These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Three-dimensional, bioactive, biodegradable, polymerbioactive glass composite scaffolds with  

E-print Network

(3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BGThree-dimensional, bioactive, biodegradable, polymer­bioactive glass composite scaffolds, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix

Lu, Helen H.

2

Nano/macro porous bioactive glass scaffold  

NASA Astrophysics Data System (ADS)

Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent exchange process. Although both techniques lower the surface area of BG scaffolds, the temperature-dependent sintering process closes nanopores through densification, while the concentration-dependent solvent exchange process enlarges nanopores through Ostwald-ripening type coarsening. Therefore, nanopore size and surface area of BG scaffold are independently controlled using these methods. In vitro cell and in vivo animal tissue responses have been investigated to evaluate the performance of the nano-macro porous BG scaffold. The cells are found to migrate and penetrate deep into the 3D nano-macro porous structure, while exhibiting excellent adhesion to the bioscaffold surface. Importantly, the new tissue with both blood vessels and collagen fibers is formed deep inside the implanted scaffolds without obvious inflammatory reaction. Furthermore, our observations show biological benefits of the nanopores in the BG scaffold. In comparison to BG scaffold without nanopores, cells migrate and penetrate into nano-macro dual-porous BG scaffold faster and deeper mainly because of the increase of surface area. To study the effect of nanopore topography, we fabricated BG scaffolds with the same surface area but different nanopore sizes. It is found that the initial cell attachment is significantly enhanced on the BG scaffold with the same surface area but smaller nanopores size, indicating that the nanopore topography strongly influences the performance of BG scaffold. In conclusion, the present results demonstrate most clearly the usefulness of our nano-macro dual-porous BG as a novel and superior 3D bioscaffold for regenerative medicine and hard tissue engineering.

Wang, Shaojie

3

A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior.  

PubMed

Composite scaffolds of mesoporous bioactive glass (MBG)/polycaprolactone (PCL) and conventional bioactive glass (BG)/PCL were fabricated by a solvent casting-particulate leaching method, and the structure and properties of the composite scaffolds were characterized. The measurements of the water contact angles suggest that the incorporation of either MBG or BG into PCL can improve the hydrophilicity of the composites, and the former is more effective than the later. The bioactivity of the composite scaffold is evaluated by soaking the scaffolds in a simulated body fluid (SBF) and the results show that the MBG/PCL composite scaffolds can induce a dense and continuous layer of apatite after soaking in SBF for 3 weeks, as compared with the scattered and discrete apatite particles on the BG/PCL composite scaffolds. Such improvements (improvements of the hydrophilicity and apatite forming ability) should be helpful for the extensive applications of PCL scaffold in tissue engineering. PMID:17600329

Li, Xia; Shi, Jianlin; Dong, Xiaoping; Zhang, Lingxia; Zeng, Hongyu

2008-01-01

4

Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation.  

PubMed

Scaffolds are needed that can act as temporary templates for bone regeneration and actively stimulate vascularized bone growth so that bone grafting is no longer necessary. To achieve this, the scaffold must have a suitable interconnected pore network and be made of an osteogenic material. Bioactive glass is an ideal material because it rapidly bonds to bone and degrades over time, releasing soluble silica and calcium ions that are thought to stimulate osteoprogenitor cells. Melt-derived bioactive glasses, such as the original Bioglass composition, are available commercially, but porous scaffolds have been difficult to produce because Bioglass and similar compositions crystallize on sintering. Sol-gel foam scaffolds have been developed that avoid this problem. They have a hierarchical pore structure comprising interconnected macropores, with interconnect diameters in excess of the 100 microm that is thought to be needed for vascularized bone ingrowth, and an inherent nanoporosity of interconnected mesopores (2-50 nm) which is beneficial for the attachment of osteoprogenitor cells. They also have a compressive strength in the range of cancellous bone. This paper describes the optimized sol-gel foaming process and illustrates the importance of optimizing the hierarchical structure from the atomic through nano, to the macro scale with respect to biological response. PMID:21287826

Jones, J R; Lin, S; Yue, S; Lee, P D; Hanna, J V; Smith, M E; Newport, R J

2010-12-01

5

Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.  

PubMed

In this work, the coating of 3-D foam-like glass-ceramic scaffolds with a bioactive mesoporous glass (MBG) was investigated. The starting scaffolds, based on a non-commercial silicate glass, were fabricated by the polymer sponge replica technique followed by sintering; then, electrophoretic deposition (EPD) was applied to deposit a MBG layer on the scaffold struts. EPD was also compared with other techniques (dipping and direct in situ gelation) and it was shown to lead to the most promising results. The scaffold pore structure was maintained after the MBG coating by EPD, as assessed by SEM and micro-CT. In vitro bioactivity of the scaffolds was assessed by immersion in simulated body fluid and subsequent evaluation of hydroxyapatite (HA) formation. The deposition of a MBG coating can be a smart strategy to impart bioactive properties to the scaffold, allowing the formation of nano-structured HA agglomerates within 48 h from immersion, which does not occur on uncoated scaffold surfaces. The mechanical properties of the scaffold do not vary after the EPD (compressive strength ~19 MPa, fracture energy ~1.2 × 10(6) J m(-3)) and suggest the suitability of the prepared highly bioactive constructs as bone tissue engineering implants for load-bearing applications. PMID:25578700

Fiorilli, Sonia; Baino, Francesco; Cauda, Valentina; Crepaldi, Marco; Vitale-Brovarone, Chiara; Demarchi, Danilo; Onida, Barbara

2015-01-01

6

Effects of Bioactive Glass Scaffold and BMP-2 in Segmental Defects Wai-Ching Liu1  

E-print Network

and micro-CT results showed that bridging callus was found as soon as 3 weeks and progressed graduallyEffects of Bioactive Glass Scaffold and BMP-2 in Segmental Defects Wai-Ching Liu1 , Irina S. Robu1 osteoconductive material 13-93 bioactive glass and the potential side effects of locally delivered BMP-2

Zhou, Yaoqi

7

Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering  

Microsoft Academic Search

Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide

Krishna C. R. Kolan; Ming C. Leu; Gregory E. Hilmas; Roger F. Brown; Mariano Velez

2011-01-01

8

Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds  

NASA Astrophysics Data System (ADS)

There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO 2-CaO-P 2O 5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 ?m and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

Mozafari, Masoud; Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied

2010-12-01

9

Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.  

PubMed

Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900?µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation. PMID:23241965

Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

2014-01-01

10

Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells  

Microsoft Academic Search

Sol–gel derived bioactive glasses of the 70S30C (70mol% SiO2, 30mol% CaO) composition have been foamed to produce 3D bioactive scaffolds with hierarchical interconnected pore morphologies similar to trabecular bone. The aim of this study was to investigate primary human osteoblast response to porous bioactive glass scaffolds. The scaffolds supported osteoblast growth and induced differentiation, within the 3-week culture period, as

Julian R. Jones; Olga Tsigkou; Emily E. Coates; Molly M. Stevens; Julia M. Polak; Larry L. Hench

2007-01-01

11

Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration.  

PubMed

Here we fabricate and characterize bioactive composite scaffolds for bone tissue engineering applications. 45S5 Bioglass® (45S5) or strontium-substituted bioactive glass (SrBG) were incorporated into polycaprolactone (PCL) and fabricated into 3D bioactive composite scaffolds utilizing additive manufacturing technology. We show that composite scaffolds (PCL/45S5 and PCL/SrBG) can be reproducibly manufactured with a scaffold morphology highly resembling that of PCL scaffolds. Additionally, micro-CT analysis reveals BG particles were homogeneously distributed throughout the scaffolds. Mechanical data suggested that PCL/45S5 and PCL/SrBG composite scaffolds have higher compressive Young's modulus compared to PCL scaffolds at similar porosity (?75%). After 1 day in accelerated degradation conditions using 5M NaOH, PCL/SrBG, PCL/45S5 and PCL lost 48.6 ± 3.8%, 12.1 ± 1% and 1.6 ± 1% of the original mass, respectively. In vitro studies were conducted using MC3T3 cells under normal and osteogenic conditions. All scaffolds were shown to be non-cytotoxic, and supported cell attachment and proliferation. Our results also indicate that the inclusion of bioactive glass (BG) promotes precipitation of calcium phosphate on the scaffold surfaces which leads to earlier cell differentiation and matrix mineralization when compared to PCL scaffolds. However, as indicated by alkaline phosphatase activity, no significant difference in osteoblast differentiation was found between PCL/45S5 and PCL/SrBG scaffolds. These results suggest that PCL/45S5 and PCL/SrBG composite scaffolds show potential as next generation bone scaffolds. PMID:24192136

Poh, Patrina S P; Hutmacher, Dietmar W; Stevens, Molly M; Woodruff, Maria A

2013-12-01

12

Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite.  

PubMed

A reduction in the degradation rate of magnesium (Mg) and its alloys is in high demand to enable these materials to be used in orthopedic applications. For this purpose, in this paper, a biocompatible polymeric layer reinforced with a bioactive ceramic made of polycaprolactone (PCL) and bioactive glass (BG) was applied on the surface of Mg scaffolds using dip-coating technique under low vacuum. The results indicated that the PCL-BG coated Mg scaffolds exhibited noticeably enhanced bioactivity compared to the uncoated scaffold. Moreover, the mechanical integrity of the Mg scaffolds was improved using the PCL-BG coating on the surface. The stable barrier property of the coatings effectively delayed the degradation activity of Mg scaffold substrates. Moreover, the coatings induced the formation of apatite layer on their surface after immersion in the SBF, which can enhance the biological bone in-growth and block the microcracks and pore channels in the coatings, thus prolonging their protective effect. Furthermore, it was shown that a three times increase in the concentration of PCL-BG noticeably improved the characteristics of scaffolds including their degradation resistance and mechanical stability. Since bioactivity, degradation resistance and mechanical integrity of a bone substitute are the key factors for repairing and healing fractured bones, we suggest that PCL-BG is a suitable coating material for surface modification of Mg scaffolds. PMID:25686970

Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Tayebi, Lobat

2015-04-01

13

Freeze extrusion fabrication of 13-93 bioactive glass scaffolds for bone repair.  

PubMed

A solid freeform fabrication technique, freeze extrusion fabrication (FEF), was investigated for the creation of three-dimensional bioactive glass (13-93) scaffolds with pre-designed porosity and pore architecture. An aqueous mixture of bioactive glass particles and polymeric additives with a paste-like consistency was extruded through a narrow nozzle, and deposited layer-by-layer in a cold environment according to a computer-aided design (CAD) file. Following sublimation of the ice in a freeze dryer, the construct was heated according to a controlled schedule to burn out the polymeric additives (below ~500°C), and to densify the glass phase at higher temperature (1 h at 700°C). The sintered scaffolds had a grid-like microstructure of interconnected pores, with a porosity of ~50%, pore width of ~300 ?m, and dense glass filaments (struts) with a diameter or width of ~300 ?m. The scaffolds showed an elastic response during mechanical testing in compression, with an average compressive strength of 140 MPa and an elastic modulus of 5-6 GPa, comparable to the values for human cortical bone. These bioactive glass scaffolds created by the FEF method could have potential application in the repair of load-bearing bones. PMID:21279671

Doiphode, Nikhil D; Huang, Tieshu; Leu, Ming C; Rahaman, Mohamed N; Day, Delbert E

2011-03-01

14

Biomimetic coating on bioactive glass-derived scaffolds mimicking bone tissue.  

PubMed

Bioceramic "shell" scaffolds, with a morphology resembling the cancellous bone microstructure, have been recently obtained by means of a new protocol, developed with the aim to overcome the limits of the conventional foam replication technique. Because of their original microstructure, the new samples combine high porosity, permeability, and manageability. In this study, for the first time, the novel bioactive glass shell scaffolds are provided with a gelatin-based biomimetic coating to realize hybrid implants which mimic the complex morphology and structure of bone tissue. Moreover, the presence of the coating completely preserves the in vitro bioactivity of the bioactive glass samples, whose surfaces are converted into hydroxyapatite after a few days of immersion in a simulated body fluid solution (SBF). PMID:22733576

Bellucci, D; Sola, A; Gentile, P; Ciardelli, G; Cannillo, V

2012-12-01

15

Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.  

PubMed

In this study, we fabricated strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds with controlled architecture and enhanced mechanical strength using a three-dimensional (3-D) printing technique. The study showed that Sr-MBG scaffolds had uniform interconnected macropores and high porosity, and their compressive strength was ?170 times that of polyurethane foam templated MBG scaffolds. The physicochemical and biological properties of Sr-MBG scaffolds were evaluated by ion dissolution, apatite-forming ability and proliferation, alkaline phosphatase activity, osteogenic expression and extracelluar matrix mineralization of osteoblast-like cells MC3T3-E1. The results showed that Sr-MBG scaffolds exhibited a slower ion dissolution rate and more significant potential to stabilize the pH environment with increasing Sr substitution. Importantly, Sr-MBG scaffolds possessed good apatite-forming ability, and stimulated osteoblast cells' proliferation and differentiation. Using dexamethasone as a model drug, Sr-MBG scaffolds also showed a sustained drug delivery property for use in local drug delivery therapy, due to their mesoporous structure. Therefore, the 3-D printed Sr-MBG scaffolds combined the advantages of Sr-MBG such as good bone-forming bioactivity, controlled ion release and drug delivery and enhanced mechanical strength, and had potential application in bone regeneration. PMID:24412143

Zhang, Jianhua; Zhao, Shichang; Zhu, Yufang; Huang, Yinjun; Zhu, Min; Tao, Cuilian; Zhang, Changqing

2014-05-01

16

Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications.  

PubMed

Loading biomaterials with angiogenic therapeutics has emerged as a promising approach for developing superior biomaterials for engineering bone constructs. In this context, cobalt-releasing materials are of interest as Co is a known angiogenic agent. In this study, we report on cobalt-releasing three-dimensional (3D) scaffolds based on a silicate bioactive glass. Novel melt-derived "1393" glass (53 wt % SiO2, 6 wt % Na2O, 12 wt % K2O, 5 wt % MgO, 20 wt % CaO, and 4 wt % P2O5) with CoO substituted for CaO was fabricated and was used to produce a 3D porous scaffold by the foam replica technique. Glass structural and thermal properties as well as scaffold macrostructure, compressive strength, acellular bioactivity, and Co release in simulated body fluid (SBF) were investigated. In particular, detailed insights into the physicochemical reactions occurring at the scaffold-fluid interface were derived from advanced micro-particle-induced X-ray emission/Rutherford backscattering spectrometry analysis. CoO is shown to act in a concentration-dependent manner as both a network former and a network modifier. At a concentration of 5 wt % CoO, the glass transition point (Tg) of the glass was reduced because of the replacement of stronger Si-O bonds with Co-O bonds in the glass network. Compressive strengths of >2 MPa were measured for Co-containing 1393-derived scaffolds, which are comparable to values of human spongy bone. SBF studies showed that all glass scaffolds form a calcium phosphate (CaP) layer, and for 1393-1Co and 1393-5Co, CaP layers with incorporated traces of Co were observed. The highest Co concentrations of ?12 ppm were released in SBF after reaction for 21 days, which are known to be within therapeutic ranges reported for Co(2+) ions. PMID:24476347

Hoppe, Alexander; Jokic, Bojan; Janackovic, Djordje; Fey, Tobias; Greil, Peter; Romeis, Stefan; Schmidt, Jochen; Peukert, Wolfgang; Lao, Jonathan; Jallot, Edouard; Boccaccini, Aldo R

2014-02-26

17

Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds.  

PubMed

The potential use as a bone substitute material of a three-dimensional bioactive glass fiber scaffold composed of Na(2)O-K(2)O-MgO-CaO-B(2)O(3)-P(2)O(5)-SiO(2) (BG1) was investigated in this work. Scaffolds were pre-treated with simulated body fluid (SBF) to promote the formation of two different bone-like apatite layers on their surfaces. The topography and roughness of the deposited layers were assessed by scanning electron microscopy (SEM), while the chemical composition and structure using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, respectively. Based on surface analysis, the bioactive glass surfaces were ranked from smoothest to roughest: 0 SBF (untreated), 1x SBF and 2x SBF. A calcium-deficient carbonated hydroxyapatite (HCA) layer was present on both SBF-treated scaffolds, with higher number and larger bone-like apatite nodule formation in the 2x SBF case. MC3T3-E1 preosteoblasts showed a more flattened morphology and higher cell proliferation on the nontreated scaffolds; whereas, cells were more elongated and had higher osteoblastic activity on SBF-treated samples. In vivo results in a rabbit calvarial bone defect model showed enhanced bone formation with SBF pretreated scaffolds, compared with untreated ones, commercially available Perioglass particles and empty defects. Our findings demonstrate that the formation of a rough HCA layer on bioactive glass porous scaffolds enhanced preosteoblast maturation in vitro, as well as bone formation in vivo. PMID:20694969

San Miguel, Blanca; Kriauciunas, Rytis; Tosatti, Samuele; Ehrbar, Martin; Ghayor, Chafik; Textor, Marcus; Weber, Franz E

2010-09-15

18

Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds.  

PubMed

Recently several attempts have been made to combine calcium phosphates, such as ?-tricalcium phosphate (?-TCP) and, most of all, hydroxyapatite (HA), with bioactive glasses of different composition, in order to develop composites with improved biological and mechanical performance. Unfortunately, the production of such systems usually implies a high-temperature treatment (up to 1300 °C), which may result in several drawbacks, including crystallization of the original glass, decomposition of the calcium phosphate phase and/or reactions between the constituent phases, with non-trivial consequences in terms of microstructure, bioactivity and mechanical properties of the final samples. In the present contribution, novel binary composites have been obtained by sintering a bioactive glass, characterized by a low tendency to crystallize, with the addition of HA or ?-TCP as the second phase. In particular, the composites have been treated at a relatively low temperature (818 °C and 830 °C, depending on the sample), thus preserving the amorphous structure of the glass and minimizing the interaction between the constituent phases. The effects of the glass composition, calcium phosphate nature and processing conditions on the composite microstructure, mechanical properties and in vitro bioactivity have been systematically discussed. To conclude, a feasibility study to obtain scaffolds for bone tissue regeneration has been proposed. PMID:23498242

Bellucci, D; Sola, A; Cannillo, V

2013-05-01

19

Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair.  

PubMed

Three-dimensional porous scaffolds of a borosilicate bioactive glass (designated 13-93B1), with the composition 6Na2O-8K2O-8MgO-22CaO-18B2O3-36SiO2-2P2O5 (mol%), were prepared using a foam replication technique and evaluated in vitro and in vivo. Immersion of the scaffolds for 30 days in a simulated body fluid in vitro resulted in partial conversion of the glass to a porous hydroxyapatite composed of fine needle-like particles. The capacity of the scaffolds to support bone formation in vivo was evaluated in non-critical sized defects created in the femoral head of rabbits. Eight weeks post-implantation, the scaffolds were partially converted to hydroxyapatite, and they were well integrated with newly-formed bone. When loaded with platelet-rich plasma (PRP), the scaffolds supported bone regeneration in segmental defects in the diaphysis of rabbit radii. The results indicate that these 13-93B1 scaffolds, loaded with PRP or without PRP, are beneficial for bone repair due to their biocompatibility, conversion to hydroxyapatite, and in vivo bone regenerative properties. PMID:24433915

Gu, Yifei; Wang, Gang; Zhang, Xin; Zhang, Yadong; Zhang, Changqing; Liu, Xin; Rahaman, Mohamed N; Huang, Wenhai; Pan, Haobo

2014-03-01

20

Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering.  

PubMed

A new composition of gelatin/bioactive-glass/silver nanoparticle was synthesized and employed to prepare antibacterial macroporous scaffolds with potential applications in bone tissue engineering. A set of macroporous nanocomposite scaffolds were developed from an aqueous solution of gelatin by freeze-drying and crosslinking using genipin at ambient temperature. Silver nanoparticles were successfully synthesized in situ in gelatin solution by heat treatment reduction as a simple and "green" method in which gelatin acted as a natural reducing and stabilizing agent. The effect of the incorporation of the bioactive-glass and the silver nanoparticle concentration on the physicochemical properties of the scaffolds, such as the gel fraction, porosity, in vitro enzyme degradation, morphology, and swelling behavior was studied. Furthermore, the in vitro viability of human mesenchymal stem cells (hMSC) and the antibacterial activity against gram-negative Escherichia coli and gram-positive Staphylococcus aureus were tested on the scaffolds. It was found that upon the addition of silver nanoparticles the porosity, pore size, swelling, and antibacterial properties were enhanced. The silver nanoparticles increased the in vitro enzyme degradation in samples without bioactive-glass; however, the degradation was remarkably reduced by addition of bioactive-glass. In addition, formation of apatite particles, the main inorganic constituent of the bone, on the surface of the bioactive-glass containing scaffolds were confirmed after immersion in simulated body fluid (SBF). The viability of hMSC on the scaffold suggested that gelatin/bioactive-glass/nanosilver scaffolds can be used as an antibacterial scaffolds. PMID:24749388

Yazdimamaghani, M; Vashaee, D; Assefa, S; Walker, K J; Madihally, S V; Köhler, G A; Tayebi, L

2014-06-01

21

Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance  

PubMed Central

Graphene is a novel material and currently popular as an enabler for the next-generation nanocomposites. Here, we report the use of graphene to improve the mechanical properties of nano-58S bioactive glass for bone repair and regeneration. And the composite scaffolds were fabricated by a homemade selective laser sintering system. Qualitative and quantitative analysis demonstrated the successful incorporation of graphene into the scaffold without obvious structural damage and weight loss. The optimum compressive strength and fracture toughness reached 48.65 ± 3.19?MPa and 1.94 ± 0.10?MPa·m1/2 with graphene content of 0.5?wt%, indicating significant improvements by 105% and 38% respectively. The mechanisms of pull-out, crack bridging, crack deflection and crack tip shielding were found to be responsible for the mechanical enhancement. Simulated body fluid and cell culture tests indicated favorable bioactivity and biocompatibility of the composite scaffold. The results suggest a great potential of graphene/nano-58S composite scaffold for bone tissue engineering applications. PMID:24736662

Gao, Chengde; Liu, Tingting; Shuai, Cijun; Peng, Shuping

2014-01-01

22

Bone regeneration in strong porous bioactive glass (13–93) scaffolds with an oriented microstructure implanted in rat calvarial defects  

PubMed Central

There is a need for synthetic bone graft substitutes to repair large bone defects resulting from trauma, malignancy, and congenital diseases. Bioactive glass has attractive properties as a scaffold material but factors that influence its ability to regenerate bone in vivo are not well understood. In the present work, the ability of strong porous scaffolds of 13–93 bioactive glass with an oriented microstructure to regenerate bone was evaluated in vivo using a rat calvarial defect model. Scaffolds with an oriented microstructure of columnar pores (porosity = 50%; pore diameter = 50–150 µm) showed mostly osteoconductive bone regeneration, and new bone formation, normalized to the available pore area (volume) of the scaffolds, increased from 37% at 12 weeks to 55% at 24 weeks. Scaffolds of the same glass with a trabecular microstructure (porosity = 80%; pore width = 100–500 µm), used as the positive control, showed bone regeneration in the pores of 25% and 46% at 12 and 24 weeks, respectively. The brittle mechanical response of the as-fabricated scaffolds changed markedly to an elasto-plastic response in vivo at both implantation times. These results indicate that both groups of 13–93 bioactive glass scaffolds could potentially be used to repair large bone defects, but scaffolds with the oriented microstructure could also be considered for the repair of loaded bone. PMID:22922251

Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang

2012-01-01

23

Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro.  

PubMed

Remodelling of scaffolds and new bone formation is critical for effective bone regeneration. Herein is reported the first demonstration of resorption pits due to osteoclast activity on the surface of sol-gel bioactive glass foam scaffolds. Bioactive glass foam scaffolds are known to have osteogenic potential and suitable pore networks for bone regeneration. Degradation of the scaffolds is known to be initially solution mediated, but for effective bone regeneration, remodelling of the scaffold by osteoclasts and vascularisation of the scaffold is necessary. The culture of C7 macrophages on a bioactive glass scaffold induces the cells to differentiate into (TRAP(+ve) ) osteoclasts. They then form distinctive resorption pits within 3 weeks, while MC3T3-E1 pre-osteoblasts deposit mineralized osteoid on their surfaces in co-culture. The scaffolds are of the 70S30C (70 mol% SiO2 , 30 mol% CaO) composition, with modal pore and interconnect diameters of 373 ?m and 172 ?m respectively (quantified by X-ray micro-tomography and 3D image analysis). The release of soluble silica and calcium ions from 70S30C scaffolds induces an increase in osteoblast numbers as determined via the MTT assay. Scaffolds also support growth of endothelial cells on their surface and tube formation (characteristic of functional microvasculature) following 4 days in culture. This data supports the hypothesis that 70S30C bioactive glass scaffolds promote the differentiation of the 3 main cell types involved in vascularized bone regeneration. PMID:23184651

Midha, Swati; van den Bergh, Wouter; Kim, Taek B; Lee, Peter D; Jones, Julian R; Mitchell, Christopher A

2013-03-01

24

The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds.  

PubMed

The angiogenic properties of micron-sized (m-BG) and nano-sized (n-BG) bioactive glass (BG) filled poly(D,L lactide) (PDLLA) composites were investigated. On the basis of cell culture work investigating the secretion of vascular endothelial growth factor (VEGF) by human fibroblasts in contact with composite films (0, 5, 10, 20 wt %), porous 3D composite scaffolds, optimised with respect to the BG filler content capable of inducing angiogenic response, were produced. The in vivo vascularisation of the scaffolds was studied in a rat animal model and quantified using stereological analyses. The prepared scaffolds had high porosities (81-93%), permeability (k = 5.4-8.6 x 10?? m²) and compressive strength values (0.4-1.6 MPa) all in the range of trabecular bone. On composite films containing 20 wt % m-BG or n-BG, human fibroblasts produced 5 times higher VEGF than on pure PDLLA films. After 8 weeks of implantation, m-BG and n-BG containing scaffolds were well-infiltrated with newly formed tissue and demonstrated higher vascularisation and percentage blood vessel to tissue (11.6-15.1%) than PDLLA scaffolds (8.5%). This work thus shows potential for the regeneration of hard-soft tissue defects and increased bone formation arising from enhanced vascularisation of the construct. PMID:21411138

Gerhardt, Lutz-Christian; Widdows, Kate L; Erol, Melek M; Burch, Charles W; Sanz-Herrera, José A; Ochoa, Ignacio; Stämpfli, Rolf; Roqan, Iman S; Gabe, Simon; Ansari, Tahera; Boccaccini, Aldo R

2011-06-01

25

Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.  

PubMed

Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce(+3)) and gallium (Ga(+3)) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce(+3) and Ga(+3) therapeutic ions are promising candidates for bone tissue engineering applications. PMID:25631259

Deliormanl?, Aylin M

2015-02-01

26

Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration.  

PubMed

Hemostasis in orthopedic osteotomy or bone cutting requires different methods and materials. The bleeding of bone marrow can be mostly stopped by bone wax. However, the wax cannot be absorbed, which leads to artificial prosthesis loosening, foreign matter reaction, and infection. Here, a bioactive glass/chitosan/carboxymethyl cellulose (BG/CS/CMC) composite scaffold was designed to replace traditional wax. WST-1 assay indicated the BG/CS/CMC composite resulted in excellent biocompatibility with no cytotoxicity. In vivo osteogenesis assessment revealed that the BG/CS/CMC composite played a dominant role in bone regeneration and hemostasis. The BG/CS/CMC composite had the same hemostasis effect as bone wax; in addition its biodegradation also led to the functional reconstruction of bone defects. Thus, BG/CS/CMC scaffolds can serve as a potential material for bone repair and hemostasis in critical-sized bone defects. PMID:25326173

Chen, Chen; Li, Hong; Pan, Jianfeng; Yan, Zuoqin; Yao, Zhenjun; Fan, Wenshuai; Guo, Changan

2015-02-01

27

Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.  

PubMed

The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them in alginate solution. Scanning electron microscopy investigations indicated that the alginate effectively attached on the surface of the three-dimensional scaffolds leading to a homogeneous coating. It was confirmed that the scaffold structure remained amorphous after the sintering process and that the alginate coating improved the scaffold bioactivity and mechanical properties. Copper release studies showed that the alginate-coated scaffolds allowed controlled release of copper ions. The novel copper-releasing composite scaffolds represent promising candidates for bone regeneration. PMID:22040685

Erol, M M; Mouri?o, V; Newby, P; Chatzistavrou, X; Roether, J A; Hupa, L; Boccaccini, Aldo R

2012-02-01

28

Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function.  

PubMed

PHBV microsphere/45S5 bioactive glass (BG) composite scaffolds with drug release function were developed for bone tissue engineering. BG-based glass-ceramic scaffolds with high porosity (94%) and interconnected pore structure prepared by foam replication method were coated with PHBV microspheres (nominal diameter=3.5 ?m) produced by water-in-oil-in-water double emulsion solvent evaporation method. A homogeneous microsphere coating throughout the porous structure of scaffolds was obtained by a simple dip coating method, using the slurry of PHBV microspheres in hexane. Compressive strength tests showed that the microsphere coating slightly improved the mechanical properties of the scaffolds. It was confirmed that the microsphere coating did not inhibit the bioactivity of the scaffolds in SBF. Hydroxyapatite crystals homogeneously grew not only on the struts of the scaffolds but also on the surface of microspheres within 7 days of immersion in SBF. Vancomycin was successfully encapsulated into the PHBV microspheres. The encapsulated vancomycin was released with a dual release profile involving a relatively low initial burst release (21%) and a sustained release (1 month), which is favorable compared to the high initial burst release (77%) and short release period (4 days) measured on uncoated scaffolds. The developed bioactive composite scaffold with drug delivery function has thus the potential to be used advantageously in bone tissue engineering. PMID:24907766

Li, Wei; Ding, Yaping; Rai, Ranjana; Roether, Judith A; Schubert, Dirk W; Boccaccini, Aldo R

2014-08-01

29

Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair.  

PubMed

There is a need to develop synthetic scaffolds to repair large defects in load-bearing bones. Bioactive glasses have attractive properties as a scaffold material for bone repair, but data on their mechanical properties are limited. The objective of the present study was to comprehensively evaluate the mechanical properties of strong porous scaffolds of silicate 13-93 bioactive glass fabricated by robocasting. As-fabricated scaffolds with a grid-like microstructure (porosity 47%, filament diameter 330?m, pore width 300?m) were tested in compressive and flexural loading to determine their strength, elastic modulus, Weibull modulus, fatigue resistance, and fracture toughness. Scaffolds were also tested in compression after they were immersed in simulated body fluid (SBF) in vitro or implanted in a rat subcutaneous model in vivo. As fabricated, the scaffolds had a strength of 86±9MPa, elastic modulus of 13±2GPa, and a Weibull modulus of 12 when tested in compression. In flexural loading the strength, elastic modulus, and Weibull modulus were 11±3MPa, 13±2GPa, and 6, respectively. In compression, the as-fabricated scaffolds had a mean fatigue life of ?10(6) cycles when tested in air at room temperature or in phosphate-buffered saline at 37°C under cyclic stresses of 1-10 or 2-20MPa. The compressive strength of the scaffolds decreased markedly during the first 2weeks of immersion in SBF or implantation in vivo, but more slowly thereafter. The brittle mechanical response of the scaffolds in vitro changed to an elasto-plastic response after implantation for longer than 2-4weeks in vivo. In addition to providing critically needed data for designing bioactive glass scaffolds, the results are promising for the application of these strong porous scaffolds in loaded bone repair. PMID:23438862

Liu, Xin; Rahaman, Mohamed N; Hilmas, Gregory E; Bal, B Sonny

2013-06-01

30

Micro PIXE-RBS for the study of Sr release at bioactive glass scaffolds/biological medium interface  

NASA Astrophysics Data System (ADS)

Strontium is a very interesting element in bone regeneration as it can promote bone formation and limit bone resorption. Bone tissue engineering has a very high potential as a method for bone healing and it requires a 3D macroporous scaffold to serve as a support for cell growth. In that purpose, strontium containing bioactive glass foams made with the sol-gel foaming process are very promising scaffolds as they combine the high bioactivity of bioactive glasses, the beneficial effects of strontium on bone growth and a structure that would allow cell adhesion, cell invasion and vascularization. This paper reports the synthesis of such a material and its in vitro bioactivity study. The release of strontium ions from the material to the biological medium occurs quickly, as shown by ICP-AES results, with the delivery of quantities of Sr ions that should be adequate for bone regeneration. Ion microbeam techniques evidence a very specific behavior of strontium: it is rapidly removed from the inner part of the material but remains in the calcium phosphate layer that is deposited on the surface of the foam pores. It reveals the particular behavior of glass foams compared to other materials suitable for implantation like glass powders of same composition and highlights the interest of ion microbeam techniques in the study of strontium-containing bioactive glass scaffolds.

Lacroix, Joséphine; Lao, Jonathan; Nedelec, Jean-Marie; Jallot, Edouard

2013-07-01

31

Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications.  

PubMed

The development of inorganic-organic hybrid scaffolds with controllable degradation and bioactive properties is receiving considerable interest for bone and tissue regeneration. The objective of this study was to create hybrid scaffolds of gelatin and bioactive glass (BG) with a controlled, three-dimensional (3D) architecture by a combined sol-gel and robotic deposition (robocasting) method and evaluate their mechanical response, bioactivity, and response to cells in vitro. Inks for robotic deposition of the scaffolds were prepared by dissolving gelatin in a sol-gel precursor solution of the bioactive glass (70SiO2 -25CaO-5P2 O5 ; mol%) and aging the solution to form a gel with the requisite viscosity. After drying and crosslinking, the gelatin-BG scaffolds, with a grid-like architecture (filament diameter ?350 µm; pore width ?550 µm), showed an elasto-plastic response, with a compressive strength of 5.1 ± 0.6 MPa, in the range of values for human trabecular bone (2-12 MPa). When immersed in phosphate-buffered saline, the crosslinked scaffolds rapidly absorbed water (?440% of its dry weight after 2 h) and showed an elastic response at deformations up to ?60%. Immersion of the scaffolds in a simulated body fluid resulted in the formation of a hydroxyapatite-like surface layer within 5 days, indicating their bioactivity in vitro. The scaffolds supported the proliferation, alkaline phosphatase activity, and mineralization of osteogenic MC3T3-E1 cells in vitro, showing their biocompatibility. Altogether, the results indicate that these gelatin-BG hybrid scaffolds with a controlled, 3D architecture of inter-connected pores have potential for use as implants for bone regeneration. PMID:23255226

Gao, Chunxia; Rahaman, Mohamed N; Gao, Qiang; Teramoto, Akira; Abe, Koji

2013-07-01

32

A feasible approach toward bioactive glass nanofibers with tunable protein release kinetics for bone scaffolds.  

PubMed

A range of fine bioactive glass (BG) fibers with different hydrolysis degree were synthesized via a sol-gel and electrospinning approach. Due to the increased water/TEOS ratio (X ratio) from 2 to 8, the SiOSi network integrity of BG fibers was dramatically enhanced. With a designed protein loading method using simulated body fluid (SBF)/bovine serum albumin (BSA) mixture solution, the tunable protein releasing was successfully achieved. The varied hydrolysis degree of BG fibers was found to induce distinctive releasing behavior. The protein release kinetics intends to present a more controlled and sustained manner with the decreased X ratio from 8 to 2, and such phenomenon is mainly attributed to the 'anchoring' effect of the crystalline apatite mineral layers formed at the fiber surface. This study has therefore offered another way of thinking in the investigation of feasible multifunctionalization strategies for bioactive glasses, and thus provided an impetus to the current research for future advanced BG scaffold materials. PMID:25174545

Li, Yangyang; Li, Binbin; Xu, Gang; Ahmad, Zeeshan; Ren, Zhaohui; Dong, Yan; Li, Xiang; Weng, Wenjian; Han, Gaorong

2014-10-01

33

Bioactive Copper-Doped Glass Scaffolds Can Stimulate Endothelial Cells in Co-Culture in Combination with Mesenchymal Stem Cells  

PubMed Central

Bioactive glass (BG) scaffolds are being investigated for bone tissue engineering applications because of their osteoconductive and angiogenic nature. However, to increase the in vivo performance of the scaffold, including enhancing the angiogenetic growth into the scaffolds, some researchers use different modifications of the scaffold including addition of inorganic ionic components to the basic BG composition. In this study, we investigated the in vitro biocompatibility and bioactivity of Cu2+-doped BG derived scaffolds in either BMSC (bone-marrow derived mesenchymal stem cells)-only culture or co-culture of BMSC and human dermal microvascular endothelial cells (HDMEC). In BMSC-only culture, cells were seeded either directly on the scaffolds (3D or direct culture) or were exposed to ionic dissolution products of the BG scaffolds, kept in permeable cell culture inserts (2D or indirect culture). Though we did not observe any direct osteoinduction of BMSCs by alkaline phosphatase (ALP) assay or by PCR, there was increased vascular endothelial growth factor (VEGF) expression, observed by PCR and ELISA assays. Additionally, the scaffolds showed no toxicity to BMSCs and there were healthy live cells found throughout the scaffold. To analyze further the reasons behind the increased VEGF expression and to exploit the benefits of the finding, we used the indirect method with HDMECs in culture plastic and Cu2+-doped BG scaffolds with or without BMSCs in cell culture inserts. There was clear observation of increased endothelial markers by both FACS analysis and acetylated LDL (acLDL) uptake assay. Only in presence of Cu2+-doped BG scaffolds with BMSCs, a high VEGF secretion was demonstrated by ELISA; and typical tubular structures were observed in culture plastics. We conclude that Cu2+-doped BG scaffolds release Cu2+, which in turn act on BMSCs to secrete VEGF. This result is of significance for the application of BG scaffolds in bone tissue engineering approaches. PMID:25470000

Rath, Subha N.; Brandl, Andreas; Hiller, Daniel; Hoppe, Alexander; Gbureck, Uwe; Horch, Raymund E.; Boccaccini, Aldo R.; Kneser, Ulrich

2014-01-01

34

Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds.  

PubMed

Bioactive glasses are biocompatible materials that convert to hydroxyapatite in vivo, and potentially support bone formation, but have mainly been available in particulate and not scaffold form. In this study, borosilicate and borate bioactive glass scaffolds were evaluated in critical-sized rat calvarial defects. Twelve-week-old rats were implanted with 45S5 silicate glass particles and scaffolds of 1393 silicate, 1393B1 borosilicate, and 1393B3 borate glass. After 12 weeks, the defects were harvested, stained with hematoxylin and eosin to evaluate bone regeneration, Periodic Acid Schiff to quantitate blood vessel area, and von Kossa and backscatter SEM to estimate newly mineralized bone and hydroxyapatite conversion of bioactive glasses. The amount of new bone was 12.4% for 45S5, 8.5% for 1393, 9.7% for 1393B1, and 14.9% for 1393B3 (*p = 0.04; cf. 1393 and 1393B1). Blood vessel area was significantly higher (p = 0.009) with 45S5 (3.8%), with no differences among 1393 (2.0%), 1393B1 (2.4%), or 1393B3 (2.2%). Percent von Kossa-positive area was 18.7% for 45S5, 25.4% for 1393, 29.5% for 1393B1, and 30.1% for 1393B3, significantly higher (p = 0.014) in 1393B1 and 1393B3 glasses than in 45S5. 45S5 and 1393B3 converted completely to HA in vivo. The 1393B3 glass provided greater bone formation and may be more promising for bone defect repair due to its capacity to be molded into scaffolds. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:3267-3275, 2012. PMID:22733586

Bi, Lianxiang; Jung, Steve; Day, Delbert; Neidig, Katie; Dusevich, Vladimir; Eick, David; Bonewald, Lynda

2012-12-01

35

Development and effect of different bioactive silicate glass scaffolds: in vitro evaluation for use as a bone drug delivery system.  

PubMed

Local drug delivery systems to bone have attracted appreciable attention due to their efficacy to improve drug delivery, healing and regeneration. In this paper, development and characterization of new formulations of bioactive glass into a porous scaffold has been reported for its suitability to act as a drug delivery system in the management of bone infections, in vitro. Two new glass compositions based on SiO2-Na2O-ZnO-CaO-MgO-P2O5 system (BGZ and MBG) have been developed which after thorough chemical and phase evaluation, studied for acellular static in vitro bioactivity in SBF. Porous scaffolds made of these glasses have been fabricated and characterized thoroughly for bioactivity study, SEM, XRD, in vitro cytotoxicity, MTT assay and wound healing assay using human osteocarcoma cells. Finally, gatifloxacin was loaded into the porous scaffold by vacuum infiltration method and in vitro drug release kinetics have been studied with varying parameters including dissolution medium (PBS and SBF) and with/without impregnation chitosan. Suitable model has also been proposed for the kinetics. 63-66% porous and 5-50?m almost unimodal porous MBG and BGZ bioactive glass scaffolds were capable of releasing drugs successfully for 43 days at concentrations to treat orthopedic infections. In addition, it was also observed that the release of drug followed Peppas-Korsmeyer release pattern based on Fickian diffusion, while 0.5-1% chitosan coating on the scaffolds decreased the burst release and overall release of drug. The results also indicated that MBG based scaffolds were bioactive, biocompatible, noncytotoxic and exhibited excellent wound healing potential while BGZ was mildly cytotoxic with moderate wound healing potential. These results strongly suggest that MBG scaffolds appear to be a suitable bone drug delivery system in orthopedic infections treatment and as bone void fillers, but BGZ should be handled with caution or studied elaborately in detail further to ascertain and confirm the cytotoxic nature and wound healing potential of this glass. PMID:25190432

Soundrapandian, Chidambaram; Mahato, Arnab; Kundu, Biswanath; Datta, Someswar; Sa, Biswanath; Basu, Debebrata

2014-12-01

36

A new potassium-based bioactive glass: Sintering behaviour and possible applications for bioceramic scaffolds  

Microsoft Academic Search

Providing structural support while maintaining bioactivity is one of the most important goals for bioceramic scaffolds, i.e. artificial templates which guide cells to grow in a 3D pattern, facilitating the formation of functional tissues. In the last few years, 45S5 Bioglass® has been widely investigated as scaffolding material, mainly for its ability to bond to both hard and soft tissues.

Devis Bellucci; Valeria Cannillo; Antonella Sola

2011-01-01

37

Porous and strong bioactive glass (13–93) scaffolds prepared by unidirectional freezing of camphene-based suspensions  

PubMed Central

Scaffolds of 13–93 bioactive glass (6Na2O, 12K2O, 5MgO, 20CaO, 4P2O5, 53SiO2; wt %) with an oriented pore architecture were formed by unidirectional freezing of camphene-based suspensions, followed by thermal annealing of the frozen constructs to grow the camphene crystals. After sublimation of the camphene, the constructs were sintered (1 h at 700 °C) to produce a dense glass phase with oriented macropores. The objective of this work was to study how constant freezing rates (1–7 °C/min) during the freezing step influenced the pore orientation and mechanical response of the scaffolds. When compared to scaffolds prepared by freezing the suspensions on a substrate kept at a constant temperature of 3 °C (time-dependent freezing rate), higher freezing rates resulted in better pore orientation, a more homogeneous microstructure, and a marked improvement in the mechanical response of the scaffolds in compression. Scaffolds fabricated using a constant freezing rate of 7 °C/min (porosity = 50 ± 4%; average pore diameter = 100 ?m), had a compressive strength of 47 ± 5 MPa and an elastic modulus of 11 ± 3 GPa (in the orientation direction). In comparison, scaffolds prepared by freezing on the constant-temperature substrate had strength and modulus values of 35 ± 11 MPa and 8 ± 3 GPa, respectively. These oriented bioactive glass scaffolds prepared by the constant freezing rate route could potentially be used for the repair of defects in load-bearing bones, such as segmental defects in the long bones. PMID:21855661

Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang; Tomsia, Antoni P.

2011-01-01

38

Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.  

PubMed

There is growing interest in the use of synthetic biomaterials to deliver inorganic ions that are known to stimulate angiogenesis and osteogenesis in vivo. In the present study, we investigated the effects of varying amounts of copper in a bioactive glass on the response of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and on blood vessel formation and bone regeneration in rat calvarial defects in vivo. Porous scaffolds of a borosilicate bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5, mol.%) doped with 0.5, 1.0 and 3.0wt.% CuO were created using a foam replication method. When immersed in simulated body fluid, the scaffolds released Cu ions into the medium and converted to hydroxyapatite. At the concentrations used, the Cu in the glass was not toxic to the hBMSCs cultured on the scaffolds in vitro. The alkaline phosphatase activity of the hBMSCs and the expression levels of angiogenic-related genes (vascular endothelial growth factor and basic fibroblast growth factor) and osteogenic-related genes (runt-related transcription factor 2, bone morphogenetic protein-2 and osteopontin) increased significantly with increasing amount of Cu in the glass. When implanted in rat calvarial defects in vivo, the scaffolds (3wt.% CuO) significantly enhanced both blood vessel formation and bone regeneration in the defects at 8weeks post-implantation. These results show that doping bioactive glass implants with Cu is a promising approach for enhancing angiogenesis and osteogenesis in the healing of osseous defects. PMID:25534470

Zhao, Shichang; Wang, Hui; Zhang, Yadong; Huang, Wenhai; Rahaman, Mohamed N; Liu, Zhongtang; Wang, Deping; Zhang, Changqing

2015-03-01

39

Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects.  

PubMed

The development of a new generation of biomaterials with high osteogenic ability for fast osseointegration with host bone is being intensively investigated. In this study, we have fabricated three-dimensional (3-D) strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds by a 3-D printing technique. Sr-MBG scaffolds showed uniform interconnected macropores (?400?m), high porosity (?70%) and enhanced compressive strength (8.67±1.74MPa). Using MBG scaffolds as a control, the biological properties of Sr-MBG scaffolds were evaluated by apatite-forming ability, adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteoblast-like cells MC3T3-E1. Furthermore, Sr-MBG scaffolds were used to repair critical-sized rat calvarial defects. The results showed that Sr-MBG scaffolds possessed good apatite-forming ability and stimulated MC3T3-E1 cell proliferation and differentiation. Importantly, the in vivo results revealed that Sr-MBG scaffolds had good osteogenic capability and stimulated new blood vessel formation in critical-sized rat calvarial defects within 8weeks. Therefore, 3-D printed Sr-MBG scaffolds with favorable pore structure and high osteogenic ability have more potential applications in bone regeneration. PMID:25449915

Zhao, Shichang; Zhang, Jianhua; Zhu, Min; Zhang, Yadong; Liu, Zhongtang; Tao, Cuilian; Zhu, Yufang; Zhang, Changqing

2015-01-15

40

Bioactive glass in tissue engineering  

PubMed Central

This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

2011-01-01

41

Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug.  

PubMed

Designing scaffolds with bioactive composition and long-term drug delivery capacity is a promising method to improve the therapeutic efficacy in bone regeneration. Herein, electrospun fibrous scaffolds of polycaprolactone-gelatin incorporating mesoporous bioactive glass nanoparticles (mBGn) were proposed to be excellent matrix platforms for bone tissue engineering. In particular, the mBGn were loaded with osteogenic drug Dexamethasone (DEX) to elicit additional therapeutic potential. The mBGn-added fiber scaffolds demonstrated excellent properties, including improved mechanical tensile strength, elasticity, and hydrophilicity compared to pure biopolymer matrix. The scaffolds could release substantial amounts of calcium and silicate ions. The loading of DEX onto mBGn was as high as 63%, that is, 0.63 mg DEX loaded per 1 mg of mBGn, demonstrating an effective nanodepot role of the mBGn. The release of DEX from the mBGn-added fiber scaffolds was highly sustainable, profiling an almost linear release kinetics up to the test period of 28 days, after a rapid initial release of ?30% within 24 h. The proliferation and osteogenic differentiation of stem cells derived from periodontal ligament were significantly improved by the mBGn incorporation and synergistically stimulated with DEX loading, as confirmed by both direct and indirect cultures. The effects on bone regeneration in vivo, as analyzed by microcomputed tomography and histological stains in a rat calvarium model over 6 weeks, were substantial with the mBGn incorporation and even better with DEX loading, evidencing the osteogenic effects of the drug-eluting nanocomposite fiber scaffolds in bone formation. The current scaffolds with bone-bioactive composition and drug delivery capacity may be potentially useful for bone regeneration as novel osteogenic matrices. PMID:25531645

El-Fiqi, Ahmed; Kim, Joong-Hyun; Kim, Hae-Won

2015-01-21

42

Effects of chitosan and bioactive glass modifications of knitted and rolled polylactide-based 96/4?L/D scaffolds on chondrogenic differentiation of adipose stem cells.  

