvement in mechanical strength when compared to PIB nanogels alone. In vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects containing PIB nanogels/B-MBG composite scaffolds when compared to PIB nanogels alone. Tartrate-resistant acid phosphatase-positive staining demonstrated that both scaffolds were degraded over time and bone remodeling occurred in the surrounding bone defect as early as 4 weeks post-implantation. Conclusion The results from the present study indicate that PIB nanogels are a potential bone tissue engineering biomaterial able to treat defects of irregular shapes and deformities as an injectable, thermoresponsive, biocompatible hydrogel which undergoes rapid thermal gelation once body temperature is reached. Furthermore, its combination with B-MBG scaffolds improves the mechanical properties and ability to promote new bone formation when compared to PIB nanogels alone. PMID:25653525

  10. Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid) Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering

    PubMed Central

    Zhai, Dong; Zhao, Lang

    2014-01-01

    It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid) composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering. PMID:24724080

  11. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering.

    PubMed

    Sharifi, Esmaeel; Azami, Mahmoud; Kajbafzadeh, Abdol-Mohammad; Moztarzadeh, Fatollah; Faridi-Majidi, Reza; Shamousi, Atefeh; Karimi, Roya; Ai, Jafar

    2016-02-01

    Bone tissue is a composite material made of organic and inorganic components. Bone tissue engineering requires scaffolds that mimic bone nature in chemical and mechanical properties. This study proposes a novel method for preparing composite scaffolds that uses sub-micron bioglass fibers as the organic phase and gelatin/collagen as the inorganic phase. The scaffolds were constructed by using freeze drying and electro spinning methods and their mechanical properties were enhanced by using genipin crosslinking agent. Electron microscopy micrographs showed that the structure of composite scaffolds were porous with pore diameters of approximately 70-200μm, this was again confirmed by mercury porosimetery. These pores are suitable for osteoblast growth. The diameters of the fibers were approximately 150-450nm. Structural analysis confirmed the formation of desirable phases of sub-micron bioglass fibers. Cellular biocompatibility tests illustrated that scaffolds containing copper ion in the bioglass structure had more cell growth and osteoblast attachment in comparison to copper-free scaffolds. PMID:26652405

  12. One-step method for the preparation of poly(methyl methacrylate) modified titanium-bioactive glass three-dimensional scaffolds for bone tissue engineering.

    PubMed

    Han, Xiao; Lin, Huiming; Chen, Xiang; Li, Xin; Guo, Gang; Qu, Fengyu

    2016-04-01

    A novel three-dimensional (3D) titanium (Ti)-doping meso-macroporous bioactive glasses (BGs)/poly(methyl methacrylate) (PMMA) composite was synthesised using PMMA and EO20PO70EO20 (P123) as the macroporous and mesoporous templates, respectively. Unlike the usual calcination method, the acid steam technique was used to improve the polycondensation of Ti-BGs, and then PMMA was partially extracted via chloroform to induce the macroporous structure. Simultaneously, the residual PMMA which remained in the wall enhanced the compressive strength to 2.4 MPa (0.3 MPa for pure BGs). It is a simple and green method to prepare the macro-mesoporous Ti-BGs/PMMA. The materials showed the 3D interconnected hierarchical structure (250 and 3.4 nm), making the fast inducing-hydroxyapatite growth and the controlled drug release. Besides mentioned above, the good antimicrobial property and biocompatible of the scaffold also ensure it is further of clinical use. Herein, the fabricated materials are expected to have potential application on bone tissue regeneration. PMID:27074853

  13. Bioactive Glasses: Frontiers and Challenges

    PubMed Central

    Hench, Larry L.; Jones, Julian R.

    2015-01-01

    Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong, and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass–ceramics. In the 1980s, it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are (a) discovery, (b) clinical application, (c) tissue regeneration, and (d) innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs. PMID:26649290

  14. Effect of copper-doped silicate 13-93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo.

    PubMed

    Lin, Yinan; Xiao, Wei; Bal, B Sonny; Rahaman, Mohamed N

    2016-10-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13-93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0-2.0wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8wt.% CuO in the glass but they were significantly reduced by 2.0wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6weeks in rat calvarial defects (46±8%) was not significantly affected by 0.4 or 0.8wt.% CuO in the glass whereas it was significantly inhibited (0.8±0.7%) in the scaffolds doped with 2.0wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13-93 glass scaffolds with up to 0.8wt.% CuO did not affect their biocompatibility whereas 2.0wt.% CuO was toxic to cells and detrimental to bone regeneration. PMID:27287141

  15. Reprint of: Review of bioactive glass: From Hench to hybrids.

    PubMed

    Jones, Julian R

    2015-09-01

    Bioactive glasses are reported to be able to stimulate more bone regeneration than other bioactive ceramics but they lag behind other bioactive ceramics in terms of commercial success. Bioactive glass has not yet reached its potential but research activity is growing. This paper reviews the current state of the art, starting with current products and moving onto recent developments. Larry Hench's 45S5 Bioglass® was the first artificial material that was found to form a chemical bond with bone, launching the field of bioactive ceramics. In vivo studies have shown that bioactive glasses bond with bone more rapidly than other bioceramics, and in vitro studies indicate that their osteogenic properties are due to their dissolution products stimulating osteoprogenitor cells at the genetic level. However, calcium phosphates such as tricalcium phosphate and synthetic hydroxyapatite are more widely used in the clinic. Some of the reasons are commercial, but others are due to the scientific limitations of the original Bioglass 45S5. An example is that it is difficult to produce porous bioactive glass templates (scaffolds) for bone regeneration from Bioglass 45S5 because it crystallizes during sintering. Recently, this has been overcome by understanding how the glass composition can be tailored to prevent crystallization. The sintering problems can also be avoided by synthesizing sol-gel glass, where the silica network is assembled at room temperature. Process developments in foaming, solid freeform fabrication and nanofibre spinning have now allowed the production of porous bioactive glass scaffolds from both melt- and sol-gel-derived glasses. An ideal scaffold for bone regeneration would share load with bone. Bioceramics cannot do this when the bone defect is subjected to cyclic loads, as they are brittle. To overcome this, bioactive glass polymer hybrids are being synthesized that have the potential to be tough, with congruent degradation of the bioactive inorganic and

  16. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.

  17. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

  18. Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles.

    PubMed

    Couto, Daniela S; Hong, Zhongkui; Mano, João F

    2009-01-01

    There is increasing interest in the development of new tissue engineering strategies to deliver cells and bioactive agents encapsulated in a biodegradable matrix through minimally invasive procedures. The present work proposes to combine chitosan-beta-glycerophosphate salt formulations with bioactive glass nanoparticles in order to conceive novel injectable thermo-responsive hydrogels for orthopaedic reconstructive and regenerative medicine applications. The initial rheological properties and the gelation points of the developed organic-inorganic in situ thermosetting systems were revealed to be adequate for intracorporal injection. In vitro bioactivity tests, using incubation protocols in simulated body fluid (SBF), allowed the observation of bone-like apatite formation in the hydrogel formulations containing bioactive nanoparticles. The density of the apatite formed increased with increasing bioactive glass content and soaking time in SBF. These results indicate that the stimuli-responsive hydrogels could potentially be used as temporary injectable scaffolds in bone tissue engineering applications. PMID:18835230

  19. Effects of borate-based bioactive glass on neuron viability and neurite extension.

    PubMed

    Marquardt, Laura M; Day, Delbert; Sakiyama-Elbert, Shelly E; Harkins, Amy B

    2014-08-01

    Bioactive glasses have recently been shown to promote regeneration of soft tissues by positively influencing tissue remodeling during wound healing. We were interested to determine whether bioactive glasses have the potential for use in the treatment of peripheral nerve injury. In these experiments, degradable bioactive borate glass was fabricated into rods and microfibers. To study the compatibility with neurons, embryonic chick dorsal root ganglia (DRG) were cultured with different forms of bioactive borate glass. Cell viability was measured with no media exchange (static condition) or routine media exchange (transient condition). Neurite extension was measured within fibrin scaffolds with embedded glass microfibers or aligned rod sheets. Mixed cultures of neurons, glia, and fibroblasts growing in static conditions with glass rods and microfibers resulted in decreased cell viability. However, the percentage of neurons compared with all cell types increased by the end of the culture protocol compared with culture without glass. Furthermore, bioactive glass and fibrin composite scaffolds promoted neurite extension similar to that of control fibrin scaffolds, suggesting that glass does not have a significant detrimental effect on neuronal health. Aligned glass scaffolds guided neurite extension in an oriented manner. Together these findings suggest that bioactive glass can provide alignment to support directed axon growth. PMID:24027222

  20. Preparation of bioactive porous HA/PCL composite scaffolds

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Guo, L. Y.; Yang, X. B.; Weng, J.

    2008-12-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  1. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films.

    PubMed

    Gao, Yuan; Chang, Jiang

    2009-08-01

    In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260 degrees C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA/bioactive glass composite films were fabricated using surface modified bioactive glass particles through solvent casting-evaporation method. Surface morphology, mechanical property, and bioactivity were investigated. The results revealed that the inorganic particle distribution and tensile strength of the composite films with modified bioactive glass particles were significantly improved while great bioactive properties were maintained. Scanning electron microscopy (SEM) observation illustrated that the modified bioactive glass particles were homogeneously dispersed in the PDLLA matrix. The maximum tensile strengths of composite films with modified bioactive glass particles were higher than that of composite films with unmodified bioactive glass particles. The bioactivity of the composite films were evaluated by being soaked in the simulated body fluid (SBF) and the SEM observation of the films suggested that the modified composite films were still bioactive in that they could induce the formation of HAp on its surface and the distribution of HAp was even more homogeneous on the film. The results mentioned above indicated that the surface modification of bioactive glasses with dodecyl alcohol was an effective method to prepare PDLLA/bioactive glass composites with enhanced properties. By studying the comparisons of modification effects among the three types of bioactive glasses, we could get the conclusion that the size and morphology of the inorganic particles would greatly affect the modification effects and the properties of composites. PMID:18801895

  2. Parameters optimization for the fabrication of phosphate glass/hydroxyapatite nanocomposite scaffold

    NASA Astrophysics Data System (ADS)

    Govindan, R.; Girija, E. K.

    2015-06-01

    Three-dimensional, highly porous, bioactive and biodegradable phosphate glass and nanohydroxyapatite (n-HA) composite scaffolds was fabricated by the polymer foam replication technique. Polyurethane foam (PU) and polyvinyl alcohol (PVA) were used as template and binder, respectively. Optimization of composition and sintering temperature is carried out for tissue engineering scaffold fabrication.

  3. Optimization and characterization of bioactive glass nanofibers and nanocomposites

    NASA Astrophysics Data System (ADS)

    Scarber, Reginna E.

    Disease affects different areas of the bone and can impact individuals of all pathologies and ethnicities. These bone diseases can result in weakening which leads to trauma during ordinary function, the need for reconstructive surgery, and eventual bone replacement. Tissue engineering can provide a less traumatic and more fundamental solution to the current therapies. Bioactive glasses are promising materials in tissue engineering applications because of their ability to form hydroxycarbonate apatite in the presence of simulated body fluid, support cell adhesion, growth, and differentiation, induce bone formation, and concentrate bone morphogenic proteins in vivo. The research in this dissertation will attempt to improve the quality, yield, and toughness of bioactive glass nanofibrous scaffolds. The three specific aims of this research include, (1) Optimization and Characterization of Surfactant Modified Bioactive Glass (2) Optimization of Direct Synthesis Bioactive glass Nanofibers from Sols (3) Mechanical Properties and In-vitro Biomineralization of Bioglass-loaded Polyglyconate Nanocomposites Created Using the Particulate Leaching Method. The purpose of the first specific aim was to optimize the processing of bioactive glass nanofibers, resulting in greater fiber uniformity with a reduction in beading. The increase in viscosity coupled with the ability of the surfactant to limit polymeric secondary bonding led to improved fiber quality. The focal point of the second specific aim is the production of sol-gel derived glass fibers with high bioactivity prepared by electrospinning without the use of any polymer carrier system. Advantages of this method include decreased processing time, increased production of fibers, and a decrease in the loss of material due to the calcining process. The solvent cast/ particulate leaching method was used to create a nanocomposite of bioglass and the co-polymer polyglyconate (MaxonRTM) for bone tissue scaffolds The biocompatibility

  4. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering

    SciTech Connect

    Goudouri, O.M.; Theodosoglou, E.; Kontonasaki, E.; Will, J.; Chrissafis, K.; Koidis, P.; Paraskevopoulos, K.M.; Boccaccini, A.R.

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) and diopside (CaMgSi{sub 2}O{sub 6}), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis of an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering.

  5. Hydroxyapatite whisker reinforced 63s glass scaffolds for bone tissue engineering.

    PubMed

    Shuai, Cijun; Cao, Yiyuan; Gao, Chengde; Feng, Pei; Xiao, Tao; Peng, Shuping

    2015-01-01

    Bioactive glass (BG) is widely used for bone tissue engineering. However, poor mechanical properties are the major shortcomings. In the study, hydroxyapatite nanowhisker (HANw) was used as a reinforcement to improve the mechanical properties. 63s glass/HANw scaffolds were successfully fabricated by selective laser sintering (SLS). It was found that the optimal compressive strength and fracture toughness were achieved when 10 wt.% HANw was added. This led to 36% increase in compressive strength and 83% increase in fracture toughness, respectively, compared with pure 63s glass scaffolds. Different reinforcement mechanisms were analyzed based on the microstructure investigation. Whisker bridging and whisker pulling-out were efficient in absorbing crack propagating energy, resulting in the improvement of the mechanical properties. Moreover, bioactivity and biocompatibility of the scaffolds were evaluated in vitro. The results showed that composite scaffolds with 10 wt.% HANw exhibited good apatite-forming ability and cellular affinity. PMID:25821798

  6. Hydroxyapatite Whisker Reinforced 63s Glass Scaffolds for Bone Tissue Engineering

    PubMed Central

    Shuai, Cijun; Cao, Yiyuan; Gao, Chengde; Feng, Pei; Xiao, Tao; Peng, Shuping

    2015-01-01

    Bioactive glass (BG) is widely used for bone tissue engineering. However, poor mechanical properties are the major shortcomings. In the study, hydroxyapatite nanowhisker (HANw) was used as a reinforcement to improve the mechanical properties. 63s glass/HANw scaffolds were successfully fabricated by selective laser sintering (SLS). It was found that the optimal compressive strength and fracture toughness were achieved when 10 wt.% HANw was added. This led to 36% increase in compressive strength and 83% increase in fracture toughness, respectively, compared with pure 63s glass scaffolds. Different reinforcement mechanisms were analyzed based on the microstructure investigation. Whisker bridging and whisker pulling-out were efficient in absorbing crack propagating energy, resulting in the improvement of the mechanical properties. Moreover, bioactivity and biocompatibility of the scaffolds were evaluated in vitro. The results showed that composite scaffolds with 10 wt.% HANw exhibited good apatite-forming ability and cellular affinity. PMID:25821798

  7. Bioactive Microsphere-Based Scaffolds Containing Decellularized Cartilage.

    PubMed

    Sutherland, Amanda J; Detamore, Michael S

    2015-07-01

    The aim of this study was to fabricate mechanically functional microsphere-based scaffolds containing decellularized cartilage (DCC), with the hypothesis that this approach would induce chondrogenesis of rat bone marrow-derived mesenchymal stem cells (rBMSCs) in vitro. The DCC was derived from porcine articular cartilage and decellularized using a combination of physical and chemical methods. Four types of scaffolds were fabricated: poly(d,l-lactic-co-glycolic acid) (PLGA) only (negative control), TGF-β-encapsulated (positive control), PLGA surface coated with DCC, and DCC-encapsulated. These scaffolds were seeded with rBMSCs and cultured up to 6 weeks. The compressive modulus of the DCC-coated scaffolds prior to cell seeding was significantly lower than all other scaffold types. Gene expression was comparable between DCC-encapsulated and TGF-β-encapsulated groups. Notably, DCC-encapsulated scaffolds contained 70% higher glycosaminoglyan (GAG) content and 85% more hydroxyproline compared to the TGF-β group at week 3 (with baseline levels subtracted out from acellular DCC scaffolds). Certainly, bioactivity was demonstrated in eliciting a biosynthetic response from the cells with DCC, although true demonstration of chondrogenesis remained elusive under the prescribed conditions. Encapsulation of DCC appeared to lead to improved cell performance relative to coating with DCC, although this finding may be a dose-dependent observation. Overall, DCC introduced via microsphere-based scaffolds appears to be promising as a bioactive approach to cartilage regeneration, although additional studies will be required to conclusively demonstrate chondroinductivity. PMID:25821206

  8. Bioinspired Strong and Highly Porous Glass Scaffolds

    PubMed Central

    Saiz, Eduardo; Tomsia, Antoni P.

    2011-01-01

    The quest for more efficient energy-related technologies is driving the development of porous and high-performance structural materials with exceptional mechanical strength. Natural materials achieve their strength through complex hierarchical designs and anisotropic structures that are extremely difficult to replicate synthetically. We emulate nature’s design by direct-ink-write assembling of glass scaffolds with a periodic pattern, and controlled sintering of the filaments into anisotropic constructs similar to biological materials. The final product is a porous glass scaffold with a compressive strength (136 MPa) comparable to that of cortical bone and a porosity (60%) comparable to that of trabecular bone. The strength of this porous glass scaffold is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities reported elsewhere. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for a broad array of applications, including tissue engineering, filtration, lightweight composites, and catalyst support. PMID:21544222

  9. Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering.

    PubMed

    Won, Jong-Eun; Mateos-Timoneda, Miguel A; Castano, Oscar; Planell, Josep A; Seo, Seog-Jin; Lee, Eun-Jung; Han, Cheol-Min; Kim, Hae-Won

    2015-04-01

    Bioactive nanocomposite scaffolds with cell-adhesive surface have excellent bone regeneration capacities. Fibronectin (FN)-immobilized nanobioactive glass (nBG)/polycaprolactone (PCL) (FN-nBG/PCL) scaffolds with an open pore architecture were generated by a robotic-dispensing technique. The surface immobilization level of FN was significantly higher on the nBG/PCL scaffolds than on the PCL scaffolds, mainly due to the incorporated nBG that provided hydrophilic chemical-linking sites. FN-nBG/PCL scaffolds significantly improved cell responses, including initial anchorage and subsequent cell proliferation. Although further in-depth studies on cell differentiation and the in vivo animal responses are required, bioactive nanocomposite scaffolds with cell-favoring surface are considered to provide promising three-dimensional substrate for bone regeneration. PMID:25502922

  10. A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry

    PubMed Central

    Ali, Saqib; Farooq, Imran; Iqbal, Kefi

    2013-01-01

    Bioactive glass is a novel material that dissolves and forms a bond with bone when exposed to body fluids. Bioactive glasses are silicate-based, with calcium and phosphate in identical proportions to those of natural bone; therefore, they have high biocompatibility. Bioactive glasses have wide-ranging clinical applications, including the use as bone grafts, scaffolds, and coating materials for dental implants. This review will discuss the effects of ions on the various compositions of bioactive glasses, as well as the clinical applications of bioactive glasses in medicine and dentistry. PMID:24526822

  11. Ionic solutes impact collagen scaffold bioactivity.

    PubMed

    Pawelec, K M; Husmann, A; Wardale, R J; Best, S M; Cameron, R E

    2015-02-01

    The structure of ice-templated collagen scaffolds is sensitive to many factors. By adding 0.5 wt% of sodium chloride or sucrose to collagen slurries, scaffold structure could be tuned through changes in ice growth kinetics and interactions of the solute and collagen. With ionic solutes (sodium chloride) the entanglements of the collagen molecule decreased, leading to fibrous scaffolds with increased pore size and decreased attachment of chondrocytes. With non-ionic solutes (sucrose) ice growth was slowed, leading to significantly reduced pore size and up-regulated cell attachment. This highlights the large changes in structure and biological function stimulated by solutes in ice-templating systems. PMID:25649518

  12. Preparation and characterization of bioactive mesoporous wollastonite - Polycaprolactone composite scaffold.

    PubMed

    Wei, Jie; Chen, Fangping; Shin, Jung-Woog; Hong, Hua; Dai, Chenglong; Su, Jiancan; Liu, Changsheng

    2009-02-01

    A well-defined mesoporous structure of wollastonite with high specific surface area was synthesized using surfactant P123 (triblock copolymer) as template, and its composite scaffolds with poly(epsilon-caprolactone) (PCL) were fabricated by a simple method of solvent casting-particulate leaching. The measurements of the water contact angles suggest that the incorporation of either mesoporous wollastonite (m-WS) or conventional wollastonite (c-WS) into PCL could improve the hydrophilicity of the composites, and the former was more effective than the later. The bioactivity of the composite scaffold was evaluated by soaking the scaffolds in a simulated body fluid (SBF) and the results show that the m-WS/PCL composite (m-WPC) scaffolds can induce a dense and continuous layer of apatite after soaking for 1 week, as compared with the scattered and discrete apatite particles on the c-WS/PCL composite (c-WPC) scaffolds. The m-WPC had a significantly enhanced apatite-forming bioactivity compared with the c-WPC owing to the high specific surface area and pore volume of m-WS. In addition, attachment and proliferation of MG(63) cells on m-WPC scaffolds were significantly higher than that of c-WPC, revealing that m-WPC scaffolds had excellent biocompatibility. Such improved properties of m-WPC should be helpful for developing new biomaterials and may have potential use in hard tissue repair. PMID:19019424

  13. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds.

    PubMed

    Dziadek, Michal; Pawlik, Justyna; Menaszek, Elzbieta; Stodolak-Zych, Ewa; Cholewa-Kowalska, Katarzyna

    2015-11-01

    In this study, two different composition gel derived silica-rich (S2) or calcium-rich (A2) bioactive glasses (SBG) from a basic CaO-P2 O5 -SiO2 system were incorporated into poly(ε-caprolactone) (PCL) matrix to obtain novel bioactive composite scaffolds for bone tissue engineering applications. The composites were fabricated in the form of highly porous 3D scaffolds using following preparation methods: solvent casting particulate leaching (SCPL), solid-liquid phase separation, phase inversion (PI). Scaffolds containing 21% vol. of each bioactive glass were characterized for architecture, crystallinity, hydrolytic degradation, surface bioactivity, and cellular response. Results indicated that the use of different preparation methods leads to obtain highly porous (60-90%) materials with differentiated morphology: pore shape, size, and distributions. Thermal analysis (DSC) showed that the preparation method of materials and addition of bioactive glass particles into polymer matrix induced the changes of PCL crystallinity. Composites obtained by SCPL and PI method containing A2 SBG rapidly formed a hydroxyapatite calcium phosphate surface layer after incubation in SBF. Bioactive glasses used as filler in composite scaffolds could neutralize the released acidic by-products of the polymer degradation. Preliminary in vitro biological studies of the composites in contact with osteoblastic cells showed good biocompatibility of the obtained materials. Addition of bioactive glass into the PCL matrix promotes mineralization estimated on the basis of the ALP activity. These results suggest that through a process of selection appropriate methods of preparation and bioglass composition it is possible to design and obtain porous materials with suitable properties for regeneration of bone tissue. PMID:25533304

  14. Bioactive glass coatings for orthopedic metallic implants

    SciTech Connect

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  15. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments.

    PubMed

    Shah, Furqan A

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F(-)) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F(-) ions may be incorporated into the glass in the form of calcium fluoride (CaF2) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F(-) incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential. PMID:26478431

  16. Bioactive scaffold for bone tissue engineering: An in vivo study

    NASA Astrophysics Data System (ADS)

    Livingston, Treena Lynne

    Massive bone loss of the proximal femur is a common problem in revision cases of total hip implants. Allograft is typically used to reconstruct the site for insertion of the new prosthesis. However, for long term fixation and function, it is desirable that the allograft becomes fully replaced by bone tissue and aids in the regeneration of bone to that site. However, allograft use is typically associated with delayed incorporation and poor remodeling. Due to these profound limitations, alternative approaches are needed. Tissue engineering is an attractive approach to designing improved graft materials. By combining osteogenic activity with a resorbable scaffold, bone formation can be stimulated while providing structure and stability to the limb during incorporation and remodeling of the scaffold. Porous, surface modified bioactive ceramic scaffolds (pSMC) have been developed which stimulate the expression of the osteoblastic phenotype and production of bone-like tissue in vitro. The scaffold and two tissue-engineered constructs, osteoprogenitor cells seeded onto scaffolds or cells expanded in culture to form bone tissue on the scaffolds prior to implantation, were investigated in a long bone defect model. The rate of incorporation was assessed. Both tissue-engineered constructs stimulated bone formation and comparable repair at 2 weeks. In a rat femoral window defect model, bone formation increased over time for all groups in concert with scaffold resorption, leading to a 40% increase in bone and 40% reduction of the scaffold in the defect by 12 weeks. Both tissue-engineered constructs enhanced the rate of mechanical repair of long bones due to better bony union with the host cortex. Long bones treated with tissue engineered constructs demonstrated a return in normal torsional properties by 4 weeks as compared to 12 weeks for long bones treated with pSMC. Culture expansion of cells to produce bone tissue in vitro did not accelerate incorporation over the treatment

  17. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model.

    PubMed

    Bi, Lianxiang; Rahaman, Mohamed N; Day, Delbert E; Brown, Zackary; Samujh, Christopher; Liu, Xin; Mohammadkhah, Ali; Dusevich, Vladimir; Eick, J David; Bonewald, Lynda F

    2013-08-01

    Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250-300μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair. PMID:23643606

  18. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation.

    PubMed

    Kaur, Gurbinder; Pandey, Om P; Singh, Kulvir; Homa, Dan; Scott, Brian; Pickrell, Gary

    2014-01-01

    Bioactive glass and glass-ceramics are used in bone repair applications and are being developed for tissue engineering applications. Bioactive glasses/Bioglass are very attractive materials for producing scaffolds devoted to bone regeneration due to their versatile properties, which can be properly designed depending on their composition. An important feature of bioactive glasses, which enables them to work for applications in bone tissue engineering, is their ability to enhance revascularization, osteoblast adhesion, enzyme activity and differentiation of mesenchymal stem cells as well as osteoprogenitor cells. An extensive amount of research work has been carried out to develop silicate, borate/borosilicate bioactive glasses and phosphate glasses. Along with this, some metallic glasses have also been investigated for biomedical and technological applications in tissue engineering. Many trace elements have also been incorporated in the glass network to obtain the desired properties, which have beneficial effects on bone remodeling and/or associated angiogenesis. The motivation of this review is to provide an overview of the general requirements, composition, structure-property relationship with hydroxyapatite formation and future perspectives of bioglasses.Attention has also been given to developments of metallic glasses and doped bioglasses along with the techniques used for their fabrication. PMID:23468256

  19. Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation.

    PubMed

    Groh, Daniel; Döhler, Franziska; Brauer, Delia S

    2014-10-01

    Bioactive glasses, particularly Bioglass® 45S5, have been used to clinically regenerate human bone since the mid-1980s; however, they show a strong tendency to undergo crystallization upon heat treatment, which limits their range of applications. Attempts at improving their processing (by reducing their tendency to crystallize) have included increasing their silica content (and thus their network connectivity), incorporating intermediate oxides or reducing their phosphate content, all of which reduce glass bioactivity. Therefore, bioactive glasses known for their good processing (e.g. 13-93) are considerably less bioactive. Here, we investigated if the processing of 45S5 bioactive glass can be improved while maintaining its network connectivity and phosphate content. The results show that, by increasing the calcium:alkali cation ratio, partially substituting potassium for sodium (thereby making use of the mixed alkali effect) and adding small amounts of fluoride, bioactive glasses can be obtained which have a larger processing window (suggesting that they can be processed more easily, allowing for sintering of scaffolds or drawing into fibres) while degrading readily and forming apatite in aqueous solution within a few hours. PMID:24880003

  20. Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application

    PubMed Central

    Wu, Chengtie; Chang, Jiang

    2012-01-01

    The impact of bone diseases and trauma in the whole world has increased significantly in the past decades. Bioactive glasses are regarded as an important bone regeneration material owing to their generally excellent osteoconductivity and osteostimulativity. A new class of bioactive glass, referred to as mesoporous bioglass (MBG), was developed 7 years ago, which possess a highly ordered mesoporous channel structure and a highly specific surface area. The study of MBG for drug/growth factor delivery and bone tissue engineering has grown significantly in the past several years. In this article, we review the recent advances of MBG materials, including the preparation of different forms of MBG, composition–structure relationship, efficient drug/growth factor delivery and bone tissue engineering application. By summarizing our recent research, the interaction of MBG scaffolds with bone-forming cells, the effect of drug/growth factor delivery on proliferation and differentiation of tissue cells and the in vivo osteogenesis of MBG scaffolds are highlighted. The advantages and limitations of MBG for drug delivery and bone tissue engineering have been compared with microsize bioactive glasses and nanosize bioactive glasses. The future perspective of MBG is discussed for bone regeneration application by combining drug delivery with bone tissue engineering and investigating the in vivo osteogenesis mechanism in large animal models. PMID:23741607

  1. Nanoporosity Significantly Enhances the Biological Performance of Engineered Glass Tissue Scaffolds

    PubMed Central

    Wang, Shaojie; Kowal, Tia J.; Marei, Mona K.

    2013-01-01

    Nanoporosity is known to impact the performance of implants and scaffolds such as bioactive glass (BG) scaffolds, either by providing a higher concentration of bioactive chemical species from enhanced surface area, or due to inherent nanoscale topology, or both. To delineate the role of these two characteristics, BG scaffolds have been fabricated with nearly identical surface area (81 and 83±2 m2/g) but significantly different pore size (av. 3.7 and 17.7 nm) by varying both the sintering temperature and the ammonia concentration during the solvent exchange phase of the sol-gel fabrication process. In vitro tests performed with MC3T3-E1 preosteoblast cells on such scaffolds show that initial cell attachment is increased on samples with the smaller nanopore size, providing the first direct evidence of the influence of nanopore topography on cell response to a bioactive structure. Furthermore, in vivo animal tests in New Zealand rabbits (subcutaneous implantation) indicate that nanopores promote colonization and cell penetration into these scaffolds, further demonstrating the favorable effects of nanopores in tissue-engineering-relevant BG scaffolds. PMID:23427819

  2. Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation.

    PubMed

    Goel, Ashutosh; Kapoor, Saurabh; Rajagopal, Raghu Raman; Pascual, Maria J; Kim, Hae-Won; Ferreira, José M F

    2012-01-01

    An alkali-free series of bioactive glasses has been designed and developed in the glass system CaO-MgO-SiO(2)-P(2)O(5)-CaF(2) along the diopside (CaMgSi(2)O(6))-fluorapatite (Ca(5)(PO(4))(3)F)-tricalcium phosphate (3CaO·P(2)O(5)) join. The silicate network in all the investigated glasses is predominantly coordinated in Q(2) (Si) units, while phosphorus tends to remain in an orthophosphate (Q(0)) environment. The in vitro bioactivity analysis of glasses has been made by immersion of glass powders in simulated body fluid (SBF) while chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Some of the investigated glasses exhibit hydroxyapatite formation on their surface within 1-12 h of their immersion in SBF solution. The sintering and crystallization kinetics of glasses has been investigated by differential thermal analysis and hot-stage microscopy, respectively while the crystalline phase evolution in resultant glass-ceramics has been studied in the temperature range of 800-900°C using powder X-ray diffraction and scanning electron microscopy. The alkaline phosphatase activity and osteogenic differentiation for glasses have been studied in vitro on sintered glass powder compacts using rat bone marrow mesenchymal stem cells. The as-designed glasses are ideal candidates for their potential applications in bone tissue engineering in the form of bioactive glasses as well as glass/glass-ceramic scaffolds. PMID:21925626

  3. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers

    PubMed Central

    Zhang, YZ; Su, B; Venugopal, J; Ramakrishna, S; Lim, CT

    2007-01-01

    Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM’s major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure. PMID:18203429

  4. Bioactive glasses: Importance of structure and properties in bone regeneration

    NASA Astrophysics Data System (ADS)

    Hench, Larry L.; Roki, Niksa; Fenn, Michael B.

    2014-09-01

    This review provides a brief background on the applications, mechanisms and genetics involved with use of bioactive glass to stimulate regeneration of bone. The emphasis is on the role of structural changes of the bioactive glasses, in particular Bioglass, which result in controlled release of osteostimulative ions. The review also summarizes the use of Raman spectroscopy, referred to hereto forward as bio-Raman spectroscopy, to obtain rapid, real time in vitro analysis of human cells in contact with bioactive glasses, and the osteostimulative dissolution ions that lead to osteogenesis. The bio-Raman studies support the results obtained from in vivo studies of bioactive glasses, as well as extensive cell and molecular biology studies, and thus offers an innovative means for rapid screening of new bioactive materials while reducing the need for animal testing.

  5. Alkali-free bioactive glasses for bone tissue engineering: A preliminary investigation

    SciTech Connect

    Goel, Ashutosh; Kapoor, Saurabh; Rajagopal, Raghu R.; Pascual, Maria J.; Kim, Hae-Won; Ferreira, Jose M.

    2011-08-25

    An alkali-free series of bioactive glasses has been designed and developed in the glass system CaO-MgO-SiO2-P2O5-CaF2 along diopside (CaMgSi2O6) – fluorapatite [Ca5(PO4)3F] – tricalcium phosphate (3CaO•P2O5) join. The silicate network in all the investigated glasses is predominantly coordinated in Q2 (Si) units while phosphorus tends to remain in orthophosphate (Q0) environment. The in vitro bioactivity analysis of glasses has been made by immersion of glass powders in simulated body fluid (SBF) while chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Some of the investigated glasses exhibit hydroxyapatite (HA) formation on their surface with in 1-12 h of their immersion in SBF solution. The sintering and crystallization kinetics of glasses has been investigated by differential thermal analysis (DTA) and hot-stage microscopy (HSM), respectively while the crystalline phase evolution in resultant glass-ceramics (GCs) has been studied in the temperature range of 800-900 oC using powder X-ray diffraction (XRD) and scanning electron microscope (SEM). The cell growth and osteogenic differentiation for glasses has been studied in vitro on sintered glass powder compacts using rat bone marrow mesenchymal stem cells. The as designed glasses are ideal candidates for their potential applications in bone tissue engineering in the form of bioactive glasses as well as glass/GC scaffolds.

  6. Bioactive and Thermally Compatible Glass Coating on Zirconia Dental Implants

    PubMed Central

    Kirsten, A.; Hausmann, A.; Weber, M.; Fischer, J.

    2015-01-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58·10–6 K–1) than that of the zirconia (11.67·10–6 K–1). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. PMID:25421839

  7. Bioactive and thermally compatible glass coating on zirconia dental implants.

    PubMed

    Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H

    2015-02-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58 · 10(-6) K(-1)) than that of the zirconia (11.67 · 10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. PMID:25421839

  8. Efficient discovery of bioactive scaffolds by activity-directed synthesis

    NASA Astrophysics Data System (ADS)

    Karageorgis, George; Warriner, Stuart; Nelson, Adam

    2014-10-01

    The structures and biological activities of natural products have often provided inspiration in drug discovery. The functional benefits of natural products to the host organism steers the evolution of their biosynthetic pathways. Here, we describe a discovery approach—which we term activity-directed synthesis—in which reactions with alternative outcomes are steered towards functional products. Arrays of catalysed reactions of α-diazo amides, whose outcome was critically dependent on the specific conditions used, were performed. The products were assayed at increasingly low concentration, with the results informing the design of a subsequent reaction array. Finally, promising reactions were scaled up and, after purification, submicromolar ligands based on two scaffolds with no previous annotated activity against the androgen receptor were discovered. The approach enables the discovery, in tandem, of both bioactive small molecules and associated synthetic routes, analogous to the evolution of biosynthetic pathways to yield natural products.

  9. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites.

    PubMed

    Aguilar-Pérez, Fernando J; Vargas-Coronado, Rossana F; Cervantes-Uc, Jose M; Cauich-Rodríguez, Juan V; Covarrubias, Cristian; Pedram-Yazdani, Merhdad

    2016-04-01

    Composites of glutamine-based segmented polyurethanes with 5 to 25 wt.% bioactive glass nanoparticles were prepared, characterized, and their mineralization potential was evaluated in simulated body fluid. Biocompatibility with dental pulp stem cells was assessed by MTS to an extended range of compositions (1 to 25 wt.% of bioactive glass nanoparticles). Physicochemical characterization showed that composites retained many of the matrix properties, i.e. those corresponding to semicrystalline elastomeric polymers as they exhibited a glass transition temperature (Tg) between -41 and -36℃ and a melting temperature (Tm) between 46 and 49℃ in agreement with X-ray reflections at 23.6° and 21.3°. However, with bioactive glass nanoparticles addition, tensile strength and strain were reduced from 22.2 to 12.2 MPa and 667.2 to 457.8%, respectively with 25 wt.% of bioactive glass nanoparticles. Although Fourier transform infrared spectroscopy did not show evidence of mineralization after conditioning of these composites in simulated body fluid, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray microanalysis showed the formation of an apatite layer on the surface which increased with higher bioactive glass concentrations and longer conditioning time. Dental pulp stem cells proliferation at day 5 was improved in bioactive glass nanoparticles composites containing lower amounts of the filler (1-2.5 wt.%) but it was compromised at day 9 in composites containing high contents of nBG (5, 15, 25 wt.%). However, Runx2 gene expression was particularly upregulated for the dental pulp stem cells cultured with composites loaded with 15 and 25 wt.% of bioactive glass nanoparticles. In conclusion, low content bioactive glass nanoparticles and segmented polyurethanes composites deserve further investigation for applications such as guided bone regeneration membranes, where osteoconductivity is desirable but not a demanding mechanical performance. PMID

  10. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    PubMed

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. PMID:27612694

  11. Effect of a new bioactive fibrous glassy scaffold on bone repair.

    PubMed

    Gabbai-Armelin, P R; Souza, M T; Kido, H W; Tim, C R; Bossini, P S; Magri, A M P; Fernandes, K R; Pastor, F A C; Zanotto, E D; Parizotto, N A; Peitl, O; Renno, A C M

    2015-05-01

    Researchers have investigated several therapeutic approaches to treat non-union fractures. Among these, bioactive glasses and glass ceramics have been widely used as grafts. This class of biomaterial has the ability to integrate with living bone. Nevertheless, bioglass and bioactive materials have been used mainly as powder and blocks, compromising the filling of irregular bone defects. Considering this matter, our research group has developed a new bioactive glass composition that can originate malleable fibers, which can offer a more suitable material to be used as bone graft substitutes. Thus, the aim of this study was to assess the morphological structure (via scanning electron microscope) of these fibers upon incubation in phosphate buffered saline (PBS) after 1, 7 and 14 days and, also, evaluate the in vivo tissue response to the new biomaterial using implantation in rat tibial defects. The histopathological, immunohistochemistry and biomechanical analyzes after 15, 30 and 60 days of implantation were performed to investigate the effects of the material on bone repair. The PBS incubation indicated that the fibers of the glassy scaffold degraded over time. The histological analysis revealed a progressive degradation of the material with increasing implantation time and also its substitution by granulation tissue and woven bone. Histomorphometry showed a higher amount of newly formed bone area in the control group (CG) compared to the biomaterial group (BG) 15 days post-surgery. After 30 and 60 days, CG and BG showed a similar amount of newly formed bone. The novel biomaterial enhanced the expression of RUNX-2 and RANK-L, and also improved the mechanical properties of the tibial callus at day 15 after surgery. These results indicated a promising use of the new biomaterial for bone engineering. However, further long-term studies should be carried out to provide additional information concerning the material degradation in the later stages and the bone

  12. Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film

    NASA Astrophysics Data System (ADS)

    Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  13. Bioactive glass sol-gel foam scaffolds: Evolution of nanoporosity during processing and in situ monitoring of apatite layer formation using small- and wide-angle X-ray scattering.

    PubMed

    FitzGerald, V; Martin, R A; Jones, J R; Qiu, D; Wetherall, K M; Moss, R M; Newport, R J

    2009-10-01

    Recent work has highlighted the potential of sol-gel-derived calcium silicate glasses for the regeneration or replacement of damaged bone tissue. The work presented herein provides new insight into the processing of bioactive calcia-silica sol-gel foams, and the reaction mechanisms associated with them when immersed in vitro in a simulated body fluid (SBF). Small-angle X-ray scattering and wide-angle X-ray scattering (diffraction) have been used to study the stabilization of these foams via heat treatment, with analogous in situ time-resolved data being gathered for a foam immersed in SBF. During thermal processing, pore sizes have been identified in the range of 16.5-62.0 nm and are only present once foams have been heated to 400 degrees C and above. Calcium nitrate crystallites were present until foams were heated to 600 degrees C; the crystallite size varied from 75 to 145 nm and increased in size with heat treatment up to 300 degrees C, then decreased in size down to 95 nm at 400 degrees C. The in situ time-resolved data show that the average pore diameter decreases as a function of immersion time in SBF, as calcium phosphates grow on the glass surfaces. Over the same time, Bragg peaks indicative of tricalcium phosphate were evident after only 1-h immersion time, and later, hydroxycarbonate apatite was also seen. The hydroxycarbonate apatite appears to have preferred orientation in the (h,k,0) direction. PMID:18767060

  14. Interactions of bioactive glass materials in the oral environment

    NASA Astrophysics Data System (ADS)

    Efflandt, Sarah Elizabeth

    The aim of this research was to investigate bioactive glass materials for their use in dental restorations. Mechanical properties such as strength, toughness and wear resistance were considered initially, but the focus of this thesis was the biological properties such as reactions with saliva and interactions with natural dental tissues. Bioactive composite materials were created by incorporating bioactive glass and alumina powders into an aqueous suspension, slip casting, and infiltrating with resin. Microstructure, mechanical properties and wear resistance were evaluated. Mechanically, the composites are comparable to natural dental tissues and current dental materials with a strength of 206 +/- 18.7 MPa and a toughness of 1.74 +/- 0.08 MPa(m)1/2. Interfacial reactions were examined using bulk bioactive glasses. Disks were prepared from a melt, placed in saliva and incubated at 37°C. Surfaces were analyzed at 2, 5, 10, 21, and 42 days using scanning electron microscopy (SEM) and microdiffraction. Results showed changes at 2 days with apatite crystallization by 10 days. These glass disks were then secured against extracted human dentin and incubated in saliva for 21 or 42 days. Results from SEM, electron microprobe analysis (EMPA) and microdiffraction showed that dentin and bioactive glasses adhered in this in vitro environment due to attraction of collagen to bioactive glasses and growth of an interfacial apatite. After investigating these bulk glass responses, particulate bioactive glasses were placed in in vitro and in vivo set-ups for evaluation. Particles immersed in biologically buffered saliva showed crystallization of apatite at 3 days. These bioactive glass particles were placed in the molars of mini-pigs and left in vivo. After 30 days the bioactive paste was evaluated using SEM, EMPA and microdiffraction analyses. Results showed that the paste gained structural integrity and had chemical changes in vivo. These sets of experiments show that bioactive

  15. Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties.

    PubMed

    Vitale-Brovarone, Chiara; Baino, Francesco; Bretcanu, Oana; Verne, Enrica

    2009-11-01

    Glass-ceramic scaffolds mimicking the structure of cancellous bone were produced via sponge replication technique by using a polyurethane foam as template and glass powder below 30 lm as inorganic phase. Specifically, a SiO₂-based glass of complex composition and its corresponding P₂O₅-based "specular" glass were used as materials for scaffolding. The polymeric sponge was thermally removed and the glass powders were sintered to obtain a replica of the template structure. The scaffolds were investigated and compared from a structural, morphological and mechanical viewpoint by assessing their crystalline phases, volumetric shrinkage, pores content and interconnection, mechanical strength. In addition, the scaffolds were soaked in acellular simulated body fluid to investigate their in vitro behaviour. The produced scaffolds have a great potential for bone reconstructive surgery because their features, such as shape, strength, bioactivity and bioresorption, can be easily tailored according to the end use. PMID:19475339

  16. Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements.

    PubMed

    Vitale-Brovarone, Chiara; Baino, Francesco; Tallia, Francesca; Gervasio, Cristina; Verné, Enrica

    2012-10-01

    In this work, the use of foam-like glass-ceramic scaffolds as trabecular coatings on ceramic prosthetic devices to enhance implant osteointegration is proposed. The feasibility of this innovative device was explored in a simplified, flat geometry: glass-ceramic scaffolds, prepared by polymeric sponge replication and mimicking the trabecular architecture of cancellous bone, were joined to alumina square substrates by a dense glass coating (interlayer). The role played by different formulations of starting glasses was examined, with particular care to the effect on the mechanical properties and bioactivity of the final coating. Microindentations at the coating/substrate interface and tensile tests were performed to evaluate the bonding strength between the sample's components. In vitro bioactive behaviour was assessed by soaking in simulated body fluid and evaluating the apatite formation on the surface and inside the pores of the trabecular coating. The concepts disclosed in the present study can have a significant impact in the field of implantable devices, suggesting a valuable alternative to traditional, often invasive bone-prosthesis fixation. PMID:22532097

  17. Surface characterization of silver-doped bioactive glass.

    PubMed

    Vernè, E; Di Nunzio, S; Bosetti, M; Appendino, P; Brovarone, C Vitale; Maina, G; Cannas, M

    2005-09-01

    A bioactive glass belonging to the system SiO(2)-CaO-Na(2)O was doped with silver ions by ion exchange in molten salts as well as in aqueous solution. The ion exchange in the solution was done to check if it is possible to prepare an antimicrobial material using a low silver content. The doped glass was characterized by means of X-ray diffraction, SEM observation, EDS analysis, bioactivity test (soaking in a simulated body fluid), leaching test (GFAAS analyses) and cytotoxicity test. It is demonstrated that these surface silver-doped glasses maintain, or even improve, the bioactivity of the starting glass. The measured quantity of released silver into simulated body fluid compares those reported in literature for the antibacterial activity and the non-cytotoxic effect of silver. Cytotoxicity tests were carried out to understand the effect of the doped surfaces on osteogenic cell adhesion and proliferation. PMID:15792537

  18. Biological Impact of Bioactive Glasses and Their Dissolution Products.

    PubMed

    Hoppe, Alexander; Boccaccini, Aldo R

    2015-01-01

    For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. PMID:26201273

  19. Direct Ink Writing of Highly Porous and Strong Glass Scaffolds for Load-bearing Bone Defects Repair and Regeneration

    PubMed Central

    Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.

    2011-01-01

    The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires development of porous and high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work, bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inkswere optimized for the printing of features as fine as 30 μm and of the three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds show a compressive strength (136 ± 22 MPa) comparable to that of human cortical bone (100-150 MPa), while the porosity (60%) is in the range of that of trabecular bone (50-90%).The strength is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in an SBF, the value (77 MPa) is still far above that of trabecular bone after three weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. PMID:21745606

  20. Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses.

