Note: This page contains sample records for the topic bioactive glass scaffolds from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Nano/macro porous bioactive glass scaffold  

NASA Astrophysics Data System (ADS)

Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent exchange process. Although both techniques lower the surface area of BG scaffolds, the temperature-dependent sintering process closes nanopores through densification, while the concentration-dependent solvent exchange process enlarges nanopores through Ostwald-ripening type coarsening. Therefore, nanopore size and surface area of BG scaffold are independently controlled using these methods. In vitro cell and in vivo animal tissue responses have been investigated to evaluate the performance of the nano-macro porous BG scaffold. The cells are found to migrate and penetrate deep into the 3D nano-macro porous structure, while exhibiting excellent adhesion to the bioscaffold surface. Importantly, the new tissue with both blood vessels and collagen fibers is formed deep inside the implanted scaffolds without obvious inflammatory reaction. Furthermore, our observations show biological benefits of the nanopores in the BG scaffold. In comparison to BG scaffold without nanopores, cells migrate and penetrate into nano-macro dual-porous BG scaffold faster and deeper mainly because of the increase of surface area. To study the effect of nanopore topography, we fabricated BG scaffolds with the same surface area but different nanopore sizes. It is found that the initial cell attachment is significantly enhanced on the BG scaffold with the same surface area but smaller nanopores size, indicating that the nanopore topography strongly influences the performance of BG scaffold. In conclusion, the present results demonstrate most clearly the usefulness of our nano-macro dual-porous BG as a novel and superior 3D bioscaffold for regenerative medicine and hard tissue engineering.

Wang, Shaojie

2

Bioactive glass-based scaffolds for bone tissue engineering.  

PubMed

Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate glasses. A brief historical review and the fundamental requirements in the field of bone tissue engineering scaffolds will be presented, followed by a detailed overview of recent developments in bioactive glass-based scaffolds. In addition, the effects of ionic dissolution products of bioactive glasses on osteogenesis and angiogenic properties of scaffolds are briefly addressed. Finally, promising areas of future research and requirements for the advancement of the field are highlighted and discussed. PMID:22085919

Will, Julia; Gerhardt, Lutz-Christian; Boccaccini, Aldo R

2012-01-01

3

A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior.  

PubMed

Composite scaffolds of mesoporous bioactive glass (MBG)/polycaprolactone (PCL) and conventional bioactive glass (BG)/PCL were fabricated by a solvent casting-particulate leaching method, and the structure and properties of the composite scaffolds were characterized. The measurements of the water contact angles suggest that the incorporation of either MBG or BG into PCL can improve the hydrophilicity of the composites, and the former is more effective than the later. The bioactivity of the composite scaffold is evaluated by soaking the scaffolds in a simulated body fluid (SBF) and the results show that the MBG/PCL composite scaffolds can induce a dense and continuous layer of apatite after soaking in SBF for 3 weeks, as compared with the scattered and discrete apatite particles on the BG/PCL composite scaffolds. Such improvements (improvements of the hydrophilicity and apatite forming ability) should be helpful for the extensive applications of PCL scaffold in tissue engineering. PMID:17600329

Li, Xia; Shi, Jianlin; Dong, Xiaoping; Zhang, Lingxia; Zeng, Hongyu

2008-01-01

4

Bioactive glass/polymer composite scaffolds mimicking bone tissue.  

PubMed

The aim of this work was the preparation and characterization of scaffolds with mechanical and functional properties able to regenerate bone. Porous scaffolds made of chitosan/gelatin (POL) blends containing different amounts of a bioactive glass (CEL2), as inorganic material stimulating biomineralization, were fabricated by freeze-drying. Foams with different compositions (CEL2/POL 0/100; 40/60; 70/30 wt %/wt) were prepared. Samples were crosslinked using genipin (GP) to improve mechanical strength and thermal stability. The scaffolds were characterized in terms of their stability in water, chemical structure, morphology, bioactivity, and mechanical behavior. Moreover, MG63 osteoblast-like cells and periosteal-derived stem cells were used to assess their biocompatibility. CEL2/POL samples showed interconnected pores having an average diameter ranging from 179 ± 5 ?m for CEL2/POL 0/100 to 136 ± 5 ?m for CEL2/POL 70/30. GP-crosslinking and the increase of CEL2 amount stabilized the composites to water solution (shown by swelling tests). In addition, the SBF soaking experiment showed a good bioactivity of the scaffold with 30 and 70 wt % CEL2. The compressive modulus increased by increasing CEL2 amount up to 2.1 ± 0.1 MPa for CEL2/POL 70/30. Dynamical mechanical analysis has evidenced that composite scaffolds at low frequencies showed an increase of storage and loss modulus with increasing frequency; furthermore, a drop of E' and E? at 1 Hz was observed, and for higher frequencies both moduli increased again. Cells displayed a good ability to interact with the different tested scaffolds which did not modify cell metabolic activity at the analyzed points. MTT test proved only a slight difference between the two cytotypes analyzed. PMID:22615261

Gentile, Piergiorgio; Mattioli-Belmonte, Monica; Chiono, Valeria; Ferretti, Concetta; Baino, Francesco; Tonda-Turo, Chiara; Vitale-Brovarone, Chiara; Pashkuleva, Iva; Reis, Rui L; Ciardelli, Gianluca