PubMed

The performance of biodegradable knitted and rolled 3-dimensional (3D) polylactide-based 96/4 scaffolds modified with bioactive glass (BaG) 13-93, chitosan and both was compared with regard to the viability, proliferation and chondrogenic differentiation of rabbit adipose stem cells (ASCs). Scaffold porosities were determined by micro-computed tomography (?CT). Water absorption and degradation of scaffolds were studied during 28-day hydrolysis in Tris-buffer. Viability, number and differentiation of ASCs in PLA96/4 scaffolds were examined in vitro. The dimensions of the scaffolds were maintained during hydrolysis and mass loss was detected only in the BaG13-93 containing scaffolds. ASCs adhered and proliferated on each scaffold type. Cell aggregation and expression of chondral matrix components improved in all scaffold types in chondrogenic medium. Signs of hypertrophy were detected in the modified scaffolds but not in the plain PLA96/4 scaffold. Chondrogenic differentiation was most enhanced in the presence of chitosan. These findings indicate that the plain P scaffold provided a good 3D-matrix for ASC proliferation whereas the addition of chitosan to the PLA96/4 scaffold induced chondrogenic differentiation independent of the medium. Accordingly, a PLA96/4 scaffold modified by chitosan could provide a functional and bioactive basis for tissue-engineered chondral implants. Copyright © 2012 John Wiley & Sons, Ltd. PMID:23086809

Ahtiainen, Katja; Sippola, Laura; Nurminen, Manu; Mannerström, Bettina; Haimi, Suvi; Suuronen, Riitta; Hyttinen, Jari; Ylikomi, Timo; Kellomäki, Minna; Miettinen, Susanna

2015-01-01

43

Gene activation by bioactive glasses  

Microsoft Academic Search

Bioactive glasses have been shown to regulate gene expression in both hard and soft tissue repair. New resorbable bioactive\\u000a glass constructs are now being developed that can influence gene expression in the local environment by manipulating material\\u000a properties such as the surface chemistry, topography and the release of dissolution ions. The success of these scaffolds,\\u000a however, may depend upon a

G. Jell; M. M. Stevens

2006-01-01

44

Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.  

PubMed

Bioactive glass scaffolds with a microstructure similar to that of dry human trabecular bone but with three different compositions were evaluated for potential applications in bone repair. The preparation of the scaffolds and the effect of the glass composition on the degradation and conversion of the scaffolds to a hydroxyapatite (HA)-type material in a simulated body fluid (SBF) are reported here (Part I). The in vitro response of osteogenic cells to the scaffolds and the in vivo evaluation of the scaffolds in a rat subcutaneous implantation model are described in Part II. Scaffolds (porosity = 78-82%; pore size = 100-500 microm) were prepared using a polymer foam replication technique. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. The conversion rate of the scaffolds to HA in the SBF increased markedly with the B2O3 content of the glass. Concurrently, the pH of the SBF also increased with the B2O3 content of the scaffolds. The compressive strengths of the as-prepared scaffolds (5-11 MPa) were in the upper range of values reported for trabecular bone, but they decreased markedly with immersion time in the SBF and with increasing B2O3 content of the glass. The results show that scaffolds with a wide range of bioactivity and degradation rate can be achieved by replacing varying amounts of SiO(2) in silicate bioactive glass with B2O3. PMID:20544804

Fu, Qiang; Rahaman, Mohamed N; Fu, Hailuo; Liu, Xin

2010-10-01

45

Synthesis and Characterization of Poly(lactic-co-glycolic) Acid Nanoparticles-Loaded Chitosan/Bioactive Glass Scaffolds as a Localized Delivery System in the Bone Defects  

PubMed Central

The functionality of tissue engineering scaffolds can be enhanced by localized delivery of appropriate biological macromolecules incorporated within biodegradable nanoparticles. In this research, chitosan/58S-bioactive glass (58S-BG) containing poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been prepared and then characterized. The effects of further addition of 58S-BG on the structure of scaffolds have been investigated to optimize the characteristics of the scaffolds for bone tissue engineering applications. The results showed that the scaffolds had high porosity with open pores. It was also shown that the porosity decreased with increasing 58S-BG content. Furthermore, the PLGA nanoparticles were homogenously distributed within the scaffolds. According to the obtained results, the nanocomposites could be considered as highly bioactive bone tissue engineering scaffolds with the potential of localized delivery of biological macromolecules. PMID:24949477

Nazemi, K.; Moztarzadeh, F.; Jalali, N.; Asgari, S.; Mozafari, M.

2014-01-01

46

Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability.  

PubMed

New generation biomaterials for bone regeneration should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), a novel bioactive material, has been used to study bone regeneration due to its excellent bioactivity, degradation and drug delivery ability, however, the construction of three-dimensional (3-D) MBG scaffolds (as for other bioactive inorganic scaffolds) for bone regeneration remains a significant challenge due to their inherent brittleness and low strength. In this brief communication we report a new facile method to prepare hierarchical and multifunctional MBG scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability for application in bone regeneration by a modified 3-D printing technique using polyvinylalcohol (PVA) as a binder. The method provides a new way to solve commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architectures, low strength, high brittleness and the requirement for a second sintering at high temperature. The 3-D printed MBG scaffolds obtained possess a high mechanical strength about 200 times that of traditional polyurethane foam templated MBG scaffolds. They have a highly controllable pore architecture, excellent apatite mineralization ability and sustained drug delivery properties. Our study indicates that 3-D printed MBG scaffolds may be an excellent candidate for bone regeneration. PMID:21402182

Wu, Chengtie; Luo, Yongxiang; Cuniberti, Gianaurelio; Xiao, Yin; Gelinsky, Michael

2011-06-01

47

Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings.  

PubMed

The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO(2), 22.6 CaO, 5.9 Na(2)O, 4 P(2)O(5), 12 K(2)O, 5.3 MgO and 0.2 B(2)O(3). The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 degrees C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly((D,L)-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications. PMID:19776493

Mantsos, T; Chatzistavrou, X; Roether, J A; Hupa, L; Arstila, H; Boccaccini, A R

2009-10-01

48

Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds.  

PubMed

The repair of large bone defects, such as segmental defects in the long bones of the limbs, is a challenging clinical problem. Our recent work has shown the ability to create porous scaffolds of silicate 13-93 bioactive glass by robocasting which have compressive strengths comparable to human cortical bone. The objective of this study was to evaluate the capacity of those strong porous scaffolds with a grid-like microstructure (porosity=50%; filament width=330?m; pore width=300?m) to regenerate bone in a rat calvarial defect model. Six weeks post-implantation, the amount of new bone formed within the implants was evaluated using histomorphometric analysis. The amount of new bone formed in implants composed of the as-fabricated scaffolds was 32% of the available pore space (area). Pretreating the as-fabricated scaffolds in an aqueous phosphate solution for 1, 3 and 6days to convert a surface layer to hydroxyapatite prior to implantation enhanced new bone formation to 46%, 57% and 45%, respectively. New bone formation in scaffolds pretreated for 1, 3 and 6days and loaded with bone morphogenetic protein-2 (BMP-2) (1?g per defect) was 65%, 61% and 64%, respectively. The results show that converting a surface layer of the glass to hydroxyapatite or loading the surface-treated scaffolds with BMP-2 can significantly improve the capacity of 13-93 bioactive glass scaffolds to regenerate bone in an osseous defect. Based on their mechanical properties evaluated previously and their capacity to regenerate bone found in this study, these 13-93 bioactive glass scaffolds, pretreated or loaded with BMP-2, are promising in structural bone repair. PMID:23567939

Liu, Xin; Rahaman, Mohamed N; Liu, Yongxing; Bal, B Sonny; Bonewald, Lynda F

2013-07-01

49

Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds  

PubMed Central

The repair of large bone defects, such as segmental defects in the long bones of the limbs, is a challenging clinical problem. Our recent work has shown the ability to create porous scaffolds of silicate 13-93 bioactive glass by robocasting which have compressive strengths comparable to human cortical bone. The objective of this study was to evaluate the capacity of those strong porous scaffolds with a grid-like microstructure (porosity = 50%; filament width = 330 ?m; pore width = 300 ?m) to regenerate bone in a rat calvarial defect model. Six weeks postimplantation, the amount of new bone formed within the implants was evaluated using histomorphometric analysis. The amount of new bone formed in implants composed of the as-fabricated scaffolds was 32% of the available pore space (area). Pretreating the as-fabricated scaffolds in an aqueous phosphate solution for 1, 3, and 6 days, to convert a surface layer to hydroxyapatite prior to implantation, enhanced new bone formation to 46%, 57%, and 45%, respectively. New bone formation in scaffolds pretreated for 1, 3, and 6 days and loaded with bone morphogenetic protein-2 (BMP-2) (1 ?g/defect) was 65%, 61%, and 64%, respectively. The results show that converting a surface layer of the glass to hydroxyapatite or loading the surface-treated scaffolds with BMP-2 can significantly improve the capacity of 13-93 bioactive glass scaffolds to regenerate bone in an osseous defect. Based on their mechanical properties evaluated previously and their capacity to regenerate bone found in this study, these 13-93 bioactive glass scaffolds, pretreated or loaded with BMP-2, are promising in structural bone repair. PMID:23567939

Liu, Xin; Rahaman, Mohamed N.; Liu, Yongxing; Bal, B. Sonny; Bonewald, Lynda F.

2013-01-01

50

Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection  

Microsoft Academic Search

The objective of this work was to evaluate borate bioactive glass scaffolds (with a composition in the system Na2O–K2O–MgO–CaO–B2O3–P2O5) as devices for the release of the drug Vancomycin in the treatment of bone infection. A solution of ammonium phosphate,\\u000a with or without dissolved Vancomycin, was used to bond borate glass particles into the shape of pellets. The in vitro degradation

Xin Liu; Zongping Xie; Changqing Zhang; Haobo Pan; Mohamed N. Rahaman; Xin Zhang; Qiang Fu; Wenhai Huang

2010-01-01

51

Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering.  

PubMed

To achieve the ultimate goal of periodontal tissue engineering, it is of great importance to develop bioactive scaffolds which can stimulate the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) for the favorable regeneration of alveolar bone, root cementum and periodontal ligament. Strontium (Sr) and Sr-containing biomaterials have been found to induce osteoblast activity. However, there has been no systematic report about the interaction between Sr or Sr-containing biomaterials and PDLCs for periodontal tissue engineering. The aims of this study were to prepare Sr-containing mesoporous bioactive glass (Sr-MBG) scaffolds and investigate whether the addition of Sr could stimulate osteogenic/cementogenic differentiation of PDLCs in a tissue-engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nanopore volume and nanopore distribution) of Sr-MBG scaffolds were characterized. The proliferation, alkaline phosphatase (ALP) activity and osteogenesis/cementogenesis-related gene expression (ALP, Runx2, Col I, OPN and CEMP1) of PDLCs on different kinds of Sr-MBG scaffolds were systematically investigated. The results show that Sr plays an important role in influencing the mesoporous structure of MBG scaffolds in which high contents of Sr decreased the well-ordered mesopores as well as their surface area/pore volume. Sr(2+) ions could be released from Sr-MBG scaffolds in a controlled way. The incorporation of Sr into MBG scaffolds has significantly stimulated ALP activity and osteogenesis/cementogenesis-related gene expression of PDLCs. Furthermore, Sr-MBG scaffolds in a simulated body fluid environment still maintained excellent apatite-mineralization ability. The study suggests that the incorporation of Sr into MBG scaffolds is a viable way to stimulate the biological response of PDLCs. Sr-MBG scaffolds are a promising bioactive material for periodontal tissue-engineering applications. PMID:22750735

Wu, Chengtie; Zhou, Yinghong; Lin, Chucheng; Chang, Jiang; Xiao, Yin

2012-10-01

52

Composite scaffolds of mesoporous bioactive glass and polyamide for bone repair  

PubMed Central

A bone-implanted porous scaffold of mesoporous bioglass/polyamide composite (m-BPC) was fabricated, and its biological properties were investigated. The results indicate that the m-BPC scaffold contained open and interconnected macropores ranging 400–500 ?m, and exhibited a porosity of 76%. The attachment ratio of MG-63 cells on m-BPC was higher than polyamide scaffolds at 4 hours, and the cells with normal phenotype extended well when cultured with m-BPC and polyamide scaffolds. When the m-BPC scaffolds were implanted into bone defects of rabbit thighbone, histological evaluation confirmed that the m-BPC scaffolds exhibited excellent biocompatibility and osteoconductivity, and more effective osteogenesis than the polyamide scaffolds in vivo. The results indicate that the m-BPC scaffolds improved the efficiency of new bone regeneration and, thus, have clinical potential for bone repair. PMID:22679367

Su, Jiacan; Cao, Liehu; Yu, Baoqing; Song, Shaojun; Liu, Xinwei; Wang, Zhiwei; Li, Ming

2012-01-01

53

Sol-gel derived bioactive glasses with low tendency to crystallize: synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds.  

PubMed

A new sol-gel (SG) method is proposed to produce special bioactive glasses (BG_Ca family) characterized by a low tendency to devitrify. These formulations, derived from 45S5 Bioglass®, are characterized by a high content of CaO (45.6 mol%) and by a partial or complete substitution of sodium oxide with potassium oxide (total amount of alkaline oxides: 4.6 mol%), which increases the crystallization temperature up to 900°C. In this way, it is possible to produce them by SG preserving their amorphous nature, in spite of the calcination at 850°C. The sintering behavior of the obtained SG powders is thoroughly investigated and the properties of the sintered bodies are compared to those of the melt-derived (M) counterparts. Furthermore, the SG glass powders are successfully used to produce scaffolds by means of a modified replication technique based on the combined use of polyurethane sponges and polyethylene particles. Finally, in the view of a potential application for bone tissue engineering, the cytotoxicity of the produced materials is evaluated in vitro. PMID:25175252

Bellucci, Devis; Sola, Antonella; Salvatori, Roberta; Anesi, Alexandre; Chiarini, Luigi; Cannillo, Valeria

2014-10-01

54

Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications.  

PubMed

Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds. PMID:24772196

Coletta, D J; Lozano, D; Rocha-Oliveira, A A; Mortarino, P; Bumaguin, G E; Vitelli, E; Vena, R; Missana, L; Jammal, M V; Portal-Núñez, S; Pereira, M; Esbrit, P; Feldman, S

2014-01-01

55

Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds  

Microsoft Academic Search

Sufficient neovascularization of neotissue is currently a limiting factor for the engineering of large tissue constructs. 45S5 Bioglass® has been investigated extensively in bone tissue engineering but there has been relatively little previous research on its application to soft-tissue engineering. The objectives of this study were to investigate the use of 45S5 Bioglass® in soft-tissue engineering scaffolds using in vitro

Richard M. Day; Aldo R. Boccaccini; Sandra Shurey; Judith A. Roether; Alastair Forbes; Larry L. Hench; Simon M. Gabe

2004-01-01

56

Adipose- and bone marrow-derived mesenchymal stem cells display different osteogenic differentiation patterns in 3D bioactive glass-based scaffolds.  

PubMed

Mesenchymal stem cells can be isolated from a variety of different sources, each having their own peculiar merits and drawbacks. Although a number of studies have been conducted comparing these stem cells for their osteo-differentiation ability, these are mostly done in culture plastics. We have selected stem cells from either adipose tissue (ADSCs) or bone marrow (BMSCs) and studied their differentiation ability in highly porous three-dimensional (3D) 45S5 Bioglass®-based scaffolds. Equal numbers of cells were seeded onto 5?×?5?×?4?mm(3) scaffolds and cultured in vitro, with or without osteo-induction medium. After 2 and 4?weeks, the cell-scaffold constructs were analysed for cell number, cell spreading, viability, alkaline phosphatase activity and osteogenic gene expression. The scaffolds with ADSCs displayed osteo-differentiation even without osteo-induction medium; however, with osteo-induction medium osteogenic differentiation was further increased. In contrast, the scaffolds with BMSCs showed no osteo-differentiation without osteo-induction medium; after application of osteo-induction medium, osteo-differentiation was confirmed, although lower than in scaffolds with ADSCs. In general, stem cells in 3D bioactive glass scaffolds differentiated better than cells in culture plastics with respect to their ALP content and osteogenic gene expression. In summary, 45S5 Bioglass-based scaffolds seeded with ADSCs are well-suited for possible bone tissue-engineering applications. Induction of osteogenic differentiation appears unnecessary prior to implantation in this specific setting. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24357645

Rath, Subha N; Nooeaid, Patcharakamon; Arkudas, Andreas; Beier, Justus P; Strobel, Leonie A; Brandl, Andreas; Roether, Judith A; Horch, Raymund E; Boccaccini, Aldo R; Kneser, Ulrich

2013-12-01

57

Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response  

PubMed Central

Scaffolds of 13-93 bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 2P2O5, 54SiO2; mol %), containing oriented pores with controllable diameter, were prepared by unidirectional freezing of camphene-based suspensions (10 vol% particles) on a cold substrate (?196°C or 3°C). By varying the annealing time (0–72 h) to coarsen the camphene phase, constructs with the same porosity (86 ± 1%) but with controllable pore diameters (15–160 ?m) were obtained after sublimation of the camphene. The pore diameters had a self-similar distribution that could be fitted by a diffusion-controlled coalescence model. Sintering (1 h at 690°C) was accompanied by a decrease in the porosity and pore diameter, the magnitude of which depended on the pore size of the green constructs, giving scaffolds with a porosity of 20–60% and average pore diameter of 6–120 ?m. The compressive stress vs. deformation response of the sintered scaffolds in the orientation direction was linear, followed by failure. The compressive strength and elastic modulus in the orientation direction varied from 180 MPa and 25 GPa, respectively, (porosity = 20%) to 16 MPa and 4 GPa, respectively, (porosity = 60%), which were 2–3 times larger than the values in the direction perpendicular to the orientation. The potential use of these 13-93 bioactive glass scaffolds for the repair of large defects in load-bearing bones, such as segmental defects in long bones, is discussed. PMID:20807594

Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang

2010-01-01

58

Bioactive Stratified Polymer Ceramic-Hydrogel Scaffold for Integrative Osteochondral Repair  

E-print Network

of polylactide- co-glycolide (PLGA) and 45S5 bioactive glass (BG) was fabricated and optimized for chondrocyte. Keywords--Osteochondral, Tissue engineering, Bioactive glass, Interface, Hydrogel, MicrosphereBioactive Stratified Polymer Ceramic-Hydrogel Scaffold for Integrative Osteochondral Repair JIE

Lu, Helen H.

59

In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold  

PubMed Central

Purpose In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG) scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo. Patients and methods To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation. Results Results from the present study demonstrate that PIB nanogels/B-MBG composites showed greater improvement in mechanical strength when compared to PIB nanogels alone. In vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects containing PIB nanogels/B-MBG composite scaffolds when compared to PIB nanogels alone. Tartrate-resistant acid phosphatase-positive staining demonstrated that both scaffolds were degraded over time and bone remodeling occurred in the surrounding bone defect as early as 4 weeks post-implantation. Conclusion The results from the present study indicate that PIB nanogels are a potential bone tissue engineering biomaterial able to treat defects of irregular shapes and deformities as an injectable, thermoresponsive, biocompatible hydrogel which undergoes rapid thermal gelation once body temperature is reached. Furthermore, its combination with B-MBG scaffolds improves the mechanical properties and ability to promote new bone formation when compared to PIB nanogels alone. PMID:25653525

Chen, Xiaohui; Zhao, Yanbing; Geng, Shinan; Miron, Richard J; Zhang, Qiao; Wu, Chengtie; Zhang, Yufeng

2015-01-01

60

Bioactive evaluation of 45S5 bioactive glass fibres and preliminary study of human osteoblast attachment  

Microsoft Academic Search

Bioactive glass fibres can be used as tissue engineering scaffolds. In this investigation, the bioactive response of 45S5 glass fibres was assessed in simulated body fluid (SBF). Preliminary attachment of osteoblasts to the fibre surface was assessed, as were the fibre tensile strength and fracture toughness. Fourier transform infrared spectroscopy (FTIR) analysis revealed that hydroxyapatite (HA) was formed on the

Daniel C. Clupper; Julie E. Gough; Papy M. Embanga; Ioan Notingher; Larry L. Hench; Matthew M. Hall

2004-01-01

61

Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering  

Microsoft Academic Search

Bioresorbable and bioactive tissue engineering scaffolds based on bioactive glass (45S5 Bioglass®) particles and macroporous poly(DL-lactide) (PDLLA) foams were fabricated. A slurry dipping technique in conjunction with pretreatment in ethanol was used to achieve reproducible and well adhering bioactive glass coatings of uniform thickness on the internal and external surfaces of the foams. In vitro studies in simulated body fluid

J. A. Roether; J. E. Gough; A. R. Boccaccini; L. L. Hench; V. Maquet; R. Jérôme

2002-01-01

62

Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering.  

PubMed

In this work, the role of shock wave-induced increase of bone morphogenetic proteins in modulating the osteogenic properties of osteoblast-like cells seeded on a bioactive scaffold was investigated using gremlin as a bone morphogenetic protein antagonist. Bone-like glass-ceramic scaffolds, based on a silicate experimental bioactive glass developed at the Politecnico di Torino, were produced by the sponge replication method and used as porous substrates for cell culture. Human MG-63 cells, exposed to shock waves and seeded on the scaffolds, were treated with gremlin every two days and analysed after 20 days for the expression of osteoblast differentiation markers. Shock waves have been shown to induce osteogenic activity mediated by increased expression of alkaline phosphatase, osteocalcin, type I collagen, BMP-4 and BMP-7. Cells exposed to shock waves plus gremlin showed increased growth in comparison with cells treated with shock waves alone and, conversely, mRNA contents of alkaline phosphatase and osteocalcin were significantly lower. Therefore, the shock wave-mediated increased expression of bone morphogenetic protein in MG-63 cells seeded on the scaffolds is essential in improving osteogenic activity; blocking bone morphogenetic protein via gremlin completely prevents the increase of alkaline phosphatase and osteocalcin. The results confirmed that the combination of glass-ceramic scaffolds and shock waves exposure could be used to significantly improve osteogenesis opening new perspectives for bone regenerative medicine. PMID:24994880

Muzio, Giuliana; Martinasso, Germana; Baino, Francesco; Frairia, Roberto; Vitale-Brovarone, Chiara; Canuto, Rosa A

2014-11-01

63

Broad-Spectrum Bactericidal Activity of Ag2O-Doped Bioactive Glass  

Microsoft Academic Search

Bioactive glass has found extensive application as an orthopedic and dental graft material and most recently also as a tissue engineering scaffold. Here we report an initial investigation of the in vitro antibacterial properties of AgBG, a novel bioactive glass composition doped with Ag2O. The bacteriostatic and bactericidal properties of this new material and of two other bioactive glass compositions,

Maria Bellantone; Huw D. Williams; Larry L. Hench

2002-01-01

64

Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid) Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering  

PubMed Central

It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid) composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering. PMID:24724080

Zhai, Dong; Zhao, Lang

2014-01-01

65

Development of bioactive glass based scaffolds for controlled antibiotic release in bone tissue engineering via biodegradable polymer layered coating.  

PubMed

Highly porous 45S5 Bioglass(®)-based scaffolds coated with two polymer layers were fabricated to serve as a multifunctional device with controlled drug release capability for bone regeneration applications. An interior poly(d,l-lactide)/poly(ethylene glycol)-(polypropylene glycol)-poly(ethylene glycol) triblock copolymer (Pluronic P123) coating improved the mechanical stability of Bioglass-based scaffolds, while an exterior natural polymer (alginate or gelatin) coating served as an antibiotic drug carrier. The results showed improved mechanical properties of Bioglass-based scaffolds by the bilayer polymer coating. In addition, hydrochloride tetracycline loaded in either alginate or gelatin coatings was released rapidly at the initial stage (?1 h), while the released rate subsequently decreased and was sustained for 14 days in phosphate buffered saline. Therefore, these layered polymer coated scaffolds exhibit attractive characteristics in terms of improved mechanical properties and controlled drug release, simultaneously with the added advantage that the drug release rate is decoupled from the intrinsic scaffold Bioglass degradation mechanism. The layered polymer coated scaffolds are of interest for drug-delivery enhanced bone regeneration applications. PMID:25553876

Nooeaid, Patcharakamon; Li, Wei; Roether, Judith A; Mouriño, Viviana; Goudouri, Ourania-Menti; Schubert, Dirk W; Boccaccini, Aldo R

2014-12-01

66

Review of bioactive glass: from Hench to hybrids.  

PubMed

Bioactive glasses are reported to be able to stimulate more bone regeneration than other bioactive ceramics but they lag behind other bioactive ceramics in terms of commercial success. Bioactive glass has not yet reached its potential but research activity is growing. This paper reviews the current state of the art, starting with current products and moving onto recent developments. Larry Hench's 45S5 Bioglass® was the first artificial material that was found to form a chemical bond with bone, launching the field of bioactive ceramics. In vivo studies have shown that bioactive glasses bond with bone more rapidly than other bioceramics, and in vitro studies indicate that their osteogenic properties are due to their dissolution products stimulating osteoprogenitor cells at the genetic level. However, calcium phosphates such as tricalcium phosphate and synthetic hydroxyapatite are more widely used in the clinic. Some of the reasons are commercial, but others are due to the scientific limitations of the original Bioglass 45S5. An example is that it is difficult to produce porous bioactive glass templates (scaffolds) for bone regeneration from Bioglass 45S5 because it crystallizes during sintering. Recently, this has been overcome by understanding how the glass composition can be tailored to prevent crystallization. The sintering problems can also be avoided by synthesizing sol-gel glass, where the silica network is assembled at room temperature. Process developments in foaming, solid freeform fabrication and nanofibre spinning have now allowed the production of porous bioactive glass scaffolds from both melt- and sol-gel-derived glasses. An ideal scaffold for bone regeneration would share load with bone. Bioceramics cannot do this when the bone defect is subjected to cyclic loads, as they are brittle. To overcome this, bioactive glass polymer hybrids are being synthesized that have the potential to be tough, with congruent degradation of the bioactive inorganic and the polymer components. Key to this is creating nanoscale interpenetrating networks, the organic and inorganic components of which have covalent coupling between them, which involves careful control of the chemistry of the sol-gel process. Bioactive nanoparticles can also now be synthesized and their fate tracked as they are internalized in cells. This paper reviews the main developments in the field of bioactive glass and its variants, covering the importance of control of hierarchical structure, synthesis, processing and cellular response in the quest for new regenerative synthetic bone grafts. The paper takes the reader from Hench's Bioglass 45S5 to new hybrid materials that have tailorable mechanical properties and degradation rates. PMID:22922331

Jones, Julian R

2013-01-01

67

Bare Bones of Bioactive Glass  

NASA Technical Reports Server (NTRS)

Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

2000-01-01

68

Bare Bones of Bioactive Glass  

NASA Technical Reports Server (NTRS)

Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.

2000-01-01

69

Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration  

Microsoft Academic Search

Electrospun scaffolds are widely used for various biomedical applications. In this study, we prepared electrospun bioactive composite scaffolds combining hydroxyapatite, collagen (Col) and a synthetic polymer—PolyActive™—to mimic naturally occurring extracellular matrix for in situ bone regeneration. Human mesenchymal stem cells (hMSCs) adhered and proliferated on these scaffolds. Cells on all scaffold types showed an increased metabolic activity with time. On

Anandkumar Nandakumar; Hugo Fernandes; Boer de Jan; Lorenzo Moroni; Pamela Habibovic; Blitterswijk van Clemens A

2010-01-01

70

Laser cladding of bioactive glass coatings  

Microsoft Academic Search

Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass® were demonstrated to exhibit a gradual wetting angle–temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting

R. Comesaña; F. Quintero; F. Lusquiños; M. J. Pascual; M. Boutinguiza; A. Durán; J. Pou

2010-01-01

71

Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering.  

PubMed

Resorbable 3D macroporous bioactive scaffolds have been produced for tissue-engineering applications by foaming sol-gel-derived bioactive glasses of the 58S (60 mol% SiO2, 36 mol% CaO, 4 mol% P2O5) composition with the aid of a surfactant. Bioactive glasses are known to have the ability to regenerate bone, and to release ionic biological stimuli that promote bone-cell proliferation by gene activation. The foams exhibit a hierarchical structure, with interconnected macropores (10-500 microm), which provide the potential for tissue ingrowth and mesopores (2-50 nm), which enhance bioactivity and release of ionic products. Many factors in the sol-gel and foaming processes can be used to control these pore sizes and distributions. This work concentrates on the effect of the processing temperature, gelling agent concentration, and the amount of water used for the foam generation on the structure, pore morphology, and the properties of the foam scaffold. The simplest and most reproducible method for controlling the modal pore diameter was by the amount of water added during the foaming process. The in vitro dissolution and bioactivity of the bioactive foams were compared to that of unfoamed monoliths and powders (< 20 microm in diameter) of the same composition. PMID:14689494

Jones, Julian R; Hench, Larry L

2004-01-15

72

Optimization and characterization of bioactive glass nanofibers and nanocomposites  

NASA Astrophysics Data System (ADS)

Disease affects different areas of the bone and can impact individuals of all pathologies and ethnicities. These bone diseases can result in weakening which leads to trauma during ordinary function, the need for reconstructive surgery, and eventual bone replacement. Tissue engineering can provide a less traumatic and more fundamental solution to the current therapies. Bioactive glasses are promising materials in tissue engineering applications because of their ability to form hydroxycarbonate apatite in the presence of simulated body fluid, support cell adhesion, growth, and differentiation, induce bone formation, and concentrate bone morphogenic proteins in vivo. The research in this dissertation will attempt to improve the quality, yield, and toughness of bioactive glass nanofibrous scaffolds. The three specific aims of this research include, (1) Optimization and Characterization of Surfactant Modified Bioactive Glass (2) Optimization of Direct Synthesis Bioactive glass Nanofibers from Sols (3) Mechanical Properties and In-vitro Biomineralization of Bioglass-loaded Polyglyconate Nanocomposites Created Using the Particulate Leaching Method. The purpose of the first specific aim was to optimize the processing of bioactive glass nanofibers, resulting in greater fiber uniformity with a reduction in beading. The increase in viscosity coupled with the ability of the surfactant to limit polymeric secondary bonding led to improved fiber quality. The focal point of the second specific aim is the production of sol-gel derived glass fibers with high bioactivity prepared by electrospinning without the use of any polymer carrier system. Advantages of this method include decreased processing time, increased production of fibers, and a decrease in the loss of material due to the calcining process. The solvent cast/ particulate leaching method was used to create a nanocomposite of bioglass and the co-polymer polyglyconate (MaxonRTM) for bone tissue scaffolds The biocompatibility of the composite foams was observed and calcium phosphate presence was quantified. The incorporation of bioglass into the polymer matrix improved the strength (modulus - 21.47 MPa) and biocompatibility of the polyglyconate foam. Keywords: Bioactive glass, Electrospinning, Solvent Casting/Particulate Leaching Method, Nanocomposites

Scarber, Reginna E.

73

Preparation and characterization of bioactive mesoporous wollastonite - Polycaprolactone composite scaffold.  

PubMed

A well-defined mesoporous structure of wollastonite with high specific surface area was synthesized using surfactant P123 (triblock copolymer) as template, and its composite scaffolds with poly(epsilon-caprolactone) (PCL) were fabricated by a simple method of solvent casting-particulate leaching. The measurements of the water contact angles suggest that the incorporation of either mesoporous wollastonite (m-WS) or conventional wollastonite (c-WS) into PCL could improve the hydrophilicity of the composites, and the former was more effective than the later. The bioactivity of the composite scaffold was evaluated by soaking the scaffolds in a simulated body fluid (SBF) and the results show that the m-WS/PCL composite (m-WPC) scaffolds can induce a dense and continuous layer of apatite after soaking for 1 week, as compared with the scattered and discrete apatite particles on the c-WS/PCL composite (c-WPC) scaffolds. The m-WPC had a significantly enhanced apatite-forming bioactivity compared with the c-WPC owing to the high specific surface area and pore volume of m-WS. In addition, attachment and proliferation of MG(63) cells on m-WPC scaffolds were significantly higher than that of c-WPC, revealing that m-WPC scaffolds had excellent biocompatibility. Such improved properties of m-WPC should be helpful for developing new biomaterials and may have potential use in hard tissue repair. PMID:19019424

Wei, Jie; Chen, Fangping; Shin, Jung-Woog; Hong, Hua; Dai, Chenglong; Su, Jiancan; Liu, Changsheng

2009-02-01

74

Ionic solutes impact collagen scaffold bioactivity.  

PubMed

The structure of ice-templated collagen scaffolds is sensitive to many factors. By adding 0.5 wt% of sodium chloride or sucrose to collagen slurries, scaffold structure could be tuned through changes in ice growth kinetics and interactions of the solute and collagen. With ionic solutes (sodium chloride) the entanglements of the collagen molecule decreased, leading to fibrous scaffolds with increased pore size and decreased attachment of chondrocytes. With non-ionic solutes (sucrose) ice growth was slowed, leading to significantly reduced pore size and up-regulated cell attachment. This highlights the large changes in structure and biological function stimulated by solutes in ice-templating systems. PMID:25649518

Pawelec, K M; Husmann, A; Wardale, R J; Best, S M; Cameron, R E

2015-02-01

75

Bioactive scaffolds for engineering vascularized cardiac tissues  

PubMed Central

Functional vascularization is a key requirement for the development and function of most tissues, and most critically cardiac muscle. Rapid and irreversible loss of cardiomyocytes during cardiac infarction directly results from the lack of blood supply. Contractile cardiac grafts, engineered using cardiovascular cells in conjunction with biomaterial scaffolds, are an actively studied method for cardiac repair. In this article, we focus on biomaterial scaffolds designed to mediate the development and maturation of vascular networks, by immobilized growth factors. The interactive effects of multiple vasculogenic factors are discussed in the context of cardiac tissue engineering. PMID:20857391

Chiu, Loraine; Radisic, Milica; Vunjak-Novakovic, Gordana

2013-01-01

76

Biodegradable and bioactive porous polymer\\/inorganic composite scaffolds for bone tissue engineering  

Microsoft Academic Search

Biodegradable polymers and bioactive ceramics are being combined in a variety of composite materials for tissue engineering scaffolds. Materials and fabrication routes for three-dimensional (3D) scaffolds with interconnected high porosities suitable for bone tissue engineering are reviewed. Different polymer and ceramic compositions applied and their impact on biodegradability and bioactivity of the scaffolds are discussed, including in vitro and in

K. Rezwan; Q. Z. Chen; J. J. Blaker; Aldo Roberto Boccaccini

2006-01-01

77

Bioactive scaffold for bone tissue engineering: An in vivo study  

NASA Astrophysics Data System (ADS)

Massive bone loss of the proximal femur is a common problem in revision cases of total hip implants. Allograft is typically used to reconstruct the site for insertion of the new prosthesis. However, for long term fixation and function, it is desirable that the allograft becomes fully replaced by bone tissue and aids in the regeneration of bone to that site. However, allograft use is typically associated with delayed incorporation and poor remodeling. Due to these profound limitations, alternative approaches are needed. Tissue engineering is an attractive approach to designing improved graft materials. By combining osteogenic activity with a resorbable scaffold, bone formation can be stimulated while providing structure and stability to the limb during incorporation and remodeling of the scaffold. Porous, surface modified bioactive ceramic scaffolds (pSMC) have been developed which stimulate the expression of the osteoblastic phenotype and production of bone-like tissue in vitro. The scaffold and two tissue-engineered constructs, osteoprogenitor cells seeded onto scaffolds or cells expanded in culture to form bone tissue on the scaffolds prior to implantation, were investigated in a long bone defect model. The rate of incorporation was assessed. Both tissue-engineered constructs stimulated bone formation and comparable repair at 2 weeks. In a rat femoral window defect model, bone formation increased over time for all groups in concert with scaffold resorption, leading to a 40% increase in bone and 40% reduction of the scaffold in the defect by 12 weeks. Both tissue-engineered constructs enhanced the rate of mechanical repair of long bones due to better bony union with the host cortex. Long bones treated with tissue engineered constructs demonstrated a return in normal torsional properties by 4 weeks as compared to 12 weeks for long bones treated with pSMC. Culture expansion of cells to produce bone tissue in vitro did not accelerate incorporation over the treatment with cells seeded at the time of surgery. Porous, surface modified bioactive ceramic is a promising scaffold material for tissue-engineered bone repair. Bone formation and scaffold resorption act in concert for maintenance and improvement of the structural properties of the long bones over time. As determined histomorphometrically and mechanically, the rate of incorporation of the scaffold was enhanced with the tissue-engineered constructs.

Livingston, Treena Lynne

78

Surface Modification of Bioactive Glasses and Preparation of PDLLA\\/Bioactive Glass Composite Films  

Microsoft Academic Search

In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260°C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA\\/bioactive glass composite

Yuan Gao; Jiang Chang

2009-01-01

79

Reticulated bioactive scaffolds with improved textural properties for bone tissue engineering: nanostructured surfaces and porosity.  

PubMed

Organised nanoporous SBA-15 type silica precursor (SP) particulate material has been processed into three-dimensional macroporous, reticulated structures using a novel strategy consisting of blending increasing percentages of SP with a SiO2 -CaO-P2 O5 (80Si15Ca5P) mesoporous bioactive glass (MBG) sol. The procedure successfully produced consolidated and functionally competent open-cell scaffolds while preserving the nanoporous order of the SP. Scaffolds were prepared using four different (MBG)/(SP) ratios. These structures were then characterized using field emission gun scanning electron microscopy, X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, and compressive strength testing. Open-cell interconnected structures with dual macro (150-500 ?m) and nano (4-6 nm)-organised porosity were produced. Both the textural and mechanical properties were found to improve with increasing SBA-15 content. The in vitro bioactive response using simulated body fluid confirmed high reactivity for all prepared scaffolds. In addition, the SBA-15 containing scaffolds exhibited a superior ability to delay the pH-triggered lysozyme release with antibiotic activity. PMID:24123840

Ramiro-Gutiérrez, M Lourdes; Will, Julia; Boccaccini, Aldo R; Díaz-Cuenca, Aránzazu

2014-09-01

80

Bioactive borate glass coatings for titanium alloys  

Microsoft Academic Search

Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na2O–CaO–B2O3 system, modified by additions of SiO2, Al2O3, and P2O5, were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction\\u000a analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid

Laxmikanth Peddi; Richard K. Brow; Roger F. Brown

2008-01-01

81

Bioactivity evolution of the surface functionalized bioactive glasses.  

PubMed

The formation of a calcium phosphate layer on the surface of the SiO2 -CaO-P2 O5 glasses after immersion in simulated body fluid (SBF) generally demonstrates the bioactivity of these materials. Grafting of the surface by chemical bonding can minimize the structural changes in protein adsorbed on the surface. Therefore, in this study our interest was to evaluate the bioactivity and blood biocompatibility of the SiO2 -CaO-P2 O5 glasses after their surface modification by functionalization with aminopropyl-triethoxysilane and/or by fibrinogen. It is shown that the fibrinogen adsorbed on the glass surfaces induces a growing of the apatite-like layer. It is also evidenced that the protein content from SBF influences the growth of the apatite-like layer. Furthermore, the good blood compatibility of the materials after fibrinogen and bovine serum albumin adsorption is proved from the assessment of the ?-sheet-?-turn ratio. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 261-272, 2015. PMID:24820252

Magyari, Klára; Baia, Lucian; Vulpoi, Adriana; Simon, Simion; Popescu, Octavian; Simon, Viorica

2015-02-01

82

Bioactivity of electro-thermally poled bioactive silicate glass  

Microsoft Academic Search

A 45S5 bioactive glass (nominal composition: 46.1mol.% SiO2, 2.6mol.% P2O5, 26.9mol.% CaO, 24.4mol.% Na2O) was electrothermally poled by applying voltages up to 750V for 45min at 200°C, and the thermally stimulated depolarization currents (TSDCs) were recorded. Changes in chemical composition and electrical properties after poling were investigated by TSDC measurements, impedance spectroscopy and scanning electron microscopy with energy dispersive X-ray

C. R. Mariappan; D. M. Yunos; A. R. Boccaccini; B. Roling

2009-01-01

83

Bioactive glass coatings for orthopedic metallic implants  

SciTech Connect

The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

2003-06-30

84

Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model.  

PubMed

Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250-300?m) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair. PMID:23643606

Bi, Lianxiang; Rahaman, Mohamed N; Day, Delbert E; Brown, Zackary; Samujh, Christopher; Liu, Xin; Mohammadkhah, Ali; Dusevich, Vladimir; Eick, J David; Bonewald, Lynda F

2013-08-01

85

Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass  

Microsoft Academic Search

Bioactive glass is used as both a bone filler and as a coating on implants, and has been advocated as a potential osteogenic scaffold for tissue engineering. Rat-derived mesenchymal stem cells (MSCs) show elevated levels of alkaline phosphatase activity when grown on 45S5 bioactive glass as compared to standard tissue culture plastic. Similarly, exposure to the dissolution products of 45S5

Gwendolen C. Reilly; Shula Radin; Andrew T. Chen; Paul Ducheyne

2007-01-01

86

Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid  

Microsoft Academic Search

A common ceramic processing technique, tape casting, was used to produce thin, flexible sheets of bioactive glass (Bioglass® 45S5) particulate in an organic matrix. Tape casting offers the possibility of producing three-dimensional shapes, as the final material is built up layer by layer. Bioactive glass tapes were sintered together to form small discs for in vitro bioactivity testing in simulated

Daniel C. Clupper; John J. Mecholsky; Guy P. LaTorre; David C. Greenspan

2002-01-01

87

Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO(2) laser cladding.  

PubMed

Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. PMID:21658477

Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J

2011-09-01

88

Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation.  

PubMed

Bioactive glasses, particularly Bioglass® 45S5, have been used to clinically regenerate human bone since the mid-1980s; however, they show a strong tendency to undergo crystallization upon heat treatment, which limits their range of applications. Attempts at improving their processing (by reducing their tendency to crystallize) have included increasing their silica content (and thus their network connectivity), incorporating intermediate oxides or reducing their phosphate content, all of which reduce glass bioactivity. Therefore, bioactive glasses known for their good processing (e.g. 13-93) are considerably less bioactive. Here, we investigated if the processing of 45S5 bioactive glass can be improved while maintaining its network connectivity and phosphate content. The results show that, by increasing the calcium:alkali cation ratio, partially substituting potassium for sodium (thereby making use of the mixed alkali effect) and adding small amounts of fluoride, bioactive glasses can be obtained which have a larger processing window (suggesting that they can be processed more easily, allowing for sintering of scaffolds or drawing into fibres) while degrading readily and forming apatite in aqueous solution within a few hours. PMID:24880003

Groh, Daniel; Döhler, Franziska; Brauer, Delia S

2014-10-01

89

Proangiogenic Potential of a Collagen\\/Bioactive Glass Substrate  

Microsoft Academic Search

Purpose  Previous attempts to stimulate angiogenesis have focused on the delivery of growth factors and cytokines, genes encoding for\\u000a specific angiogenic inductive proteins or transcription factors, or participating cells. While high concentrations of bioactive\\u000a glasses have exhibited osteogenic potential, recent studies have demonstrated that low concentrations of particular bioactive\\u000a glasses are angiogenic. We hypothesized that a well known bioactive glass (Bioglass®

Ann Leu; J. Kent Leach

2008-01-01

90

Direct Ink Writing of Highly Porous and Strong Glass Scaffolds for Load-bearing Bone Defects Repair and Regeneration  

PubMed Central

The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires development of porous and high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work, bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inkswere optimized for the printing of features as fine as 30 ?m and of the three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds show a compressive strength (136 ± 22 MPa) comparable to that of human cortical bone (100-150 MPa), while the porosity (60%) is in the range of that of trabecular bone (50-90%).The strength is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in an SBF, the value (77 MPa) is still far above that of trabecular bone after three weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. PMID:21745606

Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.

2011-01-01

91

Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers  

PubMed Central

Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM’s major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure. PMID:18203429

Zhang, YZ; Su, B; Venugopal, J; Ramakrishna, S; Lim, CT

2007-01-01

92

Bioactive Glass Particles Field-Assisted Sealing to Titanium Implant Glass-Based Coatings  

Microsoft Academic Search

This paper reports for the first time the use of field-assisted sealing for bioactive implant coating applications. Field-assisted sealing (anodic bonding) of bioactive glass particles to bioinert glass enamel coating of titanium implant was investigated. Biocompatible titanium oxide interlayer was fabricated by deep thermal oxidation of 80 nm thick Ti thin film previously vacuum evaporated onto polished bioactive glass surface.

Piotr Mrozek

2009-01-01

93

Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application  

PubMed Central

The impact of bone diseases and trauma in the whole world has increased significantly in the past decades. Bioactive glasses are regarded as an important bone regeneration material owing to their generally excellent osteoconductivity and osteostimulativity. A new class of bioactive glass, referred to as mesoporous bioglass (MBG), was developed 7 years ago, which possess a highly ordered mesoporous channel structure and a highly specific surface area. The study of MBG for drug/growth factor delivery and bone tissue engineering has grown significantly in the past several years. In this article, we review the recent advances of MBG materials, including the preparation of different forms of MBG, composition–structure relationship, efficient drug/growth factor delivery and bone tissue engineering application. By summarizing our recent research, the interaction of MBG scaffolds with bone-forming cells, the effect of drug/growth factor delivery on proliferation and differentiation of tissue cells and the in vivo osteogenesis of MBG scaffolds are highlighted. The advantages and limitations of MBG for drug delivery and bone tissue engineering have been compared with microsize bioactive glasses and nanosize bioactive glasses. The future perspective of MBG is discussed for bone regeneration application by combining drug delivery with bone tissue engineering and investigating the in vivo osteogenesis mechanism in large animal models. PMID:23741607

Wu, Chengtie; Chang, Jiang

2012-01-01

94

Nanoporosity Significantly Enhances the Biological Performance of Engineered Glass Tissue Scaffolds  

PubMed Central

Nanoporosity is known to impact the performance of implants and scaffolds such as bioactive glass (BG) scaffolds, either by providing a higher concentration of bioactive chemical species from enhanced surface area, or due to inherent nanoscale topology, or both. To delineate the role of these two characteristics, BG scaffolds have been fabricated with nearly identical surface area (81 and 83±2?m2/g) but significantly different pore size (av. 3.7 and 17.7?nm) by varying both the sintering temperature and the ammonia concentration during the solvent exchange phase of the sol-gel fabrication process. In vitro tests performed with MC3T3-E1 preosteoblast cells on such scaffolds show that initial cell attachment is increased on samples with the smaller nanopore size, providing the first direct evidence of the influence of nanopore topography on cell response to a bioactive structure. Furthermore, in vivo animal tests in New Zealand rabbits (subcutaneous implantation) indicate that nanopores promote colonization and cell penetration into these scaffolds, further demonstrating the favorable effects of nanopores in tissue-engineering-relevant BG scaffolds. PMID:23427819

Wang, Shaojie; Kowal, Tia J.; Marei, Mona K.

2013-01-01

95

Mechanical properties of biodegradable polymer sutures coated with bioactive glass  

Microsoft Academic Search

Combining commercially available Polyglactin 910 (Vicryl®) sutures with bioactive glass powder offers new possibilities for application of composite materials in tissue engineering. Commercial bioactive glass (45S5 Bioglass®) powder was used to coat Vicryl® sutures and the tensile strength of the sutures was tested before and after immersion in simulated body fluid (SBF) as a means to assess the effect of

A. Stamboulis; L. L. Hench; A. R. Boccaccini

2002-01-01

96

Structure, dynamics, and surface reactions of bioactive glasses  

Microsoft Academic Search

Three bioactive glasses (45S5, 55S4.3, and 60S3.8) have been investigated using atomic-scale molecular dynamics simulations in attempt to explain differences in observed macroscopic bioactivity. Bulk and surface structures and bulk dynamics have been characterized. Ion exchange and hydrolysis reactions, the first two stages in Hench's model describing the reactions of bioactive glass surfaces in vivo, have been investigated in detail.