    PubMed

    Bachar, Ahmed; Mercier, Cyrille; Tricoteaux, Arnaud; Hampshire, Stuart; Leriche, Anne; Follet, Claudine

    2013-07-01

    Bioactive glasses are able to bond to bone through formation of carbonated hydroxyapatite in body fluids, and fluoride-releasing bioactive glasses are of interest for both orthopaedic and, in particular, dental applications for caries inhibition. However, because of their poor strength their use is restricted to non-load-bearing applications. In order to increase their mechanical properties, doping with nitrogen has been performed on two series of bioactive glasses: series (I) was a "bioglass" composition (without P2O5) within the quaternary system SiO2-Na2O-CaO-Si3N4 and series (II) was a simple substitution of CaF2 for CaO in series (I) glasses keeping the Na:Ca ratio constant. The objective of this work was to evaluate the effect of the variation in nitrogen and fluorine content on the properties of these glasses. The density, glass transition temperature, hardness and elastic modulus all increased linearly with nitrogen content which indicates that the incorporation of nitrogen stiffens the glass network because N is mainly in 3-fold coordination with Si atoms. Fluorine addition significantly decreases the thermal property values but the mechanical properties of these glasses remain unchanged with fluorine. The combination of both nitrogen and fluorine in oxyfluoronitride glasses gives better mechanical properties at much lower melting temperatures since fluorine reduces the melting point, allows higher solubility of nitrogen and does not affect the higher mechanical properties arising from incorporation of nitrogen. The characterization of these N and F substituted bioactive glasses using (29)Si MAS NMR has shown that the increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q(4) units with extra bridging anions at the expense of Q(3) units. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion

  1. Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites

    PubMed Central

    Misra, Superb K.; Ansari, Tahera; Mohn, Dirk; Valappil, Sabeel P.; Brunner, Tobias J.; Stark, Wendelin J.; Roy, Ipsita; Knowles, Jonathan C.; Sibbons, Paul D.; Jones, Eugenia Valsami; Boccaccini, Aldo R.; Salih, Vehid

    2010-01-01

    This work investigated the effect of adding nanoparticulate (29 nm) bioactive glass particles on the bioactivity, degradation and in vitro cytocompatibility of poly(3-hydroxybutyrate) (P(3HB)) composites/nano-sized bioactive glass (n-BG). Two different concentrations (10 and 20 wt %) of nanoscale bioactive glass particles of 45S5 Bioglass composition were used to prepare composite films. Several techniques (Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray) were used to monitor their surface and bioreactivity over a 45-day period of immersion in simulated body fluid (SBF). All results suggested the P(3HB)/n-BG composites to be highly bioactive, confirmed by the formation of hydroxyapatite on material surfaces upon immersion in SBF. The weight loss and water uptake were found to increase on increasing bioactive glass content. Cytocompatibility study (cell proliferation, cell attachment, alkaline phosphatase activity and osteocalcin production) using human MG-63 osteoblast-like cells in osteogenic and non-osteogenic medium showed that the composite substrates are suitable for cell attachment, proliferation and differentiation. PMID:19640877

  2. History and trends of bioactive glass-ceramics.

    PubMed

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development. PMID:26707951

  3. Synthesis of magnetic, macro/mesoporous bioactive glasses based on coral skeleton for bone tissue engineering.

    PubMed

    Bian, Chunhui; Lin, Huiming; Zhang, Feng; Ma, Jie; Li, Fengxiao; Wu, Xiaodan; Qu, Fengyu

    2014-12-01

    The magnetic and macro/mesoporous bioactive glasses scaffolds are synthesised successfully by the combination of coral and P123 as co-templates through an evaporation-induced self-assembly process. The prepared material can induce the precipitation of hydroxyapatite layers on their surface in SBF only within 12 h. At the same time, the material exhibited excellent super-paramagnetic and mechanical property. Furthermore, the biocompatible assessment confirmed that the obtained material presented the good biocompatibility and the enhanced adherence of HeLa cells. Herein, the novel materials are expected to have potential application for bone tissue engineering. PMID:25429508

  4. Corrosion protection of mesoporous bioactive glass coating on biodegradable magnesium

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojian; Wen, Cuie

    2014-06-01

    A mesoporous bioactive glass (MBG) coating was synthesized and coated on pure Mg substrate using a sol-gel dip-coating method. The MBG coating uniformly covered the Mg substrate with a thickness of ˜1.5 μm. Electrochemical and immersion tests were performed in order to investigate the biodegradation performance of Mg with and without different surface coatings in simulated body fluids (SBF) at 37 °C. Results revealed that the MBG coated Mg displayed a significantly lower biodegradation rate, in comparison with normal bioactive glass (BG) coated and uncoated Mg samples.

  5. Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites

    SciTech Connect

    Chatzistavrou, Xanthippi; Kantiranis, Nikolaos; Kontonasaki, Eleana; Chrissafis, Konstantinos; Papadopoulou, Labrini; Koidis, Petros; Boccaccini, Aldo R.; Paraskevopoulos, Konstantinos M.

    2011-01-15

    Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independent of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.

  6. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity.

    PubMed

    Sola, A; Bellucci, D; Raucci, M G; Zeppetelli, S; Ambrosio, L; Cannillo, V

    2012-02-01

    Because of their excellent bioactivity, bioactive glasses are increasingly diffused to produce biomedical devices for bone prostheses, to face the dysfunctions that may be caused by traumatic events, diseases, or even natural aging. However, several processing routes, such as the production of scaffolds or the deposition of coatings, include a thermal treatment to apply or sinter the glass. The exposure to high temperature may induce a devetrification phenomenon, altering the properties and, in particular, the bioactivity of the glass. The present contribution offers an overview of the thermal behavior and properties of two glasses belonging to the Na2O-CaO-P2O5-SiO2 system, to be compared to the standard 45S5 Bioglass(®). The basic goal is to understand the effect of both the original composition and the thermal treatment on the performance of the sintered glasses. The new glasses, the one (BG_Na) with a high content of Na2O, the other (BG_Ca) with a high content of CaO, were fully characterized and sintering tests were performed to define the most interesting firing cycles. The sintered samples, treated at 880°C and 800°C respectively, were investigated from a microstructural point of view and their mechanical properties were compared to those of the bulk (not sintered) glass counterparts. The effect of sintering was especially striking on the BG_Ca material, whose Vickers hardness increased from 598.9 ± 46.7 HV to 1053.4 ± 35.0 HV. The in vitro tests confirmed the ability of the glasses, both in bulk and sintered form, of generating a hydroxyapatite surface layer when immersed in a simulated body fluid. More accurate biological tests performed on the sintered glasses proved the high bioactivity of the CaO-rich composition even after a heat treatment. PMID:22052581

  7. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer

    PubMed Central

    Khoroushi, Maryam; Keshani, Fateme

    2013-01-01

    Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the “smart” materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI) cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA). Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications. PMID:24130573

  8. A Novel Strategy for Softening Gelatin-Bioactive-Glass Hybrids.

    PubMed

    Negahi Shirazi, Ali; Fathi, Ali; Suarez, Francia Garces; Wang, Yiwei; Maitz, Peter K; Dehghani, Fariba

    2016-01-27

    The brittle structure of polymer-bioactive-glass hybrids is a hurdle for their biomedical applications. To address this issue here, we developed a novel method to cease the overcondensation of bioactive-glass by polymer cross-linking. Here, an organosilane-functionalized gelatin methacrylate (GelMA) is covalently bonded to a bioactive-glass during the sol-gel process, and the condensation of silica networks is controlled by photo-cross-linking of GelMA. The physicochemical properties and mechanical strength of these hybrids are tunable by the incorporation of secondary cross-linking agents. These hydrogels display elastic properties with ultimate compression strain above 0.2 mm·mm(-1) and tunable compressive modulus in the range of 42-530 kPa. In addition, these hydrogels are bioactive because they promoted the alkaline phosphatase activity of bone progenitor cells. They are also well-tolerated in the mice subcutaneous model. Therefore, our method is efficient for the prevention of overcondensation and allows preparation of soft bioactive hydrogels from organic-inorganic matrices, suitable for soft and hard tissue regeneration. PMID:26727696

  9. Investigation of the bioactivity and biocompatibility of different glass interfaces with hydroxyapatite, fluorohydroxyapatite and 58S bioactive glass.

    PubMed

    Han, Yuling Jamie; Loo, Say Chye Joachim; Lee, Joel; Ma, Jan

    2007-01-01

    The current review investigates the bioactivity of different glass interfaces created on thin glass cover slips as substrates. The interfaces studied are plain glass, functionalized glass using 0.5 M and 5 M of sodium hydroxide (NaOH) for 24 hrs, and glass coated with bioactive 58S Bioglass (58S). A biomimetic method, involving the exposure of the three interfaces to 1.5 times simulated body fluid (SBF) tests the bioactivity of the interfaces via creation of layer of Hydroxyapatite (HA). Fluorinated SBF will precipitate fluorine doped HA (FHA) on a bioactive interface. Higher concentration of 1.5 times of SBF used in this study intended to accelerate the formation of HA and FHA layer over the substrate. HA and FHA is found to be precipitated on the thinly coated 58S. This paper, study also the thin film coatings of three forms of bioceramics - bioactive 58S, HA and FHA. The study, also proposes to draw a relation between the morphology of HA particles with duration of exposure to SBF, the effects of fluorine on the morphology and the cell interaction with bioactive 58S, HA and FHA interfaces using pre-differentiated osteoblastic MC3T3 cells. The analysis of cells in this study is confined to three parameters that include the attachment, proliferation and viability of cells. Tests employed for the analysis of the thin film coating of HA and FHA is restricted to qualitative X-Ray Diffraction and quantitative Field Emission Scanning Electron Microscope. Other mechanical tests such as shear test are not used to test the mechanical properties of this thin layer, due to the fact that the thin film is too thin for such analysis. PMID:18607070

  10. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation.

    PubMed

    Killion, John A; Kehoe, Sharon; Geever, Luke M; Devine, Declan M; Sheehan, Eoin; Boyd, Daniel; Higginbotham, Clement L

    2013-10-01

    Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hydrogel based composite scaffolds using photopolymerisation has been demonstrated in this study. The prepared hydrogel based composites were characterised using techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrometry (EDX), rheological studies and compression testing. In addition, gel fraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), porosity and swelling studies of the composites were carried out. It was found that these novel hydrogel bioglass composite formulations did not display the inherent brittleness that is typically associated with bioactive glass based bone graft materials and exhibited enhanced biomechanical properties compared to the polyethylene glycol hydrogel scaffolds along. Together, the combination of enhanced mechanical properties and the deposition of apatite on the surface of these hydrogel based composites make them an ideal candidate as bone graft substitutes in cancellous bone defects or low load bearing applications. PMID:23910334

  11. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide

    PubMed Central

    Kanayama, Izumi; Miyaji, Hirofumi; Takita, Hiroko; Nishida, Erika; Tsuji, Maiko; Fugetsu, Bunshi; Sun, Ling; Inoue, Kana; Ibara, Asako; Akasaka, Tsukasa; Sugaya, Tsutomu; Kawanami, Masamitsu

    2014-01-01

    Background Graphene oxide (GO) is a single layer carbon sheet with a thickness of less than 1 nm. GO has good dispersibility due to surface modifications with numerous functional groups. Reduced graphene oxide (RGO) is produced via the reduction of GO, and has lower dispersibility. We examined the bioactivity of GO and RGO films, and collagen scaffolds coated with GO and RGO. Methods GO and RGO films were fabricated on a culture dish. Some GO films were chemically reduced using either ascorbic acid or sodium hydrosulfite solution, resulting in preparation of RGO films. The biological properties of each film were evaluated by scanning electron microscopy (SEM), atomic force microscopy, calcium adsorption tests, and MC3T3-E1 cell seeding. Subsequently, GO- and RGO-coated collagen scaffolds were prepared and characterized by SEM and compression tests. Each scaffold was implanted into subcutaneous tissue on the backs of rats. Measurements of DNA content and cell ingrowth areas of implanted scaffolds were performed 10 days post-surgery. Results The results show that GO and RGO possess different biological properties. Calcium adsorption and alkaline phosphatase activity were strongly enhanced by RGO, suggesting that RGO is effective for osteogenic differentiation. SEM showed that RGO-modified collagen scaffolds have rough, irregular surfaces. The compressive strengths of GO- and RGO-coated scaffolds were approximately 1.7-fold and 2.7-fold greater, respectively, when compared with the non-coated scaffold. Tissue ingrowth rate was 39% in RGO-coated scaffolds, as compared to 20% in the GO-coated scaffold and 16% in the non-coated scaffold. Conclusion In summary, these results suggest that GO and RGO coatings provide different biological properties to collagen scaffolds, and that RGO-coated scaffolds are more bioactive than GO-coated scaffolds. PMID:25050063

  12. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells.

    PubMed

    Gao, Guifang; Schilling, Arndt F; Yonezawa, Tomo; Wang, Jiang; Dai, Guohao; Cui, Xiaofeng

    2014-10-01

    Bioprinting based on thermal inkjet printing is a promising but unexplored approach in bone tissue engineering. Appropriate cell types and suitable biomaterial scaffolds are two critical factors to generate successful bioprinted tissue. This study was undertaken in order to evaluate bioactive ceramic nanoparticles in stimulating osteogenesis of printed bone marrow-derived human mesenchymal stem cells (hMSCs) in poly(ethylene glycol)dimethacrylate (PEGDMA) scaffold. hMSCs suspended in PEGDMA were co-printed with nanoparticles of bioactive glass (BG) and hydroxyapatite (HA) under simultaneous polymerization so the printed substrates were delivered with highly accurate placement in three-dimensional (3D) locations. hMSCs interacted with HA showed the highest cell viability (86.62 ± 6.02%) and increased compressive modulus (358.91 ± 48.05 kPa) after 21 days in culture among all groups. Biochemical analysis showed the most collagen production and highest alkaline phosphatase activity in PEG-HA group, which is consistent with gene expression determined by quantitative PCR. Masson's trichrome staining also showed the most collagen deposition in PEG-HA scaffold. Therefore, HA is more effective comparing to BG for hMSCs osteogenesis in bioprinted bone constructs. Combining with our previous experience in vasculature, cartilage, and muscle bioprinting, this technology demonstrates the capacity for both soft and hard tissue engineering with biomimetic structures. PMID:25130390

  13. Fabrication of Mechanically Tunable and Bioactive Metal Scaffolds for Biomedical Applications.

    PubMed

    Jung, Hyun-Do; Lee, Hyun; Kim, Hyoun-Ee; Koh, Young-Hag; Song, Juha

    2015-01-01

    Biometal systems have been widely used for biomedical applications, in particular, as load-bearing materials. However, major challenges are high stiffness and low bioactivity of metals. In this study, we have developed a new method towards fabricating a new type of bioactive and mechanically reliable porous metal scaffolds-densified porous Ti scaffolds. The method consists of two fabrication processes, 1) the fabrication of porous Ti scaffolds by dynamic freeze casting, and 2) coating and densification of the porous scaffolds. The dynamic freeze casting method to fabricate porous Ti scaffolds allowed the densification of porous scaffolds by minimizing the chemical contamination and structural defects. The densification process is distinctive for three reasons. First, the densification process is simple, because it requires a control of only one parameter (degree of densification). Second, it is effective, as it achieves mechanical enhancement and sustainable release of biomolecules from porous scaffolds. Third, it has broad applications, as it is also applicable to the fabrication of functionally graded porous scaffolds by spatially varied strain during densification. PMID:26709604

  14. Structure, dynamics, and surface reactions of bioactive glasses

    NASA Astrophysics Data System (ADS)

    Zeitler, Todd R.

    Three bioactive glasses (45S5, 55S4.3, and 60S3.8) have been investigated using atomic-scale molecular dynamics simulations in attempt to explain differences in observed macroscopic bioactivity. Bulk and surface structures and bulk dynamics have been characterized. Ion exchange and hydrolysis reactions, the first two stages in Hench's model describing the reactions of bioactive glass surfaces in vivo, have been investigated in detail. The 45S5 composition shows a much greater network fragmentation: it is suggested that this fragmentation can play a role in at least the first two stages of Hench's model for HCA formation on the surfaces of bioactive glasses. In terms of dynamic behavior, long-range diffusion was only observed for sodium. Calcium showed only jumps between adjacent sites, while phosphorus showed only local vibrations. Surface simulations show the distinct accumulation of sodium at the immediate surface for each composition. Surface channels are also shown to exist and are most evident for 45S5 glass. Results for a single ion exchange showed that the ion-exchange reaction is preferred (more exothermic) for Na+ ions near Si, rather than P. A range of reaction energies were found, due to a range of local environments, as expected for a glass surface. The average reaction energies are not significantly different among the three glass compositions. The results for bond hydrolysis on as-created surfaces show no significant differences among the three compositions for simulations involving Si-O-Si or Si-O-P. All average values are greater than zero, indicating endothermic reactions that are not favorable by themselves. However, it is shown that the hydrolysis reactions became more favorable (in fact, exothermic for 45S5 and 55S4.3) when simulated on surfaces that had already been ion-exchanged. This is significant because it gives evidence supporting Hench's proposed reaction sequence. Perhaps even more significantly, the reaction energies for hydrolysis

  15. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.

    PubMed

    Huang, Xiao; Miao, Xigeng

    2007-04-01

    Porous hydroxyapatite (HA) scaffolds have been intensively studied and developed for bone tissue engineering, but their mechanical properties remain to be improved. The aim of this study is to prepare HA-based composite scaffolds that have a unique macroporous structure and special struts of a polymer/ceramic interpenetrating composite and a bioactive coating. A novel combination of a polyurethane (PU) foam method and a hydrogen peroxide (H(2)O( 2)) foaming method is used to fabricate the macroporous HA scaffolds. Micropores are present in the resulting porous HA ceramics after the unusual sintering of a common calcium phosphate cement and are infiltrated with the poly(D,L-lactic-co-glycolic acid) (PLGA) polymer. The internal surfaces of the macropores are further coated with a PLGA-bioactive glass composite coating. The porous composite scaffolds are characterized in terms of microstructure, mechanical properties, and bioactivity. It is found that the HA scaffolds fabricated by the combined method show high porosities of 61-65% and proper macropore sizes of 200-600 microm. The PLGA infiltration improved the compressive strengths of the scaffolds from 1.5-1.8 to 4.0-5.8 MPa. Furthermore, the bioactive glass-PLGA coating rendered a good bioactivity to the composites, evidenced by the formation of an apatite layer on the sample surfaces immersed in the simulated body fluid (SBF) for 5 days. The porous HA-based composites obtained from this study have suitable porous structures, proper mechanical properties, and a high bioactivity, and thus finds potential application as scaffolds for bone tissue engineering. PMID:16543281

  16. Fabrication of a Bioactive, PCL-based "Self-fitting" Shape Memory Polymer Scaffold.

    PubMed

    Nail, Lindsay N; Zhang, Dawei; Reinhard, Jessica L; Grunlan, Melissa A

    2015-01-01

    Tissue engineering has been explored as an alternative strategy for the treatment of critical-sized cranio-maxillofacial (CMF) bone defects. Essential to the success of this approach is a scaffold that is able to conformally fit within an irregular defect while also having the requisite biodegradability, pore interconnectivity and bioactivity. By nature of their shape recovery and fixity properties, shape memory polymer (SMP) scaffolds could achieve defect "self-fitting." In this way, following exposure to warm saline (~60 ºC), the SMP scaffold would become malleable, permitting it to be hand-pressed into an irregular defect. Subsequent cooling (~37 ºC) would return the scaffold to its relatively rigid state within the defect. To meet these requirements, this protocol describes the preparation of SMP scaffolds prepared via the photochemical cure of biodegradable polycaprolactone diacrylate (PCL-DA) using a solvent-casting particulate-leaching (SCPL) method. A fused salt template is utilized to achieve pore interconnectivity. To realize bioactivity, a polydopamine coating is applied to the surface of the scaffold pore walls. Characterization of self-fitting and shape memory behaviors, pore interconnectivity and in vitro bioactivity are also described. PMID:26556112

  17. Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration.

    PubMed

    Wang, Xiaojian; Li, Wei

    2016-06-01

    Bioactive inorganic materials are attractive for hard tissue regeneration, and they are used as delivery vehicles for pharmaceutical molecules, scaffolds and components for bio-composites. We demonstrated mesoporous bioactive glass (BG) nanospheres that exhibited the capacity to deliver pharmaceutical molecules. Mesoporous BG nanospheres with variable Ca to Si ratios were synthesized using sol-gel chemistry. By controlling the hydrolysis and condensation conditions, the diameter of the mesoporous BG nanospheres was changed from 300 nm to 1500 nm. The porous structure and surface area of the BG nanospheres were shown to be dependent on their composition. The surface area of the BG nanospheres decreased from 400 ± 2 m(2) g(-1) to 56 ± 0.1 m(2) g(-1) when the Ca/Si ratio increased from 5 to 50 at.%. When the mesoporous BG nanospheres were loaded with ibuprofen (IBU), they exhibited a sustained release profile in simulated body fluid (SBF). In the meantime, the IBU-loaded BG nanospheres degraded in SBF, and induced apatite layer formation on the surface as a result of their good bioactivity. When the BG nanospheres were used as a composite filler to poly (ε-caprolactone) (PCL), they were shown to be effective at improving the in vitro bioactivity of PCL microspheres. PMID:27102805

  18. Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojian; Li, Wei

    2016-06-01

    Bioactive inorganic materials are attractive for hard tissue regeneration, and they are used as delivery vehicles for pharmaceutical molecules, scaffolds and components for bio-composites. We demonstrated mesoporous bioactive glass (BG) nanospheres that exhibited the capacity to deliver pharmaceutical molecules. Mesoporous BG nanospheres with variable Ca to Si ratios were synthesized using sol–gel chemistry. By controlling the hydrolysis and condensation conditions, the diameter of the mesoporous BG nanospheres was changed from 300 nm to 1500 nm. The porous structure and surface area of the BG nanospheres were shown to be dependent on their composition. The surface area of the BG nanospheres decreased from 400 ± 2 m2 g‑1 to 56 ± 0.1 m2 g‑1 when the Ca/Si ratio increased from 5 to 50 at.%. When the mesoporous BG nanospheres were loaded with ibuprofen (IBU), they exhibited a sustained release profile in simulated body fluid (SBF). In the meantime, the IBU-loaded BG nanospheres degraded in SBF, and induced apatite layer formation on the surface as a result of their good bioactivity. When the BG nanospheres were used as a composite filler to poly (ε-caprolactone) (PCL), they were shown to be effective at improving the in vitro bioactivity of PCL microspheres.

  19. Bioactive glass/ZrO2 composites for orthopaedic applications.

    PubMed

    Bellucci, D; Sola, A; Cannillo, V

    2014-02-01

    Binary biocomposites were realized by combining yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with a bioactive glass matrix. Few works are available regarding composites containing zirconia and a relatively high content of glass because the resulting samples are usually biocompatible but not bioactive after thermal treatment. In the present research, the promising properties of the new BG_Ca-K glass, with its low tendency to crystallize and high apatite-forming ability, allowed us to sinter the composites at a relatively low temperature with excellent effects in terms of bioactivity. In addition, it was possible to benefit from the good mechanical behaviour of Y-TZP, thus obtaining samples with microhardness values that were among the highest reported in the literature. After a detailed analysis regarding the thermal behaviour of the composite powders, the sintered bodies were fully characterized by means of x-ray diffraction, SEM equipped with EDS, density measurements, volumetric shrinkage determination, mechanical testing and in vitro evaluation in a simulated body fluid (SBF) solution. According to the experimental results, the presence of Y-TZP improved the mechanical performance. Meanwhile, the BG_Ca-K glass, which mainly preserved its amorphous structure after sintering, provided the composites with a good apatite-forming ability in SBF. PMID:24343516

  20. In Vitro Bioactivity and Antimicrobial Tuning of Bioactive Glass Nanoparticles Added with Neem (Azadirachta indica) Leaf Powder

    PubMed Central

    Prabhu, M.; Ruby Priscilla, S.; Kavitha, K.; Manivasakan, P.; Rajendran, V.; Kulandaivelu, P.

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834

  1. The Influence of Phase Separation on Bioactivity of Spray Pyrolyzed Bioactive Glass.

    PubMed

    Shih, Shao-ju; Tzeng, Wei-lung; Chou, Yu-jen; Chen, Chin-yi; Chen, Yu-ju

    2015-06-01

    In this study, bioactive glass (BG) particles were synthesized directly using spray pyrolysis (SP). Since the bioactivity of glass particles is well correlated with their chemical composition, how to obtain homogenous bioactive glass becomes an important issue. For SP, the main reason for chemical inhomogeneity was considered to be caused by the difference in the precipitation speed of each precursor. So, two Si-containing precursors of BG, namely tetraethyl orthosilicate (TEOS) and silicon acetate (SiA), have been applied to prepare BG particles. The bioglasses were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy to examine their phase composition, and surface structures, inner morphologies and chemical compositions. It was observed that, under the calcination temperature of 700 degrees C, TEOS-derived powder contained Si-rich nanoparticles and Si-deficit submicron particles as inhomogeneity, whereas the SiA-derived powder was homogenous. The reason of inhomogeneity is that TEOS dissolves in "volatile" ethanol more readily than in water via the SP mechanism of "gas-to-particle-conversion" to form Si-rich nanoparticles. The presence of Si-rich nanoparticles causes Si-deficit "wollastonite submicron particles" to form, which impairs the bioactivity. Finally, BG particle formation mechanisms from different precursors have been proposed. PMID:26369098

  2. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    NASA Astrophysics Data System (ADS)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  3. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).

    PubMed

    Bretcanu, Oana; Misra, Superb; Roy, Ipsita; Renghini, Chiara; Fiori, Fabrizio; Boccaccini, Aldo R; Salih, Vehid

    2009-02-01

    The aim of this work was to study the in vitro biocompatibility of glass-ceramic scaffolds based on 45S5 Bioglass, using a human osteosarcoma cell line (HOS-TE85). The highly porous scaffolds were produced by the foam replication technique. Two different types of scaffolds with different porosities were analysed. They were coated with a biodegradable polymer, poly(3-hydroxybutyrate) (P(3HB)). The scaffold bioactivity was evaluated by soaking in a simulated body fluid (SBF) for different durations. Compression strength tests were performed before and after immersion in SBF. These experiments showed that the scaffolds are highly bioactive, as after a few days of immersion in SBF a hydroxyapatite-like layer was formed on the scaffold's surface. It was also observed that P(3HB)-coated samples exhibited higher values of compression strength than uncoated samples. Biocompatibility assessment was carried out by qualitative evaluation of cell morphology after different culture periods, using scanning electron microscopy, while cell proliferation was determined by using the AlamarBlue assay. Alkaline phosphatase (ALP) and osteocalcin (OC) assays were used as quantitative in vitro indicators of osteoblast function. Two different types of medium were used for ALP and OC tests: normal supplemented medium and osteogenic medium. HOS cells were seeded and cultured onto the scaffolds for up to 2 weeks. The AlamarBlue assay showed that cells were able to proliferate and grow on the scaffold surface. After 7 days in culture, the P(3HB)-coated samples had a higher number of cells on their surfaces than the uncoated samples. Regarding ALP- and OC-specific activity, no significant differences were found between samples with different pore sizes. All scaffolds containing osteogenic medium seemed to have a slightly higher level of ALP and OC concentration. These experiments confirmed that Bioglass/P(3HB) scaffolds have potential as osteoconductive tissue engineering substrates for

  4. Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass.

    PubMed

    Lee, Hae-Hyoung; Yu, Hye-Sun; Jang, Jun-Hyeog; Kim, Hae-Won

    2008-05-01

    Nanofibrous glass with a bioactive composition was added to a degradable polymer poly(epsilon-caprolactone) (PCL) to produce a nanocomposite in thin membrane form ( approximately 260 microm). The bioactivity and osteoblastic responses of the nanocomposite membrane were examined and compared with those of a pure PCL membrane. Glass nanofibers with diameters in the range of hundreds of nanometers were added to a PCL solution at 20 wt.%, and the mixture was stirred vigorously and air dried. The obtained nanocomposite membrane showed that many chopped glass nanofibers formed by the mixing step were embedded uniformly into the PCL matrix. The nanocomposite membrane induced the rapid formation of apatite-like minerals on the surface when immersed in a simulated body fluid. Murine-derived osteoblastic cells (MC3T3-E1) grew actively over the nanocomposite membrane with cell viability significantly improved compared with those on the pure PCL membrane. Moreover, the osteoblastic activity, as assessed by the expression of alkaline phosphatase, was significantly higher on the nanocomposite membrane than on the pure PCL membrane. The currently developed nanocomposite of the bioactive glass-added PCL might find applications in the bone regeneration areas such as the guided bone regeneration (GBR) membrane. PMID:18171636

  5. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.

    PubMed

    Milovac, Dajana; Gallego Ferrer, Gloria; Ivankovic, Marica; Ivankovic, Hrvoje

    2014-01-01

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200°C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88MPa) and the elastic modulus (15.5MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. PMID:24268280

  6. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    PubMed

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. PMID:24582266

  7. Attachment and conformational changes of collagen on bioactive glass surface.

    PubMed

    Magyari, K; Vanea, E; Baia, L; Simon, V

    2016-05-12

    The proteins adsorption on biomaterials surface leads to changes in their structural conformation that may further influence the adhesion, migration and growth of cells. The aim of this study was to examine the attachment of collagen (calf skin type I) on bioactive glass powders and the conformational changes of the protein. Scanning electron microscopy analysis and X-ray photoelectron spectroscopy measurements indicate that the collagen cover the glass surface in a nanometric thin layer. The infrared amide I absorption signal shows pronounced changes in the secondary structure of the adsorbed collagen. PMID:27175468

  8. Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass

    PubMed Central

    Reilly, Gwendolen C.; Radin, Shula; Chen, Andrew T.; Ducheyne, Paul

    2009-01-01

    Bioactive glass is used as both a bone filler and as a coating on implants, and has been advocated as a potential osteogenic scaffold for tissue engineering. Rat derived mesenchymal stem cells (MSCs) show elevated levels of levels of alkaline phosphatase activity when grown on 45S5 bioactive glass as compared to standard tissue culture plastic. Similarly, exposure to the dissolution products of 45S5 elevates alkaline phosphatase activity and other osteogenic markers in these cells. We investigated whether human MSCs grown under the same laboratory conditions as rat MSCs would exhibit similar responses. In general, human MSCs produce markedly less alkaline phosphatase activity than rat MSCs, regardless of cell culture conditions, and do not respond to the growth factor BMP-2 in the same way as rat MSCs. In our experiments there was no difference in alkaline phosphatase activity between human MSCs grown on 45S5 bioactive glass or tissue culture plastic, in samples from five different orthopaedic patients, regardless of culture media composition. Neither was there any consistent effect of 45S5 dissolution products on human MSCs from three different donors. These results suggest that the positive effects of bioactive glass on bone growth in human patients are not mediated by accelerated differentiation of mesenchymal stem cells. PMID:17586040

  9. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    PubMed

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. PMID:26042695

  10. Effect of crystallinity on crack propagation and mineralization of bioactive glass 45S5

    NASA Astrophysics Data System (ADS)

    Kashyap, Satadru

    Bioactive glasses are a type of ceramic material designed to be used as bioresorbable therapeutic bone implants. Thermal treatment of bioactive glass ceramics dictates many important features such as microstructure, degree of crystallinity, mechanical properties, and mineralization. This study investigates the effects of temperature, time, and heating rates on the crystallization kinetics of melt cast bioactive glass 45S5. Bulk crystallization (three dimensional crystallite formation) was found to always occur in bulk bioactive glass 45S5 irrespective of the processing conditions. A comparative study of crack paths in amorphous and crystalline phases of bioactive glass 45S5 revealed crack deflections and higher fracture resistance in partially crystallized bioactive glass. Such toughening is likely attributed to different crystallographic orientations of crystals or residual thermal mismatch strains. Furthermore, in vitro immersion testing of partially crystalline glass ceramic revealed higher adhesion capabilities of the mineralized layer formed on amorphous regions as compared to its crystalline counterpart.

  11. Micro-CT Analysis of Bone Healing in Rabbit Calvarial Critical-Sized Defects with Solid Bioactive Glass, Tricalcium Phosphate Granules or Autogenous Bone

    PubMed Central

    Karhula, Sakari S.; Haapea, Marianne; Kauppinen, Sami; Finnilä, Mikko; Saarakkala, Simo; Serlo, Willy; Sándor, George K.

    2016-01-01

    ABSTRACT Objectives The purpose of the present study was to evaluate bone healing in rabbit critical-sized calvarial defects using two different synthetic scaffold materials, solid biodegradable bioactive glass and tricalcium phosphate granules alongside solid and particulated autogenous bone grafts. Material and Methods Bilateral full thickness critical-sized calvarial defects were created in 15 New Zealand white adult male rabbits. Ten defects were filled with solid scaffolds made of bioactive glass or with porous tricalcium phosphate granules. The healing of the biomaterial-filled defects was compared at the 6 week time point to the healing of autologous bone grafted defects filled with a solid cranial bone block in 5 defects and with particulated bone combined with fibrin glue in 10 defects. In 5 animals one defect was left unfilled as a negative control. Micro-computed tomography (micro-CT) was used to analyze healing of the defects. Results Micro-CT analysis revealed that defects filled with tricalcium phosphate granules showed new bone formation in the order of 3.89 (SD 1.17)% whereas defects treated with solid bioactive glass scaffolds showed 0.21 (SD 0.16)%, new bone formation. In the empty negative control defects there was an average new bone formation of 21.8 (SD 23.7)%. Conclusions According to findings in this study, tricalcium phosphate granules have osteogenic potential superior to bioactive glass, though both particulated bone with fibrin glue and solid bone block were superior defect filling materials. PMID:27489608

  12. Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation.

    PubMed

    Renno, A C M; Nejadnik, M R; van de Watering, F C J; Crovace, M C; Zanotto, E D; Hoefnagels, J P M; Wolke, J G C; Jansen, J A; van den Beucken, J J J P

    2013-08-01

    Calcium phosphate cements (CPCs) have been widely used as an alternative to biological grafts due to their excellent osteoconductive properties. Although degradation has been improved by using poly(D,L-lactic-co-glycolic) acid (PLGA) microspheres as porogens, the biological performance of CPC/PLGA composites is insufficient to stimulate bone healing in large bone defects. In this context, the aim of this study was to investigate the effect of incorporating osteopromotive bioactive glass (BG; up to 50 wt %) on setting properties, in vitro degradation behavior and morphological characteristics of CPC/BG and CPC/PLGA/BG. The results revealed that the initial and final setting time of the composites increased with increasing amounts of incorporated BG. The degradation test showed a BG-dependent increasing effect on pH of CPC/BG and CPC/PLGA/BG pre-set scaffolds immersed in PBS compared to CPC and CPC/PLGA equivalents. Whereas no effects on mass loss were observed for CPC and CPC/BG pre-set scaffolds, CPC/PLGA/BG pre-set scaffolds showed an accelerated mass loss compared with CPC/PLGA equivalents. Morphologically, no changes were observed for CPC and CPC/BG pre-set scaffolds. In contrast, CPC/PLGA and CPC/PLGA/BG showed apparent degradation of PLGA microspheres and faster loss of integrity for CPC/PLGA/BG pre-set scaffolds compared with CPC/PLGA equivalents. Based on the present in vitro results, it can be concluded that BG can be successfully introduced into CPC and CPC/PLGA without exceeding the setting time beyond clinically acceptable values. All injectable composites containing BG had suitable handling properties and specifically CPC/PLGA/BG showed an increased rate of mass loss. Future investigations should focus on translating these findings to in vivo applications. PMID:23364896

  13. Developing bioactive composite scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Chen, Yun

    Poly(L-lactic acid) (PLLA) films were fabricated using the method of dissolving and evaporation. PLLA scaffold was prepared by solid-liquid phase separation of polymer solutions and subsequent sublimation of solvent. Bonelike apatite coating was formed on PLLA films, PLLA scaffolds and poly(glycolic acid) (PGA) scaffolds in 24 hours through an accelerated biomimetic process. The ion concentrations in the simulated body fluid (SBF) were nearly 5 times of those in human blood plasma. The apatite formed was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The apatite formed in 5SBF was similar in morphology and composition to that formed in the classical biomimetic process employing SBF or 1.5SBF, and similar to that of natural bone. This indicated that the biomimetic apatite coating process could be accelerated by using concentrated simulated body fluid at 37°C. Besides saving time, the accelerated biomimetic process is particularly significant to biodegradable polymers. Some polymers which degrade too fast to be coated with apatite by a classical biomimetic process, for example PGA, could be coated with bone-like apatite in an accelerated biomimetic process. Collagen and apatite were co-precipitated as a composite coating on poly(L-lactic acid) (PLLA) in an accelerated biomimetic process. The incubation solution contained collagen (1g/L) and simulated body fluid (SBF) with 5 times inorganic ionic concentrations as human blood plasma. The coating formed on PLLA films and scaffolds after 24 hours incubation was characterized using EDX, XRD, FTIR, and SEM. It was shown that the coating contained carbonated bone-like apatite and collagen, the primary constituents of natural bone. SEM showed a complex composite coating of submicron bone-like apatite particulates combined with collagen fibrils. This work provided an efficient process to obtain

  14. The Influence of Peptide Modifications of Bioactive Glass on Human Mesenchymal Stem Cell Growth and Function

    NASA Astrophysics Data System (ADS)

    Ammar, Mohamed

    2011-12-01

    Bioactive glass is known for its potential as a bone scaffold due to its ability to stimulate osteogenesis and induce bone formation. Broadening this potential to include the differentiation of human mesenchymal stem cells (hMSCs) to bone cells will enhance the healing process in bone defects. The surface of bioactive glass made by the sol-gel technique with the composition of 70% SiO2-30% CaO (mol %) was grafted with 3 peptides sequences in different combinations from proteins (fibronectin BMP-2 and BMP-9) that are known to promote the adhesion, differentiation and osteogenesis process. The experiment was done in two forms, a 2D non-porous thin film and a 3D nano-macroporous structure. hMSCs were grown on the materials for a total of five weeks. The 2D materials were tested for the expression of 3 osteogenic markers (osteopontin, osteocalcin and osteonectin) through immunocytochemistry. The 3D forms were monitored for cell's adhesion, morphology, spreading and proliferation by scanning electron microscopy, in addition to proliferation assay and alkaline phosphatase activity measurement. Results showed that hMSCs poorly adhered to the 2D thin films, but the few cells survived showed enhanced expression of the osteogenic markers. On the 3D form, cells showed enhanced proliferation at week one and more survival of the cells on the materials grafted with the adhesion peptide for the successive weeks in comparison to the positive control samples. Enhanced alkaline phosphatase activity was also detected compared to the negative control samples but were still below the positive control samples. In conclusion, the peptide grafting could increase the effect of bioactive glass but more peptide combinations should be examined to improve the effects on the differentiation and osteogenic activity of the hMSCs.

  15. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    PubMed

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05). PMID:26787304

  16. Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration

    PubMed Central

    Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping

    2014-01-01

    Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration. PMID:24646912

  17. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.

    PubMed

    Miao, Guohou; Chen, Xiaofeng; Dong, Hua; Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing

    2013-10-01

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. (29)Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. PMID:23910338

  18. Surface coatings of bioactive glasses on high strength ceramic composites

    NASA Astrophysics Data System (ADS)

    Martorana, S.; Fedele, A.; Mazzocchi, M.; Bellosi, A.

    2009-04-01

    Dense and ultrafine alumina-zirconia composites (Al 2O 3-16 wt%ZrO 2 and ZrO 2-20 wt%Al 2O 3) are developed and characterized for load bearing prosthetic applications. The improvement of the ceramic/bone interface, namely of the ceramic bioactivity, is performed by a glass coating on the surface of the composites. A new composition is used to produce the glass powder, by melting at 1550 °C the mixture of oxide raw materials. The processing to obtain a homogeneous and adherent coating on the ceramic substrates is investigated: the optimal temperature for the glazing treatment is 1200 °C. The microstructure of the coating and of the ceramic/coating interface, the adhesion and some mechanical properties of the prepared glass and of the coating are analyzed. Besides, the in vitro bioactive responses, by incubation of osteoblast-like cells on the coated samples, are evaluated: positive results are confirmed after 24 h and 72 h.

  19. Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors.

    PubMed

    Kang, Min Sil; Kim, Joong-Hyun; Singh, Rajendra K; Jang, Jun-Hyeog; Kim, Hae-Won

    2015-04-01

    A novel therapeutic design of nanofibrous scaffolds, holding a capacity to load and deliver dual growth factors, that targets bone regeneration is proposed. Mesoporous bioactive glass nanospheres (MBNs) were used as bioactive nanocarriers for long-term delivery of the osteogenic enhancer fibroblast growth factor 18 (FGF18). Furthermore, a core-shell structure of a biopolymer fiber made of polyethylene oxide/polycaprolactone was introduced to load FGF2, another type of cell proliferative and angiogenic growth factor, safely within the core while releasing it more rapidly than FGF18. The prepared MBNs showed enlarged mesopores of about 7 nm, with a large surface area and pore volume. The protein-loading capacity of MBNs was as high as 13% when tested using cytochrome C, a model protein. The protein-loaded MBNs were smoothly incorporated within the core of the fiber by electrospinning, while preserving a fibrous morphology. The incorporation of MBNs significantly increased the apatite-forming ability and mechanical properties of the core-shell fibers. The possibility of sequential delivery of two experimental growth factors, FGF2 and FGF18, incorporated either within the core-shell fiber (FGF2) or within MBNs (FGF18), was demonstrated by the use of cytochrome C. In vitro studies using rat mesenchymal stem cells demonstrated the effects of the FGF2-FGF18 loadings: significant stimulation of cell proliferation as well as the induction of alkaline phosphate activity and cellular mineralization. An in vivo study performed on rat calvarium defects for 6 weeks demonstrated that FGF2-FGF18-loaded fiber scaffolds had significantly higher bone-forming ability, in terms of bone volume and density. The current design utilizing novel MBN nanocarriers with a core-shell structure aims to release two types of growth factors, FGF2 and FGF18, in a sequential manner, and is considered to provide a promising therapeutic scaffold platform that is effective for bone regeneration. PMID

  20. Cotton-wool-like bioactive glasses for bone regeneration.

    PubMed

    Poologasundarampillai, G; Wang, D; Li, S; Nakamura, J; Bradley, R; Lee, P D; Stevens, M M; McPhail, D S; Kasuga, T; Jones, J R

    2014-08-01

    Inorganic sol-gel solutions were electrospun to produce the first bioactive three-dimensional (3-D) scaffolds for bone tissue regeneration with a structure like cotton-wool (or cotton candy). This flexible 3-D fibrous structure is ideal for packing into complex defects. It also has large inter-fiber spaces to promote vascularization, penetration of cells and transport of nutrients throughout the scaffold. The 3-D fibrous structure was obtained by electrospinning, where the applied electric field and the instabilities exert tremendous force on the spinning jet, which is required to be viscoelastic to prevent jet break up. Previously, polymer binding agents were used with inorganic solutions to produce electrospun composite two-dimensional fibermats, requiring calcination to remove the polymer. This study presents novel reaction and processing conditions for producing a viscoelastic inorganic sol-gel solution that results in fibers by the entanglement of the intermolecularly overlapped nanosilica species in the solution, eliminating the need for a binder. Three-dimensional cotton-wool-like structures were only produced when solutions containing calcium nitrate were used, suggesting that the charge of the Ca(2+) ions had a significant effect. The resulting bioactive silica fibers had a narrow diameter range of 0.5-2μm and were nanoporous. A hydroxycarbonate apatite layer was formed on the fibers within the first 12h of soaking in simulated body fluid. MC3T3-E1 preosteoblast cells cultured on the fibers showed no adverse cytotoxic effect and they were observed to attach to and spread in the material. PMID:24874652

  1. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.

    PubMed

    Allo, Bedilu A; Rizkalla, Amin S; Mequanint, Kibret

    2010-12-01

    Strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate, and function. For this purpose, hybrid biomaterials based on smart combinations of biodegradable polymers and bioactive glasses (BGs) are of particular interest, since they exhibit tailored physical, biological, and mechanical properties, as well as predictable degradation behavior. In this study, hybrid biomaterials with different organic-inorganic ratios were successfully synthesized via a sol-gel process. Poly(ε-caprolactone) (PCL) and tertiary bioactive glass (BG) with a glass composition of 70 mol % SiO(2), 26 mol % CaO, and 4 mol % of P(2)O(5) were used as the polymer and inorganic phases, respectively. The polymer chains were successfully introduced into the inorganic sol while the networks were formed. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analyses (TGA), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) were used to investigate the presence of different chemical groups, structural crystallinity, thermal property, elemental composition, and homogeneity of the synthesized hybrid biomaterials. Identification of chemical groups and the presence of molecular interaction by hydrogen bonding between the organic and inorganic phases was confirmed by FTIR. The XRD patterns showed that all PCL/BG hybrids (up to 60% polymer content) were amorphous. The TGA study revealed that the PCL/BG hybrid biomaterials were thermally stable, and good agreement was observed between the experimental and theoretical organic-inorganic ratios. The SEM/EDX results also revealed a homogeneous elemental distribution and demonstrated the successful incorporation of all the elements in the hybrid system. Finally, these synthesized hybrid biomaterials were successfully electrospun into 3D scaffolds. The resultant fibers

  2. Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration.

    PubMed

    O'Donnell, M D; Hill, R G

    2010-07-01

    The purpose of this article is to highlight some recent in vitro and in vivo studies of bioactive glasses containing strontium and to review selected literature on the in vitro and in vivo behaviour of bioactive glasses to relate this to the structure of the glass. The strontium-glass studies were performed well scientifically, but the results and conclusions could be misleading in terms of the effect of strontium, or more broadly glass chemistry, on the bioactivity and in vivo behaviour of bioactive glasses due to substitutions made on a weight basis. When strontium is substituted by weight for a lighter element such as calcium this will have a significant effect on structure and properties in particular biological response. PMID:20079468

  3. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies.

    PubMed

    Veronesi, Francesca; Giavaresi, Gianluca; Guarino, Vincenzo; Raucci, Maria Grazia; Sandri, Monica; Tampieri, Anna; Ambrosio, Luigi; Fini, Milena

    2015-09-01

    Tissue engineering (TE) represents a valid alternative to traditional surgical therapies for the management of bone defects that do not regenerate spontaneously. Scaffolds, one of the most important component of TE strategy, should be biocompatible, bioactive, osteoconductive, and osteoinductive. The aim of this study was to evaluate the biological properties and bone regeneration ability of a porous poly(ɛ-caprolactone) (PCL) scaffold, incorporating MgCO3 -doped hydroxyapatite particles, uncoated (PCL_MgCHA) or coated by apatite-like crystals via biomimetic treatment (PCL_MgCHAB). It was observed that both scaffolds are not cytotoxic and, even if cell viability was similar on both scaffolds, PCL_MgCHAB showed higher alkaline phosphatase and collagen I (COLL I) production at day 7. PCL_MgCHA induced more tumor necrosis factor-α release than PCL_MgCHAB, while osteocalcin was produced less by both scaffolds up to 7 days and no significant differences were observed for transforming growth factor-β synthesis. The percentage of new bone trabeculae growth in wide defects carried out in rabbit femoral distal epiphyses was significantly higher in PCL_MgCHAB in comparison with PCL_MgCHA at 4 weeks and even more at 12 weeks after implantation. This study highlighted the role of a biomimetic composite scaffold in bone regeneration and lays the foundations for its future employment in the clinical practice. PMID:25689266

  4. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    PubMed

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth. PMID:25842126

  5. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.