2012-10-01

5

Biomimetic formation of apatite on the surface of porous gelatin\\/bioactive glass nanocomposite scaffolds  

Microsoft Academic Search

There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO2–CaO–P2O5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating

Masoud Mozafari; Mohammad Rabiee; Mahmoud Azami; Saied Maleknia

2010-01-01

6

Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold  

Microsoft Academic Search

Chitosan (CS) was used to modify the surface of apatite-wollastonite bioactive glass ceramic (AW GC) scaffold to prepare AW\\/CS composite scaffold. The in vitro bioactivity of the AW\\/CS composite scaffold was investigated by simulated body fluid (SBF) soaking experiment. Cell growth on the surface of the material was evaluated by co-culturing osteogenic marrow stromal cells (MSCs) of rabbits with the

Bin Cao; Dali Zhou; Ming Xue; Guangda Li; Weizhong Yang; Qin Long; Li Ji

2008-01-01

7

Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives  

PubMed Central

The repair and regeneration of large bone defects resulting from disease or trauma remains a significant clinical challenge. Bioactive glass has appealing characteristics as a scaffold material for bone tissue engineering, but the application of glass scaffolds for the repair of load-bearing bone defects is often limited by their low mechanical strength and fracture toughness. This paper provides an overview of recent developments in the fabrication and mechanical properties of bioactive glass scaffolds. The review reveals the fact that mechanical strength is not a real limiting factor in the use of bioactive glass scaffolds for bone repair, an observation not often recognized by most researchers and clinicians. Scaffolds with compressive strengths comparable to those of trabecular and cortical bones have been produced by a variety of methods. The current limitations of bioactive glass scaffolds include their low fracture toughness (low resistance to fracture) and limited mechanical reliability, which have so far received little attention. Future research directions should include the development of strong and tough bioactive glass scaffolds, and their evaluation in unloaded and load-bearing bone defects in animal models.

Fu, Qiang; Saiz, Eduardo; Rahaman, Mohamed N.; Tomsia, Antoni P.

2011-01-01

8

Freeze casting of bioactive glass and ceramic scaffolds for bone tissue engineering  

NASA Astrophysics Data System (ADS)

The main objectives of this dissertation were to explore the production of bioactive ceramic and glass scaffolds with oriented pore architectures by unidirectional freezing of suspensions, and to characterize the mechanical and biological performance of the scaffolds. Freezing of aqueous suspensions of hydroxyapatite (HA) or bioactive 13-93 glass particles resulted in the formation of scaffolds with a lamellar-type microstructure (pore width = 5--30 microm). The addition of polar organic solvents (such as 60 wt% dioxane) to the aqueous suspensions markedly changed the morphology and size of the oriented pores, giving scaffolds with a columnar-type microstructure and larger pore width (90--110 microm). The scaffolds showed a unique 'elastic--plastic' mechanical response in compression along the orientation direction, with large strain for failure (>20%) and strain rate sensitivity. For a similar porosity, the bioactive glass scaffolds had a higher strength than the HA scaffolds, presumably because of better sintering characteristics. Columnar bioactive glass scaffolds (porosity = 55--60%) had a compressive strength of 25 +/- 3 MPa. The columnar scaffolds with the larger pore width showed better ability than the lamellar scaffolds to support the proliferation and function of murine osteoblastic cells (MLO-A5 or MC3T3-E1). Subcutaneous implantation in the dorsum of rats showed abundant tissue ingrowth into the pores of the columnar scaffolds and integration of the scaffolds with surrounding tissue. The results indicate that bioactive 13-93 glass scaffolds with the columnar microstructure could be used for the repair of segmental defects in load-bearing bones.

Fu, Qiang

9

Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds  

NASA Astrophysics Data System (ADS)

There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO 2-CaO-P 2O 5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 ?m and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

Mozafari, Masoud; Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied

2010-12-01

10

Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.  

PubMed

Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900?µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation. PMID:23241965

Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

2014-01-01

11

Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration.  

PubMed

Here we fabricate and characterize bioactive composite scaffolds for bone tissue engineering applications. 45S5 Bioglass® (45S5) or strontium-substituted bioactive glass (SrBG) were incorporated into polycaprolactone (PCL) and fabricated into 3D bioactive composite scaffolds utilizing additive manufacturing technology. We show that composite scaffolds (PCL/45S5 and PCL/SrBG) can be reproducibly manufactured with a scaffold morphology highly resembling that of PCL scaffolds. Additionally, micro-CT analysis reveals BG particles were homogeneously distributed throughout the scaffolds. Mechanical data suggested that PCL/45S5 and PCL/SrBG composite scaffolds have higher compressive Young's modulus compared to PCL scaffolds at similar porosity (?75%). After 1 day in accelerated degradation conditions using 5M NaOH, PCL/SrBG, PCL/45S5 and PCL lost 48.6 ± 3.8%, 12.1 ± 1% and 1.6 ± 1% of the original mass, respectively. In vitro studies were conducted using MC3T3 cells under normal and osteogenic conditions. All scaffolds were shown to be non-cytotoxic, and supported cell attachment and proliferation. Our results also indicate that the inclusion of bioactive glass (BG) promotes precipitation of calcium phosphate on the scaffold surfaces which leads to earlier cell differentiation and matrix mineralization when compared to PCL scaffolds. However, as indicated by alkaline phosphatase activity, no significant difference in osteoblast differentiation was found between PCL/45S5 and PCL/SrBG scaffolds. These results suggest that PCL/45S5 and PCL/SrBG composite scaffolds show potential as next generation bone scaffolds. PMID:24192136