Todd R. Zeitler

2006-01-01

97

Efficient discovery of bioactive scaffolds by activity-directed synthesis  

NASA Astrophysics Data System (ADS)

The structures and biological activities of natural products have often provided inspiration in drug discovery. The functional benefits of natural products to the host organism steers the evolution of their biosynthetic pathways. Here, we describe a discovery approach—which we term activity-directed synthesis—in which reactions with alternative outcomes are steered towards functional products. Arrays of catalysed reactions of ?-diazo amides, whose outcome was critically dependent on the specific conditions used, were performed. The products were assayed at increasingly low concentration, with the results informing the design of a subsequent reaction array. Finally, promising reactions were scaled up and, after purification, submicromolar ligands based on two scaffolds with no previous annotated activity against the androgen receptor were discovered. The approach enables the discovery, in tandem, of both bioactive small molecules and associated synthetic routes, analogous to the evolution of biosynthetic pathways to yield natural products.

Karageorgis, George; Warriner, Stuart; Nelson, Adam

2014-10-01

98

Efficient discovery of bioactive scaffolds by activity-directed synthesis.  

PubMed

The structures and biological activities of natural products have often provided inspiration in drug discovery. The functional benefits of natural products to the host organism steers the evolution of their biosynthetic pathways. Here, we describe a discovery approach--which we term activity-directed synthesis--in which reactions with alternative outcomes are steered towards functional products. Arrays of catalysed reactions of ?-diazo amides, whose outcome was critically dependent on the specific conditions used, were performed. The products were assayed at increasingly low concentration, with the results informing the design of a subsequent reaction array. Finally, promising reactions were scaled up and, after purification, submicromolar ligands based on two scaffolds with no previous annotated activity against the androgen receptor were discovered. The approach enables the discovery, in tandem, of both bioactive small molecules and associated synthetic routes, analogous to the evolution of biosynthetic pathways to yield natural products. PMID:25242481

Karageorgis, George; Warriner, Stuart; Nelson, Adam

2014-10-01

99

Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation.  

PubMed

An alkali-free series of bioactive glasses has been designed and developed in the glass system CaO-MgO-SiO(2)-P(2)O(5)-CaF(2) along the diopside (CaMgSi(2)O(6))-fluorapatite (Ca(5)(PO(4))(3)F)-tricalcium phosphate (3CaO·P(2)O(5)) join. The silicate network in all the investigated glasses is predominantly coordinated in Q(2) (Si) units, while phosphorus tends to remain in an orthophosphate (Q(0)) environment. The in vitro bioactivity analysis of glasses has been made by immersion of glass powders in simulated body fluid (SBF) while chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Some of the investigated glasses exhibit hydroxyapatite formation on their surface within 1-12 h of their immersion in SBF solution. The sintering and crystallization kinetics of glasses has been investigated by differential thermal analysis and hot-stage microscopy, respectively while the crystalline phase evolution in resultant glass-ceramics has been studied in the temperature range of 800-900°C using powder X-ray diffraction and scanning electron microscopy. The alkaline phosphatase activity and osteogenic differentiation for glasses have been studied in vitro on sintered glass powder compacts using rat bone marrow mesenchymal stem cells. The as-designed glasses are ideal candidates for their potential applications in bone tissue engineering in the form of bioactive glasses as well as glass/glass-ceramic scaffolds. PMID:21925626

Goel, Ashutosh; Kapoor, Saurabh; Rajagopal, Raghu Raman; Pascual, Maria J; Kim, Hae-Won; Ferreira, José M F

2012-01-01

100

Ageing of pulsed-laser-deposited bioactive glass films  

Microsoft Academic Search

Bioactive glasses are osteoinductive biomaterials of great interest for medical applications as filler material in bone defects and as coating of implants.Bioactive glass thin films have been deposited on silicon plates by ArF laser ablation of silica-based glass targets (53% SiO2, 23% Na2O, 20% CaO, 4% P2O5). Ablation experiments have been carried out in vacuum (10?4mbar) and in a reactive

P González; J Serra; S Liste; S Chiussi; B León; M Pérez-Amor

2002-01-01

101

Bioactive glasses: Importance of structure and properties in bone regeneration  

NASA Astrophysics Data System (ADS)

This review provides a brief background on the applications, mechanisms and genetics involved with use of bioactive glass to stimulate regeneration of bone. The emphasis is on the role of structural changes of the bioactive glasses, in particular Bioglass, which result in controlled release of osteostimulative ions. The review also summarizes the use of Raman spectroscopy, referred to hereto forward as bio-Raman spectroscopy, to obtain rapid, real time in vitro analysis of human cells in contact with bioactive glasses, and the osteostimulative dissolution ions that lead to osteogenesis. The bio-Raman studies support the results obtained from in vivo studies of bioactive glasses, as well as extensive cell and molecular biology studies, and thus offers an innovative means for rapid screening of new bioactive materials while reducing the need for animal testing.

Hench, Larry L.; Roki, Niksa; Fenn, Michael B.

2014-09-01

102

Alkali-free bioactive glasses for bone tissue engineering: A preliminary investigation  

SciTech Connect

An alkali-free series of bioactive glasses has been designed and developed in the glass system CaO-MgO-SiO2-P2O5-CaF2 along diopside (CaMgSi2O6) – fluorapatite [Ca5(PO4)3F] – tricalcium phosphate (3CaO•P2O5) join. The silicate network in all the investigated glasses is predominantly coordinated in Q2 (Si) units while phosphorus tends to remain in orthophosphate (Q0) environment. The in vitro bioactivity analysis of glasses has been made by immersion of glass powders in simulated body fluid (SBF) while chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Some of the investigated glasses exhibit hydroxyapatite (HA) formation on their surface with in 1-12 h of their immersion in SBF solution. The sintering and crystallization kinetics of glasses has been investigated by differential thermal analysis (DTA) and hot-stage microscopy (HSM), respectively while the crystalline phase evolution in resultant glass-ceramics (GCs) has been studied in the temperature range of 800-900 oC using powder X-ray diffraction (XRD) and scanning electron microscope (SEM). The cell growth and osteogenic differentiation for glasses has been studied in vitro on sintered glass powder compacts using rat bone marrow mesenchymal stem cells. The as designed glasses are ideal candidates for their potential applications in bone tissue engineering in the form of bioactive glasses as well as glass/GC scaffolds.

Goel, Ashutosh; Kapoor, Saurabh; Rajagopal, Raghu R.; Pascual, Maria J.; Kim, Hae-Won; Ferreira, Jose M.

2011-08-25

103

Calcium and potassium addition to facilitate the sintering of bioactive glasses  

Microsoft Academic Search

Nowadays bioactive glasses are diffused in medical practice due to their excellent bioactivity. However high temperature treatments, which are commonly required in several processing routes, may induce the glass to crystallize into a glass-ceramic, with possible negative effects on its bioactivity. In this work a new bioactive glass composition, inspired by the widely used Bioglass® 45S5, was formulated by increasing

Devis Bellucci; Valeria Cannillo; Antonella Sola

2011-01-01

104

Bioactive Electrospun Scaffolds Delivering Growth Factors and Genes for Tissue Engineering Applications  

Microsoft Academic Search

A biomaterial scaffold is one of the key factors for successful tissue engineering. In recent years, an increasing tendency\\u000a has been observed toward the combination of scaffolds and biomolecules, e.g. growth factors and therapeutic genes, to achieve\\u000a bioactive scaffolds, which not only provide physical support but also express biological signals to modulate tissue regeneration.\\u000a Huge efforts have been made on

Wei Ji; Yan Sun; Fang Yang; Jeroen J. J. P. van den Beucken; Mingwen Fan; Zhi Chen; John A. Jansen

2011-01-01

105

Bioactive and Thermally Compatible Glass Coating on Zirconia Dental Implants.  

PubMed

The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58·10(-6) K(-1)) than that of the zirconia (11.67·10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. PMID:25421839

Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H

2014-11-24

106

Synthesis and evaluation of novel bioactive composite starch\\/bioactive glass microparticles  

Microsoft Academic Search

The aim of the development of composite mate- rials is to combine the most desired properties of two or more materials. In this work, the biodegradable character, good controlled-release properties, and natural origin of starch-based biomaterials are combined with the bioactive and bone-bonding properties of bioactive glass (BG). Novel, bioactive composite starch-BG microparticles were synthe- sized starting from a blend

G. A. Silva; F. J. Costa; O. P. Coutinho; S. Radin; P. Ducheyne; R. L. Reis

2004-01-01

107

Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film  

NASA Astrophysics Data System (ADS)

In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

2013-11-01

108

Antimicrobial Effect of Nanometric Bioactive Glass 45S5  

Microsoft Academic Search

Most recent advances in nanomaterials fabrication have given access to complex materials such as SiO2-Na2O-CaO-P2O5 bioactive glasses in the form of amorphous nanoparticles of 20-to 60-nm size. The clinically interesting antimicrobial properties of commercially available, micron-sized bioactive glass 45S5 have been attributed to the continuous liberation of alkaline species during application. Here, we tested the hypothesis that, based on its

T. Waltimo; T. J. Brunner; M. Vollenweider; W. J. Stark; M. Zehnder

2007-01-01

109

Fine-tuning of Bioactive Glass for Root Canal Disinfection  

Microsoft Academic Search

An ideal preparation of 45S5 bioactive glass suspensions\\/slurries for root canal disinfection should combine high pH induction with capacity for continuing release of alkaline species. The hypothesis of this study was that more material per volume of bioactive glass slurry is obtained with a micrometric material (< 5 µm particle size) or a micrometric\\/ nanometric hybrid, rather than a solely

T. Waltimo; D. Mohn; F. Paqué; T. J. Brunner; W. J. Stark; M. Schätzle; M. Zehnder

2009-01-01

110

Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.  

PubMed

Bioactive, functional scaffolds are required to improve the regenerative potential of stem cells for tissue reconstruction and functional recovery of damaged tissues. Here, we report a paper-based bioactive scaffold platform for stem cell culture and transplantation for bone reconstruction. The paper scaffolds are surface-engineered by an initiated chemical vapor deposition process for serial coating of a water-repellent and cell-adhesive polymer film, which ensures the long-term stability in cell culture medium and induces efficient cell attachment. The prepared paper scaffolds are compatible with general stem cell culture and manipulation techniques. An optimal paper type is found to provide structural, physical, and mechanical cues to enhance the osteogenic differentiation of human adipose-derived stem cells (hADSCs). A bioactive paper scaffold significantly enhances in vivo bone regeneration of hADSCs in a critical-sized calvarial bone defect. Stacking the paper scaffolds with osteogenically differentiated hADSCs and human endothelial cells resulted in vascularized bone formation in vivo. Our study suggests that paper possesses great potential as a bioactive, functional, and cost-effective scaffold platform for stem cell-mediated bone tissue engineering. To the best of our knowledge, this is the first study reporting the feasibility of a paper material for stem cell application to repair tissue defects. PMID:25241158

Park, Hyun-Ji; Yu, Seung Jung; Yang, Kisuk; Jin, Yoonhee; Cho, Ann-Na; Kim, Jin; Lee, Bora; Yang, Hee Seok; Im, Sung Gap; Cho, Seung-Woo

2014-12-01

111

Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties.  

PubMed

Glass-ceramic scaffolds mimicking the structure of cancellous bone were produced via sponge replication technique by using a polyurethane foam as template and glass powder below 30 lm as inorganic phase. Specifically, a SiO?-based glass of complex composition and its corresponding P?O?-based "specular" glass were used as materials for scaffolding. The polymeric sponge was thermally removed and the glass powders were sintered to obtain a replica of the template structure. The scaffolds were investigated and compared from a structural, morphological and mechanical viewpoint by assessing their crystalline phases, volumetric shrinkage, pores content and interconnection, mechanical strength. In addition, the scaffolds were soaked in acellular simulated body fluid to investigate their in vitro behaviour. The produced scaffolds have a great potential for bone reconstructive surgery because their features, such as shape, strength, bioactivity and bioresorption, can be easily tailored according to the end use. PMID:19475339

Vitale-Brovarone, Chiara; Baino, Francesco; Bretcanu, Oana; Verne, Enrica

2009-11-01

112

Dentine remineralization induced by two bioactive glasses developed for air abrasion purposes  

Microsoft Academic Search

ObjectivesThe present study aimed to evaluate dentine remineralization through a 7-day period of artificial saliva (AS) storage induced by bioactive glass 45S5 (BAG) and by bioactive glass modified with soda-lime spherical glass.

Zhejun Wang; Tao Jiang; Salvatore Sauro; Yining Wang; Ian Thompson; Timothy F. Watson; Yue Sa; Wenzhong Xing; Ya Shen; Markus Haapasalo

2011-01-01

113

Bioactive glass sol-gel foam scaffolds: Evolution of nanoporosity during processing and in situ monitoring of apatite layer formation using small- and wide-angle X-ray scattering.  

PubMed

Recent work has highlighted the potential of sol-gel-derived calcium silicate glasses for the regeneration or replacement of damaged bone tissue. The work presented herein provides new insight into the processing of bioactive calcia-silica sol-gel foams, and the reaction mechanisms associated with them when immersed in vitro in a simulated body fluid (SBF). Small-angle X-ray scattering and wide-angle X-ray scattering (diffraction) have been used to study the stabilization of these foams via heat treatment, with analogous in situ time-resolved data being gathered for a foam immersed in SBF. During thermal processing, pore sizes have been identified in the range of 16.5-62.0 nm and are only present once foams have been heated to 400 degrees C and above. Calcium nitrate crystallites were present until foams were heated to 600 degrees C; the crystallite size varied from 75 to 145 nm and increased in size with heat treatment up to 300 degrees C, then decreased in size down to 95 nm at 400 degrees C. The in situ time-resolved data show that the average pore diameter decreases as a function of immersion time in SBF, as calcium phosphates grow on the glass surfaces. Over the same time, Bragg peaks indicative of tricalcium phosphate were evident after only 1-h immersion time, and later, hydroxycarbonate apatite was also seen. The hydroxycarbonate apatite appears to have preferred orientation in the (h,k,0) direction. PMID:18767060

FitzGerald, V; Martin, R A; Jones, J R; Qiu, D; Wetherall, K M; Moss, R M; Newport, R J

2009-10-01

114

Influence of heat treatment on crystallization of bioactive glasses  

Microsoft Academic Search

In this work, the crystallization tendency of three bioactive glasses called bioglass 45S5, 1-98, and a new glass, 07-04 is discussed. The glasses were heat-treated in an electric laboratory furnace in nitrogen for different periods of time between 600 and 1000°C, after which the samples were studied with SEM-EDXA and X-ray analysis. Glass 45S5 showed surface crystallization of sodium–calcium–silicate at

H. Arstila; L. Hupa; K. H. Karlsson; M. Hupa

2008-01-01

115

Adhesion of new bioactive glass coating.  

PubMed

A valuable alternative to the existing biomedical implant coatings is a bioactive glass (BAG) coating that is produced by reactive plasma spraying. A mechanical performance requirement that is of the utmost importance is the adhesion strength of the coating. Considering the application as dental implant, a new adhesion test (shear test), which was close to the service conditions, was designed. A Ti6Al4V rod (3 mm) with a sprayed BAG coating of 50 microm was glued with an epoxy glue to a hollow cylindrical counterpart and was used as such in the tensile machine. This test was evaluated by finite element analysis (FEA). Preliminary experiments showed that a conversion from shear to tensile adhesion strength is possible by using the Von Mises criterion (sigma = 3(1/2)tau), indicating that thin coatings of brittle materials can behave as a ductile material. The new coating technique was proved to produce a high quality coating with an adhesion strength of 40.1 +/- 4.8 MPa in shear and 69.4 +/- 8.4 MPa in tension. The FEA revealed that no one homogeneously distributed shear stress is present but several nonhomogeneously distributed stress components (shear and tensile) are present in the coating. This analysis indicated that real service conditions are much more complicated than standard adhesion tests. PMID:10397926

Schrooten, J; Van Oosterwyck, H; Vander Sloten, J; Helsen, J A

1999-03-01

116

Temporal zeta potential variations of 45S5 bioactive glass immersed in an electrolyte solution  

E-print Network

Temporal zeta potential variations of 45S5 bioactive glass immersed in an electrolyte solution Received 6 May 1999; revised 28 October 1999; accepted 16 November 1999 Abstract: 45S5 bioactive glass (BG potential; calcium phosphate layer INTRODUCTION 45S5 bioactive glass (BG) is a bioactive material ca- pable

Lu, Helen H.

117

Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements.  

PubMed

In this work, the use of foam-like glass-ceramic scaffolds as trabecular coatings on ceramic prosthetic devices to enhance implant osteointegration is proposed. The feasibility of this innovative device was explored in a simplified, flat geometry: glass-ceramic scaffolds, prepared by polymeric sponge replication and mimicking the trabecular architecture of cancellous bone, were joined to alumina square substrates by a dense glass coating (interlayer). The role played by different formulations of starting glasses was examined, with particular care to the effect on the mechanical properties and bioactivity of the final coating. Microindentations at the coating/substrate interface and tensile tests were performed to evaluate the bonding strength between the sample's components. In vitro bioactive behaviour was assessed by soaking in simulated body fluid and evaluating the apatite formation on the surface and inside the pores of the trabecular coating. The concepts disclosed in the present study can have a significant impact in the field of implantable devices, suggesting a valuable alternative to traditional, often invasive bone-prosthesis fixation. PMID:22532097

Vitale-Brovarone, Chiara; Baino, Francesco; Tallia, Francesca; Gervasio, Cristina; Verné, Enrica

2012-10-01

118

Analysis of bioactive fluoride-containing calcium aluminosilicate glasses  

Microsoft Academic Search

Different decomposition methods in aqueous solutions were evaluated on their accuracy and reproducibility for the quantitative determination of the constituents of bioactive fluoride-containing glasses used in dental glass ionomer cements. The concentrations of metals can be determined rapidly and accurately by atomic absorption spectrophotometry after degrading the sample in hydrochloric or hydrofluoric acid. The latter degradation method is also suited

E. A. P De Maeyer; R. M. H Verbeeck

1998-01-01

119

Surface characterization of silver-doped bioactive glass.  

PubMed

A bioactive glass belonging to the system SiO(2)-CaO-Na(2)O was doped with silver ions by ion exchange in molten salts as well as in aqueous solution. The ion exchange in the solution was done to check if it is possible to prepare an antimicrobial material using a low silver content. The doped glass was characterized by means of X-ray diffraction, SEM observation, EDS analysis, bioactivity test (soaking in a simulated body fluid), leaching test (GFAAS analyses) and cytotoxicity test. It is demonstrated that these surface silver-doped glasses maintain, or even improve, the bioactivity of the starting glass. The measured quantity of released silver into simulated body fluid compares those reported in literature for the antibacterial activity and the non-cytotoxic effect of silver. Cytotoxicity tests were carried out to understand the effect of the doped surfaces on osteogenic cell adhesion and proliferation. PMID:15792537

Vernè, E; Di Nunzio, S; Bosetti, M; Appendino, P; Brovarone, C Vitale; Maina, G; Cannas, M

2005-09-01

120

Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites  

PubMed Central

This work investigated the effect of adding nanoparticulate (29 nm) bioactive glass particles on the bioactivity, degradation and in vitro cytocompatibility of poly(3-hydroxybutyrate) (P(3HB)) composites/nano-sized bioactive glass (n-BG). Two different concentrations (10 and 20 wt %) of nanoscale bioactive glass particles of 45S5 Bioglass composition were used to prepare composite films. Several techniques (Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray) were used to monitor their surface and bioreactivity over a 45-day period of immersion in simulated body fluid (SBF). All results suggested the P(3HB)/n-BG composites to be highly bioactive, confirmed by the formation of hydroxyapatite on material surfaces upon immersion in SBF. The weight loss and water uptake were found to increase on increasing bioactive glass content. Cytocompatibility study (cell proliferation, cell attachment, alkaline phosphatase activity and osteocalcin production) using human MG-63 osteoblast-like cells in osteogenic and non-osteogenic medium showed that the composite substrates are suitable for cell attachment, proliferation and differentiation. PMID:19640877

Misra, Superb K.; Ansari, Tahera; Mohn, Dirk; Valappil, Sabeel P.; Brunner, Tobias J.; Stark, Wendelin J.; Roy, Ipsita; Knowles, Jonathan C.; Sibbons, Paul D.; Jones, Eugenia Valsami; Boccaccini, Aldo R.; Salih, Vehid

2010-01-01

121

Crystallization kinetics, mineralization and crack propagation in partially crystallized bioactive glass 45S5  

Microsoft Academic Search

Thermal treatment of bioactive glass ceramics dictates many important features such as microstructure, degree of crystallinity, mechanical properties, and biological response. This report investigates the heat treating conditions and the Avrami crystallization kinetics of melt cast bioactive glass 45S5 at 680°C. Glass discs were found to follow three dimensional bulk crystallization kinetics (Avrami exponent n=3). Partially crystallized bioactive glass samples

Satadru Kashyap; Kyle Griep; John A. Nychka

2011-01-01

122

Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells.  

PubMed

Bioprinting based on thermal inkjet printing is a promising but unexplored approach in bone tissue engineering. Appropriate cell types and suitable biomaterial scaffolds are two critical factors to generate successful bioprinted tissue. This study was undertaken in order to evaluate bioactive ceramic nanoparticles in stimulating osteogenesis of printed bone marrow-derived human mesenchymal stem cells (hMSCs) in poly(ethylene glycol)dimethacrylate (PEGDMA) scaffold. hMSCs suspended in PEGDMA were co-printed with nanoparticles of bioactive glass (BG) and hydroxyapatite (HA) under simultaneous polymerization so the printed substrates were delivered with highly accurate placement in three-dimensional (3D) locations. hMSCs interacted with HA showed the highest cell viability (86.62 ± 6.02%) and increased compressive modulus (358.91 ± 48.05 kPa) after 21 days in culture among all groups. Biochemical analysis showed the most collagen production and highest alkaline phosphatase activity in PEG-HA group, which is consistent with gene expression determined by quantitative PCR. Masson's trichrome staining also showed the most collagen deposition in PEG-HA scaffold. Therefore, HA is more effective comparing to BG for hMSCs osteogenesis in bioprinted bone constructs. Combining with our previous experience in vasculature, cartilage, and muscle bioprinting, this technology demonstrates the capacity for both soft and hard tissue engineering with biomimetic structures. PMID:25130390

Gao, Guifang; Schilling, Arndt F; Yonezawa, Tomo; Wang, Jiang; Dai, Guohao; Cui, Xiaofeng

2014-10-01

123

Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses.  

PubMed

Bioactive glasses are able to bond to bone through formation of carbonated hydroxyapatite in body fluids, and fluoride-releasing bioactive glasses are of interest for both orthopaedic and, in particular, dental applications for caries inhibition. However, because of their poor strength their use is restricted to non-load-bearing applications. In order to increase their mechanical properties, doping with nitrogen has been performed on two series of bioactive glasses: series (I) was a "bioglass" composition (without P2O5) within the quaternary system SiO2-Na2O-CaO-Si3N4 and series (II) was a simple substitution of CaF2 for CaO in series (I) glasses keeping the Na:Ca ratio constant. The objective of this work was to evaluate the effect of the variation in nitrogen and fluorine content on the properties of these glasses. The density, glass transition temperature, hardness and elastic modulus all increased linearly with nitrogen content which indicates that the incorporation of nitrogen stiffens the glass network because N is mainly in 3-fold coordination with Si atoms. Fluorine addition significantly decreases the thermal property values but the mechanical properties of these glasses remain unchanged with fluorine. The combination of both nitrogen and fluorine in oxyfluoronitride glasses gives better mechanical properties at much lower melting temperatures since fluorine reduces the melting point, allows higher solubility of nitrogen and does not affect the higher mechanical properties arising from incorporation of nitrogen. The characterization of these N and F substituted bioactive glasses using (29)Si MAS NMR has shown that the increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q(4) units with extra bridging anions at the expense of Q(3) units. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations similar to those in human blood plasma. Formation of a bioactive apatite layer on the samples treated in SBF was confirmed by grazing incidence X-ray diffraction and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDS). The crystallinity of this layer decreases with increasing N content suggesting that N may decrease bioactivity slightly. PMID:23676624

Bachar, Ahmed; Mercier, Cyrille; Tricoteaux, Arnaud; Hampshire, Stuart; Leriche, Anne; Follet, Claudine

2013-07-01

124

Healing effect of bioactive glass ointment on full-thickness skin wounds  

Microsoft Academic Search

This study aimed to investigate the effect of bioactive glasses on cutaneous wound healing in both normal rats and streptozotocin-induced diabetic rats. Bioactive glass ointments, prepared by mixing the sol–gel bioactive glass 58S (SGBG-58S), nanobioactive glass (NBG-58S) and the melt-derived 45S5 bioactive glass (45S5) powder with Vaseline (V) at 18% weight percentage, were used to heal full thickness excision wounds.

Cai Lin; Cong Mao; Juanjuan Zhang; Yuli Li; Xiaofeng Chen

2012-01-01

125

Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity.  

PubMed

Because of their excellent bioactivity, bioactive glasses are increasingly diffused to produce biomedical devices for bone prostheses, to face the dysfunctions that may be caused by traumatic events, diseases, or even natural aging. However, several processing routes, such as the production of scaffolds or the deposition of coatings, include a thermal treatment to apply or sinter the glass. The exposure to high temperature may induce a devetrification phenomenon, altering the properties and, in particular, the bioactivity of the glass. The present contribution offers an overview of the thermal behavior and properties of two glasses belonging to the Na2O-CaO-P2O5-SiO2 system, to be compared to the standard 45S5 Bioglass(®). The basic goal is to understand the effect of both the original composition and the thermal treatment on the performance of the sintered glasses. The new glasses, the one (BG_Na) with a high content of Na2O, the other (BG_Ca) with a high content of CaO, were fully characterized and sintering tests were performed to define the most interesting firing cycles. The sintered samples, treated at 880°C and 800°C respectively, were investigated from a microstructural point of view and their mechanical properties were compared to those of the bulk (not sintered) glass counterparts. The effect of sintering was especially striking on the BG_Ca material, whose Vickers hardness increased from 598.9 ± 46.7 HV to 1053.4 ± 35.0 HV. The in vitro tests confirmed the ability of the glasses, both in bulk and sintered form, of generating a hydroxyapatite surface layer when immersed in a simulated body fluid. More accurate biological tests performed on the sintered glasses proved the high bioactivity of the CaO-rich composition even after a heat treatment. PMID:22052581

Sola, A; Bellucci, D; Raucci, M G; Zeppetelli, S; Ambrosio, L; Cannillo, V

2012-02-01

126

Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites  

SciTech Connect

Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independent of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.

Chatzistavrou, Xanthippi, E-mail: x.chatzistavrou@imperial.ac.uk [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kantiranis, Nikolaos, E-mail: kantira@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, Eleana, E-mail: kont@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, Konstantinos, E-mail: hrisafis@physics.auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, Labrini, E-mail: lambrini@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, Petros, E-mail: pkoidis@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Boccaccini, Aldo R., E-mail: a.boccaccini@imperial.ac.uk [Department of Materials, Faculty of Engineering, Imperial College, SW7 2AZ London (United Kingdom); Paraskevopoulos, Konstantinos M., E-mail: kpar@auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

2011-01-15

127

Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass.  

PubMed

Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1-X) SiO2--24.3 Na2O-26.9 CaO-2.6 P2O5, where X=0, 0.4, 0.8, 1.2 and 1.6mol% of BaO was chosen and melted in an electric furnace at 1400±5°C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. PMID:25686983

Arepalli, Sampath Kumar; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S P

2015-04-01

128

Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells.  

PubMed

Tissue engineering is a multidisciplinary science that combines a structural scaffold and cells to form a construct able to promote regeneration of injured tissue. Bioactive glass foam produced by sol-gel is an osteoinductive material with a network of interconnected macropores necessary for cell colonization. The use of human adipose-derived stem cell (hASC) presents advantages as the potential for a large number of cells, rapid expansion in vitro and the capability of differentiating into osteoblasts. The use of a bioreactor in three-dimensional cell culture enables greater efficiency for cell nutrition and application of mechanical forces, important modulators of bone physiology. The hASC seeded in a bioactive glass scaffold and cultured in osteogenic Leibovitz L-15 medium in a bioreactor with a flow rate of 0.1?mL min(-1) demonstrated a significant increase in cell proliferation and viability and alkaline phosphatase (ALP) activity peak after 14 days. The immunofluorescence assay revealed an expression of osteopontin, osteocalcin and type I collagen from 7 to 21 days after culture. The cells changed from a spindle shape to a cuboidal morphology characteristic of osteoblasts. The polymerase chain reaction assay confirmed that osteopontin, osteocalcin, and ALP genes were expressed. These results indicate that hASCs differentiated into an osteogenic phenotype when cultured in bioactive glass scaffold, osteogenic Leibovitz L-15 medium and a perfusion bioreactor. Therefore, these results highlight the synergism between a bioactive glass scaffold and the effect of perfusion on cells and indicate the differentiation into an osteogenic phenotype. PMID:23625853

Silva, A R P; Paula, A C C; Martins, T M M; Goes, A M; Pereria, M M

2014-03-01

129

Corrosion protection of mesoporous bioactive glass coating on biodegradable magnesium  

NASA Astrophysics Data System (ADS)

A mesoporous bioactive glass (MBG) coating was synthesized and coated on pure Mg substrate using a sol-gel dip-coating method. The MBG coating uniformly covered the Mg substrate with a thickness of ˜1.5 ?m. Electrochemical and immersion tests were performed in order to investigate the biodegradation performance of Mg with and without different surface coatings in simulated body fluids (SBF) at 37 °C. Results revealed that the MBG coated Mg displayed a significantly lower biodegradation rate, in comparison with normal bioactive glass (BG) coated and uncoated Mg samples.

Wang, Xiaojian; Wen, Cuie

2014-06-01

130

PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.  

PubMed

In the present study, poly(?-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200°C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(?-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88MPa) and the elastic modulus (15.5MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. PMID:24268280

Milovac, Dajana; Gallego Ferrer, Gloria; Ivankovic, Marica; Ivankovic, Hrvoje

2014-01-01

131

Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation.  

PubMed

Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hydrogel based composite scaffolds using photopolymerisation has been demonstrated in this study. The prepared hydrogel based composites were characterised using techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrometry (EDX), rheological studies and compression testing. In addition, gel fraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), porosity and swelling studies of the composites were carried out. It was found that these novel hydrogel bioglass composite formulations did not display the inherent brittleness that is typically associated with bioactive glass based bone graft materials and exhibited enhanced biomechanical properties compared to the polyethylene glycol hydrogel scaffolds along. Together, the combination of enhanced mechanical properties and the deposition of apatite on the surface of these hydrogel based composites make them an ideal candidate as bone graft substitutes in cancellous bone defects or low load bearing applications. PMID:23910334

Killion, John A; Kehoe, Sharon; Geever, Luke M; Devine, Declan M; Sheehan, Eoin; Boyd, Daniel; Higginbotham, Clement L

2013-10-01

132

Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications.  

PubMed

A novel silver-doped bioactive glass powder (AgBG) was used to coat resorbable Vicryl (polyglactin 910) and non-resorbable Mersilk surgical sutures, thereby imparting bioactive, antimicrobial and bactericidal properties to the sutures. Stable and homogeneous coatings on the surface of the sutures were achieved using an optimised aqueous slurry-dipping technique. Dynamic mechanical analysis (DMA) was used to investigate the viscoelastic parameters of storage modulus and tandelta and thermal transitions of the as-received and composite (coated) sutures. The results generally showed that the bioactive glass coating did not affect the dynamic mechanical and thermal properties of the sutures. The in vitro bioactivity of the sutures was tested by immersion in simulated body fluid (SBF). After only 3 days of immersion in SBF, bonelike hydroxyapatite formed on the coated suture surfaces, indicating their enhanced bioactive behaviour. Resorbable sutures with bioactive coatings as fabricated here, in conjunction with 3-D textile technology, may provide attractive materials for producing 3-D scaffolds with controlled porosities for tissue engineering applications. The bactericidal properties imparted by the Ag-containing glass coating open also new opportunities for use of the composite sutures in wound healing and body wall repair. PMID:14643606

Blaker, J J; Nazhat, S N; Boccaccini, A R

2004-01-01

133

Effect of crystallinity on crack propagation and mineralization of bioactive glass 45S5  

Microsoft Academic Search

Bioactive glasses are a type of ceramic material designed to be used as bioresorbable therapeutic bone implants. Thermal treatment of bioactive glass ceramics dictates many important features such as microstructure, degree of crystallinity, mechanical properties, and mineralization. This study investigates the effects of temperature, time, and heating rates on the crystallization kinetics of melt cast bioactive glass 45S5. Bulk crystallization

Satadru Kashyap

2010-01-01

134

In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).  

PubMed

The aim of this work was to study the in vitro biocompatibility of glass-ceramic scaffolds based on 45S5 Bioglass, using a human osteosarcoma cell line (HOS-TE85). The highly porous scaffolds were produced by the foam replication technique. Two different types of scaffolds with different porosities were analysed. They were coated with a biodegradable polymer, poly(3-hydroxybutyrate) (P(3HB)). The scaffold bioactivity was evaluated by soaking in a simulated body fluid (SBF) for different durations. Compression strength tests were performed before and after immersion in SBF. These experiments showed that the scaffolds are highly bioactive, as after a few days of immersion in SBF a hydroxyapatite-like layer was formed on the scaffold's surface. It was also observed that P(3HB)-coated samples exhibited higher values of compression strength than uncoated samples. Biocompatibility assessment was carried out by qualitative evaluation of cell morphology after different culture periods, using scanning electron microscopy, while cell proliferation was determined by using the AlamarBlue assay. Alkaline phosphatase (ALP) and osteocalcin (OC) assays were used as quantitative in vitro indicators of osteoblast function. Two different types of medium were used for ALP and OC tests: normal supplemented medium and osteogenic medium. HOS cells were seeded and cultured onto the scaffolds for up to 2 weeks. The AlamarBlue assay showed that cells were able to proliferate and grow on the scaffold surface. After 7 days in culture, the P(3HB)-coated samples had a higher number of cells on their surfaces than the uncoated samples. Regarding ALP- and OC-specific activity, no significant differences were found between samples with different pore sizes. All scaffolds containing osteogenic medium seemed to have a slightly higher level of ALP and OC concentration. These experiments confirmed that Bioglass/P(3HB) scaffolds have potential as osteoconductive tissue engineering substrates for maintenance and normal functioning of bone tissue. PMID:19170250

Bretcanu, Oana; Misra, Superb; Roy, Ipsita; Renghini, Chiara; Fiori, Fabrizio; Boccaccini, Aldo R; Salih, Vehid

2009-02-01

135

A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer  

PubMed Central

Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the “smart” materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI) cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA). Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications. PMID:24130573

Khoroushi, Maryam; Keshani, Fateme

2013-01-01

136

In Vitro Bioactivity and Antimicrobial Tuning of Bioactive Glass Nanoparticles Added with Neem (Azadirachta indica) Leaf Powder  

PubMed Central

Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50?nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834

Prabhu, M.; Ruby Priscilla, S.; Kavitha, K.; Manivasakan, P.; Rajendran, V.; Kulandaivelu, P.

2014-01-01

137

In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder.  

PubMed

Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834

Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P

2014-01-01

138

Structure, dynamics, and surface reactions of bioactive glasses  

NASA Astrophysics Data System (ADS)

Three bioactive glasses (45S5, 55S4.3, and 60S3.8) have been investigated using atomic-scale molecular dynamics simulations in attempt to explain differences in observed macroscopic bioactivity. Bulk and surface structures and bulk dynamics have been characterized. Ion exchange and hydrolysis reactions, the first two stages in Hench's model describing the reactions of bioactive glass surfaces in vivo, have been investigated in detail. The 45S5 composition shows a much greater network fragmentation: it is suggested that this fragmentation can play a role in at least the first two stages of Hench's model for HCA formation on the surfaces of bioactive glasses. In terms of dynamic behavior, long-range diffusion was only observed for sodium. Calcium showed only jumps between adjacent sites, while phosphorus showed only local vibrations. Surface simulations show the distinct accumulation of sodium at the immediate surface for each composition. Surface channels are also shown to exist and are most evident for 45S5 glass. Results for a single ion exchange showed that the ion-exchange reaction is preferred (more exothermic) for Na+ ions near Si, rather than P. A range of reaction energies were found, due to a range of local environments, as expected for a glass surface. The average reaction energies are not significantly different among the three glass compositions. The results for bond hydrolysis on as-created surfaces show no significant differences among the three compositions for simulations involving Si-O-Si or Si-O-P. All average values are greater than zero, indicating endothermic reactions that are not favorable by themselves. However, it is shown that the hydrolysis reactions became more favorable (in fact, exothermic for 45S5 and 55S4.3) when simulated on surfaces that had already been ion-exchanged. This is significant because it gives evidence supporting Hench's proposed reaction sequence. Perhaps even more significantly, the reaction energies for hydrolysis following ion exchange directly relate to the glass composition; the 45S5 composition is most favorable and 60S3.8 is least favorable. This correlates directly with the observed macroscopic in vivo bioactivity of these glasses.

Zeitler, Todd R.

139

Imaging physicochemical reactions occurring at the pore surface in binary bioactive glass foams by micro ion beam analysis.  

PubMed

In this work, the physicochemical reactions occurring at the surface of bioactive sol-gel derived 3D glass scaffolds via a complete PIXE characterization were studied. 3D glass foams in the SiO(2)-CaO system were prepared by sol-gel route. Samples of glass scaffolds were soaked in biological fluids for periods up to 2 days. The surface changes were characterized using particle induced X-ray emission (PIXE) associated to Rutherford backscattering spectroscopy (RBS), which are efficient methods to perform quantitative chemical maps. Elemental maps of major and trace elements at the glass/biological fluids interface were obtained at the micrometer scale for every interaction time. Results revealed interconnected macropores and physicochemical reactions occurring at the surface of pores. The micro-PIXE-RBS characterization of the pores/biological fluids interface shows the glass dissolution and the rapid formation of a Ca rich layer with the presence of phosphorus that came from biological fluids. After 2 days, a calcium phosphate-rich layer containing magnesium is formed at the surface of the glass scaffolds. We demonstrate that quantities of phosphorus provided only by the biological medium have a significant impact on the development and the formation of the phosphocalcic layer. PMID:20527821

Jallot, E; Lao, J; John, L; Soulié, J; Moretto, Ph; Nedelec, J M

2010-06-01

140

Bioactive IGF-1 release from collagen-GAG scaffold to enhance cartilage repair in vitro.  

PubMed

Tissue engineering is a promising technique for cartilage repair. Toward this goal, a porous collagen-glycosaminoglycan (CG) scaffold was loaded with different concentrations of insulin-like growth factor-1 (IGF-1) and evaluated as a growth factor delivery device. The biological response was assessed by monitoring the amount of type II collagen and proteoglycan synthesised by the chondrocytes seeded within the scaffolds. IGF-1 release was dependent on the IGF-1 loading concentration used to adsorb IGF-1 onto the CG scaffolds and the amount of IGF-1 released into the media was highest at day 4. This initial IGF-1 release could be modelled using linear regression analysis. Osteoarthritic (OA) chondrocytes seeded within scaffolds containing adsorbed IGF-1 deposited decorin and type II collagen in a dose dependent manner and the highest type II collagen deposition was achieved via loading the scaffold with 50 ?g/ml IGF-1. Cells seeded within the IGF-1 loaded scaffolds also deposited more extracellular matrix than the no growth factor control group thus the IGF-1 released from the scaffold remained bioactive and exerted an anabolic effect on OA chondrocytes. The effectiveness of adsorbing IGF-1 onto the scaffold may be due to protection of the molecule from proteolytic digestion allowing a more sustained release of IGF-1 over time compared to adding multiple doses of exogenous growth factor. Incorporating IGF-1 into the CG scaffold provided an initial therapeutic burst release of IGF-1 which is beneficial in initiating ECM deposition and repair in this in vitro model and shows potential for developing this delivery device in vivo. PMID:25577208

Mullen, Leanne M; Best, Serena M; Ghose, Siddhartha; Wardale, John; Rushton, Neil; Cameron, Ruth E

2015-01-01

141

Sintered porous DP-bioactive glass and hydroxyapatite as bone substitute.  

PubMed

There is extensive experimental and surgical experience with the use of bone tissue to fill defects in the skeleton, to bridge non-union sites, and to pack defects in bone created from cyst curettage. DP-bioactive glass with a chemical composition of Na2O 8.4%, SiO2 39.6%, P2O5 12% and CaO 40% has been reported as an alternative bone substitute of high mechanical strength, good biocompatibility. and which has a tight bond with living tissue. The bonding layer between DP-bioactive glass and bone tissue was considered to be formed by dissolution of calcium and phosphate ions from the DP-bioactive glass into the surrounding body fluids. The biological hydroxyapatite was suspected to deposit directly onto the bonding layer. In order to confirm the interaction between the DP-bioactive glass and bone tissue, the developed bioactive glass was implanted into rabbit femur condyle for 2-32 weeks. The histological evaluation of DP-bioactive glass as a bone substitute was also investigated in the study. Porous hydroxyapatite bioceramic was used in the control group and the results were compared with those of DP-bioactive glass. The interface between the DP-bioactive glass and bone tissue examined with SEM-EPMA showed that the bioactive glass formed a reaction layer on the surface within 2 weeks after operation and formed a direct bond with natural bone. The elements contained in the bioactive glass apparently interdiffuse with the living bone and biological hydroxyapatite deposited onto the diffusion area, which was proved by EPMA and TEM. After implantation for over 8 weeks, the DP-bioactive glass was gradually biodegraded and absorbed by the living bone. Histological examination using the optical microscope showed that osteocytes grow into the inside of the DP-bioactive glass and the bioactive glass would be expected to be a part of bone. PMID:7888580

Lin, F H; Lin, C C; Liu, H C; Huang, Y Y; Wang, C Y; Lu, C M

1994-10-01

142

Bioactive glass modulation of intestinal epithelial cell restitution  

Microsoft Academic Search

Repair of superficial injury to the gastrointestinal mucosa involves the process of restitution, the rapid migration of epithelial cells across damaged areas. The effect of 45S5 bioactive glass on epithelial restitution was assessed using a novel co-culture model incorporating wounded intestinal epithelial cell monolayers and sub-epithelial myofibroblasts to simulate in vivo conditions that occur during superficial mucosal ulceration. Epithelial wound

Syed Raza Moosvi; Richard M. Day

2009-01-01

143

Crystallization kinetics of tape cast bioactive glass 45S5  

Microsoft Academic Search

The crystallization kinetics of tape cast bioactive glass 45S5 was studied using non-isothermal methods. XRD confirmed that Na2Ca2Si3O9 was formed during heating up to 1000 °C. The modified Kissinger equation was used to determine that the activation energy for crystallization was 350 kJ\\/mol. The Avrami exponent, n, was determined to be 0.96 (Ozawa method) and 0.94 (Augis–Bennett method). Such results

D. C. Clupper; L. L. Hench

2003-01-01

144

Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.  

PubMed

Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. PMID:24582266

Abbasi, Mojtaba; Hashemi, Babak

2014-04-01

145

Investigation on bio-mineralization of melt and sol gel derived bioactive glasses  

NASA Astrophysics Data System (ADS)

The bio-mineralization properties of the melt-derived bioactive glass 45S5 and the sol-gel derived bioactive glasses 58S and 77S were investigated and compared using in vitro test combined with BET, XRD, FTIR and SEM techniques. It was found that the surfaces of the three bioactive glasses could be mineralized by immersion in a simulated body fluid (SBF) at 37 °C for several hours. The bio-mineralized products on the surfaces of the bioactive glasses were apatite microcrystals with a low crystallinity, but the composition and morphologies of the apatite microcrystals on three glasses were different.

Chen, Xiaofeng; Meng, Yongchun; Li, Yuli; Zhao, Naru

2008-11-01

146

Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation.  

PubMed

Calcium phosphate cements (CPCs) have been widely used as an alternative to biological grafts due to their excellent osteoconductive properties. Although degradation has been improved by using poly(D,L-lactic-co-glycolic) acid (PLGA) microspheres as porogens, the biological performance of CPC/PLGA composites is insufficient to stimulate bone healing in large bone defects. In this context, the aim of this study was to investigate the effect of incorporating osteopromotive bioactive glass (BG; up to 50 wt %) on setting properties, in vitro degradation behavior and morphological characteristics of CPC/BG and CPC/PLGA/BG. The results revealed that the initial and final setting time of the composites increased with increasing amounts of incorporated BG. The degradation test showed a BG-dependent increasing effect on pH of CPC/BG and CPC/PLGA/BG pre-set scaffolds immersed in PBS compared to CPC and CPC/PLGA equivalents. Whereas no effects on mass loss were observed for CPC and CPC/BG pre-set scaffolds, CPC/PLGA/BG pre-set scaffolds showed an accelerated mass loss compared with CPC/PLGA equivalents. Morphologically, no changes were observed for CPC and CPC/BG pre-set scaffolds. In contrast, CPC/PLGA and CPC/PLGA/BG showed apparent degradation of PLGA microspheres and faster loss of integrity for CPC/PLGA/BG pre-set scaffolds compared with CPC/PLGA equivalents. Based on the present in vitro results, it can be concluded that BG can be successfully introduced into CPC and CPC/PLGA without exceeding the setting time beyond clinically acceptable values. All injectable composites containing BG had suitable handling properties and specifically CPC/PLGA/BG showed an increased rate of mass loss. Future investigations should focus on translating these findings to in vivo applications. PMID:23364896

Renno, A C M; Nejadnik, M R; van de Watering, F C J; Crovace, M C; Zanotto, E D; Hoefnagels, J P M; Wolke, J G C; Jansen, J A; van den Beucken, J J J P

2013-08-01

147

In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes.  

PubMed

Highly porous (> 90% porosity) 45S5 Bioglass®-derived glass-ceramic scaffolds were fabricated by foam replication method, and coated with carbon nanotubes (CNT) (coating thickness: 1 ?m) using electrophoretic deposition (EPD). In vitro cell culture using mesenchymal stem cells (MSCs) was carried out on both scaffold systems (with and without CNT coating) over a 4-week period. By using AlamarBlue™, BSA and alkaline phosphatase assays; the cell viability and differentiation were measured quantitatively measured and compared between the two scaffold types. The results showed that both scaffold systems are biocompatible with MSCs and they can support the cellular activity. No cytotoxic effects of CNT were observed under the conditions of the present experiments. Although a lower initial cell viability on the CNT-coated scaffolds was observed, no significant differences were found after 4 weeks of culture compared with the uncoated scaffolds. This work therefore shows that there is in principle no significant improvement of cellular responses by creating a CNT-coating on this type of highly bioactive scaffolds. However, the electrical conductivity introduced by the coating might have the potential to increase cell viability and differentiation when cell culture is carried out under the effect of electrical stimulation. PMID:21887738

Meng, Decheng; Rath, Subha Narayan; Mordan, Nichola; Salih, Vehid; Kneser, Ulrich; Boccaccini, Aldo R

2011-12-01

148

Strength and toughness of tape cast bioactive glass 45S5 following heat treatment  

Microsoft Academic Search

Tape cast and sintered (TCS) bioactive glass 45S5 has been shown to exhibit in vitro bioactivity in SBF and Tris, despite the formation of a crystalline phase (Na2Ca2Si3O9) during heat treatment. In this work, the effective porosity, hardness and flexural strength of TCS bioactive ceramic (composed of bioactive glass 45S5 prior to heat treatment) was determined as a function of

D. C Clupper; L. L Hench; J. J Mecholsky

2004-01-01

149

Fabrication and characterization of bioactive glass (45S5)\\/titania biocomposites  

Microsoft Academic Search

Bioactive glass (BG) (45S5) has been used successfully as bone-filling material in orthopedic and dental surgery but its lean mechanical strength limits its applications in load-bearing positions. Approaches to strengthen these materials decreased their bioactivity. In order to realize the optimal matching between mechanical and bioactivity properties, bioactive glass (45S5) was reinforced by introducing titania (TiO2) in anatase form and

Hanan H. Beherei; Khaled R. Mohamed; Gehan T. El-Bassyouni

2009-01-01

150

45S5 Bioactive glass surface charge variations and the formation of a surface calcium phosphate layer in a  

E-print Network

45S5 Bioactive glass surface charge variations and the formation of a surface calcium phosphate- phate (Ca-P) layer formation kinetics on the surface of 45S5 bioactive glass (BG). We hypothesize a surface calcium phosphate layer in vivo, bioactive materials, such as 45S5 bioactive glass (BG), are able

Lu, Helen H.

151

Soluble starch and composite starch Bioactive Glass 45S5 particles: Synthesis, bioactivity, and interaction with rat bone marrow cells  

Microsoft Academic Search

For many biomedical applications, biodegradable and simultaneously bioactive materials are desired. These materials should at the same time be able to support cell function and co-exist with the organism without triggering a relevant immune response.In this work, the synthesis as well as the bioactivity evaluation of newly developed polymer soluble potato starch and composite (with Bioactive Glass 45S5) micron-size particles

G. A. Silva; A. Pedro; F. J. Costa; N. M. Neves; O. P. Coutinho; R. L. Reis

2005-01-01

152

Molecular basis for action of bioactive glasses as bone graft substitute.  