    PubMed

    Vitale-Brovarone, Chiara; Ciapetti, Gabriela; Leonardi, Elisa; Baldini, Nicola; Bretcanu, Oana; Verné, Enrica; Baino, Francesco

    2011-11-01

    Highly porous bioresorbable glass-ceramic scaffolds were prepared via sponge replication method by using an open-cell polyurethane foam as a template and phosphate-based glass powders. The glass, belonging to the P2O5-SiO2-CaO-MgO-Na2O-K2O system, was synthesized by a melting-quenching route, ground, and sieved to obtain powders with a grain size of less than 30 μm. A slurry containing glass powders, polyvinyl alcohol, and water was prepared to coat the polymeric template. The removal of the polymer and the sintering of the glass powders were performed by a thermal treatment, in order to obtain an inorganic replica of the template structure. The structure and properties of the scaffold were investigated from structural, morphological, and mechanical viewpoints by means of X-ray diffraction, scanning electron microscopy, density measurements, image analysis, and compressive tests. The scaffolds exhibited a trabecular architecture that closely mimics the structure of a natural spongy bone. The solubility of the porous structures was assessed by soaking the samples in acellular simulated body fluid (SBF) and Tris-HCl for different time frames and then by assessing the scaffold weight loss. As far as the test in SBF is concerned, the nucleation of hydroxyapatite on the scaffold trabeculae demonstrates the bioactivity of the material. Biological tests were carried out using human bone marrow stromal cells to test the osteoconductivity of the material. The cells adhered to the scaffold struts and were metabolically active; it was found that cell differentiation over proliferation occurred. Therefore, the produced scaffolds, being biocompatible, bioactive, resorbable, and structurally similar to a spongy bone, can be proposed as interesting candidates for bone grafting. PMID:20566654

  6. A Sucrose-derived Scaffold for Multimerization of Bioactive Peptides

    PubMed Central

    Rao, Venkataramanarao; Alleti, Ramesh; Xu, Liping; Tafreshi, Narges K.; Morse, David L.; Gillies, Robert J.; Mash, Eugene A.

    2011-01-01

    A spherical molecular scaffold bearing eight terminal alkyne groups was synthesized in one step from sucrose. One or more copies of a tetrapeptide azide, either N3(CH2)5(C=O)-His-dPhe-Arg-Trp-NH2 (MSH4) or N3(CH2)5(C=O)-Trp-Met-Asp-Phe-NH2 (CCK4), were attached to the scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Competitive binding assays using Eu-labeled probes based on the superpotent ligands Ser-Tyr-Ser-Nle-Glu-His-dPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2 (NDP-α-MSH) and Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH2 (CCK8) were used to study the interactions of monovalent and multivalent MSH4 and CCK4 constructs with Hek293 cells engineered to overexpress MC4R and CCK2R. All of the monovalent and multivalent MSH4 constructs exhibited binding comparable to that of the parental ligand, suggesting that either the ligand spacing was inappropriate for multivalent binding, or MSH4 is too weak a binder for a second “anchoring” binding event to occur before the monovalently-bound construct is released from the cell surface. In contrast with this behavior, monovalent CCK4 constructs were significantly less potent than the parental ligand, while multivalent CCK4 constructs were as or more potent than the parental ligand. These results are suggestive of multivalent binding, which may be due to increased residence times for monovalently bound CCK4 constructs on the cell surface relative to MSH4 constructs, the greater residence time being necessary for the establishment of multivalent binding. PMID:21940174

  7. Bioactive glass in cavitary bone defects: a comparative experimental study in rabbits

    PubMed Central

    Camargo, André Ferrari de França; Baptista, André Mathias; Natalino, Renato; de Camargo, Olavo Pires

    2015-01-01

    OBJECTIVES: To compare bioactive glass and autograft regarding their histomorphometric characteristics. METHODS: The authors conducted a prospective case-control experimental study on animals in order to compare the histomorphometric characteristics of bioactive glass versus autograft. Eight rabbits underwent surgery in which a cavitary defect was created in both proximal femurs. One side was filled with bioactive glass granules and the other, with autograft grafted from the contralateral side. The sides were randomized. Fourteen days after surgery, the animals were euthanized. RESULTS: Histologic analysis revealed that bone neoformation was equivalent among the two groups and the osteoblasts cell-count was higher in the femurs treated with bioactive glass. The osteocytes cell-count, however, was lower. The similarity in bone formation between both groups was consistent to literature findings. CONCLUSION: Bioactive glass is similar to autograft regarding bone neoformation in this animal model of cavitary bone defects. Level of Evidence III, Case-Control Study. PMID:26327802

  8. Experimental maxillary sinus augmentation using a highly bioactive glass ceramic.

    PubMed

    Vivan, Rodrigo Ricci; Mecca, Carlos Eduardo; Biguetti, Claudia Cristina; Rennó, Ana Claudia Muniz; Okamoto, Roberta; Cavenago, Bruno Cavalini; Duarte, Marco Húngaro; Matsumoto, Mariza Akemi

    2016-02-01

    Physicochemical characteristics of a biomaterial directly influence its biological behavior and fate. However, anatomical and physiological particularities of the recipient site also seem to contribute with this process. The present study aimed to evaluate bone healing of maxillary sinus augmentation using a novel bioactive glass ceramic in comparison with a bovine hydroxyapatite. Bilateral sinus augmentation was performed in adult male rabbits, divided into 4 groups according to the biomaterial used: BO-particulate bovine HA Bio-Oss(®) (BO), BO+G-particulate bovine HA + particulate autogenous bone graft (G), BS-particulate glass ceramic (180-212 μm) Biosilicate(®) (BS), and BS+G-particulate glass ceramic + G. After 45 and 90 days, animals were euthanized and the specimens prepared to be analyzed under light and polarized microscopy, immunohistochemistry, scanning electron microscopy (SEM), and micro-computed tomography (μCT). Results revealed different degradation pattern between both biomaterials, despite the association with bone graft. BS caused a more intense chronic inflammation with foreign body reaction, which led to a difficulty in bone formation. Besides this evidence, SEM and μCT confirmed direct contact between newly formed bone and biomaterial, along with osteopontin and osteocalcin immunolabeling. Bone matrix mineralization was late in BS group but became similar to BO at day 90. These results clearly indicate that further studies about Biosilicate(®) are necessary to identify the factors that resulted in an unfavorable healing response when used in maxillary sinus augmentation. PMID:26712707

  9. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection. PMID:23820937

  10. A bioactive "self-fitting" shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects.

    PubMed

    Zhang, Dawei; George, Olivia J; Petersen, Keri M; Jimenez-Vergara, Andrea C; Hahn, Mariah S; Grunlan, Melissa A

    2014-11-01

    While tissue engineering is a promising alternative for treating critical-sized cranio-maxillofacial bone defects, improvements in scaffold design are needed. In particular, scaffolds that can precisely match the irregular boundaries of bone defects as well as exhibit an interconnected pore morphology and bioactivity would enhance tissue regeneration. In this study, a shape memory polymer (SMP) scaffold was developed exhibiting an open porous structure and the capacity to conformally "self-fit" into irregular defects. The SMP scaffold was prepared via photocrosslinking of poly(ε-caprolactone) (PCL) diacrylate using a SCPL method, which included a fused salt template. A bioactive polydopamine coating was applied to coat the pore walls. Following exposure to warm saline at T>T(trans) (T(trans)=T(m) of PCL), the scaffold became malleable and could be pressed into an irregular model defect. Cooling caused the scaffold to lock in its temporary shape within the defect. The polydopamine coating did not alter the physical properties of the scaffold. However, polydopamine-coated scaffolds exhibited superior bioactivity (i.e. formation of hydroxyapatite in vitro), osteoblast adhesion, proliferation, osteogenic gene expression and extracellular matrix deposition. PMID:25063999

  11. Effects of manufacturing method on surface mineralization of bioactive glasses

    NASA Astrophysics Data System (ADS)

    Pirayesh, Hamidreza

    Amorphous bioactive glass powders are used as bone-filling materials in many medical applications. Bioactivity is achieved through ion exchange with bodily fluids, leading to surface apatite mineral formation---a necessity for tissue development. Traditional fabrication is by melt-casting and grinding, however sol-gel synthesis is another method which directly produces powders with higher specific surface area and potential for increased ion exchange rates. In this study sol-gel derived powders were manufactured and compared with melt-cast powders to determine the effects of crystallinity, composition, and specific surface area on apatite formation. Powders were immersed in simulated body fluid as a function of time and the evolution of apatite minerals was characterized. Apatite formation was most significantly affected by powder composition, followed by specific surface area; merely having sodium in the powder was more influential than altering the surface area and/or atomic structure, yet high specific surface area was found to enhance reactions on crystalline powders.

  12. Structure of bioactive glass and its application to glass ionomer cement.

    PubMed

    Matsuya, S; Matsuya, Y; Ohta, M

    1999-06-01

    We prepared a new glass ionomer cement using bioactive CaO-P2O5-SiO2(-MgO) glass and investigated its setting process using FT-IR and MAS NMR analyses. The compressive strengths of the cements depended on the glass composition and a maximum strength of 33.3 +/- 4.7 MPa was obtained using cement with the glass composition of MgO:4.6, CaO:44.9, SiO2:34.2 and P2O5:16.3% in weight. FT-IR analysis showed that the COOH group in the polyacrylic acid decreased and carboxylate ion (COO-Ca2+) increased after the setting reaction. A broad signal appeared around -82 ppm in 29Si MAS-NMR spectra of the glass and a new signal corresponding to hydrated silica gel formation appeared around -102 and -111 ppm after setting. This suggests that Ca2+ was released from the glass powder to form carboxylate salt and that a degree of polymerization in the silicate network increased. The setting mechanism of the cement was found to be essentially the same as in conventional glass ionomer cement. PMID:10786128

  13. A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration

    PubMed Central

    Zhao, Kang; Tang, Yufei; Cheng, Zhe; Chen, Jun; Zang, Yuan; Wu, Jianwei; Kong, Liang; Liu, Shuai; Lei, Wei; Wu, Zixiang

    2013-01-01

    Background Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. Materials and Methods The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. Results CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. Conclusions A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration. PMID:23638115

  14. Cytotoxicity of Resin Composites Containing Bioactive Glass Fillers

    PubMed Central

    Salehi, Satin; Gwinner, Fernanda; Mitchell, John C; Pfeifer, Carmem; Ferracane, Jack L

    2015-01-01

    Objective To determine the in vitro cytotoxicity of dental composites containing bioactive glass fillers. Methods Dental composites (50:50 Bis-GMA/TEGDMA resin: 72.5wt% filler, 67.5%Sr-glass and 5% OX50) containing different concentrations (0, 5, 10 and 15 wt %) of two sol-gel bioactive glasses, BAG65 (65 mole% SiO2, 31 mole% CaO, 4 mole% P2O5) and BAG62 (3 mole% F added) were evaluated for cytotoxicity using Alamar Blue assay. First, composite extracts were obtained from 7 day incubations of composite in cell culture medium at 37° C. Undifferentiated pulp cells (OD-21) were exposed to dilutions of the original extracts for 3, 5, and 7 days. Then freshly cured composite disks were incubated with OD-21 cells (n=5) for 2 days. Subsequently, fresh composite disks were incubated in culture medium at 37°C for 7 days, and then the extracted disks were incubated with OD-21 cells for 2 days. Finally, fresh composites disks were light cured for 3, 5, and 20 seconds and incubated with OD-21 cells (n=5) for 1, 3, 5, and 7 days. To verify that the three different curing modes produced different levels of degree of conversion (DC), the DC of each composite was determined by FTIR. Groups (n=5) were compared with ANOVA/Tukey’s (α≤0.05). Results Extracts from all composites significantly reduced cell viability until a dilution of 1:8 or lower, where the extract became equal to the control. All freshly-cured composites showed significantly reduced cell viability at two days. However, no reduction in cell viability was observed for any composite that had been previously soaked in media before exposure to the cells. Composites with reduced DC (3 s vs. 20 s cure), as verified by FTIR, showed significantly reduced cell viability. Significance The results show that the composites, independent of composition, had equivalent potency in terms of reducing the viability of the cells in culture. Soaking the composites for 7 days before exposing them to the cells suggested that the

  15. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    PubMed

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. PMID:24287337

  16. Using machine learning for improving knowledge on antibacterial effect of bioactive glass.

    PubMed

    Echezarreta-López, M M; Landin, M

    2013-09-10

    The aim of this work was to find relationships between critical bioactive glass characteristics and their antibacterial behaviour using an artificial intelligence tool. A large dataset including ingredients and process variables of the bioactive glasses production, bacterial characteristics and microbiological experimental conditions was generated from literature and analyzed by neurofuzzy logic technology. Our findings allow an explanation on the variability in antibacterial behaviour found by different authors and to obtain general conclusions about critical parameters of bioactive glasses to be considered in order to achieve activity against some of the most common skin and implant surgery pathogens. PMID:23806814

  17. Nano-Hydroxyapatite/Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation

    NASA Astrophysics Data System (ADS)

    Batra, Uma; Kapoor, Seema; Sharma, J. D.

    2011-12-01

    Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work—fluoridated bioglass (Cao-P2O5-Na2O3-CaF2) and unfluoridated bioglass (Cao-P2O5-Na2O3) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm, respectively. The pellets were sintered at four different temperatures i.e. 1000 °C, 1150 °C, 1250 °C and 1350 °C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with α-TCP (tricalcium phosphate) and β-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 °C and 1150 °C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 °C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 °C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 °C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and sintered pellets, showing higher bioactivity in the green pellets.

  18. Nano-Hydroxyapatite/Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation

    SciTech Connect

    Batra, Uma; Kapoor, Seema; Sharma, J. D.

    2011-12-12

    Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work--fluoridated bioglass (Cao-P{sub 2}O{sub 5}-Na{sub 2}O{sub 3}-CaF{sub 2}) and unfluoridated bioglass (Cao-P{sub 2}O{sub 5}-Na{sub 2}O{sub 3}) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm, respectively. The pellets were sintered at four different temperatures i.e. 1000 deg. C, 1150 deg. C, 1250 deg. C and 1350 deg. C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with {alpha}-TCP (tricalcium phosphate) and {beta}-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 deg. C and 1150 deg. C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 deg. C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 deg. C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 deg. C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and

  19. Microstructure, mechanical properties and in vitro bioactivity of akermanite scaffolds fabricated by laser sintering.

    PubMed

    Han, Zikai; Feng, Pei; Gao, Chengde; Shen, Yang; Shuai, Cijun; Peng, Shuping

    2014-01-01

    Akermanite had attracted great attention due to the favourable mechanical properties and excellent biological performance. In this research, the microstructure and mechanical properties of akermanite scaffolds fabricated via laser sintering under different process conditions were studied and characterized. The results showed that the akermanite particles gradually mixed together, grew up and reached complete densification with the scanning speed decreasing from 450 to 150 mm/min, while micro defects such as air holes occurred at 50mm/min. simultaneously, the compressive strength of the scaffolds went up and then descended, and the optimum value was 5.92 ± 0.41 MPa. The Vickers hardness and fracture toughness increased consistently and then tended to stabilize. X-ray diffraction (XRD) results indicated no new phase appeared under all process conditions. MG-63 cell culture revealed that cell adhesion and proliferation occurred, indicating excellent cytocompatibility of the scaffolds. Moreover, in vitro bioactivity tests showed that the apatite layer formed on the scaffolds and became dense and thick with the increase of soaking time in simulated body fluid (SBF), and this fact was further confirmed by energy-dispersive spectroscopy (EDS). PMID:25226904

  20. Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration.

    PubMed

    Nourmohammadi, Jhamak; Ghaee, Azadeh; Liavali, Samira Hosseini

    2016-03-15

    The objective of this study was to fabricate and investigate the characteristics of a suitable scaffold for bone regeneration. Therefore, chitosan was combined with various amounts of oxidized starch through reductive alkylation process. Afterwards, chopped CaP-coated PCL nanofibers were added into the chitosan-starch composite scaffolds in order to obtain bioactivity and mimic bone extracellular matrix structure. Scanning electron microscopy confirmed that all scaffolds had well-interconnected porous structure. The mean pore size, porosity, and water uptake of the composite scaffolds increased by incorporation of higher amounts of starch, while this trend was opposite for compressive modulus and strength. Osteoblast-like cells (MG63) culturing on the scaffolds demonstrated that higher starch content could improve cell viability. Moreover, the cells spread and anchored well on the scaffolds, on which the surface was covered with a monolayer of cells. PMID:26794750

  1. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass.

    PubMed

    Keshaw, Hussila; Forbes, Alastair; Day, Richard M

    2005-07-01

    Attempts to stimulate therapeutic angiogenesis using gene therapy or delivery of recombinant growth factors, such as vascular endothelial growth factor (VEGF), have failed to demonstrate unequivocal efficacy in human trials. Bioactive glass stimulates fibroblasts to secrete significantly increased amounts of angiogenic growth factors and therefore has a number of potential applications in therapeutic angiogenesis. The aim of this study was to assess whether it is possible to encapsulate specific quantities of bioactive glass and fibroblasts into alginate beads, which will secrete growth factors capable of stimulating angiogenesis. Human fibroblasts (CCD-18Co) were encapsulated in alginate beads with specific quantities of 45S5 bioactive glass and incubated in culture medium (0-17 days). The conditioned medium was collected and assayed for VEGF or used to assess its ability to stimulate angiogenesis by measuring the proliferation of human dermal microvascular endothelial cells. At 17 days the beads were lysed and the amount of VEGF retained by the beads measured. Fibroblasts encapsulated in alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass particles secreted increased quantities of VEGF compared with cells encapsulated with 0% or 1% (w/v) 45S5 bioactive glass particles. Lysed alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass contained significantly more VEGF (p<0.01) compared with beads containing no glass particles. Endothelial cell proliferation was significantly increased (p<0.01) by conditioned medium collected from alginate beads containing 0.1% (w/v) 45S5 bioactive glass particles. The results of this study demonstrate that bioactive glass and fibroblasts can be successfully incorporated into alginate beads for use in delivering angiogenic growth factors. With further optimization, this technique offers a novel delivery device for stimulating therapeutic angiogenesis. PMID:15664644

  2. Synthesis of nano-bioactive glass-ceramic powders and its in vitro bioactivity study in bovine serum albumin protein

    NASA Astrophysics Data System (ADS)

    Nabian, Nima; Jahanshahi, Mohsen; Rabiee, Sayed Mahmood

    2011-07-01

    Bioactive glasses and ceramics have proved to be able to chemically bond to living bone due to the formation of an apatite-like layer on its surface. The aim of this work was preparation and characterization of bioactive glass-ceramic by sol-gel method. Nano-bioglass-ceramic material was crushed into powder and its bioactivity was examined in vitro with respect to the ability of hydroxyapatite layer to form on the surface as a result of contact with bovine serum albumin (BSA) protein. The obtained nano-bioactive glass-ceramic was analyzed before and after contact with BSA solution. This study used scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis to examine its morphology, crystallinity and composition. The TEM images showed that the NBG particles size were 10-40 nm. Bioactivity of nanopowder was confirmed by SEM and XRD due to the presence of a rich bone-like apatite layer. Therefore, this nano-BSA-bioglass-ceramic composite material is promising for medical applications such as bone substitutes and drug carriers.

  3. Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate.

    PubMed

    Montazeri, Mahbobeh; Karbasi, Saeed; Foroughi, Mohammad Reza; Monshi, Ahmad; Ebrahimi-Kahrizsangi, Reza

    2015-02-01

    One of the major challenges facing researchers of tissue engineering is scaffold design with desirable physical and mechanical properties for growth and proliferation of cells and tissue formation. In this research, firstly, nano-bioglass powder with grain sizes of 55-56 nm was prepared by melting method of industrial raw materials at 1,400 °C. Then the porous ceramic scaffold of bioglass with 30, 40 and 50 wt% was prepared by using the polyurethane sponge replication method. The scaffolds were coated with poly-3-hydroxybutyrate (P3HB) for 30 s and 1 min in order to increase the scaffold's mechanical properties. XRD, XRF, SEM, FE-SEM and FT-IR were used for phase and component studies, morphology, particle size and determination of functional groups, respectively. XRD and XRF results showed that the type of the produced bioglass was 45S5. The results of XRD and FT-IR showed that the best temperature to produce bioglass scaffold was 600 °C, in which Na2Ca2Si3O9 crystal is obtained. By coating the scaffolds with P3HB, a composite scaffold with optimal porosity of 80-87% in 200-600 μm and compression strength of 0.1-0.53 MPa was obtained. According to the results of compressive strength and porosity tests, the best kind of scaffold was produced with 30 wt% of bioglass immersed for 1 min in P3HB. To evaluate the bioactivity of the scaffold, the SBF solution was used. The selected scaffold (30 wt% bioglass/6 wt% P3HB) was maintained for up to 4 weeks in this solution at an incubation temperature of 37 °C. The XRD, SEM EDXA and AAS tests were indicative of hydroxyapatite formation on the surface of bioactive scaffold. This scaffold has some potential to use in bone tissue engineering. PMID:25631260

  4. Metallic glass nanofibers in future hydrogel-based scaffolds.

    PubMed

    Sadeghian, Ramin Banan; Ahadian, Samad; Yaginuma, Shin; Ramón-Azcón, Javier; Liang, Xiaobin; Nakajima, Ken; Shiku, Hitoshi; Matsue, Tomokazu; Nakayama, Koji S; Khademhosseini, Ali

    2014-01-01

    Electrically conductive reinforced hydrogels offer a wide range of applications as three-dimensional scaffolds in tissue engineering. We report electrical and mechanical characterization of methacrylated gelatin (GelMA) hydrogel, containing palladium-based metallic glass nanofibers (MGNF). Also we show that the fibers are biocompatible and C2C12 myoblasts in particular, planted into the hybrid hydrogel, tend to attach to and elongate along the fibers. The MGNFs in this work were created by gas atomization. Ravel of fibers were embedded in the GelMA prepolymer in two different concentrations (0.5 and 1.0 mg/ml), and then the ensemble was cured under UV light, forming the hybrid hydrogel. The conductivity of the hybrid hydrogel was proportional to the fiber concentration. PMID:25571184

  5. Structural characterization of the metal/glass interface in bioactive glass coatings on Ti-6Al-4V

    SciTech Connect

    Oku, T.; Suganuma, K.; Wallemberg, L.R.; Tomsia, A.P.; Gomez-Vega, J.M.; Saiz, E.

    1999-12-01

    Coating Ti-based implants with bioactive materials promotes joining between the prostheses and the bone as well as increasing long-term implant stability. In the present work, the interface between Ti-6Al-4V and bioactive silicate glass coatings, prepared using a simple enameling technique, is analyzed. High-resolution transmission electron microscopy of the glass/alloy interface shows the formation of a reaction layer ({approx}150 nm thick) composed of Ti5Si3 nanoparticles with a size of {approx}20 nm. This nanostructured interface facilitates the formation of a stable joint between the glass coating and the alloy.

  6. Structural characterization of the metal/glass interface in bioactive glass coatings on Ti-6Al-4V.

    PubMed

    Oku, T; Suganuma, K; Wallenberg, L R; Tomsia, A P; Gomez-Vega, J M; Saiz, E

    2001-05-01

    Coating Ti-based implants with bioactive materials promotes joining between the prostheses and the bone as well as increasing long-term implant stability. In the present work, the interface between Ti-6Al-4V and bioactive silicate glass coatings, prepared using a simple enameling technique, is analyzed. High-resolution transmission electron microscopy of the glass/alloy interface shows the formation of a reaction layer ( approximately 150 nm thick) composed of Ti5Si3 nanoparticles with a size of approximately 20 nm. This nanostructured interface facilitates the formation of a stable joint between the glass coating and the alloy. PMID:15348280

  7. Dental applications of nanostructured bioactive glass and its composites

    PubMed Central

    Polini, Alessandro; Bai, Hao; Tomsia, Antoni P.

    2013-01-01

    To improve treatments for bone or dental trauma, and for diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among these important properties are the capability of BG to form strong interfaces with both hard and soft tissues, and its release of ions upon dissolution. Recent developments in nanotechnology have introduced opportunities for materials sciences to advance dental and bone therapies. For example, the applications for BG expand as it becomes possible to finely control structures and physicochemical properties of materials at the molecular level. Here we review how the properties of these materials have been enhanced by the advent of nanotechnology; and how these developments are producing promising results in hard-tissue regeneration and development of innovative BG-based drug-delivery systems. PMID:23606653

  8. Structure, dielectric and bioactivity of P2O5-CaO-Na2O-B2O3 bioactive glass

    NASA Astrophysics Data System (ADS)

    Maheswaran, A.; Hirankumar, G.; Heller, Nithya; Karthickprabhu, S.; Kawamura, Junichi

    2014-06-01

    Bioactive phosphate glasses have been widely investigated for bone repair. Phosphate glass system of 47P2O5-30.5CaO-(22.5-x)Na2O-xB2O3 has been prepared by melt quenching technique. From the Raman analysis, it is confirmed that phosphate network form metaphosphate structure. Bioactivity of the glass is studied by immersing the prepared glass in simulated body fluid (SBF). All the glasses exhibited bioactivity after soaking in SBF. Addition of B2O3 to the glass by replacing the Na2O produces considerable effect on the dielectric and bioactivity of the glass. Ion dynamics are also analyzed through imaginary modulus and imaginary dielectric permittivity.

  9. Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material.

    PubMed

    Ragel, C V; Vallet-Regí, M; Rodríguez-Lorenzo, L M

    2002-04-01

    Hydroxyapatite/solgel glass biphasic material has been obtained in order to improve the bioactivity of the hydroxyapatite (OHAp). A mixture of stoichiometric OHAp and the precursor gel of a solgel glass, with nominal composition in mol% CaO-26, SiO2-70, P205-4, has been prepared. The amounts of components used have been selected to obtain a final relationship for OHAp/solgel glass of 60/40 on heating. Two different thermal treatments have been used: (i) 700 degrees C, temperature of solgel glass stabilisation and (ii) 1000 degrees C, lower temperature of hydroxyapatite sintering. The bioactivity of the resulting materials has been examined in vitro by immersion in simulated body fluid at 37 degrees C. The results obtained show that both materials are bioactive. The apatite-like layer grown is greater for the new materials than for the OHAp and the solgel glass themselves. PMID:11950057

  10. Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings

    PubMed Central

    Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo R.

    2014-01-01

    Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulated body fluid (SBF) for up to 21 days. Fourier transform infrared (FTIR) spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings. PMID:25007822

  11. Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles.

    PubMed

    Leite, Álvaro J; Sarker, Bapi; Zehnder, Tobias; Silva, Raquel; Mano, João F; Boccaccini, Aldo R

    2016-01-01

    Alginate dialdehyde-gelatin (ADA-GEL) constructs incorporating bioactive glass nanoparticles (BGNPs) were produced by biofabrication to obtain a grid-like highly-hydrated composite. The material could induce the deposition of an apatite layer upon immersion in a biological-like environment to sustain cell attachment and proliferation. Composites were formulated with different concentrations of BGNPs synthetized from a sol-gel route, namely 0.1% and 0.5% (w/v). Strontium doped BGNPs were also used. EDS analysis suggested that the BGNPs loading promoted the growth of bone-like apatite layer on the surface when the constructs were immersed in a simulated body fluid. Moreover, the composite constructs could incorporate with high efficiency ibuprofen as a drug model. Furthermore, the biofabrication process allowed the successful incorporation of MG-63 cells into the composite material. Cells were distributed homogeneously within the hydrogel composite, and no differences were found in cell viability between ADA-GEL and the composite constructs, proving that the addition of BGNPs did not influence cell fate. Overall, the composite material showed potential for future applications in bone tissue engineering. PMID:27432012

  12. Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications

    NASA Astrophysics Data System (ADS)

    Ottomeyer, Megan

    Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

  13. The influence of collagen–glycosaminoglycan scaffold relative density and microstructural anisotropy on tenocyte bioactivity and transcriptomic stability

    PubMed Central

    Caliari, Steven R.; Weisgerber, Daniel W.; Ramirez, Manuel A.; Kelkhoff, Douglas O.; Harley, Brendan A.C.

    2014-01-01

    Biomaterials for orthopedic tissue engineering must balance mechanical and bioactivity concerns. This work describes the fabrication of a homologous series of anisotropic collagen–GAG (CG) scaffolds with aligned tracks of ellipsoidal pores but increasing relative densities (ρ*/ρs), and we report the role scaffold relative density plays in directing tenocyte bioactivity. Scaffold permeability and mechanical properties, both in tension and compression, were significantly influenced by relative density in a manner predicted by cellular solids models. Equine tenocytes showed greater levels of attachment, metabolic activity, soluble collagen synthesis, and alignment as well as less cell-mediated scaffold contraction in anisotropic CG scaffolds of increasing relative density. Notably, the lowest density scaffolds experienced significant cell-mediated contraction with associated decreases in tenocyte number as well as loss of microstructural integrity, aligned contact guidance cues, and preferential tenocyte orientation over a 14 day culture period. Gene expression analyses suggested tenocyte de-differentiation in the lowest density scaffold while indicating that the highest density scaffold supported significant increases in COMP (4-fold), tenascin-C (3-fold), and scleraxis (15-fold) expression as well as significant decreases in MMP-1 (9-fold) and MMP-13 (13-fold) expression on day 14. These results suggest that anisotropic scaffold relative density can help to modulate the maintenance of a more tendon-like microenvironment and aid long-term tenocyte transcriptomic stability. Overall, this work demonstrates that relative density is a critical scaffold parameter, not only for insuring mechanical competence, but also for directing cell transcriptomic stability and behavior. PMID:22658152

  14. Investigating in vitro bioactivity and magnetic properties of the ferrimagnetic bioactive glass-ceramic fabricated using soda-lime-silica waste glass

    NASA Astrophysics Data System (ADS)

    Abbasi, M.; Hashemi, B.; Shokrollahi, H.

    2014-04-01

    The main purpose of the current research is the production and characterization of a ferrimagnetic bioactive glass-ceramic prepared through the solid-state reaction method using soda-lime-silica waste glass as the main raw material. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural, thermal and magnetic properties of the samples were examined by X-ray diffraction (XRD), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). The apatite surface layer formation was examined by the scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The calcium ion concentration in the solutions was measured by atomic absorption spectroscopy (AAS). VSM results revealed that with the addition of 5-20 wt% strontium hexaferrite to bioactive glass-ceramics, the ferrimagnetic bioactive glass-ceramics with hysteresis losses between 7024 and 75,852 erg/g were obtained. The in vitro test showed that the onset formation time of hydroxyapatite layer on the surface of the samples was 14 days and after 30 days, this layer was completed.

  15. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules

    NASA Astrophysics Data System (ADS)

    El-Fiqi, Ahmed; Kim, Tae-Hyun; Kim, Meeju; Eltohamy, Mohamed; Won, Jong-Eun; Lee, Eun-Jung; Kim, Hae-Won

    2012-11-01

    Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml-1. Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration.Inorganic bioactive nanomaterials are attractive for hard tissue regeneration

  16. Mechanical performance of novel bioactive glass containing dental restorative composites

    PubMed Central

    Khvostenko, D.; Mitchell, J. C.; Hilton, T. J.; Ferracane, J. L.; Kruzic, J. J.

    2013-01-01

    Objectives Bioactive glass (BAG) is known to possess antimicrobial properties and release ions needed for remineralization of tooth tissue, and therefore may be a strategic additive for dental restorative materials. The objective of this study was to develop BAG containing dental restorative composites with adequate mechanical properties comparable to successful commercially available composites, and to confirm the stability of these materials when exposed to a biologically challenging environment. Methods Composites with 72 wt.% total filler content were prepared while substituting 0–15% of the filler with ground BAG. Flexural strength, fracture toughness, and fatigue crack growth tests were performed after several different soaking treatments: 24 hours in DI water (all experiments), two months in brain-heart infusion (BHI) media+S. mutans bacteria (all experiments) and two months in BHI media (only for flexural strength). Mechanical properties of new BAG composites were compared along with the commercial composite Heliomolar by two-way ANOVA and Tukey’s multiple comparison test (p≤0.05). Results Flexural strength, fracture toughness, and fatigue crack growth resistance for the BAG containing composites were unaffected by increasing BAG content up to 15% and were superior to Heliomolar after all post cure treatments. The flexural strength of the BAG composites was unaffected by two months exposure to aqueous media and a bacterial challenge, while some decreases in fracture toughness and fatigue resistance were observed. The favorable mechanical properties compared to Heliomolar were attributed to higher filler content and a microstructure morphology that better promoted the toughening mechanisms of crack deflection and bridging. Significance Overall, the BAG containing composites developed in this study demonstrated adequate and stable mechanical properties relative to successful commercial composites. PMID:24050766

  17. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    NASA Astrophysics Data System (ADS)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  18. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    PubMed

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However

  19. Indigenous hydroxyapatite coated and bioactive glass coated titanium dental implant system – Fabrication and application in humans

    PubMed Central

    Mistry, Surajit; Kundu, Debabrata; Datta, Someswar; Basu, Debabrata; Soundrapandian, Chidambaram

    2011-01-01

    Background: The use of different bioactive materials as coating on dental implant to restore tooth function is a growing trend in modern Dentistry. In the present study, hydroxyapatite and the bioactive glass-coated implants were evaluated for their behavior in osseous tissue following implantation in 14 patients. Materials and Methods: Bioactive glass and hydroxyapatite formulated and prepared for coating on Ti-6Al-4V alloy. Hydroxyapatite coating was applied on the implant surface by air plasma spray technique and bioactive glass coating was applied by vitreous enameling technique. Their outcome was assessed after 6 months in vivo study in human. Results: Hydroxyapatite and bioactive glass coating materials were nontoxic and biocompatible. Uneventful healing was observed with both types of implants. Conclusion: The results showed bioactive glass is a good alternative coating material for dental implant. PMID:22028507

  20. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr.

    PubMed

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431

  1. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr

    PubMed Central

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R.

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431

  2. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    NASA Astrophysics Data System (ADS)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2015-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  3. Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material.

    PubMed

    Huhtinen, Reeta; Sandeman, Susan; Rose, Susanna; Fok, Elsie; Howell, Carol; Fröberg, Linda; Moritz, Niko; Hupa, Leena; Lloyd, Andrew

    2013-05-01

    Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 μm for 1-98 and 28-04a, 315-500 μm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth. PMID:23386212

  4. Surface signatures of bioactivity: MD simulations of 45S and 65S silicate glasses.

    PubMed

    Tilocca, Antonio; Cormack, Alastair N

    2010-01-01

    The surface of a bioactive (45S) and a bioinactive (65S) glass composition has been modeled using shell-model classical molecular dynamics simulations. Direct comparison of the two structures allowed us to identify the potential role of specific surface features in the processes leading to integration of a bioglass implant with the host tissues, focusing in particular on the initial dissolution of the glass network. The simulations highlight the critical role of network fragmentation and sodium enrichment of the surface in determining the rapid hydrolysis and release of silica fragments in solution, characteristic of highly bioactive compositions. On the other hand, no correlation has been found between the surface density of small (two- and three-membered) rings and bioactivity, thus suggesting that additional factors need to be taken into account to fully understand the role of these sites in the mechanism leading to calcium phosphate deposition on the glass surface. PMID:19725567

  5. Pulsed laser deposition of bioactive glass films in ammonia and disilane atmospheres

    NASA Astrophysics Data System (ADS)

    Borrajo, J. P.; González, P.; Liste, S.; Serra, J.; Chiussi, S.; León, B.; Pérez-Amor, M.

    2005-07-01

    The effect of two reactive gases on the properties of bioactive glass thin films produced by pulsed laser deposition (PLD) was studied. The ablation of a bioactive silica-based glass was carried out by an ArF excimer laser ( λ = 193 nm, Φ = 4.2 J cm -2, τ = 25 ns, f = 10 Hz) at various pressures of Si 2H 6/Ar and NH 3/Ar reactive mixtures. The bonding configuration and chemical environment of the resulting coatings were followed by Fourier transform infrared spectroscopy (FT-IR). The composition and bond arrangement of bioactive glass films were tuned by varying the chamber atmosphere. The results show how to adjust film characteristics for osteointegration of implants.

  6. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a

  7. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    NASA Astrophysics Data System (ADS)

    Shantappa, Anil; Hanagodimath, S. M.

    2015-08-01

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO2-Na2O, SiO2-Na2O-CaO and SiO2-Na2O-P2O5 in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (ZPI, eff) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.

  8. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    SciTech Connect

    Shantappa, Anil; Hanagodimath, S. M.

    2015-08-28

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO{sub 2}-Na{sub 2}O, SiO{sub 2}-Na{sub 2}O-CaO and SiO{sub 2}-Na{sub 2}O-P{sub 2}O{sub 5} in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (Z{sub PI,} {sub eff}) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.

  9. Review: emerging developments in the use of bioactive glasses for treating infected prosthetic joints.

    PubMed

    Rahaman, Mohamed N; Bal, B Sonny; Huang, Wenhai

    2014-08-01

    Bacterial contamination of implanted orthopedic prostheses is a serious complication that requires prolonged systemic antibiotic therapy, major surgery to remove infected implants, bone reconstruction, and considerable morbidity. Local delivery of high doses of antibiotics using poly(methyl methacrylate) (PMMA) cement as the carrier, along with systemic antibiotics, is the standard treatment. However, PMMA is not biodegradable, and it can present a surface on which secondary bacterial infection can occur. PMMA spacers used to treat deep implant infections must be removed after resolution of the infection. Alternative carrier materials for antibiotics that could also restore deficient bone are therefore of interest. In this article, the development of bioactive glass-based materials as a delivery system for antibiotics is reviewed. Bioactive glass is osteoconductive, converts to hydroxyapatite, and heals to hard and soft tissues in vivo. Consequently, bioactive glass-based carriers can provide the combined functions of controlled local antibiotic delivery and bone restoration. Recently-developed borate bioactive glasses are of particular interest since they have controllable degradation rates coupled with desirable properties related to osteogenesis and angiogenesis. Such glasses have the potential for providing a new class of biomaterials, as substitutes for PMMA, in the treatment of deep bone infections. PMID:24907755

  10. Functionalized scaffolds to enhance tissue regeneration

    PubMed Central

    Guo, Baolin; Lei, Bo; Li, Peng; Ma, Peter X.

    2015-01-01

    Tissue engineering scaffolds play a vital role in regenerative medicine. It not only provides a temporary 3-dimensional support during tissue repair, but also regulates the cell behavior, such as cell adhesion, proliferation and differentiation. In this review, we summarize the development and trends of functional scaffolding biomaterials including electrically conducting hydrogels and nanocomposites of hydroxyapatite (HA) and bioactive glasses (BGs) with various biodegradable polymers. Furthermore, the progress on the fabrication of biomimetic nanofibrous scaffolds from conducting polymers and composites of HA and BG via electrospinning, deposition and thermally induced phase separation is discussed. Moreover, bioactive molecules and surface properties of scaffolds are very important during tissue repair. Bioactive molecule-releasing scaffolds and antimicrobial surface coatings for biomedical implants and scaffolds are also reviewed. PMID:25844177

  11. In vitro study of polycaprolactone/bioactive glass composite coatings on corrosion and bioactivity of pure Mg

    NASA Astrophysics Data System (ADS)

    Yang, Yuyun; Michalczyk, Carolin; Singer, Ferdinand; Virtanen, Sannakaisa; Boccaccini, Aldo R.

    2015-11-01

    The influence of the addition of nano-scaled bioactive glass (nBG) powder into polycaprolactone (PCL) coatings on the biodegradation and bioactivity of pure Mg was investigated in the present work. Scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Fourier transform infrared spectroscopy (FTIR) and electrochemical methods were employed to characterize the morphology, chemical composition and anticorrosion properties of the coatings. The results indicate that nBG addition in PCL increases the degradation of PCL in physiological solution; depending on the amount of nBG in the composite coating, the barrier properties of PCL therefore can be modified. At the same time, the addition of nBG facilitates the formation of hydroxyapatite during 7 days immersion in simulated body fluid (SBF).

  12. pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass.

    PubMed

    Hild, Nora; Tawakoli, Pune N; Halter, Jonas G; Sauer, Bärbel; Buchalla, Wolfgang; Stark, Wendelin J; Mohn, Dirk

    2013-11-01

    Biomaterials made of biodegradable poly(α-hydroxyesters) such as poly(lactide-co-glycolide) (PLGA) are known to decrease the pH in the vicinity of the implants. Bioactive glass (BG) is being investigated as a counteracting agent buffering the acidic degradation products. However, in dentistry the question arises whether an antibacterial effect is rather obtained from pure PLGA or from BG/PLGA composites, as BG has been proved to be antimicrobial. In the present study the antimicrobial properties of electrospun PLGA and BG45S5/PLGA fibres were investigated using human oral bacteria (specified with mass spectrometry) incubated for up to 24 h. BG45S5 nanoparticles were prepared by flame spray synthesis. The change in colony-forming units (CFU) of the bacteria was correlated with the pH of the medium during incubation. The morphology and structure of the scaffolds as well as the appearance of the bacteria were followed bymicroscopy. Additionally, we studied if the presence of BG45S5 had an influence on the degradation speed of the polymer. Finally, it turned out that the pH increase induced by the presence of BG45S5 in the scaffold did not last long enough to show a reduction in CFU. On the contrary, pure PLGA demonstrated antibacterial properties that should be taken into consideration when designing biomaterials for dental applications. PMID:23816650

  13. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution.

    PubMed

    Liu, Xin; Pan, Haobo; Fu, Hailuo; Fu, Qiang; Rahaman, Mohamed N; Huang, Wenhai

    2010-02-01

    Porous scaffolds of a borate-based glass (composition in mol%: 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5), with interconnected porosity of approximately 70% and pores of size 200-500 microm, were prepared by a polymer foam replication technique. The degradation of the scaffolds and conversion to a hydroxyapatite-type material in a 0.02 M K2HPO4 solution (starting pH = 7.0) at 37 degrees C were studied by measuring the weight loss of the scaffolds, as well as the pH and the boron concentration of the solution. X-ray diffraction, scanning electronic microscopy and energy dispersive x-ray analysis showed that a hydroxyapatite-type material was formed on the glass surface within 7 days of immersion in the phosphate solution. Cellular response to the scaffolds was assessed using murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed that the scaffolds supported cell attachment and proliferation during the 6 day incubation. The results indicate that this borate-based glass could provide a promising degradable scaffold material for bone tissue engineering applications. PMID:20057014

  14. Bioactivity of thermal plasma synthesized bovine hydroxyapatite/glass ceramic composites

    NASA Astrophysics Data System (ADS)

    Yoganand, C. P.; Selvarajan, V.; Rouabhia, Mahmoud; Cannillo, Valeria; Sola, Antonella

    2010-02-01

    Bone injuries and failures often require the inception of implant biomaterials. Research in this area is receiving increasing attention worldwide. A variety of artificial bone materials, such as metals, polymeric materials, composites and ceramics, are being explored to replace diseased bones. Calcium phosphate ceramics are currently used as biomaterials for many applications in both dentistry and orthopedics. Bioactive silicate-based glasses show a higher bioactive behaviour than calcium phosphate materials. It is very interesting to study the mixtures of HA and silicate-based glasses. In the present study; natural bovine hydroxyapatite / SiO2-CaO-MgO glass composites were produced using the Transferred arc plasma (TAP) melting method. TAP melting route is a brisk process of preparation of glass-ceramics in which the raw materials are melted in the plasma and crystallization of the melt occurs while cooling down at a much faster rate in relatively short processing times compared to the conventional methods of manufacture of glass ceramics/composites. It is well known that; one essential step to the understanding of the biological events occurring at the bone tissue/material interface is the biological investigation by in vitro tests. Cell lines are commonly used for biocompatibility tests, and are very efficient because of their reproducibility and culture facility. In this study, we report the results of a study on the response of primary cultures of human fibroblast cells to TAP melted bioactive glass ceramics.

  15. Interaction of bioactive glasses with peritoneal macrophages and monocytes in vitro.

    PubMed

    Bosetti, M; Hench, L; Cannas, M

    2002-04-01

    Macrophage activation was analyzed following exposure to pure, crystalline alpha-quartz powders, two bioactive gel-glass powders of different compositions, and a melt-derived glass, 45S5 Bioglass. The release of reactive oxygen metabolites (chemiluminescence test), modifications of cell morphology, the amount of tumor necrosis factor alpha (TNFalpha) secreted, and the amount of TNFalpha mRNA expression were evaluated. The 45S5 Bioglass powders elicited the highest chemiluminescence response while the two solgel glasses had a lower response with less of an oxidative burst difference between them. Particulate bioactive glasses are actively ingested by mouse peritoneal macrophages, and only the 58S solgel glass had a moderate toxic effect on the macrophages. Macrophage cell morphology showed increased size and cell spreading, consistent with the high level of cytokine secretion induced by 45S5 Bioglass. The 45S5 Bioglass powders led to an increased release of TNFalpha and expression of TNFalpha mRNA relative to unstimulated and control treated monocytes. Bioactive glasses (and particularly 45S5 Bioglass) that in vivo induce rapid bone growth appear to activate an autocrine-like process in which the response evoked by the material (for example monocyte and macrophage activation with cytokine production) enhances subsequent interactions with cells in contact with the material. PMID:11835162

  16. Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study

    NASA Astrophysics Data System (ADS)

    Mehdipour, Mehrad; Afshar, Abdollah; Mohebali, Milad

    2012-10-01

    In this research, submicron bioactive glass (BG) particles were synthesized by a sol-gel process and were then coated on a 316L stainless steel substrate using an electrophoretic deposition (EPD) technique. Stable suspension of bioactive glass powders in ethanol solvent was prepared by addition of triethanol amine (TEA), which increased zeta potential from 16.5 ± 1.6 to 20.3 ± 1.4 (mv). Thickness, structure and electrochemical behavior of the coating were characterized. SEM studies showed that increasing EPD voltage leads to a coating with more agglomerated particles, augmented porosity and micro cracks. The results of Fourier transformed infrared (FTIR) spectroscopy revealed the adsorption of TEA via methyl and amid groups on bioactive glass particles. Presence of bioactive glass coating reduced corrosion current density (icorr) and shifted corrosion potential (Ecorr) toward more noble values in artificial saliva at room temperature. Percent porosity of the coating measured by potentiodynamic polarization technique increased as EPD voltage was raised. The results of impedance spectroscopic studies demonstrated that the coating acts as a barrier layer in artificial saliva.

  17. Risedronate adsorption on bioactive glass surface for applications as bone biomaterial

    NASA Astrophysics Data System (ADS)

    Mosbahi, Siwar; Oudadesse, Hassane; Lefeuvre, Bertand; Barroug, Allal; Elfeki, Hafed; Elfeki, Abdelfattah; Roiland, Claire; Keskes, Hassib

    2016-03-01

    The aim of the current work is to study the physicochemical interactions between bisphosphonates molecules, risedronate (RIS) and bioactive glass (46S6) after their association by adsorption phenomenon. To more understand the interaction processes of RIS with the 46S6 surface we have used complementary physicochemical techniques such as infrared (FTIR), Raman and nuclear magnetic resonance (NMR) spectroscopy. The obtained results suggest that risedronate adsorption corresponds to an ion substitution reaction with silicon ions occurring at the bioactive glass surface. Thus, a pure bioactive glass was synthesized and fully characterized comparing the solids after adsorption (46S6-XRIS obtained after the interaction of 46S6 and X% risedronate). Therefore, based on the spectroscopic results FTIR, Raman and MAS-NMR, it can be concluded that strong interactions have been established between RIS ions and 46S6 surface. In fact, FTIR and Raman spectroscopy illustrate the fixation of risedronate on the bioactive glass surface by the appearance of several bands characterizing risedronate. The 31P MAS-NMR of the composite 46S6-XRIS show the presence of two species at a chemical shift of 15 and 19 ppm demonstrating thus the fixation of the RIS on 46S6 surface.