Poh, Patrina S P; Hutmacher, Dietmar W; Stevens, Molly M; Woodruff, Maria A

2013-12-01

12

SBA15 ordered mesoporous silica inside a bioactive glass–ceramic scaffold for local drug delivery  

Microsoft Academic Search

The paper reports the synthesis of an ordered silica mesostructure of the SBA-15 type inside a macroporous bioactive glass–ceramic\\u000a scaffold of the type SiO2–CaO–K2O, to combine the bioactivity of the latter with the release properties of the former, in view of local drug delivery from\\u000a implants designed for tissue engineering. The standard procedure for SBA-15 synthesis has been modified to

V. Cauda; S. Fiorilli; B. Onida; E. Vernè; C. Vitale Brovarone; D. Viterbo; G. Croce; M. Milanesio; E. Garrone

2008-01-01

13

Development of biodegradable polyurethane and bioactive glass nanoparticles scaffolds for bone tissue engineering applications.  

PubMed

The development of polymer/bioactive glass has been recognized as a strategy to improve the mechanical behavior of bioactive glass-based materials. Several studies have reported systems based on bioactive glass/biopolymer composites. In this study, we developed a composite system based on bioactive glass nanoparticles (BGNP), obtained by a modified Stöber method. We also developed a new chemical route to obtain aqueous dispersive biodegradable polyurethane. The production of polyurethane/BGNP scaffolds intending to combine biocompatibility, mechanical, and physical properties in a material designed for tissue engineering applications. The composites obtained were characterized by structural, biological, and mechanical tests. The films presented 350% of deformation and the foams presented pore structure and mechanical properties adequate to support cell growth and proliferation. The materials presented good cell viability and hydroxyapatite layer formation upon immersion in simulated body fluid. PMID:22566477

de Oliveira, Agda Aline Rocha; de Carvalho, Sandhra Maria; Leite, Maria de Fátima; Oréfice, Rodrigo Lambert; Pereira, Marivalda de Magalhães

2012-07-01

14

Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds.  

PubMed

Bioactive glass composed of Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2 is used in this study to manufacture three-dimensional glass fibre scaffolds for a synthetic bone filler material for the treatment of bone defects. The glass is characterized by a large working range, which is the temperature interval at which forming of glass can take place. A preliminary in vivo study on New Zealand skeletally mature rabbit's tibia is reported here. Bone defects were prepared in the medial surfaces of the diaphyses of the tibia. For the first time melt derived three-dimensional bioactive glass fibre constructs were used to fill the cavities. The different implants investigated here were a scaffold with a porosity of 45-50%, scaffold with a porosity of 55-60% and morsels with a porosity of 55-60%. The implanted bone substitutes were dissected after 6 months and evaluated by histological and synchrotron radiation micro tomography analysis. PerioGlas and empty defects were used as positive and negative controls, respectively. The result was that the surgically created tibial defects were healed and new bone formation was found in the medullary cavities. Despite the intrinsic limitations of a pilot study, the preliminary results indicate that in 6 months the glass fibre scaffolds are completely resorbed and that the osteoconductive properties of the filling material are strictly correlated with the structural and morphological characteristics of the bone substitute. PMID:16701877

Moimas, Loredana; Biasotto, Matteo; Di Lenarda, Roberto; Olivo, Alessandro; Schmid, Chiara

2006-03-01

15

Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds.  

PubMed

The repair of structural bone defects such as segmental defects in the long bones of the limbs is a challenging clinical problem. In this study, the capacity of silicate (13-93) and borate (13-93B3) bioactive glass scaffolds (porosity=47-50%) to heal critical-size segmental defects in rat femurs was evaluated and compared with autografts. Defects were implanted with 13-93 and 13-93B3 scaffolds with a grid-like microstructure (compressive strength=86MPa and 40MPa, respectively), 13-93B3 scaffolds with an oriented microstructure (compressive strength=32MPa) and autografts using intramedullary fixation. Twelve weeks post-implantation, the defects were harvested and evaluated using histomorphometric analysis. The percentage of new bone in the defects implanted with the three groups of glass scaffolds (25-28%) and the total von Kossa-positive area (32-38%) were not significantly different from the autografts (new bone=38%; von Kossa-positive area=40%) (p>0.05). New blood vessel area in the defects implanted with the glass scaffolds (4-8%) and the autografts (5%) showed no significant difference among the four groups. New cartilage formed in the 13-93 grid-like scaffolds (18%) was significantly higher than in 13-93B3 grid-like scaffolds (8%) and in the autografts (8%) (p=0.02). The results indicate that these strong porous bioactive glass scaffolds are promising synthetic implants for structural bone repair. PMID:25063184

Bi, Lianxiang; Zobell, Brett; Liu, Xin; Rahaman, Mohamed N; Bonewald, Lynda F

2014-09-01

16

Bioactive glass in tissue engineering  

Microsoft Academic Search

This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass.