PubMed

Bone grafting procedures are undergoing a major shift from autologous and allogeneic bone grafts to synthetic bone graft substitutes. Bioactive glasses are a group of synthetic silica-based bioactive materials with bone bonding properties first discovered by Larry Hench. They have several unique properties compared with other synthetic bioresorbable bioactive ceramics, such as calcium phosphates, hydroxyapatite (HA) and tricalcium phosphate (TCP). Bioactive glasses have different rates of bioactivity and resorption rates depending on their chemical compositions. The critical feature for the rate of bioactivity is a SiO2 content < 60% in weight. In vivo, the material is highly osteoconductive and it seems to promote the growth of new bone on its surface. In a recent study, the activity of the material was found even to overshadow the effect of BMP-2 gene therapy. In vivo, there is a dynamic balance between intramedullary bone formation and bioactive glass resorption. Recent studies of molecular biology have shown that bioactive glass induces a high local turnover of bone formation and resorption. Many osteoporotic fracture patients are candidates for concurrent treatment with bisphosphonates and bioceramic bone graft substitutes. Since osteopromotive silica-based bioactive glasses induce accelerated local bone turnover, adjunct antiresorptive agents may affect the process. However, a recent study showed that an adjunct antiresorptive therapy (zoledronic acid) is even beneficial for bone incorporation of bioactive glass. Based on these observations, bioactive glasses are a promising group of unique biomaterials to act as bone graft substitutes. PMID:16821652

Välimäki, V V; Aro, H T

2006-01-01

153

A new sol–gel process for producing Na 2O-containing bioactive glass ceramics  

Microsoft Academic Search

The sol–gel process of producing SiO2–CaO bioactive glasses is well established, but problems remain with the poor mechanical properties of the amorphous form and the bioinertness of its crystalline counterpart. These properties may be improved by incorporating Na2O into bioactive glasses, which can result in the formation of a hard yet biodegradable crystalline phase from bioactive glasses when sintered. However,

Qi-Zhi Chen; Yuan Li; Li-Yu Jin; Julian M. W. Quinn; Paul A. Komesaroff

2010-01-01

154

Investigation on bio-mineralization of melt and sol–gel derived bioactive glasses  

Microsoft Academic Search

The bio-mineralization properties of the melt-derived bioactive glass 45S5 and the sol–gel derived bioactive glasses 58S and 77S were investigated and compared using in vitro test combined with BET, XRD, FTIR and SEM techniques. It was found that the surfaces of the three bioactive glasses could be mineralized by immersion in a simulated body fluid (SBF) at 37°C for several

Xiaofeng Chen; Yongchun Meng; Yuli Li; Naru Zhao

2008-01-01

155

Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites  

Microsoft Academic Search

Polycaprolactone (PCL) composite films containing 5wt.% bioactive glass (BG) particles of different sizes (6?m, 250nm, <100nm) were prepared by solvent casting methods. The ultra-fine BG particles were prepared by high-energy mechanical milling of commercial 45S5 Bioglass® particles. The characteristics of bioactive glass particles were studied by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and

E. Tamjid; R. Bagheri; M. Vossoughi; A. Simchi

2011-01-01

156

A bioactive "self-fitting" shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects.  

PubMed

While tissue engineering is a promising alternative for treating critical-sized cranio-maxillofacial bone defects, improvements in scaffold design are needed. In particular, scaffolds that can precisely match the irregular boundaries of bone defects as well as exhibit an interconnected pore morphology and bioactivity would enhance tissue regeneration. In this study, a shape memory polymer (SMP) scaffold was developed exhibiting an open porous structure and the capacity to conformally "self-fit" into irregular defects. The SMP scaffold was prepared via photocrosslinking of poly(?-caprolactone) (PCL) diacrylate using a SCPL method, which included a fused salt template. A bioactive polydopamine coating was applied to coat the pore walls. Following exposure to warm saline at T>T(trans) (T(trans)=T(m) of PCL), the scaffold became malleable and could be pressed into an irregular model defect. Cooling caused the scaffold to lock in its temporary shape within the defect. The polydopamine coating did not alter the physical properties of the scaffold. However, polydopamine-coated scaffolds exhibited superior bioactivity (i.e. formation of hydroxyapatite in vitro), osteoblast adhesion, proliferation, osteogenic gene expression and extracellular matrix deposition. PMID:25063999

Zhang, Dawei; George, Olivia J; Petersen, Keri M; Jimenez-Vergara, Andrea C; Hahn, Mariah S; Grunlan, Melissa A

2014-11-01

157

A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration.  

PubMed

A novel room temperature process was developed to produce a 3D porous magnesium phosphate (MgP) scaffold with high drug load/release efficiency for use in hard tissue regeneration through a combination of a paste extruding deposition (PED) system and cement chemistry. MgP scaffolds were prepared using a two-step process. The first step was fabrication of the 3D porous scaffold green body to control both the morphology and pore structure using a PED system without hardening. The second step was cementation, which was carried out by immersing the scaffold green body in the binder solution for hardening instead of the typical sintering process in ceramic scaffold fabrication. Separation of the manufacturing process and cement reaction was important to secure enough time to fabricate a 3D scaffold with various sizes and architectures under homogeneous extruding conditions. Because the whole process is carried out at room temperature, the bioactive molecules, which are easily denatured by heat, may apply to scaffolds during the process. Lysozyme was selected as a model bioactive substance to demonstrate the efficiency of this process; this was directly mixed into MgP powder to introduce homogeneous distribution in the scaffold. The extruding paste for the PED system was prepared using the MgP-lysozyme blended powder as starting materials. That is, both 3D scaffold fabrication and functionalization of the scaffold with bioactive substances could be carried out simultaneously. This process significantly enhanced both drug loading efficiency and release performance compared to the typical sintering process, where the drug is generally loaded by adsorption after heat treatment. The MgP scaffold developed in this study satisfied the required conditions for scaffolding in hard tissue regeneration in an ideal manner, including 3 dimensionally well-interconnected pore structures, favorable mechanical properties, biodegradability, good cell affinity and in vitro biocompatibility; thus, it has excellent potential for application in the field of biomaterials. PMID:24433911

Lee, Jongman; Farag, Mohammad Mahmoud; Park, Eui Kyun; Lim, Jiwon; Yun, Hui-Suk

2014-03-01

158

Indigenous hydroxyapatite coated and bioactive glass coated titanium dental implant system – Fabrication and application in humans  

PubMed Central

Background: The use of different bioactive materials as coating on dental implant to restore tooth function is a growing trend in modern Dentistry. In the present study, hydroxyapatite and the bioactive glass-coated implants were evaluated for their behavior in osseous tissue following implantation in 14 patients. Materials and Methods: Bioactive glass and hydroxyapatite formulated and prepared for coating on Ti-6Al-4V alloy. Hydroxyapatite coating was applied on the implant surface by air plasma spray technique and bioactive glass coating was applied by vitreous enameling technique. Their outcome was assessed after 6 months in vivo study in human. Results: Hydroxyapatite and bioactive glass coating materials were nontoxic and biocompatible. Uneventful healing was observed with both types of implants. Conclusion: The results showed bioactive glass is a good alternative coating material for dental implant. PMID:22028507

Mistry, Surajit; Kundu, Debabrata; Datta, Someswar; Basu, Debabrata; Soundrapandian, Chidambaram

2011-01-01

159

Flame Spray Deposition of Titanium Alloy-Bioactive Glass Composite Coatings  

NASA Astrophysics Data System (ADS)

Powders of titanium alloy (Ti-6Al-4V) and bioactive glass (45S5) were deposited by flame spraying to fabricate composite porous coatings for potential use in bone fixation implants. Bioactive glass and titanium alloy powder were blended and deposited in various weight fractions under two sets of spray conditions, which produced different levels of porosity. Coatings were characterized with cross-sectional optical microscopy, x-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Immersion testing in simulated body fluid (SBF) was conducted for 0, 1, 7, and 14 days. Hydroxyapatite (HA) was found on the bioactive glass-alloy composite coatings after 7 days of immersion; no HA was observed after 14 days on the pure titanium alloy control coating. The HA formation on the alloy-bioactive glass composite coating suggests that the addition of bioactive glass to the blend may greatly increase the bioactivity of the coating through enhanced surface mineralization.

Nelson, G. M.; Nychka, J. A.; McDonald, A. G.

2011-12-01

160

Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.  

PubMed

Highly porous bioresorbable glass-ceramic scaffolds were prepared via sponge replication method by using an open-cell polyurethane foam as a template and phosphate-based glass powders. The glass, belonging to the P2O5-SiO2-CaO-MgO-Na2O-K2O system, was synthesized by a melting-quenching route, ground, and sieved to obtain powders with a grain size of less than 30??m. A slurry containing glass powders, polyvinyl alcohol, and water was prepared to coat the polymeric template. The removal of the polymer and the sintering of the glass powders were performed by a thermal treatment, in order to obtain an inorganic replica of the template structure. The structure and properties of the scaffold were investigated from structural, morphological, and mechanical viewpoints by means of X-ray diffraction, scanning electron microscopy, density measurements, image analysis, and compressive tests. The scaffolds exhibited a trabecular architecture that closely mimics the structure of a natural spongy bone. The solubility of the porous structures was assessed by soaking the samples in acellular simulated body fluid (SBF) and Tris-HCl for different time frames and then by assessing the scaffold weight loss. As far as the test in SBF is concerned, the nucleation of hydroxyapatite on the scaffold trabeculae demonstrates the bioactivity of the material. Biological tests were carried out using human bone marrow stromal cells to test the osteoconductivity of the material. The cells adhered to the scaffold struts and were metabolically active; it was found that cell differentiation over proliferation occurred. Therefore, the produced scaffolds, being biocompatible, bioactive, resorbable, and structurally similar to a spongy bone, can be proposed as interesting candidates for bone grafting. PMID:20566654

Vitale-Brovarone, Chiara; Ciapetti, Gabriela; Leonardi, Elisa; Baldini, Nicola; Bretcanu, Oana; Verné, Enrica; Baino, Francesco

2011-11-01

161

Initial Boost Release of Transforming Growth Factor-?3 and Chondrogenesis by Freeze-Dried Bioactive Polymer Scaffolds.  

PubMed

In cartilage regeneration, bio-activated implants are used in stem and progenitor cell-based microfracture cartilage repair procedures. Our aim was to analyze the chondrogenic potential of freeze-dried resorbable polymer-based polyglycolic acid (PGA) scaffolds bio-activated with transforming growth factor-?3 (TGFB3) on human subchondral mesenchymal progenitor cells known from microfracture. Progenitor cells derived from femur heads were cultured in the presence of freeze-dried TGFB3 in high-density pellet culture and in freeze-dried TGFB3-PGA scaffolds for chondrogenic differentiation. Progenitor cell cultures in PGA scaffolds as well as pellet cultures with and without continuous application of TGFB3 served as controls. Release studies showed that freeze-dried TGFB3-PGA scaffolds facilitate a rapid, initial boost-like release of 71.5% of TGFB3 in the first 10 h. Gene expression analysis and histology showed induction of typical chondrogenic markers like type II collagen and formation of cartilaginous tissue in TGFB3-PGA scaffolds seeded with subchondral progenitor cells and in pellet cultures stimulated with freeze-dried TGFB3. Chondrogenic differentiation in freeze-dried TGFB3-PGA scaffolds was comparable to cultures receiving TGFB3 continuously, while non-stimulated controls did not show chondrogenesis during prolonged culture for 14 days. These results suggest that bio-activated, freeze-dried TGFB3-PGA scaffolds have chondrogenic potential and are a promising tool for stem cell-mediated cartilage regeneration. PMID:25169425

Krüger, Jan Philipp; Machens, Isabel; Lahner, Matthias; Endres, Michaela; Kaps, Christian

2014-12-01

162

Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow  

Microsoft Academic Search

The aim of the present study was to characterize the neoformed bone tissue around boron-modified bioactive glass particles implanted in rat tibia bone marrow by histologic, histomorphometric and microchemical evaluation. Melt-derived glasses were prepared from a base 45S5 bioactive glass of nominal composition (45% SiO2, 24.5% CaO, 24.5% Na2O and 6% P2O5 in wt%). The glass composition was modified by

Alejandro A. Gorustovich; José M. Porto López; María B. Guglielmotti; Rómulo L. Cabrini

2006-01-01

163

Fluoride-containing bioactive glasses: Surface reactivity in simulated body fluids solutions  

Microsoft Academic Search

The issue of the contribution of the addition of F to glass bioactivity is not well resolved. This work reports on the surface reactivity in different solutions (DMEM and Tris) for some potentially bioactive glasses based on the composition of 45S5 glass, in which CaF2 is substituted alternately for (part of) CaO and Na2O. The reactivity of F-containing glasses has

G. Lusvardi; G. Malavasi; L. Menabue; V. Aina; C. Morterra

2009-01-01

164

Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering  

NASA Astrophysics Data System (ADS)

Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.

Izadifar, Mohammad; Haddadi, Azita; Chen, Xiongbiao; Kelly, Michael E.

2015-01-01

165

ZK30-bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics  

Microsoft Academic Search

Previous in vivo studies on biodegradable magnesium alloys for orthopedic implant applications showed the need to improve early-stage bioactivity. Introducing bioactive particles into a magnesium alloy to form a metal matrix composite (MMC) represents an effective way to enhance the bioactivity of the alloy. In this study, composites with the ZK30 alloy as the matrix and the 45S5 bioactive glass

Z. G. Huan; M. A. Leeflang; J. Zhou; J. Duszczyk

2011-01-01

166

New Strontium-based Bioactive Glasses: Physicochemical Reactivity and Delivering Capability  

E-print Network

1 New Strontium-based Bioactive Glasses: Physicochemical Reactivity and Delivering Capability, strontium- doped bioactive glasses are of major interest; their key property relies on the increased that closely resembles to the biological apatite present in bones. Compared to strontium-free materials

Boyer, Edmond

167

Local protective effects of oral 45S5 bioactive glass on gastric ulcers in experimental animals.  

PubMed

Bioactive glass has been shown to stimulate bone regeneration and soft tissue healing. In this study, we evaluated the local protective effects of bioactive glass on experimental gastric ulcers, in comparison with omeprazole and hydrotalcite. Single and multiple gavage of 45S5 bioactive glass dose-dependently protected stress ulcers in mice and chronic ulcers in rats. Multi-daily gavage of bioactive glass for 7 days prevented chronic ulcer recurrence by 50 %. Bioactive glass ionic dissolution produced marked proliferation of ethanol-injured GES-1 human gastric mucosa epithelial cells 48 and 72 h after exposure. Bioactive glass was shown to be hardly absorbed after single or multi-daily gavage. This study, for the first time, demonstrates that bioactive glass is effective in protecting against gastric ulcers, with its high efficacy comparable to omeprazole and superior to hydrotalcite. The lack of oral absorption makes bioactive glass a potential for treatment of peptic ulcers omitting systemic toxicity or side-effects. PMID:23329370

Ma, Ai-niu; Gong, Nian; Lu, Jin-miao; Huang, Jin-lu; Hao, Bin; Guo, Yang; Zhong, Jipin; Xu, Yuhong; Chang, Jiang; Wang, Yong-xiang

2013-03-01

168

Dissolution of bioactive glasses: The effects of crystallinity coupled with stress  

Microsoft Academic Search

Fixing the chemical composition of bioactive ceramic glass does not dictate biological response. Processing history can alter\\u000a the microstructure, phase composition, degree of crystallinity, and residual stress—all of which can contribute to mechanical\\u000a performance and bioactive response. This paper discusses effects of thermal and mechanical processing performed on bioactive\\u000a glass 45S5 with regard to the micro-structural changes that occur during

John A. Nychka; Sherri L. R. Mazur; Satadru Kashyap; Ding Li; Fuqian Yang

2009-01-01

169

Nano-Hydroxyapatite/Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation  

NASA Astrophysics Data System (ADS)

Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work—fluoridated bioglass (Cao-P2O5-Na2O3-CaF2) and unfluoridated bioglass (Cao-P2O5-Na2O3) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm, respectively. The pellets were sintered at four different temperatures i.e. 1000 °C, 1150 °C, 1250 °C and 1350 °C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with ?-TCP (tricalcium phosphate) and ?-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 °C and 1150 °C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 °C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 °C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 °C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and sintered pellets, showing higher bioactivity in the green pellets.

Batra, Uma; Kapoor, Seema; Sharma, J. D.

2011-12-01

170

Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate.  

PubMed

One of the major challenges facing researchers of tissue engineering is scaffold design with desirable physical and mechanical properties for growth and proliferation of cells and tissue formation. In this research, firstly, nano-bioglass powder with grain sizes of 55-56 nm was prepared by melting method of industrial raw materials at 1,400 °C. Then the porous ceramic scaffold of bioglass with 30, 40 and 50 wt% was prepared by using the polyurethane sponge replication method. The scaffolds were coated with poly-3-hydroxybutyrate (P3HB) for 30 s and 1 min in order to increase the scaffold's mechanical properties. XRD, XRF, SEM, FE-SEM and FT-IR were used for phase and component studies, morphology, particle size and determination of functional groups, respectively. XRD and XRF results showed that the type of the produced bioglass was 45S5. The results of XRD and FT-IR showed that the best temperature to produce bioglass scaffold was 600 °C, in which Na2Ca2Si3O9 crystal is obtained. By coating the scaffolds with P3HB, a composite scaffold with optimal porosity of 80-87 % in 200-600 ?m and compression strength of 0.1-0.53 MPa was obtained. According to the results of compressive strength and porosity tests, the best kind of scaffold was produced with 30 wt% of bioglass immersed for 1 min in P3HB. To evaluate the bioactivity of the scaffold, the SBF solution was used. The selected scaffold (30 wt% bioglass/6 wt% P3HB) was maintained for up to 4 weeks in this solution at an incubation temperature of 37 °C. The XRD, SEM EDXA and AAS tests were indicative of hydroxyapatite formation on the surface of bioactive scaffold. This scaffold has some potential to use in bone tissue engineering. PMID:25631260

Montazeri, Mahbobeh; Karbasi, Saeed; Foroughi, Mohammad Reza; Monshi, Ahmad; Ebrahimi-Kahrizsangi, Reza

2015-02-01

171

Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles.  

PubMed

SiO(2)-CaO-P(2)O(5) ternary bioactive glass ceramic (BGC) nanoparticles with different compositions were prepared via a three-step sol-gel method. Polyethylene glycol was selected to be used as the surfactant to improve the dispersion of the nanoparticles. The morphology and composition of these BGC nanoparticles were observed by ESEM and EDX. All the BGC particles obtained in this method were about 20 nm in diameter. XRD analysis demonstrated that the different compositions can result in very different crystallinities for the BGC nanoparticles. Bioactivity tests in simulated body fluid solution (SBF), and degradability in phosphate buffer solution (PBS), were performed in vitro. SEM, EDX, and XRD were employed to monitor the surface variation of neat poly(L-lactic acid), PLLA, foam and PLLA/BGC porous scaffolds during incubation. The BGC nanoparticles with lower phosphorous and relative higher silicon content exhibited enhanced mineralization capability in SBF and a higher solubility in PBS medium. Such novel nanoparticles may have potential to be used in different biomedical applications, including tissue engineering or the orthopedic field. PMID:18286606

Hong, Zhongkui; Reis, Rui L; Mano, João F

2009-02-01

172

Study of yttrium containing bioactive glasses behaviour in simulated body fluid.  

PubMed

The influence of yttrium oxide on the bioactivity of glasses in the system SiO(2)-Na(2)O-P(2)O(5)-CaO-B(2)O(3)-K(2)O-MgO was studied in a simulated body fluid (SBF). Two series of glasses with different bioactivity were investigated. The reaction layers formed on the surface of the exposed glasses were evaluated by means of back scattered electron imaging of scanning electron microscopy equipped with energy dispersive X-ray analysis (BEI-SEM/EDXA). The concentration of Y, Ca and P released from the glasses into SBF, during 21 days was determined using inductively coupled plasma-emission spectroscopy ICP-AES and inductively coupled plasma-mass spectroscopy ICP-MS. Introducing yttrium in the selected bioactive glass tended to diminish the bioactivity of the glasses. The thickness of the calcium phosphate layer decreased with increasing yttrium oxide content. The same effect was also observed when yttrium oxide partially replaced only calcium, magnesium and phosphorous oxide in the precursor glass. The data show that we can produce bioactive glasses with yttrium oxide as a component. By suitable tailoring of the rest of the glasses the yttrium effect on the glass behavior in SBF should be possible to control and thus produce yttrium containing glasses with desired bioactivity. PMID:16897163

Cacaina, D; Ylänen, H; Hupa, M; Simon, S

2006-08-01

173

In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.  

PubMed

Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection. PMID:23820937

Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

2013-10-01

174

A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration  

PubMed Central

Background Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. Materials and Methods The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. Results CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. Conclusions A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration. PMID:23638115

Zhao, Kang; Tang, Yufei; Cheng, Zhe; Chen, Jun; Zang, Yuan; Wu, Jianwei; Kong, Liang; Liu, Shuai; Lei, Wei; Wu, Zixiang

2013-01-01

175

A new synthesis route to high surface area sol gel bioactive glass through alcohol washing  

PubMed Central

Bioactive glass is one of the widely used bone repair material due to its unique properties like osteoconductivity, osteoinductivity and biodegradability. In this study bioactive glass is prepared by the sol gel process and stabilized by a novel method that involves a solvent instead of the conventional calcinations process. This study represents the first attempt to use this method for the stabilization of bioactive glass. The bioactive glass stabilized by this ethanol washing process was characterized for its physicochemical and biomimetic property in comparison with similar composition of calcined bioactive glass. The compositional similarity of the two stabilized glass powders was confirmed by spectroscopic and thermogravimetric analysis. Other physicochemical characterizations together with the cell culture studies with L929 fibroblast cells and bone marrow mesenchymal stem cells proved that the stabilization was achieved with the retention of its inherent bioactive potential. However an increase in the surface area of the glass powder was obtained as a result of this ethanol washing process and this add up to the success of the study. Hence the present study exhibits a promising route for high surface area bioactive glass for increasing biomimicity. PMID:23512012

M. Mukundan, Lakshmi; Nirmal, Remya; Vaikkath, Dhanesh; Nair, Prabha D.

2013-01-01

176

Synthesis and thermal properties of nanoparticles of bioactive glasses containing silver  

Microsoft Academic Search

Calcium phosphate bioactive glasses (BG) and some ceramics are candidates for implantation due to their excellent bonding\\u000a to bone. Silver is a bactericidal element and can be easily introduced in glasses and ceramics. In this work, nanometer-sized\\u000a bioactive glass particles doped with silver were produced and characterized by Thermal Gravimetric analysis (TG), Fourier\\u000a Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy

José Renato J. Delben; Odair M. Pimentel; Marlene B. Coelho; Pollyanna D. Candelorio; Leonardo N. Furini; Fábio Alencar dos Santos; Fábio S. de Vicente; Angela A. S. T. Delben

2009-01-01

177

Synthesis of hierarchical porous bioactive glasses for bone tissue regeneration.  

PubMed

A novel hierarchical porous bioactive glasses were synthesised with cattail stem and triblock polyethylene oxide-propylene oxide block copolymer (P123) as macroporous template and mesoporous template, respectively. The structural and textural properties of materials were characterised by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, nitrogen adsorption-desorption, energy dispersive spectrometer and vibrating sample magnetometer technique. The results reveal the bioglasses possess multilevel porous structure with the macroporous size about 50 ?m and the mesopore with the diameter of 3.86 nm. Furthermore, metformin HCl was used as the model drug. The drug release kinetics and hydroxyapatite (HAP, (Ca10(PO4)6(OH)2)) inducing-growth ability of the composites were studied, respectively. The system exhibits the fast HAP inducing-growth ability and long-term drug delivery, making them a good candidate for bone tissue regeneration. PMID:25429500

Ma, Jie; Lin, Huiming; Li, Xiaofeng; Bian, Chunhui; Xiang, Di; Qu, Fengyu

2014-12-01

178

Influence of sodium content on the properties of bioactive glasses for use in air abrasion.  

PubMed

Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. PMID:24287337

Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

2013-12-01

179

Synthesis of nano-bioactive glass-ceramic powders and its in vitro bioactivity study in bovine serum albumin protein  

NASA Astrophysics Data System (ADS)

Bioactive glasses and ceramics have proved to be able to chemically bond to living bone due to the formation of an apatite-like layer on its surface. The aim of this work was preparation and characterization of bioactive glass-ceramic by sol-gel method. Nano-bioglass-ceramic material was crushed into powder and its bioactivity was examined in vitro with respect to the ability of hydroxyapatite layer to form on the surface as a result of contact with bovine serum albumin (BSA) protein. The obtained nano-bioactive glass-ceramic was analyzed before and after contact with BSA solution. This study used scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis to examine its morphology, crystallinity and composition. The TEM images showed that the NBG particles size were 10-40 nm. Bioactivity of nanopowder was confirmed by SEM and XRD due to the presence of a rich bone-like apatite layer. Therefore, this nano-BSA-bioglass-ceramic composite material is promising for medical applications such as bone substitutes and drug carriers.

Nabian, Nima; Jahanshahi, Mohsen; Rabiee, Sayed Mahmood

2011-07-01

180

Development of nano-macroporous soda-lime phosphofluorosilicate bioactive glass and glass-ceramics.  

PubMed

We have extended the usefulness of bioactive glass-ceramics for the repair and reconstruction of hard tissues by introducing F ions that are known to be beneficial, especially in dentistry. Nano-macro multimodal porosity in soda-lime phosphofluorosilicate bulk samples was introduced by the recently developed melt-quench-heat-etch method. The choice of starting glass composition is based on 48SiO2-2.7P2O5-xCaF2-yCaO-zNa2O where x = 0, 1, 4, 8, 10, 12, and (y + z) = 49.3-x (mol%). The effect of thermal and chemical treatment on the microstructure of samples is characterized by SEM, XRD and EDX. We find the formation of many crystalline phases, but mainly sodium calcium silicate, calcium phosphate, fluorapatite and calcium silicate. The bioactivity of soda-lime phosphofluorosilicate glass-ceramics is assessed by monitoring the formation of hydroxyl apatite (HA) layer: fluorapatite phase accelerates the rate of HA layer formation; the initial composition and multi-modal porosity are other key parameters that impact the formation of HA. The present porous glass-ceramics should be superior candidates for use in dental bone regeneration. PMID:19252969

Moawad, H M M; Jain, H

2009-07-01

181

Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering.  

PubMed

The effect of particle size distribution, binder content, processing parameters, and sintering schedule on the microstructure and mechanical properties of porous constructs was investigated. The porous constructs were produced by indirect selective laser sintering (SLS) of 13-93 bioactive glass using stearic acid as a polymeric binder. The binder content and d(50) particle size in the feedstock powders were simultaneously reduced from 22 to 12 wt% and from 20 to 11 ?m, respectively, to identify the minimum binder content required for the SLS fabrication. An average particle size of ?16 ?m with a binder content of 15 wt% significantly reduced post-processing time and improved mechanical properties. Increasing the laser power and scan speed at the energy density of 1 cal/cm² maintained the feature sharpness of the parts during the fabrication of green parts and could almost double the mechanical properties of the sintered parts. Changes in the heating rates, ranging from 0.1 to 2 °C/min, during the post-processing of the fabricated "green" scaffolds showed that the heating rate significantly affects the densification and mechanical properties of the sintered scaffolds. The compressive strength of the scaffolds manufactured with the optimized parameters varied from 41 MPa, for a scaffold with a porosity of ?50%, to 157 MPa, for a dense part. The bioactive scaffolds soaked in simulated body fluids for durations up to 6 weeks were used to evaluate the change in mechanical properties in vitro. PMID:22842272

Kolan, Krishna C R; Leu, Ming C; Hilmas, Gregory E; Velez, Mariano

2012-09-01

182

Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations.  

PubMed

Fluorinated bioactive glasses (FBGs) combine the antibacterial properties of fluorine with the biological activity of phosphosilicate glasses. Because their biomedical application depends on the release of fluorine, the detailed characterization of the fluorine environment in FBGs is the key to understand their properties. Car-Parrinello molecular dynamics (CPMD) simulations have been performed on a 45S5 Bioglass composition in which 10 mol % of the CaO has been replaced with CaF(2), and have allowed us to resolve some longstanding issues about the atomic structure of fluorinated bioglasses, with particular regard to the structural role of fluorine. F is coordinated almost entirely to the modifier ions Na and Ca, with a very small amount of residual Si-F bonds, whose fraction only becomes significant in the melt precursor. High temperature leads to Si-F bonds in both tetra- (SiO(3)F) and, less frequently, penta-coordinated (SiO(4)F and SiO(3)F(2)) complexes, showing that formation of these bonds through the expansion of the SiO(4) coordination shell is generally less favored. There is no evidence for preferential bonding of F to either modifier ion: almost all F atoms are coordinated to both calcium and sodium in a "mixed state", rather than exclusively to either, as had been conjectured. We discuss the consequences of these findings on the properties of fluorine-containing bioglasses. PMID:21322627

Christie, Jamieson K; Pedone, Alfonso; Menziani, Maria Cristina; Tilocca, Antonio

2011-03-10

183

Structure of bioactive glass and its application to glass ionomer cement.  

PubMed

We prepared a new glass ionomer cement using bioactive CaO-P2O5-SiO2(-MgO) glass and investigated its setting process using FT-IR and MAS NMR analyses. The compressive strengths of the cements depended on the glass composition and a maximum strength of 33.3 +/- 4.7 MPa was obtained using cement with the glass composition of MgO:4.6, CaO:44.9, SiO2:34.2 and P2O5:16.3% in weight. FT-IR analysis showed that the COOH group in the polyacrylic acid decreased and carboxylate ion (COO-Ca2+) increased after the setting reaction. A broad signal appeared around -82 ppm in 29Si MAS-NMR spectra of the glass and a new signal corresponding to hydrated silica gel formation appeared around -102 and -111 ppm after setting. This suggests that Ca2+ was released from the glass powder to form carboxylate salt and that a degree of polymerization in the silicate network increased. The setting mechanism of the cement was found to be essentially the same as in conventional glass ionomer cement. PMID:10786128

Matsuya, S; Matsuya, Y; Ohta, M

1999-06-01

184

Healing effect of bioactive glass ointment on full-thickness skin wounds.  

PubMed

This study aimed to investigate the effect of bioactive glasses on cutaneous wound healing in both normal rats and streptozotocin-induced diabetic rats. Bioactive glass ointments, prepared by mixing the sol-gel bioactive glass 58S (SGBG-58S), nanobioactive glass (NBG-58S) and the melt-derived 45S5 bioactive glass (45S5) powder with Vaseline (V) at 18% weight percentage, were used to heal full thickness excision wounds. Pure V was used as control in this study. Compared to SGBG-58S, NBG-58S consists of relatively dispersible nanoparticles with smaller size. The analysis of wound healing rate and wound healing time showed that bioactive glasses promoted wound healing. The ointments containing SGBG-58S and NBG-58S healed the wounds more quickly and efficiently than the ointment containing 45S5. Histological examination indicated that bioactive glasses promoted the proliferation of fibroblasts and growth of granulation tissue. Immunohistochemical staining showed that the production of two growth factors, VEGF and FGF2, which are beneficial to wound healing, was also stimulated during the healing process. Transmission electron microscope observations showed that fibroblasts in wounds treated with bioactive glasses contained more rough endoplasmic reticula and had formed new capillary microvessels by the seventh day. The effects of SGBG-58S and NBG-58S were better than those of 45S5. All results suggest that bioactive glasses, especially SGBG-58S and NBG-58S, can accelerate the recovery of skin wounds in both normal and diabetes-impaired healing models and have a great potential for use in wound repair in the future. PMID:22736113

Lin, Cai; Mao, Cong; Zhang, Juanjuan; Li, Yuli; Chen, Xiaofeng

2012-08-01

185

How can bioactive glasses be useful in ocular surgery?  

PubMed

In the last few decades, the introduction of bioactive glasses (BGs), a special class of bioceramics that are able to bond to living tissues stimulating new tissue growth, has improved both treatment procedures via reconstructive surgery and the quality of life of rehabilitated patients in orthopedics and dentistry. While BGs have been extensively investigated for applications in these two surgical fields, there has been relatively little research on their use in other medical areas. Glass has been used for centuries to produce external refractive lenses and the intraocular implantation of small glass disks to correct visual deficiencies has been documented since the mid 1700s. Moreover, some evidences reported in the recent literature seem to demonstrate that the success of three specific types of ophthalmic devices, that is, synthetic grafts for eye orbit bone repair, orbital implants replacing the whole ocular globe and keratoprostheses (artificial cornea), could significantly benefit by the use of BG. A prospective view as well as a state-of-the-art review on this topic are currently lacking in the literature. The present article aims to give a comprehensive picture of the BG-based implants that have been developed in the context of ocular surgery; the strengths and shortcomings of the existing devices are outlined in order to provide useful stimuli for future research. Promising research directions are also proposed, emphasizing the added values that BGs could carry in ophthalmology in the light of recent findings in tissue engineering and regenerative medicine. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 1259-1275, 2015. PMID:24909562

Baino, Francesco

2015-03-01

186

Osteoinduction of Human Mesenchymal Stem Cells by Bioactive Composite Scaffolds without Supplemental Osteogenic Growth Factors  

PubMed Central

The development of a new family of implantable bioinspired materials is a focal point of bone tissue engineering. Implant surfaces that better mimic the natural bone extracellular matrix, a naturally nano-composite tissue, can stimulate stem cell differentiation towards osteogenic lineages in the absence of specific chemical treatments. Herein we describe a bioactive composite nanofibrous scaffold, composed of poly-caprolactone (PCL) and nano-sized hydroxyapatite (HA) or beta-tricalcium phosphate (TCP), which was able to support the growth of human bone marrow mesenchymal stem cells (hMSCs) and guide their osteogenic differentiation at the same time. Morphological and physical/chemical investigations were carried out by scanning, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, mechanical and wettability analysis. Upon culturing hMSCs on composite nanofibers, we found that the incorporation of either HA or TCP into the PCL nanofibers did not affect cell viability, meanwhile the presence of the mineral phase increases the activity of alkaline phosphatase (ALP), an early marker of bone formation, and mRNA expression levels of osteoblast-related genes, such as the Runt-related transcription factor 2 (Runx-2) and bone sialoprotein (BSP), in total absence of osteogenic supplements. These results suggest that both the nanofibrous structure and the chemical composition of the scaffolds play a role in regulating the osteogenic differentiation of hMSCs. PMID:22022571

Polini, Alessandro; Pisignano, Dario; Parodi, Manuela; Quarto, Rodolfo; Scaglione, Silvia

2011-01-01

187

Cell\\/surface interactions and adhesion on bioactive glass 45S5  

Microsoft Academic Search

This paper examines the effects of surface texture (smooth versus rough) on cell\\/surface interactions on the bioactive glass,\\u000a 45S5. The cell surface interactions associated with cell spreading are studied using cell culture experiments. Subsequent\\u000a energy dispersive x-ray spectroscopy is also used to reveal the distributions of calcium, phosphorous, sodium and oxygen on\\u000a the surfaces of the bioactive glasses. The implications

S. Levy; M. Van Dalen; S. Agonafer; W. O. Soboyejo

2007-01-01

188

Surface modification of titanium implants using bioactive glasses with air abrasion technologies  

Microsoft Academic Search

A growing number of surface treated titanium implants are routinely used in dental and orthopaedic surgery, with a view to\\u000a enhancing integration capacity with osseous tissue. This study examines the use of bioactive glass 45S5 as an alternative\\u000a abrasive and osteoproductive surface modification material. Abrasive blasting of commercially pure titanium with bioactive\\u000a glass 45S5 produced an irregular finish with a

Garrit Koller; Richard J. Cook; Ian D. Thompson; Timothy F. Watson; Lucy Di Silvio

2007-01-01

189

The effect of the topical administration of bioactive glass on inflammatory markers of human experimental gingivitis  

Microsoft Academic Search

Recent studies demonstrated that bioactive glass attenuated inflammatory reactions and bacterial growth in vitro. The aim of the present clinical study was to evaluate the effects of local bioactive glass-administration in vivo in subjects with experimental gingivitis. In each individual, contralateral teeth served as test and control over a 21-day non-hygiene (preventive phase) and a 7-day therapeutic phase. A 45S5

Jörg Eberhard; Nikolaus Reimers; Hendrik Dommisch; Johanna Hacker; Sandra Freitag; Yahya Acil; Hans-Karl Albers; Sören Jepsen

2005-01-01

190

Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO 2 laser cladding  

Microsoft Academic Search

Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO2 laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully

R. Comesaña; F. Lusquiños; J. del Val; M. López-Álvarez; F. Quintero; A. Riveiro; M. Boutinguiza; A. de Carlos; J. R. Jones; R. G. Hill; J. Pou

2011-01-01

191

Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content  

Microsoft Academic Search

Inorganic phosphate (Pi) is a physiological regulator of osteoblasts and chondrocytes, suggesting that phosphate may contribute to the biological response of these cells to bioactive glasses like Bioglass® 45S5, which is composed of 45% SiO2, 24.5% CaO, 24.5% Na2O, and 6% P2O5. We investigated the effect of varying the Pi content of bioactive glass disks (0%, 3%, 6% and 12%

S. Lossdörfer; Z. Schwartz; C. H. Lohmann; D. C. Greenspan; D. M. Ranly; B. D. Boyan

2004-01-01

192

In-vitro protein interactions with a bioactive gel-glass  

Microsoft Academic Search

Recent theories suggest that the local adsorption of biologically active peptide growth factors onto the surface of an implant may contribute to the unique osteogenic nature of silica-containing bioactive ceramics. A sol-gel derived glass is used as a model of the in-vivo reaction product of 45S5 bioactive glass at relatively short times (® is shown to be retained. Desorption during

K. D. Lobel; L. L. Hench

1996-01-01

193

Flame Spray Deposition of Titanium Alloy-Bioactive Glass Composite Coatings  

Microsoft Academic Search

Powders of titanium alloy (Ti-6Al-4V) and bioactive glass (45S5) were deposited by flame spraying to fabricate composite porous\\u000a coatings for potential use in bone fixation implants. Bioactive glass and titanium alloy powder were blended and deposited\\u000a in various weight fractions under two sets of spray conditions, which produced different levels of porosity. Coatings were\\u000a characterized with cross-sectional optical microscopy, x-ray

G. M. Nelson; J. A. Nychka; A. G. McDonald

194

Metallic glass nanofibers in future hydrogel-based scaffolds.  

PubMed

Electrically conductive reinforced hydrogels offer a wide range of applications as three-dimensional scaffolds in tissue engineering. We report electrical and mechanical characterization of methacrylated gelatin (GelMA) hydrogel, containing palladium-based metallic glass nanofibers (MGNF). Also we show that the fibers are biocompatible and C2C12 myoblasts in particular, planted into the hybrid hydrogel, tend to attach to and elongate along the fibers. The MGNFs in this work were created by gas atomization. Ravel of fibers were embedded in the GelMA prepolymer in two different concentrations (0.5 and 1.0 mg/ml), and then the ensemble was cured under UV light, forming the hybrid hydrogel. The conductivity of the hybrid hydrogel was proportional to the fiber concentration. PMID:25571184

Sadeghian, Ramin Banan; Ahadian, Samad; Yaginuma, Shin; Ramon-Azcon, Javier; Liang, Xiaobin; Nakajima, Ken; Shiku, Hitoshi; Matsue, Tomokazu; Nakayama, Koji S; Khademhosseini, Ali

2014-08-01

195

Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors.  

PubMed

Regeneration of large-size bone defects represents a significant challenge clinically, which requires the use of scaffolds with multifunction, such as anti-bacterial activity, and stimulation of osteogenesis and angiogenesis. It is known that functional ions or drug/growth factors play an important role to stimulate tissue regeneration. Mesoporous bioactive glasses (MBG) possess excellent bioactivity and drug-delivery ability as well as effective ionic release in the body fluids microenvironment due to its specific mesoporous structure and large surface area. For these reasons, functional ions (e.g. lithium (Li), strontium (Sr), Copper (Cu) and Boron (B)) and drug/growth factors (e.g. dexamethasone, vascular endothelial growth factor (VEGF) and bone morphogenetic protein (BMP)) have been incorporated into MBG, which shows high loading efficiency and effective release. The release of therapeutic ions and drug/growth factors from MBG offers it multifunctional properties, such as improved osteogenesis, angiogenesis, anti-bacterial/cancer activity. However, there is no a systematic review about delivery of therapeutic ions and drugs/growth factors from MBG for the functional effect on the tissue regeneration despite that significant progress has been achieved in the past five years. Therefore, in this review, we mainly focused on the new advances for the functional effect of delivering therapeutic ions and drugs/growth factors on the ostegeogenesis, angiogenesis and antibacterial activity. It is expected that the review will offer new concept to develop multifunctional biomaterials for bone regeneration by the synergistic effect of therapeutic ions and drug/growth factors. PMID:24780264

Wu, Chengtie; Chang, Jiang

2014-11-10

196

Structure, dielectric and bioactivity of P2O5-CaO-Na2O-B2O3 bioactive glass  

NASA Astrophysics Data System (ADS)

Bioactive phosphate glasses have been widely investigated for bone repair. Phosphate glass system of 47P2O5-30.5CaO-(22.5-x)Na2O-xB2O3 has been prepared by melt quenching technique. From the Raman analysis, it is confirmed that phosphate network form metaphosphate structure. Bioactivity of the glass is studied by immersing the prepared glass in simulated body fluid (SBF). All the glasses exhibited bioactivity after soaking in SBF. Addition of B2O3 to the glass by replacing the Na2O produces considerable effect on the dielectric and bioactivity of the glass. Ion dynamics are also analyzed through imaginary modulus and imaginary dielectric permittivity.

Maheswaran, A.; Hirankumar, G.; Heller, Nithya; Karthickprabhu, S.; Kawamura, Junichi

2014-06-01

197

In-vitro Comparison of Cytotoxicity of Two Bioactive Glasses in Micropowder and Nanopowder forms  

PubMed Central

The cytotoxicity of the biomaterials is a key issue that should be addressed prior to pre-clinical applications. This study was designed to evaluate and compare the cytotoxixity of two forms of bioactive glasses:nanopowder and micropowder. Human HGF1-PI53 gingival fibroblast cells were used to evaluate the cytotoxicity of 0.5, 1, 1.5, 2, 5, 10, 15 and 20 mg/ mL concentrations of the two bioactive glasses via MTT assay. The results were statistically analyzed using analysis of variance and Tukey’s test. A p-value less than 0.05 was considered statistically significant. Results showed that two bioactive glasses had statistically significant differences at 5, 10, 15 and 20 mg/mL concentrations (p-value < 0.05) and there was no correlation between time and cell cytotoxicity of bioactive glasses (p-value > 0.05), using t-test and Spearman’s correlation coefficient. We conclude that that cytotoxicity of nanopowder bioactive glass at concentrations ? 2 mg/mL was similar to micropowder bioactive glass at 24 and 48 h, however, it is more cytotoxic at concentrations ? 5 mg/mL in the first 48 h of applications. PMID:24250650

Rismanchian, Mansour; Khodaeian, Niloufar; Bahramian, Lida; Fathi, Mohammadhosein; Sadeghi-Aliabadi, Hojjat

2013-01-01

198

PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits.  

PubMed

Bone defect repair is challenging in orthopaedic clinics. For treatment of large bone defects, bone grafting remains the method of choice for the majority of surgeons, as it fills spaces and provides support to enhance biological bone repair. As therapeutic agents are desirable for enhancing bone healing, this study was designed to develop such a bioactive composite scaffold (PLGA/TCP/ICT) made of polylactide-co-glycolide (PLGA) and tricalcium phosphate (TCP) as a basic carrier, incorporating a phytomolecule icaritin (ICT), i.e., a novel osteogenic exogenous growth factor. PLGA/TCP/ICT scaffolds were fabricated as PLGA/TCP (control group) and PLGA/TCP in tandem with low/mid/high-dose ICT (LICT/MICT/HICT groups, respectively). To evaluate the in vivo osteogenic and angiogenic potentials of these bioactive scaffolds with slow release of osteogenic ICT, the authors established a 12 mm ulnar bone defect model in rabbits. X-ray and high-resolution peripheral quantitative computed tomography results at weeks 2, 4 and 8 post-surgery showed more newly formed bone within bone defects implanted with PLGA/TCP/ICT scaffolds, especially PLGA/TCP/MICT scaffold. Histological results at weeks 4 and 8 also demonstrated more newly mineralized bone in PLGA/TCP/ICT groups, especially in the PLGA/TCP/MICT group, with correspondingly more new vessel ingrowth. These findings may form a good foundation for potential clinical validation of this innovative bioactive scaffold incorporated with the proper amount of osteopromotive phytomolecule ICT as a ready product for clinical applications. PMID:23376238

Chen, S-H; Lei, M; Xie, X-H; Zheng, L-Z; Yao, D; Wang, X-L; Li, W; Zhao, Z; Kong, A; Xiao, D-M; Wang, D-P; Pan, X-H; Wang, Y-X; Qin, L

2013-05-01

199

Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings  

PubMed Central

Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 ?m and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulated body fluid (SBF) for up to 21 days. Fourier transform infrared (FTIR) spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings. PMID:25007822

Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo R.

2014-01-01

200

Structural characterization of the metal/glass interface in bioactive glass coatings on Ti-6Al-4V  

SciTech Connect

Coating Ti-based implants with bioactive materials promotes joining between the prostheses and the bone as well as increasing long-term implant stability. In the present work, the interface between Ti-6Al-4V and bioactive silicate glass coatings, prepared using a simple enameling technique, is analyzed. High-resolution transmission electron microscopy of the glass/alloy interface shows the formation of a reaction layer ({approx}150 nm thick) composed of Ti5Si3 nanoparticles with a size of {approx}20 nm. This nanostructured interface facilitates the formation of a stable joint between the glass coating and the alloy.

Oku, T.; Suganuma, K.; Wallemberg, L.R.; Tomsia, A.P.; Gomez-Vega, J.M.; Saiz, E.

1999-12-01

201

Dental applications of nanostructured bioactive glass and its composites  

PubMed Central

To improve treatments for bone or dental trauma, and for diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among these important properties are the capability of BG to form strong interfaces with both hard and soft tissues, and its release of ions upon dissolution. Recent developments in nanotechnology have introduced opportunities for materials sciences to advance dental and bone therapies. For example, the applications for BG expand as it becomes possible to finely control structures and physicochemical properties of materials at the molecular level. Here we review how the properties of these materials have been enhanced by the advent of nanotechnology; and how these developments are producing promising results in hard-tissue regeneration and development of innovative BG-based drug-delivery systems. PMID:23606653

Polini, Alessandro; Bai, Hao; Tomsia, Antoni P.

2013-01-01

202

From contacts and bondings between bone and bioactive glass to bonding of bioactive glass and porcelain to metal alloys, different methods of fracture repair.  

PubMed

Bioactive glass has the ability to bond to bone. In this article the contact between glass and bone is discussed and the development of core alloy for an implant coated with bioactive glass and the oxidation of metal surface in ceramic fusion has been studied. Good bonding of coating materials to core alloys is necessary in dental implants. Using a pull test method we studied the bond strengths between various alloys and some composite materials clinically used to repair fractures of porcelain-veneered dental crowns. An experimental bioglass material was also studied. The bonding of composite materials to metal surfaces etched with hydrofluoric acid was almost as good as the bonding between metal and porcelain, or glass. PMID:1896441

Uusalo, E; Yli-Urpo, A

1991-01-01

203

Borate Glass Supports the In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells  

Microsoft Academic Search

Bioactive ceramics have the ability to bond to surrounding bone and potentially enhance bone in-growth. Silicate based bioactive glasses and glass-ceramics, such as 45S5 bioactive glass, have been widely investigated for bone repair or as scaffolds for cell-based bone tissue engineering. Recent data have demonstrated that silica-free borate glasses also exhibit bioactive behavior and have been shown to convert to

Nicholas W. Marion; Wen Liang; Gwendolen C. Reilly; Delbert E. Day; Mohamed N. Rahaman; Jeremy J. Mao

2005-01-01

204

Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation  

PubMed Central

Bioactive glasses are able to bond to bone through the formation of hydroxy-carbonate apatite in body fluids while strontium (Sr)-releasing bioactive glasses are of interest for patients suffering from osteoporosis, as Sr was shown to increase bone formation both in vitro and in vivo. A melt-derived glass series (SiO2–P2O5–CaO–Na2O) with 0–100% of calcium (Ca) replaced by Sr on a molar base was prepared. pH change, ion release and apatite formation during immersion of glass powder in simulated body fluid and Tris buffer at 37°C over up to 8 h were investigated and showed that substituting Sr for Ca increased glass dissolution and ion release, an effect owing to an expansion of the glass network caused by the larger ionic radius of Sr ions compared with Ca. Sr release increased linearly with Sr substitution, and apatite formation was enhanced significantly in the fully Sr-substituted glass, which allowed for enhanced osteoblast attachment as well as proliferation and control of osteoblast and osteoclast activity as shown previously. Studying the composition–structure–property relationship in bioactive glasses enables us to successfully design next-generation biomaterials that combine the bone regenerative properties of bioactive glasses with the release of therapeutically active Sr ions. PMID:21993007

Fredholm, Yann C.; Karpukhina, Natalia; Brauer, Delia S.; Jones, Julian R.; Law, Robert V.; Hill, Robert G.