  18. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds.

    PubMed

    Kutikov, Artem B; Skelly, Jordan D; Ayers, David C; Song, Jie

    2015-03-01

    Effective repair of critical-size long bone defects presents a significant clinical challenge. Electrospun scaffolds can be exploited to deliver protein therapeutics and progenitor cells, but their standalone application for long bone repair has not been explored. We have previously shown that electrospun composites of amphiphilic poly(d,l-lactic acid)-co-poly(ethylene glycol)-co-poly(d,l-lactic acid) (PELA) and hydroxyapatite (HA) guide the osteogenic differentiation of bone marrow stromal cells (MSCs), making these scaffolds uniquely suited for evaluating cell-based bone regeneration approaches. Here we examine whether the in vitro bioactivity of these electrospun scaffolds can be exploited for long bone defect repair, either through the participation of exogenous MSCs or through the activation of endogenous cells by a low dose of recombinant human bone morphogenetic protein-2 (rhBMP-2). In critical-size rat femoral segmental defects, spiral-wrapped electrospun HA-PELA with preseeded MSCs resulted in laminated endochondral ossification templated by the scaffold across the longitudinal span of the defect. Using GFP labeling, we confirmed that the exogenous MSCs adhered to HA-PELA survived at least 7 days postimplantation, suggesting direct participation of these exogenous cells in templated bone formation. When loaded with 500 ng of rhBMP-2, HA-PELA spirals led to more robust but less clearly templated bone formation than MSC-bearing scaffolds. Both treatment groups resulted in new bone bridging over the majority of the defect by 12 weeks. This study is the first demonstration of a standalone bioactive electrospun scaffold for templated bone formation in critical-size long bone defects. PMID:25695310

  19. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass.

    PubMed

    Luo, Shi-Hua; Xiao, Wei; Wei, Xiao-Juan; Jia, Wei-Tao; Zhang, Chang-Qing; Huang, Wen-Hai; Jin, Dong-Xu; Rahaman, Mohamed N; Day, Delbert E

    2010-11-01

    The cytotoxicity of silver-containing borate bioactive glass was evaluated in vitro from the response of osteoblastic and fibroblastic cells in media containing the dissolution products of the glass. Glass frits containing 0-2 weight percent (wt %) Ag were prepared by a conventional melting and quenching process. The amount of Ag dissolved from the glass into a simulated body fluid (SBF), measured using atomic emission spectroscopy, increased rapidly within the first 48 h, but slowed considerably at longer times. Structural and microchemical analysis showed that the formation of a hydroxyapatite-like layer on the glass surface within 14 days of immersion in the SBF. The response of MC3T3-E1 and L929 cells to the dissolution products of the glass was evaluated using SEM observation of cell morphology, and assays of MTT hydrolysis, lactate dehydrogenase release, and alkaline phosphatase activity after incubation for up to 48 h. Cytotoxic effects were found for the borate glass containing 2 wt % Ag, but not for 0.75 and 1 wt % Ag. This borate glass containing up to ∼1 wt % Ag could provide a coating material for bacterial inhibition and enhanced bioactivity of orthopaedic implant materials such as titanium. PMID:20878930

  20. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.

    PubMed

    Maji, Kanchan; Dasgupta, Sudip; Kundu, Biswanath; Bissoyi, Akalabya

    2015-01-01

    Hydroxyapatite-chitosan/gelatin (HA:Chi:Gel) nanocomposite scaffold has potential to serve as a template matrix to regenerate extra cellular matrix of human bone. Scaffolds with varying composition of hydroxyapatite, chitosan, and gelatin were prepared using lyophilization technique where glutaraldehyde (GTA) acted as a cross-linking agent for biopolymers. First, phase pure hydroxyapatite-chitosan nanocrystals were in situ synthesized by coprecipitation method using a solution of 2% acetic acid dissolved chitosan and aqueous solution of calcium nitrate tetrahydrate [Ca(NO3)2,4H2O] and diammonium hydrogen phosphate [(NH4)2H PO4]. Keeping solid loading constant at 30 wt% and changing the composition of the original slurry of gelatin, HA-chitosan allowed control of the pore size, its distribution, and mechanical properties of the scaffolds. Microstructural investigation by scanning electron microscopy revealed the formation of a well interconnected porous scaffold with a pore size in the range of 35-150 μm. The HA granules were uniformly dispersed in the gelatin-chitosan network. An optimal composition in terms of pore size and mechanical properties was obtained from the scaffold with an HA:Chi:Gel ratio of 21:49:30. The composite scaffold having 70% porosity with pore size distribution of 35-150 μm exhibited a compressive strength of 3.3-3.5 MPa, which is within the range of that exhibited by cancellous bone. The bioactivity of the scaffold was evaluated after conducting mesenchymal stem cell (MSC) - materials interaction and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay using MSCs. The scaffold found to be conducive to MSC's adhesion as evident from lamellipodia, filopodia extensions from cell cytoskeleton, proliferation, and differentiation up to 14 days of cell culture. PMID:26335156

  1. Comprehensive Genetic Analysis of Early Host Body Reactions to the Bioactive and Bio-Inert Porous Scaffolds

    PubMed Central

    Ehashi, Tomo; Takemura, Taro; Hanagata, Nobutaka; Minowa, Takashi; Kobayashi, Hisatoshi; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations. PMID:24454803

  2. In Vitro and In Vivo Evaluations of Nano-Hydroxyapatite/Polyamide 66/Glass Fibre (n-HA/PA66/GF) as a Novel Bioactive Bone Screw

    PubMed Central

    Su, Bao; Peng, Xiaohua; Jiang, Dianming; Wu, Jun; Qiao, Bo; Li, Weichao; Qi, Xiaotong

    2013-01-01

    In this study, we prepared nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) bioactive bone screws. The microstructure, morphology and coating of the screws were characterised, and the adhesion, proliferation and viability of MC3T3-E1 cells on n-HA/PA66/GF scaffolds were determined using scanning electron microscope, CCK-8 assays and cellular immunofluorescence analysis. The results confirmed that n-HA/PA66/GF scaffolds were biocompatible and had no negative effect on MC3T3-E1 cells in vitro. To investigate the in vivo biocompatibility, internal fixation properties and osteogenesis of the bioactive screws, both n-HA/PA66/GF screws and metallic screws were used to repair intercondylar femur fractures in dogs. General photography, CT examination, micro-CT examination, histological staining and biomechanical assays were performed at 4, 8, 12 and 24 weeks after operation. The n-HA/PA66/GF screws exhibited good biocompatibility, high mechanical strength and extensive osteogenesis in the host bone. Moreover, 24 weeks after implantation, the maximum push-out load of the bioactive screws was greater than that of the metallic screws. As shown by their good cytocompatibility, excellent biomechanical strength and fast formation and ingrowth of new bone, n-HA/PA66/GF screws are thus suitable for orthopaedic clinical applications. PMID:23861888

  3. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.

    PubMed

    Tetteh, G; Khan, A S; Delaine-Smith, R M; Reilly, G C; Rehman, I U

    2014-11-01

    Polyurethane (PU) is a promising polymer to support bone-matrix producing cells due to its durability and mechanical resistance. In this study two types of medical grade poly-ether urethanes Z3A1 and Z9A1 and PU-Hydroxyapatite (PU-HA) composites were investigated for their ability to act as a scaffold for tissue engineered bone. PU dissolved in varying concentrations of dimethylformamide (DMF) and tetrahydrofuran (THF) solvents were electrospun to attain scaffolds with randomly orientated non-woven fibres. Bioactive polymeric composite scaffolds were created using 15 wt% Z3A1 in a 70/30 DMF/THF PU solution and incorporating micro- or nano-sized HA particles in a ratio of 3:1 respectively, whilst a 25 wt% Z9A1 PU solution was doped in ratio of 5:1. Chemical properties of the resulting composites were evaluated by FTIR and physical properties by SEM. Tensile mechanical testing was carried out on all electrospun scaffolds. MLO-A5 osteoblastic mouse cells and human embryonic mesenchymal progenitor cells, hES-MPs were seeded on the scaffolds to test their biocompatibility and ability to support mineralised matrix production over a 28 day culture period. Cell viability was assayed by MTT and calcium and collagen deposition by Sirius red and alizarin red respectively. SEM images of both electrospun PU scaffolds and PU-HA composite scaffolds showed differences in fibre morphology with changes in solvent combinations and size of HA particles. Inclusion of THF eliminated the presence of beads in fibres that were present in scaffolds fabricated with 100% DMF solvent, and resulted in fibres with a more uniform morphology and thicker diameters. Mechanical testing demonstrated that the Young׳s Modulus and yield strength was lower at higher THF concentrations. Inclusion of both sizes of HA particles in PU-HA solutions reinforced the scaffolds leading to higher mechanical properties, whilst FTIR characterisation confirmed the presence of HA in all composite scaffolds. Although

  4. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    PubMed

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. PMID:26204506

  5. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  6. Fabrication and characterization of poly-(ε)-caprolactone and bioactive glass composites for tissue engineering applications.

    PubMed

    Mohammadkhah, Ali; Marquardt, Laura M; Sakiyama-Elbert, Shelly E; Day, Delbert E; Harkins, Amy B

    2015-04-01

    Much work has focused on developing synthetic materials that have tailored degradation profiles and physical properties that may prove useful in developing biomaterials for tissue engineering applications. In the present study, three different composite sheets consisting of biodegradable poly-ε-caprolactone (PCL) and varying types of bioactive glass were investigated. The three composites were composed of 50wt.% PCL and (1) 50wt.% 13-93 B3 borate glass particles, (2) 50wt.% 45S5 silicate glass particles, or (3) a blend of 25wt.% 13-93 B3 and 25wt.% 45S5 glass particles. Degradation profiles determined for each composite showed the composite that contained only 13-93 B3 borate glass had a higher degradation rate compared to the composite containing only 45S5 silicate glass. Uniaxial tensile tests were performed on the composites to determine the effect of adding glass to the polymer on mechanical properties. The peak stress of all of the composites was lower than that of PCL alone, but 100% PCL had a higher stiffness when pre-reacted in cell media for 6weeks, whereas composite sheets did not. Finally, to determine whether the composite sheets would maintain neuronal growth, dorsal root ganglia isolated from embryonic chicks were cultured on composite sheets, and neurite outgrowth was measured. The bioactive glass particles added to the composites showed no negative effects on neurite extension, and neurite extension increased on PCL:45S5 PCL:13-93 B3 when pre-reacted in media for 24h. This work shows that composite sheets of PCL and bioactive glass particles provide a flexible biomaterial for neural tissue engineering applications. PMID:25686992

  7. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box-Behnken design.

    PubMed

    Gönen, Seza Özge; Erol Taygun, Melek; Aktürk, Ayşen; Küçükbayrak, Sadriye

    2016-10-01

    The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(ε-caprolactone) (PCL), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25kV, tip-to-collector distance of 12.5cm, and flow rate of 1mL/h), the fiber diameter was found to be 584±337nm which was in good agreement with the predicted value by the developed models (523±290nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. PMID:27287168

  8. Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy

    NASA Astrophysics Data System (ADS)

    Shruti, S.; Andreatta, F.; Furlani, E.; Marin, E.; Maschio, S.; Fedrizzi, L.

    2016-08-01

    Surface modification is one of the methods for improving the performance of medical implants in biological environment. In this study, cerium, gallium and zinc substituted 80%SiO2-15%CaO-5%P2O5 mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 V substrates by dip-coating method in order to obtain an inorganic-organic hybrid coating (MBG-PCL). Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 μm. Glass and polymer phases were detected in the coating along with the presence of biologically potent elements cerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samples in simulated body fluid (SBF) for up to 30 days at 37 °C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In this way, an attempt was made to develop a new biomaterial with improved in vitro bioactive response due to bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biological properties of cerium, gallium and zinc.

  9. Physicochemical properties of newly developed bioactive glass cement and its effects on various cells.

    PubMed

    Washio, Ayako; Nakagawa, Aika; Nishihara, Tatsuji; Maeda, Hidefumi; Kitamura, Chiaki

    2015-02-01

    Biomaterials used in dental treatments are expected to have favorable properties such as biocompatibility and an ability to induce tissue formation in dental pulp and periapical tissue, as well as sealing to block external stimuli. Bioactive glasses have been applied in bone engineering, but rarely applied in the field of dentistry. In the present study, bioactive glass cement for dental treatment was developed, and then its physicochemical properties and effects on cell responses were analyzed. To clarify the physicochemical attributes of the cement, field emission scanning electron microscopy, X-ray diffraction, and pH measurement were carried out. Cell attachment, morphology, and viability to the cement were also examined to clarify the effects of the cement on odontoblast-like cells (KN-3 cells), osteoblastic cells (MC3T3-E1 cells), human periodontal ligament stem/progenitor cells and neuro-differentiative cells (PC-12 cells). Hydroxyapatite-like precipitation was formed on the surface of the hardened cement and the pH level changed from pH10 to pH9, then stabilized in simulate body fluid. The cement had no cytotxic effects on these cells, and particulary induced process elongation of PC-12 cells. Our results suggest that the newly developed bioactive glass cement have capability of the application in dental procedures as bioactive cement. PMID:24895094

  10. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering.

    PubMed

    Bakhtiyari, Sanaz Soleymani Eil; Karbasi, Saeed; Monshi, Ahmad; Montazeri, Mahbobeh

    2016-01-01

    To emulate bone structure, porous composite scaffold with suitable mechanical properties should be designed. In this research the effects of nano-titania (nTiO2) on the bioactivity and mechanical properties of nano-bioglass-poly-3-hydroxybutyrate (nBG/P3HB)-composite scaffold were evaluated. First, nBG powder was prepared by melting method of pure raw materials at a temperature of 1400 °C and then the porous ceramic scaffold of nBG/nTiO2 with 30 wt% of nBG containing different weight ratios of nTiO2 (3, 6, and 9 wt% of nTiO2 with grain size of 35-37 nm) was prepared by using polyurethane sponge replication method. Then the scaffolds were coated with P3HB in order to increase the scaffold's mechanical properties. Mechanical strength and modulus of scaffolds were improved by adding nTiO2 to nBG scaffold and adding P3HB to nBG/nTiO2 composite scaffold. The results of the compressive strength and porosity tests showed that the best scaffold is 30 wt% of nBG with 6 wt% of nTiO2 composite scaffold immersed for 30 s in P3HB with 79.5-80 % of porosity in 200-600 μm, with a compressive strength of 0.15 MPa and a compressive modulus of 30 MPa, which is a good candidate for bone tissue engineering. To evaluate the bioactivity of the scaffold, the simulated body fluid (SBF) solution was used. The best scaffold with 30 wt% of nBG, 6 wt% of P3HB and 6 wt% of nTiO2 was immersed in SBF for 4 weeks at an incubation temperature of 37 °C. The bioactivity of the scaffolds was characterized by AAS, SEM, EDXA and XRD. The results of bioactivity showed that bone-like apatite layer formed well at scaffold surface and adding nTiO2 to nBG/P3HB composite scaffold helped increase the bioactivity rate. PMID:26610925

  11. Study of hydroxyl carbonate apatite formation on bioactive glass coated dental ceramics by confocal laser scanning microscopy (CLSM)

    NASA Astrophysics Data System (ADS)

    Stanciu, G. A.; Savu, B.; Sandulescu, I.; Paraskevopoulos, K.; Koidis, P.

    2007-03-01

    Some dental ceramics were coated with a bioactive glass and resulted the formation of a stable and well bonded with the ceramic substrate thin layer. After immersion in a solution with ion concentrations similar to those of human blood plasma the development of hydroxy carbonate apatite layer on the surface of bioactive glass may be observed. The objective of this study was to investigate structural surface changes of bioactive glass, after exposure in a simulated body fluid for a different number of days. The roughness and topography of the hydroxyapatite surface were investigated by Confocal Scanning Laser Microscopy. The chemical composition was analyzed by Energy Dispersive Spectroscopy measurements.

  12. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties.

    PubMed

    Wang, Xu; Gu, Zhipeng; Jiang, Bo; Li, Li; Yu, Xixun

    2016-04-01

    For bioceramic scaffolds employed in clinical applications, excellent bioactivity and tenacity were of great importance. Modifying inorganic SCPP scaffolds with biological macromolecules could obviously improve its bioactivity and eliminate its palpable brittleness. However, it was hard to execute directly due to extremely bad interfacial compatibility between them. In this research, dopamine (DOPA) was introduced onto strontium-doped calcium polyphosphate (SCPP) scaffolds, subsequently the preliminary material was successfully further modified by silk fibroin (SF). SCPP/D/SF possessed suitable biomechanical properties, ability to stimulate angiogenic factor secretion and excellent biocompatibility. Biomechanical examination demonstrated that SCPP/D/SF scaffolds yielded better compressive strength because of improved interfacial compatibility. MTT assay and CLSM observation showed that SCPP/D/SF scaffolds had good cytocompatibility and presented better inducing-cell-migration potential than pure SCPP scaffolds. Meanwhile, its ability to stimulate angiogenic factor secretion was measured through the ELISA assay and immunohistological analysis in vitro and in vivo respectively. The results revealed, superior to SCPP, SCPP/D/SF could effectively promote VEGF and bFGF expression, possibly leading to enhancing angiogenesis and osteogenesis. In a word, SCPP/D/SF could serve as a potential bone tissue engineering scaffold for comparable biomechanical properties and excellent bioactivity. It provided a novel idea for modification of inorganic materials to prepare promising bone tissue engineering scaffolds with the ability to accelerate bone regeneration and vascularization. PMID:26870855

  13. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum. PMID:25822408

  14. Optimized solid phase-assisted synthesis of dendrons applicable as scaffolds for radiolabeled bioactive multivalent compounds intended for molecular imaging.

    PubMed

    Fischer, Gabriel; Wängler, Björn; Wängler, Carmen

    2014-01-01

    Dendritic structures, being highly homogeneous and symmetric, represent ideal scaffolds for the multimerization of bioactive molecules and thus enable the synthesis of compounds of high valency which are e.g., applicable in radiolabeled form as multivalent radiotracers for in vivo imaging. As the commonly applied solution phase synthesis of dendritic scaffolds is cumbersome and time-consuming, a synthesis strategy was developed that allows for the efficient assembly of acid amide bond-based highly modular dendrons on solid support via standard Fmoc solid phase peptide synthesis protocols. The obtained dendritic structures comprised up to 16 maleimide functionalities and were derivatized on solid support with the chelating agent DOTA. The functionalized dendrons furthermore could be efficiently reacted with structurally variable model thiol-bearing bioactive molecules via click chemistry and finally radiolabeled with 68Ga. Thus, this solid phase-assisted dendron synthesis approach enables the fast and straightforward assembly of bioactive multivalent constructs for example applicable as radiotracers for in vivo imaging with Positron Emission Tomography (PET). PMID:24871573

  15. Preparation, in vitro mineralization and osteoblast cell response of electrospun 13-93 bioactive glass nanofibers.

    PubMed

    Deliormanlı, Aylin M

    2015-08-01

    In this study, silicate based 13-93 bioactive glass fibers were prepared through sol-gel processing and electrospinning technique. A precursor solution containing poly (vinyl alcohol) and bioactive glass sol was used to produce fibers. The mixture was electrospun at a voltage of 20 kV by maintaining tip to a collector distance of 10 cm. The amorphous glass fibers with an average diameter of 464±95 nm were successfully obtained after calcination at 625 °C. Hydroxyapatite formation on calcined 13-93 fibers was investigated in simulated body fluid (SBF) using two different fiber concentrations (0.5 and 1 mg/ml) at 37 °C. When immersed in SBF, conversion to a calcium phosphate material showed a strong dependence on the fiber concentration. At 1mg/ml, the surface of the fibers converted to the hydroxyapatite-like material in SBF only after 30 days. At lower solid concentrations (0.5 mg/ml), an amorphous calcium phosphate layer formation was observed followed by the conversion to hydroxyapatite phase after 7 days of immersion. The XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay was conducted to evaluate the osteoblast cell response to the bioactive glass fibers. PMID:26042714

  16. Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles.

    PubMed

    Miola, Marta; Fucale, Giacomo; Maina, Giovanni; Verné, Enrica

    2015-09-01

    A bioactive silica-based glass powder (SBA2) was doped with silver (Ag(+)) ions by means of an ion-exchange process. Scanning electron microscopy (SEM), energy dispersion spectrometry (EDS) and x-ray diffraction (XRD) evidenced that the glass powder was enriched with Ag(+) ions. However, a small amount of Ag2CO3 precipitated with increased Ag concentrations in the exchange solution. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Ag-SBA2 towards Staphylococcus aureus were also evaluated and were respectively 0.05 mg ml(-1) and 0.2 mg ml(-1). Subsequently, Ag-SBA2 glass was used as filler (30%wt) in a commercial formulation of bone cement (Simplex(™) P) in order to impart both antibacterial and bioactive properties. The composite bone cement was investigated in terms of morphology (using SEM) and composition (using EDS); the glass powder was well dispersed and exposed on the cement surface. Bioactivity tests in simulated body fluid (SBF) evidenced the precipitation of hydroxyapatite on sample surfaces. Composite cement demonstrated antibacterial properties and a compressive strength comparable to the commercial formulation. PMID:26481324

  17. Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings.

    PubMed

    Nelson, G M; Nychka, J A; McDonald, A G

    2014-03-01

    Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20±2MPa (n=5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to

  18. Electrophoretic co-deposition of cellulose nanocrystals-45S5 bioactive glass nanocomposite coatings on stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Yang, Yuyun; Pérez de Larraya, Uxua; Garmendia, Nere; Virtanen, Sannakaisa; Boccaccini, Aldo R.

    2016-01-01

    An organic-inorganic nanocomposite coating consisting of fibrous cellulose nanocrystals and 45S5 bioactive glass, intended as a bioactive surface for bone implants, was developed by a one-step electrophoretic deposition. The composition, surface roughness and wettability of the deposited coatings, influenced by the concentration of each component in the suspension, were controllable as a result of the simplicity of the coating technique. Bioactive glass particles were individually wrapped with porous cellulose layers, forming a porous coating with uniform thickness. Bioactivity test in simulated body fluid revealed a rapid hydroxyapatite formation on the deposited nanocomposite coating. Furthermore, electrochemical test was carried out to understand the corrosion behavior of the deposited coatings during incubation in simulated body fluid. According to the results of this study, the obtained cellulose-bioactive glass coatings with tunable properties represent a promising approach for biofunctionalization of metallic orthopedic implants.

  19. Influence of SrO substitution for CaO on the properties of bioactive glass S53P4.

    PubMed

    Massera, Jonathan; Hupa, Leena

    2014-03-01

    Commercial melt-quenched bioactive glasses consist of the oxides of silicon, phosphorus, calcium and sodium. Doping of the glasses with oxides of some other elements is known to affect their capability to support hydroxyapatite formation and thus bone tissue healing but also to modify their high temperature processing parameters. In the present study, the influence of gradual substitution of SrO for CaO on the properties of the bioactive glass S53P4 was studied. Thermal analysis and hot stage microscopy were utilized to measure the thermal properties of the glasses. The in vitro bioactivity and solubility was measured by immersing the glasses in simulated body fluid for 6 h to 1 week. The formation of silica rich and hydroxyapatite layers was assessed from FTIR spectra analysis and SEM images of the glass surface. Increasing substitution of SrO for CaO decreased all characteristic temperatures and led to a slightly stronger glass network. The initial glass dissolution rate increased with SrO content. Hydroxyapatite layer was formed on all glasses but on the SrO containing glasses the layer was thinner and contained also strontium. The results suggest that substituting SrO for CaO in S53P4 glass retards the bioactivity. However, substitution greater than 10 mol% allow for precipitation of a strontium substituted hydroxyapatite layer. PMID:24338267

  20. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    PubMed Central

    Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat

    2013-01-01

    Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155

  1. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry.

    PubMed

    Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat

    2013-01-01

    Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155

  2. New biomorphic SiC ceramics coated with bioactive glass for biomedical applications.

    PubMed

    González, P; Serra, J; Liste, S; Chiussi, S; León, B; Pérez-Amor, M; Martínez-Fernández, J; de Arellano-López, A R; Varela-Feria, F M

    2003-11-01

    A new generation of light, tough and high-strength material for medical implants for bone substitutions with a good biological response is presented. The innovative product that fulfills all these requirements is based on biomorphic silicon carbide ceramics coated with a bioactive glass layer. The combination of the excellent mechanical properties and low density of the biomorphic SiC ceramics, used as a base material for implants, with the osteoconducting properties of the bioactive glass materials opens new possibilities for the development of alternative dental and orthopedic implants with enhanced mechanical and biochemical properties that ensures optimum fixation to living tissue. Biomorphic SiC is fabricated by molten-Si infiltration of carbon templates obtained by controlled pyrolysis of wood. Through this process, the microstructure of the final SiC product mimics that of the starting wood, which has been perfected by natural evolution. The basic features of such microstructure are its porosity (ranging from 30% to 70%) and its anisotropy, which resembles the cellular microstructure and the mechanical characteristics of the bone. The SiC ceramics have been successfully coated with a uniform and adherent bioactive glass film by pulsed laser ablation using an excimer ArF laser. The excellent coverage of the SiC rough surface without film spallation or detachment is demonstrated. In order to assess the coating bioactivity, in vitro tests by soaking the samples in simulated body fluid have been carried out. After 72 h, the formation of a dense apatite layer has been observed even in interconnecting pores by SEM and energy dispersive X-ray spectroscopy analysis demonstrating the bioactive response of this product. PMID:14530079

  3. Effect of Ti(+4) on in vitro bioactivity and antibacterial activity of silicate glass-ceramics.

    PubMed

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Hussain, Tousif; Bashir, Farooq; Ikhram, Hafeez

    2016-12-01

    A novel glass-ceramic series in (48-x) SiO2-36 CaO-4 P2O5-12 Na2O-xTiO2 (where x=0, 3.5, 7, 10.5 and 14mol %) system was synthesized by crystallization of glass powders, obtained by melt quenching technique. The differential scanning calorimetric analysis (DSC) was used to study the non-isothermal crystallization kinetics of the as prepared glasses. The crystallization behaviour of glasses was analyzed under non-isothermal conditions, and qualitative phase analysis of glass-ceramics was made by X-ray diffraction. The in vitro bioactivity of synthesized glass-ceramics was studied in stimulated body fluid at 37°C under static condition for 24days. The formation of hydroxyl-carbonated apatite layer; evident of bioactivity of the material, was elucidated by XRD, FTIR, AAS, SEM and EDX analysis. The result showed that partial substitution of TiO2 with SiO2 negatively influenced bioactivity; it decreased with increase in concentration of TiO2. As Ti(+4) having stronger field strength as compared to Si(+4) so its replacement became the cause for reduction in degradation that in turn improved the chemical stability. The compressive strength was also enhanced with progress addition of TiO2 in the system. The antibacterial properties were examined against Staphylococcus Epidermidis. Strong antibacterial efficacy was observed with the addition of TiO2 in the system. PMID:27612803

  4. Preparation and biocompatibility evaluation of bioactive glass-forsterite nanocomposite powder for oral bone defects treatment applications.

    PubMed

    Saqaei, Mahboobe; Fathi, Mohammadhossein; Edris, Hossein; Mortazavi, Vajihesadat

    2015-11-01

    Bone defects which emerge around dental implants are often seen when implants are placed in areas with insufficient alveolar bone, in extraction sockets, or around failing implants. Bone regeneration in above-mentioned defects using of bone grafts or bone substitutes may cure the long-term prognoses of dental implants. Biocompatibility, bioactivity and osteogenic properties are key factors affecting the applications of a bone substitute. This study was aimed at preparation, characterization, biocompatibility and bioactivity evaluation of the bioactive glass-forsterite nanocomposite powder as a desired candidate for oral bone defect treatments. Nanocomposite powders containing 58S bioactive glass and different amounts of forsterite nanopowder were synthesized in situ by sol-gel technique. Characterization of the prepared nanocomposite powders and their cytotoxicity assessment was performed via MTT test. Bioactivity assessment was done by immersing the prepared powder in the simulated body fluid (SBF). Results showed that nanocomposite powders containing forsterite with crystallite size of 20-50nm were successfully fabricated by calcination at 600°C. The prepared bioactive glass-forsterite nanocomposite powders revealed high in vitro biocompatibility; besides, the nanocomposite containing 20wt.% forsterite showed a substantial increase in the cell viability compared with control groups. During immersion in SBF, the formation of apatite layer confirmed the bioactivity of bioactive glass-forsterite nanocomposite powders. According to the results, the fabricated nanocomposite powders can be introduced as a promising candidate for oral bone imperfection treatments and hard tissue mend. PMID:26249608

  5. Negative Effect of Rapidly Resorbing Properties of Bioactive Glass-Ceramics as Bone Graft Substitute in a Rabbit Lumbar Fusion Model

    PubMed Central

    Lee, Jae Hyup; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Lee, Do-Yoon; Chang, Bong-Soon

    2014-01-01

    Background Bioactive glass-ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. CaO-SiO2-P2O5-B2O3 glass-ceramics are known to have good osteoconductivity and are used as bone graft extenders. Methods This study aimed to evaluate the effects of the resorbing properties of glass-ceramics in bone fusion after producing and analyzing three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with high osteoconductivity that had enhanced resorption by having an increased B2O3 content. The three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with B2O3 contents of 8.0, 9.0, and 9.5 weight % were designated and grouped as P20B80, P10B90, and P5B95, respectively. Glass-ceramic types were tested for fusion rates and bone formation by employing the lumbar 5-6 intertransverse process fusion model in 51 New Zealand male rabbits. Bioactivity was assessed by soaking in simulated body fluid (SBF). Results In vitro study results showed sufficient hydroxycarbonate apatite layer formation occurred for P20B80 in1 day, for P10B90 in 3 days, and for P5B95 in 5 days after soaking in SBF. For the rabbit lumbar spine posterolateral fusion model, the autograft group recorded a 100% fusion rate with levels significantly higher than those of P20B80 (29.4%), P10B90 (0%), and P5B95 (14.3%), with high resorbing properties. Resorbing property differences among the three glass-ceramic groups were not significant. Histological results showed new bone formation confirming osteoconductivity in all three types of glass-ceramics. Radiomorphometric results also confirmed the resorbing properties of the three glass-ceramic types. Conclusions The high resorbing properties and osteoconductivity of porous glass-ceramics can be advantageous as no glass-ceramics remain in the body. However, their relatively fast rate of resorption in the body negatively affects their role as an osteoconductive scaffold as glass

  6. Study of an anisotropic ferrimagnetic bioactive glass ceramic for cancer treatment

    NASA Astrophysics Data System (ADS)

    Shah, Saqlain A.; Hashmi, M. U.; Shamim, A.; Alam, S.

    2010-07-01

    For the hyperthermia therapy of cancer, ferrimagnetic glass ceramics are a potential candidate. Ferrimagnetic zinc-ferrite-containing bioactive glass ceramics were prepared by quenching the glass ceramics from sintering temperature. Then the samples were heated to 600°C and cooled in an aligning magnetic field of 1 Tesla to cause anisotropy. The magnetically aligned samples were compared with non-aligned samples. Vibrating sample magnetometry measurements at 10 kOe showed that the magnetic properties were enhanced by the aligning magnetic field and it led to an enhancement of the magnetic heat generation under a magnetic induction furnace operating at 500 Oe and 400 kHz for 2 min. Data showed that the maximum specific power loss and temperature increase after 2 min were 31.5 W/g and 45°C, respectively, for the aligned sample of maximum zinc-ferrite crystalline content. The glass ceramics were immersed in simulated body fluid for 3 weeks. X-ray diffraction and Fourier transform infrared and atomic absorption spectroscopy results indicated the growth of precipitated hydroxyapatite, suggesting that the ferrimagnetic glass ceramics were bioactive and could bond to living tissues in physiological environment.

  7. Characterization and induction of cementoblast cell proliferation by bioactive glass nanoparticles.

    PubMed

    Carvalho, Sandhra M; Oliveira, Agda A R; Jardim, Camila A; Melo, Carolina B S; Gomes, Dawidson A; de Fátima Leite, Maria; Pereira, Marivalda M

    2012-11-01

    Cementum is a mineralized tissue that lines the surface of the tooth root enabling attachment of the periodontal ligament to the root and surrounding alveolar bone. Studies examining the mechanisms involved in the formation of root cementum have been hindered by an inability to isolate and culture the cells required for cementum production (cementoblasts). This study isolated and characterized cementoblast cells derived from rat molar periodontal ligament. It was observed that the isolated cells expressed F-Spondin, a cementoblast marker, while F-Spondin expression was not observed in the cells of other tissues such as gingival fibroblasts and osteoblasts. As expected, the isolated cementoblast cells also expressed osteocalcin (OC), bone sialoprotein (BSP), alkaline phosphatase (ALP), and type I collagen, demonstrating the presence of mineralized tissues genes in cementoblast cells. These cells showed high ALP activity and calcified nodule formation in vitro. Since cementogenesis could be a critical event for regeneration of periodontal tissues, this study investigated whether bioactive glass particles could affect the proliferation of cementoblasts since they are known to enhance osteoblast proliferation. It was found that the ionic products from bioactive glass nanoparticles increased cementoblast viability, mitochondrial activity, and induced cell proliferation. Together, these results show the characterization of cementoblast cells from rat molar periodontal ligament. Additionally, it was shown that bioactive glass nanoparticles induced cementoblast to proliferate, indicating that they could be a potential material for use in cement regeneration through tissue engineering. PMID:22499432

  8. The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses.

    PubMed

    O'Donnell, M D; Watts, S J; Hill, R G; Law, R V

    2009-08-01

    We report on the bioactivity of two series of glasses in the SiO(2)-Na(2)O-CaO-P(2)O(5) system after immersion in simulated body fluid (SBF) after 21 days. The effect of P(2)O(5) content was examined for compositions containing 0-9.25 mol.% phosphate. Both series of glasses degraded to basic pH, but the solutions tended towards to neutrality with increasing phosphate content; a result of the acidic phosphate buffering the effect of the alkali metal and alkaline earth ions on degradation. Bioactivity was assessed by the appearance of features in the X-ray diffraction (XRD) traces and Fourier transform infrared (FTIR) spectra consistent with crystalline hydroxyl-carbonate-apatite (HCAp): such as the appearance of the (002) Bragg reflection in XRD and splitting of the P-O stretching vibration around 550 cm(-1) in the FTIR respectively. All glasses formed HCAp in SBF over the time periods studied and the time for formation of this crystalline phase occurred more rapidly in both series as the phosphate contents were increased. For P(2)O(5) content >3 mol.% both series exhibited highly crystalline apatite by 16 h immersion in SBF. This indicates that in the compositions studied, phosphate content is more important for bioactivity than network connectivity (NC) of the silicate phase and compositions showing rapid apatite formation are presented, superior to 45S5 Bioglass which was tested under identical conditions for comparison. PMID:19330429

  9. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model

    PubMed Central

    Wang, De-Xin; He, Yao; Bi, Long; Qu, Ze-Hua; Zou, Ji-Wei; Pan, Zhen; Fan, Jun-Jun; Chen, Liang; Dong, Xin; Liu, Xiang-Nan; Pei, Guo-Xian; Ding, Jian-Dong

    2013-01-01

    Purpose Poly(lactic-co-glycolic acid) (PLGA) is excellent as a scaffolding matrix due to feasibility of processing and tunable biodegradability, yet the virgin scaffolds lack osteoconduction and osteoinduction. In this study, nano-hydroxyapatite (nHA) was coated on the interior surfaces of PLGA scaffolds in order to facilitate in vivo bone defect restoration using biomimetic ceramics while keeping the polyester skeleton of the scaffolds. Methods PLGA porous scaffolds were prepared and surface modification was carried out by incubation in modified simulated body fluids. The nHA coated PLGA scaffolds were compared to the virgin PLGA scaffolds both in vitro and in vivo. Viability and proliferation rate of bone marrow stromal cells of rabbits were examined. The constructs of scaffolds and autogenous bone marrow stromal cells were implanted into the segmental bone defect in the rabbit model, and the bone regeneration effects were observed. Results In contrast to the relative smooth pore surface of the virgin PLGA scaffold, a biomimetic hierarchical nanostructure was found on the surface of the interior pores of the nHA coated PLGA scaffolds by scanning electron microscopy. Both the viability and proliferation rate of the cells seeded in nHA coated PLGA scaffolds were higher than those in PLGA scaffolds. For bone defect repairing, the radius defects had, after 12 weeks implantation of nHA coated PLGA scaffolds, completely recuperated with significantly better bone formation than in the group of virgin PLGA scaffolds, as shown by X-ray, Micro-computerized tomography and histological examinations. Conclusion nHA coating on the interior pore surfaces can significantly improve the bioactivity of PLGA porous scaffolds. PMID:23690683

  10. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.

    PubMed

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

    2012-12-18

    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses. PMID:23171477

  11. Simulations reveal the role of composition into the atomic-level flexibility of bioactive glass cements.

    PubMed

    Tian, Kun Viviana; Chass, Gregory A; Di Tommaso, Devis

    2016-01-14

    Bioactive glass ionomer cements (GICs), the reaction product of a fluoro-alumino-silicate glass and polyacrylic acid, have been in effective use in dentistry for over 40 years and more recently in orthopaedics and medical implantation. Their desirable properties have affirmed GIC's place in the medical materials community, yet are limited to non-load bearing applications due to the brittle nature of the hardened composite cement, thought to arise from the glass component and the interfaces it forms. Towards helping resolve the fundamental bases of the mechanical shortcomings of GICs, we report the 1st ever computational models of a GIC-relevant component. Ab initio molecular dynamics simulations were employed to generate and characterise three fluoro-alumino-silicate glasses of differing compositions with focus on resolving the atomic scale structural and dynamic contributions of aluminium, phosphorous and fluorine. Analyses of the glasses revealed rising F-content leading to the expansion of the glass network, compression of Al-F bonding, angular constraint at Al-pivots, localisation of alumino-phosphates and increased fluorine diffusion. Together, these changes to the structure, speciation and dynamics with raised fluorine content impart an overall rigidifying effect on the glass network, and suggest a predisposition to atomic-level inflexibility, which could manifest in the ionomer cements they form. PMID:26646505

  12. Mineralization of dentin induced by treatment with bioactive glass S53P4 in vitro.

    PubMed

    Forsback, Ari-Pekka; Areva, Sami; Salonen, Jukka I

    2004-02-01

    Dentin hypersensitivity can be managed to occlude dentin tubules, but none of the agents used are components of natural dentin. Using a calcium phosphate precipitation (CPP) method, dentin tubules can be occluded with a calcium phosphate (CaP) layer similar to the major inorganic component of dentin. The CPP method utilizes acidic pH conditions, such as etching of dentin, over the course of several dental treatments. A gentler method can be used to produce a CaP layer on the surface of dentin. By treating with bioactive glass S53P4 (BAG), or regular commercial glass (CG), mineralization occurs in physiologically neutral solutions such as simulated body fluid (SBF) and remineralization solution (RMS). After a short period of immersion, silica is dissolved from both types of glass, but the amount of silica released is much greater from BAG than from CG. The dissolved silica is adsorbed on the surface of dentin during the pretreatment procedure and enhances the mineralization of dentin in SBF. After 14 days' mineralization the dentin is fully covered by the CaP layer, but after 14 days' immersion in RMS decalcification of the dentin occurs. Pretreatment with BAG decreases the degree of decalcification of dentin during the mineralization process. These findings suggest that bioactive glass S53P4 can be used as a therapeutic material for mineralization of dentin and its tubules in a physiological environment. PMID:15124778

  13. Degradability, bioactivity, and osteogenesis of biocomposite scaffolds of lithium-containing mesoporous bioglass and mPEG-PLGA-b-PLL copolymer.

    PubMed

    Cai, Yanrong; Guo, Lieping; Shen, Hongxing; An, Xiaofei; Jiang, Hong; Ji, Fang; Niu, Yunfei

    2015-01-01

    Biocomposite scaffolds of lithium (Li)-containing mesoporous bioglass and monomethoxy poly(ethylene glycol)-poly(D,L-lactide-co-glycolide)-poly(L-lysine) (mPEG-PLGA-b-PLL) copolymer were fabricated in this study. The results showed that the water absorption and degradability of Li-containing mesoporous bioglass/mPEG-PLGA-b-PLL composite (l-MBPC) scaffolds were obviously higher than Li-containing bioglass/mPEG-PLGA-b-PLL composite (l-BPC) scaffolds. Moreover, the apatite-formation ability of l-MBPC scaffolds was markedly enhanced as compared with l-BPC scaffolds, indicating that l-MBPC scaffolds containing mesoporous bioglass exhibited good bioactivity. The cell experimental results showed that cell attachment, proliferation, and alkaline phosphatase activity of MC3T3-E1 cells on l-MBPC scaffolds were remarkably improved as compared to l-BPC scaffolds. In animal experiments, the histological elevation results revealed that l-MBPC scaffolds significantly promoted new bone formation, indicating good osteogenesis. l-MBPC scaffolds with improved properties would be an excellent candidate for bone tissue repair. PMID:26150718

  14. Degradability, bioactivity, and osteogenesis of biocomposite scaffolds of lithium-containing mesoporous bioglass and mPEG-PLGA-b-PLL copolymer

    PubMed Central

    Cai, Yanrong; Guo, Lieping; Shen, Hongxing; An, Xiaofei; Jiang, Hong; Ji, Fang; Niu, Yunfei

    2015-01-01

    Biocomposite scaffolds of lithium (Li)-containing mesoporous bioglass and monomethoxy poly(ethylene glycol)-poly(D,L-lactide-co-glycolide)-poly(L-lysine) (mPEG-PLGA-b-PLL) copolymer were fabricated in this study. The results showed that the water absorption and degradability of Li-containing mesoporous bioglass/mPEG-PLGA-b-PLL composite (l-MBPC) scaffolds were obviously higher than Li-containing bioglass/mPEG-PLGA-b-PLL composite (l-BPC) scaffolds. Moreover, the apatite-formation ability of l-MBPC scaffolds was markedly enhanced as compared with l-BPC scaffolds, indicating that l-MBPC scaffolds containing mesoporous bioglass exhibited good bioactivity. The cell experimental results showed that cell attachment, proliferation, and alkaline phosphatase activity of MC3T3-E1 cells on l-MBPC scaffolds were remarkably improved as compared to l-BPC scaffolds. In animal experiments, the histological elevation results revealed that l-MBPC scaffolds significantly promoted new bone formation, indicating good osteogenesis. l-MBPC scaffolds with improved properties would be an excellent candidate for bone tissue repair. PMID:26150718

  15. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications.

    PubMed

    Bellucci, Devis; Sola, Antonella; Cannillo, Valeria

    2016-04-01

    Calcium phosphates are among the most common biomaterials employed in orthopaedic and dental surgery. The efficacy of such systems as bone substitutes and bioactive coatings on metallic prostheses has been proved by several clinical studies. Among these materials, hydroxyapatite (HA) and tricalcium phosphate (TCP) play a prominent role in medical practice since the '80s. In the last years, numerous attempts to combine HA or TCP with bioactive glasses have been made. There are two main motivations for sintering calcium phosphates with a glassy phase: on the one hand, it is possible to tune the dissolution of the final system and to enhance its biological response through the synergistic combination of two bioactive phases; on the other hand, the glass acts as a sintering aid with the aim to increase the densification of the composite and thus its mechanical strength. In this sense, TCP and HA are penalized by their relatively poor fracture toughness and tensile strength compared to natural bone, which makes it impossible to use them in load-bearing applications. Moreover, the bioactivity index of pure calcium phosphates is typically lower with respect to that of many bioactive glasses. In this review, the state of the art and current applications of composites, based on HA or TCP with bioactive glass as second phase, are presented and discussed. A special emphasis is given to the processing and mechanical behaviour of these systems, together with their biological implications, as a function of the composition of the glass employed as second phase. PMID:26646669

  16. Bioactivity and cytotoxicity of glass and glass-ceramics based on the 3CaO·P₂O₅--SiO₂--MgO system.

    PubMed

    Daguano, Juliana K M F; Rogero, Sizue O; Crovace, Murilo C; Peitl, Oscar; Strecker, Kurt; Dos Santos, Claudinei

    2013-09-01

    The mechanical strength of bioactive glasses can be improved by controlled crystallization, turning its use as bulk bone implants viable. However, crystallization may affect the bioactivity of the material. The aim of this study was to develop glass-ceramics of the nominal composition (wt%) 52.75(3CaO·P₂O₅)-30SiO₂-17.25MgO, with different crystallized fractions and to evaluate their in vitro cytotoxicity and bioactivity. Specimens were heat-treated at 700, 775 and 975 °C, for 4 h. The major crystalline phase identified was whitlockite, an Mg-substituted tricalcium phosphate. The evaluation of the cytotoxicity was carried out by the neutral red uptake methodology. Ionic exchanges with the simulated body fluid SBF-K9 acellular solution during the in vitro bioactivity tests highlight the differences in terms of chemical reactivity between the glass and the glass-ceramics. The effect of crystallinity on the rates of hydroxycarbonate apatite (HCA) formation was followed by Fourier transformed infrared spectroscopy. Although all glass-ceramics can be considered bioactive, the glass-ceramic heat-treated at 775 °C (V775-4) presented the most interesting result, because the onset for HCA formation is at about 24 h and after 7 days the HCA layer dominates completely the spectrum. This occurs probably due to the presence of the whitlockite phase (3(Ca,Mg)O·P₂O₅). All samples were considered not cytotoxic. PMID:23764763

  17. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering

    PubMed Central

    Nandakumar, Anandkumar; Barradas, Ana; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineering. PMID:23507924

  18. Use of a bioactive scaffold for the repair of bone defects in a novel reproducible vertebral body defect model.

    PubMed

    Liang, Haixiang; Wang, Kun; Shimer, Adam L; Li, Xudong; Balian, Gary; Shen, Francis H

    2010-08-01

    bone growth period for VB bone repair in rats. This animal model has further utility for the study of different biomaterials for VB bone repair. Implantation of a bioactive PLGA scaffold carrying rhBMP2 allowed more successful repair of the VB defect. Although further characterization studies are needed, the bioactive PLGA scaffold developed in this study will likely adapt easily to other in vivo osteogenesis applications. PMID:20580872

  19. Cellulose Nanocrystals--Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance.

    PubMed

    Chen, Qiang; Garcia, Rosalina Pérez; Munoz, Josemari; Pérez de Larraya, Uxua; Garmendia, Nere; Yao, Qingqing; Boccaccini, Aldo R

    2015-11-11

    Surface functionalization of orthopedic implants is being intensively investigated to strengthen bone-to-implant contact and accelerate bone healing process. A hybrid coating, consisting of 45S5 bioactive glass (BG) individually wrapped and interconnected with fibrous cellulose nanocrystals (CNCs), is deposited on 316L stainless steel from aqueous suspension by a one-step electrophoretic deposition (EPD) process. Apart from the codeposition mechanism elucidated by means of zeta-potential and scanning electron microscopy measurements, in vitro characterization of the deposited CNCs-BG coating in simulated body fluid reveals an extremely rapid mineralization of BG particles on the coating (e.g., the formation of hydroxyapatite crystals layer after 0.5 day). A series of comparative trials and characterization methods were carried out to comprehensively understand the mineralization process of BG interacting with CNCs. Furthermore, key factors for satisfying the applicability of an implant coating such as coating composition, surface topography, and adhesion strength were quantitatively investigated as a function of mineralization time. Cell culture studies (using MC3T3-E1) indicate that the presence of CNCs-BG coating substantially accelerated cell attachment, spreading, proliferation, differentiation, and mineralization of extracellular matrix. This study has confirmed the capability of CNCs to enhance and regulate the bioactivity of BG particles, leading to mineralized CNCs-BG hybrids for improved bone implant coatings. PMID:26460819

  20. A nanotectonics approach to produce hierarchically organized bioactive glass nanoparticles-based macrospheres

    NASA Astrophysics Data System (ADS)

    Luz, Gisela M.; Mano, João F.