Mohamed N. Rahaman; Delbert E. Day; B. Sonny Bal; Qiang Fu; Steven B. Jung; Lynda F. Bonewald; Antoni P. Tomsia

2011-01-01

17

Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration.  

PubMed

Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium-substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here, we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be noncytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3140-3153, 2014. PMID:24133006

Ren, Jiongyu; Blackwood, Keith A; Doustgani, Amir; Poh, Patrina P; Steck, Roland; Stevens, Molly M; Woodruff, Maria A

2014-09-01

18

Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds.  

PubMed

In this study, the in vivo recellularization and neovascularization of nanosized bioactive glass (n-BG)-coated decellularized trabecular bone scaffolds were studied in a rat model and quantified using stereological analyses. Based on the highest amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm(2)), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating density of 0.263 mg/cm(2), human fibroblasts produced 4.3 times more VEGF than on uncoated controls. After 8 weeks of implantation in Sprague-Dawley rats, both uncoated and n-BG-coated samples were well infiltrated with newly formed tissue (47-48%) and blood vessels (3-4%). No significant differences were found in cellularization and vascularization between uncoated bone scaffolds and n-BG-coated scaffolds. This finding indicates that the decellularized bone itself may exhibit growth-promoting properties induced by the highly interconnected pore microarchitecture and/or proteins left behind on decellularized scaffolds. Even if we did not find proangiogenic effects in n-BG-coated bone scaffolds, a bioactive coating is considered to be beneficial to impart osteoinductive and osteoconductive properties to decellularized bone. n-BG-coated bone grafts have thus high clinical potential for the regeneration of complex tissue defects given their ability for recellularization and neovascularization. PMID:22968899

Gerhardt, L-C; Widdows, K L; Erol, M M; Nandakumar, A; Roqan, I S; Ansari, T; Boccaccini, A R

2013-03-01

19

Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering  

Microsoft Academic Search

The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them

M. M. Erol; V. Mouri?o; P. Newby; X. Chatzistavrou; J. A. Roether; L. Hupa; Aldo R. Boccaccini

20

Bioactive borate glass scaffold for bone tissue engineering  

Microsoft Academic Search

Borate glass particles and microspheres with size distributions in the range of approximately 100–400?m, were loosely compacted and sintered for 10min at 600°C to form a porous, three-dimensional construct (porosity 25–40%). Conversion of the borate glass to hydroxyapatite was investigated by soaking the constructs in a solution of K2HPO4 (0.25M) at 37°C and with a pH value of 9.0, and

Wen Liang; Mohamed N. Rahaman; Delbert E. Day; Nicholas W. Marion; Gwendolen C. Riley; Jeremy J. Mao

2008-01-01

21

Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration.  

PubMed

The aim of this study was the preparation and characterization of bioactive glass-ceramic scaffolds for bone tissue engineering. For this purpose, a glass belonging to the system SiO2-P2O5-CaO-MgO-Na2O-K2O (CEL2) was used. The sponge-replication method was adopted to prepare the scaffolds; specifically, a polymeric skeleton was impregnated with a slurry containing CEL2 powder, polyvinyl alcohol (PVA) as a binding agent and distilled water. The impregnated sponge was then thermally treated to remove the polymeric phase and to sinter the inorganic one. The obtained scaffolds possessed an open and interconnected porosity, analogous to cancellous bone texture, and with a mechanical strength above 2 MPa. Moreover, the scaffolds underwent partial bioresorption due to ion-leaching phenomena. This feature was investigated by X-ray computed microcomputed tomography (micro-CT). Micro-CT is a three-dimensional (3-D) radiographic imaging technique, able to achieve a spatial resolution close to 1 microm(3). The use of synchrotron radiation allows the selected photon energy to be tuned to optimize the contrast among the different phases in the investigated samples. The 3-D scaffolds were soaked in a simulated body fluid (SBF) to study the formation of hydroxyapatite microcrystals on the scaffold struts and on the internal pore walls. The 3-D scaffolds were also soaked in a buffer solution (Tris-HCl) for different times to assess the scaffold bioresorption according to the ISO standard. A gradual resorption of the pores walls was observed during the soakings both in SBF and in Tris-HCl. PMID:19038589

Renghini, Chiara; Komlev, Vladimir; Fiori, Fabrizio; Verné, Enrica; Baino, Francesco; Vitale-Brovarone, Chiara

2009-05-01

22

Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique.  