2012-01-01

205

Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo.  

PubMed

A low dose of 1?g rhBMP-2 was immobilised by four different functionalising techniques on recently developed poly(l-lactide)-co-(?-caprolactone) [(poly(LLA-co-CL)] scaffolds. It was either (i) physisorbed on unmodified scaffolds [PHY], (ii) physisorbed onto scaffolds modified with nanodiamond particles [nDP-PHY], (iii) covalently linked onto nDPs that were used to modify the scaffolds [nDP-COV] or (iv) encapsulated in microspheres distributed on the scaffolds [MICS]. Release kinetics of BMP-2 from the different scaffolds was quantified using targeted mass spectrometry for up to 70days. PHY scaffolds had an initial burst of release while MICS showed a gradual and sustained increase in release. In contrast, NDP-PHY and nDP-COV scaffolds showed no significant release, although nDP-PHY scaffolds maintained bioactivity of BMP-2. Human mesenchymal stem cells cultured in vitro showed upregulated BMP-2 and osteocalcin gene expression at both week 1 and week 3 in the MICS and nDP-PHY scaffold groups. These groups also demonstrated the highest BMP-2 extracellular protein levels as assessed by ELISA, and mineralization confirmed by Alizarin red. Cells grown on the PHY scaffolds in vitro expressed collagen type 1 alpha 2 early but the scaffold could not sustain rhBMP-2 release to express mineralization. After 4weeks post-implantation using a rat mandible critical-sized defect model, micro-CT and Masson trichrome results showed accelerated bone regeneration in the PHY, nDP-PHY and MICS groups. The results demonstrate that PHY scaffolds may not be desirable for clinical use, since similar osteogenic potential was not seen under both in vitro and in vivo conditions, in contrast to nDP-PHY and MICS groups, where continuous low doses of BMP-2 induced satisfactory bone regeneration in both conditions. The nDP-PHY scaffolds used here in critical-sized bone defects for the first time appear to have promise compared to growth factors adsorbed onto a polymer alone and the short distance effect prevents adverse systemic side effects. PMID:25445698

Suliman, Salwa; Xing, Zhe; Wu, Xujun; Xue, Ying; Pedersen, Torbjorn O; Sun, Yang; Døskeland, Anne P; Nickel, Joachim; Waag, Thilo; Lygre, Henning; Finne-Wistrand, Anna; Steinmüller-Nethl, Doris; Krueger, Anke; Mustafa, Kamal

2015-01-10

206

Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications  

NASA Astrophysics Data System (ADS)

Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

Ottomeyer, Megan

207

TiO2-doped phosphate glass microcarriers: A stable bioactive substrate for expansion of adherent mammalian cells  

PubMed Central

Scalable expansion of cells for regenerative cell therapy or to produce large quantities for high-throughput screening remains a challenge for bioprocess engineers. Laboratory scale cell expansion using t-flasks requires frequent passaging that exposes cells to many poorly defined bioprocess forces that can cause damage or alter their phenotype. Microcarriers offer a potential solution to scalable production, lending themselves to cell culture processes more akin to fermentation, removing the need for frequent passaging throughout the expansion period. One main problem with microcarrier expansion, however, is the difficulty in harvesting cells at the end of the process. Therefore, therapies that rely on cell delivery using biomaterial scaffolds could benefit from a microcarrier expansion system whereby the cells and microcarriers are transplanted together. In the current study, we used bioactive glass microcarriers doped with 5% TiO2 that display a controlled rate of degradation and conducted experiments to assess biocompatibility and growth of primary fibroblast cells as a model for cell therapy products. We found that the microcarriers are highly biocompatible and facilitate cell growth in a gradual controlled manner. Therefore, even without additional biofunctionalization methods, Ti-doped bioactive glass microcarriers offer potential as a cell expansion platform. PMID:22935537

Guedes, Joana C; Park, Jeong-Hui; Lakhkar, Nilay J; Kim, Hae-Won; Knowles, Jonathan C

2013-01-01

208

Investigating in vitro bioactivity and magnetic properties of the ferrimagnetic bioactive glass-ceramic fabricated using soda-lime-silica waste glass  

NASA Astrophysics Data System (ADS)

The main purpose of the current research is the production and characterization of a ferrimagnetic bioactive glass-ceramic prepared through the solid-state reaction method using soda-lime-silica waste glass as the main raw material. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural, thermal and magnetic properties of the samples were examined by X-ray diffraction (XRD), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). The apatite surface layer formation was examined by the scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The calcium ion concentration in the solutions was measured by atomic absorption spectroscopy (AAS). VSM results revealed that with the addition of 5-20 wt% strontium hexaferrite to bioactive glass-ceramics, the ferrimagnetic bioactive glass-ceramics with hysteresis losses between 7024 and 75,852 erg/g were obtained. The in vitro test showed that the onset formation time of hydroxyapatite layer on the surface of the samples was 14 days and after 30 days, this layer was completed.

Abbasi, M.; Hashemi, B.; Shokrollahi, H.

2014-04-01

209

Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process  

NASA Astrophysics Data System (ADS)

Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

2011-01-01

210

Comprehensive Genetic Analysis of Early Host Body Reactions to the Bioactive and Bio-Inert Porous Scaffolds  

PubMed Central

To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1? and IL-10 are important cytokines in tissue responses to biomaterials because IL-1? promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1? was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations. PMID:24454803

Ehashi, Tomo; Takemura, Taro; Hanagata, Nobutaka; Minowa, Takashi; Kobayashi, Hisatoshi; Ishihara, Kazuhiko; Yamaoka, Tetsuji

2014-01-01

211

Comprehensive genetic analysis of early host body reactions to the bioactive and bio-inert porous scaffolds.  

PubMed

To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1? and IL-10 are important cytokines in tissue responses to biomaterials because IL-1? promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1? was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations. PMID:24454803

Ehashi, Tomo; Takemura, Taro; Hanagata, Nobutaka; Minowa, Takashi; Kobayashi, Hisatoshi; Ishihara, Kazuhiko; Yamaoka, Tetsuji

2014-01-01

212

Electrospun polyurethane/hydroxyapatite bioactive Scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.  

PubMed

Polyurethane (PU) is a promising polymer to support bone-matrix producing cells due to its durability and mechanical resistance. In this study two types of medical grade poly-ether urethanes Z3A1 and Z9A1 and PU-Hydroxyapatite (PU-HA) composites were investigated for their ability to act as a scaffold for tissue engineered bone. PU dissolved in varying concentrations of dimethylformamide (DMF) and tetrahydrofuran (THF) solvents were electrospun to attain scaffolds with randomly orientated non-woven fibres. Bioactive polymeric composite scaffolds were created using 15 wt% Z3A1 in a 70/30 DMF/THF PU solution and incorporating micro- or nano-sized HA particles in a ratio of 3:1 respectively, whilst a 25 wt% Z9A1 PU solution was doped in ratio of 5:1. Chemical properties of the resulting composites were evaluated by FTIR and physical properties by SEM. Tensile mechanical testing was carried out on all electrospun scaffolds. MLO-A5 osteoblastic mouse cells and human embryonic mesenchymal progenitor cells, hES-MPs were seeded on the scaffolds to test their biocompatibility and ability to support mineralised matrix production over a 28 day culture period. Cell viability was assayed by MTT and calcium and collagen deposition by Sirius red and alizarin red respectively. SEM images of both electrospun PU scaffolds and PU-HA composite scaffolds showed differences in fibre morphology with changes in solvent combinations and size of HA particles. Inclusion of THF eliminated the presence of beads in fibres that were present in scaffolds fabricated with 100% DMF solvent, and resulted in fibres with a more uniform morphology and thicker diameters. Mechanical testing demonstrated that the Young?s Modulus and yield strength was lower at higher THF concentrations. Inclusion of both sizes of HA particles in PU-HA solutions reinforced the scaffolds leading to higher mechanical properties, whilst FTIR characterisation confirmed the presence of HA in all composite scaffolds. Although all scaffolds supported proliferation of both cell types and deposition of calcified matrix, PU-HA composite fibres containing nano-HA enabled the highest cell viability and collagen deposition. These scaffolds have the potential to support bone matrix formation for bone tissue engineering. PMID:25117379

Tetteh, G; Khan, A S; Delaine-Smith, R M; Reilly, G C; Rehman, I U

2014-11-01

213

Zinc-containing bioactive glasses: Surface reactivity and behaviour towards endothelial cells  

Microsoft Academic Search

This paper reports a physico-chemical study devoted to reactivity towards hydroxo-carbonate apatite (HCA) formation of bioactive glass 45S5 (H glass; commercially known as Bioglass) and of two preparations of zinc-doped 45S5-derived systems (HZ5, HZ20), immersed in Tris(hydroxymethyl)aminomethane (Tris) and Dulbecco’s modified Eagle’s medium (DMEM) buffer solutions. The activity\\/toxicity of the glasses was also tested using endothelial cells (EC). Zn caused

V. Aina; G. Malavasi; A. Fiorio Pla; L. Munaron; C. Morterra

2009-01-01

214

Combining tissue repair and tissue engineering; bioactivating implantable cell-free vascular scaffolds.  

PubMed

Synthetic replacement grafts for heart valves and small-diameter blood vessels such as coronary arteries have the potential to circumvent many of the limitations of currently available autologous grafting materials. Cell-free material incorporating biologically active compounds may guide the formation of fully autologous new tissue in situ derived from host cells after implantation. Inspiration for such bioactive compounds and their dynamics can be found in in vivo repair processes. Molecules such as stromal cell-derived factor 1? (SDF1?) that can attract progenitor cells from the bloodstream and modulate immune responses may be able to improve neotissue development in cell-free vascular and valvular grafts. Advances in the development of fully synthetic molecules and scaffold materials allow the spatial and temporal control of biologically active factors, enabling tissue engineers to mimic complex cellular signalling. This review focuses on combining knowledge of the molecular dynamics of factors involved in in vivo damage repair with the possibilities offered by newly developed synthetic materials. This approach has lead to encouraging results in the field of in situ vascular tissue engineering, and can ultimately lead to the development of off-the-shelf available vascular and valvular replacement grafts. PMID:25053725

Muylaert, Dimitri E P; Fledderus, Joost O; Bouten, Carlijn V C; Dankers, Patricia Y W; Verhaar, Marianne C

2014-12-01

215

Effects of bioactive glass, hydroxyapatite and bioactive glass – Hydroxyapatite composite graft particles in the treatment of infrabony defects  

PubMed Central

Background: Several synthetic alloplastic materials have been used in the past as an implant in infrabony defects with a goal to reconstruct the lost part of attachment apparatus via new osseous tissue formation. The present study was undertaken to evaluate and compare clinico-radiographically, the effect of bioactive glass (BG), hydroxyapatite (HA), and BG-HA composite bone graft particles in the treatment of human infra-bony periodontal defects. Materials and Methods: Indigenous synthetic HA, BG, and BG-HA composite bone graft materials were developed in the laboratory. Twenty eight infrabony periodontal defects were equally distributed (i.e., seven defects) into four groups. The defects were treated separately with three types of graft materials and non-grafted manner (open flap debridement alone, control) to evaluate both the soft and hard tissue responses after six months of surgery. Evaluation was done by studying different parameters such as plaque index, gingival index, relative attachment level, probing pocket depth, and radiographic bone fill in Intra Oral Peri-Apical radiograph. Results: The healing of defects was uneventful and free of any biological complications. The gain in relative attachment level, reduction of probing pocket depth, and bone fill was statistically significant in all four groups. BG and BG-HA synthetic bone graft implanted sites showed significant bone fill (P<0.05) than hydroxyapatite and unimplanted control sites. Conclusion: The performance of BG and its composite was better compared to HA and open flap debridement alone for the reconstruction of infrabony defects. The BG-HA composite particles may effectively be used as an alternative bone graft material for infrabony defects. PMID:23055592

Mistry, Surajit; Kundu, Debabrata; Datta, Someswar; Basu, Debabrata

2012-01-01

216

A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering.  

PubMed

The aim of this study was to develop a novel bioactive, degradable and cytocompatible bredigite (Ca(7)MgSi(4)O(16)) scaffold with biomimetic apatite layer for bone tissue engineering. Porous bredigite scaffolds were prepared using polymer sponge method. The bredigite scaffolds with biomimetic apatite layer (BTAP) were obtained by soaking bredigite scaffolds in simulated body fluid (SBF) for 10 days. The porosity and in vitro degradability of BTAP scaffolds were investigated. In addition, osteoblast-like cell morphology, proliferation and differentiation on BTAP scaffolds were evaluated and compared with beta-tricalcium phosphate (beta-TCP) scaffolds. The results showed that BTAP scaffolds possessed 90% of porosity. The degradation of BTAP scaffolds was comparable to that of beta-TCP scaffolds. Cells on BTAP scaffolds spread well and presented a higher proliferation rate and differentiation level as compared with those on beta-TCP scaffolds. Our results indicated that BTAP scaffolds were degradable and possessed the function to enhance cell proliferation and differentiation, and might be used as bone tissue engineering materials. PMID:17211720

Wu, Chengtie; Chang, Jiang; Zhai, Wanyin; Ni, Siyu

2007-05-01

217

Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro  

Microsoft Academic Search

Sub-micron particles of bioactive glass (SMBGs) with composition 85 mol% SiO2 and 15 mol% CaO were synthesised and characterised. Bioactivity was demonstrated by the formation of calcium apatite following 5 days immersion in simulated body fluid (SBF). The effect of a 24 h exposure of SMBGs (100 ?g\\/ml, 150 ?g\\/ml, 200 ?g\\/ml) to human mesenchymal stem cells (hMSCs) on cell viability, metabolic activity and proliferation were

Sheyda Labbaf; Olga Tsigkou; Karin H. Müller; Molly M. Stevens; Alexandra E. Porter; Julian R. Jones

2011-01-01

218

Bioactive glass-coated silicone for percutaneous devices with improved tissue interaction  

NASA Astrophysics Data System (ADS)

The discovery of bioactive glasses, in the early 1970s, has produced a material that develops a strong adherent bond with soft tissue. Many medical applications currently use silicone as an implant material, but are hindered by the formation of fibrous scar tissue surrounding the device. This fibrous scar tissue can lead to pain, infection, and/or extrusion of these devices. Bioactive ceramic materials are inherently brittle and can not be used in applications where a flexible material is needed. Therefore, the coating of existing flexible silicone medical devices, like catheters, with a bioactive glass material would give the advantages of both. The research presented here is of methods used to coat silicone with a bioactive glass powder (Bioglass°ler) and the in vitro testing of those coatings. The bioactivity of these coatings was measured using scanning electron microscopy, inductively coupled plasma spectroscopy, and Fourier transform infrared spectroscopy. It was observed that hydroxyapatite, a bonelike apatite, was formed in vitro on both the bioactive glass particles and the silicone surface between these particles. From these results a new theory was developed that related the distance between particles on a surface with the formation of an apatite layer. A critical distance between particles for the formation of an apatite layer on the substrate exists. This critical distance is a function of both the particle size and composition. In addition, a method to coat silicone catheters with bioactive glass powder is also discussed. This coated catheter could ultimately be used for improved percutaneous access in peritoneal dialysis. The one barrier to greater peritoneal dialysis use and the reason many patients switch from peritoneal to hemodialysis is recurrent exit-site infections and subsequent peritonitis. These infections are caused by the lack of a tight seal and downgrowth of epidermal tissue around the catheter at the catheter-skin interface.

Marotta, James Scott

219

Electrophoretic deposition of carbon nanotubes and bioactive glass particles for bioactive composite coatings  

Microsoft Academic Search

The production of bioactive coatings consisting of 45S5 Bioglass® and mutli-walled carbon nanotubes (CNTs) by electrophoretic deposition (EPD) was investigated. In addition to pure Bioglass® coatings, the co-deposition and sequential deposition of Bioglass® particles (size <5?m) and CNTs on stainless steel substrates were carried out in order to fabricate bioactive, nanostructured composite layers. The optimal experimental conditions were determined using

M. Charlotte Schausten; Decheng Meng; Rainer Telle; Aldo R. Boccaccini

2010-01-01

220

Sintering behaviour of 45S5 bioactive glass  

Microsoft Academic Search

In this study, we report on the effect of Bioglass® structural transformations on its sintering behaviour. While heating up to 1000°C, five successive transformations occur: glass transition, glass-in-glass phase separation, two crystallization processes and a second glass transition. The sintering of the material exhibits two main shrinkage stages associated with the two glass transitions at 550 and 850°C. At 580°C,

L. Lefebvre; L. Gremillard; J. Chevalier; R. Zenati; D. Bernache-Assolant

2008-01-01

221

Local surface damage and material dissolution in 45S5 bioactive glass: Effect of the contact deformation  

Microsoft Academic Search

Bioactive glasses react with the human physiological solution in control of their biofunctionality. The stress state in bioactive glasses determines the chemomechanical reaction and their biofunctionality. Using the microindentation technique, the effect of the indentation deformation on the surface damage and material dissolution of 45S5 bioglass was investigated. The indentation-induced local surface damage, including ring cracks and radial cracks, was

Ding Li; Mimi X. Yang; Pavitra Muralidhar; Connie Wu; Fuqian Yang

2009-01-01

222

Effects of Intraosseous Implantation of Silica-based Bioactive Glass Particles on Rat Kidney under Experimental Renal Failure  

Microsoft Academic Search

The aim of the present study is to evaluate the effects of intraosseous implantation of silica-based bioactive glass (BG) particles on rat kidney under experimental renal failure. The animals are assigned to one of the two groups: renal failure (RF) and renal failure + bioactive glass (RF + BG). Particles of melt-derived 45S5 BG are implanted in the marrow of

Alejandro A. Gorustovich; Alberto J. Monserrat; Maria B. Guglielmotti; Romulo L. Cabrini

2007-01-01

223

Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses  

Microsoft Academic Search

The effect of the composition and bonding configuration of the bioactive silica-based glasses on the initial stage in vitro bioactivity is presented. Information of the IR active Si–O groups of glass in the system SiO2–P2O5–CaO–Na2O–K2O–MgO–B2O3 was obtained by fourier transform Infrared (FTIR) spectroscopy. Two different bands associated to non-bridging oxygen stretching vibrations (Si–O–1NBO and Si–O–2NBO) and a gradual shifting of

J. Serra; P. González; S. Liste; S. Chiussi; B. León; M. Pérez-Amor; H. O. Ylänen; M. Hupa

2002-01-01

224

pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass.  

PubMed

Biomaterials made of biodegradable poly(?-hydroxyesters) such as poly(lactide-co-glycolide) (PLGA) are known to decrease the pH in the vicinity of the implants. Bioactive glass (BG) is being investigated as a counteracting agent buffering the acidic degradation products. However, in dentistry the question arises whether an antibacterial effect is rather obtained from pure PLGA or from BG/PLGA composites, as BG has been proved to be antimicrobial. In the present study the antimicrobial properties of electrospun PLGA and BG45S5/PLGA fibres were investigated using human oral bacteria (specified with mass spectrometry) incubated for up to 24 h. BG45S5 nanoparticles were prepared by flame spray synthesis. The change in colony-forming units (CFU) of the bacteria was correlated with the pH of the medium during incubation. The morphology and structure of the scaffolds as well as the appearance of the bacteria were followed bymicroscopy. Additionally, we studied if the presence of BG45S5 had an influence on the degradation speed of the polymer. Finally, it turned out that the pH increase induced by the presence of BG45S5 in the scaffold did not last long enough to show a reduction in CFU. On the contrary, pure PLGA demonstrated antibacterial properties that should be taken into consideration when designing biomaterials for dental applications. PMID:23816650

Hild, Nora; Tawakoli, Pune N; Halter, Jonas G; Sauer, Bärbel; Buchalla, Wolfgang; Stark, Wendelin J; Mohn, Dirk

2013-11-01

225

Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution.  

PubMed

Porous scaffolds of a borate-based glass (composition in mol%: 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5), with interconnected porosity of approximately 70% and pores of size 200-500 microm, were prepared by a polymer foam replication technique. The degradation of the scaffolds and conversion to a hydroxyapatite-type material in a 0.02 M K2HPO4 solution (starting pH = 7.0) at 37 degrees C were studied by measuring the weight loss of the scaffolds, as well as the pH and the boron concentration of the solution. X-ray diffraction, scanning electronic microscopy and energy dispersive x-ray analysis showed that a hydroxyapatite-type material was formed on the glass surface within 7 days of immersion in the phosphate solution. Cellular response to the scaffolds was assessed using murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed that the scaffolds supported cell attachment and proliferation during the 6 day incubation. The results indicate that this borate-based glass could provide a promising degradable scaffold material for bone tissue engineering applications. PMID:20057014

Liu, Xin; Pan, Haobo; Fu, Hailuo; Fu, Qiang; Rahaman, Mohamed N; Huang, Wenhai

2010-02-01

226

Interpretation of electrical polarization and depolarization mechanisms of bioactive glasses in relation to ionic migration  

Microsoft Academic Search

Electrical polarization and depolarization processes of the 45S5 type bioactive glass (BG) was studied by a thermally stimulated depolarization current (TSDC) and an complex impedance measurements. The depolarization processes were found to consist of three processes, which were observed as three peaks, P1, P2 and P3, in the TSDC spectra. P1 and P2, observed at lower than the glass transition

Akiko Obata; Satoshi Nakamura; Kimihiro Yamashita

2004-01-01

227

The modulation of tissue-specific gene expression in rat nasal chondrocyte cultures by bioactive glasses  

Microsoft Academic Search

Since bone repair may occur, following endochondral ossification, we have investigated the behaviour of chondrocytes isolated from nasal septum cartilage of foetal rats and cultured up to 21 days in the presence of a melt-derived bioactive glass (Bioglass® 45S5) and a less reactive glass with 60wt% silica content (60S). In both cultures, chondrocytes proliferate and form typical cartilaginous nodules on

Audrey Asselin; Susan Hattar; Martine Oboeuf; David Greenspan; Ariane Berdal; Jean-Michel Sautier

2004-01-01

228

Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts  

Microsoft Academic Search

Bioactive glasses such as Hench's 45S5 have applications to tissue engineering and bone repair: the insertion of zinc has been proposed to improve their bone-bonding ability and to slacken their dissolution in extracellular body fluids. In view of a potential clinical application, we have investigated whether zinc-containing 45S5 (HZ) glasses might be cytotoxic for human MG-63 osteoblasts. In our experimental

Valentina Aina; Alessandra Perardi; Loredana Bergandi; Gianluca Malavasi; Ledi Menabue; Claudio Morterra; Dario Ghigo

2007-01-01

229

Potassium-based composition for a bioactive glass  

Microsoft Academic Search

The increasing need for biomedical devices, required to face dysfunctions of natural tissues and organs caused by traumatic events, diseases and simple ageing, has drawn attention onto new materials, that could be able to positively interact with the human body. Among them, Bioglass® is firmly diffused in medical practice, thanks to its high bioactivity. In particular, due to its brittleness,

V. Cannillo; A. Sola

2009-01-01

230

Bioactive Glass versus Autogenous Iliac Crest Bone Graft in Adolescent Idiopathic Scoliosis Surgery  

Microsoft Academic Search

Surgery on the skeleton frequently requires harvesting of autogenous bone graft from the pelvis, but this procedure is complicated by problems. The purpose of this retrospective, comparative descriptive study was to compare the efficacy of metal-derived bioactive glass (Novabone) versus auto- genous iliac crest bone graft in adolescent idiopathic scoliosis surgery. The study was carried out on forty cases (aged

Ebrahim Ameri; Hamid Behtash; Bahram Mobini; Farzad Omidi-Kashani; Marzieh Nojomi

231

An in vitro evaluation of selective demineralised enamel removal using bio-active glass air abrasion.  

PubMed

Unnecessary over-preparation of carious enamel often occurs clinically during operative caries management. The working hypothesis to be investigated in this study is the potential for bio-active glass air abrasion to remove selectively only demineralised enamel in artificial enamel lesions when compared to equivalent alumina air abrasion, so potentially minimising cavity over-preparation. Bisected artificial, paired smooth surface enamel lesions on ethics-approved, extracted sound human molars were created and subsequently air abraded with 27 ?m alumina (n?=?19) and bio-active glass (n?=?19). The difference between pre-operative lesion boundary and post-operative cavity margin was calculated following optical confocal fluorescent assessment of the lesion boundary. Data indicated mean% over-preparation (sound enamel removal) of 176% with alumina and 15.2% for bio-active glass (p?=?0.005). Bio-active glass abrasion removed completely the demineralised enamel from artificial lesions with clinically insignificant over-preparation of sound tissue, indicating technique selectivity towards grossly demineralised enamel. Alumina air abrasion resulted in substantial enamel removal in both sound and demineralised tissues indicating the operator selectivity required to use the techniques effectively in clinical practice. PMID:20941634

Banerjee, Avijit; Pabari, Hiten; Paolinelis, George; Thompson, Ian D; Watson, Timothy F

2011-12-01

232

Bioactive glass and connective tissue graft used to treat intrabony periodontal defects.  

PubMed

Different techniques and materials can be used to treat intrabony periodontal defects caused by periodontal diseases. This case report presents an intrabony periodontal defect with bioactive glass and connective tissue graft used as a barrier. Probing depth and clinical attachment gain were reduced at 6 and 12 months post-treatment. PMID:23823350

Deliberador, Tatiana Miranda; Trotta, Daniel Rizzo; Klug, Luis Gustavo; Zielak, Joao Cesar; Giovanini, Allan Fernando

2013-07-01

233

Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass  

Microsoft Academic Search

Attempts to stimulate therapeutic angiogenesis using gene therapy or delivery of recombinant growth factors, such as vascular endothelial growth factor (VEGF), have failed to demonstrate unequivocal efficacy in human trials. Bioactive glass stimulates fibroblasts to secrete significantly increased amounts of angiogenic growth factors and therefore has a number of potential applications in therapeutic angiogenesis. The aim of this study was

Hussila Keshaw; Alastair Forbes; Richard M. Day

2005-01-01

234

Different approaches to produce coatings with bioactive glasses: Enamelling vs plasma spraying  

Microsoft Academic Search

Two alternative approaches, enamelling and plasma spraying, were tested to deposit coatings made with two different bioactive glasses: the established Bioglass® 45S5, which is considered as a term of comparison, and the experimental BioK. The strong points and weaknesses of the two methods were highlighted. From the analysed samples, it resulted that the enamelling approach works well on thermally stable

V. Cannillo; A. Sola

2010-01-01

235

Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model  

PubMed Central

Purpose Poly(lactic-co-glycolic acid) (PLGA) is excellent as a scaffolding matrix due to feasibility of processing and tunable biodegradability, yet the virgin scaffolds lack osteoconduction and osteoinduction. In this study, nano-hydroxyapatite (nHA) was coated on the interior surfaces of PLGA scaffolds in order to facilitate in vivo bone defect restoration using biomimetic ceramics while keeping the polyester skeleton of the scaffolds. Methods PLGA porous scaffolds were prepared and surface modification was carried out by incubation in modified simulated body fluids. The nHA coated PLGA scaffolds were compared to the virgin PLGA scaffolds both in vitro and in vivo. Viability and proliferation rate of bone marrow stromal cells of rabbits were examined. The constructs of scaffolds and autogenous bone marrow stromal cells were implanted into the segmental bone defect in the rabbit model, and the bone regeneration effects were observed. Results In contrast to the relative smooth pore surface of the virgin PLGA scaffold, a biomimetic hierarchical nanostructure was found on the surface of the interior pores of the nHA coated PLGA scaffolds by scanning electron microscopy. Both the viability and proliferation rate of the cells seeded in nHA coated PLGA scaffolds were higher than those in PLGA scaffolds. For bone defect repairing, the radius defects had, after 12 weeks implantation of nHA coated PLGA scaffolds, completely recuperated with significantly better bone formation than in the group of virgin PLGA scaffolds, as shown by X-ray, Micro-computerized tomography and histological examinations. Conclusion nHA coating on the interior pore surfaces can significantly improve the bioactivity of PLGA porous scaffolds. PMID:23690683

Wang, De-Xin; He, Yao; Bi, Long; Qu, Ze-Hua; Zou, Ji-Wei; Pan, Zhen; Fan, Jun-Jun; Chen, Liang; Dong, Xin; Liu, Xiang-Nan; Pei, Guo-Xian; Ding, Jian-Dong

2013-01-01

236

Image-Based Three-Dimensional Analysis to Characterize the Texture of Porous Scaffolds  

PubMed Central

The aim of the present study is to characterize the microstructure of composite scaffolds for bone tissue regeneration containing different ratios of chitosan/gelatin blend and bioactive glasses. Starting from realistic 3D models of the scaffolds reconstructed from micro-CT images, the level of heterogeneity of scaffold architecture is evaluated performing a lacunarity analysis. The results demonstrate that the presence of the bioactive glass component affects not only macroscopic features such as porosity, but mainly scaffold microarchitecture giving rise to structural heterogeneity, which could have an impact on the local cell-scaffold interaction and scaffold performances. The adopted approach allows to investigate the scale-dependent pore distribution within the scaffold and the related structural heterogeneity features, providing a comprehensive characterization of the scaffold texture. PMID:24995272

Pennella, Francesco; Gallo, Diego; Ciardelli, Gianluca; Bignardi, Cristina; Audenino, Alberto; Morbiducci, Umberto

2014-01-01

237

Fabrication and characterization of poly-(?)-caprolactone and bioactive glass composites for tissue engineering applications.  

PubMed

Much work has focused on developing synthetic materials that have tailored degradation profiles and physical properties that may prove useful in developing biomaterials for tissue engineering applications. In the present study, three different composite sheets consisting of biodegradable poly-?-caprolactone (PCL) and varying types of bioactive glass were investigated. The three composites were composed of 50wt.% PCL and (1) 50wt.% 13-93 B3 borate glass particles, (2) 50wt.% 45S5 silicate glass particles, or (3) a blend of 25wt.% 13-93 B3 and 25wt.% 45S5 glass particles. Degradation profiles determined for each composite showed the composite that contained only 13-93 B3 borate glass had a higher degradation rate compared to the composite containing only 45S5 silicate glass. Uniaxial tensile tests were performed on the composites to determine the effect of adding glass to the polymer on mechanical properties. The peak stress of all of the composites was lower than that of PCL alone, but 100% PCL had a higher stiffness when pre-reacted in cell media for 6weeks, whereas composite sheets did not. Finally, to determine whether the composite sheets would maintain neuronal growth, dorsal root ganglia isolated from embryonic chicks were cultured on composite sheets, and neurite outgrowth was measured. The bioactive glass particles added to the composites showed no negative effects on neurite extension, and neurite extension increased on PCL:45S5 PCL:13-93 B3 when pre-reacted in media for 24h. This work shows that composite sheets of PCL and bioactive glass particles provide a flexible biomaterial for neural tissue engineering applications. PMID:25686992

Mohammadkhah, Ali; Marquardt, Laura M; Sakiyama-Elbert, Shelly E; Day, Delbert E; Harkins, Amy B

2015-04-01

238

Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces.  

PubMed

Porous composites consisting of a polysulfone (or cellulose acetate) matrix and bioactive glass particles were prepared by phase separation techniques. Microstructures were designed for potential application as an interconnect between artificial cartilage and bone. The effects of polymer type, concentration and molecular weight, as well as bioactive glass size and content, on the microstructures of the composites were studied. The composites have asymmetric structures with dense top layers and porous structures beneath. The microstructural features depend most strongly on the type of polymer, the interaction between the polymer and bioactive glass, and the glass content. The dense top layer could be removed by abrasion to make a structure with large pores (20-150 microm) exposed. Composites were immersed in simulated body fluid at body temperature. The growth of hydroxycarbonate apatite inside and on the composites demonstrates their potential for integration with bone. Composite modulus and break strength increased with increasing glass content due to the change in composition and pore content. PMID:12115445

Zhang, Kai; Ma, Yue; Francis, Lorraine F

2002-09-15

239

Physicochemical properties of newly developed bioactive glass cement and its effects on various cells.  

PubMed

Biomaterials used in dental treatments are expected to have favorable properties such as biocompatibility and an ability to induce tissue formation in dental pulp and periapical tissue, as well as sealing to block external stimuli. Bioactive glasses have been applied in bone engineering, but rarely applied in the field of dentistry. In the present study, bioactive glass cement for dental treatment was developed, and then its physicochemical properties and effects on cell responses were analyzed. To clarify the physicochemical attributes of the cement, field emission scanning electron microscopy, X-ray diffraction, and pH measurement were carried out. Cell attachment, morphology, and viability to the cement were also examined to clarify the effects of the cement on odontoblast-like cells (KN-3 cells), osteoblastic cells (MC3T3-E1 cells), human periodontal ligament stem/progenitor cells and neuro-differentiative cells (PC-12 cells). Hydroxyapatite-like precipitation was formed on the surface of the hardened cement and the pH level changed from pH10 to pH9, then stabilized in simulate body fluid. The cement had no cytotxic effects on these cells, and particulary induced process elongation of PC-12 cells. Our results suggest that the newly developed bioactive glass cement have capability of the application in dental procedures as bioactive cement. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 373-380, 2015. PMID:24895094

Washio, Ayako; Nakagawa, Aika; Nishihara, Tatsuji; Maeda, Hidefumi; Kitamura, Chiaki

2015-02-01

240

Researchers are working to design porous polymer scaffolds infused with bioactive factors to enhance tissue regeneration.  

E-print Network

. Porous scaffolds are fabricated by mixing of the microspheres with a porogen, such as salt or sucrose. Quenching of the pressure results in fusion of adjacent microspheres to create an interconnected structure. For scaffolds with a porogen, the constructs are immersed in water to create an interconnected open pore

Shull, Kenneth R.

241

Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering  

PubMed Central

Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineering. PMID:23507924

Nandakumar, Anandkumar; Barradas, Ana; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

2013-01-01

242

Effect of heat treatment on the properties of SiO2-CaO-MgO-P 2O 5 bioactive glasses.  

PubMed

Since the invention of 45S5 Bioglass, researchers never stopped exploring new generation bioactive glass (BG) materials for wider applications in regenerative medicine, among which a novel SiO(2)-CaO-MgO-P(2)O(5) bioactive glass (BG20) is an excellent candidate. However, apart from their biocompatibility and bioactivity, a porous structure is also a must for a tissue engineering scaffold in successfully fixing bone defect. The porosity is the outcome of the high temperature (500-1,000 °C) treatment in the fabricating process of the bioglass scaffold. Under the high temperature, the amorphous glass material will become crystallized at certain percentage in the glass matrix, and possibly leading to consequent changes in the mechanical strength, biodegradability and bioactivity. To elucidate the effect of phase transition on the change of the properties of BG20, the experiments in this report were designed to fine-tuning the heat treating temperatures to fabricate a series of BG20 powders with different crystallization structures. X-ray diffraction revealed a positive correlation between the heating temperature and the crystallization, as well as the compressive strength of the materials. In vitro degradation and ion analysis by ICP-AES demonstrated a similar releasing behavior of different ions including Mg(2+), Ca(2+) and Si(4+), which in common is the tendency of decreasing of the ion concentration along with the increasing of the treating temperature. Cell proliferation assay using both mouse fibroblasts (NIH3T3) and bone marrow stromal cells (BMSCs) showed little toxicity of the ionic extract of the BG20 powders at all the treating temperatures, while fibroblasts demonstrated a significant promoting in the percentage of proliferation. Furthermore, reverse-transcription and polymerase chain reaction analysis on two representative marker genes for early osteogenesis and endochondral ossification, respectively, type I collagen alpha 1 and Indian Hedge-hog, showed an interesting induction of both genes over their basal levels by the treatment of the ionic extract of BG20, implying its important capability in regulating the fate of differentiation of the BMSCs as a novel biomaterial in bone tissue engineering. PMID:22699712

Zhou, Yue; Li, Hongying; Lin, Kaili; Zhai, Wanying; Gu, Weiming; Chang, Jiang

2012-09-01

243

Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings.  

PubMed

Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20±2MPa (n=5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to support tissue ingrowth and vascular tissue, and the comparable strength to similar coatings. PMID:24433912

Nelson, G M; Nychka, J A; McDonald, A G

2014-03-01

244

Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry.  

PubMed

Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155

Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat

2013-01-01

245

Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry  

PubMed Central

Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155

Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat

2013-01-01

246

Gallium-containing phosphosilicate glasses: functionalization and in-vitro bioactivity.  

PubMed

A gallium containing glass 45.7SiO2·24.1Na2O·26.6CaO·2.6P2O5·1.0Ga2O3 (referred to as "Ga1.0") and a parent Ga-free glass 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5 (hereinafter represented as "H"), corresponding to Bioglass® 45S5, were functionalized with Tetraethoxysilane (TEOS) and (3-Aminopropyl)triethoxysilane (APTS) in order to improve their ability to bond with biomolecules, such as drugs, proteins, and peptides. Functionalization with TEOS and APTS promoted the increment in OH groups and formation of NH2 groups on the glass surface, respectively. The presence of OH or NH2 groups was investigated by means of IR spectroscopy and elemental analysis. Moreover, in vitro study of these functionalized glasses was performed in simulated body fluid (SBF) so as to investigate the effect of functionalization on the bioactive behavior of H and Ga1.0. The results showed that the functionalization was obtained along with maintaining their bioactivity. The surfaces of both functionalized glasses were covered by a layer of apatite within 30 days of SBF immersion. In addition, CaCO3 was also identified on the surface of APTS functionalized glasses. However, no gallium release was detected during SBF soaking. PMID:23706200

Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi; Shruti, Shruti

2013-08-01

247

Use of a Bioactive Scaffold to Stimulate ACL Healing Also Minimizes Post-traumatic Osteoarthritis after Surgery  

PubMed Central

Background While ACL reconstruction is the treatment gold standard for ACL injury, it does not reduce the risk of post-traumatic osteoarthritis. Therefore, new treatments that minimize this postoperative complication are of interest. Bio-enhanced ACL repair, in which a bioactive scaffold is used to stimulate healing of an ACL transection, has shown considerable promise in short term studies. The long-term results of this technique and the effects of the bio-enhancement on the articular cartilage have not been previously evaluated in a large animal model. Hypothesis 1) The structural (tensile) properties of the porcine ACL at 6 and 12 months after injury are similar when treated with bio-enhanced ACL repair, bio-enhanced ACL reconstruction, or conventional ACL reconstruction, and all treatments yield results superior to untreated ACL transection. 2) After one year, macroscopic cartilage damage following bio-enhanced ACL repair is similar to bio-enhanced ACL reconstruction and less than conventional ACL reconstruction and untreated ACL transection. Study Design Controlled laboratory study (porcine model) Methods Sixty-two Yucatan mini-pigs underwent ACL transection and randomization to four experimental groups: 1) no treatment, 2) conventional ACL reconstruction, 3) “bio-enhanced” ACL reconstruction using a bioactive scaffold, and 4) “bio-enhanced” ACL repair using a bioactive scaffold. The biomechanical properties of the ligament or graft and macroscopic assessments of the cartilage surfaces were performed after 6 and 12 months of healing. Results The structural properties (i.e., linear stiffness, yield and maximum loads) of the ligament following bio-enhanced ACL repair were not significantly different from bio-enhanced ACL reconstruction or conventional ACL reconstruction, but were significantly greater than untreated ACL transection after 12 months of healing. Macroscopic cartilage damage after bio-enhanced ACL repair was significantly less than untreated ACL transection and bio-enhanced ACL reconstruction, and there was a strong trend (p=.068) that it was less than conventional ACL reconstruction in the porcine model at 12 months. Conclusions Bio-enhanced ACL repair produces a ligament that is biomechanically similar to an ACL graft and provides chondroprotection to the joint following ACL surgery. Clinical Relevance Bio-enhanced ACL repair may provide a new less invasive treatment option that reduces cartilage damage following joint injury. PMID:23857883

Murray, Martha M.; Fleming, Braden C.

2013-01-01

248

Evaluating optimal combination of clodronate and bioactive glass for dental application.  

PubMed

Both clodronate and bioactive glass are mostly used alone as treatment in various bone diseases but, they are also known to have beneficial effects in dental application. The same processes that lead to loss of bone can also result in alveolar bone loss. The object of this study was to define the optimal combination of clodronate and bioactive glass (BAG) to be used locally in dentistry. The evaluation was based on measurements and solid state properties obtained with pH, scanning electron microscopy (SEM), differential scanning calorimetric (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and Focused-ion beam (FIB) and energy dispersive X-ray spectroscopic (EDS) mapping. The results indicate that if too much calcium clodronate precipitation is formed, the activity of BAG is affected negatively. As there is more reaction surface to form calcium clodronate, similar to the amount of clodronate present, this reduces the bioactivity of BAG. Therefore, in dental treatment the most suitable BAG and clodronate combination product would have apatite (HA, hydroxyapatite) formation ability and amount of clodronate enough to enhance the bioactivity of BAG allowing HA formation. Based on combinations investigated, the one with 200mg clodronate and 1 g BAG with particle size 0.5-0.8 mm was chosen to be the most promising for local dental application. PMID:24726634

Rosenqvist, Kirsi; Airaksinen, Sari; Vehkamäki, Marko; Juppo, Anne Mari

2014-07-01

249

Fluoride-containing bioactive glasses inhibit pentose phosphate oxidative pathway and glucose 6-phosphate dehydrogenase activity in human osteoblasts  

Microsoft Academic Search

Bioactive glasses such as Hench's 45S5 (Bioglass®) have applications to tissue engineering as well as bone repair, and the insertion of fluoride in their composition has been proposed to enhance their bioactivity. In view of a potential clinical application, we investigated whether fluoride-containing glasses exert toxic effects on human MG-63 osteoblasts, and whether and how fluoride, which is released in

Loredana Bergandi; Valentina Aina; Stefano Garetto; Gianluca Malavasi; Elisabetta Aldieri; Enzo Laurenti; Lina Matera; Claudio Morterra; Dario Ghigo

2010-01-01

250

In Vitro Attachment of Staphylococcus Epidermidis to Surgical Sutures with and without Ag-Containing Bioactive Glass Coating  

Microsoft Academic Search

The ability of a silver-doped bioactive glass (AgBG) coating to prevent bacterial colonization on surgical sutures was investigated in vitro. Bioactive glass powders, in the form of 45S5 Bioglass® and AgBG, were used to coat Mersilk® sutures using an optimized ‘in house’ slurry-dipping process. In vitro experiments were carried out using Staphylococcus epidermidis under both batch and flow conditions. While

Jonathan Pratten; Showan N. Nazhat; Jonny J. Blaker; Aldo R. Boccaccini

2004-01-01

251

Bioactive Nano-Fibrous Scaffolds for Bone and Cartilage Tissue Engineering  

NASA Astrophysics Data System (ADS)

Scaffolds that can mimic the structural features of natural extracellular matrix and can deliver biomolecules in a controlled fashion may provide cells with a favorable microenvironment to facilitate tissue regeneration. Biodegradable nanofibrous scaffolds with interconnected pore network have previously been developed in our laboratory to mimic collagen matrix and advantageously support both bone and cartilage regeneration. This dissertation project aims to expand both the structural complexity and the biomolecule delivery capacity of such biomimetic scaffolds for tissue engineering. We first developed a nanofibrous scaffold that can release an antibiotic (doxycycline) with a tunable release rate and a tunable dosage, which was demonstrated to be able to inhibit bacterial growth over a prolonged time period. We then developed a nanofibrous tissue-engineciing scaffold that can release basic fibroblast growth factor (bFGF) in a spatially and temporally controlled fashion. In a mouse subcutaneous implantation model, the bFGF-releasing scaffold was shown to enhance cell penetration, tissue ingrowth and angiogenesis. It was also found that both the dose and the release rate of bFGF play roles in the biologic function of the scaffold. After that, we developed a nanofibrous PLLA scaffold that can release both bone morphogenetic protein 7 (BMP-7) and platelet-derived growth factor (PDGF) with distinct dosages and release kinetics. It was demonstrated that BMP-7 and PDGF could synergistically enhance bone regeneration using a mouse ectopic bone formation model and a rat periodontal fenestration defect regeneration model. The regeneration outcome was dependent on the dosage, the ratio and the release kinetics of the two growth factors. Last, we developed an anisotropic composite scaffold with an upper layer mimicking the superficial zone of cartilage and a lower layer mimicking the middle zone of cartilage. The thin superficial layer was fabricated using an electrospinning technique to support a more parallel ECM orientation to the cartilage surface. The lower layer was fabricated using a phase-separation technique to support a more isotropic ECM distribution. Human bone marrow-derived mesenchymal stem cells (hMSCs) were seeded on this complex scaffold and cultured under chondrogenic conditions. The results showed that the composite scaffold was indeed able to support anisotropic cartilage tissue structure formation.

Feng, Kai

252

In vivo evaluation of titanium implants coated with bioactive glass by pulsed laser deposition  

Microsoft Academic Search

During the past years, different techniques, like chemical treatment, plasma spraying, sputtering, enamelling or sol–gel;\\u000a and materials, like metals, hydroxylapatite, calcium phosphates, among others, have been applied in different combinations\\u000a to improve the performance of prostheses. Among the techniques, Pulsed Laser Deposition (PLD) is very promising to produce\\u000a coatings of bioactive glass on any metal alloy used as implant. In

Jacinto P. Borrajo; Julia Serra; Pío. González; Betty León; Fernando M. Muñoz; M. López

2007-01-01

253

The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro  

Microsoft Academic Search

Bioactive glasses (BG) which contain strontium have the potential to combine the known bone regenerative properties of BG with the anabolic and anti-catabolic effects of strontium cations. Here we created a BG series (SiO2–P2O5–Na2O–CaO) in which 0–100% of the calcium was substituted by strontium and tested their effects on osteoblasts and osteoclasts in vitro. We show that ions released from

Eileen Gentleman; Yann C. Fredholm; Gavin Jell; Nasrin Lotfibakhshaiesh; Matthew D. O'Donnell; Robert G. Hill; Molly M. Stevens

2010-01-01

254

3D printing of bone substitute implants using calcium phosphate and bioactive glasses  

Microsoft Academic Search

Customized implants for bone replacement are a great help for a surgeon to remodel maxillofacial or craniofacial defects in an esthetical way, and to significantly reduce operation times. The hypothesis of this study was that a composite of ?-tricalcium phosphate (?-TCP) and a bioactive glass similar to the 45S5 Henchglass® is suitable to manufacture customized implants via 3D-printing process. The

Christian Bergmann; Markus Lindner; Wen Zhang; Karolina Koczur; Armin Kirsten; Rainer Telle; Horst Fischer

2010-01-01

255

The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses  

Microsoft Academic Search

We report on the bioactivity of two series of glasses in the SiO2–Na2O–CaO–P2O5 system after immersion in simulated body fluid (SBF) after 21 days. The effect of P2O5 content was examined for compositions containing 0–9.25 mol.% phosphate. Both series of glasses degraded to basic pH, but\\u000a the solutions tended towards to neutrality with increasing phosphate content; a result of the acidic phosphate

M. D. O’Donnell; S. J. Watts; R. G. Hill; R. V. Law

2009-01-01

256

Fluoride-containing bioactive glasses: Fluoride loss during melting and ion release in tris buffer solution  

Microsoft Academic Search

Melt-derived bioactive glasses (SiO2–P2O5–CaO–Na2O–CaF2; CaF2 0 to 17.76mol%) lost fluoride during melting, but nominal and analysed CaF2 contents in the glass correlated linearly. Analysed CaO contents were increased, showing that fluoride was lost as hydrofluoric acid after reaction with atmospheric water during melting. Weight loss on ignition reduced linearly with increasing CaF2, suggesting that CaF2 impedes absorption of atmospheric water.