    2012-09-01

    Bioactive particles have been widely used in a series of biomedical applications due to their ability to promote bone-bonding and elicit favorable biological responses in therapies associated with the replacement and regeneration of mineralized tissues. In this work hierarchical architectures are prepared by an innovative methodology using SiO2-CaO sol-gel based nanoparticles. Inspired by colloidal crystals, spherical aggregates were formed on biomimetic superhydrophobic surfaces using bioactive glass nanoparticles (BG-NPs) able to promote bone regeneration. A highly ordered organization, a common feature of mineralized structures in Nature, was achieved at both nano- and microlevels, being the crystallization degree of the structures controlled by the evaporation rates taking place at room temperature (RT) or at 4 °C. The crystallization degree of the structures influenced the Ca/P ratio of the apatitic film formed at their surface, after 7 days of immersion in SBF. This allows the regulation of bioactive properties and the ability to release potential additives that could be also incorporated in such particles with a high efficiency. Such a versatile method to produce bioactive particles with controlled size and internal structure could open new possibilities in designing new spherical devices for orthopaedic applications, including tissue engineering.

  1. Porous bioactive scaffold of aliphatic polyurethane and hydroxyapatite for tissue regeneration.

    PubMed

    Wang, Li; Li, Yubao; Zuo, Yi; Zhang, Li; Zou, Qin; Cheng, Lin; Jiang, Hong

    2009-04-01

    In this study, a new hydroxyapatite (HA)/polyurethane (PU) composite porous scaffold was developed by in situ polymerization. Aliphatic isophorone diisocyanate as a nontoxic and safe agent was adopted to produce the rigid segment in polyurethane polymerization. Hydroxyapatite powder was compounded in a PU polymer matrix during the polymeric process. The macrostructure and morphology as well as mechanical strength of the scaffolds were characterized by FTIR, XRD, DSC and SEM. The results show that the isophorone diisocyanate can react mildly with hydroxyl (-OH) groups of castor oil and a mild foaming action caused by the release of CO2 gas occurred simultaneously in the reactive process, thus producing a uniform porous structure of HA/PU scaffold. The HA/PU composite scaffold with a high HA content of about 60 wt% has a porosity of more than 78% and a pore size from 100 microm to 800 microm. The HA/PU scaffold exhibited good cytocompatibility estimated by co-culturing the scaffold with MG63 cells through MTT test. The porous composite scaffold has good homogenization and a perfect three-dimensional structure for cell migration and bone tissue ingrowth, and should have good prospects for bone tissue regeneration. PMID:19208942

  2. A doxorubicin delivery system: Samarium/mesoporous bioactive glass/alginate composite microspheres.

    PubMed

    Zhang, Ying; Wang, Xiang; Su, Yanli; Chen, Dongya; Zhong, Wenxing

    2016-10-01

    Samarium (Sm) incorporated mesoporous bioactive glasses (MBG) microspheres have been prepared using the method of alginate cross-linking with Ca(2+) ions. The in vitro bioactivities of Sm/MBG/alginate microspheres were studied by immersing in simulated body fluid (SBF) for various periods. The results indicated that the Sm/MBG/alginate microspheres have a faster apatite formation rate on the surface. To investigate their delivery properties further, doxorubicin (DOX) was selected as a model drug. The results showed that the Sm/MBG/alginate microspheres exhibit sustained DOX delivery, and their release mechanism is controlled by Fickian diffusion according the Higuchi model. In addition, the delivery of DOX from Sm/MBG/alginate microspheres can be dominated by changing the doping concentration of Sm and the values of pH microenvironment. These all revealed that this material is a promising candidate for the therapy of bone cancer. PMID:27287115

  3. Bioactive Glass-Ceramic Coatings Synthesized by the Liquid Precursor Plasma Spraying Process

    NASA Astrophysics Data System (ADS)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Chen, Jiyong; Wu, Yao; Wu, Fang

    2011-03-01

    In this study, the liquid precursor plasma spraying process was used to manufacture P2O5-Na2O-CaO-SiO2 bioactive glass-ceramic coatings (BGCCs), where sol and suspension were used as feedstocks for plasma spraying. The effect of precursor and spray parameters on the formation and crystallinity of BGCCs was systematically studied. The results indicated that coatings with higher crystallinity were obtained using the sol precursor, while nanostructured coatings predominantly consisting of amorphous phase were synthesized using the suspension precursor. For coatings manufactured from suspension, the fraction of the amorphous phase increased with the increase in plasma power and the decrease in liquid precursor feed rate. The coatings synthesized from the suspension plasma spray process also showed a good in vitro bioactivity, as suggested by the fast apatite formation when soaking into SBF.

  4. Bioactive glasses-incorporated, core-shell-structured polypeptide/polysaccharide nanofibrous hydrogels.

    PubMed

    Chen, Jian; Chen, Xiaoyi; Yang, Xianyan; Han, Chunmao; Gao, Changyou; Gou, Zhongru

    2013-01-30

    Although the synthetic hydrogel materials capable of accelerating wound healing are being developed at a rapid pace, achieving inorganic-organic hybrid at nanoscale dimension in nanofibrous hydrogels is still a great challenge because of its notorious brittleness and microstructural stability in wet state. Here, we developed a new nanofibrous gelatin/bioactive glass (NF-GEL/BG) composite hydrogel by phase separation method and followed by arming the nanofibers network with counterionic chitosan-hyaluronic acid pairs for improving microstructural and thermal integrity. We achieve this feature by carrying an optimal balance of charges that allows the inorganic ion release in aqueous solution without minimal structure collapse. Therefore, such NF-GEL-based, polysaccharide-crosslinked bioactive hydrogel could afford a close biomimicry to the fibrous nanostructure and constituents of the hierarchically organized natural soft tissues to facilitate chronic, nonhealing wound treatment. PMID:23218343

  5. Hierarchical porous bioactive glasses/PLGA-magnetic SBA-15 for dual-drug release.

    PubMed

    Ma, Jie; Lin, Huiming; Li, Xiaofeng; Bian, Chunhui; Xiang, Di; Han, Xiao; Wu, Xiaodan; Qu, Fengyu

    2014-06-01

    The hierarchical porous bioglass combined with magnetic SBA-15 was synthesized. The bioactive glass materials possess a hierarchical porous structure with the macroporous (50μm) and the mesoporous (3.86nm) structures derived from the plant template (cattail stem) and triblock polyethylene oxide-propylene oxide block copolymer (P123), respectively. Magnetic SBA-15 was synthesized by adopting the post assembly method using Fe(NO3)3 as iron source and ethylene glycol as reduction. After coating PLGA, PLGA-IBU-magnetic SBA-15 also possessed super-paramagnetism and the corresponding saturation magnetizations (Ms) could reach 2.6emug(-1). Metformin HCl (MH) and ibuprofen (IBU) were used as model drugs, and the drug release kinetics was studied. MH and IBU could release 60% and 85% from the sample respectively. The system shows excellent dual-drug controlled delivery performance and good bioactivity in vitro that leads to good potential application on bone regeneration. PMID:24863192

  6. In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na₂O-CaO-B₂O₃-P₂O₅ glasses.

    PubMed

    Abo-Naf, Sherief M; Khalil, El-Sayed M; El-Sayed, El-Sayed M; Zayed, Hamdia A; Youness, Rasha A

    2015-06-01

    Na2O-CaO-B2O3-P2O5 glasses have been prepared by the melt-quenching method. B2O3 content was systematically increased from 5 to 30 mol%, at the expense of P2O5, in the chemical composition of these glasses. Density, Vickers microhardness and fracture toughness of the prepared glasses were measured. In vitro bioactivity of the glasses was assessed by soaking in the simulated body fluid (SBF) at 37±0.5°C for 3, 7, 14 and 30 days. The glasses were tested in the form of glass grains as well as bulk slabs. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The kinetics of degradation of the glass particles were monitored by measuring the weight loss of the particles and the ionic concentration of Ca, P and B in the SBF solution using inductive coupled plasma-atomic emission spectroscopy (ICP-AES). The obtained results revealed the formation of a bioactive hydroxyapatite (HA) layer, composed of nano-crystallites, on the surface of glass grains after the in vitro assays. The results have been used to understand the formation of HA as a function of glass composition and soaking time in the SBF. It can be pointed out that increasing B2O3 content in glass composition enhances the bioactivity of glasses. The nanometric particle size of the formed HA and in vitro bioactivity of the studied glasses make them possible candidates for tissue engineering application. PMID:25748986

  7. Bioactive Nano-Fibrous Scaffolds for Bone and Cartilage Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Feng, Kai

    Scaffolds that can mimic the structural features of natural extracellular matrix and can deliver biomolecules in a controlled fashion may provide cells with a favorable microenvironment to facilitate tissue regeneration. Biodegradable nanofibrous scaffolds with interconnected pore network have previously been developed in our laboratory to mimic collagen matrix and advantageously support both bone and cartilage regeneration. This dissertation project aims to expand both the structural complexity and the biomolecule delivery capacity of such biomimetic scaffolds for tissue engineering. We first developed a nanofibrous scaffold that can release an antibiotic (doxycycline) with a tunable release rate and a tunable dosage, which was demonstrated to be able to inhibit bacterial growth over a prolonged time period. We then developed a nanofibrous tissue-engineciing scaffold that can release basic fibroblast growth factor (bFGF) in a spatially and temporally controlled fashion. In a mouse subcutaneous implantation model, the bFGF-releasing scaffold was shown to enhance cell penetration, tissue ingrowth and angiogenesis. It was also found that both the dose and the release rate of bFGF play roles in the biologic function of the scaffold. After that, we developed a nanofibrous PLLA scaffold that can release both bone morphogenetic protein 7 (BMP-7) and platelet-derived growth factor (PDGF) with distinct dosages and release kinetics. It was demonstrated that BMP-7 and PDGF could synergistically enhance bone regeneration using a mouse ectopic bone formation model and a rat periodontal fenestration defect regeneration model. The regeneration outcome was dependent on the dosage, the ratio and the release kinetics of the two growth factors. Last, we developed an anisotropic composite scaffold with an upper layer mimicking the superficial zone of cartilage and a lower layer mimicking the middle zone of cartilage. The thin superficial layer was fabricated using an electrospinning

  8. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.

    PubMed

    Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. PMID:26117744

  9. Bioactive fish collagen/polycaprolactone composite nanofibrous scaffolds fabricated by electrospinning for 3D cell culture.

    PubMed

    Choi, Da Jeong; Choi, Seung Mi; Kang, Hae Yeong; Min, Hye-Jin; Lee, Rira; Ikram, Muhammad; Subhan, Fazli; Jin, Song Wan; Jeong, Young Hun; Kwak, Jong-Young; Yoon, Sik

    2015-07-10

    One of the most challenging objectives of 3D cell culture is the development of scaffolding materials with outstanding biocompatibility and favorable mechanical strength. In this study, we fabricated a novel nanofibrous scaffold composed of fish collagen (FC) and polycaprolactone (PCL) blends by using the electrospinning method. Nanofibrous scaffolds were characterized using a scanning electron microscope (SEM), and it was revealed that the diameter of nanofibers decreased as FC content was increased in the FC/PCL composite nanofibers. The cytocompatibility of the FC/PCL scaffolds was evaluated by SEM, WST-1 assay, confocal microscopy, western blot, and RT-PCR. It was found that the scaffolds not only facilitated the adhesion, spreading, protrusions, and proliferation of thymic epithelial cells (TECs), but also stimulated the expression of genes and proteins involved in cell adhesion and T-cell development. Thus, these results suggest that the FC/PCL composite nanofibrous scaffolds will be a useful model of 3D cell culture for TECs and may have wide applicability in the future for engineering tissues or organs. PMID:25617682

  10. Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity.

    PubMed

    Franchini, Mirco; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

    2012-08-01

    A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x=1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga(3+) concentration measured in solution is ~6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome. PMID:24364938

  11. Enhanced osseous implant fixation with strontium-substituted bioactive glass coating.

    PubMed

    Newman, Simon D; Lotfibakhshaiesh, Nasrin; O'Donnell, Matthew; Walboomers, X Frank; Horwood, Nicole; Jansen, John A; Amis, Andrew A; Cobb, Justin P; Stevens, Molly M

    2014-07-01

    The use of endosseous implants is firmly established in skeletal reconstructive surgery, with rapid and permanent fixation of prostheses being a highly desirable feature. Implant coatings composed of hydroxyapatite (HA) have become the standard and have been used with some success in prolonging the time to revision surgery, but aseptic loosening remains a significant issue. The development of a new generation of more biologically active coatings is a promising approach for tackling this problem. Bioactive glasses are an ideal candidate material due to the osteostimulative properties of their dissolution products. However, to date, they have not been formulated with stability to devitrification or thermal expansion coefficients (TECs) that are suitable for stable coating onto metal implants while still retaining their bioactive properties. Here, we present a strontium-substituted bioactive glass (SrBG) implant coating which has been designed to encourage peri-implant bone formation and with a TEC similar to that of HA. The coating can be successfully applied to roughened Ti6Al4V and after implantation into the distal femur and proximal tibia of twenty-seven New Zealand White rabbits for 6, 12, or 24 weeks, it produced no adverse tissue reaction. The glass dissolved over a 6 week period, stimulating enhanced peri-implant bone formation compared with matched HA coated implants in the contralateral limb. Furthermore, superior mechanical fixation was evident in the SrBG group after 24 weeks of implantation. We propose that this coating has the potential to enhance implant fixation in a variety of orthopedic reconstructive surgery applications. PMID:24471799

  12. Structural characterization and anti-cancerous potential of gallium bioactive glass/hydrogel composites.

    PubMed

    Keenan, T J; Placek, L M; Coughlan, A; Bowers, G M; Hall, M M; Wren, A W

    2016-11-20

    A bioactive glass series (0.42SiO2-0.10Na2O-0.08CaO-(0.40-X)ZnO-(X)Ga2O3) was incorporated into carboxymethyl cellulose (CMC)/dextran (Dex) hydrogels in three different amounts (0.05, 0.10, and 0.25m(2)), and the resulting composites were characterized using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and (13)C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS-NMR). Composite extracts were also evaluated in vitro against MG-63 osteosarcoma cells. TEM confirmed glass distribution throughout the composites, although some particle agglomeration was observed. DSC revealed that glass composition and content did have small effects on both Tg and Tm. MAS-NMR revealed that both CMC and Dex were successfully functionalized, that cross-linking occurred, and that glass addition did slightly alter bonding environments. Cell viability analysis suggested that extracts of the glass and composites with the largest Ga-content significantly decreased MG-63 osteosarcoma viability after 30days. This study successfully characterized this composite series, and demonstrated their potential for anti-cancerous applications. PMID:27561520

  13. X-ray diffractometric determination of crystalline phase content in bioactive glasses.

    PubMed

    De Maeyer, E A; Verbeeck, R M

    2001-12-01

    A rapid routine determination of the content of crystalline CaF(2) and Al(2)O(3) inclusions in bioactive glass ceramics is performed using X-ray diffractometry with a standard addition technique. Multiple ratio analysis, even using peaks with different broadenings, indicates that differences in crystallite properties (e.g., crystal imperfection, particle size and morphology, preferred orientation) between the unknown sample and standard do not bias the result. In this respect, an exact match between their crystallographic integrities does not seem to be required for a reliable estimation of the crystalline content with a relative standard deviation of 7%. PMID:11523042

  14. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.

    PubMed

    Kim, In Gul; Hwang, Mintai P; Du, Ping; Ko, Jaehoon; Ha, Chul-won; Do, Sun Hee; Park, Kwideok

    2015-05-01

    Successful bone tissue engineering generally requires an osteoconductive scaffold that consists of extracellular matrix (ECM) to mimic the natural environment. In this study, we developed a PLGA/PLA-based mesh scaffold coated with cell-derived extracellular matrix (CDM) for the delivery of bone morphogenic protein (BMP-2), and assessed the capacity of this system to provide an osteogenic microenvironment. Decellularized ECM from human lung fibroblasts (hFDM) was coated onto the surface of the polymer mesh scaffolds, upon which heparin was then conjugated onto hFDM via EDC chemistry. BMP-2 was subsequently immobilized onto the mesh scaffolds via heparin, and released at a controlled rate. Human placenta-derived mesenchymal stem cells (hPMSCs) were cultured in such scaffolds and subjected to osteogenic differentiation for 28 days in vitro. The results showed that alkaline phosphatase (ALP) activity, mineralization, and osteogenic marker expression were significantly improved with hPMSCs cultured in the hFDM-coated mesh scaffolds compared to the control and fibronectin-coated ones. In addition, a mouse ectopic and rat calvarial bone defect model was used to examine the feasibility of current platform to induce osteogenesis as well as bone regeneration. All hFDM-coated mesh groups exhibited a significant increase of newly formed bone and in particular, hFDM-coated mesh scaffold loaded with a high dose of BMP-2 exhibited a nearly complete bone defect healing as confirmed via micro-CT and histological observation. This work proposes a great potency of using hFDM (biophysical) coupled with BMP-2 (biochemical) as a promising osteogenic microenvironment for bone tissue engineering applications. PMID:25736498

  15. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.

    PubMed

    Torres, A L; Gaspar, V M; Serra, I R; Diogo, G S; Fradique, R; Silva, A P; Correia, I J

    2013-10-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric-bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. PMID:23910366

  16. Bioactive glass nanoparticles designed for multiple deliveries of lithium ions and drugs: Curative and restorative bone treatment.

    PubMed

    El-Kady, Abeer M; Farag, Mohammad M; El-Rashedi, Ahlam M I

    2016-08-25

    Lithium modified bioactive glass nanoparticles were prepared for multiple deliveries of lithium ions and drugs. The particle size, structure and thermal behavior of nanoparticles were analyzed using TEM, FTIR and DSC respectively. The porosity% and specific surface area of glass nanoparticles were about 68.6% and 224.92 (m(2)/g), respectively. The in vitro bioactivity evaluation in SBF revealed that glass nanoparticles were capable of inducing apatite layer over their surfaces. This could be considered as a good indicator for their future abilities to regenerate bone tissue in vivo. Also, lithium ions were released from glass nanoparticles via diffusion controlled process which could activate Wnt signaling pathway and enhance osteogenesis. As a final point, the possibility of utilizing the glass nanoparticles as a controlled delivery device for vancomycin or 5-FU was verified. Fitting vancomycin or 5-FU release profiles to various mathematical models pointed out that both drugs were released by a diffusion-controlled mode. PMID:27155253

  17. Preparation and characterization of fibrous chitosan-glued phosphate glass fiber scaffolds for bone regeneration.

    PubMed

    Zheng, Kai; Wu, Zhaoying; Wei, Jie; Rűssel, Christian; Liang, Wen; Boccaccini, Aldo R

    2015-08-01

    Phosphate glass fibers (PGF) have emerged as promising building blocks for constructing bone scaffolds. In this study, fibrous scaffolds (PGFS) were fabricated using a facile binding method at room temperature. PGFS exhibited an extracellular matrix-like morphology and were composed of PGF as matrix and chitosan as the natural binding glue. They showed an interconnected porous structure with a porosity of ~87% and pore size of 100-500 µm. PGFS exhibited the typical compressive stress-strain behaviour of highly porous, low-density, open-cell scaffolds. Their yield stress and modulus were ~0.38 and ~2.84 MPa, respectively, with the strength being higher than the lower bound of the compressive strength of cancellous bone. PGFS were degradable and the weight loss was about 25% after immersion in stimulated body fluid (SBF) for 28 days. In addition, the yield stress and the modulus decreased with increasing immersion time in SBF. Apatite formation could be detected on the surface of PGFS within 7 days of immersion in SBF. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that PGFS were non-cytotoxic against bone marrow stromal cells (bMSCs) after culture for up to 72 h. These results suggest that PGFS could be promising scaffolds for bone regeneration applications. PMID:26271217

  18. The effect of exposed glass fibers and particles of bioactive glass on the surface wettability of composite implants.

    PubMed

    Abdulmajeed, Aous A; Lassila, Lippo V; Vallittu, Pekka K; Närhi, Timo O

    2011-01-01

    Measurement of the wettability of a material is a predictive index of cytocompatibility. This study was designed to evaluate the effect of exposed E-glass fibers and bioactive glass (BAG) particles on the surface wettability behavior of composite implants. Two different groups were investigated: (a) fiber reinforced composites (FRCs) with different fiber orientations and (b) polymer composites with different wt. % of BAG particles. Photopolymerized and heat postpolymerized composite substrates were made for both groups. The surface wettability, topography, and roughness were analyzed. Equilibrium contact angles were measured using the sessile drop method. Three liquids were used as a probe for surface free energy (SFE) calculations. SFE values were calculated from contact angles obtained on smooth surfaces. The surface with transverse distribution of fibers showed higher (P < 0.001) polar (γ(P)) and total SFE (γ(TOT)) components (16.9 and 51.04 mJ/m(2), resp.) than the surface with in-plane distribution of fibers (13.77 and 48.27 mJ/m(2), resp.). The increase in BAG particle wt. % increased the polar (γ(P)) value, while the dispersive (γ(D)) value decreased. Postpolymerization by heat treatment improved the SFE components on all the surfaces investigated (P < 0.001). Composites containing E-glass fibers and BAG particles are hydrophilic materials that show good wettability characteristics. PMID:22253628

  19. Effect of calcium hydroxide on mechanical strength and biological properties of bioactive glass.

    PubMed

    Shah, Asma Tufail; Batool, Madeeha; Chaudhry, Aqif Anwar; Iqbal, Farasat; Javaid, Ayesha; Zahid, Saba; Ilyas, Kanwal; Bin Qasim, Saad; Khan, Ather Farooq; Khan, Abdul Samad; Ur Rehman, Ihtesham

    2016-08-01

    In this manuscript for the first time calcium hydroxide (Ca(OH)2) has been used for preparation of bioactive glass (BG-2) by co-precipitation method and compared with glass prepared using calcium nitrate tetrahydrate Ca(NO3)2·4H2O (BG-1), which is a conventional source of calcium. The new source positively affected physical, biological and mechanical properties of BG-2. The glasses were characterized by Fourier transform infrared (FTIR), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA-DSC), BET surface area analysis and Knoop hardness. The results showed that BG-2 possessed relatively larger surface properties (100m(2)g(-1) surface area) as compared to BG-1 (78m(2)g(-1)), spherical morphology and crystalline phases (wollastonite and apatite) after sintering at lower than conventional temperature. These properties contribute critical role in both mechanical and biological properties of glasses. The Knoop hardness measurements revealed that BG-2 possessed much better hardness (0.43±0.06GPa at 680°C and 2.16±0.46GPa at 980°C) than BG-1 (0.24±0.01 at 680°C and 0.57±0.07GPA at 980°C) under same conditions. Alamar blue Assay and confocal microscopy revealed that BG-2 exhibited better attachment and proliferation of MG63 cells. Based on the improved biological properties of BG-2 as a consequent of novel calcium source selection, BG-2 is proposed as a bioactive ceramic for hard tissue repair and regeneration applications. PMID:27068802

  20. Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry.

    PubMed

    Wang, Y-Y; Chatzistavrou, X; Faulk, D; Badylak, S; Zheng, L; Papagerakis, S; Ge, L; Liu, H; Papagerakis, P

    2015-01-01

    The aim of this study was the fabrication and evaluation of a novel bioactive and bactericidal material, which could have applications in dentistry by supporting tissue regeneration and killing oral bacteria. Our hypothesis was that a new scaffold for pulp-dentin tissue engineering with enhanced antibacterial activity could be obtained by associating extracellular matrix derived from porcine bladder with an antibacterial bioactive glass. Our study combines in vitro approaches and ectopic implantation in scid mice. The novel material was fabricated by incorporating a sol-gel derived silver (Ag)-doped bioactive glass (BG) in a natural extracellular matrix (ECM) hydrogel in ratio 1:1 in weight % (Ag-BG/ECM). The biological properties of the Ag-BG/ECM were evaluated in culture with dental pulp stem cells (DPSCs). In particular, cell proliferation, cell apoptosis, stem cells markers profile, and cell differentiation potential were studied. Furthermore, the antibacterial activity against Streptococcus mutans and Lactobacillus casei was measured. Moreover, the capability of the material to enhance pulp/dentin regeneration in vivo was also evaluated. Our data show that Ag-BG/ECM significantly enhances DPSCs' proliferation, it does not affect cell morphology and stem cells markers profile, protects cells from apoptosis, and enhances in vitro cell differentiation and mineralisation potential as well as in vivo dentin formation. Furthermore, Ag-BG/ECM strongly inhibits S. mutans and L. casei growth suggesting that the new material has also anti-bacterial properties. This study provides foundation for future clinical applications in dentistry. It could potentially advance the currently available options of dental regenerative materials. PMID:26091732

  1. Clinical Applications of S53P4 Bioactive Glass in Bone Healing and Osteomyelitic Treatment: A Literature Review

    PubMed Central

    van Gestel, N. A. P.; Geurts, J.; Hulsen, D. J. W.; van Rietbergen, B.; Hofmann, S.; Arts, J. J.

    2015-01-01

    Nowadays, S53P4 bioactive glass is indicated as a bone graft substitute in various clinical applications. This review provides an overview of the current published clinical results on indications such as craniofacial procedures, grafting of benign bone tumour defects, instrumental spondylodesis, and the treatment of osteomyelitis. Given the reported results that are based on examinations, such as clinical examinations by the surgeons, radiographs, CT, and MRI images, S53P4 bioactive glass may be beneficial in the various reported applications. Especially in craniofacial reconstructions like mastoid obliteration and orbital floor reconstructions, in grafting bone tumour defects, and in the treatment of osteomyelitis very promising results are obtained. Randomized clinical trials need to be performed in order to determine whether bioactive glass would be able to replace the current golden standard of autologous bone usage or with the use of antibiotic containing PMMA beads (in the case of osteomyelitis). PMID:26504821

  2. Investigating the addition of SiO₂-CaO-ZnO-Na₂O-TiO₂ bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity.

    PubMed

    Yatongchai, Chokchai; Placek, Lana M; Curran, Declan J; Towler, Mark R; Wren, Anthony W

    2015-11-01

    Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability. PMID:26116020

  3. Enamel Surface with Pit and Fissure Sealant Containing 45S5 Bioactive Glass.

    PubMed

    Yang, S-Y; Kwon, J-S; Kim, K-N; Kim, K-M

    2016-05-01

    Enamel demineralization adjacent to pit and fissure sealants leads to the formation of marginal caries, which can necessitate the replacement of existing sealants. Dental materials with bioactive glass, which releases ions that inhibit dental caries, have been studied. The purpose of this study was to evaluate the enamel surface adjacent to sealants containing 45S5 bioactive glass (BAG) under simulated microleakage between the material and the tooth in a cariogenic environment. Sealants containing 45S5BAG filler were prepared as follows: 0% 45S5BAG + 50.0% glass (BAG0 group), 12.5% 45S5BAG + 37.5% glass (BAG12.5 group), 25.0% 45S5BAG + 25.0% glass (BAG25.0 group), 37.5% 45S5BAG + 12.5% glass (BAG37.5 group), and 50.0% 45S5BAG + 0% glass (BAG50.0 group). A cured sealant disk was placed over a flat bovine enamel disk, separated by a 60-µm gap, and immersed in lactic acid solution (pH 4.0) at 37 °C for 15, 30, and 45 d. After the storage period, each enamel disk was separated from the cured sealant disk, and the enamel surface was examined with optical 3-dimensional surface profilometer, microhardness tester, and scanning electron microscopy. The results showed a significant increase in roughness and a decrease in microhardness of the enamel surface as the proportion of 45S5BAG decreased (P< 0.05). In the scanning electron microscopy images, enamel surfaces with BAG50.0 showed a smooth surface, similar to those in the control group with distilled water, even after prolonged acid storage. Additionally, an etched pattern was observed on the surface of the demineralized enamel with a decreasing proportion of 45S5BAG. Increasing the 45S5BAG filler contents of the sealants had a significant impact in preventing the demineralization of the enamel surface within microgaps between the material and the tooth when exposed to a cariogenic environment. Therefore, despite some marginal leakage, these novel sealants may be effective preventive dental materials for inhibiting

  4. Dissolution and scanning electron microscopic studies of Ca,P particle-containing bioactive glasses.

    PubMed

    Kangasniemi, I M; Vedel, E; de Blick-Hogerworst, J; Yli-Urpo, A U; de Groot, K

    1993-10-01

    Calcium phosphate (Ca,P) precipitation behavior on the surface of two bioactive glasses and four bioactive glass composites--two with hydroxylapatite (Ca10(PO4)6 (OH)2) and two with rhenanite (CaNaPO4)--were studied in simulated body fluid (SBF) and in Tris-Buffer at 5, 8, 16, 24, 48, 72, and 144 h. The weight loss of the materials was measured and the amount of precipitation was estimated using scanning electron microscopy with electrochemical detection (SEM-EDX) analysis. The test was repeated for one glass and its respective rhenanite composite every 3 h until 60 h and thereafter every 10 h until 150 h in SBF. Atomic absorption spectroscopy, spectrophotometry, SEM-EDX analysis, and pH measurements were performed on these samples. It is shown that in vitro the composite materials have a higher capacity for Ca,P precipitation than the glasses. Weight losses of the materials correlate well with their composition. Both the glass and Ca,P phases influence the precipitation mechanism and rate. Precipitation begins preferably from the glass phase. Ca,P particles clearly influence the time of onset and rate of precipitation. Cross-sectional EDX analysis of the samples revealed an absence of a clear Si-rich layer in glass A0B0 (SiO2 53.9 mol %, Na2O 27.5, CaO 12.4, P2O5 6.2, Al2O3 0.0 and B2O3 0.0) composites. This was attributed to the presence of extra calcium and phosphate ions on the surface of the material. The ion-concentration and pH change curves offered insight into the mechanism of precipitation. A connection was established between SEM-EDX results and the release curves. Formation of an Si,Ca,Na film was observed that seemed to initiate the Ca,P precipitation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8245037

  5. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites.

    PubMed

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1week immersion in SBF. After 2weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. PMID:27612763

  6. Development of HydroxyCarbonate Apatite on hybrid polymers used in fixed restorations modified by bioactive glass

    NASA Astrophysics Data System (ADS)

    Georgantzi, B.; Papadopoulou, L.; Zorba, T.; Garefis, P.; Paraskevopoulos, K.; Koidis, P.

    2004-03-01

    The incorporation of a bioactive glass in the structure of hybrid polymers used in dentistry for the construction of fixed prosthetic restorations could induce the expression of bioactivity, leading to the possibility of periodontal tissues reattachment. Hybrid polymer specimens and polymer specimens modified by bioactive glass were prepared and used as control for the surface morphology examination by Scanning Electron Microscopy with associated Dispersive Spectroscopy Analysis (SEM-EDS) and for surface characterization with Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, hybrid polymer specimens modified by bioactive glass were immersed in simulated body fluid (SBF) at 37 °C for different time intervals and were examined by SEM-EDS and FTIR. After 4 days immersion time a dense and continuous apatite layer covered almost the entire modified surface of the specimens. The molar Ca/P ratio reached the value of 1.79. The apatite layer showed a thickness of 1?m and was attached to the substrate, while bioactive glass particles were still present in polymer mass.

  7. Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model.

    PubMed

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang; Zhang, Changqing

    2013-07-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

  8. Gentamicin-Loaded Borate Bioactive Glass Eradicates Osteomyelitis Due to Escherichia coli in a Rabbit Model

    PubMed Central

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang

    2013-01-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

  9. Bioactive glass surface for fiber reinforced composite implants via surface etching by Excimer laser.

    PubMed

    Kulkova, Julia; Moritz, Niko; Huhtinen, Hannu; Mattila, Riina; Donati, Ivan; Marsich, Eleonora; Paoletti, Sergio; Vallittu, Pekka K

    2016-07-01

    Biostable fiber-reinforced composites (FRC) prepared from bisphenol-A-glycidyldimethacrylate (BisGMA)-based thermosets reinforced with E-glass fibers are promising alternatives to metallic implants due to the excellent fatigue resistance and the mechanical properties matching those of bone. Bioactive glass (BG) granules can be incorporated within the polymer matrix to improve the osteointegration of the FRC implants. However, the creation of a viable surface layer using BG granules is technically challenging. In this study, we investigated the potential of Excimer laser ablation to achieve the selective removal of the matrix to expose the surface of BG granules. A UV-vis spectroscopic study was carried out to investigate the differences in the penetration of light in the thermoset matrix and BG. Thereafter, optimal Excimer laser ablation parameters were established. The formation of a calcium phosphate (CaP) layer on the surface of the laser-ablated specimens was verified in simulated body fluid (SBF). In addition, the proliferation of MG63 cells on the surfaces of the laser-ablated specimens was investigated. For the laser-ablated specimens, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V). We concluded that Excimer laser ablation has potential for the creation of a bioactive surface on FRC-implants. PMID:27134152

  10. Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy

    NASA Astrophysics Data System (ADS)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.

    2016-07-01

    Metallic implants are shifting from bio-inert to bioactive and biodegradable materials. These changes are made in order to improve the stress shielding effect and bio-compatibility and also avoid the second surgery procedure. Second surgery procedure is required if the patient experienced infection and implant loosening. An implant is predicted to be well for 15 to 20 years inside patient body. Currently, magnesium alloys are found to be the new biomaterials because of their properties close to the human bones and also able to degrade in the human body. In this work, magnesium-zinc based composites reinforced with different content (5, 15, 20 wt. %) of bioactive glass (45S5) were fabricated through powder metallurgy technique. The composites were sintered at 450˚C. Density and porosity of the composites were determined using the gas pycnometer. Microstructure of the composites was observed using an optical microscope. In-vitro bioactivity behavior was evaluated in the simulated body fluid (SBF) for 7 days. Fourier Transform Infrared (FTIR) was used to characterize the apatite forming on the samples surface. The microstructure of the composite showed that the pore segregated near the grain boundaries and bioglass clustering was observed with increasing content of bioglass. The true density of the composites increased with the increasing content of bioglass and the highest value of porosity was indicated by the Mg-Zn reinforced with 20 wt.% of bioglass. The addition of bio-glass to the Mg-Zn has also induced the formation of apatite layer after soaking in SBF solution.

  11. The effect of variation in physical properties of porous bioactive glass on the expression and maintenance of the osteoblastic phenotype

    NASA Astrophysics Data System (ADS)

    Effah Kaufmann, Elsie Akosua Biraa

    Revision surgery to replace failed hip implants is a significant health care issue that is expected to escalate as life expectancy increases. A major goal of revision surgery is to reconstruct femoral intramedullary bone-stock loss. To address this problem of bone loss, grafting techniques are widely used. Although fresh autografts remain the optimal material for all forms of surgery seeking to restore structural integrity to the skeleton, it is evident that the supply of such tissue is limited. In recent years, calcium phosphate ceramics have been studied as alternatives to autografts and allografts. The significant limitations associated with the use of biological and synthetic grafts have led to a growing interest in the in vitro synthesis of bone tissue. The approach is to synthesize bone tissue in vitro with the patient's own cells, and use this tissue for the repair of bony defects. Various substrates including metals, polymers, calcium phosphate ceramics and bioactive glasses, have been seeded with osteogenic cells. The selection of bioactive glass in this study is based on the fact that this material has shown an intense beneficial biological effect which has not been reproduced by other biomaterials. Even though the literature provides extensive data on the effect of pore size and porosity on in vivo bone tissue ingrowth into porous materials for joint prosthesis fixation, the data from past studies cannot be applied to the use of bioactive glass as a substrate for the in vitro synthesis of bone tissue. First, unlike the in vivo studies in the literature, this research deals with the growth of bone tissue in vitro. Second, unlike the implants used in past studies, bioactive glass is a degradable and resorbable material. Thus, in order to establish optimal substrate characteristics (porosity and pore size) for bioactive glass, it was important to study these parameters in an in vitro model. We synthesized porous bioactive glass substrates (BG) with varying

  12. Porous bioactive scaffolds: characterization and biological performance in a model of tibial bone defect in rats.

    PubMed

    Kido, Hueliton Wilian; Tim, Carla Roberta; Bossini, Paulo Sérgio; Parizotto, Nivaldo Antônio; de Castro, Cynthia Aparecida; Crovace, Murilo Camuri; Rodrigues, Ana Candida Martins; Zanotto, Edgar Dutra; Peitl Filho, Oscar; de Freitas Anibal, Fernanda; Rennó, Ana Claudia Muniz

    2015-02-01

    The aim of this study was to evaluate the effects of highly porous Biosilicate(®) scaffolds on bone healing in a tibial bone defect model in rats by means of histological evaluation (histopathological and immunohistochemistry analysis) of the bone callus and the systemic inflammatory response (immunoenzymatic assay). Eighty Wistar rats (12 weeks-old, weighing±300 g) were randomly divided into 2 groups (n=10 per experimental group, per time point): control group and Biosilicate® group (BG). Each group was euthanized 3, 7, 14 and 21 days post-surgery. Histological findings revealed a similar inflammatory response in both experimental groups, 3 and 7 days post-surgery. During the experimental periods (3-21 days post-surgery), it was observed that the biomaterial degradation, mainly in the periphery region, provided the development of the newly formed bone into the scaffolds. Immunohistochemistry analysis demonstrated that the Biosilicate® scaffolds stimulated cyclooxygenase-2, vascular endothelial growth factor and runt-related transcription factor 2 expression. Furthermore, in the immunoenzymatic assay, BG presented no difference in the level of tumor necrosis factor alpha in all experimental periods. Still, BG showed a higher level of interleukin 4 after 14 days post-implantation and a lower level of interleukin 10 in 21 days post-surgery. Our results demonstrated that Biosilicate® scaffolds can contribute for bone formation through a suitable architecture and by stimulating the synthesis of markers related to the bone repair. PMID:25631271

  13. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability.

    PubMed

    Gomes, Filipa O; Pires, Ricardo A; Reis, Rui L

    2013-04-01

    Al-free glasses of general composition 0.340SiO2:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na2O:0.060P2O5 (a, b=0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25±5 MPa) and higher compressive elastic modulus (492±17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a=0.125 and b=0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. PMID:23827583

  14. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses.

    PubMed

    Kapoor, Saurabh; Goel, Ashutosh; Tilocca, Antonio; Dhuna, Vikram; Bhatia, Gaurav; Dhuna, Kshitija; Ferreira, José M F

    2014-07-01

    We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed. PMID:24709542

  15. Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering.

    PubMed

    Thomas, Vinoy; Jagani, Sunita; Johnson, Kalonda; Jose, Moncy V; Dean, Derrick R; Vohra, Yogesh K; Nyairo, Elijah

    2006-02-01

    Nanocomposite scaffolds based on nanofibrous poly(epsilon-caprolactone) (PCL) and nanohydroxyapatite (nanoHA) with different compositions (wt%) were prepared by electrostatic co-spinning to mimic the nano-features of the natural extracellular matrix (ECM). NanoHA was found to be well dispersed in polymers up to the addition of 20 wt%, after ultrasonication. The composite scaffolds were characterized for structure and morphology using XRD, EDX, SEM, and DSC. The scaffolds have a porous nanofibrous morphology with fibers (majority) having diameters in the range of 450-650 nm, depending on composition, and interconnected pore structures. SEM, EDX, and XRD analyses have confirmed the presence of nanoHA in the fibers. As the nanoHA content in the fibers increases, the surface of fibers becomes rougher. The mechanical (tensile) property measurement of the electrospun composites reveals that as the nanoHA content increases, the ultimate strength increases from 1.68 MPa for pure PCL to 2.17, 2.65, 3.91, and 5.49 MPa for PCL/nanoHA composites with the addition of 5, 10, 15, and 20 wt% nanoHA, respectively. Similarly the tensile modulus also increases gradually from 6.12 MPa to 21.05 MPa with the increase of nanoHA content in the PCL/nanoHA fibers, revealing an increase in stiffness of the fibers due to the presence of HA. DSC analysis reveals that as nanoHA in the composite scaffolds increases, the melting point slightly increases due to the good dispersion and interface bonding between PCL and nanoHA. PMID:16573049

  16. Novel bioactive polyester scaffolds prepared from unsaturated resins based on isosorbide and succinic acid.

    PubMed

    Smiga-Matuszowicz, Monika; Janicki, Bartosz; Jaszcz, Katarzyna; Łukaszczyk, Jan; Kaczmarek, Marcin; Lesiak, Marta; Sieroń, Aleksander L; Simka, Wojciech; Mierzwiński, Maciej; Kusz, Damian

    2014-12-01

    In this study new biodegradable materials obtained by crosslinking poly(3-allyloxy-1,2-propylene succinate) (PSAGE) with oligo(isosorbide maleate) (OMIS) and small amount of methyl methacrylate were investigated. The porous scaffolds were obtained in the presence of a foaming system consisted of calcium carbonate/carboxylic acid mixture, creating in situ porous structure during crosslinking of liquid formulations. The maximum crosslinking temperature and setting time, the cured porous materials morphology as well as the effect of their porosity on mechanical properties and hydrolytic degradation process were evaluated. It was found that the kind of carboxylic acid used in the foaming system influenced compressive strength and compressive modulus of porous scaffolds. The MTS cytotoxicity assay was carried out for OMIS using hFOB1.19 cell line. OMIS resin was found to be non-toxic in wide range of concentrations. On the ground of scanning electron microscopy (SEM) observations and energy X-ray dispersive analysis (EDX) it was found that hydroxyapatite (HA) formation at the scaffolds surfaces within short period of soaking in phosphate buffer solution occurs. After 3h immersion a compact layer of HA was observed at the surface of the samples. The obtained results suggest potential applicability of resulted new porous crosslinked polymeric materials as temporary bone void fillers. PMID:25491802

  17. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics.

    PubMed

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1-100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  18. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    PubMed Central

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  19. Dental ceramics coated with bioactive glass: Surface changes after exposure in a simulated body fluid under static and dynamic conditions

    NASA Astrophysics Data System (ADS)

    Papadopoulou, L.; Kontonasaki, E.; Zorba, T.; Chatzistavrou, X.; Pavlidou, E.; Paraskevopoulos, K.; Sklavounos, S.; Koidis, P.

    2003-07-01

    Bioactive materials develop a strong bond with living tissues through a carbonate-containing hydroxyapatite layer, similar to that of bone. The fabrication of a thin bioactive glass coating on dental ceramics used in metal-ceramic restorations, could provide a bioactive surface, which in combination with a tissue regenerative technique could lead to periodontal tissues attachment. The aim of this study was the in vitro investigation of the surface structure changes of dental ceramics used in metal-ceramic restorations, coated with a bioactive glass heat-treated at 950 °C, after exposure in a simulated body fluid (SBF) under two different soaking conditions. Coating of dental ceramics with a bioactive glass resulted in the formation of a stable and well bonded with the ceramic substrate thin layer. The growth of a well-attached carbonate apatite layer on their surface after immersion in a simulated body fluid is well evidenced under both experimental conditions, although in static environment the rate of apatite growth is constant and the grown layers seem to be more dense and compact compared with the respective layers observed on specimens under dynamic conditions.

  20. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    NASA Astrophysics Data System (ADS)

    Fuchs, Maximilian; Gentleman, Eileen; Shahid, Saroash; Hill, Robert; Brauer, Delia

    2015-10-01

    Bioactive glasses (BG) are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC) are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO) with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid), ions were released fast (up to 90% within 15 minutes at pH 1), which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa), staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid), which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  1. Microscopic and spectroscopic investigation of bioactive glasses for antibiotic controlled release

    NASA Astrophysics Data System (ADS)

    Cavalu, S.; Banica, F.; Gruian, C.; Vanea, E.; Goller, G.; Simon, V.

    2013-05-01

    Bioactive glass with the composition 0.55SiO2·0.41CaO·0.04P2O5 was prepared following the sol-gel route as controlled delivery systems for tetracycline (TC). The maturation and drying of the gel under different conditions led to different behavior regarding the loading and release of TC from these matrices. The pore size modifications upon TC loading evidenced by BET method show different ability of the glass matrices with respect to TC incorporation, also supported by experimental EPR and fluorescence spectroscopy. EPR spectra of both TC solution and immobilized TC on the porous structure of glass specimens demonstrated changes in tetracycline structure during loading and upon adsorption. The TC release profile monitored by differential pulse voltammetry shows a maximum concentration after 2 h and a continuously slow release during the next 24 h. The obtained results demonstrate that the pores size modification related to different maturation and drying procedures seems to be a determinative factor in tetracycline release process.

  2. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol-gel method.

    PubMed

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-10-01

    Bioactive glasses (SiO2-P2O5-CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol-gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. PMID:23910279

  3. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  4. Macro-to-micro porous special bioactive glass and ceftriaxone-sulbactam composite drug delivery system for treatment of chronic osteomyelitis: an investigation through in vitro and in vivo animal trial.

    PubMed

    Kundu, Biswanath; Nandi, Samit Kumar; Dasgupta, Sudip; Datta, Someswar; Mukherjee, Prasenjit; Roy, Subhasis; Singh, Aruna Kumari; Mandal, Tapan Kumar; Das, Partha; Bhattacharya, Rupnarayan; Basu, Debabrata

    2011-03-01

    A systematic and extensive approach incorporating in vitro and in vivo experimentation to treat chronic osteomyelitis in animal model were made using antibiotic loaded special bioactive glass porous scaffolds. After thorough characterization for porosity, distribution, surface charge, a novel drug composite were infiltrated by using vacuum infiltration and freeze-drying method which was subsequently analyzed by SEM-EDAX and studied for in vitro drug elution in PBS and SBF. Osteomyelitis in rabbit was induced by inoculation of Staphylococcus aureus and optimum drug-scaffold were checked for its efficacy over control and parenteral treated animals in terms of histopathology, radiology, in vivo drug concentration in bone and serum and implant-bone interface by SEM. It was optimized that 60P samples with 60-65% porosity (bimodal distribution of macro- to micropore) with average pore size ~60 μm and higher interconnectivity, moderately high antibiotic adsorption efficiency (~49%) was ideal. Results after 42 days showed antibiotic released higher than MIC against S. aureus compared to parenteral treatment (2 injections a day for 6 weeks). In vivo drug pharmacokinetics and SEM on bone-defect interface proved superiority of CFS loaded porous bioactive glass implants over parenteral group based on infection eradication and new bone formation. PMID:21221731

  5. Synthesis of biomedical composite scaffolds by laser sintering: Mechanical properties and in vitro bioactivity evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Fwu-Hsing

    2014-04-01

    In this study, biomedical composite materials were employed to fabricate bone scaffolds using a self-developed rapid prototyping (RP) apparatus. The slurry formed by combining hydroxyapatite (HA), silica sol, and sodium tripolyphosphate (STPP) was heated by a CO2 laser. Under appropriate processing parameters, a biocomposite green body was subsequently fabricated. Its mechanical properties, including surface roughness, bending and compression strengths, volume shrinkage rate, and surface microstructure, were analyzed after heat treatment to 1200 °C, 1300 °C, and 1400 °C. The results showed that after heating the specimen to 1200 °C, its compression and bending strengths increased significantly to 43.26 MPa and 1.28 MPa, respectively; the surface roughness was 12 μm; and surface pores were of size 5-25 μm. Furthermore, the results of WST-1 and LDH assay indicate that the biocomposites showed no cytotoxicity on 3T3 fibroblast. An optical density (OD) of 1.1 was also achieved, and the specimen was suitable for the adhesion and growth of osteoblast-like cells (MG63). Therefore, the biocomposite bone scaffolds fabricated in this study have potential to be bone implants for developing hard tissue.