PubMed

Porous melt-derived bioactive glass scaffolds with interconnected pore networks suitable for bone regeneration were produced without the glass crystallizing. ICIE 16 (49.46% SiO(2), 36.27% CaO, 6.6% Na(2)O, 1.07% P(2)O(5) and 6.6% K(2)O, in mol.%) was used as it is a composition designed not to crystallize during sintering. Glass powder was made into porous scaffolds by using the gel-cast foaming technique. All variables in the process were investigated systematically to devise an optimal process. Interconnect size was quantified using mercury porosimetry and X-ray microtomography (?CT). The reagents, their relative quantities and thermal processing protocols were all critical to obtain a successful scaffold. Particularly important were particle size (a modal size of 8 ?m was optimal); water and catalyst content; initiator vitality and content; as well as the thermal processing protocol. Once an optimal process was chosen, the scaffolds were tested in simulated body fluid (SBF) solution. Amorphous calcium phosphate formed in 8h and crystallized hydroxycarbonate apatite (HCA) formed in 3 days. The compressive strength was approximately 2 MPa for a mean interconnect size of 140 ?m between the pores with a mean diameter of 379 ?m, which is thought to be a suitable porous network for vascularized bone regeneration. This material has the potential to bond to bone more rapidly and stimulate more bone growth than current porous artificial bone grafts. PMID:21130188

Wu, Zoe Y; Hill, Robert G; Yue, Sheng; Nightingale, Donovan; Lee, Peter D; Jones, Julian R

2011-04-01

23

Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance.  

PubMed

Graphene is a novel material and currently popular as an enabler for the next-generation nanocomposites. Here, we report the use of graphene to improve the mechanical properties of nano-58S bioactive glass for bone repair and regeneration. And the composite scaffolds were fabricated by a homemade selective laser sintering system. Qualitative and quantitative analysis demonstrated the successful incorporation of graphene into the scaffold without obvious structural damage and weight loss. The optimum compressive strength and fracture toughness reached 48.65 ± 3.19 MPa and 1.94 ± 0.10 MPa · m(1/2) with graphene content of 0.5 wt%, indicating significant improvements by 105% and 38% respectively. The mechanisms of pull-out, crack bridging, crack deflection and crack tip shielding were found to be responsible for the mechanical enhancement. Simulated body fluid and cell culture tests indicated favorable bioactivity and biocompatibility of the composite scaffold. The results suggest a great potential of graphene/nano-58S composite scaffold for bone tissue engineering applications. PMID:24736662

Gao, Chengde; Liu, Tingting; Shuai, Cijun; Peng, Shuping

2014-01-01

24

Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance  

PubMed Central

Graphene is a novel material and currently popular as an enabler for the next-generation nanocomposites. Here, we report the use of graphene to improve the mechanical properties of nano-58S bioactive glass for bone repair and regeneration. And the composite scaffolds were fabricated by a homemade selective laser sintering system. Qualitative and quantitative analysis demonstrated the successful incorporation of graphene into the scaffold without obvious structural damage and weight loss. The optimum compressive strength and fracture toughness reached 48.65 ± 3.19?MPa and 1.94 ± 0.10?MPa·m1/2 with graphene content of 0.5?wt%, indicating significant improvements by 105% and 38% respectively. The mechanisms of pull-out, crack bridging, crack deflection and crack tip shielding were found to be responsible for the mechanical enhancement. Simulated body fluid and cell culture tests indicated favorable bioactivity and biocompatibility of the composite scaffold. The results suggest a great potential of graphene/nano-58S composite scaffold for bone tissue engineering applications.

Gao, Chengde; Liu, Tingting; Shuai, Cijun; Peng, Shuping

2014-01-01

25

Bone regeneration in strong porous bioactive glass (13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects  

PubMed Central

There is a need for synthetic bone graft substitutes to repair large bone defects resulting from trauma, malignancy, and congenital diseases. Bioactive glass has attractive properties as a scaffold material but factors that influence its ability to regenerate bone in vivo are not well understood. In the present work, the ability of strong porous scaffolds of 13–93 bioactive glass with an oriented microstructure to regenerate bone was evaluated in vivo using a rat calvarial defect model. Scaffolds with an oriented microstructure of columnar pores (porosity = 50%; pore diameter = 50–150 µm) showed mostly osteoconductive bone regeneration, and new bone formation, normalized to the available pore area (volume) of the scaffolds, increased from 37% at 12 weeks to 55% at 24 weeks. Scaffolds of the same glass with a trabecular microstructure (porosity = 80%; pore width = 100–500 µm), used as the positive control, showed bone regeneration in the pores of 25% and 46% at 12 and 24 weeks, respectively. The brittle mechanical response of the as-fabricated scaffolds changed markedly to an elasto-plastic response in vivo at both implantation times. These results indicate that both groups of 13–93 bioactive glass scaffolds could potentially be used to repair large bone defects, but scaffolds with the oriented microstructure could also be considered for the repair of loaded bone.

Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang

2012-01-01

26

Bioactive glass–poly (?-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks  

Microsoft Academic Search

Hierarchically mesoporous–macroporous–giant-porous bioactive glass\\/poly ?-caprolactone (PCL) composite scaffolds were prepared using a combination of the sol–gel method, evaporation-induced self-assembly process in the presence of nonionic triblock copolymer, EO100PO65EO100 (F127), as template, salt leaching method, and rapid prototyping techniques. F127 acts as a template, inducing the formation of mesopores, NaCl with sizes between 25 and 33?m provides macro-pores after leaching, and

Hui-suk Yun; Seung-eon Kim; Eui Kyun Park

2011-01-01

27

Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses.  