Delia S. Brauer; Mohammed Mneimne; Robert G. Hill

2011-01-01

257

Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity.  

PubMed

A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x=1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga(3+) concentration measured in solution is ~6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome. PMID:24364938

Franchini, Mirco; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

2012-08-01

258

Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.  

PubMed

The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable ?-tricalcium phosphate (?-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D ?-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric-bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. PMID:23910366

Torres, A L; Gaspar, V M; Serra, I R; Diogo, G S; Fradique, R; Silva, A P; Correia, I J

2013-10-01

259

Comparison of the Remineralizing Effects of Sodium Fluoride and Bioactive Glass Using Bioerodible Gel Systems  

PubMed Central

Background and aims A carious lesion is the accumulation of numerous episodes of de- and remineralization, rather than a unidirectional demineralization process. Tooth destruction can be arrested or reversed by the frequent delivery of fluoride or calcium/phosphorous ions to the tooth surface. The present study compared and evaluated the remineralization potential of sodium fluoride and bioactive glass delivered through a bioerodible gel system. Materials and methods Longitudinal sections of artificial carious lesions, created at the gingivofacial surface of 64 pri-mary maxillary incisors were photographed under a polarized light microscope and quantified for demineralization. The sec-tions were repositioned into the tooth form and randomly mounted in sets of four that simulated an arch form. The teeth were divided into 4 groups: 1) sodium fluoride films, 2) bioactive glass films, 3) control films placed interproximally and 4) non-treatment group. Following exposure to artificial saliva for 30 days, the lesions were again photographed and quantified as above. The recorded values were statistically analyzed using Student’s paired t-test for intragroup comparison, one-way ANOVA and Post-Hoc Tukey’s test for pairwise comparison. Results The sodium fluoride and bioactive gel groups showed significant remineralization compared with the control groups (P < 0.001). Conclusion Bioerodible gel films can be used to deliver remineralizing agents to enhance remineralization. PMID:23230498

Ramashetty Prabhakar, Attiguppe; Arali, Veena

2009-01-01

260

A multilayer approach to fabricate bioactive glass coatings on Ti alloys  

SciTech Connect

Glasses in the system Si-Ca-Na-Mg-P-K-O with thermal expansion coefficients close to that of Ti6Al4V were used to coat the titanium alloy by a simple enameling technique. Firings were done in air at temperatures between 800 and 840 C and times up to 1 minute. Graded compositions were obtained by firing multilayered glass coatings. Hydroxyapatite (HA) particles were mixed with the glass powder and the mixture was placed on the outer surface of the coatings to render them more bioactive. Coatings with excellent adhesion to the substrate and able to form apatite when immersed in a simulated body fluid (SBF) can be fabricated by this methodology.

Gomez-Vega, J.M.; Saiz, E.; Tomsia, A.P.; Marshall, G.W.; Marshall, S.J.

1998-12-01

261

Bioactive glasses-incorporated, core-shell-structured polypeptide/polysaccharide nanofibrous hydrogels.  

PubMed

Although the synthetic hydrogel materials capable of accelerating wound healing are being developed at a rapid pace, achieving inorganic-organic hybrid at nanoscale dimension in nanofibrous hydrogels is still a great challenge because of its notorious brittleness and microstructural stability in wet state. Here, we developed a new nanofibrous gelatin/bioactive glass (NF-GEL/BG) composite hydrogel by phase separation method and followed by arming the nanofibers network with counterionic chitosan-hyaluronic acid pairs for improving microstructural and thermal integrity. We achieve this feature by carrying an optimal balance of charges that allows the inorganic ion release in aqueous solution without minimal structure collapse. Therefore, such NF-GEL-based, polysaccharide-crosslinked bioactive hydrogel could afford a close biomimicry to the fibrous nanostructure and constituents of the hierarchically organized natural soft tissues to facilitate chronic, nonhealing wound treatment. PMID:23218343

Chen, Jian; Chen, Xiaoyi; Yang, Xianyan; Han, Chunmao; Gao, Changyou; Gou, Zhongru

2013-01-30

262

In situ Raman spectroscopy investigation of bioactive glass reactivity: Simulated body fluid solution vs TRIS-buffered solution  

Microsoft Academic Search

In the present contribution, the innovative in situ Raman micro-spectroscopy was applied to investigate the in vitro reactivity of various bioactive glasses. All the investigated glasses belonged to the Na2O\\\\K2O–CaO–P2O5–SiO2 system, but contained sensibly different percentages of network modifiers. The glasses were immersed for increasing times, up to 96h, in simulated body fluid (SBF) and in tris-buffered (TRIS) solution. In

D. Bellucci; G. Bolelli; V. Cannillo; A. Cattini; A. Sola

2011-01-01

263

Novel bioactive polyester scaffolds prepared from unsaturated resins based on isosorbide and succinic acid.  

PubMed

In this study new biodegradable materials obtained by crosslinking poly(3-allyloxy-1,2-propylene succinate) (PSAGE) with oligo(isosorbide maleate) (OMIS) and small amount of methyl methacrylate were investigated. The porous scaffolds were obtained in the presence of a foaming system consisted of calcium carbonate/carboxylic acid mixture, creating in situ porous structure during crosslinking of liquid formulations. The maximum crosslinking temperature and setting time, the cured porous materials morphology as well as the effect of their porosity on mechanical properties and hydrolytic degradation process were evaluated. It was found that the kind of carboxylic acid used in the foaming system influenced compressive strength and compressive modulus of porous scaffolds. The MTS cytotoxicity assay was carried out for OMIS using hFOB1.19 cell line. OMIS resin was found to be non-toxic in wide range of concentrations. On the ground of scanning electron microscopy (SEM) observations and energy X-ray dispersive analysis (EDX) it was found that hydroxyapatite (HA) formation at the scaffolds surfaces within short period of soaking in phosphate buffer solution occurs. After 3h immersion a compact layer of HA was observed at the surface of the samples. The obtained results suggest potential applicability of resulted new porous crosslinked polymeric materials as temporary bone void fillers. PMID:25491802

Smiga-Matuszowicz, Monika; Janicki, Bartosz; Jaszcz, Katarzyna; ?ukaszczyk, Jan; Kaczmarek, Marcin; Lesiak, Marta; Siero?, Aleksander L; Simka, Wojciech; Mierzwi?ski, Maciej; Kusz, Damian

2014-12-01

264

The bioactivity and ion release of titanium-containing glass polyalkenoate cements for medical applications  

Microsoft Academic Search

The ion release profiles and bioactivity of a series of Ti containing glass polyalkenoate cements. Characterization revealed\\u000a each material to be amorphous with a T\\u000a g in the region of 650–660°C. The network connectivity decreased (1.83–1.35) with the addition of TiO2 which was also evident with analysis by X-ray photoelectron spectroscopy. Ion release from cements were determined using\\u000a atomic absorption

A. W. WrenN; N. M. Cummins; F. R. Laffir; S. P. Hudson; M. R. Towler

2011-01-01

265

Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles  

Microsoft Academic Search

SiO(2)-CaO-P(2)O(5) ternary bioactive glass ceramic (BGC) nanoparticles\\u000d\\u000a with different compositions were prepared via a three-step sol-gel\\u000d\\u000a method. Polyethylene glycol was selected to be used as the surfactant to\\u000d\\u000a improve the dispersion of the nanoparticles. The morphology and\\u000d\\u000a composition of these BGC nanoparticles were observed by ESEM and EDX.\\u000d\\u000a All the BGC particles obtained in this method were about 20 nm

Zhongkui Hong; Rui L. Reis; Joao F. Mano

2009-01-01

266

Development of HydroxyCarbonate Apatite on hybrid polymers used in fixed restorations modified by bioactive glass  

NASA Astrophysics Data System (ADS)

The incorporation of a bioactive glass in the structure of hybrid polymers used in dentistry for the construction of fixed prosthetic restorations could induce the expression of bioactivity, leading to the possibility of periodontal tissues reattachment. Hybrid polymer specimens and polymer specimens modified by bioactive glass were prepared and used as control for the surface morphology examination by Scanning Electron Microscopy with associated Dispersive Spectroscopy Analysis (SEM-EDS) and for surface characterization with Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, hybrid polymer specimens modified by bioactive glass were immersed in simulated body fluid (SBF) at 37 °C for different time intervals and were examined by SEM-EDS and FTIR. After 4 days immersion time a dense and continuous apatite layer covered almost the entire modified surface of the specimens. The molar Ca/P ratio reached the value of 1.79. The apatite layer showed a thickness of 1?m and was attached to the substrate, while bioactive glass particles were still present in polymer mass.

Georgantzi, B.; Papadopoulou, L.; Zorba, T.; Garefis, P.; Paraskevopoulos, K.; Koidis, P.

2004-03-01

267

The effect of variation in physical properties of porous bioactive glass on the expression and maintenance of the osteoblastic phenotype  

NASA Astrophysics Data System (ADS)

Revision surgery to replace failed hip implants is a significant health care issue that is expected to escalate as life expectancy increases. A major goal of revision surgery is to reconstruct femoral intramedullary bone-stock loss. To address this problem of bone loss, grafting techniques are widely used. Although fresh autografts remain the optimal material for all forms of surgery seeking to restore structural integrity to the skeleton, it is evident that the supply of such tissue is limited. In recent years, calcium phosphate ceramics have been studied as alternatives to autografts and allografts. The significant limitations associated with the use of biological and synthetic grafts have led to a growing interest in the in vitro synthesis of bone tissue. The approach is to synthesize bone tissue in vitro with the patient's own cells, and use this tissue for the repair of bony defects. Various substrates including metals, polymers, calcium phosphate ceramics and bioactive glasses, have been seeded with osteogenic cells. The selection of bioactive glass in this study is based on the fact that this material has shown an intense beneficial biological effect which has not been reproduced by other biomaterials. Even though the literature provides extensive data on the effect of pore size and porosity on in vivo bone tissue ingrowth into porous materials for joint prosthesis fixation, the data from past studies cannot be applied to the use of bioactive glass as a substrate for the in vitro synthesis of bone tissue. First, unlike the in vivo studies in the literature, this research deals with the growth of bone tissue in vitro. Second, unlike the implants used in past studies, bioactive glass is a degradable and resorbable material. Thus, in order to establish optimal substrate characteristics (porosity and pore size) for bioactive glass, it was important to study these parameters in an in vitro model. We synthesized porous bioactive glass substrates (BG) with varying pore sizes and porosity and determined the effect of substrate properties on the expression and maintenance of the osteoblastic phenotype, using an in vitro culture of osteoblast-like cells. Our data showed that porous bioactive glass substrates support the proliferation and maturation of osteoblast-like cells. Within the conditions of the experiment, we also found that at a given porosity of 44% the pore size of bioactive glass neither directs nor modulates the in vitro expression of the osteoblastic phenotype. On the other hand, at an average pore size of 92 mum, when cultures are maintained for 14 days, cell activity is greatly affected by the substrate porosity. As the porosity increases from 35% to 59%, osteoblast activity is adversely affected. (Abstract shortened by UMI.)

Effah Kaufmann, Elsie Akosua Biraa

268

Bioactive Glass 13-93 as a Subchondral Substrate for Tissue-engineered Osteochondral Constructs: A Pilot Study  

Microsoft Academic Search

Background  Replacement of diseased areas of the joint with tissue-engineered osteochondral grafts has shown potential in the treatment\\u000a of osteoarthritis. Bioactive glasses are candidates for the osseous analog of these grafts.\\u000a \\u000a \\u000a \\u000a \\u000a Questions\\/purposes  (1) Does Bioactive Glass 13-93 (BG 13-93) as a subchondral substrate improve collagen and glycosaminoglycan production in\\u000a a tissue-engineered cartilage layer? (2) Does BG 13-93 as a culture medium supplement

Prakash Jayabalan; Andrea R. Tan; Mohammed N. Rahaman; B. Sonny Bal; Clark T. Hung; James L. Cook

269

Attachment and proliferation of human periodontal ligament fibroblasts on bioactive glass modified ceramics.  

PubMed

In this study, six groups of modified ceramic specimens were constructed and were studied comparatively with dental porcelain (P:control) for their ability to support human periodontal ligament fibroblasts attachment and proliferation. The dental porcelain was initially coated with bioactive glass (PCB) or with a mixture of porcelain and bioactive glass (PCBP) and then calcium-phosphate rich (Ca-P) or hydroxy-carbonate apatite (HCAp) layers were bio-mimetically developed on both surfaces (PCB and PCBP) after immersion in simulated body fluid. The development and characterization of Ca-P and HCAp layers on PCBCa-P, PCBHCAp, PCBPCa-P, PCBPHCAp specimens' surfaces were evaluated by Scanning Electron Microscopy (SEM) and further confirmed by Fourier Transform Infrared Spectroscopy (FTIR). The modified ceramics differed from their controls concerning their surface morphology as evaluated by SEM, and their surface chemical composition (Al, P, Si, Ca, Na and K) as evaluated by Energy Dispersive Spectroscopy (EDS). Almost all modified specimens supported cell attachment, spreading and proliferation at higher extent than the control porcelain specimens. The additional layers of Ca-P or HCAp on PCBP and PCB specimens were found to positively affect cell attachment and proliferation. The highest cell population, of all specimens tested, was observed on PCBPCa-P and PCBPHCAp. The Ca-P particles present on all Ca-P and HCAp coated specimens seemed to be involved in cell adhesion. PMID:17207079

Kontonasaki, E; Sivropoulou, A; Papadopoulou, L; Garefis, P; Paraskevopoulos, K; Koidis, P

2007-01-01

270

Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model.  

PubMed

The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang; Zhang, Changqing

2013-07-01

271

Gentamicin-Loaded Borate Bioactive Glass Eradicates Osteomyelitis Due to Escherichia coli in a Rabbit Model  

PubMed Central

The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang

2013-01-01

272

Synthesis and characterization of macroporous chitosan\\/calcium phosphate composite scaffolds for tissue engineering  

Microsoft Academic Search

Chitosan scaffolds reinforced by beta -tricalcium phosphate (beta -TCP)\\u000a and calcium phosphate invert glass were fabricated with a low-cost,\\u000a bioclean freeze-drying technique via thermally induced phase separation.\\u000a The microstructure, mechanical performance, biodegradation, and\\u000a bioactivity of the scaffolds were studied. The composite scaffolds were\\u000a macroporous, and the pore structures of the scaffolds with beta -TCP and\\u000a the glass appeared very different.

Y Zhang; Miqin Zhang

2001-01-01

273

Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass ®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability  

Microsoft Academic Search

In a cell culture model of murine osteoblasts three particulate bioactive glasses were evaluated and compared to glass (either borosilicate or soda-lime-silica) particles with respect to their effect on metabolic activity, cell viability, changes in intracellular ion concentrations, proliferation and differentiation. 45S5 Bioglass® caused extra- and intracellular alkalinization, a rise in [Ca2+]i and [K+]i, a small plasma membrane hyperpolarization, and

Ian A Silver; Judith Deas; Maria Ereci?ska

2001-01-01

274

Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability.  

PubMed

Al-free glasses of general composition 0.340SiO2:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na2O:0.060P2O5 (a, b=0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25±5 MPa) and higher compressive elastic modulus (492±17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 ?m. Cements prepared with glass formulation a=0.125 and b=0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing ?-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 ?M and 887 ?M) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. PMID:23827583

Gomes, Filipa O; Pires, Ricardo A; Reis, Rui L

2013-04-01

275

Dental ceramics coated with bioactive glass: Surface changes after exposure in a simulated body fluid under static and dynamic conditions  

NASA Astrophysics Data System (ADS)

Bioactive materials develop a strong bond with living tissues through a carbonate-containing hydroxyapatite layer, similar to that of bone. The fabrication of a thin bioactive glass coating on dental ceramics used in metal-ceramic restorations, could provide a bioactive surface, which in combination with a tissue regenerative technique could lead to periodontal tissues attachment. The aim of this study was the in vitro investigation of the surface structure changes of dental ceramics used in metal-ceramic restorations, coated with a bioactive glass heat-treated at 950 °C, after exposure in a simulated body fluid (SBF) under two different soaking conditions. Coating of dental ceramics with a bioactive glass resulted in the formation of a stable and well bonded with the ceramic substrate thin layer. The growth of a well-attached carbonate apatite layer on their surface after immersion in a simulated body fluid is well evidenced under both experimental conditions, although in static environment the rate of apatite growth is constant and the grown layers seem to be more dense and compact compared with the respective layers observed on specimens under dynamic conditions.

Papadopoulou, L.; Kontonasaki, E.; Zorba, T.; Chatzistavrou, X.; Pavlidou, E.; Paraskevopoulos, K.; Sklavounos, S.; Koidis, P.

2003-07-01

276

Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy  

NASA Astrophysics Data System (ADS)

In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na2Ca2Si3O9, with the thickness of ?1.0 ?m, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (Ecorr) form -1.60 V to -1.48 V, and a reduction of corrosion current density (icorr) from 4.48 ?A cm-2 to 0.16 ?A cm-2, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

Ye, Xinyu; Cai, Shu; Dou, Ying; Xu, Guohua; Huang, Kai; Ren, Mengguo; Wang, Xuexin

2012-10-01

277

Microscopic and spectroscopic investigation of bioactive glasses for antibiotic controlled release  

NASA Astrophysics Data System (ADS)

Bioactive glass with the composition 0.55SiO2·0.41CaO·0.04P2O5 was prepared following the sol-gel route as controlled delivery systems for tetracycline (TC). The maturation and drying of the gel under different conditions led to different behavior regarding the loading and release of TC from these matrices. The pore size modifications upon TC loading evidenced by BET method show different ability of the glass matrices with respect to TC incorporation, also supported by experimental EPR and fluorescence spectroscopy. EPR spectra of both TC solution and immobilized TC on the porous structure of glass specimens demonstrated changes in tetracycline structure during loading and upon adsorption. The TC release profile monitored by differential pulse voltammetry shows a maximum concentration after 2 h and a continuously slow release during the next 24 h. The obtained results demonstrate that the pores size modification related to different maturation and drying procedures seems to be a determinative factor in tetracycline release process.

Cavalu, S.; Banica, F.; Gruian, C.; Vanea, E.; Goller, G.; Simon, V.

2013-05-01

278

Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel  

PubMed Central

Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (?=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives.

Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

2014-01-01

279

Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants.  

PubMed

Despite their widespread application, metallic orthopaedic prosthesis failure still occurs because of lack of adequate bone-bonding and the incidence of post-surgery infections. The goal of this research was to develop multifunctional composite chitosan/Bioglass coatings loaded with gentamicin antibiotic as a suitable strategy to improve the surface properties of metallic implants. Electrophoretic deposition (EPD) was applied as a single-step technology to simultaneously deposit the biopolymer, bioactive glass particles, and the antibiotic on stainless steel substrate. The microstructure and composition of the coatings were characterized using SEM/EDX, XRD, FTIR, and TGA/DSC, respectively. The in vitro bioactivity of the coatings was demonstrated by formation of hydroxyapatite after immersion in simulated body fluid (SBF) in a short period of 2 days. High-performance liquid chromatography (HPLC) measurements indicated the release of 40% of the loaded gentamicin in phosphate buffered saline (PBS) within the first 5 days. The developed composite coating supported attachment and proliferation of MG-63 cells up to 10 days. Moreover, disc diffusion test showed improved bactericidal effect of gentamicin-loaded composite coatings against S. aureus compared to control non-gentamicin-loaded coatings. PMID:24827466

Pishbin, Fatemehsadat; Mouriño, Viviana; Flor, Sabrina; Kreppel, Stefan; Salih, Vehid; Ryan, Mary P; Boccaccini, Aldo R

2014-06-11

280

One-pot synthesis of magnetic, macro/mesoporous bioactive glasses for bone tissue engineering  

NASA Astrophysics Data System (ADS)

Magnetic and macro/mesoporous bioactive glasses were synthesized by a one-pot method via a handy salt leaching technique. It was identified to be an effective and simple synthetic strategy. The non-ionic triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123), was used as the structure directing agent for mesoporous structure but also as the reductant to reduce the iron source into magnetic iron oxide. The prepared materials exhibited excellent super-paramagnetic property with interconnected macroporous (200-300 ?m) and mesoporous (3.4 nm) structure. Furthermore, their outstanding drug storage/release properties and rapid (5) induction of hydroxyapatite growth ability were investigated after immersing in simulated body fluid solution at 37 °C. Notably, the biocompatibility assessment confirmed that the materials obtained presented good biocompatibility and enhanced adherence of HeLa cells. Herein, the novel materials are expected to have potential application for bone tissue engineering.

Wang, Dan; Lin, Huiming; Jiang, Jingjie; Han, Xiao; Guo, Wei; Wu, Xiaodan; Jin, Yingxue; Qu, Fengyu

2013-04-01

281

Biosilicate®-gelatine bone scaffolds by the foam replica technique: development and characterization  

NASA Astrophysics Data System (ADS)

The development of bioactive glass-ceramic materials has been a topic of great interest aiming at enhancing the mechanical strength of traditional bioactive scaffolds. In the present study, we test and demonstrate the use of Biosilicate® glass-ceramic powder to fabricate bone scaffolds by the foam replica method. Scaffolds possessing the main requirements for use in bone tissue engineering (95% porosity, 200-500 ?m pore size) were successfully produced. Gelatine coating was investigated as a simple approach to increase the mechanical competence of the scaffolds. The gelatine coating did not affect the interconnectivity of the pores and did not significantly affect the bioactivity of the Biosilicate® scaffold. The gelatine coating significantly improved the compressive strength (i.e. 0.80 ± 0.05 MPa of coated versus 0.06 ± 0.01 MPa of uncoated scaffolds) of the Biosilicate® scaffold. The combination of Biosilicate® glass-ceramic and gelatine is attractive for producing novel scaffolds for bone tissue engineering.

Desimone, Deborah; Li, Wei; Roether, Judith A.; Schubert, Dirk W.; Crovace, Murilo C.; Rodrigues, Ana Candida M.; Zanotto, Edgar D.; Boccaccini, Aldo R.

2013-08-01

282

Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations.  

PubMed

The structural properties of phosphosilicate glasses based on the 45S5 Bioglass doped with gallium and aluminum (46.2 SiO2·24.3Na2O·26.9CaO·2.6P2O5·1.0X2O3, X = Ga or Al) are investigated by means of classical molecular dynamics simulations. Structural features of the two compositions are compared with those of the original 45S5 Bioglass in order to relate them to the different known bioactivities of these materials. Differences in the coordination environments of Ga and Al, network connectivity, and ion aggregation reveal a microscopic model of these glasses which supports the interpretation of the experimental data and provides new insight into the different biological behaviors of Ga- and Al-containing phosphosilicate glasses. Although Ga is found predominantly in a 4-fold coordination environment, small amounts of 5- and 6-fold coordinated atoms have been detected depending on the interatomic potential model employed. This suggests its possible intermediate role in phosphosilicate glasses. On the contrary, Al plays a network former role and leads to glasses with a more polymerized structure. Interestingly, the results show an increased propensity for aggregation of the Ca(2+) and PO4(3-) ions in the Al-containing phosphosilicate glasses with respect to the Ga-containing ones. This leads to insoluble calcium-phosphate-rich regions not detected in the bioactive glasses. PMID:23514265

Malavasi, Gianluca; Pedone, Alfonso; Menziani, Maria Cristina

2013-04-18

283

Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration  

PubMed Central

Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this paper, we review the current state of bioactive and biodegradable nanocomposite and O/I hybrid biomaterials and their applications in bone regeneration. We focus specifically on nanocomposites based on nano-sized hydroxyapatite (HA) and bioactive glass (BG) fillers in combination with biodegradable polyesters and their hybrid counterparts. Topics include 3D scaffold design, materials that are widely used in bone regeneration, and recent trends in next generation biomaterials. We conclude with a perspective on the future application of nanocomposites and O/I hybrid biomaterials for regeneration of bone. PMID:24955542

Allo, Bedilu A.; Costa, Daniel O.; Dixon, S. Jeffrey; Mequanint, Kibret; Rizkalla, Amin S.

2012-01-01

284

Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve.  

PubMed

Carbon nanotubes (CNTs), with their unique and unprecedented properties, have become very popular for the repair of tissues, particularly for those requiring electrical stimuli. Whilst most reports have demonstrated in vitro neural cell responses of the CNTs, few studies have been performed on the in vivo efficacy of CNT-interfaced biomaterials in the repair and regeneration of neural tissues. Thus, we report here for the first time the in vivo functions of CNT-interfaced nerve conduits in the regeneration of transected rat sciatic nerve. Aminated CNTs were chemically tethered onto the surface of aligned phosphate glass microfibers (PGFs) and CNT-interfaced PGFs (CNT-PGFs) were successfully placed into three-dimensional poly(l/d-lactic acid) (PLDLA) tubes. An in vitro study confirmed that neurites of dorsal root ganglion outgrew actively along the aligned CNT-PGFs and that the CNT interfacing significantly increased the maximal neurite length. Sixteen weeks after implantation of a CNT-PGF nerve conduit into the 10mm gap of a transected rat sciatic nerve, the number of regenerating axons crossing the scaffold, the cross-sectional area of the re-innervated muscles and the electrophysiological findings were all significantly improved by the interfacing with CNTs. This first in vivo effect of using a CNT-interfaced scaffold in the regeneration process of a transected rat sciatic nerve strongly supports the potential use of CNT-interfaced PGFs at the interface between the nerve conduit and peripheral neural tissues. PMID:25463487

Ahn, Hong-Sun; Hwang, Ji-Young; Kim, Min Soo; Lee, Ja-Yeon; Kim, Jong-Wan; Kim, Hyun-Soo; Shin, Ueon Sang; Knowles, Jonathan C; Kim, Hae-Won; Hyun, Jung Keun

2015-02-01

285

A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.  

PubMed

In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. PMID:25492213

Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

2015-02-01

286

Structural changes of methemoglobin after adsorption on bioactive glass, as a function of surface functionalization and salt concentration  

NASA Astrophysics Data System (ADS)

Functional protein adsorption at liquid-solid interfaces has been intensively studied in the last years, however it is difficult to evidence directly conformational changes of the protein which are likely to appear upon adsorption. Spin labeling in combination with Electron Paramagnetic Resonance (EPR) spectroscopy was applied in this study to investigate adsorption of horse methemoglobin to bioactive glass (BG) similar in composition with 45S5 Bioglass®. X-band cw-EPR spectra of spin labeled methemoglobin in solution were compared to those obtained after adsorption on bioactive glass surface (functionalized and non-functionalized with glutaraldehyde), to extract information of the structure and dynamics in the vicinity of position ?-93. The concentration of methemoglobin adsorbed on BG substrate was determined from the intensity of cw-EPR spectra and correlated with images obtained by Scanning Electron Microscopy (SEM). Line shape analysis of the EPR spectra revealed that ionic strength does not induce significant conformational changes in the protein structure upon adsorption, however, the chemical treatment applied to the bioactive glass surface positively influences protein adsorption.

Gruian, C.; Vulpoi, A.; Steinhoff, H.-J.; Simon, S.

2012-05-01

287

Good short-term outcome of primary total hip arthroplasty with cementless bioactive glass ceramic bottom-coated implants  

PubMed Central

Background and purpose Cementless total hip arthroplasty is currently favored by many orthopedic surgeons. The design of the porous surface is critically important for long-term fixation. We examined the clinical and radiographic outcome of the cementless titanium hip implant with a bottom coating of apatite-wollastonite containing bioactive glass ceramic. Methods We retrospectively reviewed 109 hips (92 patients) that had undergone primary cementless total hip arthroplasty with bioactive glass ceramic bottom-coated implants. The mean follow-up period was 7 (3–9) years. Hip joint function was evaluated with the Merle d’Aubigné and Postel hip score, and radiographic changes were determined from anteroposterior radiographs. Results The mean hip score improved from 9.7 preoperatively to 17 at the final follow-up. The overall survival rate was 100% at 9 years, when radiographic loosening or revision for any reason was used as the endpoint. 3 stems in 2 patients subsided more than 3 mm vertically within 1 year after implantation. Radiographs of the interface of the stem and femur were all classified as bone ingrowth fixation. Conclusions The short-term results of this study show good outcome for cementless implants with a bottom coating of apatite-wollastonite containing bioactive glass ceramic. PMID:23043270

2012-01-01

288

Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications  

NASA Astrophysics Data System (ADS)

For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-?-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

2008-02-01

289

Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications  

SciTech Connect

For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-{epsilon}-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

Jukola, H.; Nikkola, L.; Tukiainen, M.; Kellomaeki, M.; Ashammakhi, N. [Tampere University of Technology, Institute of Biomaterials, Tampere (Finland); Gomes, M. E.; Reis, R. L. [3B's Research Group, University of Minho, 4710 Braga (Portugal) and Department of Polymer Engineering, Campus de Azurem, U. Minho, 4800 Guimaraes (Portugal); Chiellini, F.; Chiellini, E. [University of Pisa, Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Application s.UdR -INSTM9/ Department of Chemistry and Industrial Chemistry, University of Pisa (Italy)

2008-02-15

290

In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants.  

PubMed

This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 ?m), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro. PMID:24022800

Abdulmajeed, Aous A; Kokkari, Anne K; Käpylä, Jarmo; Massera, Jonathan; Hupa, Leena; Vallittu, Pekka K; Närhi, Timo O

2014-01-01

291

Effect of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites.  

PubMed

Angiogenesis is essential for tissue regeneration and repair. A growing body of evidence shows that the use of bioactive glasses (BG) in biomaterial-based tissue engineering (TE) strategies may improve angiogenesis and induce increased vascularization in TE constructs. This work investigated the effect of adding nano-sized BG particles (n-BG) on the angiogenic properties of bovine type I collagen/n-BG composites. Nano-sized (20-30 nm) BG particles of nominally 45S5 Bioglass® composition were used to prepare composite films, which were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in vivo angiogenic response was evaluated using the quail chorioallantoic membrane (CAM) as an model of angiogenesis. At 24 h post-implantation, 10 wt% n-BG containing collagen films stimulated angiogenesis by increasing by 41 % the number of blood vessels branch points. In contrast, composite films containing 20 wt% n-BG were found to inhibit angiogenesis. This experimental study provides the first evidence that addition of a limited concentration of n-BG (10 wt%) to collagen films induces an early angiogenic response making selected collagen/n-BG composites attractive matrices for tissue engineering and regenerative medicine. PMID:23430337

Vargas, Gabriela E; Haro Durand, Luis A; Cadena, Vanesa; Romero, Marcela; Mesones, Rosa Vera; Ma?kovi?, Mirza; Spallek, Stefanie; Spiecker, Erdmann; Boccaccini, Aldo R; Gorustovich, Alejandro A

2013-05-01

292

Combinatorial effect of Si4+, Ca2+, and Mg2+ released from bioactive glasses on osteoblast osteocalcin expression and biomineralization.  

PubMed

Osteocalcin (OCN) expression is an essential osteogenic marker of successful bone regeneration therapies. This study hypothesizes that Si(4+) and Ca(2+) combinatorial released by bioactive glass enhance osteoblast biomineralization through up-regulation of OCN expression; and Mg(2+) release delays such enhancement. Osteoblasts (MC3T3-E1) were treated with ionic products of bioactive glass dissolution (6P53-b experimental bioactive glass and 45S5 commercial Bioglass™). Results showed that gene expressions, including OCN and its up-stream transcription factors (Runx2, ATF4, MSX1, SP7/OSX), growth factors and signaling proteins (BMP2, BMP6, SMAD3), were enhanced in both 45S5 and 6P53-b glass conditioned mediums (GCMs). This up-regulation led to enhanced mineral formation by 45S5 glass conditioned mediums ([GCM], Si(4+)+Ca(2+)) after 20 days, and by 45S5 GCM and 6P53-b GCM (Si(4+)+Ca(2+)+Mg(2+)) after 30 days. In examining the extracellular matrix generated by cells when exposed to each GCM, it was found that 45S5 GCM had slightly elevated levels of mineral content within ECM as compared to 6P53-b GCM after 30 days while control treatments exhibited no mineral content. The formation of well-defined mineralized nodules (distinct PO4(3-) [960 cm(-1)] and CO3(2-) [1072 cm(-1)] peaks from Raman Spectra) was observed for each GCM as the soluble glass content increased. In examining the individual and combined ion effects between Si(4+), Ca(2+), and Mg(2+), it was found Mg(2+) down-regulates OCN expression. Thus, ions released from both 45S5 and 6P53-b bioactive glasses up-regulate OCN expression and biomineralization while 6P53-b GCM Mg(2+) release down-regulated OCN expression and delayed osteoblast biomineralization. These results indicate that Si(4+), Ca(2+), and Mg(2+) combinatorially regulate osteoblast OCN expression and biomineralization. PMID:23623093

Saffarian Tousi, Neda; Velten, Megen F; Bishop, Timothy J; Leong, Kelly K; Barkhordar, Nicole S; Marshall, Grayson W; Loomer, Peter M; Aswath, Pranesh B; Varanasi, Venu G

2013-07-01

293

Incorporation of bioactive polyvinylpyrrolidone-iodine within bilayered collagen scaffolds enhances the differentiation and subchondral osteogenesis of mesenchymal stem cells.  

PubMed

Polyvinylpyrrolidone-iodine (Povidone-iodine, PVP-I) is widely used as an antiseptic agent for lavation during joint surgery; however, the biological effects of PVP-I on cells from joint tissue are unknown. This study examined the biocompatibility and biological effects of PVP-I on cells from joint tissue, with the aim of optimizing cell-scaffold based joint repair. Cells from joint tissue, including cartilage derived progenitor cells (CPC), subchondral bone derived osteoblast and bone marrow derived mesenchymal stem cells (BM-MSC) were isolated. The concentration-dependent effects of PVP-I on cell proliferation, migration and differentiation were evaluated. Additionally, the efficacy and mechanism of a PVP-I loaded bilayer collagen scaffold for osteochondral defect repair was investigated in a rabbit model. A micromolar concentration of PVP-I was found not to affect cell proliferation, CPC migration or extracellular matrix production. Interestingly, micromolar concentrations of PVP-I promote osteogenic differentiation of BM-MSC, as evidenced by up-regulation of RUNX2 and Osteocalcin gene expression, as well as increased mineralization on the three-dimensional scaffold. PVP-I treatment of collagen scaffolds significantly increased fibronectin binding onto the scaffold surface and collagen type I protein synthesis of cultured BM-MSC. Implantation of PVP-I treated collagen scaffolds into rabbit osteochondral defect significantly enhanced subchondral bone regeneration at 6 weeks post-surgery compared with the scaffold alone (subchondral bone histological score of 8.80±1.64 vs. 3.8±2.19, p<0.05). The biocompatibility and pro-osteogenic activity of PVP-I on the cells from joint tissue and the enhanced subchondral bone formation in PVP-I treated scaffolds would thus indicate the potential of PVP-I for osteochondral defect repair. PMID:23707501

Jiang, Yangzi; Chen, Longkun; Zhang, Shufang; Tong, Tong; Zhang, Wei; Liu, Wanlu; Xu, Guowei; Tuan, Rocky S; Heng, Boon Chin; Crawford, Ross; Xiao, Yin; Ouyang, Hong Wei

2013-09-01

294

A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone.  

PubMed

Osteomyelitis (bone infection) is often difficult to cure. The commonly-used treatment of surgical debridement to remove the infected bone combined with prolonged systemic and local antibiotic treatment has limitations. In the present study, an injectable borate bioactive glass cement was developed as a carrier for the antibiotic vancomycin, characterized in vitro, and evaluated for its capacity to cure osteomyelitis in a rabbit tibial model. The cement (initial setting time = 5.8 ± 0.6 min; compressive strength = 25.6 ± 0.3 MPa) released vancomycin over ~25 days in phosphate-buffered saline, during which time the borate glass converted to hydroxyapatite (HA). When implanted in rabbit tibial defects infected with methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis, the vancomycin-loaded cement converted to HA and supported new bone formation in the defects within 8 weeks. Osteomyelitis was cured in 87 % of the defects implanted with the vancomycin-loaded borate glass cement, compared to 71 % for the defects implanted with vancomycin-loaded calcium sulfate cement. The injectable borate bioactive glass cement developed in this study is a promising treatment for curing osteomyelitis and for regenerating bone in the defects following cure of the infection. PMID:24477872

Cui, Xu; Zhao, Cunju; Gu, Yifei; Li, Le; Wang, Hui; Huang, Wenhai; Zhou, Nai; Wang, Deping; Zhu, Yi; Xu, Jun; Luo, Shihua; Zhang, Changqing; Rahaman, Mohamed N

2014-03-01

295

Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration.  

PubMed

In this work, we fabricated injectable bone substitutes modified with the addition of bioactive glass powders synthesized via ultrasonic energy-assisted hydrothermal method to the calcium phosphate-based bone cement to improve its biocompatibility. The injectable bone substitutes was initially composed of a powder component (tetracalcium phosphate, dicalcium phosphate dihydrate and calcium sulfate dehydrate) and a liquid component (citric acid, chitosan and hydroxyl-propyl-methyl-cellulose) upon which various concentrations of bioactive glass were added: 0%, 10%, 20% and 30%. Setting time and compressive strength of the injectable bone substitutes were evaluated and observed to improve with the increase of bioactive glass content. Surface morphologies were observed via scanning electron microscope before and after submersion of the samples to simulated body fluid and increase in apatite formation was detected using x-ray diffraction machine. In vitro biocompatibility of the injectable bone substitutes was observed to improve with the addition of bioactive glass as the proliferation/adhesion behavior of cells on the material increased. Human gene markers were successfully expressed using real time-polymerase chain reaction and the samples were found to promote cell viability and be more biocompatible as the concentration of bioactive glass increases. In vivo biocompatibility of the samples containing 0% and 30% bioactive glass were evaluated using Micro-CT and histological staining after 3 months of implantation in male rabbits' femurs. No inflammatory reaction was observed and significant bone formation was promoted by the addition of bioactive glass to the injectable bone substitute system. PMID:23470354

Sadiasa, Alexander; Sarkar, Swapan Kumar; Franco, Rose Ann; Min, Young Ki; Lee, Byong Taek

2014-01-01

296

The ionic products of bioactive glass particle dissolution enhance periodontal ligament fibroblast osteocalcin expression and enhance early mineralized tissue development.  

PubMed

This study resulted in enhanced collagen type 1 and osteocalcin expression in human periodontal ligament fibroblasts (hPDLF) when exposed to bioactive glass conditioned media that subsequently may promote early mineralized tissue development. Commercial Bioglass™ (45S5) and experimental bioactive coating glass (6P53-b), were used to make a glass conditioned media (GCM) for comparison to control medium. ICP-MS analysis showed increased concentrations of Ca(2+), PO(4) (3-), Si(4+), and Na(+), for 45S5 GCM and Mg(2+), K(+), Ca(2+), PO(4)(3-), Si(4+), and Na(+) for 6P53-b GCM (relative to control medium). Differentiating hPDLF cultures exposed to 45S5 and 6P53-b GCM showed enhanced expression of collagen type 1 (Col1?1, Col1?2), osteocalcin, and alkaline phosphatase gene expression. These GCM also enhanced osteocalcin protein expression. After 16 d of culture, 45S5 and 6P53-b GCM treated cells showed regions of deep red Alizarin staining, indicating increased Ca within their respective extracellular matrices (ECM), while control-treated cells did not exhibit these features. SEM analysis showed more developed ECM in GCM treated cultures, indicated by multiple tissue layering and abundant collagen fiber bundle formation, while control treated cells did not exhibit these features. SEM analysis showed polygonal structures suggestive of CaP in 45S5 GCM treated cultures. These results indicate the osteogenic potential of bioactive coating glass in periodontal bone defect filling applications. PMID:21548068

Varanasi, Venu G; Owyoung, Jeremy B; Saiz, Eduardo; Marshall, Sally J; Marshall, Grayson W; Loomer, Peter M

2011-08-01

297

UFSRAT: Ultra-Fast Shape Recognition with Atom Types –The Discovery of Novel Bioactive Small Molecular Scaffolds for FKBP12 and 11?HSD1  

PubMed Central

Motivation Using molecular similarity to discover bioactive small molecules with novel chemical scaffolds can be computationally demanding. We describe Ultra-fast Shape Recognition with Atom Types (UFSRAT), an efficient algorithm that considers both the 3D distribution (shape) and electrostatics of atoms to score and retrieve molecules capable of making similar interactions to those of the supplied query. Results Computational optimization and pre-calculation of molecular descriptors enables a query molecule to be run against a database containing 3.8 million molecules and results returned in under 10 seconds on modest hardware. UFSRAT has been used in pipelines to identify bioactive molecules for two clinically relevant drug targets; FK506-Binding Protein 12 and 11?-hydroxysteroid dehydrogenase type 1. In the case of FK506-Binding Protein 12, UFSRAT was used as the first step in a structure-based virtual screening pipeline, yielding many actives, of which the most active shows a KD, app of 281 µM and contains a substructure present in the query compound. Success was also achieved running solely the UFSRAT technique to identify new actives for 11?-hydroxysteroid dehydrogenase type 1, for which the most active displays an IC50 of 67 nM in a cell based assay and contains a substructure radically different to the query. This demonstrates the valuable ability of the UFSRAT algorithm to perform scaffold hops. Availability and Implementation A web-based implementation of the algorithm is freely available at http://opus.bch.ed.ac.uk/ufsrat/. PMID:25659145

Shave, Steven; Blackburn, Elizabeth A.; Adie, Jillian; Houston, Douglas R.; Auer, Manfred; Webster, Scott P.; Taylor, Paul; Walkinshaw, Malcolm D.

2015-01-01

298

Genotoxicity effects of nano bioactive glass and Novabone bioglass on gingival fibroblasts using single cell gel electrophoresis (comet assay): An in vitro study  

PubMed Central

Background: The greater surface of bioactive glass nanoparticles presents an incomparable and promising feature similar to the biological apatite. Nanoparticles improve cellular adhesion, enhance osteoblast proliferation and differentiation, and increase biomineralization for periodontal regeneration and dental implants. Considering the fact that interaction between periodontal cells and bone graft materials are important for periodontal lesion regeneration, the present study was undertaken to investigate the genotoxicity of a novel synthesized nanoscale bioactive glass and compared it with Novabone bioglass in periodontal fibroblasts cells, in order to approve the biocompatibility of nano bioactive glass. Materials and Methods: In this in vitro experimental study, periodontal C165 fibroblasts cells were cultured in their logarithmic phase and the genotoxicity of novel synthesized bioactive glass nanoparticles and Novabone bioglass was studied in different concentrations and a control group using Comet assay test. By using Autocomet software, three parameters (Tail length, %DNA in tail, Tail moment) were analyzed; the genotoxicity of mentioned biomaterials and control group. Obtained data were analyzed by SPSS 11.5 software, Kruskal Wallis H and Mann Whitney tests (P = 0.05). Results: No statistically significant difference was observed between the concentrations of Novabone bioglass (P value = 0.085) with control group and novel nano bioactive glass (P value = 0.437) with control group in the evaluation of %DNA in tail parameter. There was significant difference between genotoxicity of novel nano bioactive glass and control, and between Novabone bioglass and control group in concentrations of 4 and 5 mg/ml. According to significance of the mean difference, novel nano bioactive glass showed higher genotoxicity compared to Novabone bioglass in the concentration of 5 mg/ml (P ? 0.05). Conclusion: The findings of this study have demonstrated that novel nano bioactive glass had no genotoxicity in concentrations lower than 4 mg/ml. Nanoparticles have a higher surface area in comparison to microparticles and thus, the amount and rate of ion release for nanoparticles are extremely higher. This difference is the main reason for the different genotoxicity of nano bioactive glass and micro Novabone bioglass in the concentrations higher than 4 mg/ml. PMID:23087738

Tavakoli, Mohammad; Bateni, Ensiyeh; Rismanchian, Mansour; Fathi, Mohammadhossein; Doostmohammadi, Ali; Rabiei, Azim; Sadeghi, Hojat; Etebari, Mahmood; Mirian, Mina

2012-01-01

299

Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule  

NASA Astrophysics Data System (ADS)

Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

2013-12-01

300

Assembly and function of the tRNA-modifying GTPase MnmE adsorbed to surface functionalized bioactive glass.  

PubMed

Protein adsorption onto solid surfaces is a common phenomenon in tissue engineering related applications, and considerable progress was achieved in this field. However, there are still unanswered questions or contradictory opinions concerning details of the protein's structure, conformational changes, or aggregation once adsorbed onto solid surfaces. Electron paramagnetic resonance (EPR) spectroscopy and site-directed spin labeling (SDSL) were employed in this work to investigate the conformational changes and dynamics of the tRNA-modifying dimeric protein MnmE from E. coli, an ortholog of the human GTPBP3, upon adsorption on bioactive glass mimicking the composition of the classical 45S5 Bioglass. In addition, prior to protein attachment, the bioactive glass surface was modified with the protein coupling agent glutaraldehyde. Continuous wave EPR spectra of different spin labeled MnmE mutants were recorded to assess the dynamics of the attached spin labels before and after protein adsorption. The area of the continuous wave (cw)-EPR absorption spectrum was further used to determine the amount of the attached protein. Double electron-electron resonance (DEER) experiments were conducted to measure distances between the spin labels before and after adsorption. The results revealed that the contact regions between MnmE and the bioactive glass surface are located at the G domains and at the N-terminal domains. The low modulation depths of all DEER time traces recorded for the adsorbed single MnmE mutants, corroborated with the DEER measurements performed on MnmE double mutants, show that the adsorption process leads to dissociation of the dimer and alters the tertiary structure of MnmE, thereby abolishing its functionality. However, glutaraldehyde reduces the aggressiveness of the adsorption process and improves the stability of the protein attachment. PMID:24785159

Gruian, C; Boehme, S; Simon, S; Steinhoff, H-J; Klare, J P

2014-05-28

301

Damping and impact properties of laminated scaffolds and glass columns evaluated through the use of computational methods  

NASA Astrophysics Data System (ADS)

Dynamic finite element analysis (FEA) was used to verify the ability of a novel percussion instrument to characterize the composition and structure of laminated materials and glass columns and to elucidate key facets of this process. Initial simulations modeling the percussion process with varying probe geometries were performed to access which configuration most accurately represented in situ diagnostic activity. Percussion testing of monoliths and laminated duplex scaffolds consisting of PTFE and 6061 Al was simulated to assess the ability of the numeric methodology to model intrinsic damping in laminated scaffolds and determine the potential contributions of size effects, gripping configurations, and probe friction to the loading response of the material being tested. Percussion testing of laminated scaffolds and monoliths composed of either PMMA or PLGA was modeled to investigate the effects of defects on the impact response and to evaluate promising strategies for enhancing damping that promotes tissue regeneration in biomedical materials. Percussion testing of virgin and cracked glass columns was modeled and the resulting probe acceleration predictions compared to corresponding experimental findings to evaluate the overall accuracy of the methodology and to discern its capacity for elucidating facets of defect detection in rigid materials. Overall, the modeling the results validated the effectiveness of the numeric methodology for modeling and elucidating the mechanics of percussion testing and suggested strategies whereby this procedure can facilitate the development of innovative biomedical materials designed to promote tissue regeneration.

Nieves, Ian

302

Differentiation of preosteoblasts using a delivery system with BMPs and bioactive glass microspheres  

Microsoft Academic Search

Bone morphogenetic proteins (BMPs) and 45S5 Bioglass® microspheres (bioactive GM) can increase the differentiation of osteoblasts.\\u000a Recombinant human BMP-2 (rhBMP-2) is presently the BMP most frequently used in delivery systems and it has already been used\\u000a in clinical bone healing studies. We have developed a delivery system that combines a collagen Type I gel, BMP and bioactive\\u000a GM. Since BMP-9

E. Bergeron; M. E. Marquis; I. Chrétien; N. Faucheux

2007-01-01

303

Stress-corrosion crack growth of Si-Na-K-Mg-Ca-P-O bioactive glasses in simulated human physiological environment  

PubMed Central

This paper describes research on the stress-corrosion crack growth (SCCG) behavior of a new series of bioactive glasses designed to fabricate coatings on Ti and Co-Cr-based implant alloys. These glasses should provide improved implant fixation between implant and exhibit good mechanical stability in vivo. It is then important to develop an understanding of the mechanisms that control environmentally-assisted crack growth in this new family of glasses and its effect on their reliability. Several compositions have been tested in both static and cyclic loading in simulated body fluid. These show only small dependences of stress-corrosion crack growth behavior on the composition. Traditional SCCG mechanisms for silicate glasses appear to be operative for the new bioactive glasses studied here. At higher velocities, hydrodynamic effects reduce growth rates under conditions that would rarely pertain for small natural flaws in devices. PMID:17714778

Bloyer, D. R.; McNaney, J. M.; Cannon, R. M.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O.