  6. Antibacterial properties of poly (octanediol citrate)/gallium-containing bioglass composite scaffolds.

    PubMed

    Zeimaran, Ehsan; Pourshahrestani, Sara; Djordjevic, Ivan; Pingguan-Murphy, Belinda; Kadri, Nahrizul Adib; Wren, Anthony W; Towler, Mark R

    2016-01-01

    Bioactive glasses may function as antimicrobial delivery systems through the incorporation and subsequent release of therapeutic ions. The aim of this study was to evaluate the antimicrobial properties of a series of composite scaffolds composed of poly(octanediol citrate) with increased loads of a bioactive glass that releases zinc (Zn(2+)) and gallium (Ga(3+)) ions in a controlled manner. The antibacterial activity of these scaffolds was investigated against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The ability of the scaffolds to release ions and the subsequent ingress of these ions into hard tissue was evaluated using a bovine bone model. Scaffolds containing bioactive glass exhibited antibacterial activity and this increased in vitro with higher bioactive glass loads; viable cells decreased to about 20 % for the composite scaffold containing 30 % bioactive glass. The Ga(3+) release rate increased as a function of time and Zn(2+) was shown to incorporate into the surrounding bone. PMID:26676864

  7. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.

    PubMed

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2015-07-01

    Scaffold hopping and activity cliff formation define opposite ends of the activity landscape feature spectrum. To rationalize these events at the level of scaffolds, active compounds involved in scaffold hopping were required to contain topologically distinct scaffolds but have only limited differences in potency, whereas compounds involved in activity cliffs were required to share the same scaffold but have large differences in potency. A systematic search was carried out for compounds involved in scaffold hopping and/or activity cliff formation. Results obtained for compound data sets covering more than 300 human targets revealed clear trends. If scaffolds represented multiple but fewer than 10 active compounds, nearly 90% of all scaffolds were exclusively involved in hopping events. With increasing compound coverage, the fraction of scaffolds involved in both scaffold hopping and activity cliff formation significantly increased to more than 50%. However, ∼40% of the scaffolds representing large numbers of active compounds continued to be exclusively involved in scaffold hopping. More than 200 scaffolds with broad target coverage were identified that consistently represented potent compounds and yielded an abundance of scaffold hops in the low-nanomolar range. These and other subsets of scaffolds we characterized are of prime interest for structure-activity relationship (SAR) exploration and compound design. Therefore, the complete scaffold classification generated in the course of our analysis is made freely available. PMID:25982076

  8. Bactericidal strontium-releasing injectable bone cements based on bioactive glasses.

    PubMed

    Brauer, Delia S; Karpukhina, Natalia; Kedia, Gopal; Bhat, Aditya; Law, Robert V; Radecka, Izabela; Hill, Robert G

    2013-01-01

    Strontium-releasing injectable bone cements may have the potential to prevent implant-related infections through the bactericidal action of strontium, while enhancing bone formation in patients suffering from osteoporosis. A melt-derived bioactive glass (BG) series (SiO2–CaO–CaF2–MgO) with 0–50% of calcium substituted with strontium on a molar base were produced. By mixing glass powder, poly(acrylic acid) and water, cements were obtained which can be delivered by injection and set in situ, giving compressive strength of up to 35 MPa. Strontium release was dependent on BG composition with increasing strontium substitution resulting in higher concentrations in the medium. Bactericidal effects were tested on Staphylococcus aureus and Streptococcus faecalis; cell counts were reduced by up to three orders of magnitude over 6 days. Results show that bactericidal action can be increased through BG strontium substitution, allowing for the design of novel antimicrobial and bone enhancing cements for use in vertebroplasty or kyphoplasty for treating osteoporosis-related vertebral compression fractures. PMID:23097502

  9. Bioactivity studies on TiO₂-bearing Na₂O-CaO-SiO₂-B₂O₃ glasses.

    PubMed

    Jagan Mohini, G; Sahaya Baskaran, G; Ravi Kumar, V; Piasecki, M; Veeraiah, N

    2015-12-01

    Soda lime silica borate glasses mixed with different concentrations of TiO2 are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO2 on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO2 concentration indicated that about 6.0 mol% of TiO2 is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. PMID:26354260

  10. Enhanced osteoprogenitor elongated collagen fiber matrix formation by bioactive glass ionic silicon dependent on Sp7 (osterix) transcription.

    PubMed

    Varanasi, Venu G; Odatsu, Tetsurou; Bishop, Timothy; Chang, Joyce; Owyoung, Jeremy; Loomer, Peter M

    2016-10-01

    Bioactive glasses release ions, those enhance osteoblast collagen matrix synthesis and osteogenic marker expression during bone healing. Collagen matrix density and osteogenic marker expression depend on osteogenic transcription factors, (e.g., Osterix (OSX)). We hypothesize that enhanced expression and formation of collagen by Si(4+) depends on enhanced expression of OSX transcription. Experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were dissolved in basal medium to make glass conditioned medium (GCM). ICP-MS analysis was used to measure bioactive glass ion release rates. MC3T3-E1 cells were cultured for 20 days, and gene expression and extracellular matrix collagen formation was analyzed. In a separate study, siRNA was used to determine the effect of OSX knockdown on impacting the effect of Si(4+) on osteogenic markers and matrix collagen formation. Each bioactive glass exhibited similar ion release rates for all ions, except Mg(2+) released by 6P53-b. Gene expression results showed that GCM markedly enhanced many osteogenic markers, and 45S5 GCM showed higher levels of expression and collagen matrix fiber bundle density than 6P53-b GCM. Upon knockdown of OSX transcription, collagen type 5, alkaline phosphatase, and matrix density were not enhanced as compared to wild type cells. This study illustrates that the enhancement of elongated collagen fiber matrix formation by Si(±) depends on OSX transcription. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2604-2615, 2016. PMID:27279631

  11. Monodispersed lysozyme-functionalized bioactive glass nanoparticles with antibacterial and anticancer activities.

    PubMed

    Zheng, Kai; Lu, Miao; Liu, Yufang; Chen, Qiang; Taccardi, Nicola; Hüser, Norbert; Boccaccini, Aldo R

    2016-01-01

    In this study, highly monodispersed spherical bioactive glass nanoparticles (BGS) with a particle size of 408  ±  36 nm were synthesized using a modified Stöber method. The BGS was then functionalized with lysozyme (LY) via a simple electrostatic interaction routine under selected conditions. The LY-functionalized BGS (LY-BGS) exhibited monodispersity, spherical morphology and homogeneity in size. The incorporated content of LY could be tailored conveniently by adjusting the initial concentration of the LY precursor for functionalization. Hydroxyapatite (HA) formed on the LY-BGS after soaking in simulated body fluid (SBF) for 7 d, but the formation was retarded compared to the non-functionalized BGS. The LY-BGS showed antibacterial activity towards Gram-positive B. subtilis and  >90% of the bacteria was killed within 24 h after culture with the LY-BGS at a concentration of 1 mg ml(-1). The LY-BGS also showed cytotoxicity towards the human hepatocellular carcinoma (HepG2) cell line. In addition, the relative cytotoxicity increased with an increase in the concentration of the LY-BGS in contact with the cells. As a comparison, the LY-BGS exhibited reduced or no cytotoxicity towards human umbilical vein endothelial cells (HUVECs) at the same concentration with respect to the HepG2 groups. Notably, the relative cell viability of HepG2 was 45.9% after exposure to the LY-BGS at a concentration of 10 μg ml(-1) for 24 h, while no decrease in relative viability for the HUVECs was observed under the same conditions. This cytotoxicity window between cancerous cells and healthy cells could be expected for cancer treatment. Furthermore, the antibacterial properties and the bioactivity of LY-BGS make it a promising material for biomedical applications, particularly in the treatment of bone defects caused by tumors. PMID:27272061

  12. Scaffold-hopping of bioactive flavonoids: Discovery of aryl-pyridopyrimidinones as potent anticancer agents that inhibit catalytic role of topoisomerase IIα.

    PubMed

    Priyadarshani, Garima; Amrutkar, Suyog; Nayak, Anmada; Banerjee, Uttam C; Kundu, Chanakya N; Guchhait, Sankar K

    2016-10-21

    A strategy of scaffold-hopping of bioactive natural products, flavones and isoflavones, leading to target-based discovery of potent anticancer agents has been reported for the first time. Scaffold-hopped flavones, 2-aryl-4H-pyrido[1,2-a]pyrimidin-4-ones and the scaffold-hopped isoflavones, 3-aryl-pyrido[1,2-a]pyrimidin-4-ones were synthesized via Pd-catalyzed activation-arylation methods. Most of the compounds were found to exhibit pronounced human topoisomerase IIα (hTopoIIα) inhibitory activities and several compounds were found to be more potent than etoposide (a hTopoIIα-inhibiting anticancer drug). These classes of compounds were found to be hTopoIIα-selective catalytic inhibitors while not interfering with topoisomerase I and interacted with DNA plausibly in groove domain. Cytotoxicities against various cancer cells, low toxicity in normal cells, and apoptotic effects were observed. Interestingly, compared to parent flavones/isoflavones, their scaffold-hopped analogs bearing alike functionalities showed significant/enhanced hTopoIIα-inhibitory and cytotoxic properties, indicating the importance of a natural product-based scaffold-hopping strategy in the drug discovery. PMID:27343852

  13. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts.

    PubMed

    Massera, J; Kokkari, A; Närhi, T; Hupa, L

    2015-06-01

    In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium. PMID:26099346

  14. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.

    PubMed

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

    2015-02-01

    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. PMID:25492213

  15. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis.

    PubMed

    Shih, Shao-Ju; Tzeng, Wei-Lung; Jatnika, Rifqi; Shih, Chi-Jen; Borisenko, Konstantin B

    2015-05-01

    Mesoporous bioactive glasses (MBGs) have become important bone implant materials because of their high specific surface area resulting in high bioactivity. Doping MBGs with Ag removes one of the remaining challenges to their applications, namely their lack of intrinsic antibacterial properties. In present work we demonstrate that Ag-doped MBGs can be prepared in one-step spray pyrolysis (SP) process. The SP preparation method offers the advantages of short processing times and continuous production over the sol-gel method previously used to prepare MBGs. Using scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction we demonstrate that the synthesized MBG particles have amorphous structure with nanocrystalline Ag inclusions. The scanning transmission electron microscopy-X-ray energy dispersive spectrometry of cross-sectional samples shows that the distribution of the Ag dopant nanoparticles within MBGs can be controlled by using the appropriate formulation of the precursors. The distribution of the Ag dopant nanoparticles within the MBG particles was found to affect their surface areas, bioactivities and antibacterial properties. Based on the observations, we propose a mechanism describing MBG particle formation and controlling dopant distribution. PMID:25171327

  16. The modulation of tissue-specific gene expression in rat nasal chondrocyte cultures by bioactive glasses.

    PubMed

    Asselin, Audrey; Hattar, Susan; Oboeuf, Martine; Greenspan, David; Berdal, Ariane; Sautier, Jean-Michel

    2004-11-01

    Since bone repair may occur, following endochondral ossification, we have investigated the behaviour of chondrocytes isolated from nasal septum cartilage of foetal rats and cultured up to 21 days in the presence of a melt-derived bioactive glass (Bioglass 45S5) and a less reactive glass with 60 wt% silica content (60S). In both cultures, chondrocytes proliferate and form typical cartilaginous nodules on day 5 of cultures. However, on day 12, the nodules in contact with 45S5 granules became darker than in 60S cultures, corresponding to the emergence of matrix biomineralization. Transmission electron microscopy showed a collagen-rich matrix composed of densely packed fibres and mineralized foci formed of needle-shaped crystals in contact with an electron-dense layer located at the periphery of the material. The specific activity of alkaline phosphatase was significant higher in 45S5 cultures on day 15 than in 60S cultures. Real time RT-PCR was used to monitor gene expression levels of specific chondrogenic markers. The transcription factor Sox9 was expressed throughout the culture period, but with no significant differences between the two kinds of cultures. In contrast, Runx2 expression was higher in experiment cultures on day 12. Type II collagen mRNA and aggrecan, showed an almost similar expression pattern with a strong expression at the beginning of cultures but higher in experiment cultures. Indian hedgehog was strongly expressed between day 9 and 12 with a significant stimulation in 45S5 cultures. Similarly, type X collagen mRNA seemed to be up-regulated in 45S5 cultures on day 20. In conclusion, this study shows hat 45S5 Bioglass has the ability to support the growth of chondrocytes and to stimulate some chondrogenic molecular markers. PMID:15159078

  17. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    SciTech Connect

    Jukola, H.; Nikkola, L.; Tukiainen, M.; Kellomaeki, M.; Ashammakhi, N.; Gomes, M. E.; Reis, R. L.; Chiellini, F.; Chiellini, E.

    2008-02-15

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-{epsilon}-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  18. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    NASA Astrophysics Data System (ADS)

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  19. Ions Release and pH of Calcium Hydroxide-, Chlorhexidine- and Bioactive Glass-Based Endodontic Medicaments.

    PubMed

    Carvalho, Ceci Nunes; Freire, Laila Gonzales; Carvalho, Alexandre Pinheiro Lima de; Duarte, Marco Antonio Húngaro; Bauer, José; Gavini, Giulio

    2016-01-01

    This study evaluated pH and release of calcium, sodium and phosphate ions from different medications in human dentin. Fifty premolars were prepared and randomly divided into groups: (CHX) - 2% chlorhexidine gel; (CHX + CH) - CHX + calcium hydroxide PA; (CH) - CH + propylene glycol 600; (NPBG) - experimental niobium phosphate bioactive glass + distilled water; (BG) - bioactive glass (Bio-Gran) + distilled water. The specimens were immersed in deionized water and the pH variations were measured. The quantification of ions in the solutions was made by inductively coupled plasma - atomic emission spectroscopy (ICP/AES) at 10 min, 24 h, 7, 14, 21 and 30 days. The results were analyzed by ANOVA and Tukey`s test, with a significance level of 5%. CH had the highest level of calcium ions release at 30 days, while CHX and BG released more sodium ions. BG, NPBG and CHX released a higher amount of phosphate ions. The pH of CH was significantly higher compared with the other groups. CH favored the greatest increase of pH and calcium ions release. The bioactive glasses released more sodium and phosphate ions and presented an alkaline pH immediately and after 30 days. PMID:27224568

  20. Good short-term outcome of primary total hip arthroplasty with cementless bioactive glass ceramic bottom-coated implants

    PubMed Central

    2012-01-01

    Background and purpose Cementless total hip arthroplasty is currently favored by many orthopedic surgeons. The design of the porous surface is critically important for long-term fixation. We examined the clinical and radiographic outcome of the cementless titanium hip implant with a bottom coating of apatite-wollastonite containing bioactive glass ceramic. Methods We retrospectively reviewed 109 hips (92 patients) that had undergone primary cementless total hip arthroplasty with bioactive glass ceramic bottom-coated implants. The mean follow-up period was 7 (3–9) years. Hip joint function was evaluated with the Merle d’Aubigné and Postel hip score, and radiographic changes were determined from anteroposterior radiographs. Results The mean hip score improved from 9.7 preoperatively to 17 at the final follow-up. The overall survival rate was 100% at 9 years, when radiographic loosening or revision for any reason was used as the endpoint. 3 stems in 2 patients subsided more than 3 mm vertically within 1 year after implantation. Radiographs of the interface of the stem and femur were all classified as bone ingrowth fixation. Conclusions The short-term results of this study show good outcome for cementless implants with a bottom coating of apatite-wollastonite containing bioactive glass ceramic. PMID:23043270

  1. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method.

    PubMed

    Pereira, M M; Jones, J R; Orefice, R L; Hench, L L

    2005-11-01

    A new class of materials based on inorganic and organic species combined at a nanoscale level has received large attention recently. In this work the idea of producing hybrid materials with controllable properties is applied to obtain foams to be used as scaffolds for tissue engineering. Hybrids were synthesized by reacting poly(vinyl alcohol) in acidic solution with tetraethylorthosilicate. The inorganic phase was also modified by incorporating a calcium compound. Hydrated calcium chloride was used as precursor. A surfactant was added and a foam was produced by vigorous agitation, which was cast just before the gel point. Hydrofluoric acid solution was added in order to catalyze the gelation. The foamed hybrids were aged at 40 degrees C and vacuum dried at 40 degrees C. The hybrid foams were analyzed by Scanning Electron Microscopy, Mercury Porosimetry, Nitrogen Adsorption, X-ray Diffraction and Infra-red Spectroscopy. The mechanical behavior was evaluated by compression tests. The foams obtained had a high porosity varying from 60 to 90% and the macropore diameter ranged from 30 to 500 microm. The modal macropore diameter varied with the inorganic phase composition and with the polymer content in the hybrid. The surface area and mesopore volume decreased as polymer concentration increased in the hybrids. The strain at fracture of the hybrid foams was substantially greater than pure gel-glass foams. PMID:16388385

  2. Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect.

    PubMed

    Leu, Ann; Stieger, Susanne M; Dayton, Paul; Ferrara, Katherine W; Leach, J Kent

    2009-04-01

    Localized radiation is an effective treatment modality for carcinomas, yet the associated reduction of the host vasculature significantly inhibits the tissue's regenerative capacity. Low concentrations of bioactive glass (BG) possess angiogenic potential, and we hypothesized that localized BG presentation would increase neovascularization and promote healing in an irradiated bone defect. An isolated calvarial region of Sprague-Dawley rats was irradiated 2 weeks before surgery. Bilateral critical-sized defects were created and immediately filled with a BG-loaded collagen sponge or an empty sponge as an internal control. Histological analysis of calvaria collected after 2 weeks demonstrated greater neovascularization within the defect in the presence of BG than with collagen alone. Noninvasive ultrasound imaging at 4 weeks detected less contrast agent in the brain below BG-treated defects than in the nearby untreated defects and images of treated defects acquired at 2 weeks. The reduced ability to detect contrast agent in BG-treated defects suggested greater attenuation of ultrasound signal due to early bone formation. Micro-computed tomography imaging at 12 weeks demonstrated significantly greater bone volume fraction within BG-treated defects than in controls. These results suggest that neovascularization induced by localized BG delivery promotes bone regeneration in this highly compromised model of bone healing and may offer an alternative approach to costly growth factors and their potential side-effects. PMID:18795867

  3. Evaluation of antimicrobial properties of bioactive glass used in regenerative periodontal therapy

    PubMed Central

    Chandrasekar, Ram Sabarish; Lavu, Vamsi; Kumar, Kennedy; Rao, Suresh Ranga

    2015-01-01

    Context: Bone grafting materials which have an inherent anti-microbial property against initial colonizers of plaque bacteria would be useful in regenerative periodontal surgical procedures. Aims: This study was performed to analyze the antibacterial property of a Perioglas™ against a common oral commensal Streptococcus salivarius (early colonizer). Settings and Design: In vitro observational study. Materials and Methods: Perioglas™ (in various concentrations) was assessed for its antibacterial property against the ATCC 13419 strain of S. salivarius. The anti-microbial activity was analyzed in terms of reduction in colony-forming units in culture plates and smear following a 24 h incubation at 37°C. Statistical Analysis Used: Observational study - No statistical analysis applicable. Results: The bioactive glass (BAG) exerted an antibacterial effect against the S. salivarius in the suspending media and smear. The antibacterial activity of BAG increased in proportion with its concentration. Conclusions: Perioglas™ demonstrated a considerable antibacterial effect against S. salivarius at 50 mg/mL concentration. PMID:26644717

  4. 3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.

    PubMed

    Krzyzanowski, Michal; Bajda, Szymon; Liu, Yijun; Triantaphyllou, Andrew; Mark Rainforth, W; Glendenning, Malcolm

    2016-06-01

    Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process. PMID:26953962

  5. Rheological evaluations and in vitro studies of injectable bioactive glass-polycaprolactone-sodium alginate composites.

    PubMed

    Borhan, Shokoufeh; Hesaraki, Saeed; Behnamghader, Ali-Asghar; Ghasemi, Ebrahim

    2016-09-01

    Composite pastes composed of various amounts of melt-derived bioactive glass 52S4 (MG5) and polycaprolactone (PCL) microspheres in sodium alginate solution were prepared. Rheological properties in both rotatory and oscillatory modes were evaluated. Injectability was measured as injection force versus piston displacement. In vitro calcium phosphate precipitation was also studied in simulated body fluid (SBF) and tracked using scanning electron microscopy, X-ray diffraction and FTIR analyses. All composite pastes were thixotropic in nature and exhibited shear thinning behavior. The magnitude of thixotropy decreased by adding 10-30 wt% PCL, while further amounts of PCL increased it again. Moreover, the composites were viscoelastic materials in which the elastic modulus was higher than viscous term. The pastes which were just made of MG5 or PCL had poor injectability, whereas the composites containing both of these constituents exhibited reasonable injectability. All pastes revealed adequate structural stability in contact with SBF solution. In vitro calcium phosphate precipitation was well observed on the paste made of MG5 and somewhat on the pastes with 10-40 wt% PCL, however the precipitated layer was amorphous in nature. Overall, the produced composites may be appropriate as injectable biomaterials for non-invasive surgeries but more biological evaluations are essential. PMID:27432416

  6. Gold nanoparticle incorporated polymer/bioactive glass composite for controlled drug delivery application.

    PubMed

    Jayalekshmi, A C; Sharma, Chandra P

    2015-02-01

    The present study discusses the development of a biodegradable polymer encapsulated-nanogold incorporated-bioactive glass composite (AuPBG) by a low-temperature method. The composite was analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), fluorescence and dissolution analysis. The composite exhibited aggregation behaviour in solid and solution states and exhibited negative zeta potential (-13.3 ± 1.4 mV). The composite exhibited fast degradation starting from the 5(th) day onwards in phosphate buffered saline (PBS) for a period of 14 days. The composite showed fluorescence quenching effect at pH 7 and the fluorescence recovered at pH 5. The composite has been found to be suitable for the release of doxorubicin at high rates at acidic pH (∼ 5) which is the intracellular pH of tumour cells. The drug loading ratio is also high and it exhibited a controlled release for a period of 8 days in PBS. The system serves as a promising material for targeted drug delivery applications. PMID:25576810

  7. Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Cheng; Kung, Jung-Chang; Chen, Cheng-Hwei; Hsiao, Yu-Cheng; Shih, Chi-Jen; Chien, Chi-Sheng

    2013-10-01

    Bioactive glass (BG) is a potential material for treating dentin hypersensitivity due to its high ability of dissolution. In this study, conventional BG and BG with well-ordered mesopore structures (MBG) were applied for dentinal tubule occlusion. We used X-ray diffractometer (XRD), scanning electronic microscope (SEM), and Fourier transform infrared (FTIR) to investigate the physiochemical properties and the dentinal tubule occlusion ability of BG and MBG groups. The results showed that the major crystallite phase of MBG and BG agents was monocalcium phosphate monohydrate. MBG pastes, mixed with 30 and 40 wt% phosphoric acid hardening solutions, had the ability to create a penetration depth greater than 50 μm. These results showed that BG with mesoporous structures turned the pastes mixed with suitable phosphoric acid solution into a material with great ability for occluding dentinal tubules; it has a short reaction time and good operability, and these agents have better potential for the treatment of dentin hypersensitivity than BG without mesoporous structures.

  8. One-pot synthesis of magnetic, macro/mesoporous bioactive glasses for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Lin, Huiming; Jiang, Jingjie; Han, Xiao; Guo, Wei; Wu, Xiaodan; Jin, Yingxue; Qu, Fengyu

    2013-04-01

    Magnetic and macro/mesoporous bioactive glasses were synthesized by a one-pot method via a handy salt leaching technique. It was identified to be an effective and simple synthetic strategy. The non-ionic triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123), was used as the structure directing agent for mesoporous structure but also as the reductant to reduce the iron source into magnetic iron oxide. The prepared materials exhibited excellent super-paramagnetic property with interconnected macroporous (200-300 μm) and mesoporous (3.4 nm) structure. Furthermore, their outstanding drug storage/release properties and rapid (5) induction of hydroxyapatite growth ability were investigated after immersing in simulated body fluid solution at 37 °C. Notably, the biocompatibility assessment confirmed that the materials obtained presented good biocompatibility and enhanced adherence of HeLa cells. Herein, the novel materials are expected to have potential application for bone tissue engineering.

  9. Effects of ceramic component on cephalexin release from bioactive bone cement consisting of Bis-GMA/TEGDMA resin and bioactive glass ceramics.

    PubMed

    Otsuka, M; Fujita, H; Nakamura, T; Kokubo, T

    2001-01-01

    The purpose of this study was to elucidate the effect of amount of ceramic cement powder on drug release from bioactive bone cement. The associated bone-bonding strength was also investigated. The bioactive bone cement under investigation consisted of bisphenol-alpha-glycidyl methacrylate (Bis-GMA), triethylene-glycol dimethacrylate (TEGDMA) resin and a combination of apatite- and wollastonite-containing glass-ceramic (A-W GC) powder. A-W GC powder (50%, 70% and 80% w/w) containing 5% cephalexin (CEX) powder hardened within 5 min after mixing with Bis-GMA/TEGDMA resin. The compressive strength of the cement with or without drug increased with increasing the amount of ceramic powder. The compressive strength of the 80% ceramic cement without the incorporation of cephalexin was 194 MPa. This compressive strength was about 3 times higher than that for polymethylmethacrylate cement. After the cement was implanted in the proximal metaphysis of the tibiae of male rabbits, the failure load for the cement was found to increase with increasing of the amount of ceramic powder. This finding suggested that the cement formed a bonding with bone. In vitro CEX release from bioactive bone cement pellets in a simulated body fluid at pH 7.25 and 37 degrees C continued for more than 2 weeks. Drug release profile followed the Higuchi equation initially, but not at later stages. The drug release rate increased with increasing amount of ceramic powder in the mixture. Since the pore volume of the cement increased with increasing of amount of ceramic powder, the drug diffused in the pores between the ceramics particle and polymer matrix. As hydroxyapatite precipitated on the cement surface, the drug release rate decreased, as observed at the later release stage. These results suggest that varying the amount of ceramic powder in the cement system could control the drug release rate from bioactive bone cement. PMID:11281575

  10. Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass

    PubMed Central

    Davis, Harry B.; Gwinner, Fernanda; Mitchell, John C.; Ferracane, Jack L.

    2014-01-01

    Objectives Materials that are capable of releasing ions such as calcium and fluoride, that are necessary for remineralization of dentin and enamel, have been the topic of intensive research for many years. The source of calcium has most often been some form of calcium phosphate, and that for fluoride has been one of several metal fluoride or hexafluorophosphate salts. Fluoride-containing bioactive glass (BAG) prepared by the sol-gel method acts as a single source of both calcium and fluoride ions in aqueous solutions. The objective of this investigation was to determine if BAG, when added to a composite formulation, can be used as a single source for calcium and fluoride ion release over an extended time period, and to determine if the BAG-containing composite can be recharged upon exposure to a solution of 5,000 ppm fluoride. Methods BAG 61 (61% Si; 31% Ca; 4% P; 3% F; 1% B) and BAG 81 (81% Si; 11% Ca; 4% P; 3% F; 1% B) were synthesized by the sol gel method. The composite used was composed of 50/50 Bis-GMA/TEGDMA, 0.8% EDMAB, 0.4% CQ, and 0.05% BHT, combined with a mixture of BAG (15%) and strontium glass (85%) to a total filler load of 72% by weight. Disks were prepared, allowed to age for 24 h, abraded, then placed into DI water. Calcium and fluoride release was measured by atomic absorption spectroscopy and fluoride ion selective electrode methods, respectively, after 2, 22, and 222 h. The composite samples were then soaked for 5 min in an aqueous 5,000 ppm fluoride solution, after which calcium and fluoride release was again measured at 2, 22, and 222 h time points. Results Prior to fluoride recharge, release of fluoride ions was similar for the BAG 61 and BAG 81 composites after 2 h, and also similar after 22 h. At the four subsequent time points, one prior to, and three following fluoride recharge, the BAG 81 composite released significantly more fluoride ions (p<0.05). Both composites were recharged by exposure to 5,000 ppm fluoride, although the BAG 81

  11. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica.

    PubMed

    Leenakul, Wilaiwan; Tunkasiri, Tawee; Tongsiri, Natee; Pengpat, Kamonpan; Ruangsuriya, Jetsada

    2016-04-01

    45S5 bioactive glass is a highly bioactive substance that has the ability to promote stem cell differentiation into osteoblasts--the cells that create bone matrix. The aim of this work is to analyze physical and mechanical properties of 45S5 bioactive glass fabricated by using rice husk ash as its silica source. The 45S5 bioactive glass was prepared by melting the batch at 1300 °C for 3h. The samples were sintered at different temperatures ranging from 900 to 1050 °C with a fixed dwell-time of 2h. The phase transitions, density, porosity and microhardness values were investigated and reported. DTA analysis was used to examine the crystallization temperatures of the glasses prepared. We found that the sintering temperature had a significant effect on the mechanical and physical properties of the bioactive glass. The XRD showed that when the sintering temperature was above 650 °C, crystallization occurred and bioactive glass-ceramics with Na2Ca2Si3O9, Na2Ca4(PO4)2SiO4 and Ca3Si2O7 were formed. The optimum sintering temperature resulting in maximum mechanical values was around 1050 °C, with a high density of 2.27 g/cm(3), 16.96% porosity and the vicker microhardness value of 364HV. Additionally, in vitro assay was used to examine biological activities in stimulated body fluid (SBF). After incubation in SBF for 7 days, all of the samples showed formations of apatite layers indicating that the 45S5 bioactive glasses using rice husk as a raw material were also bioactive. PMID:26838899

  12. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability.

    PubMed

    Silver, I A; Deas, J; Erecińska, M

    2001-01-01

    In a cell culture model of murine osteoblasts three particulate bioactive glasses were evaluated and compared to glass (either borosilicate or soda-lime-silica) particles with respect to their effect on metabolic activity, cell viability, changes in intracellular ion concentrations, proliferation and differentiation. 45S5 Bioglass caused extra- and intracellular alkalinization, a rise in [Ca2+]i and [K+]i, a small plasma membrane hyperpolarization, and an increase in lactate production. Glycolytic activity was also stimulated when cells were not in direct contact with 45S5 Bioglass particles but communicated with them only through the medium. Similarly, raising the pH of culture medium enhanced lactate synthesis. 45S5 Bioglass had no effect on osteoblast viability and, under most conditions, did not affect either proliferation or differentiation. Bioactive glasses 58S and 77S altered neither the ion levels nor enhanced metabolic activity. It is concluded that: (1) some bioactive glasses exhibit well-defined effects in osteoblasts in culture which are accessible to experimentation; (2) 45S5 Bioglass causes marked external and internal alkalinization which is, most likely, responsible for enhanced glycolysis and, hence, cellular ATP production; (3) changes in [H+] could contribute to alternations in concentrations of other intracellular ions; and (4) the rise in [Ca2+]i may influence activities of a number of intracellular enzymes and pathways. It is postulated that the beneficial effect of 45S5 on in vivo bone growth and repair may be due to some extent to alkalinization, which in turn increases collagen synthesis and crosslinking, and hydroxyapatite formation. PMID:11101161

  13. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone.

    PubMed

    Cui, Xu; Zhao, Cunju; Gu, Yifei; Li, Le; Wang, Hui; Huang, Wenhai; Zhou, Nai; Wang, Deping; Zhu, Yi; Xu, Jun; Luo, Shihua; Zhang, Changqing; Rahaman, Mohamed N

    2014-03-01

    Osteomyelitis (bone infection) is often difficult to cure. The commonly-used treatment of surgical debridement to remove the infected bone combined with prolonged systemic and local antibiotic treatment has limitations. In the present study, an injectable borate bioactive glass cement was developed as a carrier for the antibiotic vancomycin, characterized in vitro, and evaluated for its capacity to cure osteomyelitis in a rabbit tibial model. The cement (initial setting time = 5.8 ± 0.6 min; compressive strength = 25.6 ± 0.3 MPa) released vancomycin over ~25 days in phosphate-buffered saline, during which time the borate glass converted to hydroxyapatite (HA). When implanted in rabbit tibial defects infected with methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis, the vancomycin-loaded cement converted to HA and supported new bone formation in the defects within 8 weeks. Osteomyelitis was cured in 87 % of the defects implanted with the vancomycin-loaded borate glass cement, compared to 71 % for the defects implanted with vancomycin-loaded calcium sulfate cement. The injectable borate bioactive glass cement developed in this study is a promising treatment for curing osteomyelitis and for regenerating bone in the defects following cure of the infection. PMID:24477872

  14. Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration

    PubMed Central

    Allo, Bedilu A.; Costa, Daniel O.; Dixon, S. Jeffrey; Mequanint, Kibret; Rizkalla, Amin S.

    2012-01-01

    Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this paper, we review the current state of bioactive and biodegradable nanocomposite and O/I hybrid biomaterials and their applications in bone regeneration. We focus specifically on nanocomposites based on nano-sized hydroxyapatite (HA) and bioactive glass (BG) fillers in combination with biodegradable polyesters and their hybrid counterparts. Topics include 3D scaffold design, materials that are widely used in bone regeneration, and recent trends in next generation biomaterials. We conclude with a perspective on the future application of nanocomposites and O/I hybrid biomaterials for regeneration of bone. PMID:24955542

  15. Kinetics of a bioactive compound (caffeine) mobility at the vicinity of the mechanical glass transition temperature induced by gelling polysaccharide.

    PubMed

    Jiang, Bin; Kasapis, Stefan

    2011-11-01

    An investigation of the diffusional mobility of a bioactive compound (caffeine) within the high-solid (80.0% w/w) matrices of glucose syrup and κ-carrageenan plus glucose syrup exhibiting distinct mechanical glass transition properties is reported. The experimental temperature range was from 20 to -60 °C, and the techniques of modulated differential scanning calorimetry, small deformation dynamic oscillation in shear, and UV spectrometry were employed. Calorimetric and mechanical measurements were complementary in recording the relaxation dynamics of high-solid matrices upon controlled heating. Predictions of the reaction rate theory and the combined WLF/free volume framework were further utilized to pinpoint the glass transition temperature (T(g)) of the two matrices in the softening dispersion. Independent of composition, calorimetry yielded similar T(g) predictions for both matrices at this level of solids. Mechanical experimentation, however, was able to detect the effect of adding gelling polysaccharide to glucose syrup as an accelerated pattern of vitrification leading to a higher value of T(g). Kinetic rates of caffeine diffusion within the experimental temperature range were taken with UV spectroscopy. These demonstrated the pronounced effect of the gelling κ-carrageenan/glucose syrup mixture to retard diffusion of the bioactive compound near the mechanical T(g). Modeling of the diffusional mobility of caffeine produced activation energy and fractional free-volume estimates, which were distinct from those of the carbohydrate matrix within the glass transition region. This result emphasizes the importance of molecular interactions between macromolecular matrix and small bioactive compound in glass-related relaxation phenomena. PMID:21936521

  16. Review and the state of the art: Sol-gel and melt quenched bioactive glasses for tissue engineering.

    PubMed

    Kaur, Gurbinder; Pickrell, Gary; Sriranganathan, Nammalwar; Kumar, Vishal; Homa, Daniel

    2016-08-01

    Biomaterial development is currently the most active research area in the field of biomedical engineering. The bioglasses possess immense potential for being the ideal biomaterials due to their high adaptiveness to the biological environment as well as tunable properties. Bioglasses like 45S5 has shown great clinical success over the past 10 years. The bioglasses like 45S5 were prepared using melt-quenching techniques but recently porous bioactive glasses have been derived through sol-gel process. The synthesis route exhibits marked effect on the specific surface area, as well as degradability of the material. This article is an attempt to provide state of the art of the sol-gel and melt quenched bioactive bioglasses for tissue regeneration. Fabrication routes for bioglasses suitable for bone tissue engineering are highlighted and the effect of these fabrication techniques on the porosity, pore-volume, mechanical properties, cytocompatibilty and especially apatite layer formation on the surface of bioglasses is analyzed in detail. Drug delivery capability of bioglasses is addressed shortly along with the bioactivity of mesoporous glasses. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1248-1275, 2016. PMID:26060931

  17. Electrospinning preparation and drug delivery properties of Eu3+/Tb3+ doped mesoporous bioactive glass nanofibers.

    PubMed

    Huang, Shanshan; Kang, Xiaojiao; Cheng, Ziyong; Ma, Ping'an; Jia, Ye; Lin, Jun

    2012-12-01

    Luminescent Eu(3+)/Tb(3+) doped mesoporous bioactive glass nanofibers (MBGNFs) with average diameter of 100-120 nm were fabricated by electrospinning method. Pluronic P123 and N-cetyltrimethylammonium bromide (CTAB) were used as co-surfactants to generate porous structure of the nanofibers. N(2) adsorption-desorption measurement reveals that the MBGNF:Eu(3+) have a surface area of 188 m(2) g(-1), a pore volume of 0.246 cm(3) g(-1) and average pore size of 4.17 nm, and the MBGNF:Tb(3+) have a surface area of 171 m(2) g(-1), a pore volume of 0.186 cm(3) g(-1) and average pore size of 3.65 nm. Photoluminescence measurements reveal that the MBGNF:Eu(3+) show strong red emission dominated by the (5)D(0)→(7)F(2) transition of Eu(3+) at 614 nm with a lifetime of 1.356 ms, and MBGNF:Tb(3+) show strong green emission dominated by the (5)D(4)→(7)F(5) transition of Tb(3+) at 544 nm with a lifetime of 1.982 ms. The biocompatibility tests on L929 fibroblast cells using MTT assay reveal low cytotoxicity of MBGNF. These luminescent nanofibers show sustained release properties for ibuprofen (IBU) in vitro. The emission intensities of Eu(3+) in the drug delivery system vary with the released amount of IBU, thus making the drug release be easily tracked and monitored by the change of the luminescence intensity. PMID:22964090

  18. Mechanical behaviour of Bioactive Glass granules and morselized cancellous bone allograft in load bearing defects.

    PubMed

    Hulsen, D J W; Geurts, J; van Gestel, N A P; van Rietbergen, B; Arts, J J

    2016-05-01

    Bioactive Glass (BAG) granules are osteoconductive and possess unique antibacterial properties for a synthetic biomaterial. To assess the applicability of BAG granules in load-bearing defects, the aim was to compare mechanical behaviour of graft layers consisting of BAG granules and morselized cancellous bone allograft in different volume mixtures under clinically relevant conditions. The graft layers were mechanically tested, using two mechanical testing modalities with simulated physiological loading conditions: highly controllable confined compression tests (CCT) and more clinically realistic in situ compression tests (ISCT) in cadaveric porcine bone defects. Graft layer impaction strain, residual strain, aggregate modulus, and creep strain were determined in CCT. Graft layer porosity was determined using micro computed tomography. The ISCT was used to determine graft layer subsidence in bone environment. ANOVA showed significant differences (p<0.001) between different graft layer compositions. True strains absolutely decreased for increasing BAG content: impaction strain -0.92 (allograft) to -0.39 (BAG), residual strain -0.12 to -0.01, and creep strain -0.09 to 0.00 respectively. Aggregate modulus increased with increasing BAG content from 116 to 653MPa. Porosity ranged from 66% (pure allograft) to 15% (pure BAG). Subsidence was highest for allograft, and remarkably low for a 1:1 BAG-allograft volume mixture. Both BAG granules and allograft morsels as stand-alone materials exhibit suboptimal mechanical behaviour for load-bearing purpose. BAG granules are difficult to handle and less porous, whereas allograft subsides and creeps. A 1:1 volume mixture of BAG and allograft is therefore proposed as the best graft material in load-bearing defects. PMID:26972764

  19. Bioactive glass combined with bisphosphonates provides protection against biofilms formed by the periodontal pathogen Aggregatibacter actinomycetemcomitans.

    PubMed

    Hiltunen, Anna K; Skogman, Malena E; Rosenqvist, Kirsi; Juvonen, Helka; Ihalainen, Petri; Peltonen, Jouko; Juppo, Anne; Fallarero, Adyary

    2016-03-30

    Biofilms play a pivotal role in the progression of periodontitis and they can be treated with antiseptics (i.e. chlorhexidine) or antibiotics, but these therapeutic alternatives are unable of ameliorating periodontal alveolar bone loss, which has been, on the other hand, successfully treated with bone-preserving agents. The improved bone formation achieved in animal models by the combination of two such agents: bioactive glass (BAG) and bisphosphonates has attracted the interest for further exploring dental applications. However, the antimicrobial effects that may result from combining them have not been yet investigated. Here, our aim was to explore the anti-biofilm effects that could result from combining BAG with bisphosphonates, particularly in a dental biofilm model. The experiments were performed with an oral cavity single-specie (Aggregatibacter actinomycetemcomitans) biofilm assay, which was optimized in this contribution. Risedronate displayed an intrinsic anti-biofilm effect, and all bisphosphonates, except clodronate, reduced biofilm formation when combined with BAG. In particular, the anti-biofilm activity of risedronate was significantly increased by the combination with BAG. Since it has been proposed that some of the antimicrobial effects of BAG are caused by local pH changes, studies of pH variations were performed to gain a mechanistic understanding. However, the observed anti-biofilm effects could not be explained with lowered pHs. Overall, these results do provide further support for the promising use of bisphosphonate-BAG combinations in dental applications. These findings are particularly relevant for patients undergoing cancer chemotherapy, or osteoporotic patients, which are known to be more vulnerable to periodontitis. In such cases, bisphosphonate treatment could play a double positive effect: local treatment of periodontitis (in combination with BAG) and systemic treatment of osteoporosis, prevention of hypercalcemia and metastases. PMID

  20. Novel bioactive Fe-based metallic glasses with excellent apatite-forming ability.

    PubMed

    Qin, Chunling; Hu, Qingfeng; Li, Yongyan; Wang, Zhifeng; Zhao, Weimin; Louzguine-Luzgin, Dmitri V; Inoue, Akihisa

    2016-12-01

    We demonstrate, for the first time, that the (Fe0.75B0.15Si0.1)100-xNbx (x=0, 1 and 3at.%) metallic glasses without toxic and allergic elements exhibit excellent apatite-forming ability in simulated body fluids (SBF), which is expected to be a new generation of biomaterials in stents and orthopedic implants. For the alloys without any surface treatment, spherical particles corresponding to octacalcium phosphate are spontaneously nucleated and precipitated throughout the alloy surface after immersion only for 1day, indicating that the present alloys possess an unusual high bioactivity. During the subsequent in-vitro immersion for 3days, SEM image reveals the typical 'cauliflower' morphology of bone-like hydroxyapatite (HA) with Ca/P ratio of 1.65. In addition, it is surprising to find that the in-vitro SBF immersion not only leads to the formation and growth of the apatite layer but also causes the progressive development of the underlying alloy substrate. Moreover, for the alloys immersed for 3 or 9days, the substrate alloy just beneath the apatite layer consists of a hierarchical nano/macro-porous structure through selective dissolution of the active components Fe and B in the surface. XPS analysis indicates that the apatite nucleation on the present alloys in SBF is attributed to the specific dissolution properties of the present alloys and the fast formation of Si-OH and Fe-OH or Nb-OH functional groups, followed by combination of these groups with Ca(2+) and phosphate ions. PMID:27612742

  1. A Novel Injectable Borate Bioactive Glass Cement as an Antibiotic Delivery Vehicle for Treating Osteomyelitis

    PubMed Central

    Cui, Xu; Gu, Yi-Fei; Jia, Wei-Tao; Rahaman, Mohamed N.; Wang, Yang; Huang, Wen-Hai; Zhang, Chang-Qing

    2014-01-01

    Background A novel injectable cement composed of chitosan-bonded borate bioactive glass (BG) particles was evaluated as a carrier for local delivery of vancomycin in the treatment of osteomyelitis in a rabbit tibial model. Materials and Methods The setting time, injectability, and compressive strength of the borate BG cement, and the release profile of vancomycin from the cement were measured in vitro. The capacity of the vancomycin-loaded BG cement to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in rabbit tibiae in vivo was evaluated and compared with that for a vancomycin-loaded calcium sulfate (CS) cement and for intravenous injection of vancomycin. Results The BG cement had an injectability of >90% during the first 3 minutes after mixing, hardened within 30 minutes and, after hardening, had a compressive strength of 18±2 MPa. Vancomycin was released from the BG cement into phosphate-buffered saline for up to 36 days, and the cumulative amount of vancomycin released was 86% of the amount initially loaded into the cement. In comparison, vancomycin was released from the CS cement for up 28 days and the cumulative amount released was 89%. Two months post-surgery, radiography and microbiological tests showed that the BG and CS cements had a better ability to eradicate osteomyelitis when compared to intravenous injection of vancomycin, but there was no significant difference between the BG and CS cements in eradicating the infection. Histological examination showed that the BG cement was biocompatible and had a good capacity for regenerating bone in the tibial defects. Conclusions These results indicate that borate BG cement is a promising material both as an injectable carrier for vancomycin in the eradication of osteomyelitis and as an osteoconductive matrix to regenerate bone after the infection is cured. PMID:24427311

  2. Bioactive glass coatings affect the behavior of osteoblast-like cells

    PubMed Central

    Foppiano, Silvia; Marshall, Sally J.; Marshall, Grayson W.; Saiz, Eduardo; Tomsia, Antoni P.

    2007-01-01

    Functionally graded coatings (FGCs) of bioactive glass on titanium alloy (Ti6Al4V) were fabricated by the enameling technique. These innovative coatings may be an alternative to plasma-sprayed, hydroxyapatite-coated implants. Previously we determined that a preconditioning treatment in simulated body fluid (SBF) helped to stabilize FGCs (Foppiano, S., et al., Acta Biomater, 2006; 2(2):133-42). The primary goal of this work was to assess the in vitro cytocompatibility of preconditioned FGCs with MC3T3-E1.4 mouse pre-osteoblastic cells. We evaluated cell adhesion, proliferation and mineralization on FGCs in comparison to uncoated Ti6Al4V and tissue culture polystyrene (TCPS). No difference in cell adhesion was identified, whereas proliferation was significantly different on all materials, being highest on FGCs followed by TCPS and Ti6Al4V. Qualitative and quantitative mineralization assays indicated that mineralization occurred on all materials. The amount of inorganic phosphate released by the mineralizing layers was significantly different, being highest on TCPS, followed by FGC and uncoated Ti6Al4V. The secondary objective of this work was to assess the ability of the FGCs to affect gene expression, indirectly, by means of their dissolution products, which was assessed by real-time reverse-transcription polymerase chain reaction. The FGC dissolution products induced a 2-fold increase in the expression of Runx-2, and a 20% decrease in the expression of collagen type 1 with respect to TCPS extract. These genes are regulators of osteoblast differentiation and mineralization, respectively. The findings of this study indicate that preconditioned FGCs are cytocompatible and suggest that future work may allow composition changes to induce preferred gene expression. PMID:17466608

  3. Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration.