PubMed

Previous studies have evaluated the capacity of porous scaffolds composed of a single bioactive glass to regenerate bone. In the present study, scaffolds composed of a mixture of two different bioactive glasses (silicate 13-93 and borate 13-93B3) were created and evaluated for their response to osteogenic MLO-A5 cells in vitro and their capacity to regenerate bone in rat calvarial defects in vivo. The scaffolds, which have similar microstructures (porosity=58-67%) and contain 0, 25, 50 and 100 wt.% 13-93B3 glass, were fabricated by thermally bonding randomly oriented short fibers. The silicate 13-93 scaffolds showed a better capacity to support cell proliferation and alkaline phosphatase activity than the scaffolds containing borate 13-93B3 fibers. The amount of new bone formed in the defects implanted with the 13-93 scaffolds at 12 weeks was 31%, compared to values of 25, 17 and 20%, respectively, for the scaffolds containing 25, 50 and 100% 13-93B3 glass. The amount of new bone formed in the 13-93 scaffolds was significantly higher than in the scaffolds containing 50 and 100% 13-93B3 glass. While the 13-93 fibers were only partially converted to hydroxyapatite at 12 weeks, the 13-93B3 fibers were fully converted and formed a tubular morphology. Scaffolds composed of an optimized mixture of silicate and borate bioactive glasses could provide the requisite architecture to guide bone regeneration combined with a controllable degradation rate that could be beneficial for bone and tissue healing. PMID:23827095

Gu, Yifei; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E

2013-11-01

28

Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering.  

PubMed

In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol-gel derived bioactive-glass (70S30C; 70% SiO2, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 ?m) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. PMID:23623083

Nadeem, Danish; Kiamehr, Mostafa; Yang, Xuebin; Su, Bo

2013-07-01

29

Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function.  

PubMed

PHBV microsphere/45S5 bioactive glass (BG) composite scaffolds with drug release function were developed for bone tissue engineering. BG-based glass-ceramic scaffolds with high porosity (94%) and interconnected pore structure prepared by foam replication method were coated with PHBV microspheres (nominal diameter=3.5?m) produced by water-in-oil-in-water double emulsion solvent evaporation method. A homogeneous microsphere coating throughout the porous structure of scaffolds was obtained by a simple dip coating method, using the slurry of PHBV microspheres in hexane. Compressive strength tests showed that the microsphere coating slightly improved the mechanical properties of the scaffolds. It was confirmed that the microsphere coating did not inhibit the bioactivity of the scaffolds in SBF. Hydroxyapatite crystals homogeneously grew not only on the struts of the scaffolds but also on the surface of microspheres within 7days of immersion in SBF. Vancomycin was successfully encapsulated into the PHBV microspheres. The encapsulated vancomycin was released with a dual release profile involving a relatively low initial burst release (21%) and a sustained release (1month), which is favorable compared to the high initial burst release (77%) and short release period (4days) measured on uncoated scaffolds. The developed bioactive composite scaffold with drug delivery function has thus the potential to be used advantageously in bone tissue engineering. PMID:24907766

Li, Wei; Ding, Yaping; Rai, Ranjana; Roether, Judith A; Schubert, Dirk W; Boccaccini, Aldo R

2014-08-01

30

Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.  

PubMed

The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them in alginate solution. Scanning electron microscopy investigations indicated that the alginate effectively attached on the surface of the three-dimensional scaffolds leading to a homogeneous coating. It was confirmed that the scaffold structure remained amorphous after the sintering process and that the alginate coating improved the scaffold bioactivity and mechanical properties. Copper release studies showed that the alginate-coated scaffolds allowed controlled release of copper ions. The novel copper-releasing composite scaffolds represent promising candidates for bone regeneration. PMID:22040685

Erol, M M; Mouri?o, V; Newby, P; Chatzistavrou, X; Roether, J A; Hupa, L; Boccaccini, Aldo R

2012-02-01

31

Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair  

PubMed Central

There is a need to develop synthetic scaffolds for repairing large defects in load-bearing bones. Bioactive glasses have attractive properties as a scaffold material for bone repair, but data on their mechanical properties are limited. The objective of the present study was to comprehensively evaluate the mechanical properties of strong porous scaffolds of silicate 13-93 bioactive glass fabricated by robocasting. As-fabricated scaffolds with a grid-like microstructure (porosity = 47%; filament diameter = 330 ?m; pore width = 300) were tested in compressive and flexural loading to determine their strength, elastic modulus, Weibull modulus, fatigue resistance, and fracture toughness. Scaffolds were also tested in compression after they were immersed in simulated body fluid (SBF) in vitro or implanted in a rat subcutaneous model in vivo. As fabricated, the scaffolds had a strength = 86 ± 9 MPa, elastic modulus = 13 ± 2 GPa, and a Weibull modulus = 12 when tested in compression. In flexural loading, the strength, elastic modulus, and Weibull modulus were 11 ± 3 MPa, 13 ± 2 GPa, and 6, respectively. In compression, the as-fabricated scaffolds had a mean fatigue life of ~106 cycles when tested in air at room temperature or in phosphate-buffered saline at 37 °C under cyclic stresses of 1–10 MPa or 2–20 MPa. The compressive strength of the scaffolds decreased markedly during the first 2 weeks of immersion in SBF or implantation in vivo, but more slowly thereafter. The brittle mechanical response of the scaffolds in vitro changed to an elasto-plastic response after implantation for longer than 2–4 weeks in vivo. In addition to providing critically needed data for designing bioactive glass scaffolds, the results are promising for the application of these strong porous scaffolds in loaded bone repair.