2007-01-01

304

Bioactive glass 45S5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma.  

PubMed

Despite its medical applications, the mechanisms responsible for the osseointegration of bioactive glass (45S5) have yet to be fully understood. Evidence suggests that the strongest predictor for osseointegration of bioactive glasses, and ceramics, with bone tissue as the formation of an apatitic calcium phosphate layer atop the implanted material, with osteoblasts being the main mediator for new bone formation. Most have tried to understand the formation of this apatitic calcium phosphate layer, and other bioresponses between the host and bioactive glass 45S5 using Simulated Body Fluid; a solution containing ion concentrations similar to that found in human plasma without the presence of proteins. However, it is likely that cell attachment is probably largely mediated via the adsorbed protein layer. Plasma protein adsorption at the tissue bioactive glass interface has been largely overlooked. Herein, we compare crystalline and amorphous bioactive glass 45S5, in both melt-derived as well as sol-gel forms. Thus, allowing for a detailed understanding of both the role of crystallinity and powder morphology on surface ions, and plasma protein adsorption. It was found that sol-gel 45S5 powders, regardless of crystallinity, adsorbed 3-5 times as much protein as the crystalline melt-derived counterpart, as well as a greater variety of plasma proteins. The devitrification of melt-cast 45S5 resulted in only small differences in the amount and variety of the adsorbed proteome. Surface properties, and not material crystallinity, play a role in directing protein adsorption phenomena for bioactive glasses given the differences found between crystalline melt-cast 45S5 and sol-gel derived 45S5. PMID:22669582

Bahniuk, Markian S; Pirayesh, Hamidreza; Singh, Harsh D; Nychka, John A; Unsworth, Larry D

2012-12-01

305

The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds  

Microsoft Academic Search

Our strategy entails investigating the influence of varied concentrations (0, 10, 100 and 1000ng\\/ml) of human recombinant bone morphogenetic protein-2 (rhBMP-2) on the osteogenic expression of canine osteoblasts, seeded onto poly-caprolactone 20% tricalcium phosphate (PCL-TCP) scaffolds in vitro. Biochemical assay revealed that groups with rhBMP-2 displayed an initial burst in cell growth that was not dose-dependent. However, after 13 days,

B Rai; S. H Teoh; K. H Ho; D. W Hutmacher; T Cao; F Chen; K Yacob

2004-01-01

306

Development of injectable biocomposites from hyaluronic acid and bioactive glass nano-particles obtained from different sol-gel routes.  

PubMed

Bioactive glass nano-powders with the same chemical composition and different particle characteristics were synthesized by acid-catalyzed (the glass is called BG1) and acid-base catalyzed (BG2) sol-gel processes. Morphological characteristics of powders were determined by TEM and BET methods. The powders were separately mixed with 3% hyaluronic acid solution to form a paste. In vitro reactivity of pastes was determined by soaking them in simulated body fluid. Rheological behaviors of paste in both rotation and oscillation modes were also measured. The results showed that BG1 particles was microporous with mean pore diameter of 1.6 nm and particle size of ~300 nm while BG2 was mesoporous with average pore diameter of 8 and 17 nm and particle size of 20-30 nm. The paste made of BG2 revealed better washout resistance and in vitro apatite formation ability than BG1. According to the rheological evaluations, both pastes exhibited shear thinning but non-thixotropic behavior, meanwhile paste of BG2 had higher viscosity than BG1. The oscillatory tests revealed that the pastes were viscoelastic materials with more viscous nature. Both pastes could be completely injected through standard syringe using low compressive load of 5-50 N. Overall, The biocomposites can potentially be used as bioactive paste for the treatment of hard and even soft tissues. PMID:23910271

Sohrabi, Mehri; Hesaraki, Saeed; Kazemzadeh, Asghar; Alizadeh, Masoud

2013-10-01

307

The effect of a novel crystallised bioactive glass-ceramic powder on dentine hypersensitivity: a long-term clinical study.  

PubMed

The aim of this comparative clinical study was to evaluate a novel bioactive glass-ceramic (Biosilicate® 1-20 ?m particles) to treat dentine hypersensitivity (DH). Volunteers (n = 120 patients/ 230 teeth) received the following treatments: G1-Sensodyne® , G2-SensiKill®, G3-Biosilicate® incorporated in a 1% water-free-gel and G4-Biosilicate® mixed with distilled water at 1:10 ratio. G1 and G3 were applied at home, daily for 30 days; G2 and G4 were applied once a week by a dentist (four applications). A visual analogue scale (VAS) was employed to evaluate pain for each quadrant in one sensitive tooth at baseline, weekly during treatment and during a 6-month follow-up period. Dentine hypersensitivity values (G1/n= 52), (G2/n =62), (G3/n = 59) and (G4/n = 59) were analysed with Kruskal-Wallis/Dunn tests. All the products were efficient in reducing DH after 4 weeks. Among the four materials tested, G4 demonstrated the best clinical performance and provided the fastest treatment to reduce DH pain. Distilled water proved to be an adequate vehicle to disperse Biosilicate®. Low DH scores were maintained during the 6-month follow-up period. The hypothesis that the novel bioactive glass-ceramic may be an efficient treatment for DH was confirmed. PMID:20868428

Tirapelli, C; Panzeri, H; Lara, E H G; Soares, R G; Peitl, O; Zanotto, E D

2011-04-01

308

Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: synthesis, microstructure and biological responsiveness.  

PubMed

Presently, there is an increasing interest towards the composites of calcium phosphates, especially ?-tricalcium phosphate (TCP), and bioactive glasses. In the present contribution, the recently developed BG_Ca/Mix glass has been used because its low tendency to crystallize allows to sinter the composites at relatively low temperature (i.e. 850°C), thus minimizing the glass devitrification and the interaction with TCP. A further improvement is the introduction of lab-produced TCP powders doped with specific ions instead of non-doped commercial powders, since the biological properties of materials for bone replacement can be modulated by doping them with certain metallic ions, such as Mg and Sr. Therefore, novel binary composites have been produced by sintering the BG_Ca/Mix glass with the addition of pure, Mg-substituted, Sr-substituted or Mg/Sr bisubstituted TCP powders. After an accurate characterization of the starting TCP powders and of the obtained samples, the composites have been used as three-dimensional supports for the culture of mouse calvaria-derived pre-osteoblastic cells. The samples supported cell adhesion and proliferation and induced promising mechanisms of differentiation towards an osteoblastic phenotype. In particular, the Mg/Sr bi-doped samples seemed to better promote the differentiation process thus suggesting a combined stimulatory effect of Mg(2+) and Sr(2+) ions. PMID:25063124

Bellucci, Devis; Sola, Antonella; Cacciotti, Ilaria; Bartoli, Cristina; Gazzarri, Matteo; Bianco, Alessandra; Chiellini, Federica; Cannillo, Valeria

2014-09-01

309

Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model.  

PubMed

The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 ± 1.2 min) and a compressive strength of 19 ± 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery. PMID:25591177

Zhang, Yadong; Cui, Xu; Zhao, Shichang; Wang, Hui; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

2015-02-01

310

Stress–corrosion crack growth of Si–Na–K–Mg–Ca–P–O bioactive glasses in simulated human physiological environment  

Microsoft Academic Search

This paper describes research on the stress–corrosion crack growth (SCCG) behavior of a new series of bioactive glasses designed to fabricate coatings on Ti and Co–Cr-based implant alloys. These glasses should provide improved implant fixation between implant and exhibit good mechanical stability in vivo. It is then important to develop an understanding of the mechanisms that control environmentally assisted crack

Don R. Bloyer; James M. McNaney; Rowland M. Cannon; Eduardo Saiz; Antoni P. Tomsia; Robert O. Ritchiea

2007-01-01

311

Three-Dimensional Visualization of Bioactive Glass-Bone Integration in a Rabbit Tibia Model Using Synchrotron X-Ray Microcomputed Tomography  

PubMed Central

Synchrotron X-ray microcomputed tomography (SR microCT), with a micron resolution, was used to evaluate the osteoconduction and osteointegration by borate bioactive glass after implantation 12 weeks in a rabbit tibia model. The study focused on the biomaterial–bone interface. Results from SR microCT two-dimensional and three-dimensional (3D) reconstructions provided precise imaging of the biomaterial–bone integration and detailed microarchitecture of both the bone-like glass graft and the newly formed trabecular bone. Osteoconduction, the formation of new trabecular bone within a tibia defect, occurred only in the tibiae implanted with teicoplanin-loaded borate glass but not in those with teicoplanin-loaded CaSO4 beads, indicating the excellent biocompatibility of the glass implants. 3D reconstruction of the tibiae also showed the infiltration of vascular tissue in both the bioactive glass graft and the new trabecular bone. This study indicates that SR microCT can serve as a valuable complementary technique for imaging bone repair when using bioactive glass implants. PMID:21875330

Huang, Wenhai; Jia, Weitao; Rahaman, Mohamed N.; Liu, Xin; Tomsia, Antoni P.

2011-01-01

312

Toward a Rational Design of Bioactive Glasses with Optimal Structural Features: Composition–Structure Correlations Unveiled by Solid-State NMR and MD Simulations  

PubMed Central

The physiological responses of silicate-based bioactive glasses (BGs) are known to depend critically on both the P content (nP) of the glass and its silicate network connectivity (N?BOSi). However, while the bioactivity generally displays a nonmonotonic dependence on nP itself, recent work suggest that it is merely the net orthophosphate content that directly links to the bioactivity. We exploit molecular dynamics (MD) simulations combined with 31P and 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy to explore the quantitative relationships between N?BOSi, nP, and the silicate and phosphate speciations in a series of Na2O–CaO–SiO2–P2O5 glasses spanning 2.1 ? N?BOSi ? 2.9 and variable P2O5 contents up to 6.0 mol %. The fractional population of the orthophosphate groups remains independent of nP at a fixed N?BOSi-value, but is reduced slightly as N?BOSi increases. Nevertheless, P remains predominantly as readily released orthophosphate ions, whose content may be altered essentially independently of the network connectivity, thereby offering a route to optimize the glass bioactivity. We discuss the observed composition-structure links in relation to known composition-bioactivity correlations, and define how Na2O–CaO–SiO2–P2O5 compositions exhibiting an optimal bioactivity can be designed by simultaneously altering three key parameters: the silicate network connectivity, the (ortho)phosphate content, and the nNa/nCa molar ratio. PMID:24364818

2013-01-01

313

Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively  

NASA Astrophysics Data System (ADS)

The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

2014-06-01

314

Gold-containing bioactive glasses: a solid-state synthesis to produce alternative biomaterials for bone implantations  

PubMed Central

A new melted bioactive system containing gold nanoparticles (AuNPs) was prepared exploiting a post-synthesis thermal treatment that allows one to modify crystal phases and nature, shape and distribution of the gold species in the glass-ceramic matrix as evidenced by UV–visible spectroscopy, transmission electron microscopy and powder X-ray diffraction analysis. In human MG-63 osteoblasts the presence of Aun+ species caused an increase of lactate dehydrogenase leakage and malonyldialdehyde production, whereas Hench's Bioglass HAu-600-17 containing only AuNPs did not cause any effect. In addition, HAu-600-17 caused in vitro hydroxyapatite formation and an increase of specific surface area with a controlled release of gold species; this material is then suitable to be used as a model system for the controlled delivery of nanoparticles. PMID:23427096

Aina, Valentina; Cerrato, Giuseppina; Martra, Gianmario; Bergandi, Loredana; Costamagna, Costanzo; Ghigo, Dario; Malavasi, Gianluca; Lusvardi, Gigliola; Menabue, Ledi

2013-01-01

315

Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass(®) -based scaffolds.  

PubMed

In the context of bone tissue engineering (BTE), combinations of bioactive scaffolds with living cells are investigated to optimally yield functional bone tissue for implantation purposes. Bioactive glasses are a class of highly bioactive, inorganic materials with broad application potential in BTE strategies. The aim of this study was to evaluate bioactive glass (45S5 Bioglass(®) ) samples of composition: 45 SiO2 , 24.5 CaO, 24.5 Na2 O, and 6 P2 O5 (in wt%) as scaffold materials for mesenchymal stem cells (MSC). Pore architecture of the scaffolds as well as cell behavior in the three-dimensional environment was evaluated by several methods. Investigations concerned the osteogenic cell attachment, growth and differentiation of adipose tissue derived MSC (adMSC) compared with MSC from human full term umbilical cord tissues (ucMSC) on porous Bioglass(®) -based scaffolds over a cultivation period of 5 weeks. Differences in lineage-specific osteogenic differentiation of adMSC and ucMSC on Bioglass(®) samples were demonstrated. The investigation led to positive results in terms of cell attachment, proliferation, and differentiation of MSC onto Bioglass(®) -based scaffolds confirming the relevance of these matrices for BTE applications. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2014. PMID:24853477

Detsch, Rainer; Alles, Sonja; Hum, Jasmin; Westenberger, Peter; Sieker, Frank; Heusinger, Dominik; Kasper, Cornelia; Boccaccini, Aldo R

2014-05-22

316

Macroporous nanowire nanoelectronic scaffolds for synthetic tissues  

E-print Network

The development of three-dimensional (3D) synthetic biomaterials as structural and bioactive scaffolds is central to fields ranging from cellular biophysics to regenerative medicine. As of yet, these scaffolds cannot ...

Tian, Bozhi

317

Fatigue characteristics of bioactive glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for biomedical application.  

PubMed

A new surface-coating method by which CaP invert glass is used to improve the bioactivity of titanium alloys has been developed recently. In this method, the powder of CaP invert glass (CaO-P2O5-TiO2-Na2O) is coated on the surface of titanium alloy samples and heated between 1073 and 1123 K. With this treatment, a calcium phosphate layer mainly containing beta-Ca3(PO4)2 phase can be coated easily on titanium alloy samples. In the present study, the effect of this coating process on the fatigue properties of Ti-29Nb-13Ta-4.6Zr, a new metastable beta alloy for biomedical applications, has been investigated. The fatigue endurance limit of the coated alloy was found to be about 15% higher than that of uncoated alloy, as a result of the formation of a hard (alpha + beta) layer and a small amount of the omega phase during the coating process. The coating exhibits excellent adhesion to the substrate during the tensile and fatigue tests. Subsequent ageing at 673 K for 259.2 ks greatly improves the fatigue resistance of the coated alloy due to isothermal omega phase precipitation, and does not have obvious detrimental effect on the coating properties. PMID:15020109

Li, S J; Niinomi, M; Akahori, T; Kasuga, T; Yang, R; Hao, Y L

2004-08-01

318

The effects of hydroxyapatite/calcium phosphate glass scaffold and its surface modification with bovine serum albumin on 1-wall intrabony defects of beagle dogs: a preliminary study.  

PubMed

The purpose of this study was to evaluate the effects of biphasic hydroxyapatite/calcium phosphate glass (HA/CPG) scaffold and its surface modification with bovine serum albumin (BSA) on periodontal regeneration. 1-wall intrabony defects were surgically created on five beagle dogs. HA/CPG scaffolds, with a hydroxyapatite (HA)/calcium phosphate glass (CPG) ratio of 95:5 by weight (%) and surface modification done by 2% bovine serum albumin, were used. The control group received surgical flap operation, and the experimental groups were filled with HA/CPG scaffolds and HA/CPG(BSA) scaffolds. The animals were sacrificed eight weeks after surgery. Histological findings revealed better space maintenance in the experimental groups than the control group, and showed new bone formation intermittently in between the residual material particles. The newly formed bone was mostly woven bone and the residual particles were undergoing resorption. Cementum regeneration was observed with limited root resorption in all the groups. Histometric analysis also revealed greater mean values in new bone formation, cementum regeneration and bone area than the control group in both experimental groups. However, similar findings were presented between HA/CPG and HA/CPG(BSA). The result of the present study revealed the newly fabricated HA/CPG scaffold to have a potential use as a bone substitute material. PMID:19029611

Um, Yoo-Jung; Jung, Ui-Won; Chae, Gyung-Joon; Kim, Chang-Sung; Lee, Yong-Keun; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho

2008-12-01

319

Treatment of tooth fracture by medium-energy CO2 laser and DP-bioactive glass paste: the interaction of enamel and DP-bioactive glass paste during irradiation by CO2 laser.  

PubMed

Acute trauma or trauma associated with occlusal disturbance can produce tooth crack or fracture. Although several methods are proposed to treat the defect, however, the prognosis is generally poor. If the fusion of a tooth fracture by laser is possible, it will offer an alternative to extraction or at least serve as an adjunctive treatment in the reconstruction. We have tried to use a continuous-wave CO2 laser and a newly developed DP-bioactive glass paste (DPGP) to fuse or bridge tooth crack or fracture lines. Both the DP-bioactive glass paste and tooth enamel have strong absorption bands at the wavelength of 10.6 microm. Therefore, under CO2 laser, DPGP and enamel should have an effective absorption and melt together. The interface between DPGP and enamel could be regarded as a mixture of DPGP and enamel (DPG-E). The study focused on the phase transformation, microstructure, functional group and thermal behavior of DPG-E with or without CO2 laser irradiation, by the analytical techniques of XRD, FTIR, DTA/TGA, and SEM. The results of XRD showed that the main crystal phase in the DPG-E was dicalcium phosphate dihydrate (CaHPO4.2H2O). It changed into CaHPO4, gamma-Ca2P2O7, beta-Ca2P2O7 and finally alpha-Ca2P2O7 with increasing temperature. In the FTIR analysis, the 720 cm(-1) absorption band ascribed to the P-O-P linkage in pyrophosphate rose up and the intensities of the OH- bands reduced after laser irradiation. In regard to the results of DTA/TGA after irradiation, the weight loss decreased due to the removal of part of absorption water and crystallization water by the CO2 laser. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight chemical bond between the enamel and DPGP. We expect that DPGP with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. PMID:11214760

Lin, C P; Tseng, Y C; Lin, F H; Liao, J D; Lan, W H

2001-03-01

320

3D conductive nanocomposite scaffold for bone tissue engineering  

PubMed Central

Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

2014-01-01

321

On the dissolution\\/reaction of small-grain Bioglass ® 45S5 and F-modified bioactive glasses in artificial saliva (AS)  

Microsoft Academic Search

The reaction of small-grain Bioglass® 45S5 in artificial saliva (AS), to produce a layer of hydroxy-apatite (HA) and\\/or hydroxy-carbonate apatite (HCA), has been studied and compared to the results obtained in a simple buffered solution (TRIS). Some potentially bioactive glasses based on the composition of Bioglass® and containing CaF2 (HCaCaF2 5% and HNaCaF2 5%) have also been studied, in order

Valentina Aina; Luca Bertinetti; Giuseppina Cerrato; Marta Cerruti; Gigliola Lusvardi; Gianluca Malavasi; Claudio Morterra; Linda Tacconi; Ledi Menabue

2011-01-01

322

First stages of bioactivity of glass-ceramics thin films prepared by magnetron sputtering technique  

Microsoft Academic Search

Implant type coatings were prepared by magnetron sputtering (MS) technique onto medical grade Ti6Al4V alloy substrates starting from biological 45S5 glass system powders. The as-deposited thin layers were annealed 2h at 700°C in ambient air, followed by a slow cooling (2°C\\/min) in order to induce crystallization. The behavior of the coatings was investigated by soaking the samples in simulated body

C. Berbecaru; H. V. Alexandru; G. E. Stan; D. A. Marcov; I. Pasuk; A. Ianculescu

2010-01-01

323

Evaluation of Angiogenesis of Bioactive Glass in the Arteriovenous Loop Model  

PubMed Central

In this study, the angiogenetic effect of sintered 45S5 Bioglass® was quantitatively assessed for the first time in the arteriovenous loop (AVL) model. An AVL was created by interposition of a venous graft from the contralateral side between the femoral artery and vein in the medial thigh of eight rats. The loop was placed in a Teflon isolation chamber and was embedded in a sintered 45S5 Bioglass® granula matrix filled with fibrin gel. Specimens were investigated 3 weeks postoperatively by means of microcomputed tomography, histological, and morphometrical techniques. All animals tolerated the operations well. At 3 weeks, both microcomputed tomography and histology demonstrated a dense network of newly formed vessels originating from the AVL. All constructs were filled with cell-rich, highly vascularized connective tissue around the vascular axis. Analysis of vessel diameter revealed constant small vessel diameters, indicating immature new vessel sprouts. This study shows for the first time axial vascularization of a sintered 45S5 Bioglass® granula matrix. After 3 weeks, the newly generated vascular network already interfused most parts of the scaffolds and showed signs of immaturity. The intrinsic type of vascularization allows transplantation of the entire construct using the AVL pedicle. PMID:23189952

Balzer, Amelie; Buehrer, Gregor; Arnold, Isabel; Hoppe, Alexander; Detsch, Rainer; Newby, Phillipa; Fey, Tobias; Greil, Peter; Horch, Raymund E.; Boccaccini, Aldo R.; Kneser, Ulrich

2013-01-01

324

Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model.  

PubMed

In this study, the angiogenetic effect of sintered 45S5 Bioglass® was quantitatively assessed for the first time in the arteriovenous loop (AVL) model. An AVL was created by interposition of a venous graft from the contralateral side between the femoral artery and vein in the medial thigh of eight rats. The loop was placed in a Teflon isolation chamber and was embedded in a sintered 45S5 Bioglass® granula matrix filled with fibrin gel. Specimens were investigated 3 weeks postoperatively by means of microcomputed tomography, histological, and morphometrical techniques. All animals tolerated the operations well. At 3 weeks, both microcomputed tomography and histology demonstrated a dense network of newly formed vessels originating from the AVL. All constructs were filled with cell-rich, highly vascularized connective tissue around the vascular axis. Analysis of vessel diameter revealed constant small vessel diameters, indicating immature new vessel sprouts. This study shows for the first time axial vascularization of a sintered 45S5 Bioglass® granula matrix. After 3 weeks, the newly generated vascular network already interfused most parts of the scaffolds and showed signs of immaturity. The intrinsic type of vascularization allows transplantation of the entire construct using the AVL pedicle. PMID:23189952

Arkudas, Andreas; Balzer, Amelie; Buehrer, Gregor; Arnold, Isabel; Hoppe, Alexander; Detsch, Rainer; Newby, Phillipa; Fey, Tobias; Greil, Peter; Horch, Raymund E; Boccaccini, Aldo R; Kneser, Ulrich

2013-06-01

325

Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.  

PubMed

This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. PMID:24863874

Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

2014-08-01

326

A clinical study on the efficacy of hydroxyapatite - Bioactive glass composite granules in the management of periodontal bony defects  

PubMed Central

Background: In periodontal regeneration, several alloplastic materials are being used with a goal to reconstruct new osseous tissue in the infrabony defect sites. The present study was undertaken to evaluate the efficacy of hydroxyapatite–bioactive glass (HA:BG) composite granules in the management of periodontal bony defects. Materials and Methods: A randomized control study was conducted. Subjects with infrabony defects were divided into three groups. Test Group 1 (n = 10): Defect site was treated with HA:BG, with a biodegradable membrane. Test Group 2 (n = 10): Defect site was treated with HAP, with a biodegradable membrane. Control group (n = 10): Defect site was treated with open flap debridement with a biodegradable membrane Results: The healing of defects was uneventful and free of any biological complications. The gain in clinical attachment level, reduction of probing pocket depth, and defect fill were statistically significant in all three groups. TG1 sites showed significant defect fill than TG2 and CG sites. Conclusion: The performance of HA:BG was better compared to HAP and open flap debridement for the reconstruction of infrabony defects. PMID:25425821

Debnath, Tirthankar; Chakraborty, Abhijit; Pal, Tamal Kanti

2014-01-01

327

Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state nuclear magnetic resonance  

PubMed Central

We review the benefits of using 29Si and 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for probing the local structures of both bulk and surface portions of mesoporous bioactive glasses (MBGs) of the CaO–SiO2?(P2O5) system. These mesoporous materials exhibit an ordered pore arrangement, and are promising candidates for improved bone and tooth implants. We discuss experimental MAS NMR results from three MBGs displaying different Ca, Si and P contents: the 29Si NMR spectra were recorded either directly by employing radio-frequency pulses to 29Si, or by magnetization transfers from neighbouring protons using cross polarization, thereby providing quantitative information about the silicate speciation present in the pore wall and at the MBG surface, respectively. The surface modifications were monitored for the three MBGs during their immersion in a simulated body fluid (SBF) for intervals between 30 min and one week. The results were formulated as a reaction sequence describing the interconversions between the distinct silicate species. We generally observed a depletion of Ca2+ ions at the MBG surface, and a minor condensation of the silicate-surface network over one week of SBF soaking. PMID:22349247

Gunawidjaja, Philips N.; Mathew, Renny; Lo, Andy Y. H.; Izquierdo-Barba, Isabel; García, Ana; Arcos, Daniel; Mattias Edén, María Vallet-Regí

2012-01-01

328

Microsphere-Based Seamless Scaffolds Containing Macroscopic Gradients of Encapsulated Factors for Tissue Engineering  

PubMed Central

Spatial and temporal control of bioactive signals in three-dimensional (3D) tissue engineering scaffolds is greatly desired. Coupled together, these attributes may mimic and maintain complex signal patterns, such as those observed during axonal regeneration or neovascularization. Seamless polymer constructs may provide a route to achieve spatial control of signal distribution. In this study, a novel microparticle-based scaffold fabrication technique is introduced as a method to create 3D scaffolds with spatial control over model dyes using uniform poly(D,L-lactide-co-glycolide) microspheres. Uniform microspheres were produced using the Precision Particle Fabrication technique. Scaffolds were assembled by flowing microsphere suspensions into a cylindrical glass mold, and then microspheres were physically attached to form a continuous scaffold using ethanol treatment. An ethanol soak of 1?h was found to be optimum for improved mechanical characteristics. Morphological and physical characterization of the scaffolds revealed that microsphere matrices were porous (41.1?±?2.1%) and well connected, and their compressive stiffness ranged from 142 to 306?kPa. Culturing chondrocytes on the scaffolds revealed the compatibility of these substrates with cell attachment and viability. In addition, bilayered, multilayered, and gradient scaffolds were fabricated, exhibiting excellent spatial control and resolution. Such novel scaffolds can serve as sustained delivery devices of heterogeneous signals in a continuous and seamless manner, and may be particularly useful in future interfacial tissue engineering investigations. PMID:18795865

Singh, Milind; Morris, Casey P.; Ellis, Ryan J.; Detamore, Michael S.

2008-01-01

329

Processing and characterization of innovative scaffolds for bone tissue engineering.  

PubMed

A new protocol, based on a modified replication method, is proposed to obtain bioactive glass scaffolds. The main feature of these samples, named "shell scaffolds", is their external surface that, like a compact and porous shell, provides both high permeability to fluids and mechanical support. In this work, two different scaffolds were prepared using the following slurry components: 59 % water, 29 % 45S5 Bioglass(®) and 12 % polyvinylic binder and 51 % water, 34 % 45S5 Bioglass(®), 10 % polyvinylic binder and 5 % polyethylene. All the proposed samples were characterized by a widespread microporosity and an interconnected macroporosity, with a total porosity of 80 % vol. After immersion in a simulated body fluid (SBF), the scaffolds showed strong ability to develop hydroxyapatite, enhanced by the high specific surface of the porous systems. Moreover preliminary biological evaluations suggested a promising role of the shell scaffolds for applications in bone tissue regeneration. As regards the mechanical behaviour, the shell scaffolds could be easily handled without damages, due to their resistant external surface. More specifically, they possessed suitable mechanical properties for bone regeneration, as proved by compression tests performed before and after immersion in SBF. PMID:22441671

Bellucci, D; Chiellini, F; Ciardelli, G; Gazzarri, M; Gentile, P; Sola, A; Cannillo, V

2012-06-01

330

The Osteogenic Potential of Mesoporous Bioglasses/Silk and Non-Mesoporous Bioglasses/Silk Scaffolds in Ovariectomized Rats: In vitro and In vivo Evaluation  

PubMed Central

Silk-based scaffolds have been introduced to bone tissue regeneration for years, however, their local therapeutic efficency in bone metabolic disease condition has been seldom reported. According to our previous report, mesoporous bioactive glass (MBG)/silk scaffolds exhibits superior in vitro bioactivity and in vivo osteogenic properties compared to non-mesoporous bioactive glass (BG)/silk scaffolds, but no information could be found about their efficiency in osteoporotic (OVX) environment. This study investigated a biomaterial-based approach for improving MSCs behavior in vitro, and accelerating OVX defect healing by using 3D BG/silk and MBG/silk scaffolds, and pure silk scaffolds as control. The results of SEM, CCK-8 assay and quantitative ALP activity showed that MBG/silk scaffolds can improve attachment, proliferation and osteogenic differentiation of both O-MSCs and sham control. In vivo therapeutic efficiency was evaluated by ?CT analysis, hematoxylin and eosin staining, safranin O staining and tartrate-resistant acid phosphatase, indicating accelerated bone formation with compatible scaffold degradation and reduced osteoclastic response of defect healing in OVX rats after 2 and 4 weeks treatment, with a rank order of MBG/silk > BG/silk > silk group. Immunohistochemical markers of COL I, OPN, BSP and OCN also revealed that MBG/silk scaffolds can better induce accelerated collagen and non-collagen matrix production. The findings of this study suggest that MBG/silk scaffolds provide a better environment for cell attachment, proliferation and differentiation, and act as potential substitute for treating local osteoporotic defects. PMID:24265840

Zhang, Yufeng; Shi, Bin

2013-01-01

331

On the dissolution/reaction of small-grain Bioglass ® 45S5 and F-modified bioactive glasses in artificial saliva (AS)  

NASA Astrophysics Data System (ADS)

The reaction of small-grain Bioglass® 45S5 in artificial saliva (AS), to produce a layer of hydroxy-apatite (HA) and/or hydroxy-carbonate apatite (HCA), has been studied and compared to the results obtained in a simple buffered solution (TRIS). Some potentially bioactive glasses based on the composition of Bioglass® and containing CaF2 (HCaCaF2 5% and HNaCaF2 5%) have also been studied, in order to analyze the effects/changes produced when a F-containing glass surface is contacted with AS. The insertion of fluorine has been proposed to improve bioactive glass bone-bonding ability, and to parallel fluorine-containing glass-ceramics currently used in dentistry. ICP-OES analysis of the solution, and FTIR spectroscopy of the solid samples provided compositional information on the stages of reaction. These data were integrated with XRD and the textural and morphological data, obtained by specific surface areas determination and TEM-EDS measurements. In the case of Bioglass® 45S5, a comparison at corresponding reaction times indicates that the precipitation of an amorphous Ca-phosphate phase is faster in AS, but the crystallization of HA/HCA is delayed in AS with respect to the TRIS solution. For fluoride-containing glasses, the sample HCaCaF2 5%, in which CaF2 replaces part of CaO, possesses the fastest rate for HA/HCA crystallization (1 week) in AS. Some lines of interpretation for these results are proposed.

Aina, Valentina; Bertinetti, Luca; Cerrato, Giuseppina; Cerruti, Marta; Lusvardi, Gigliola; Malavasi, Gianluca; Morterra, Claudio; Tacconi, Linda; Menabue, Ledi

2011-02-01

332

Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid.  

PubMed

Microfibrous bioactive glasses are showing a considerable capacity to heal soft tissue wounds, but little information is available on the mechanism of healing. In the present study, the conversion of microfibrous borate bioactive glass (diameter = 0.2-5 ?m) with the composition designated 13-93B3 (5.5 Na2O, 11.1 K2O, 4.6 MgO, 18.5 CaO, 3.7 P2O5, 56.6 B2O3 wt%) was evaluated in vitro as a function of immersion time in a simulated body fluid (SBF) at 37 °C using structural and chemical techniques. Silicate 45S5glass microfibers (45 SiO2, 24.5 Na2O, 24.5 CaO, 6 P2O5 wt%) were also studied for comparison. Microfibrous 13-93B3 glass degraded almost completely and converted to a calcium phosphate material within 7-14 days in SBF, whereas >85 % of the silica remained in the 45S5 microfibers, forming a silica gel phase. An amorphous calcium phosphate (ACP) product that formed on the 13-93B3 microfibers crystallized at a slower rate to hydroxyapatite (HA) when compared to the ACP that formed on the 45S5 fibers. For immersion times >3 days, the 13-93B3 fibers released a higher concentration of Ca into the SBF than the 45S5 fibers. The fast and more complete degradation, slow crystallization of the ACP product, and higher concentration of dissolved Ca in SBF could contribute to the capacity of the microfibrous borate 13-93B3 glass to heal soft tissue wounds. PMID:23233025

Liu, Xin; Rahaman, Mohamed N; Day, Delbert E

2013-03-01

333

[Experimental study of composites of bovine bone morphogenetic protein and bio-active glass ceramic implanted into surgically produced periodontal bony defects in dogs].  

PubMed

Bovine bone morphogenetic protein (bBMP) was incorporated with bio-active glass ceramic (BGC). The composite of bBMP-BGC and BGC were implanted into the surgically produced periodontal osseous defects in dogs. Observations at 10, 16, 20, and 24 weeks show that the implants of BMP-BGC have the ability of bone induction and enhance the regeneration of periodontal bony defects in a relatively short time, but the implants of BGC alone only have the ability of bone-conduction, these is no bone-induction ability, and made a more long time in repairing the periodontal bony defects. PMID:2517825

Jin, Y

1989-11-01

334

Ceramic Identity Contributes to Mechanical Properties and Osteoblast Behavior on Macroporous Composite Scaffolds  

PubMed Central

Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide) (PLG) and either hydroxyapatite (HA), ?-tricalcium phosphate (TCP), or bioactive glass (Bioglass 45S®, BG) were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts) to composite scaffolds by alkaline phosphatase (ALP) activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC) was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing. PMID:24955539

Morales-Hernandez, Diana G.; Genetos, Damian C.; Working, David M.; Murphy, Kaitlin C.; Leach, J. Kent

2012-01-01

335

Fabrication of a novel poly(3-hydroxyoctanoate) / nanoscale bioactive glass composite film with potential as a multifunctional wound dressing  

NASA Astrophysics Data System (ADS)

Fabrication of a composite scaffold of nanobioglass (n-BG) 45S5 and poly(3-hydroxyocatnoate), P(3HO) was studied for the first time with the aim of developing a novel, multifunctional wound dressing. The incorporation of n-BG accelerated blood clotting time and its incorporation in the polymer matrix enhanced the wettability, surface roughness and bio-compatibility of the scaffold.

Rai, Ranjana; Boccaccini, Aldo R.; Knowles, Jonathan C.; Locke, Ian C.; Gordge, Michael P.; McCormick, Aine; Salih, Vehid; Mordon, Nicola; Keshavarz, Tajalli; Roy, Ipsita

2010-06-01

336

Fabrication of a novel poly(3-hydroxyoctanoate) \\/ nanoscale bioactive glass composite film with potential as a multifunctional wound dressing  

Microsoft Academic Search

Fabrication of a composite scaffold of nanobioglass (n-BG) 45S5 and poly(3-hydroxyocatnoate), P(3HO) was studied for the first time with the aim of developing a novel, multifunctional wound dressing. The incorporation of n-BG accelerated blood clotting time and its incorporation in the polymer matrix enhanced the wettability, surface roughness and bio-compatibility of the scaffold.

Ranjana Rai; Aldo R. Boccaccini; Jonathan C. Knowles; Ian C. Locke; Michael P. Gordge; Aine McCormick; Vehid Salih; Nicola Mordon; Tajalli Keshavarz; Ipsita Roy

2010-01-01

337

Fabrication of a novel poly(3-hydroxyoctanoate)/ nanoscale bioactive glass composite film with potential as a multifunctional wound dressing  

SciTech Connect

Fabrication of a composite scaffold of nanobioglass (n-BG) 45S5 and poly(3-hydroxyocatnoate), P(3HO) was studied for the first time with the aim of developing a novel, multifunctional wound dressing. The incorporation of n-BG accelerated blood clotting time and its incorporation in the polymer matrix enhanced the wettability, surface roughness and bio-compatibility of the scaffold.

Rai, Ranjana; Keshavarz, Tajalli; Roy, Ipsita [Department of Molecular and Applied Biosciences, University of Westminster, London W1W 6UW (United Kingdom); Boccaccini, Aldo R. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)] [Department of Materials Science and Engineering, University of Erlangen, Nuremberg Cauestr. 6. 91058 (Germany); Knowles, Jonathan C.; Salih, Vehid; Mordon, Nicola [Division of Biomterials and Tissue Engineering, UCL Eastman Dental Institute, London WCIX 8LD (United Kingdom); Locke, Ian C.; Gordge, Michael P. [Department of Biomedical Sciences, School of Lifesciences, University of Westminster, London W1W 6UW (United Kingdom); McCormick, Aine [Haemophilia Reference Centre, St. Thomas' Hospital, Lambeth Palace Road, London SE1 7EH (United Kingdom)

2010-06-02

338

Understanding the composition-structure-bioactivity relationships in diopside (CaO·MgO·2SiO2)-tricalcium phosphate (3CaO·P2O5) glass system.  

PubMed

The present work is an amalgamation of computation and experimental approach to gain an insight into composition-structure-bioactivity relationships of alkali-free bioactive glasses in the CaO-MgO-SiO2-P2O5 system. The glasses have been designed in the diopside (CaO·MgO·2SiO2; Di)-tricalcium phosphate (3CaO·P2O5; TCP) binary join by varying the Di/TCP ratio. The melt-quenched glasses have been investigated for their structure by molecular dynamic (MD) simulations as well as by nuclear magnetic resonance spectroscopy (NMR). In all the investigated glasses silicate and phosphate components are dominated by Q(2) (Si) and Q(0) (P) species, respectively. The apatite forming ability of the glasses was investigated using X-ray diffraction (XRD), infrared spectroscopy after immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1h and 14days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the investigated glasses showed good bioactivity without any substantial variation. A significant statistical increase in metabolic activity of human mesenchymal stem cells (hMSCs) when compared to the control was observed for Di-60 and Di-70 glass compositions under both basal and osteogenic conditions. PMID:25578990

Kapoor, Saurabh; Semitela, Ângela; Goel, Ashutosh; Xiang, Ye; Du, Jincheng; Lourenço, Ana H; Sousa, Daniela M; Granja, Pedro L; Ferreira, José M F

2015-03-01

339

Evaluation of the behaviour of fluorine-containing bioactive glasses: reactivity in a simulated body fluid solution assisted by multivariate data analysis.  

PubMed

Potentially bioactive fluorine-containing glasses of formula 46.2SiO(2)·24.3Na(2)O·(26.9-x)CaO·2.6P(2)O(5)·xCaF(2) [x = (0), 5, 10, 15] have been studied: the study was carried out as a function of fluorine percentage, dimensions and time of soaking in SBF. The results are compared to those obtained in the same conditions for Bioglass(®) 45S5. Due to the high number and different kind of variables/conditions explored by this set of data, the results are rationalized for the first time by means of multivariate data analysis (MDA); in this way it is possible to classify the behaviour of bioglasses toward bioactivity. The presence of fluorine does not inhibit the formation of HA; in particular, for a fast bioactivity (in term of HA crystallization) it will be better to have large particle size or slabs, while for a fast dissolution fine particle sizes should be preferred. PMID:22212379

Cocchi, Marina; Durante, Caterina; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

2012-03-01

340

Atomic-scale models of early-stage alkali depletion and SiO2-rich gel formation in bioactive glasses.  

PubMed

Molecular dynamics simulations of Na(+)/H(+)-exchanged 45S5 Bioglass® models reveal that a large fraction of the hydroxyl groups introduced into the proton-exchanged, hydrated glass structure do not initially form covalent bonds with Si and P network formers but remain free and stabilised by the modifier metal cations, whereas substantial Si-OH and P-OH bonding is observed only at higher Na(+)/H(+) exchange levels. The strong affinity between free OH groups and modifier cations in the highly fragmented 45S5 glass structure appears to represent the main driving force for this effect. This suggests an alternative direct route for the formation of a repolymerised silica-rich gel in the early stages of the bioactive mechanism, not considered before, which does not require sequential repeated breakings of Si-O-Si bonds and silanol condensations. PMID:25504287

Tilocca, Antonio

2015-01-28

341

Bioactive composite for keratoprosthesis skirt  

Microsoft Academic Search

In this study, the fabrication and properties of a synthetic keratoprosthesis skirt for use in osteo-odonto-keratoprosthesis (OOKP) surgery are discussed. In the search for a new material concept, bioactive glass and polymethyl methacrylate (PMMA)-based composites were prepared. Three different bioactive glasses (i.e. 45S5, S53P4 and 1–98) and one slowly resorbing glass, FL107, with two different forms (i.e. particles and porous

Kaisa Laattala; Reeta Huhtinen; Mervi Puska; Hanna Arstila; Leena Hupa; Minna Kellomäki; Pekka K. Vallittu

342

Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting.  

PubMed

A key issue for the fabrication of scaffolds for tissue engineering is the development of processing techniques flexible enough to produce materials with a wide spectrum of solubility (bioresorption rates) and mechanical properties matching those of calcified tissues. These techniques must also have the capability of generating adequate porosity to further serve as a framework for cell penetration, new bone formation, and subsequent remodeling. In this study we show how hybrid organic/inorganic scaffolds with controlled microstructures can be built using robotic assisted deposition at room temperature. Polylactide or polycaprolactone scaffolds with pore sizes ranging between 200-500 microm and hydroxyapatite contents up to 70 wt % were fabricated. Compressive tests revealed an anisotropic behavior of the scaffolds, strongly dependant on their chemical composition. The inclusion of an inorganic component increased their stiffness but they were not brittle and could be easily machined even for ceramic contents up to 70 wt %. The mechanical properties of hybrid scaffolds did not degrade significantly after 20 days in simulated body fluid. However, the stiffness of pure polylactide scaffolds increased drastically due to polymer densification. Scaffolds containing bioactive glasses were also printed. After 20 days in simulated body fluid they developed an apatite layer on their surface. PMID:17465019

Russias, J; Saiz, E; Deville, S; Gryn, K; Liu, G; Nalla, R K; Tomsia, A P

2007-11-01

343

Na 2CaSi 2O 6–P 2O 5 based bioactive glasses. Part 1: Elasticity and structure  

Microsoft Academic Search

The glass structure and elastic properties of two bioglasses having bulk compositions near Na2CaSi2O6 (45S5.2) and Na2CaSi3O8 (55S4.1) were studied using both Raman and Brillouin scattering techniques. The annealed 45S5.2 glass has more Q2 and Q0 but less Q3 species than 55S4.1 glass due to lower (Si4++P5+)\\/(Na++Ca2+) ratio. Brillouin scattering measurements of the as-annealed glasses indicated that 45S5.2 glass is

Chung-Cherng Lin; Li-Chen Huang; Pouyan Shen

2005-01-01

344

Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds.  

PubMed

This is the first reported study to prepare highly porous baghdadite (Ca?ZrSi?O?) scaffolds with and without surface modification and investigate their ability to repair critical-sized bone defects in a rabbit radius under normal load. The modification was carried out to improve the mechanical properties of the baghdadite scaffolds (particularly to address their brittleness) by coating their surfaces with a thin layer (?400 nm) of polycaprolactone (PCL)/bioactive glass nanoparticles (nBGs). The ?-tricalcium phosphate/hydroxyapatite (TCP/HA) scaffolds with and without modification were used as the control groups. All of the tested scaffolds had an open and interconnected porous structure with a porosity of ?85% and average pore size of 500 ?m. The scaffolds (six per scaffold type and size of 4 mm × 4 mm × 15 mm) were implanted (press-fit) into the rabbit radial segmental defects for 12 weeks. Micro-computed tomography and histological evaluations were used to determine bone ingrowth, bone quality, and implant integration after 12 weeks of healing. Extensive new bone formation with complete bridging of the radial defect was evident with the baghdadite scaffolds (modified/unmodified) at the periphery and in close proximity to the ceramics within the pores, in contrast to TCP/HA scaffolds (modified/unmodified), where bone tended to grow between the ulna adjacent to the implant edge. Although the modification of the baghdadite scaffolds significantly improved their mechanical properties, it did not show any significant effect on in vivo bone formation. Our findings suggest that baghdadite scaffolds with and without modification can serve as a potential material to repair critical sized bone defects. PMID:22842031

Roohani-Esfahani, S I; Dunstan, C R; Davies, B; Pearce, S; Williams, R; Zreiqat, H

2012-11-01

345

In vivo biological performance of a novel highly bioactive glass-ceramic (Biosilicate®): A biomechanical and histomorphometric study in rat tibial defects.  

PubMed

This study aimed to investigate bone responses to a novel bioactive fully crystallized glass-ceramic of the quaternary system P(2)O(5)-Na(2)O-CaO-SiO(2) (Biosilicate®). Although a previous study demonstrated positive effects of Biosilicate® on in vitro bone-like matrix formation, its in vivo effect was not studied yet. Male Wistar rats (n = 40) with tibial defects were used. Four experimental groups were designed to compare this novel biomaterial with a gold standard bioactive material (Bioglass® 45S5), unfilled defects and intact controls. A three-point bending test was performed 20 days after the surgical procedure, as well as the histomorphometric analysis in two regions of interest: cortical bone and medullary canal where the particulate biomaterial was implanted. The biomechanical test revealed a significant increase in the maximum load at failure and stiffness in the Biosilicate® group (vs. control defects), whose values were similar to uninjured bones. There were no differences in the cortical bone parameters in groups with bone defects, but a great deal of woven bone was present surrounding Biosilicate® and Bioglass® 45S5 particulate. Although both bioactive materials supported significant higher bone formation; Biosilicate® was superior to Bioglass® 45S5 in some histomorphometric parameters (bone volume and number of osteoblasts). Regarding bone resorption, Biosilicate® group showed significant higher number of osteoclasts per unit of tissue area than defect and intact controls, despite of the non-significant difference in the osteoclastic surface as percentage of bone surface. This study reveals that the fully crystallized Biosilicate® has good bone-forming and bone-bonding properties. PMID:21290592

Granito, Renata N; Rennó, Ana Claudia; Ravagnani, Christian; Bossini, Paulo S; Mochiuti, Daniel; Jorgetti, Vanda; Driusso, Patricia; Peitl, Oscar; Zanotto, Edgar D; Parizotto, Nivaldo A; Oishi, Jorge

2011-04-01

346

Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering.  

PubMed

Novel multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds exhibiting potential for drug delivery were developed for bone tissue engineering. 45S5 Bioglass-based glass-ceramic scaffolds of high interconnected porosity produced using the foam-replication technique were coated with biodegradable microspheres (size<2 microm) made from poly(3-hydroxybutyrate), P(3HB), produced using Bacillus cereus SPV. A solid-in-oil-in-water emulsion solvent extraction/evaporation technique was used to produce these P(3HB) microspheres. A simple slurry-dipping method, using a 1 wt.% suspension of P(3HB) microspheres in water, dispersed by an ultrasonic bath, was used to coat the scaffold, producing a uniform microsphere coating throughout the three-dimensional scaffold structure. Compressive strength tests confirmed that the microsphere coating slightly enhanced the scaffold mechanical strength. It was also confirmed that the microsphere coating did not inhibit the bioactivity of the scaffold when immersed in simulated body fluid (SBF) for up to 4 weeks. The hydroxyapatite (HA) growth rate on P(3HB) microsphere-coated 45S5 Bioglass composite scaffolds was very similar to that on the uncoated control sample, qualitatively indicating similar bioactivity. However, the surface topography of the HA surface layer was affected as shown by results obtained from white light interferometry. The roughness of the surface was much higher for the P(3HB) microsphere-coated scaffolds than for the uncoated samples, after 7 days in SBF. This feature would facilitate cell attachment and proliferation. Finally, gentamycin was successfully encapsulated into the P(3HB) microspheres to demonstrate the drug delivery capability of the scaffolds. Gentamycin release kinetics was determined using liquid chromatography-mass spectrometry. The release of the drug from the coated composite scaffolds was slow and controlled when compared to the observed fast and relatively uncontrolled drug release from the bone scaffold (without microsphere coating). Thus, this unique multifunctional bioactive composite scaffold has the potential to enhance cell attachment and to provide controlled delivery of relevant drugs for bone tissue engineering. PMID:20056174

Francis, Lydia; Meng, Decheng; Knowles, Jonathan C; Roy, Ipsita; Boccaccini, Aldo R

2010-07-01

347

The influence of polymeric component of bioactive glass-based nanocomposite paste on its rheological behaviors and in vitro responses: hyaluronic acid versus sodium alginate.  