    PubMed

    Sadiasa, Alexander; Sarkar, Swapan Kumar; Franco, Rose Ann; Min, Young Ki; Lee, Byong Taek

    2014-01-01

    In this work, we fabricated injectable bone substitutes modified with the addition of bioactive glass powders synthesized via ultrasonic energy-assisted hydrothermal method to the calcium phosphate-based bone cement to improve its biocompatibility. The injectable bone substitutes was initially composed of a powder component (tetracalcium phosphate, dicalcium phosphate dihydrate and calcium sulfate dehydrate) and a liquid component (citric acid, chitosan and hydroxyl-propyl-methyl-cellulose) upon which various concentrations of bioactive glass were added: 0%, 10%, 20% and 30%. Setting time and compressive strength of the injectable bone substitutes were evaluated and observed to improve with the increase of bioactive glass content. Surface morphologies were observed via scanning electron microscope before and after submersion of the samples to simulated body fluid and increase in apatite formation was detected using x-ray diffraction machine. In vitro biocompatibility of the injectable bone substitutes was observed to improve with the addition of bioactive glass as the proliferation/adhesion behavior of cells on the material increased. Human gene markers were successfully expressed using real time-polymerase chain reaction and the samples were found to promote cell viability and be more biocompatible as the concentration of bioactive glass increases. In vivo biocompatibility of the samples containing 0% and 30% bioactive glass were evaluated using Micro-CT and histological staining after 3 months of implantation in male rabbits' femurs. No inflammatory reaction was observed and significant bone formation was promoted by the addition of bioactive glass to the injectable bone substitute system. PMID:23470354

  4. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    PubMed

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. PMID:27040248

  5. The effect of composition on the viscosity, crystallization and dissolution of simple borate glasses and compositional design of borate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Goetschius, Kathryn Lynn

    Borate glasses have recently been developed for a variety of medical applications, but much less is known about their structures and properties than more common silicate glasses. Melt properties and crystallization tendency for compositions in the Na2O-CaO-B2O3 system were characterized using differential thermal analysis and viscosity measurements. Characteristic viscosity (isokom) temperatures varied with the ratio between the modifier content (Na2O+CaO) and B2O3, particularly at lower temperatures, consistent with the changes in the relative concentrations of tetrahedral borons in the glass structure. Similar glasses were used to study dissolution processes in water. These alkali-alkaline earth glasses dissolve congruently and follow linear dissolution kinetics. The dissolution rates were dependent on the glass structure, with slower rates associated with greater fractions of four-coordinated boron. For glasses with a fixed alkaline earth identity, the dissolution rates increased in the order Liglasses with a constant alkali identity, the dissolution rates increased in the order Cabioactive compositions for specific applications. Melt viscosity, thermal expansion coefficient, liquidus temperature and crystallization tendency were determined, as were dissolution rates in simulated body fluid (SBF).

  6. In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O-CaO-B2O3-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Abo-Naf, Sherief M.; Khalil, El-Sayed M.; El-Sayed, El-Sayed M.; Zayed, Hamdia A.; Youness, Rasha A.

    2015-06-01

    Na2O-CaO-B2O3-P2O5 glasses have been prepared by the melt-quenching method. B2O3 content was systematically increased from 5 to 30 mol%, at the expense of P2O5, in the chemical composition of these glasses. Density, Vickers microhardness and fracture toughness of the prepared glasses were measured. In vitro bioactivity of the glasses was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °C for 3, 7, 14 and 30 days. The glasses were tested in the form of glass grains as well as bulk slabs. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The kinetics of degradation of the glass particles were monitored by measuring the weight loss of the particles and the ionic concentration of Ca, P and B in the SBF solution using inductive coupled plasma-atomic emission spectroscopy (ICP-AES). The obtained results revealed the formation of a bioactive hydroxyapatite (HA) layer, composed of nano-crystallites, on the surface of glass grains after the in vitro assays. The results have been used to understand the formation of HA as a function of glass composition and soaking time in the SBF. It can be pointed out that increasing B2O3 content in glass composition enhances the bioactivity of glasses. The nanometric particle size of the formed HA and in vitro bioactivity of the studied glasses make them possible candidates for tissue engineering application.

  7. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  8. In vitro chemical and biological effects of Ag, Cu and Cu + Zn adjunction in 46S6 bioactive glasses

    NASA Astrophysics Data System (ADS)

    Bunetel, L.; Wers, E.; Novella, A.; Bodin, A.; Pellen-Mussi, P.; Oudadesse, H.

    2015-09-01

    Three bioactive glasses belonging to the system SiO2-CaO- Na2O-P2O5 elaborated by conventional melt-quenching techniques were doped with silver, copper and copper + zinc. They were characterized using the usual physical methods. Human osteoblast cells Saos-2 and human endothelial cells EAhy926 were used for viability assays and to assess the metallic ions, self toxicity. Human monocyte cells THP-1 were used to measure interleukins IL1β and IL6 release. Glass chemical structures did not vary much on introduction of metal ions. A layer of hydroxyapatite was observed on every glass after 30 days of SBF immersion. A proliferative action was seen on Saos-2 after 24 h of incubation, EAhy926 growth was not affected. For both cell lines, a moderate cytotoxicity was found after 72 h. Dose-dependent toxic effects of Ag, Cu and Zn ions were observed on Saos-2 and EAhy926 cells. Measured CD50 of silver against these two cell lines were 8 to 20 fold lower than copper and zinc’s. Except undoped control glass, all doped glasses tested showed anti-inflammatory properties by preventing IL1β and IL6 excretion by differentiated THP-1. In conclusion, strictly monitored adjunction of metal ions to bioglasses ensures good anti-inflammatory properties without altering their biocompatibility.

  9. Evaluation of the kinetic and relaxation time of gentamicin sulfate released from hybrid biomaterial Bioglass-chitosan scaffolds

    NASA Astrophysics Data System (ADS)

    Wers, E.; Oudadesse, H.; Lefeuvre, B.; Merdrignac-Conanec, O.; Barroug, A.

    2015-10-01

    Chitosan scaffolds, combined with bioactive glass 46S6, were prepared to serve as gentamicin sulfate delivery in situ systems for bone biomaterials. This work presents a study about the effect of the ratio chitosan/bioactive glass (CH/BG) on the release of gentamicin sulfate and on the bioactivity during in vitro experiments. SEM observations allowed understanding the bond between the glass grains and the chitosan matrix. In vitro results showed that scaffolds form a hydroxyapatite (HA) Ca10(PO4)6(OH)2 after 15 days of immersion in a simulated body fluid (SBF).The interest of this study is to see that the increase of the content of bioactive glass in the chitosan matrix slows the release of gentamicin sulfate in the liquid medium. Starting concentration of gentamicin sulfate has an influence on the relaxation time of the scaffolds. Indeed, an increasing concentration delays the return to a new equilibrium. Contents of chitosan and bioactive glass do not affect the relaxation time. Synthesized scaffolds could be adapted to a clinical situation: severity and type of infection, weight and age of the patient.

  10. Stress-corrosion crack growth of Si-Na-K-Mg-Ca-P-O bioactive glasses in simulated human physiological environment

    PubMed Central

    Bloyer, D. R.; McNaney, J. M.; Cannon, R. M.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O.

    2007-01-01

    This paper describes research on the stress-corrosion crack growth (SCCG) behavior of a new series of bioactive glasses designed to fabricate coatings on Ti and Co-Cr-based implant alloys. These glasses should provide improved implant fixation between implant and exhibit good mechanical stability in vivo. It is then important to develop an understanding of the mechanisms that control environmentally-assisted crack growth in this new family of glasses and its effect on their reliability. Several compositions have been tested in both static and cyclic loading in simulated body fluid. These show only small dependences of stress-corrosion crack growth behavior on the composition. Traditional SCCG mechanisms for silicate glasses appear to be operative for the new bioactive glasses studied here. At higher velocities, hydrodynamic effects reduce growth rates under conditions that would rarely pertain for small natural flaws in devices. PMID:17714778

  11. Silver Nanoparticle Coated Bioactive Glasses--Composites with Dex/CMC Hydrogels: Characterization, Solubility, and In Vitro Biological Studies.

    PubMed

    Wren, Anthony W; Hassanzadeh, Pegah; Placek, Lana M; Keenan, Timothy J; Coughlan, Aisling; Boutelle, Lydia R; Towler, Mark R

    2015-08-01

    Silver (Ag) coated bioactive glass particles (Ag-BG) were formulated and compared to uncoated controls (BG) in relation to glass characterization, solubility and microbiology. X-ray diffraction (XRD) confirmed a crystalline AgNP surface coating while ion release studies determined low Ag release (<2 mg/L). Cell culture studies presented increased cell viability (127 and 102%) with lower liquid extract (50 and 100 ml/ml) concentrations. Antibacterial testing of Ag-BG in E. coli, S. epidermidis and S. aureus significantly reduced bacterial cell viability by 60-90%. Composites of Ag-BG/CMC-Dex Hydrogels were formulated and characterized. Agar diffusion testing was conducted where Ag-BG/hydrogel composites produced the largest inhibition zones of 7 mm (E. coli), 5 mm (S. aureus) and 4 mm (S. epidermidis). PMID:25923463

  12. Influence of hydroxyl content on selected properties of 45S5 bioactive glass.

    PubMed

    Hall, Matthew M

    2007-12-01

    Numerous material properties may be influenced by the concentration of chemically dissolved hydroxyl species within a glass. A tube furnace connected to a steam generator was used to create hydroxyl-saturated 45S5 glass under 1 atm of water at 1100 degrees C. Selected properties of as-melted and hydroxyl-saturated samples were compared to assess the sensitivity of 45S5 to excess hydroxylation. The glass transition temperature and the peak crystallization temperature of the treated 45S5 glass were reduced in comparison to the as-melted 45S5 glass. In addition, the treated glass exhibited a broad endothermic signal that may be indicative of enhanced viscous flow. A simple dissolution experiment indicated that the treated 45S5 glass was also less durable than the as-melted 45S5 glass. PMID:17559121

  13. Effect of adding nano-titanium dioxide on the microstructure, mechanical properties and in vitro bioactivity of a freeze cast merwinite scaffold.

    PubMed

    Nezafati, Nader; Hafezi, Masoud; Zamanian, Ali; Naserirad, Mandana

    2015-01-01

    In the present research, merwinite (M) scaffolds with and without nano-titanium dioxide (titania) were synthesized by water-based freeze casting method. Two different amounts (7.5 and 10 wt%) of n-TiO2 were added to M scaffolds. They were sintered at temperature of 1573.15°K and at cooling rate of 4°K/min. The changes in physical and mechanical properties were investigated. The results showed that although M and M containing 7.5 wt% n-TiO2 (MT7.5) scaffolds had approximately the same microstructures in terms of pore size and wall thickness, these factors were different for sample MT10. In overall, the porosity, volume and linear shrinkage were decreased by adding different weight ratios of n-TiO2 into the M structure. According to the obtained mechanical results, the optimum mechanical performance was related to the sample MT7.5 (E = 51 MPa and σ = 2 MPa) with respect to the other samples, i.e.: M (E = 47 MPa and σ = 1.8 MPa) and MT10 (E = 32 MPa and σ = 1.4 MPa). The acellular in vitro bioactivity experiment confirmed apatite formation on the surfaces of all samples for various periods of soaking time. Based on cell study, the sample which possessed favorable mechanical behavior (MT7.5) supported attachment and proliferation of osteoblastic cells. These results revealed that the MT7.5 scaffold with improved mechanical and biological properties could have a potential to be used in bone substitute. PMID:25586918

  14. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering.

    PubMed

    Torres-Rendon, Jose Guillermo; Femmer, Tim; De Laporte, Laura; Tigges, Thomas; Rahimi, Khosrow; Gremse, Felix; Zafarnia, Sara; Lederle, Wiltrud; Ifuku, Shinsuke; Wessling, Matthias; Hardy, John G; Walther, Andreas

    2015-05-20

    A sacrificial templating process using lithographically printed minimal surface structures allows complex de novo geo-metries of delicate hydrogel materials. The hydrogel scaffolds based on cellulose and chitin nanofibrils show differences in terms of attachment of human mesenchymal stem cells, and allow their differentiation into osteogenic outcomes. The approach here serves as a first example toward designer hydrogel scaffolds viable for biomimetic tissue engineering. PMID:25833165

  15. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    NASA Astrophysics Data System (ADS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  16. Cutaneous and Labyrinthine Tolerance of Bioactive Glass S53P4 in Mastoid and Epitympanic Obliteration Surgery: Prospective Clinical Study

    PubMed Central

    Bernardeschi, Daniele; Nguyen, Yann; Russo, Francesca Yoshie; Mosnier, Isabelle; Ferrary, Evelyne; Sterkers, Olivier

    2015-01-01

    Objective. To evaluate the cutaneous and the inner ear tolerance of bioactive glass S53P4 when used in the mastoid and epitympanic obliteration for chronic otitis surgery. Material and Methods. Forty-one cases have been included in this prospective study. Cutaneous tolerance was clinically evaluated 1 week, 1 month, and 3 months after surgery with a physical examination of the retroauricular and external auditory canal (EAC) skin and the presence of otalgia; the inner ear tolerance was assessed by bone-conduction hearing threshold 1 day after surgery and by the presence of vertigo or imbalance. Results. All surgeries but 1 were uneventful: all patients maintained the preoperative bone-conduction hearing threshold except for one case in which the round window membrane was opened during the dissection of the cholesteatoma in the hypotympanum and this led to a dead ear. No dizziness or vertigo was reported. Three months after surgery, healing was achieved in all cases with a healthy painless skin. No cases of revision surgery for removal of the granules occurred in this study. Conclusion. The bioactive glass S53P4 is a well-tolerated biomaterial for primary or revision chronic otitis surgery, as shown by the local skin reaction which lasted less than 3 months and by the absence of labyrinthine complications. PMID:26504792

  17. Bioactivity of SiO 2-CaO-P 2O 5-Na 2O glasses containing zinc-iron oxide

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra Kumar; Srinivasan, A.

    2010-01-01

    Glasses with composition x(ZnO,Fe 2O 3)(65 - x)SiO 220(CaO,P 2O 5)15Na 2O (6 ≤ x ≤ 21 mol%) were prepared by melt-quenching technique. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations nearly equal to those in human blood plasma. Formation of bioactive apatite layer on the samples treated in SBF was confirmed by using Fourier transform infrared reflection (FTIR) spectroscopy, grazing incidence X-ray diffraction (GI-XRD) and scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer. Development of an apatite structure on the surface of the SBF treated glass samples as functions of composition and time could be established using the GI-XRD data. FTIR spectra of the glasses treated in SBF show features at characteristic vibration frequencies of apatite after 1-day of immersion in SBF. SEM observations revealed that the spherical particles formed on the glass surface were made of calcium and phosphorus with the Ca/P molar ratio being close to 1.67, corresponding to the value in crystalline apatite. Increase in bioactivity with increasing zinc-iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of glass composition and immersion time in SBF.

  18. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR.

    PubMed

    Martin, Richard A; Twyman, Helen L; Rees, Gregory J; Smith, Jodie M; Barney, Emma R; Smith, Mark E; Hanna, John V; Newport, Robert J

    2012-09-21

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 < r (Å) < 3 region via the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. PMID:22868255

  19. UFSRAT: Ultra-Fast Shape Recognition with Atom Types –The Discovery of Novel Bioactive Small Molecular Scaffolds for FKBP12 and 11βHSD1

    PubMed Central

    Shave, Steven; Blackburn, Elizabeth A.; Adie, Jillian; Houston, Douglas R.; Auer, Manfred; Webster, Scott P.; Taylor, Paul; Walkinshaw, Malcolm D.

    2015-01-01

    Motivation Using molecular similarity to discover bioactive small molecules with novel chemical scaffolds can be computationally demanding. We describe Ultra-fast Shape Recognition with Atom Types (UFSRAT), an efficient algorithm that considers both the 3D distribution (shape) and electrostatics of atoms to score and retrieve molecules capable of making similar interactions to those of the supplied query. Results Computational optimization and pre-calculation of molecular descriptors enables a query molecule to be run against a database containing 3.8 million molecules and results returned in under 10 seconds on modest hardware. UFSRAT has been used in pipelines to identify bioactive molecules for two clinically relevant drug targets; FK506-Binding Protein 12 and 11β-hydroxysteroid dehydrogenase type 1. In the case of FK506-Binding Protein 12, UFSRAT was used as the first step in a structure-based virtual screening pipeline, yielding many actives, of which the most active shows a KD, app of 281 µM and contains a substructure present in the query compound. Success was also achieved running solely the UFSRAT technique to identify new actives for 11β-hydroxysteroid dehydrogenase type 1, for which the most active displays an IC50 of 67 nM in a cell based assay and contains a substructure radically different to the query. This demonstrates the valuable ability of the UFSRAT algorithm to perform scaffold hops. Availability and Implementation A web-based implementation of the algorithm is freely available at http://opus.bch.ed.ac.uk/ufsrat/. PMID:25659145

  20. In vitro evaluation of bioactivity of CaO-SiO 2-P 2O 5-Na 2O-Fe 2O 3 glasses

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra Kumar; Kothiyal, G. P.; Srinivasan, A.

    2009-05-01

    Glasses with compositions 41CaO(52 - x)SiO 24P 2O 5· xFe 2O 33Na 2O (2 ≤ x ≤ 10 mol.%) were prepared by melt quenching method. Bioactivity of the different glass compositions was studied in vitro by treating them with simulated body fluid (SBF). The glasses treated for various time periods in SBF were evaluated by examining apatite formation on their surface using grazing incidence X-ray diffraction, Fourier transform infrared reflection spectroscopy, scanning electron microscopy and energy dispersive spectroscopy techniques. Increase in bioactivity with increasing iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass composition.

  1. Unveiling the effect of three-dimensional bioactive fibre mesh scaffolds functionalized with silanol groups on bacteria growth.

    PubMed

    Rodrigues, Ana I; Franco, Albina R; Rodrigues, Fernando J; Leonor, Isabel B; Reis, Rui L

    2016-09-01

    The need to replace or repair deteriorating bones and simultaneously prevent the formation of bacteria biofilm without impairing local tissue integration has pushed scientists to look for new designs and processing methods to develop innovative biomaterials. Silicon-based biomaterials, widely studied for application in bone regeneration, have demonstrated antibacterial properties. Herein, the aim of this work is to investigate the potential of the functionalization of biomaterials surfaces with silanol groups to prevent the bacterial biofilm formation. For that, we evaluated the adherence and biofilm formation of Escherichia coli (E. coli, Gram negative) and Staphylococcus aureus (S. aureus, Gram positive) on starch-based scaffolds. Three-dimensional fibre meshes scaffolds were developed by wet-spinning and functionalized with silanol (Si-OH) groups using a calcium silicate solution as a nonsolvent. The functionalization of the scaffolds was confirmed by X-ray photoelectron spectroscopy. The developed scaffolds showed no biocide activity against the bacterial tested, although the colony-forming units (CFU) mL(-1) counts were significant lower between 4 and 12 h of incubation for both bacteria. The adherence of E. coli and S. aureus to the scaffolds was also investigated. After a growth period of 12 h, the SPCL scaffolds functionalized with Si-OH groups showed a reduced bacterial adherence of E. coli and S. aureus. The functionalized scaffolds showed a positive effect in preventing the formation of biofilm in the case of S. aureus, however, in the case of E. coli this was not observed, suggesting that silanol groups may only have a positive effect in preventing the proliferation of gram-positive bacteria. The in vitro biological assessment of the functionalized materials showed that these materials sustained cell proliferation and induced their osteogenic differentiation. The outcome of this work suggests that the presence of Si-OH groups in SPCL scaffolds

  2. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model.

    PubMed

    Zhang, Yadong; Cui, Xu; Zhao, Shichang; Wang, Hui; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-02-01

    The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 ± 1.2 min) and a compressive strength of 19 ± 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery. PMID:25591177

  3. Three-Dimensional Visualization of Bioactive Glass-Bone Integration in a Rabbit Tibia Model Using Synchrotron X-Ray Microcomputed Tomography

    PubMed Central

    Huang, Wenhai; Jia, Weitao; Rahaman, Mohamed N.; Liu, Xin; Tomsia, Antoni P.

    2011-01-01

    Synchrotron X-ray microcomputed tomography (SR microCT), with a micron resolution, was used to evaluate the osteoconduction and osteointegration by borate bioactive glass after implantation 12 weeks in a rabbit tibia model. The study focused on the biomaterial–bone interface. Results from SR microCT two-dimensional and three-dimensional (3D) reconstructions provided precise imaging of the biomaterial–bone integration and detailed microarchitecture of both the bone-like glass graft and the newly formed trabecular bone. Osteoconduction, the formation of new trabecular bone within a tibia defect, occurred only in the tibiae implanted with teicoplanin-loaded borate glass but not in those with teicoplanin-loaded CaSO4 beads, indicating the excellent biocompatibility of the glass implants. 3D reconstruction of the tibiae also showed the infiltration of vascular tissue in both the bioactive glass graft and the new trabecular bone. This study indicates that SR microCT can serve as a valuable complementary technique for imaging bone repair when using bioactive glass implants. PMID:21875330

  4. Toward a Rational Design of Bioactive Glasses with Optimal Structural Features: Composition–Structure Correlations Unveiled by Solid-State NMR and MD Simulations

    PubMed Central

    2013-01-01

    The physiological responses of silicate-based bioactive glasses (BGs) are known to depend critically on both the P content (nP) of the glass and its silicate network connectivity (N̅BOSi). However, while the bioactivity generally displays a nonmonotonic dependence on nP itself, recent work suggest that it is merely the net orthophosphate content that directly links to the bioactivity. We exploit molecular dynamics (MD) simulations combined with 31P and 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy to explore the quantitative relationships between N̅BOSi, nP, and the silicate and phosphate speciations in a series of Na2O–CaO–SiO2–P2O5 glasses spanning 2.1 ≤ N̅BOSi ≤ 2.9 and variable P2O5 contents up to 6.0 mol %. The fractional population of the orthophosphate groups remains independent of nP at a fixed N̅BOSi-value, but is reduced slightly as N̅BOSi increases. Nevertheless, P remains predominantly as readily released orthophosphate ions, whose content may be altered essentially independently of the network connectivity, thereby offering a route to optimize the glass bioactivity. We discuss the observed composition-structure links in relation to known composition-bioactivity correlations, and define how Na2O–CaO–SiO2–P2O5 compositions exhibiting an optimal bioactivity can be designed by simultaneously altering three key parameters: the silicate network connectivity, the (ortho)phosphate content, and the nNa/nCa molar ratio. PMID:24364818

  5. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials.

    PubMed

    Jo, Ji-Hoon; Lee, Eun-Jung; Shin, Du-Sik; Kim, Hyoun-Ee; Kim, Hae-Won; Koh, Young-Hag; Jang, Jun-Hyeog

    2009-10-01

    In this study, a poly(epsilon-caprolactone) (PCL)/bioactive glass (BG) nanocomposite was fabricated using BG nanofibers (BGNFs) and compared with an established composite fabricated using microscale BG particles. The BGNFs were generated using sol-gel precursors via the electrospinning process, chopped into short fibers and then incorporated into the PCL organic matrix by dissolving them in a tetrahydrofuran solvent. The biological and mechanical properties of the PCL/BGNF composites were evaluated and compared with those of PCL/BG powder (BGP). Because the PCL/BG composite containing 20 wt % BG showed the highest level of alkaline phosphatase (ALP) activity, all evaluations were performed at this concentration except for that of the ALP activity itself. In vitro cell tests using the MC3T3 cell line demonstrated the enhanced biocompatibility of the PCL/BGNF composite compared with the PCL/BGP composite. Furthermore, the PCL/BGNF composite showed a significantly higher level of bioactivity compared with the PCL/BGP composite. In addition, the results of the in vivo animal experiments using Sprague-Dawley albino rats revealed the good bone regeneration capability of the PCL/BGNF composite when implanted in a calvarial bone defect. In the result of the tensile test, the stiffness of the PCL/BG composite was further increased when the BGNFs were incorporated. These results indicate that the PCL/BGNF composite has greater bioactivity and mechanical stability when compared with the PCL/BG composite and great potential as a bone regenerative material. PMID:19422050

  6. One-pot synthesis of macro-mesoporous bioactive glasses/polylactic acid for bone tissue engineering.

    PubMed

    Han, Xiao; Wang, Dan; Chen, Xiang; Lin, Huiming; Qu, Fengyu

    2014-10-01

    The macro-mesoporous bioactive glasses/polylactic acid nanofibers were synthesized via electrospun method followed by acid treatment processing. It was identified to be an effective and simple synthetic strategy to form the uniform nanofibers about 350 nm in size. The non-ionic triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123), was used as the template for mesoporous structure (5 nm) and the macroporous structure about 10 μm in size derived from the overlapping of the nanofibers. Furthermore, the surface hydrophilic-hydrophobic property can be adjusted by varying the amount of mesoporous bioglass precursor (MBG-p). With the outstanding structure characters and the suitable hydrophilic property, these nanofiber composites show controlled drug release and the fast hydroxyapatite (HAP) mineralization performance. Herein, the novel materials are expected to have potential application for bone tissue engineering. PMID:25175225

  7. Gold-containing bioactive glasses: a solid-state synthesis to produce alternative biomaterials for bone implantations

    PubMed Central

    Aina, Valentina; Cerrato, Giuseppina; Martra, Gianmario; Bergandi, Loredana; Costamagna, Costanzo; Ghigo, Dario; Malavasi, Gianluca; Lusvardi, Gigliola; Menabue, Ledi

    2013-01-01

    A new melted bioactive system containing gold nanoparticles (AuNPs) was prepared exploiting a post-synthesis thermal treatment that allows one to modify crystal phases and nature, shape and distribution of the gold species in the glass-ceramic matrix as evidenced by UV–visible spectroscopy, transmission electron microscopy and powder X-ray diffraction analysis. In human MG-63 osteoblasts the presence of Aun+ species caused an increase of lactate dehydrogenase leakage and malonyldialdehyde production, whereas Hench's Bioglass HAu-600-17 containing only AuNPs did not cause any effect. In addition, HAu-600-17 caused in vitro hydroxyapatite formation and an increase of specific surface area with a controlled release of gold species; this material is then suitable to be used as a model system for the controlled delivery of nanoparticles. PMID:23427096

  8. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    NASA Astrophysics Data System (ADS)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  9. Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications.

    PubMed

    Cordero-Arias, L; Cabanas-Polo, S; Goudouri, O M; Misra, S K; Gilabert, J; Valsami-Jones, E; Sanchez, E; Virtanen, S; Boccaccini, A R

    2015-10-01

    Two organic/inorganic composite coatings based on alginate, as organic matrix, and zinc oxide nanoparticles (n-ZnO) with and without bioactive glass (BG), as inorganic components, intended for biomedical applications, were developed by electrophoretic deposition (EPD). Different n-ZnO (1-10 g/L) and BG (1-1.5 g/L) contents were studied for a fixed alginate concentration (2 g/L). The presence of n-ZnO was confirmed to impart antibacterial properties to the coatings against gram-negative bacteria Escherichia coli, while the BG induced the formation of hydroxyapatite on coating surfaces thereby imparting bioactivity, making the coating suitable for bone replacement applications. Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analyses. Scanning electron microscopy (SEM) was employed to study both the surface and the cross section morphology of the coatings. Polarization curves of the coated substrates made in cell culture media at 37 °C confirmed the corrosion protection function of the novel organic/inorganic composite coatings. PMID:26117748

  10. In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices.

    PubMed

    Vergnol, Gwenaelle; Ginsac, Nathalie; Rivory, Pascaline; Meille, Sylvain; Chenal, Jean-Marc; Balvay, Sandra; Chevalier, Jérôme; Hartmann, Daniel J

    2016-01-01

    Poly(lactic acid) is nowadays among the most used bioabsorbable materials for medical devices. To promote bone growth on the material surface and increase the degradation rate of the polymer, research is currently focused on organic-inorganic composites by adding a bioactive mineral to the polymer matrix. The purpose of this study was to investigate the ability of a poly(L,DL-lactide)-Bioglass® (P(L,DL)LA-Bioglass(®) 45S5) composite to be used as a bone fixation device. In vitro cell viability testing of P(l,dl)LA based composites containing different amounts of Bioglass(®) 45S5 particles was investigated. According to the degradation rate of the P(L,DL)LA matrix and the cytocompatibility experiments, the composite with 30 wt % of Bioglass® particles seemed to be the best candidate for further investigation. To study its behavior after immersion in simulated physiological conditions, the degradation of the composite was analyzed by measuring its weight loss and mechanical properties and by proceeding with X-ray tomography. We demonstrated that the presence of the bioactive glass significantly accelerated the in vitro degradation of the polymer. A preliminary in vivo investigation on rabbits shows that the addition of 30 wt % of Bioglass(®) in the P(L,DL)LA matrix seems to trigger bone osseointegration especially during the first month of implantation. This composite has thus strong potential interest for health applications. PMID:25677798

  11. Bio-templated bioactive glass particles with hierarchical macro-nano porous structure and drug delivery capability.

    PubMed

    Zheng, Kai; Bortuzzo, Judith A; Liu, Yufang; Li, Wei; Pischetsrieder, Monika; Roether, Judith; Lu, Miao; Boccaccini, Aldo R

    2015-11-01

    Hierarchically porous bioactive glass particles (BGPs) were synthesized by a facile sol-gel process using pollen grains as the templates. The synthesized pollen-templated bioactive glass particles (PBGPs) exhibited dual macro-nano porous structure. The macro pores (∼ 1 μm) were inherited from the template of pollen grains while the nano pores (∼ 9.5 nm) were induced by the intrinsic mechanism of the sol-gel process. PBGPs possessed a high specific surface area (111.4m(2)/g) and pore volume (0.35 cm(3)/g). Hydroxyapatite (HA) formation on PBGPs was detected within 3 days after immersion in simulated body fluid (SBF). Due to their larger specific surface area and pore volume, PBGPs could be loaded with more tetracycline hydrochloride (TCH) than non-templated BGPs and conventional melt-derived 45S5 BGPs. In addition, PBGPs exhibited a low initial burst release (within 10% of the loaded amount) within 18 h and a sustained release with a two-stage release pattern for up to 6 days in phosphate buffered saline (PBS). The antibacterial assay confirmed that the TCH-loaded PBGPs could release TCH within 5 days, and the released TCH could reach the minimum inhibitory concentration (MIC) against Escherichia coli. MTT assay indicated that PBGPs showed non-cytotoxic effects toward human hepatocellular carcinoma (Hep G2) cells after co-culture for up to 72 h in vitro. These results showed that the biocompatible hierarchically macro-nano porous PBGPs are potential for bone regeneration and local drug delivery applications. PMID:25858191

  12. Comparisons between surfactant-templated mesoporous and conventional sol-gel-derived CaO-B{sub 2}O{sub 3}-SiO{sub 2} glasses: Compositional, textural and in vitro bioactive properties

    SciTech Connect

    Xiu Tongping; Liu Qian Wang Jiacheng

    2008-04-15

    Compositional, textural and in vitro bioactive comparisons between surfactant-templated mesoporous (MCBS) and conventional sol-gel-derived CaO-B{sub 2}O{sub 3}-SiO{sub 2} (CBS) glasses are studied in this paper. CBS glasses are heterogeneous in composition. Due to the heterogeneity, melting boron oxide that formed during the heat treatment will fill in the pores that should have been generated by decomposition of calcium species. So, unlike other conventional sol-gel-derived bioactive glasses that have disordered and widely distributed mesopores, the CBS glasses are almost nonporous. MCBS glasses are more homogeneous in composition than CBS glasses, mainly ascribed to the effect of the surfactant. MCBS glasses of different compositions possess wormhole-like mesoporous structure and have similar pore size. In vitro bioactive tests show that wormhole-like MCBS glasses are more bioactive than CBS glasses, due to their high porosity. - Graphical abstract: Surfactant-templated mesoporous CaO-B{sub 2}O{sub 3}-SiO{sub 2} glasses (MCBS) are superior to conventional sol-gel-derived CaO-B{sub 2}O{sub 3}-SiO{sub 2} glasses (CBS) in compositional homogeneity, textural properties and in vitro bioactivity. Display Omitted.

  13. Fatigue characteristics of bioactive glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for biomedical application.

    PubMed

    Li, S J; Niinomi, M; Akahori, T; Kasuga, T; Yang, R; Hao, Y L

    2004-08-01

    A new surface-coating method by which CaP invert glass is used to improve the bioactivity of titanium alloys has been developed recently. In this method, the powder of CaP invert glass (CaO-P2O5-TiO2-Na2O) is coated on the surface of titanium alloy samples and heated between 1073 and 1123 K. With this treatment, a calcium phosphate layer mainly containing beta-Ca3(PO4)2 phase can be coated easily on titanium alloy samples. In the present study, the effect of this coating process on the fatigue properties of Ti-29Nb-13Ta-4.6Zr, a new metastable beta alloy for biomedical applications, has been investigated. The fatigue endurance limit of the coated alloy was found to be about 15% higher than that of uncoated alloy, as a result of the formation of a hard (alpha + beta) layer and a small amount of the omega phase during the coating process. The coating exhibits excellent adhesion to the substrate during the tensile and fatigue tests. Subsequent ageing at 673 K for 259.2 ks greatly improves the fatigue resistance of the coated alloy due to isothermal omega phase precipitation, and does not have obvious detrimental effect on the coating properties. PMID:15020109

  14. The influence of phosphorus precursors on the synthesis and bioactivity of SiO2-CaO-P 2O 5 sol-gel glasses and glass-ceramics.

    PubMed

    Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2013-02-01

    Bioactive glasses and glass-ceramics of the SiO(2)-CaO-P(2)O(5) system were synthesised by means of a sol-gel method using different phosphorus precursors according to their respective rates of hydrolysis-triethylphosphate (OP(OC(2)H(5))(3)), phosphoric acid (H(3)PO(4)) and a solution prepared by dissolving phosphorus oxide (P(2)O(5)) in ethanol. The resulting materials were characterised by differential scanning calorimetry and thermogravimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and by in vitro bioactivity tests in acellular simulated body fluid. The different precursors significantly affected the main steps of the synthesis, beginning with the time required for gel formation. The most striking influence of these precursors was observed during the thermal treatments at 700-1,200 °C that were used to convert the gels into glasses and glass-ceramics. The samples exhibited very different mineralisation behaviours; especially those prepared using the phosphoric acid, which had a reduced onset temperature of crystallisation and an increased resistance to devitrification. However, all resulting materials were bioactive. The in vitro bioactivity of these materials was strongly affected by the heat treatment temperature. In general, their bioactivity decreased with increasing treatment temperature. For crystallised samples obtained above 900 °C, the bioactivity was favoured by the presence of two crystalline phases: wollastonite (CaSiO(3)) and tricalcium phosphate (α-Ca(3)(PO(4))(2)). PMID:23114636

  15. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications.

    PubMed

    Misra, Superb K; Ansari, Tahera I; Valappil, Sabeel P; Mohn, Dirk; Philip, Sheryl E; Stark, Wendelin J; Roy, Ipsita; Knowles, Jonathan C; Salih, Vehid; Boccaccini, Aldo R

    2010-04-01

    Poly(3-hydroxybutyrate) (P(3HB)) foams exhibiting highly interconnected porosity (85% porosity) were prepared using a unique combination of solvent casting and particulate leaching techniques by employing commercially available sugar cubes as porogen. Bioactive glass (BG) particles of 45S5 Bioglass grade were introduced in the scaffold microstructure, both in micrometer ((m-BG), <5 microm) and nanometer ((n-BG), 30 nm) sizes. The in vitro bioactivity of the P(3HB)/BG foams was confirmed within 10 days of immersion in simulated body fluid and the foams showed high level of protein adsorption. The foams interconnected porous microstructure proved to be suitable for MG-63 osteoblast cell attachment and proliferation. The foams implanted in rats as subcutaneous implants resulted in a non-toxic and foreign body response after one week of implantation. In addition to showing bioactivity and biocompatibility, the P(3HB)/BG composite foams also exhibited bactericidal properties, which was tested on the growth of Staphylococcus aureus. An attempt was made at developing multifunctional scaffolds by incorporating, in addition to BG, selected concentrations of Vitamin E or/and carbon nanotubes. P(3HB) scaffolds with multifunctionalities (viz. bactericidal, bioactive, electrically conductive, antioxidative behaviour) were thus produced, which paves the way for next generation of advanced scaffolds for bone tissue engineering. PMID:20045554

  16. In vivo behavior of bioactive phosphate glass-ceramics from the system P2O5-Na2O-CaO containing TiO2.

    PubMed

    Monem, Ahmed Soltan; ElBatal, Hatem A; Khalil, Elsayed M A; Azooz, Moenis A; Hamdy, Yousry M

    2008-03-01

    Soda lime phosphate bioglass-ceramics with incorporation of small additions of TiO2 were prepared in the metaphosphate and pyrophosphate region, using an appropriate two-step heat treatment of controlled crystallization defined by differential thermal analysis results. Identification and quantification of crystalline phases precipitated from the soda lime phosphate glasses were performed using X-ray diffraction analysis. Calcium pyrophosphate (beta-Ca2P2O7), sodium metaphosphate (NaPO3), calcium metaphosphate (beta-Ca(PO3)2), sodium pyrophosphate (Na4P2O7), sodium calcium phosphate (Na4Ca(PO3)6) and sodium titanium phosphate (Na5Ti(PO4)3) phases were detected in the prepared glass-ceramics. The degradation of the prepared glass-ceramics were carried out for different periods of time in simulated body fluid at 37 degrees C using granules in the range of (0.300-0.600 mm). The released ions were estimated by atomic absorption spectroscopy and the surface textures were measured by scanning electron microscopy. Evaluation of in vivo bioactivity of the prepared glass-ceramics was carried through implanting the samples in the rabbit femurs. The results showed that the addition of 0.5 TiO2 mol% enhanced the bioactivity while further increase of the TiO2 content decreased the bioactivity. The effect of titanium dioxide on the bioactivity was interpreted on the basis of its action on the crystallization process of the glass-ceramics. PMID:17701314

  17. Tissue regeneration and repair of goat segmental femur defect with bioactive triphasic ceramic-coated hydroxyapatite scaffold.

    PubMed

    Nair, Manitha B; Varma, H K; Menon, K V; Shenoy, Sachin J; John, Annie

    2009-12-01

    Bone tissue engineering which is a developing and challenging field of science, is expected to enhance the regeneration and repair of bone lost from injury or disease and ultimately to gain its aesthetic contour. The objective of this study was to fabricate a tissue-engineered construct in vitro using a triphasic ceramic-coated hydroxypatite (HASi) in combination with stem cells and to investigate its potential in healing segmental defect in goat model. To accomplish this attempt, mesenchymal stem cells isolated from goat bone marrow were seeded onto HASi scaffolds and induced to differentiate into the osteogenic lineage in vitro. Scanning electron microscopy and light microscopy revealed adhesion and spread-out cells, which eventually formed a cell-sheet like canopy over the scaffold. Cells migrated and distributed themselves within the internal voids of the porous ceramic. Concurrently, the neo-osteogenesis of the tissue-engineered construct was validated in vivo in comparison with bare HASi (without cells) in goat femoral diaphyseal segmental defect (2 cm) at 4 months postimplantation through radiography, computed tomography, histology, histomorphometry, scanning electron microscopy and inductively coupled plasma spectrometry. Good osteointegration and osteoconduction was observed in bare and tissue-engineered HASi. The performance of tissue-engineered HASi was better and faster which was evident by the lamellar bone organization of newly formed bone throughout the defect together with the degradation of the material. On the contrary with bare HASi, immature woven bony bridges still intermingled with scattered small remnants of the material was observed in the mid region of the defect at 4 months. Encouraging results from this preclinical study has proved the capability of the tissue-engineered HASi as a promising candidate for the reconstruction of similar bony defects in humans. PMID:19065569

  18. Preparation, structure and bioactivity of xAu 2O 3·(100 - x)[P 2O 5·CaO] glass system

    NASA Astrophysics Data System (ADS)

    Regos, Adriana N.; Ardelean, I.

    2011-12-01

    Gold doped calcium phosphate glasses were prepared by the melting method. The structure of Au 2O 3-P 2O 5-CaO glasses is investigated using X-ray diffraction, infrared absorption and Raman scattering. The depth characterization of their structures is essential for the understanding of the properties of biocompatible materials. Thermal analysis DTA and TGA were also made to study behavior under different temperature regions and to see chemical changes versus time and temperature of these glasses. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations nearly equal to those in human blood plasma. Formation of bioactive apatite layer on the samples treated in SBF for 28 days at 37 °C was confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The effect of SBF soaking induces structural changes on the surface, reflected by the appearance of nano-crystalline particles agglomerated into micro-aggregates.

  19. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Meng, X G; Chen, C Z

    2014-06-01

    A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. PMID:24780435

  20. Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration.

    PubMed

    Raina, Deepak Bushan; Isaksson, Hanna; Teotia, Arun Kumar; Lidgren, Lars; Tägil, Magnus; Kumar, Ashok

    2016-08-10

    Osteoinduction can be enhanced by combining scaffolds with bone morphogenic protein-2 (BMP-2). However, BMP's are known to also cause bone resorption. This can be controlled using bisphosphonates like zoledronic acid (ZA). In this study, we produced two different scaffolds containing silk-fibroin, chitosan, agarose and hydroxyapatite (HA) with and without bioactive glass. The aims of the study were to fabricate, physico-chemically characterize and evaluate the carrier properties of the scaffolds for recombinant human BMP-2 (rhBMP-2) and ZA. Scaffolds were characterized using various methods to confirm their composition. During cell-material interactions, both scaffolds exhibited gradual but sustained proliferation of both C2C12 and MSCs for a period of 6weeks with augmentative effects on their phenotype indicated by elevated levels of alkaline phosphatase (ALP) cuing towards osteogenic differentiation. In-vitro effects of rhBMP-2 and ZA contained within both the scaffolds was assessed on MC3T3 preosteoblast cells and the results show a significant increase in the ALP activity of the cells seeded on scaffolds with rhBMP-2. Further, the scaffold with both HA and bioactive glass was considered for the animal study. In-vitro, this scaffold released nearly 25% rhBMP-2 in 21-days and the addition of ZA did not affect the release. In the animal study, the scaffolds were combined with rhBMP-2 and ZA, rhBMP-2 or implanted alone in an ectopic muscle pouch model. Significantly higher bone formation was observed in the scaffold loaded with both rhBMP-2 and ZA as seen from micro-computed tomography, histomorphometry and energy dispersive X-ray spectroscopy. PMID:27252151

  1. Surface properties and ion release from fluoride-containing bioactive glasses promote osteoblast differentiation and mineralization in vitro.

    PubMed

    Gentleman, E; Stevens, M M; Hill, R G; Brauer, D S

    2013-03-01

    Bioactive glasses (BG) are suitable for bone regeneration applications as they bond with bone and can be tailored to release therapeutic ions. Fluoride, which is widely recognized to prevent dental caries, is efficacious in promoting bone formation and preventing osteoporosis-related fractures when administered at appropriate doses. To take advantage of these properties, we created BG incorporating increasing levels of fluoride whilst holding their silicate structure constant, and tested their effects on human osteoblasts in vitro. Our results demonstrate that, whilst cell proliferation was highest on low-fluoride-containing BG, markers for differentiation and mineralization were highest on BG with the highest fluoride contents, a likely effect of a combination of surface effects and ion release. Furthermore, osteoblasts exposed to the dissolution products of fluoride-containing BG or early doses of sodium fluoride showed increased alkaline phosphatase activity, a marker for bone mineralization, suggesting that fluoride can direct osteoblast differentiation. Taken together, these results suggest that BG that can release therapeutic levels of fluoride may find use in a range of bone regeneration applications. PMID:23128161

  2. Reactivity of glass-embedded met hemoglobin derivatives towards external NO: implications for nitrite-mediated production of bioactive NO

    PubMed Central

    Navati, Mahantesh S.; Friedman, Joel M.

    2009-01-01

    Many protein reactions are exceedingly difficult to dissect under standard conditions due to low concentrations of reactants and intermediates. A case in point, are several proposed reactions of hemoglobin with both nitrite and nitric oxide. In the present work, glassy matrices are used to dynamically control the rate at which externally introduced gaseous NO accesses and reacts with several different met Hb derivatives including the nitrite, nitrate and aquomet forms. This novel yet general approach reveals a clear difference between nitrite and other ligands including nitrate, water and an internal imidazole. Whereas for nitrate, water and the internal distal imidazole, the observed spectral changes indicate that NO entering the distal heme pocket is effective in displacing these ligands from the ferric heme iron. In contrast, when the ligand is nitrite, the resulting initial spectra indicate the formation of an intermediate that has distinctly ferrous-like properties. The spectrum and the response of DAF fluorescence to the presence of the intermediate is consistent with a recently proposed nitrite anhydrase reaction. This proposed intermediate is especially significant in that it represents a pathway for a nitrite-dependent catalytic process whereby Hb generates relatively long lived bioactive forms of NO such as S-nitrosoglutathione. The failure to form this intermediate either at low pH or when the glass is extensively dried is consistent with the requirement for a specific conformation of reactants and residue side chains within the distal heme pocket. PMID:19663497

  3. Evaluation of pulpal response of deciduous teeth after direct pulp capping with bioactive glass and mineral trioxide aggregate

    PubMed Central

    Haghgoo, Roza; Ahmadvand, Motahare

    2016-01-01

    Aim: The aim of this study was to evaluate the pulpal response of primary teeth after direct pulp capping (DPC) with two biocompatible materials namely mineral trioxide aggregate (MTA) and bioactive glass (BAG). Settings and Design: This study was a randomized clinical trial. Materials and Methods: A total of 22 healthy primary canine teeth scheduled for extraction for orthodontic reasons were selected. The teeth were divided into two groups of 11 and underwent DPC. The exposure sites were randomly capped with MTA or BAG in the two groups. After 2 months, the teeth were extracted and prepared for histopathologic evaluation. Statistical Analysis: The data were analyzed using Fisher's exact test. Results: In the BAG group, inflammation was seen in three patients; internal resorption and abscess were not seen at all. In the MTA group, inflammation was seen in one patient and internal resorption and abscess were not seen in any patient. Fisher's exact test showed no significant difference between the two groups (P > 0.05). Dentinal bridge formation was noted in five patients in the BAG group and six patients in the MTA group. No significant difference was observed between the BAG and MTA groups using Chi-square analysis (P = 0.67). Conclusion: Based on the results of this study, MTA and BAG can be used for DPC of primary teeth.

  4. Three-dimensional stress In vitro promotes the proliferation and differentiation of periodontal ligament stem cells implanted by bioactive glass.