Liu, Xin; Rahaman, Mohamed N.; Hilmas, Gregory E.; Bal, B. Sonny

2013-01-01

32

Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications.  

PubMed

The development of inorganic-organic hybrid scaffolds with controllable degradation and bioactive properties is receiving considerable interest for bone and tissue regeneration. The objective of this study was to create hybrid scaffolds of gelatin and bioactive glass (BG) with a controlled, three-dimensional (3D) architecture by a combined sol-gel and robotic deposition (robocasting) method and evaluate their mechanical response, bioactivity, and response to cells in vitro. Inks for robotic deposition of the scaffolds were prepared by dissolving gelatin in a sol-gel precursor solution of the bioactive glass (70SiO2 -25CaO-5P2 O5 ; mol%) and aging the solution to form a gel with the requisite viscosity. After drying and crosslinking, the gelatin-BG scaffolds, with a grid-like architecture (filament diameter ?350 µm; pore width ?550 µm), showed an elasto-plastic response, with a compressive strength of 5.1 ± 0.6 MPa, in the range of values for human trabecular bone (2-12 MPa). When immersed in phosphate-buffered saline, the crosslinked scaffolds rapidly absorbed water (?440% of its dry weight after 2 h) and showed an elastic response at deformations up to ?60%. Immersion of the scaffolds in a simulated body fluid resulted in the formation of a hydroxyapatite-like surface layer within 5 days, indicating their bioactivity in vitro. The scaffolds supported the proliferation, alkaline phosphatase activity, and mineralization of osteogenic MC3T3-E1 cells in vitro, showing their biocompatibility. Altogether, the results indicate that these gelatin-BG hybrid scaffolds with a controlled, 3D architecture of inter-connected pores have potential for use as implants for bone regeneration. PMID:23255226

Gao, Chunxia; Rahaman, Mohamed N; Gao, Qiang; Teramoto, Akira; Abe, Koji

2013-07-01

33

Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration.  

PubMed

Scaffolds play a critical role in bone tissue engineering. Composite scaffolds made of biodegradable polymers and bioactive inorganic compounds have demonstrated superior properties in bone defect repair. In this study, highly bioactive, resorbable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)-based scaffolds were prepared using combinational 3-dimensional (3D) printing and surface-doping protocol. Structural and morphological characterization of the composite scaffolds demonstrated the homogenous surface-coating of mesoporous bioactive glass (MBG) throughout their porous framework. These hierarchical scaffolds showed bioactivity superior to that of scaffolds made of pure PHBHHx. MBG coating appeared to provide a better environment for human mesenchymal stem cells (hMSCs) attachment, activity, and osteogenic differentiation. Our study indicates that MBG-coated PHBHHx (PHBM) scaffolds may be excellent candidates for use in bone tissue engineering. PMID:24441182

Yang, Shengbing; Wang, Jing; Tang, Liangji; Ao, Haiyong; Tan, Honglue; Tang, Tingting; Liu, Changsheng

2014-04-01

34

Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds.  

PubMed

Bioactive glasses are biocompatible materials that convert to hydroxyapatite in vivo, and potentially support bone formation, but have mainly been available in particulate and not scaffold form. In this study, borosilicate and borate bioactive glass scaffolds were evaluated in critical-sized rat calvarial defects. Twelve-week-old rats were implanted with 45S5 silicate glass particles and scaffolds of 1393 silicate, 1393B1 borosilicate, and 1393B3 borate glass. After 12 weeks, the defects were harvested, stained with hematoxylin and eosin to evaluate bone regeneration, Periodic Acid Schiff to quantitate blood vessel area, and von Kossa and backscatter SEM to estimate newly mineralized bone and hydroxyapatite conversion of bioactive glasses. The amount of new bone was 12.4% for 45S5, 8.5% for 1393, 9.7% for 1393B1, and 14.9% for 1393B3 (*p = 0.04; cf. 1393 and 1393B1). Blood vessel area was significantly higher (p = 0.009) with 45S5 (3.8%), with no differences among 1393 (2.0%), 1393B1 (2.4%), or 1393B3 (2.2%). Percent von Kossa-positive area was 18.7% for 45S5, 25.4% for 1393, 29.5% for 1393B1, and 30.1% for 1393B3, significantly higher (p = 0.014) in 1393B1 and 1393B3 glasses than in 45S5. 45S5 and 1393B3 converted completely to HA in vivo. The 1393B3 glass provided greater bone formation and may be more promising for bone defect repair due to its capacity to be molded into scaffolds. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:3267-3275, 2012. PMID:22733586

Bi, Lianxiang; Jung, Steve; Day, Delbert; Neidig, Katie; Dusevich, Vladimir; Eick, David; Bonewald, Lynda

2012-12-01

35

Bioactive glass in tissue engineering.  

PubMed

This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

Rahaman, Mohamed N; Day, Delbert E; Bal, B Sonny; Fu, Qiang; Jung, Steven B; Bonewald, Lynda F; Tomsia, Antoni P

2011-06-01

36

Bioactive glass in tissue engineering  

PubMed Central

This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed.

Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

2011-01-01

37

Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function.  