PubMed

Different biocomposite pastes were prepared from a solid phase that was nanoparticles of sol-gel-derived bioactive glass and different liquid phases including 3% hyaluronic acid solution, sodium alginate solutions (3% and 10 %) or mixtures of hyaluronic acid and sodium alginate (3% or 10 %) solutions in 50:50 volume ratio. Rheological properties of the pastes were measured in both rotatory and oscillatory modes. The washout behavior and in vitro apatite formation of the pastes were determined by soaking them in simulated body fluid under dynamic situation for 14 days. The proliferation and alkaline phosphatase activity of MG-63 osteoblastic cells were also determined using extracts of the pastes. All pastes could be easily injected from the standard syringes with different tip diameters. All pastes exhibited visco-elastic character, but a nonthixotropic paste was obtained using hyaluronic acid in which the loss modulus was higher than the storage modulus. The thixotropy and storage modulus were increasingly improved by adding/using sodium alginate as mixing liquid. Moreover, the pastes in which the liquid phase was sodium alginate or mixture of hyaluronic acid and 10% sodium alginate solution revealed better apatite formation ability and washout resistance than that made of hyaluronic acid alone. No cytotoxicity effects were observed by extracts of the pastes on osteoblasts but better alkaline phosphatase activity was found for the pastes containing hyaluronic acid. Overall, injectable biocomposites can be produced by mixing bioactive glass nanoparticles and sodium alginate/hyaluronic acid polymers. They are potentially useful for hard and even soft tissues treatments. PMID:24123918

Sohrabi, Mehri; Hesaraki, Saeed; Kazemzadeh, Asghar

2014-04-01

348

Bioactive glass-ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol-gel vs melt-processing route)  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Bioactive glass-ceramic coatings for bone tissue repair and regeneration. Black-Right-Pointing-Pointer Pulsed Lased Deposition allowed congruent transfer of target composition to coating. Black-Right-Pointing-Pointer Target was prepared by sol-gel process suitable for compositional tailoring. Black-Right-Pointing-Pointer Titanium, widely used for orthopaedics and dental implants, was used as substrate. Black-Right-Pointing-Pointer The physico-chemical properties of the prepared coatings are reported. -- Abstract: The deposition of innovative glass-ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol-gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm{sup 2} and 500 Degree-Sign C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 {mu}m thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 {mu}m thick sol-gel films with the hardness of 17 GPa were obtained.

Rau, J.V., E-mail: giulietta.rau@ism.cnr.it [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Teghil, R. [Universita della Basilicata, Dipartimento di Chimica 'A.M. Tamburro', Via dell'Ateneo Lucano, 10-85100 Potenza (Italy) [Universita della Basilicata, Dipartimento di Chimica 'A.M. Tamburro', Via dell'Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Fosca, M. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy) [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Universita di Roma 'La Sapienza', Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); De Bonis, A. [Universita della Basilicata, Dipartimento di Chimica 'A.M. Tamburro', Via dell'Ateneo Lucano, 10-85100 Potenza (Italy) [Universita della Basilicata, Dipartimento di Chimica 'A.M. Tamburro', Via dell'Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Cacciotti, I.; Bianco, A. [Universita di Roma 'Tor Vergata', Dipartimento di Ingegneria Industriale, UR INSTM 'Roma Tor Vergata', Via del Politecnico, 1-00133 Rome (Italy)] [Universita di Roma 'Tor Vergata', Dipartimento di Ingegneria Industriale, UR INSTM 'Roma Tor Vergata', Via del Politecnico, 1-00133 Rome (Italy); Albertini, V. Rossi [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy)] [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Caminiti, R. [Universita di Roma 'La Sapienza', Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy)] [Universita di Roma 'La Sapienza', Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); Ravaglioli, A. [Parco Torricelli delle Arti e delle Scienze, Via Granarolo, 64-48018 Faenza (Ra) (Italy)] [Parco Torricelli delle Arti e delle Scienze, Via Granarolo, 64-48018 Faenza (Ra) (Italy)

2012-05-15

349

Bioactive composite for keratoprosthesis skirt.  

PubMed

In this study, the fabrication and properties of a synthetic keratoprosthesis skirt for use in osteo-odonto-keratoprosthesis (OOKP) surgery are discussed. In the search for a new material concept, bioactive glass and polymethyl methacrylate (PMMA)-based composites were prepared. Three different bioactive glasses (i.e. 45S5, S53P4 and 1-98) and one slowly resorbing glass, FL107, with two different forms (i.e. particles and porous glass structures) were employed in the fabrication of specimens. In in vitro studies, the dissolution behaviour in simulated aqueous humour, compressive properties, and pore formation of the composites were investigated. According to the results, FL107 dissolved very slowly (2.4% of the initial glass content in three weeks); thus, the pore formation of the FL107 composite was also observed to be restricted. The dissolution rates of the bioactive glass-PMMA composites were greater (12%-17%). These faster dissolving bioactive glass particles caused some porosity on the outermost surfaces of the composite. The slight surface porosity was also confirmed by a decrease in compressive properties. During six weeks' in vitro dissolution, the compressive strength of the test specimens containing particles decreased by 22% compared to values in dry conditions (90-107 MPa). These results indicate that the bioactive composites could be stable synthetic candidates for a keratoprosthesis skirt in the treatment of severely damaged or diseased cornea. PMID:22098870

Laattala, Kaisa; Huhtinen, Reeta; Puska, Mervi; Arstila, Hanna; Hupa, Leena; Kellomäki, Minna; Vallittu, Pekka K

2011-11-01

350

Crystallization processes at the surface of polylactic acid-bioactive glass composites during immersion in simulated body fluid.  

PubMed

We report on the crystallization processes occurring at the surface of PDLLA-Bioglass® composites immersed in simulated body fluid. Composites manufactured by injection molding and containing different amounts (0, 20, 30, and 50 wt %) of 45S5 Bioglass® particles were tested for durations up to 56 days and compared with Bioglass® particles alone. Crystallization processes were followed by visual inspection, X-ray diffraction (with Rietveld analysis) and scanning electron microscopy. Both calcite and hydroxyapatite were formed at the surface of all materials, but their relative ratio was dependent on the Bioglass® content and immersion time. Hydroxyapatite was always the major phase after sufficient immersion time, insuring bioactivity of such composites especially for Bioglass® content higher than 30 wt %. A scenario of crystallization is proposed. Rapid degradation of the composites with 50 wt % was also observed during immersion. Therefore, composites with 30 wt % of Bioglass® particles seem to exhibit the best balance between bioactivity and stability at least during the first weeks of immersion in contact with body fluids. PMID:21948519

Ginsac, Nathalie; Chenal, Jean-Marc; Meille, Sylvain; Pacard, Elodie; Zenati, Rachid; Hartmann, Daniel J; Chevalier, Jérôme

2011-11-01

351

Magnetic and bioactivity evaluation of ferrimagnetic ZnFe 2O 4 containing glass ceramics for the hyperthermia treatment of cancer  

NASA Astrophysics Data System (ADS)

Glass ceramics of the composition xZnO·25Fe 2O 3·(40- x)SiO 2·25CaO·7P 2O 5·3Na 2O were prepared by the melt-quench method using oxy-acetylene flame. Glass-powder compacts were sintered at 1100 °C for 3 h and then rapidly cooled at -10 °C. X-ray diffraction (XRD) revealed 3 prominent crystalline phases: ZnFe 2O 4, CaSiO 3 and Ca 10(PO 4) 6(OH) 2. Vibrating sample magnetometer (VSM) data at 10 KOe and 500 Oe showed that saturation magnetization, coercivity and hence hysteresis area increased with the increase in ZnO content. Nano-sized ZnFe 2O 4 crystallites were of pseudo-single domain structure and thus coercivity increased with the increase in crystallite size. ZnFe 2O 4 exhibited ferrimagnetism due to the random distribution of Zn 2+ and Fe 3+ cations at tetrahedral A sites and octahedral B sites. This inversion/random distribution of cations was probably due to the surface effects of nano-ZnFe 2O 4 and rapid cooling of the material from 1100 °C (thus preserving the high temperature state of the random distribution of cations). Calorimetric measurements were carried out using magnetic induction furnace at 500 Oe magnetic field and 400 KHz frequency. The data showed that maximum specific power loss and temperature increase after 2 min were 26 W/g and 37 °C, respectively for the sample containing 10% ZnO. The samples were immersed in simulated body fluid (SBF) for 3 weeks. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDX) and XRD results confirmed the growth of precipitated hydroxyapatite phase after immersion in SBF, suggesting that the ferrimagnetic glass ceramics were bioactive and could bond to the living tissues in physiological environment.

Shah, Saqlain A.; Hashmi, M. U.; Alam, S.; Shamim, A.

2010-02-01

352

Effects of Substitution of K2O for Na2O on the Bioactivity of CaO-Na2O-SiO2-P2O5 glasses  

NASA Astrophysics Data System (ADS)

The compositional dependences of bioactivity, thermal properties, atomic structure, and surface morphology have been investigated in the CaO-Na2O-SiO2-P2O5 system; this system is known as a bioglass. 45S5 Bioglass® is known to be a general and highly bioactive material. However, the bioactivity of this glassy material is expected to be improved by modifying the alkali-metal composition. Thermal properties, density, and molar volume were measured to investigate the structural packing. FT-IR spectra and X-ray diffraction were used to confirm the structures of these glasses. The morphology was examined using field emission electron microscopy, and the formation of a Ca-P layer was studied using an energy-dispersive system. This study shows that the tendency to form a calcium phosphate layer is increased with the substitution of K2O for Na2O.

Kim, Taehee; Hwang, Chawon; Gwoo, Donggun; Park, Hoyyul; Ryu, Bong-Ki

2012-10-01

353

Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses  

PubMed Central

CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol–gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations. PMID:24637634

Kaur, Gurbinder; Pickrell, G.; Kimsawatde, G.; Homa, D.; Allbee, H. A.; Sriranganathan, N.

2014-01-01

354

Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface.  

PubMed

This study aimed in evaluating the effects of two experimental resin bonding systems containing conventional Bioglass 45S5 (BAG) or Zinc-polycarboxylated bioactive glass (BAG-Zn) micro-fillers on the resin-bonded dentine interface after storage in a simulated body fluid solution (SBFS). Three resin bonding systems were formulated: Resin-A: (BAG containing); Resin-B; (BAG-Zn containing); Resin-C (no filler). The ability of the experimental resins to evoke apatite formation was evaluated using confocal Raman spectroscopy. Acid-etched dentine specimens were bonded, and prepared for AFM/nano-indentation analysis in a fully-hydrated status to evaluate the modulus of elasticity (Ei) and hardness (Hi) across the interface at different SBFS storage periods. Further resin-dentine specimens were tested for microtensile bond strength after 24 h or 3 months of SBFS storage. SEM examination was performed after de-bonding and confocal laser microscopy was used to evaluate the ultramorphology of the interfaces and micropermeability. The resin A and B showed a consistent presence of apatite (967 cm(-1)), reduced micropermeability within the resin-dentine interface and a significant increase of the Ei and Hi along the bonded-dentine interface after prolonged SBFS storage. Bond strength values were affected by the resin system (P < 0.0001) and by storage time (P < 0.0001) both after 24 h and 3 months of SBFS storage. In conclusion, resin bonding systems containing bioactive fillers may a have therapeutic effect on the nano-mechanical properties and sealing ability of mineral-depleted resin-dentine interface. PMID:22466816

Sauro, Salvatore; Osorio, Raquel; Watson, Timothy F; Toledano, Manuel

2012-06-01

355

Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering  

Microsoft Academic Search

Strategies to engineer bone tissue have focused on either: (1)the use of scaffolds for osteogenic cell transplantation or as conductive substrates for guided bone regeneration; or (2)release of inductive bioactive factors from these scaffold materials. This study describes an approach to add an inductive component to an osteoconductive scaffold for bone tissue engineering. We report the release of bioactive vascular

William L Murphy; Martin C Peters; David H Kohn; David J Mooney

2000-01-01

356

Carbohydrate?Based Molecular Scaffolding  

Microsoft Academic Search

The use of modified carbohydrates, such as sugar amino acids (SAA), iminosugars and policyclic derivatives, as scaffolds for the generation of bioactive compounds, and the use of carbohydrates as building blocks or ligands for the production of polymers for biomedical applications, is reviewed.

Ingrid Velter; Barbara La Ferla; Francesco Nicotra

2006-01-01

357

Investigating the influence of Na(+) and Sr (2+) on the structure and solubility of SiO 2-TiO 2-CaO-Na 2O/SrO bioactive glass.  

PubMed

This study was conducted to determine the influence that network modifiers, sodium (Na(+)) and strontium (Sr(2+)), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr(2+) containing glasses. Additionally the Sr(2+) (~250 mg/L) containing glasses displayed much lower ion release rates than the Na(+) (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface. PMID:25644099

Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W

2015-02-01

358

Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes.  

PubMed

In the present study, different amounts (0.5-5 wt%) of a sol gel-derived zinc-containing nano-bioactive glass (NBG-Zn) powder were added to biphasic calcium phosphate (BCP). The mixtures were sintered at 1,100-1,300 °C and physical characteristics, mechanical properties, phase composition and morphology of them were studied. The samples were also soaked in human blood plasma for 15 days to evaluate variations in their surface morphologies. Rat calvarium-derived osteoblastic cells were seeded on tops of various samples and cell adhesion, proliferation, and alkaline phosphatase activity were evaluated at different culturing periods. The maximum bending strength (62 MPa) was obtained for BCP containing 0.5 wt% NBG-Zn at temperature 1,200 °C. This value was approximately 80% higher than that of pure BCP. The bending strength failed when both sintering temperature and amount of added NBG-Zn increased. At 1,100 °C, NBG-Zn additive did not change the phase composition of BCP. At temperatures 1,200 and 1,300 °C, both alpha-tricalcium calcium phosphate (?-TCP) and beta-tricalcium phosphate (?-TCP and) phases were detected. However, adding higher amount of NBG-Zn to BCP resulted in elevation of ?-TCP at 1,200 °C and progression of ?-TCP at 1,300 °C. Based on the microscopic observations, adding 0.5 wt% NBG-Zn to BCP led to disappearance of grain boundaries, reduction of micropores and formation of a monolithic microstructure. No calcium phosphate precipitation was observed on sample surfaces after soaking in blood plasma, but some pores were produced by phase dissolution. The size and volume of these pores were directly proportional to NBG-Zn content. Based on the cell studies, both BCP and NBG-Zn-added BCP samples supported attachment and proliferation of osteoblasts, but higher alkaline phosphatase enzyme was synthesized within the cells cultured on NBG-Zn-added BCP. Overall, biphasic calcium phosphate materials with improved mechanical and biological properties can be produced by using small quantity of zinc-containing bioactive glass particles. PMID:24101184

Badr-Mohammadi, Mohammad-Reza; Hesaraki, Saeed; Zamanian, Ali

2014-01-01

359

Long-term conversion of 45S5 bioactive glass-ceramic microspheres in aqueous phosphate solution.  

PubMed

The conversion of 45S5 glass and glass-ceramics to a hydroxyapatite (HA)-like material in vitro has been studied extensively, but only for short reaction times (typically <3 months). In this paper, we report for the first time on the long-term conversion of 45S5 glass-ceramic microspheres (designated 45S5c) in an aqueous phosphate solution. Microspheres of 45S5c (75-150 ?m) were immersed for 10 years at room temperature (~25 °C) in K(2)HPO(4) solution with a concentration of 0.01 M or 1.0 M, and with a starting pH of 7.0 or 9.5. The reacted 45S5c microspheres and solutions were analyzed using structural and analytical techniques. Only 25-45 vol% of the 45S5c microspheres were converted to an HA-like material after the 10 year reaction. In solutions with a starting pH of 9.5, an increase in the K(2)HPO(4) concentration from 0.01 to 1.0 M resulted in a doubling of the volume of the microspheres converted to an HA-like material but had little effect on the composition of the HA-like product. In comparison, reaction of the 45S5c microspheres in the solution with a starting pH of 7.0 resulted in an HA-like product in the 0.01 M K(2)HPO(4) solution but a calcium pyrophosphate product, Ca(10)K(4)(P(2)O(7))(6).9H(2)O, in the 1.0 M solution. The consequences of these results for the long-term use of 45S5 glass-ceramics in biomedical applications are discussed. PMID:22415362

Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

2012-05-01

360

Bioactive Glass Shell Growth of a Si-Na-Ca-P Layer on Gold Nanoparticles Functionalized with Mercaptopropyltrimethyloxysilane-Silicate  

NASA Astrophysics Data System (ADS)

Calcium phosphate and silicate-modified gold surfaces have potential applications in orthopedic and dental reconstruction, especially when combined with bone cement or dental resins. The aim of this study was to evaluate the formation of a Si-Na-Ca-P glass system nanoshell on functionalized gold nanoparticles. Stable gold nanoparticle suspensions were prepared by controlled reduction of HAuCl4 using the sodium citrate method to obtain a nanogold-mercaptopropyltrimethyloxysilane (MPTS)-silicate-tetraethylothosilicate (TEOS)-capped particle solution. The nanoshells were formed when directly reacted with a 10-4 M calcium phosphate ion solution. The median nanoparticle diameter was observed to be 15 nm. The MPTS-silicate-TEOS-functionalized nanoshell more effectively formed a glass shell as compared with a nonsilicate nanoshell. The changes in the surface morphology and composition were observed by a scanning transmission electron microscope equipped with energy-dispersive X-ray spectroscopy. As seen using EDS, the nanoshell was in a glass phase with CaO-poor layers.

Wang, Chih-Kuang; Chen, Szu-Hsien; Li, Wan-Yun; Lai, Chern-Hsiung; Chen, Wen-Cheng

361

The effect of bioactive glass ceramics on the expression of bone-related genes and proteins in vitro.  

PubMed

Using biodegradable bone substitutes in alveolar ridge augmentation avoids second-site surgery for autograft harvesting. Considerable efforts have been undertaken to develop rapidly resorbable bone substitute materials with a higher degree of biodegradability than tricalcium phosphate (TCP). This study examines the effect of novel biodegradable glass ceramics on the expression of bone-related genes and proteins by human bone-derived cells (HBDC) and compares this behavior with that of TCP. Test materials used were alpha-TCP, a surface-treated glass ceramic GB9N with crystalline phase Ca(2)KNa(PO(4))(2) and a small amount of amorphous silica phosphate; AP40 - a glass ceramic based on crystalline phases of apatite and wollastonite; and a glass ceramic Mg5 composed of 20.6% CaO, 58.5% P(2)O(5), 14.4% Na(2)O, 4.1% MgO and 2.4% CaF(2) (wt%). HBDC were grown on the substrata for 3, 5, 7, 14 and 21 days, counted and probed for various bone-related mRNAs and proteins (type I collagen (Col I), osteocalcin (OC), osteopontin (OP), osteonectin (ON), alkaline phosphatase (ALP) and bone sialoprotein (BSP)). The substrata supported continuous cellular growth for 21 days. By day 21, GB9N had the highest number of HBDC. GB9N induced significantly enhanced expression of Col I, ALP, OP, OC and ON mRNA at 3 days; of OP, OC and ON mRNA and protein at 7 and 14 days; and of ALP, OP and OC mRNA and Col I, ALP, BSP, ON and OP protein at 21 days. Since all novel glass ceramics supported cellular proliferation together with expression of bone-related genes and proteins at least as much as TCP, these ceramics can be regarded as potential bone substitutes. GB9N had the most effect on osteoblastic differentiation, thus suggesting that this material may possess a higher potency to enhance osteogenesis than TCP. PMID:15642039

Knabe, Christine; Stiller, Michael; Berger, Georg; Reif, Dieter; Gildenhaar, Renate; Howlett, Cameron Rolfe; Zreiqat, Hala

2005-02-01

362

Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system.  

PubMed

Composite orthopaedic coatings with antibacterial capability containing chitosan, Bioglass® particles (9.8?m) and silver nanoparticles (Ag-np) were fabricated using a single-step electrophoretic deposition (EPD) technique, and their structural and preliminary in vitro bactericidal and cellular properties were investigated. Stainless steel 316 was used as a standard metallic orthopaedic substrate. The coatings were compared with EPD coatings of chitosan and chitosan/Bioglass®. The ability of chitosan as both a complexing and stabilizing agent was utilized to form uniformly deposited Ag-np. Due to the presence of Bioglass® particles, the coatings were bioactive in terms of forming carbonated hydroxyapatite in simulated body fluid (SBF). Less than 7wt.% of the incorporated silver was released over the course of 28days in SBF and the possibility of manipulating the release rate by varying the deposition order of coating layers was shown. The low released concentration of Ag ions (<2.5ppm) was efficiently antibacterial against Staphyloccocus aureus up to 10days. Although chitosan and chitosan/Bioglass® coating supported proliferation of MG-63 osteoblast-like cells up to 7days of culture, chitosan/Bioglass®/Ag-np coatings containing 342 ?g of Ag-np showed cytotoxic effects. This was attributed to the relatively high concentration of Ag-np incorporated in the coatings. PMID:23511807

Pishbin, F; Mouriño, V; Gilchrist, J B; McComb, D W; Kreppel, S; Salih, V; Ryan, M P; Boccaccini, A R

2013-07-01

363

Influence of heat treatments upon the mechanical properties and in vitro bioactivity of ZrO2-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics.  

PubMed

Zirconia-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics are prepared using sintering techniques, and a series of heat treatment procedures are designed to obtain a glass-ceramic with improved properties. The crystallization behavior, phase composition, and morphology of the glass-ceramics are characterized. The bending strength, elastic modulus, fracture toughness, and microhardness of the glass-ceramics are investigated, and the effect mechanism of heat treatments upon the mechanical properties is discussed. The bioactivity of glass-ceramics is then evaluated using the in vitro simulated body fluid (SBF) soaking test, and the mechanism whereby apatite forms on the glass-ceramic surfaces in the SBF solution is discussed. The results indicate that the main crystal phase of the G-24 sample undergoing two heat treatment procedures is Ca5(PO4)3F (fluorapatite), and those of the G-2444 sample undergoing four heat treatment procedures are Ca5(PO4)3F and ?-CaSiO3 (?-wollastonite). The heat treatment procedures are found to greatly influence the mechanical properties of the glass-ceramic, and an apatite layer is induced on the glass-ceramic surface after soaking in the SBF solution. PMID:25280855

Li, Huan-Cai; Wang, Dian-Gang; Meng, Xiang-Guo; Chen, Chuan-Zhong

2014-09-01

364

Solid-State 31P and 1H NMR Investigations of Amorphous and Crystalline Calcium Phosphates Grown Biomimetically From a Mesoporous Bioactive Glass  

PubMed Central

By exploiting 1H and 31P magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy, we explore the proton and orthophosphate environments in biomimetic amorphous calcium phosphate (ACP) and hydroxy-apatite (HA), as grown in vitro at the surface of a 10CaO–85SiO2–5P2O5 mesoporous bioactive glass (MBG) in either a simulated body fluid or buffered water. Transmission electron microscopy confirmed the presence of a calcium phosphate layer comprising nanocrystalline HA. Two-dimensional 1H–31P heteronuclear correlation NMR established predominantly 1H2O?31PO43– and O1H?31PO43– contacts in the amorphous and crystalline component, respectively, of the MBG surface-layer; these two pairs exhibit distinctly different 1H?31P cross-polarization dynamics, revealing a twice as large squared effective 1H–31P dipolar coupling constant in ACP compared with HA. These respective observations are mirrored in synthetic (well-crystalline) HA, and the amorphous calcium orthophosphate (CaP) clusters that are present in the pristine MBG pore walls: besides highlighting very similar local 1H and 31P environments in synthetic and biomimetic HA, our findings evidence closely related NMR characteristics, and thereby similar local structures, of the CaP clusters in the pristine MBG relative to biomimetic ACP. PMID:22132242

2011-01-01

365

Effects of Cu-doped 45S5 bioactive glass on the lipid peroxidation-associated growth of human osteoblast-like cells in vitro.  

PubMed

Bioactive glass (BG) is a highly attractive material, exhibiting both osteoinductive and osteoconductive properties, which is known to provide a growth enhancing surface for bone cells. Previous studies have shown that lipid peroxidation and in particular generation of 4-hydroxynonenal (HNE) is involved in the growth of human osteoblast-like cells, HOS, on BG. Copper (Cu), which is an essential cofactor of several enzymes as well as a proangiogenic and an antimicrobial agent, is known to induce lipid peroxidation. Therefore, the enrichment of BG with Cu could potentially have beneficial effects on the growth of the bone cells. In this study, we investigated the effects of copper-doped 45S5 BG on the growth of HOS cells and the generation of HNE. Our results confirmed the association of HNE with the growth of HOS cells. The effects of added Cu were dose-dependent. Specifically, low concentrations (i.e., 0.1% w/w) of Cu improved viability and enhanced HOS cell growth, whereas higher Cu concentrations [i.e., 2.5% and 1% (w/w)] were cytotoxic. The observed effects of Cu concentration on cell growth correlated with the level of HNE production. Therefore, Cu containing BG may represent a useful biomaterial for research and development studies of bone regeneration. PMID:24243858

Milkovic, Lidija; Hoppe, Alexander; Detsch, Rainer; Boccaccini, Aldo R; Zarkovic, Neven

2014-10-01

366

Remineralization potential of bioactive glass and casein phosphopeptide-amorphous calcium phosphate on initial carious lesion: An in-vitro pH-cycling study  

PubMed Central

Aims: The aim of this study was to evaluate and compare the remineralization potential of bioactive-Glass (BAG) (Novamin®/Calcium-sodium-phosphosilicate) and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) containing dentifrice. Materials and Methods: A total of 30 sound human premolars were decoronated, coated with nail varnish except for a 4 mm × 4 mm window on the buccal surface of crown and were randomly divided in two groups (n = 15). Group A — BAG dentifrice and Group B — CPP-ACP dentifrice. The baseline surface microhardness (SMH) was measured for all the specimens using the vickers microhardness testing machine. Artificial enamel carious lesions were created by inserting the specimens in de-mineralizing solution for 96 h. SMH of demineralized specimens was evaluated. 10 days of pH-cycling regimen was carried out. SMH of remineralized specimens was evaluated. Statistical Analysis: Data was analyzed using ANOVA and multiple comparisons within groups was done using Bonferroni method (post-hoc tests) to detect significant differences at P < 0.05 levels. Results: Group A showed significantly higher values (P < 0.05) when compared with the hardness values of Group B. Conclusions: Within the limits; the present study concluded that; both BAG and CPP-ACP are effective in remineralizing early enamel caries. Application of BAG more effectively remineralized the carious lesion when compared with CPP-ACP. PMID:24554851

Mehta, Adit Bharat; Kumari, Veena; Jose, Rani; Izadikhah, Vajiheh

2014-01-01

367

Recent advances in bone tissue engineering scaffolds  

PubMed Central

Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, biodegradable materials that harbor different growth factors, drugs, genes or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. PMID:22939815

Bose, Susmita; Roy, Mangal; Bandyopadhyay, Amit

2012-01-01

368

Osteoblastic differentiation under controlled bioactive ion release by silica and titania doped sodium-free calcium phosphate-based glass.  

PubMed

Sodium-free phosphate-based glasses (PGs) doped with both SiO2 and TiO2 (50P2O5-40CaO-xSiO2-(10-x)TiO2, where x=10, 7, 5, 3, and 0mol%) were developed and characterised for controlled ion release applications in bone tissue engineering. Substituting SiO2 with TiO2 directly increased PG density and glass transition temperature, indicating a cross-linking effect of Ti on the glass network which was reflected by significantly reduced degradation rates in an aqueous environment. X-ray diffraction confirmed the presence of Ti(P2O7) in crystallised TiO2-containing PGs, and nuclear magnetic resonance showed an increase in Q(1) phosphate species with increasing TiO2 content. Substitution of SiO2 with TiO2 also reduced hydrophilicity and surface energy. In biological assays, MC3T3-E1 pre-osteoblasts effectively adhered to the surface of PG discs and the incorporation of TiO2, and hence higher stability of the PG network, significantly increased cell viability and metabolic activity indicating the biocompatibility of the PGs. Addition of SiO2 increased ionic release from the PG, which stimulated alkaline phosphatase (ALP) activity in MC3T3-E1 cells upon ion exposure. The incorporation of 3mol% TiO2 was required to stabilise the PG network against unfavourable rapid degradation in aqueous environments. However, ALP activity was greatest in PGs doped with 5-7mol% SiO2 due to up-regulation of ionic concentrations. Thus, the properties of PGs can be readily controlled by modifying the extent of Si and Ti doping in order to optimise ion release and osteoblastic differentiation for bone tissue engineering applications. PMID:24945606

Shah Mohammadi, Maziar; Chicatun, Florencia; Stähli, Christoph; Muja, Naser; Bureau, Martin N; Nazhat, Showan N

2014-09-01

369

Porous bioactive materials  

NASA Astrophysics Data System (ADS)

Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size <50 nm) sol-gel BGs in simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a network of smaller (<10 mum) interconnected pores. Dense layers can be removed and large pores exposed by abrasion or salt leaching techniques. Composite modulus was enhanced with the increase of glass content, due to the change in composition and pore content. The growth of bone-like apatite on and inside composites after soaking in SBF demonstrated their potential for integration with bone. Cell culture studies revealed that composite surfaces were suitable for attachment, spreading and proliferation of chondrocytes.

Zhang, Kai

370

Novel Antibacterial Nanofibrous PLLA Scaffolds  

PubMed Central

In order to achieve high local bioactivity and low systemic side effects of antibiotics in the treatment of dental, periodontal and bone infections, a localized and temporally controlled delivery system is crucial. In this study, a three-dimensional (3D) porous tissue engineering scaffold was developed with the ability to release antibiotics in a controlled fashion for long-term inhibition of bacterial growth. The highly soluble antibiotic drug, Doxycycline (DOXY), was successfully incorporated into PLGA nanospheres using a modified water-in-oil-in-oil (w/o/o) emulsion method. The PLGA nanospheres (NS) were then incorporated into prefabricated nanofibrous PLLA scaffolds with a well interconnected macroporous structure. The release kinetics of DOXY from four different PLGA NS formulations on a PLLA scaffold was investigated. DOXY could be released from the NS-scaffolds in a locally and temporally controlled manner. The DOXY release is controlled by DOXY diffusion out of the NS and is strongly dependent upon the physical and chemical properties of the PLGA. While PLGA50-6.5K, PLGA50-64K, and PLGA75-113K NS-scaffolds discharge DOXY rapidly with a high initial burst release, PLGA85-142K NS-scaffold can extend the release of DOXY to longer than 6 weeks with a low initial burst release. Compared to NS alone, the NS incorporated on a 3-D scaffold had significantly reduced the initial burst release. In vitro antibacterial tests of PLGA85 NS-scaffold demonstrated its ability to inhibit common bacterial growth (S.aureus and E.coli) for a prolonged duration. The successful incorporation of DOXY onto 3-D scaffolds and its controlled release from scaffolds extends the usage of nano-fibrous scaffolds from the delivery of large molecules such as growth factors to the delivery of small hydrophilic drugs, allowing for a broader application and a more complex tissue engineering strategy. PMID:20570700

Feng, Kai; Sun, Hongli; Bradley, Mark A.; Dupler, Ellen J.; Giannobile, William V.; Ma, Peter X.

2010-01-01

371

Damping and impact properties of laminated scaffolds and glass columns evaluated through the use of computational methods  

Microsoft Academic Search

Dynamic finite element analysis (FEA) was used to verify the ability of a novel percussion instrument to characterize the composition and structure of laminated materials and glass columns and to elucidate key facets of this process. Initial simulations modeling the percussion process with varying probe geometries were performed to access which configuration most accurately represented in situ diagnostic activity. Percussion

Ian Nieves

2008-01-01

372

The Use of Carbon Nanotubes to Reinforce 45S5 Bioglass-Based Scaffolds for Tissue Engineering Applications  

PubMed Central

Bioglass has been used for bone-filling material in bone tissue engineering, but its lean mechanical strength limits its applications in load-bearing positions. Carbon nanotubes (CNTs), with their high aspect ratio and excellent mechanical properties, have the potential to strengthen and toughen bioactive glass material without offsetting its bioactivity. Therefore, in this research, multiwall carbon nanotube (MWCNT)/45S5 Bioglass composite scaffolds have been successfully prepared by means of freeze casting process. 45S5 Bioglass was synthesized by the sol-gel processing method. The obtained material was characterized with X-ray powder diffraction (XRD). The mechanical properties of the scaffolds, such as compression strength and elastic modulus, were measured. Finally, compared with the scaffolds prepared by 100% 45S5 Bioglass powders, the addition of 0.25?wt.% MWCNTs increases the compressive strength and elastic modulus of 45S5 Bioglass scaffolds from 2.08 to 4.56?MPa (a 119% increase) and 111.50 to 266.59?MPa (a 139% increase), respectively. PMID:24294609

Touri, R.; Moztarzadeh, F.; Sadeghian, Z.; Bizari, D.; Tahriri, M.; Mozafari, M.

2013-01-01

373

The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications.  

PubMed

Bioglass has been used for bone-filling material in bone tissue engineering, but its lean mechanical strength limits its applications in load-bearing positions. Carbon nanotubes (CNTs), with their high aspect ratio and excellent mechanical properties, have the potential to strengthen and toughen bioactive glass material without offsetting its bioactivity. Therefore, in this research, multiwall carbon nanotube (MWCNT)/45S5 Bioglass composite scaffolds have been successfully prepared by means of freeze casting process. 45S5 Bioglass was synthesized by the sol-gel processing method. The obtained material was characterized with X-ray powder diffraction (XRD). The mechanical properties of the scaffolds, such as compression strength and elastic modulus, were measured. Finally, compared with the scaffolds prepared by 100% 45S5 Bioglass powders, the addition of 0.25?wt.% MWCNTs increases the compressive strength and elastic modulus of 45S5 Bioglass scaffolds from 2.08 to 4.56?MPa (a 119% increase) and 111.50 to 266.59?MPa (a 139% increase), respectively. PMID:24294609

Touri, R; Moztarzadeh, F; Sadeghian, Z; Bizari, D; Tahriri, M; Mozafari, M

2013-01-01

374

Accepted Manuscript Title: Thermal investigations of Ti and Ag-doped bioactive  

E-print Network

for biomedical use. Hench has discovered the first bioactive glass: 45S5 or Bioglass® in the quaternary SiO2, Na2Accepted Manuscript Title: Thermal investigations of Ti and Ag-doped bioactive glasses Author: EB. LefeuvreB. BureauO. Merdrignac- Conanec Thermal investigations of Ti and Ag-doped bioactive glasses (2014

Paris-Sud XI, Université de

375

The future of bioactive ceramics.  

PubMed

Two important worldwide needs must be satisfied in the future; (1) treatment of the deteriorating health of an aging population and, (2) decreasing healthcare costs to meet the needs of an increased population. The ethical and economic dilemma is how to achieve equality in quality of care while at the same time decreasing cost of care for an ever-expanding number of people. The limited lifetime of prosthetic devices made from first-generation nearly inert biomaterials requires new approaches to meet these two large needs. This paper advises an expanded emphasis on: (1) regeneration of tissues and (2) prevention of tissue deterioration to meet this growing need. Innovative use of bioactive ceramics with genetic control of in situ tissue responses offers the potential to achieve both tissue regeneration and prevention. Clinical success of use of bioactive glass for bone regeneration is evidence that this concept works. Likewise the use of micron sized bioactive glass powders in a dentifrice for re-mineralization of teeth provides evidence that prevention of tissue deterioration is also possible. This opinion paper outlines clinical needs that could be met by innovative use of bioactive glasses and ceramics in the near future; including: regeneration of skeletal tissues that is patient specific and genetic based, load-bearing bioactive glass-ceramics for skeletal and ligament and tendon repair, repair and regeneration of soft tissues, and rapid low-cost analysis of human cell-biomaterial interactions leading to patient specific diagnoses and treatments using molecularly tailored bioceramics. PMID:25644100

Hench, Larry L

2015-02-01

376

Bioactivity-guided mapping and navigation of chemical space  

Microsoft Academic Search

The structure- and chemistry-based hierarchical organization of library scaffolds in tree-like arrangements provides a valid, intuitive means to map and navigate chemical space. We demonstrate that scaffold trees built using bioactivity as the key selection criterion for structural simplification during tree construction allow efficient and intuitive mapping, visualization and navigation of the chemical space defined by a given library, which

Steffen Renner; Willem A L van Otterlo; Marta Dominguez Seoane; Sabine Möcklinghoff; Bettina Hofmann; Stefan Wetzel; Ansgar Schuffenhauer; Peter Ertl; Tudor I Oprea; Dieter Steinhilber; Luc Brunsveld; Daniel Rauh; Herbert Waldmann

2009-01-01

377

Hierarchically engineered fibrous scaffolds for bone regeneration  

PubMed Central

Surface properties of biomaterials play a major role in the governing of cell functionalities. It is well known that mechanical, chemical and nanotopographic cues, for example, influence cell proliferation and differentiation. Here, we present a novel coating protocol to produce hierarchically engineered fibrous scaffolds with tailorable surface characteristics, which mimic bone extracellular matrix. Based on the sol–gel method and a succession of surface treatments, hollow electrospun polylactic acid fibres were coated with a silicon–calcium–phosphate bioactive organic–inorganic glass. Compared with pure polymeric fibres that showed a completely smooth surface, the coated fibres exhibited a nanostructured topography and greater roughness. They also showed improved hydrophilic properties and a Young's modulus sixfold higher than non-coated ones, while remaining fully flexible and easy to handle. Rat mesenchymal stem cells cultured on these fibres showed great cellular spreading and interactions with the material. This protocol can be transferred to other structures and glasses, allowing the fabrication of various materials with well-defined features. This novel approach represents therefore a valuable improvement in the production of artificial matrices able to direct stem cell fate through physical and chemical interactions. PMID:23985738

Sachot, Nadège; Castaño, Oscar; Mateos-Timoneda, Miguel A.; Engel, Elisabeth; Planell, Josep A.

2013-01-01

378

Surface transformations of Bioglass 45S5 during scaffold synthesis for bone tissue engineering.  

PubMed

In physiological fluid, a layer of hydroxycarbonate apatite, similar to bone mineral, develops on the surface of Bioglass 45S5. Collagen from the surrounding tissue is adsorbed on this layer that attracts osteoblasts, and favors bone regrowth. Bioglass is therefore an osteoinductive material. Still, due to its brittleness, the glass alone cannot be used to heal large bone defects. To overcome this issue, Bioglass is used to form a composite scaffold with poly(D,L-lactide) (PDLLA), a biodegradable polymer. The goal of this work is to understand Bioglass reactivity throughout scaffold fabrication via a low-temperature route, the solvent casting and particulate leaching technique. Changes in Bioglass (especially its surface) are susceptible to occur both while in contact with the processing fluids and potentially through a reaction with the surrounding polymeric matrix. Here we analyzed the surface changes of three different Bioglass samples: (i) as-received, (ii) treated in solutions that parallel those used in scaffold fabrication, and (iii) extracted from the scaffolds. We showed that extracted, just like treated, Bioglass deviates from the as-received, but to a larger extent. X-ray photoelectron and infrared spectroscopy support the theory that Bioglass surface was modified not just through contact with the solutions in scaffold fabrication, but upon an interaction with the polymeric matrix. The polymer network slows down the Na(+)/H(+) exchange between Bioglass and water used to leach salt particles to create pores within the scaffold. Changes in surface properties affect the bioactivity of Bioglass and thus of the composite scaffolds, and are therefore critical to identify. PMID:23305513

Abdollahi, Sara; Ma, Alvin Chih Chien; Cerruti, Marta

2013-02-01

379

A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: a retrospective comparative study.  

PubMed

The treatment of chronic osteomyelitis often includes surgical debridement and filling the resultant void with antibiotic-loaded polymethylmethacrylate cement, bone grafts or bone substitutes. Recently, the use of bioactive glass to treat bone defects in infections has been reported in a limited series of patients. However, no direct comparison between this biomaterial and antibiotic-loaded bone substitute has been performed. In this retrospective study, we compared the safety and efficacy of surgical debridement and local application of the bioactive glass S53P4 in a series of 27 patients affected by chronic osteomyelitis of the long bones (Group A) with two other series, treated respectively with an antibiotic-loaded hydroxyapatite and calcium sulphate compound (Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded demineralised bone matrix (Group C; n = 22). Systemic antibiotics were also used in all groups. After comparable periods of follow-up, the control of infection was similar in the three groups. In particular, 25 out of 27 (92.6%) patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out of 22 (86.3%) in Group C showed no infection recurrence at means of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up, respectively, while Group A showed a reduced wound complication rate. Our results show that patients treated with a bioactive glass without local antibiotics achieved similar eradication of infection and less drainage than those treated with two different antibiotic-loaded calcium-based bone substitutes. PMID:24891588

Romanò, C L; Logoluso, N; Meani, E; Romanò, D; De Vecchi, E; Vassena, C; Drago, L

2014-06-01

380

Hydrogels for tissue engineering: scaffold design variables and applications  

Microsoft Academic Search

Polymer scaffolds have many different functions in the field of tissue engineering. They are applied as space filling agents, as delivery vehicles for bioactive molecules, and as three-dimensional structures that organize cells and present stimuli to direct the formation of a desired tissue. Much of the success of scaffolds in these roles hinges on finding an appropriate material to address

Jeanie L. Drury; David J. Mooney

2003-01-01

381

Bioisosteric replacement of molecular scaffolds: From natural products to synthetic compounds  

Microsoft Academic Search

Natural products often contain scaffolds or core structures that prevent immediate synthetic accessibility. It is, therefore, desirable to find isosteric chemotypes that allow for scaffold-hopping or re-scaffolding. The idea is to obtain simpler chemotypes that are synthetically feasible and exhibit either the same or similar bioactivity as the original natural product or reference compound. We developed and applied a virtual

Kristina Grabowski; Ewgenij Proschak; Karl-Heinz Baringhaus; Oliver Rau; Manfred Schubert-Zsilavecz; Gisbert Schneider

2008-01-01

382

Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.  

PubMed

Achieving high quality 3D-printed structures requires establishing the right printing conditions. Finding processing conditions that satisfy both the fabrication process and the final required scaffold properties is crucial. This work stresses the importance of studying the outcome of the plasticizing effect of PEG on PLA-based blends used for the fabrication of 3D-direct-printed scaffolds for tissue engineering applications. For this, PLA/PEG blends with 5, 10 and 20% (w/w) of PEG and PLA/PEG/bioactive CaP glass composites were processed in the form of 3D rapid prototyping scaffolds. Surface analysis and differential scanning calorimetry revealed a rearrangement of polymer chains and a topography, wettability and elastic modulus increase of the studied surfaces as PEG was incorporated. Moreover, addition of 10 and 20% PEG led to non-uniform 3D structures with lower mechanical properties. In vitro degradation studies showed that the inclusion of PEG significantly accelerated the degradation rate of the material. Results indicated that the presence of PEG not only improves PLA processing but also leads to relevant surface, geometrical and structural changes including modulation of the degradation rate of PLA-based 3D printed scaffolds. PMID:24656352

Serra, Tiziano; Ortiz-Hernandez, Monica; Engel, Elisabeth; Planell, Josep A; Navarro, Melba

2014-05-01

383

Effect of platelet-rich plasma and bioactive glass powder for the improvement of rotator cuff tendon-to-bone healing in a rabbit model.  

PubMed

To test the hypothesis that a platelet-rich plasma (PRP) plus bioactive glass (BG) mixture could shorten the tendon-bone healing process in rotator cuff tendon repair, thirty mature male New Zealand white rabbits were randomly divided into three groups, Control, PRP, and PRP + BG. All groups underwent a surgical procedure to establish a rotator cuff tendon healing model. Mechanical examinations and histological assays were taken to verify the adhesion of the tendon-bone. Real-time PCR was adopted to analyze Bone Morphogenetic Protein-2 (BMP-2). The maximum load-to-failure value in mechanical examinations was significantly higher in the PRP + BG group than that in the control group after six weeks (Control 38.73 ± 8.58, PRP 54.49 ± 8.72, PRP + BG 79.15 ± 7.62, p < 0.001), but it was not significantly different at 12 weeks (PRP 74.27 ± 7.74, PRP + BG 82.57 ± 6.63, p = 0.145). In histological assays, H&E (hematoxylin-eosin) staining showed that the interface between the tendon-bone integration was much sturdier in the PRP + BG group compared to the other two groups at each time point, and more ordered arranged tendon fibers can be seen at 12 weeks. At six weeks, the mRNA expression levels of BMP-2 in the PRP + BG group were higher than those in the other groups (PRP + BG 0.65 ± 0.11, PRP 2.284 ± 0.07, Control 0.12 ± 0.05, p < 0.05). However, there was no significant difference in the mRNA expression levels of BMP-2 among the three groups at 12 weeks (p = 0.922, 0.067, 0.056). BMP-2 levels in PRP and PRP+BG groups were significantly lower at 12 weeks compared to six weeks (p = 0.006, <0.001).We found that the PRP + BG mixture could enhance tendon-bone healing in rotator cuff tendon repair. PMID:25464384

Wu, Yang; Dong, Yu; Chen, Shiyi; Li, Yunxia

2014-01-01

384

Effect of Platelet-Rich Plasma and Bioactive Glass Powder for the Improvement of Rotator Cuff Tendon-to-Bone Healing in a Rabbit Model  

PubMed Central

To test the hypothesis that a platelet-rich plasma (PRP) plus bioactive glass (BG) mixture could shorten the tendon-bone healing process in rotator cuff tendon repair, thirty mature male New Zealand white rabbits were randomly divided into three groups, Control, PRP, and PRP + BG. All groups underwent a surgical procedure to establish a rotator cuff tendon healing model. Mechanical examinations and histological assays were taken to verify the adhesion of the tendon-bone. Real-time PCR was adopted to analyze Bone Morphogenetic Protein-2 (BMP-2). The maximum load-to-failure value in mechanical examinations was significantly higher in the PRP + BG group than that in the control group after six weeks (Control 38.73 ± 8.58, PRP 54.49 ± 8.72, PRP + BG 79.15 ± 7.62, p < 0.001), but it was not significantly different at 12 weeks (PRP 74.27 ± 7.74, PRP + BG 82.57 ± 6.63, p = 0.145). In histological assays, H&E (hematoxylin-eosin) staining showed that the interface between the tendon-bone integration was much sturdier in the PRP + BG group compared to the other two groups at each time point, and more ordered arranged tendon fibers can be seen at 12 weeks. At six weeks, the mRNA expression levels of BMP-2 in the PRP + BG group were higher than those in the other groups (PRP + BG 0.65 ± 0.11, PRP 2.284 ± 0.07, Control 0.12 ± 0.05, p < 0.05). However, there was no significant difference in the mRNA expression levels of BMP-2 among the three groups at 12 weeks (p = 0.922, 0.067, 0.056). BMP-2 levels in PRP and PRP+BG groups were significantly lower at 12 weeks compared to six weeks (p = 0.006, <0.001).We found that the PRP + BG mixture could enhance tendon-bone healing in rotator cuff tendon repair. PMID:25464384

Wu, Yang; Dong, Yu; Chen, Shiyi; Li, Yunxia

2014-01-01

385

Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO 2–CaO–P 2O 5–MgO–K 2O–Na 2O system) ions  

Microsoft Academic Search

This study tested the hypothesis that bioactive coating glass (SiO2–CaO–P2O5–MgO–K2O–Na2O system), used for implant coatings, enhanced the induction of collagen type 1 synthesis and in turn enhanced the expression of downstream markers alkaline phosphatase, Runx2 and osteocalcin during osteoblast differentiation. The ions from experimental bioactive glass (6P53-b) and commercial BioglassTM (45S5) were added to osteoblast-like MC3T3-E1 subclone 4 cultures as

V. G. Varanasi; E. Saiz; P. M. Loomer; B. Ancheta; N. Uritani; S. P. Ho; A. P. Tomsia; S. J. Marshall; G. W. Marshall

2009-01-01

386

Multifunctional nanofibrous scaffold for tissue engineering  

Microsoft Academic Search

In tissue engineering, scaffolds with multiscale functionality, especially with the ability to release locally multiple or specific bioactive molecules to targeted cell types, are highly desired in regulating appropriate cell phenotypes. In this study, poly (epsilon-caprolactone) (PCL) solutions (8% w\\/v) containing different amounts of bovine ser