    PubMed

    Wang, T; Li, G; Chen, J; Lin, Z; Qin, H; Ji, J

    2016-01-01

    To analyze the biological and mechanical microenvironment on the directional differentiation of periodontal ligament stem cells (PDLSCs) In vitro. PDLSCs were cultured in three-dimensional stress system In vitro for 1, 2 and 3 weeks. Methods like immunohistochemistry and flow cytometry were adopted and the proliferation and differentiation situation of PDLSCs were determined. Bioactive glass (BAG) of 0%, 10%, 20%, 30% and 40% was implanted into PDLSCs with or without three-dimensional stress for 3 weeks, respectively. The proliferation and differentiation situation of PDLSCs were determined. The mRNA levels of Alkaline phosphatase (ALP), Type I Collagen (COL I), Type II Collagen (COL II), Bone sialoprotein (BSP), Osteocalcin (OCN) and Osteopontin (OPN) were determined by semi-quantitative RT-PCR. 30% BAG and three-dimensional stress for 3 weeks promoted the proliferation and differentiation of PDLSCs mostly. PDLSCs induced by BAG and 3D force and the control all expressed the mRNA of ALP, COLⅠand COL Ⅱ. The BAG and three-dimensional stress induced PDLSCs also expressed the mRNA of BSP, OCN and OPN. BAG and three-dimensional stress indicated microenvironment In vitro can promote the proliferation and differentiation of PDLSCs. PMID:27609476

  5. Morphological and mechanical characterization of composite bone cement containing polymethylmethacrylate matrix functionalized with trimethoxysilyl and bioactive glass.

    PubMed

    Puska, Mervi; Moritz, Niko; Aho, Allan J; Vallittu, Pekka K

    2016-06-01

    Medical polymers of biostable nature (e.g. polymethylmetacrylate, PMMA) are widely used in various clinical applications. In this study, novel PMMA-based composite bone cement was prepared. Bioactive glass (BAG) particulate filler (30wt%) was added to enhance potentially the integration of bone to the cement. The polymer matrix was functionalized with trimethoxysilyl to achieve an interfacial bond between the matrix and the fillers of BAG. The amount of trimethoxysilyl in the monomer system varied from 0 to 75wt%. The effects of dry and wet (simulated body fluid, SBF at +37°C for 5 weeks) conditions were investigated. In total, 20 groups of specimens were prepared. The specimens were subjected to a destructive mechanical test in compression. Scanning electron microscopy (SEM) and micro-computed tomography (micro-CT) were used to study the surface and the three-dimensional morphology of the specimens. The results of the study indicated that the addition of trimethoxysilyl groups led to the formation of a hybrid polymer matrix which, in lower amounts (<10wt% of total weight), did not significantly affect the compression properties. However, when the specimens stored in dry and wet conditions were compared, the water sorption increased the compression strength (~5-10MPa per test group). At the same time, the water sorption also caused an evident porous structure formation for the specimens containing BAG and siloxane formation in the hybrid polymer matrix. PMID:26741375

  6. A comparative evaluation of remineralizing ability of bioactive glass and amorphous calcium phosphate casein phosphopeptide on early enamel lesion

    PubMed Central

    Palaniswamy, Udaya Kumar; Prashar, Neha; Kaushik, Mamta; Lakkam, Surender Ram; Arya, Shikha; Pebbeti, Swetha

    2016-01-01

    Background: This study was done to evaluate remineralizing potential of bioactive glasses (BAGs) and amorphous calcium phosphate-casein phosphopeptide (ACP-CPP) on early enamel lesion. Materials and Methods: Twenty freshly extracted mandibular premolars were sectioned sagittally. The buccal half was impregnated in acrylic resin blocks and treated with 37% phosphoric acid in liquid form, to demineralize enamel surface to simulate early enamel lesion. The samples were divided into two groups. The samples in Group I were treated with ACP-CPP (GC Tooth Mousse) and in Group II with BAG (Sensodyne Repair and Protect) and stored in saliva to prevent dehydration. The samples were tested for microhardness. The data obtained was analyzed using ANOVA post hoc multiple comparison and independent sample t- test and presented as a mean and standard deviation. Results: All the samples showed a decrease in the microhardness after demineralization. After application of remineralizing agents, Group II showed a highly significant increase in the microhardness (P < 0.05) after 10 days, while Group I showed a significant increase in microhardness after 15 days (P < 0.05). Conclusion: Both the remineralizing agents tested in this study can be considered effective in repair and prevention of demineralization. BAG showed better results initially, but eventually both have similar remineralizing potential. PMID:27605985

  7. Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up.

    PubMed

    Frantzén, Janek; Rantakokko, Juho; Aro, Hannu T; Heinänen, Jyrki; Kajander, Sami; Gullichsen, Eero; Kotilainen, Esa; Lindfors, Nina C

    2011-10-01

    A prospective long-term follow-up study of bioactive glass (BAG)-S53P4 and autogenous bone (AB) used as bone graft substitutes for posterolateral spondylodesis in treatment of degenerative spondylolisthesis during 1996 to 1998 was conducted. The surgical procedure was a standardized instrumented posterolateral fusion that used USS/VAS. BAG was implanted on the left side of the fusion bed and AB on the right side. The operative outcome was evaluated on x-rays and computed tomography scans, and a clinical examination was also performed. Seventeen patients (12 women, 5 men) participated in the 11-year follow-up. The mean Oswestry Disability Index score at the follow-up was 21 (range 0 to 52), compared with 49 (range 32 to 64) at the preoperative time. A solid bony fusion was seen on computed tomography scans on the AB side in all patients and on the BAG side in 12 patients. The fusion rate of all fusion sites (n=41) for BAG as a bone substitute was 88% at the L4/5 level and 88% at the L5/S1 level. The use of BAG as a bone graft extender can be considered as a good alternative in spinal surgery in the future. PMID:21909036

  8. Incorporation of amino acids within the surface reactive layers of bioactive glass in vitro: an XPS study.

    PubMed

    Mahmood, T A; Davies, J E

    2000-01-01

    Surface reaction layers grown on bioactive glass (Bioglass), by immersion in either simulated body fluid (SBF) or minimal essential medium (alpha-MEM) for 2, 5, 32 and 72 h, were analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Layers grown in alpha-MEM exhibited delamination when observed in SEM. Low resolution XPS analysis detected nitrogen at the surface of the Bioglass exposed to alpha-MEM for 72 h (8 relative at%), whereas insignificant nitrogen was found at the surface of any sample immersed in SBF. XPS depth profiling (argon) showed the presence of nitrogen throughout the depth of the surface layer of the sample incubated in alpha-MEM for 72 h. Deconvolution of the nitrogen envelope in a high resolution XPS spectrum demonstrated nitrogen characteristic of the amine bonds present in amino acids. Carbon concentration also considerably increased over time with exposure to alpha-MEM (24-55%), whereas it remained in the 20-25% range in SBF. These results demonstrate that the amino acids contained in the culture medium were incorporated within the growing calcium phosphate rich surface reaction layer of Bioglass. PMID:15348094

  9. Bioactive borate glass promotes the repair of radius segmental bone defects by enhancing the osteogenic differentiation of BMSCs.

    PubMed

    Zhang, Jieyuan; Guan, Junjie; Zhang, Changqing; Wang, Hui; Huang, Wenhai; Guo, Shangchun; Niu, Xin; Xie, Zongping; Wang, Yang

    2015-12-01

    Bioactive borate glass (BG) has emerged as a promising alternative for bone regeneration due to its high osteoinductivity, osteoconductivity, compressive strength, and biocompatibility. However, the role of BG in large segmental bone repair is unclear and little is known about the underlying mechanism of BG's osteoinductivity. In this study, we demonstrated that BG possessed pro-osteogenic effects in an experimental model of critical-sized radius defects. Transplanting BG to radius defects resulted in better repair of bone defects as compared to widely used β-TCP. Histological and morphological analysis indicated that BG significantly enhanced new bone formation. Furthermore, the degradation rate of the BG was faster than that of β-TCP, which matched the higher bone regeneration rate. In addition, ions from BG enhanced cell viability, ALP activity, and osteogenic-related genes expression. Mechanistically, the critical genes Smad1/5 and Dlx5 in the BMP pathway and p-Smad1/5 proteins were significantly elevated after BG transplantation, and these effects could be blocked by the BMP/Smad specific inhibitor. Taken together, our findings suggest that BG could repair large segmental bone defects through activating the BMP/Smad pathway and osteogenic differentiation in BMSCs. PMID:26586668

  10. CaO-P2O5 glass hydroxyapatite double-layer plasma-sprayed coating: in vitro bioactivity evaluation.

    PubMed

    Ferraz, M P; Monteiro, F J; Santos, J D

    1999-06-15

    Double-layer composite coatings composed of a P2O5-based glass/Ca10(PO4)6(OH)2 (HA) mixture top layer and a simple HA underlayer, on Ti-6Al-4V substrates, were prepared using a plasma-spraying technique. The in vitro bioactivity of these coatings was assessed by immersion testing in simulated body fluid. Both scanning electron microscopy (SEM) analysis and the ionic solution changes followed by atomic absorption spectroscopy and the molybdenum blue method demonstrated that these composite coatings induce a faster surface Ca-P layer formation than the simple HA coatings used as a control. X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the Ca-P layer formed was apatite. The combination of SEM and XPS analyses showed that the apatite layer was a calcium-deficient hydroxyapatite with a Ca/P ranging from 1.3 to 1.4 with CO3(2-) groups contained in the structure. PMID:10321711

  11. Surface functionalization of bioactive glasses with natural molecules of biological significance, part II: Grafting of polyphenols extracted from grape skin

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Polyphenols, as one of the most important family of phytochemicals protective substances from grape fruit, possess various biological activities and health-promoting benefits, for example: inhibition of some degenerative diseases, cardiovascular diseases and certain types of cancers, reduction of plasma oxidative stress and slowing aging. The combination of polyphenols and biomaterials may have good potential to reach good bioavailability and controlled release, as well as to give biological signaling properties to the biomaterial surfaces. In this research, conventional solvent extraction was developed for obtaining polyphenols from dry grape skins. The Folin&Ciocalteu method was used to determine the amount of total polyphenols in the extracts. Surface functionalization of two bioactive glasses (SCNA and CEL2) was performed by grafting the extracted polyphenols on their surfaces. The effectiveness of the functionalization was tested by UV spectroscopy, which analyzes the amount of polyphenols in the uptake solution (before and after functionalization) and on solid samples, and XPS, which analyzes the presence of phenols on the material surface.

  12. Nickel nanoparticle-doped paper as a bioactive scaffold for targeted and robust immobilization of functional proteins.

    PubMed

    Bodelón, Gustavo; Mourdikoudis, Stefanos; Yate, Luis; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Liz-Marzán, Luis M

    2014-06-24

    Cellulose-based materials are widely used in analytical chemistry as platforms for chromatographic and immunodiagnostic techniques. Due to its countless advantages (e.g., mechanical properties, three-dimensional structure, large surface to volume area, biocompatibility and biodegradability, and high industrial availability), paper has been rediscovered as a valuable substrate for sensors. Polymeric materials such as cellulosic paper present high protein capture ability, resulting in a large increase of detection signal and improved assay sensitivity. However, cellulose is a rather nonreactive material for direct chemical coupling. Aiming at developing an efficient method for controlled conjugation of cellulose-based materials with proteins, we devised and fabricated a hybrid scaffold based on the adsorption and in situ self-assembly of surface-oxidized Ni nanoparticles on filter paper, which serve as "docking sites" for the selective immobilization of proteins containing polyhistidine tags (His-tag). We demonstrate that the interaction between the nickel substrate and the His-tagged protein G is remarkably resilient toward chemicals at concentrations that quickly disrupt standard Ni-NTA and Ni-IDA complexes, so that this system can be used for applications in which a robust attachment is desired. The bioconjugation with His-tagged protein G allowed the binding of anti-Salmonella antibodies that mediated the immuno-capture of live and motile Salmonella bacteria. The versatility and biocompatibility of the nickel substrate were further demonstrated by enzymatic reactions. PMID:24811229

  13. Oxygen diffusion in marine-derived tissue engineering scaffolds.

    PubMed

    Boccardi, E; Belova, I V; Murch, G E; Boccaccini, A R; Fiedler, T

    2015-06-01

    This paper addresses the computation of the effective diffusivity in new bioactive glass (BG) based tissue engineering scaffolds. High diffusivities facilitate the supply of oxygen and nutrients to grown tissue as well as the rapid disposal of toxic waste products. The present study addresses required novel types of bone tissue engineering BG scaffolds that are derived from natural marine sponges. Using the foam replication method, the scaffold geometry is defined by the porous structure of Spongia Agaricina and Spongia Lamella. These sponges present the advantage of attaining scaffolds with higher mechanical properties (2-4 MPa) due to a decrease in porosity (68-76%). The effective diffusivities of these structures are compared with that of conventional scaffolds based on polyurethane (PU) foam templates, characterised by high porosity (>90%) and lower mechanical properties (>0.05 MPa). Both the spatial and directional variations of diffusivity are investigated. Furthermore, the effect of scaffold decomposition due to immersion in simulated body fluid (SBF) on the diffusivity is addressed. Scaffolds based on natural marine sponges are characterised by lower oxygen diffusivity due to their lower porosity compared with the PU replica foams, which should enable the best oxygen supply to newly formed bone according the numerical results. The oxygen diffusivity of these new BG scaffolds increases over time as a consequence of the degradation in SBF. PMID:26111951

  14. 45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity.

    PubMed

    Stevanović, Magdalena; Filipović, Nenad; Djurdjević, Jelena; Lukić, Miodrag; Milenković, Marina; Boccaccini, Aldo

    2015-08-01

    In the bone tissue engineering field, there is a growing interest in the application of bioactive glass scaffolds (45S5Bioglass(®)) due to their bone bonding ability, osteoconductivity and osteoinductivity. However, such scaffolds still lack some of the required functionalities to enable the successful formation of new bone, e.g. effective antibacterial properties. A large number of studies suggest that selenium (Se) has significant role in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Selenium nanoparticles (SeNp) have also been reported to possess antibacterial as well as antiviral activities. In this investigation, uniform, stable, amorphous SeNp have been synthesized and additionally immobilized within spherical PLGA particles (PLGA/SeNp). These particles were used to coat bioactive glass-based scaffolds synthesized by the foam replica method. Samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). SeNp, 45S5Bioglass(®)/SeNp and 45S5Bioglass(®)/PLGA/SeNp showed a considerable antibacterial activity against Gram positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, one of the main causative agents of orthopedic infections. The functionalized Se-coated bioactive glass scaffolds represent a new family of bioactive, antibacterial scaffolds for bone tissue engineering applications. PMID:26047884

  15. Bioactivity and cell proliferation in radiopaque gel-derived CaO-P2O5-SiO2-ZrO2 glass and glass-ceramic powders.

    PubMed

    Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2015-10-01

    In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with

  16. Effect of Aminated Mesoporous Bioactive Glass Nanoparticles on the Differentiation of Dental Pulp Stem Cells.

    PubMed

    Lee, Jung-Hwan; Kang, Min-Sil; Mahapatra, Chinmaya; Kim, Hae-Won

    2016-01-01

    Mesoporous bioactive nanoparticles (MBNs) have been developed as promising additives to various types of bone or dentin regenerative material. However, biofunctionality of MBNs as dentin regenerative additive to dental materials have rarely been studied. We investigated the uptake efficiency of MBNs-NH2 with their endocytosis pathway and the role of MBNs-NH2 in odontogenic differentiation to clarify inherent biofunctionality. MBNs were fabricated by sol-gel synthesis, and 3% APTES was used to aminate these nanoparticles (MBNs-NH2) to reverse their charge from negative to positive. To characterize the MBNs-NH2, TEM, XRD, FTIR, zeta(ξ)-potential measurements, and Brunauer-Emmett-Teller analysis were performed. After primary cultured rat dental pulp stem cells (rDPSCs) were incubated with various concentrations of MBNs-NH2, stem cell viability (24 hours) with or without differentiated media, internalization of MBNs-NH2 in rDPSCs (~4 hours) via specific endocytosis pathway, intra or extracellular ion concentration and odontoblastic differentiation (~28 days) were investigated. Incubation with up to 50 μg/mL of MBNs-NH2 had no effect on rDPSCs viability with differentiated media (p>0.05). The internalization of MBNs-NH2 in rDPSCs was determined about 92% after 4 hours of incubation. Uptake was significantly decreased with ATP depletion and after 1 hour of pre-treatment with the inhibitor of macropinocytosis (p<0.05). There was significant increase of intracellular Ca and Si ion concentration in MBNs-NH2 treated cells compared to no-treated counterpart (p<0.05). The expression of odontogenic-related genes (BSP, COL1A, DMP-1, DSPP, and OCN) and the capacity for biomineralization (based on alkaline phosphatase activity and alizarin red staining) were significantly upregulated with MBNs-NH2. These results indicate that MBNs-NH2 induce odontogenic differentiation of rDPSCs and may serve as a potential dentin regenerative additive to dental material for promoting

  17. Effect of Aminated Mesoporous Bioactive Glass Nanoparticles on the Differentiation of Dental Pulp Stem Cells

    PubMed Central

    Lee, Jung-Hwan; Kang, Min-Sil; Mahapatra, Chinmaya; Kim, Hae-Won

    2016-01-01

    Mesoporous bioactive nanoparticles (MBNs) have been developed as promising additives to various types of bone or dentin regenerative material. However, biofunctionality of MBNs as dentin regenerative additive to dental materials have rarely been studied. We investigated the uptake efficiency of MBNs-NH2 with their endocytosis pathway and the role of MBNs-NH2 in odontogenic differentiation to clarify inherent biofunctionality. MBNs were fabricated by sol-gel synthesis, and 3% APTES was used to aminate these nanoparticles (MBNs-NH2) to reverse their charge from negative to positive. To characterize the MBNs-NH2, TEM, XRD, FTIR, zeta(ξ)-potential measurements, and Brunauer–Emmett–Teller analysis were performed. After primary cultured rat dental pulp stem cells (rDPSCs) were incubated with various concentrations of MBNs-NH2, stem cell viability (24 hours) with or without differentiated media, internalization of MBNs-NH2 in rDPSCs (~4 hours) via specific endocytosis pathway, intra or extracellular ion concentration and odontoblastic differentiation (~28 days) were investigated. Incubation with up to 50 μg/mL of MBNs-NH2 had no effect on rDPSCs viability with differentiated media (p>0.05). The internalization of MBNs-NH2 in rDPSCs was determined about 92% after 4 hours of incubation. Uptake was significantly decreased with ATP depletion and after 1 hour of pre-treatment with the inhibitor of macropinocytosis (p<0.05). There was significant increase of intracellular Ca and Si ion concentration in MBNs-NH2 treated cells compared to no-treated counterpart (p<0.05). The expression of odontogenic-related genes (BSP, COL1A, DMP-1, DSPP, and OCN) and the capacity for biomineralization (based on alkaline phosphatase activity and alizarin red staining) were significantly upregulated with MBNs-NH2. These results indicate that MBNs-NH2 induce odontogenic differentiation of rDPSCs and may serve as a potential dentin regenerative additive to dental material for promoting

  18. Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics.

    PubMed

    Kapoor, Saurabh; Goel, Ashutosh; Correia, Ana Filipa; Pascual, Maria J; Lee, Hye-Young; Kim, Hae-Won; Ferreira, José M F

    2015-08-01

    The present study reports on the influence of partial replacement of MgO by ZnO on the structure, crystallisation behaviour and bioactivity of alkali-free bioactive glass-ceramics (GCs). A series of glass compositions (mol%): 36.07 CaO-(19.24-x) MgO-x ZnO-5.61 P2O5-38.49 SiO2-0.59 CaF2 (x=2-10) have been synthesised by melt-quench technique. The structural changes were investigated by solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR), X-ray diffraction and differential thermal analysis. The sintering and crystallisation behaviours of glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. All the glass compositions exhibited good densification ability resulting in well sintered and mechanically strong GCs. The crystallisation and mechanical behaviour were studied under non-isothermal heating conditions at 850 °C for 1h. Diopside was the primary crystalline phase in all the GCs followed by fluorapatite and rankinite as secondary phases. Another phase named petedunnite was identified in GCs with ZnO content >4 mol. The proliferation of mesenchymal stem cells (MSCs) and their alkaline phosphatase activity (ALP) on GCs was revealed to be Zn-dose dependent with the highest performance being observed for 4 mol% ZnO. PMID:26042713

  19. Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering

    PubMed Central

    Maji, Kanchan; Dasgupta, Sudip; Pramanik, Krishna; Bissoyi, Akalabya

    2016-01-01

    The aim of the present study was to prepare and characterize bioglass-natural biopolymer based composite scaffold and evaluate its bone regeneration ability. Bioactive glass nanoparticles (58S) in the size range of 20–30 nm were synthesized using sol-gel method. Porous scaffolds with varying bioglass composition from 10 to 30 wt% in chitosan, gelatin matrix were fabricated using the method of freeze drying of its slurry at 40 wt% solids loading. Samples were cross-linked with glutaraldehyde to obtain interconnected porous 3D microstructure with improved mechanical strength. The prepared scaffolds exhibited >80% porosity with a mean pore size range between 100 and 300 microns. Scaffold containing 30 wt% bioglass (GCB 30) showed a maximum compressive strength of 2.2 ± 0.1 MPa. Swelling and degradation studies showed that the scaffold had excellent properties of hydrophilicity and biodegradability. GCB 30 scaffold was shown to be noncytotoxic and supported mesenchymal stem cell attachment, proliferation, and differentiation as indicated by MTT assay and RUNX-2 expression. Higher cellular activity was observed in GCB 30 scaffold as compared to GCB 0 scaffold suggesting the fact that 58S bioglass nanoparticles addition into the scaffold promoted better cell adhesion, proliferation, and differentiation. Thus, the study showed that the developed composite scaffolds are potential candidates for regenerating damaged bone tissue. PMID:26884764

  20. Regulation of cellular behaviors of fibroblasts related to wound healing by sol-gel derived bioactive glass particles.

    PubMed

    Xie, Weihan; Chen, Xiaofeng; Miao, Guohou; Tang, Jieying; Fu, Xiaoling

    2016-10-01

    Sol-gel derived bioactive glass (BG) holds great potential in the application of skin repair. However, the specific regulation of BG on skin cells is still unclear and demands more investigation. Herein, we synthesized sol-gel derived BGs with different compositions (60S, 70S, 80S, and 90S) and found 90S BGs (90 mol % SiO2 , 6 mol % CaO, 4 mol % P2 O5 ) exhibited the best supportiveness for the proliferation of normal human foreskin fibroblasts. Thus, 90S BG particles were used as a model to systematically study the wound healing related cellular response of fibroblasts to BGs. Time-lapse imaging revealed a promoted fibroblast motility stimulated by 90S BG particles. Results on the expression of extracellular matrix (ECM) related genes illustrated that 90S BG particles modulated the synthesis capacity for critical ECM molecules including type I collagen, type III collagen, fibronectin, and tenascin-C. Moreover, the myofibroblastic differentiation of fibroblasts was greatly inhibited by 90S BG particles. Further analysis on the intracellular signaling pathways demonstrated that 90S BG particles down-regulated the collagen synthesis and fibroblast-to-myofibroblast differentiation via TGF-β1-Smad2 signaling, evidenced by the decreased expression levels of TGF-β receptor I and its downstream effector Smad2. Our study provided a further understanding of the specific regulation of 90S BG particles on fibroblasts, which may guide the future design of BG based wound dressing and benefit the clinical application of BG particles in skin repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2420-2429, 2016. PMID:27177533

  1. Long-term controlled release of 125I-tagged BMP-2 by mesoporous bioactive glass with ordered nanopores

    PubMed Central

    ZHANG, QUAN; ZHANG, YE; CHEN, WENJUN; ZHANG, BINGWEN; WANG, SHILONG

    2013-01-01

    The aim of this study was to investigate the ability of mesoporous bioactive glass with ordered nanopores (80S MBG) to adsorb and provide the delayed release of 125I-tagged bone morphogenetic protein-2 (BMP-2). A 50 mg piece of 80S MBG was produced, which comprised SiO2, CaO and P2O5 in a component molar ratio of 80:15:5. Each MBG piece adsorbed 30 μg 125I-BMP-2. Persistent radioactivity in the MBG was periodically measured in simulated body fluid. The total amount of BMP-2 released and the mean amount released per day were calculated. A delayed release curve of BMP-2 was constructed. SPSS 15.0 software was used to perform a statistical analysis. The amount of BMP-2 released in the first two days was one-quarter of the total load. A line equation, y = 490.55×1/2 + 7268.82, was obtained from the square root of protein release doses value at 3–94 days. The total amount of BMP-2 released over 94 days was 11.894 μg, which was ~39.6% of the total load. The half-life of the release time was 248 days. From the second week, the rate of BMP release had stabilized to a mean of 37.42±18.67 ng/day and the difference of the mean amount released per day had no statistical significance (P>0.05). High adsorption and delayed release effects of BMP-2 were observed in 80S MBG. The delayed release conforms to the Higuchi equation, which indicates possible applications in promoting bone healing. PMID:24250724

  2. Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone.

    PubMed

    Detsch, Rainer; Stoor, Patricia; Grünewald, Alina; Roether, Judith A; Lindfors, Nina C; Boccaccini, Aldo R

    2014-11-01

    Bioactive glasses (BAGs) are being investigated for the repair and reconstruction of bone defects, as they exhibit osteoconductive and osteostimulatory potential. However, successful bone regeneration requires also the neovascularization of the construct which is, among other factors, guided by vascular endothelial growth factor (VEGF). In this study, BAG S53P4 (53% SiO2 , 23% Na2 O, 20% CaO, 4% P2 O5 ) is investigated in relation to VEGF-release and response of fibroblast cells. Human CD-18CO fibroblasts were cultivated in contact with different granules of different sizes (0.5-0.8 mm, 1.0-2.0 mm, and 2.0-3.15 mm) and at different concentrations (0-1 wt/vol % of BAG) for 72 h. The analysis of morphology revealed no toxic effect for all granule sizes and concentrations. Compared with the reference, lactate dehydrogenase-activity of CCD-18CO cells increased in contact with BAG samples. The VEGF release from CCD-18CO fibroblasts cultured on different granule sizes and at different concentrations after 72 h of incubation was quantified. It was found that particles of 0.5-0.8 mm and 1.0-2.0 mm in size enhanced VEGF release, whereas BAG particle sizes of 2.0-3.15 mm led to inhibition of VEGF release. The results are relevant to understand the influence of the particle size and concentration of BAG S53P4 on VEGF expression and neovascularization. PMID:24357515

  3. Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.

    PubMed

    Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

    2014-08-01

    This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. PMID:24863874

  4. 3D conductive nanocomposite scaffold for bone tissue engineering

    PubMed Central

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  5. 3D conductive nanocomposite scaffold for bone tissue engineering.

    PubMed

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  6. Comparing the Air Abrasion Cutting Efficacy of Dentine Using a Fluoride-Containing Bioactive Glass versus an Alumina Abrasive: An In Vitro Study.

    PubMed

    Tan, Melissa H X; Hill, Robert G; Anderson, Paul

    2015-01-01

    Air abrasion as a caries removal technique is less aggressive than conventional techniques and is compatible for use with adhesive restorative materials. Alumina, while being currently the most common abrasive used for cutting, has controversial health and safety issues and no remineralisation properties. The alternative, a bioactive glass, 45S5, has the advantage of promoting hard tissue remineralisation. However, 45S5 is slow as a cutting abrasive and lacks fluoride in its formulation. The aim of this study was to compare the cutting efficacy of dentine using a customised fluoride-containing bioactive glass Na0SR (38-80 μm) versus the conventional alumina abrasive (29 μm) in an air abrasion set-up. Fluoride was incorporated into Na0SR to enhance its remineralisation properties while strontium was included to increase its radiopacity. Powder outflow rate was recorded prior to the cutting tests. Principal air abrasion cutting tests were carried out on pristine ivory dentine. The abrasion depths were quantified and compared using X-ray microtomography. Na0SR was found to create deeper cavities than alumina (p < 0.05) despite its lower powder outflow rate and predictably reduced hardness. The sharper edges of the Na0SR glass particles might improve the cutting efficiency. In conclusion, Na0SR was more efficacious than alumina for air abrasion cutting of dentine. PMID:26697067

  7. Comparing the Air Abrasion Cutting Efficacy of Dentine Using a Fluoride-Containing Bioactive Glass versus an Alumina Abrasive: An In Vitro Study

    PubMed Central

    Tan, Melissa H. X.; Hill, Robert G.; Anderson, Paul

    2015-01-01

    Air abrasion as a caries removal technique is less aggressive than conventional techniques and is compatible for use with adhesive restorative materials. Alumina, while being currently the most common abrasive used for cutting, has controversial health and safety issues and no remineralisation properties. The alternative, a bioactive glass, 45S5, has the advantage of promoting hard tissue remineralisation. However, 45S5 is slow as a cutting abrasive and lacks fluoride in its formulation. The aim of this study was to compare the cutting efficacy of dentine using a customised fluoride-containing bioactive glass Na0SR (38–80 μm) versus the conventional alumina abrasive (29 μm) in an air abrasion set-up. Fluoride was incorporated into Na0SR to enhance its remineralisation properties while strontium was included to increase its radiopacity. Powder outflow rate was recorded prior to the cutting tests. Principal air abrasion cutting tests were carried out on pristine ivory dentine. The abrasion depths were quantified and compared using X-ray microtomography. Na0SR was found to create deeper cavities than alumina (p < 0.05) despite its lower powder outflow rate and predictably reduced hardness. The sharper edges of the Na0SR glass particles might improve the cutting efficiency. In conclusion, Na0SR was more efficacious than alumina for air abrasion cutting of dentine. PMID:26697067

  8. On the dissolution/reaction of small-grain Bioglass ® 45S5 and F-modified bioactive glasses in artificial saliva (AS)

    NASA Astrophysics Data System (ADS)

    Aina, Valentina; Bertinetti, Luca; Cerrato, Giuseppina; Cerruti, Marta; Lusvardi, Gigliola; Malavasi, Gianluca; Morterra, Claudio; Tacconi, Linda; Menabue, Ledi

    2011-02-01

    The reaction of small-grain Bioglass® 45S5 in artificial saliva (AS), to produce a layer of hydroxy-apatite (HA) and/or hydroxy-carbonate apatite (HCA), has been studied and compared to the results obtained in a simple buffered solution (TRIS). Some potentially bioactive glasses based on the composition of Bioglass® and containing CaF2 (HCaCaF2 5% and HNaCaF2 5%) have also been studied, in order to analyze the effects/changes produced when a F-containing glass surface is contacted with AS. The insertion of fluorine has been proposed to improve bioactive glass bone-bonding ability, and to parallel fluorine-containing glass-ceramics currently used in dentistry. ICP-OES analysis of the solution, and FTIR spectroscopy of the solid samples provided compositional information on the stages of reaction. These data were integrated with XRD and the textural and morphological data, obtained by specific surface areas determination and TEM-EDS measurements. In the case of Bioglass® 45S5, a comparison at corresponding reaction times indicates that the precipitation of an amorphous Ca-phosphate phase is faster in AS, but the crystallization of HA/HCA is delayed in AS with respect to the TRIS solution. For fluoride-containing glasses, the sample HCaCaF2 5%, in which CaF2 replaces part of CaO, possesses the fastest rate for HA/HCA crystallization (1 week) in AS. Some lines of interpretation for these results are proposed.

  9. Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2 glass-ceramics containing apatite and wollastonite.

    PubMed

    Kamitakahara, M; Ohtsuki, C; Inada, H; Tanihara, M; Miyazaki, T

    2006-07-01

    Some ceramics show bone-bonding ability, i.e. bioactivity. Apatite formation on ceramics is an essential condition to bring about direct bonding to living bone when implanted into bony defects. A controlled surface reaction of the ceramic is an important factor governing the bioactivity and biodegradation of the implanted ceramic. Among bioactive ceramics, glass-ceramic A-W containing apatite and wollastonite shows high bioactivity, as well as high mechanical strength. In this study, glass-ceramics containing zinc oxide were prepared by modification of the composition of the glass-ceramic A-W. Zinc oxide was selected to control the reactivity of the glass-ceramics since zinc is a trace element that shows stimulatory effects on bone formation. Glass-ceramics were prepared by heat treatment of glasses with the general composition: xZnOx(57.0-x)CaOx35.4SiO(2)x7.2P(2)O(5)x0.4CaF(2) (where x=0-14.2mol.%). Addition of ZnO increased the chemical durability of the glass-ceramics, resulting in a decrease in the rate of apatite formation in a simulated body fluid. On the other hand, the release of zinc from the glass-ceramics increased with increasing ZnO content. Addition of ZnO may provide bioactive CaO-SiO(2)-P(2)O(5)-CaF(2) glass-ceramics with the capacity for appropriate biodegradation, as well as enhancement of bone formation. PMID:16765885

  10. Accelerated bone ingrowth by local delivery of Zinc from bioactive glass: oxidative stress status, mechanical property, and microarchitectural characterization in an ovariectomized rat model

    PubMed Central

    Samira, Jbahi; Saoudi, Monji; Abdelmajid, Kabir; Hassane, Oudadesse; Treq, Rebai; Hafed, Efeki; Abdelfatteh, Elfeki; Hassib, Keskes

    2015-01-01

    Background Synthetic bone graft substitutes such as bioactive glass (BG) material are developed in order to achieve successful bone regeneration. Zn plays an important role in the proper bone growth, development, and maintenance of healthy bones. Aims This study aims to evaluate in vivo the performance therapy of zinc-doped bioactive glass (BG-Zn) and its applications in biomedicine. Methods Female Wistar rats were ovariectomized. BG and BG-Zn were implanted in the femoral condyles of Wistar rats and compared to that of control group. Grafted bone tissues were carefully removed to evaluate the oxidative stress status, histomorphometric profile, mechanical property, and mineral bone distribution by using inductively coupled plasma optical emission spectrometry. Results A significant decrease of thiobarbituric acid–reactive substances was observed after BG-Zn implantation. Superoxide dismutase, catalase (CAT), and glutathione peroxidase (GPx) activities significantly increased in ovariectomized group implanted with Zinc-doped bioactive glass (OVX-BG-Zn) as compared to ovariectomized group implanted with bioactive glass (OVX-BG). An improved mechanical property was noticed in contact of OVX-BG-Zn (39±6 HV) when compared with that of OVX-BG group (26±9 HV). After 90 days of implantation, the histomorphometric analysis showed that trabecular thickness (Tb.Th) and trabecular number (Tb.N) were significantly increased with 28 and 24%, respectively, in treated rats of OVX-BG-Zn group as compared to those of OVX-BG groups. Trabecular separation (Tb.Sp) and trabecular bone pattern factor (TBPf) were significantly decreased in OVX-BG-Zn group with 29.5 and 54% when compared with those of OVX-BG rat groups. On the other hand, a rise in Ca and P ion concentrations in the implanted microenvironment was shown and lead to the formation/deposition of Ca-P phases. The ratio of pyridinoline [Pyr] to dihydroxylysinonorleucine [DHLNL] cross-links was normalized to the control level

  11. Fabrication of a novel poly(3-hydroxyoctanoate) / nanoscale bioactive glass composite film with potential as a multifunctional wound dressing

    NASA Astrophysics Data System (ADS)

    Rai, Ranjana; Boccaccini, Aldo R.; Knowles, Jonathan C.; Locke, Ian C.; Gordge, Michael P.; McCormick, Aine; Salih, Vehid; Mordon, Nicola; Keshavarz, Tajalli; Roy, Ipsita

    2010-06-01

    Fabrication of a composite scaffold of nanobioglass (n-BG) 45S5 and poly(3-hydroxyocatnoate), P(3HO) was studied for the first time with the aim of developing a novel, multifunctional wound dressing. The incorporation of n-BG accelerated blood clotting time and its incorporation in the polymer matrix enhanced the wettability, surface roughness and bio-compatibility of the scaffold.

  12. Fabrication of a novel poly(3-hydroxyoctanoate)/ nanoscale bioactive glass composite film with potential as a multifunctional wound dressing

    SciTech Connect

    Rai, Ranjana; Keshavarz, Tajalli; Roy, Ipsita; Boccaccini, Aldo R.; Knowles, Jonathan C.; Salih, Vehid; Mordon, Nicola; Locke, Ian C.; Gordge, Michael P.; McCormick, Aine

    2010-06-02

    Fabrication of a composite scaffold of nanobioglass (n-BG) 45S5 and poly(3-hydroxyocatnoate), P(3HO) was studied for the first time with the aim of developing a novel, multifunctional wound dressing. The incorporation of n-BG accelerated blood clotting time and its incorporation in the polymer matrix enhanced the wettability, surface roughness and bio-compatibility of the scaffold.

  13. Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering.

    PubMed

    Shalumon, K T; Sowmya, S; Sathish, D; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2013-03-01

    A biomimetic scaffold which can very closely mimic the extracellular matrix of the bone was fabricated by incorporating nano-bioceramic particles such as nano bioglass (nBG) and nano hydroxyapatite (nHAp) within electrospun nanofibrous scaffold. A comparative study between nHAp incorporated poly(caprolactone) (PCL)-chitosan (CS) and nBG incorporated PCL-CS nanofibrous scaffolds was carried out and their feasibility in tissue engineering was investigated. All the samples were optimized to obtain fibers of similar diameter from 100-200 nm for the ease of comparison between the samples. Protein adsorption studies showed that PCL-CS incorporated with 3 wt% nHAp and 3 wt% nBG adsorbed more proteins on their surface than other samples. Cell attachment and proliferation studies using human periodontal ligament fibroblast cells (hPLFs) and osteoblast like cells (MG-63 cell lines) showed that nBG incorporated samples are slightly superior to nHAp incorporated counterparts. Cell viability test using alamar blue assay and live/dead staining confirms that the scaffolds are cytocompatible. ALP activity confirmed the osteoblastic behavior of hPDLFs. Also the presence of nHAp and nBG enhanced the ALP activity of hPDLF on the PCH3 and PCB3 scaffolds. These studies indicate that nBG incorporated electrospun scaffolds are comparatively better candidates for orthopedic and periodontal tissue engineering applications. PMID:23620999

  14. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

    PubMed

    Dziadek, Michal; Menaszek, Elzbieta; Zagrajczuk, Barbara; Pawlik, Justyna; Cholewa-Kowalska, Katarzyna

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO2-CaO-P2O5 system differing in SiO2 and CaO contents were applied (mol%): S2: 80SiO2, 16CaO, 4P2O5 and A2: 40SiO2, 54CaO, 6P2O5. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37°C for 56weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~67° for 21A2-PCL compared to ~78° for pure PCL) and also makes AS surface more hydrophobic (~94° for 21S2-PCL compared to ~86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38GPa for pure PCL, 0.90GPa for 12A2-PCL to 1.31GPa for 21A2-PCL), which also depends on SBG chemical composition. After 56-week degradation test, considerably higher

  15. Multifunctional Chitosan-45S5 Bioactive Glass-Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Microsphere Composite Membranes for Guided Tissue/Bone Regeneration.

    PubMed

    Li, Wei; Ding, Yaping; Yu, Shanshan; Yao, Qingqing; Boccaccini, Aldo R

    2015-09-23

    Novel multifunctional chitosan-45S5 bioactive glass-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microsphere (CS-BG-MS) composite membranes were developed with applicability in guided tissue/bone regeneration (GTR/GBR). The incorporation of 45S5 BG and PHBV MS into CS membranes not only provided the membranes with favorable surface roughness, hydrophilicity, and flexibility but also slowed down their degradation rate. Moreover, the CS membranes became bioactive after the incorporation of 45S5 BG and capable of releasing drugs of different physicochemical properties in a controlled and sustained manner with the addition of PHBV MS. Cell culture tests showed that osteoblast-like MG-63 human osteosarcoma cells had significantly higher adhesion, cell proliferation, and alkaline phosphatase (ALP) activity on CS-BG and CS-BG-MS membranes than on neat CS membranes. Therefore, the developed bioactive CS-BG-MS membranes with potential multidrug (e.g., antibacterial and antiosteoporosis drugs) delivery capability are promising candidate membranes for GTR/GBR applications. PMID:26317326

  16. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hyun; Singh, Rajendra K.; Kang, Min Sil; Kim, Joong-Hyun; Kim, Hae-Won

    2016-04-01

    The recent development of bioactive glasses with nanoscale morphologies has spurred their specific applications in bone regeneration, for example as drug and gene delivery carriers. Bone engineering with stem cells genetically modified with this unique class of nanocarriers thus holds great promise in this avenue. Here we report the potential of the bioactive glass nanoparticle (BGN) system for the gene delivery of mesenchymal stem cells (MSCs) targeting bone. The composition of 15% Ca-added silica, proven to be bone-bioactive, was formulated into surface aminated mesoporous nanospheres with enlarged pore sizes, to effectively load and deliver bone morphogenetic protein-2 (BMP2) plasmid DNA. The enlarged mesopores were highly effective in loading BMP2-pDNA with an efficiency as high as 3.5 wt% (pDNA w.r.t. BGN), a level more than twice than for small-sized mesopores. The BGN nanocarriers released the genetic molecules in a highly sustained manner (for as long as 2 weeks). The BMP2-pDNA/BGN complexes were effectively internalized to rat MSCs with a cell uptake level of ~73%, and the majority of cells were transfected to express the BMP2 protein. Subsequent osteogenesis of the transfected MSCs was demonstrated by the expression of bone-related genes, including bone sialoprotein, osteopontin, and osteocalcin. The MSCs transfected with BMP2-pDNA/BGN were locally delivered inside a collagen gel to the target calvarium defects. The results showed significantly improved bone regeneration, as evidenced by the micro-computed tomographic, histomorphometric and immunohistochemical analyses. This study supports the excellent capacity of the BGN system as a pDNA-delivery nanocarrier in MSCs, and the engineered system, BMP2-pDNA/BGN with MSCs, may be considered a new promising candidate to advance the therapeutic potential of stem cells through genetic modification, targeting bone defects and diseases.The recent development of bioactive glasses with nanoscale morphologies has

  17. Investigating the solubility and cytocompatibility of CaO-Na2 O-SiO2 /TiO2 bioactive glasses.

    PubMed

    Wren, Anthony W; Coughlan, Aisling; Smith, Courtney M; Hudson, Sarah P; Laffir, Fathima R; Towler, Mark R

    2015-02-01

    This study aims to investigate the solubility of a series of titanium (TiO2 )-containing bioactive glasses and their subsequent effect on cell viability. Five glasses were synthesized in the composition range SiO2 -Na2 O-CaO with 5 mol % of increments TiO2 substituted for SiO2 . Glass solubility was investigated with respect to (1) exposed surface area, (2) particle size, (3) incubation time, and (4) compositional effects. Ion release profiles showed that sodium (Na(+) ) presented high release rates after 1 day and were unchanged between 7 and 14 days. Calcium (Ca(2+) ) release presented a significant change at each time period and was also composition dependent, where a reduction in Ca(2+) release is observed with an increase in TiO2 concentration. Silica (Si(4+) ) release did not present any clear trends while no titanium (Ti(4+) ) was released. Cell numbers were found to increase up to 44%, compared to the growing control population, with a reduction in particle size and with the inclusion of TiO2 in the glass composition. PMID:24825479

  18. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration.

    PubMed

    Kim, Tae-Hyun; Singh, Rajendra K; Kang, Min Sil; Kim, Joong-Hyun; Kim, Hae-Won

    2016-04-14

    The recent development of bioactive glasses with nanoscale morphologies has spurred their specific applications in bone regeneration, for example as drug and gene delivery carriers. Bone engineering with stem cells genetically modified with this unique class of nanocarriers thus holds great promise in this avenue. Here we report the potential of the bioactive glass nanoparticle (BGN) system for the gene delivery of mesenchymal stem cells (MSCs) targeting bone. The composition of 15% Ca-added silica, proven to be bone-bioactive, was formulated into surface aminated mesoporous nanospheres with enlarged pore sizes, to effectively load and deliver bone morphogenetic protein-2 (BMP2) plasmid DNA. The enlarged mesopores were highly effective in loading BMP2-pDNA with an efficiency as high as 3.5 wt% (pDNA w.r.t. BGN), a level more than twice than for small-sized mesopores. The BGN nanocarriers released the genetic molecules in a highly sustained manner (for as long as 2 weeks). The BMP2-pDNA/BGN complexes were effectively internalized to rat MSCs with a cell uptake level of ∼73%, and the majority of cells were transfected to express the BMP2 protein. Subsequent osteogenesis of the transfected MSCs was demonstrated by the expression of bone-related genes, including bone sialoprotein, osteopontin, and osteocalcin. The MSCs transfected with BMP2-pDNA/BGN were locally delivered inside a collagen gel to the target calvarium defects. The results showed significantly improved bone regeneration, as evidenced by the micro-computed tomographic, histomorphometric and immunohistochemical analyses. This study supports the excellent capacity of the BGN system as a pDNA-delivery nanocarrier in MSCs, and the engineered system, BMP2-pDNA/BGN with MSCs, may be considered a new promising candidate to advance the therapeutic potential of stem cells through genetic modification, targeting bone defects and diseases. PMID:27035682

  19. Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review.

    PubMed

    Corona-Gomez, Jesus; Chen, Xiongbiao; Yang, Qiaoqin

    2016-01-01

    Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO₂, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering. PMID:27420104

  20. Design, fabrication and perivascular implantation of bioactive scaffolds engineered with human adventitial progenitor cells for stimulation of arteriogenesis in peripheral ischemia.

    PubMed

    Carrabba, M; De Maria, C; Oikawa, A; Reni, C; Rodriguez-Arabaolaza, I; Spencer, H; Slater, S; Avolio, E; Dang, Z; Spinetti, G; Madeddu, P; Vozzi, G

    2016-03-01

    Cell therapy represents a promising option for revascularization of ischemic tissues. However, injection of dispersed cells is not optimal to ensure precise homing into the recipient's vasculature. Implantation of cell-engineered scaffolds around the occluded artery may obviate these limitations. Here, we employed the synthetic polymer polycaprolactone for fabrication of 3D woodpile- or channel-shaped scaffolds by a computer-assisted writing system (pressure assisted micro-syringe square), followed by deposition of gelatin (GL) nanofibers by electro-spinning. Scaffolds were then cross-linked with natural (genipin, GP) or synthetic (3-glycidyloxy-propyl-trimethoxy-silane, GPTMS) agents to improve mechanical properties and durability in vivo. The composite scaffolds were next fixed by crown inserts in each well of a multi-well plate and seeded with adventitial progenitor cells (APCs, 3 cell lines in duplicate), which were isolated/expanded from human saphenous vein surgical leftovers. Cell density, alignment, proliferation and viability were assessed 1 week later. Data from in vitro assays showed channel-shaped/GPTMS-crosslinked scaffolds confer APCs with best alignment and survival/growth characteristics. Based on these results, channel-shaped/GPTMS-crosslinked scaffolds with or without APCs were implanted around the femoral artery of mice with unilateral limb ischemia. Perivascular implantation of scaffolds accelerated limb blood flow recovery, as assessed by laser Doppler or fluorescent microspheres, and increased arterial collaterals around the femoral artery and in limb muscles compared with non-implanted controls. Blood flow recovery and perivascular arteriogenesis were additionally incremented by APC-engineered