PubMed

Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy. PMID:21889796

Marelli, Benedetto; Ghezzi, Chiara E; Mohn, Dirk; Stark, Wendelin J; Barralet, Jake E; Boccaccini, Aldo R; Nazhat, Showan N

2011-12-01

38

Synthesis and Characterization of Poly(lactic-co-glycolic) Acid Nanoparticles-Loaded Chitosan/Bioactive Glass Scaffolds as a Localized Delivery System in the Bone Defects  

PubMed Central

The functionality of tissue engineering scaffolds can be enhanced by localized delivery of appropriate biological macromolecules incorporated within biodegradable nanoparticles. In this research, chitosan/58S-bioactive glass (58S-BG) containing poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been prepared and then characterized. The effects of further addition of 58S-BG on the structure of scaffolds have been investigated to optimize the characteristics of the scaffolds for bone tissue engineering applications. The results showed that the scaffolds had high porosity with open pores. It was also shown that the porosity decreased with increasing 58S-BG content. Furthermore, the PLGA nanoparticles were homogenously distributed within the scaffolds. According to the obtained results, the nanocomposites could be considered as highly bioactive bone tissue engineering scaffolds with the potential of localized delivery of biological macromolecules.

Nazemi, K.; Moztarzadeh, F.; Jalali, N.; Asgari, S.; Mozafari, M.

2014-01-01

39

Preparation and bioactivity of sol-gel macroporous bioactive glass  

Microsoft Academic Search

Bioactive glass is well known for its ability of bone regeneration, and sol-gel bioactive glass has many advantages compared with melt-derived bioactive glass. 3-D scaffold prepared by the sol-gel method is a promising substrate material for bone tissue engineering and large-scale bone repair. Porous sol-gel glass in the CaO-SiO2-P2O5 system with macropores larger than 100 ?m was prepared by the

Zhihua Zhou; Jianming Ruan; Jianpeng Zou; Zhongcheng Zhou

2008-01-01

40

Sol-gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration.  

PubMed

Well-defined structural characteristics are some of the exigencies that have to be attended when scaffolds for bone tissue cell culture are designed. A high porosity (70-90%) and a high specific surface area and an average pore size>150 microm will contribute to allow cell migration throughout the structure, adhesion, and proliferation. At the same time, the biodegradation of the material should occur in a proper rate. One way to reach a structure with these characteristics is to produce foams during sol-gel processing of bioactive glasses (system CaO--SiO2--P2O5). The addition of a surfactant in the sol-gel solution is necessary for foam formation and to maintain its stability until complete gelation occurs. This study presents the performance evaluation of two surfactants [sodium lauryl ether sulfate (SLES) and Tergitol] to determine optimum conditions for foaming ability and stability properties. The anionic surfactant SLES showed better results in terms of foam volume and its stability. Bioactive glass foams obtained with use of this surfactant presented a higher and interconnected porosity. The porosity of the scaffolds produced was 90%, and the macropore size ranged from 100 to 500 microm. PMID:16047325

de Barros Coelho, Marlene; Magalhães Pereira, Marivalda

2005-11-01

41

Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability.  

PubMed

New generation biomaterials for bone regeneration should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), a novel bioactive material, has been used to study bone regeneration due to its excellent bioactivity, degradation and drug delivery ability, however, the construction of three-dimensional (3-D) MBG scaffolds (as for other bioactive inorganic scaffolds) for bone regeneration remains a significant challenge due to their inherent brittleness and low strength. In this brief communication we report a new facile method to prepare hierarchical and multifunctional MBG scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability for application in bone regeneration by a modified 3-D printing technique using polyvinylalcohol (PVA) as a binder. The method provides a new way to solve commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architectures, low strength, high brittleness and the requirement for a second sintering at high temperature. The 3-D printed MBG scaffolds obtained possess a high mechanical strength about 200 times that of traditional polyurethane foam templated MBG scaffolds. They have a highly controllable pore architecture, excellent apatite mineralization ability and sustained drug delivery properties. Our study indicates that 3-D printed MBG scaffolds may be an excellent candidate for bone regeneration. PMID:21402182

Wu, Chengtie; Luo, Yongxiang; Cuniberti, Gianaurelio; Xiao, Yin; Gelinsky, Michael

2011-06-01

42

Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds  

PubMed Central

The repair of large bone defects, such as segmental defects in the long bones of the limbs, is a challenging clinical problem. Our recent work has shown the ability to create porous scaffolds of silicate 13-93 bioactive glass by robocasting which have compressive strengths comparable to human cortical bone. The objective of this study was to evaluate the capacity of those strong porous scaffolds with a grid-like microstructure (porosity = 50%; filament width = 330 ?m; pore width = 300 ?m) to regenerate bone in a rat calvarial defect model. Six weeks postimplantation, the amount of new bone formed within the implants was evaluated using histomorphometric analysis. The amount of new bone formed in implants composed of the as-fabricated scaffolds was 32% of the available pore space (area). Pretreating the as-fabricated scaffolds in an aqueous phosphate solution for 1, 3, and 6 days, to convert a surface layer to hydroxyapatite prior to implantation, enhanced new bone formation to 46%, 57%, and 45%, respectively. New bone formation in scaffolds pretreated for 1, 3, and 6 days and loaded with bone morphogenetic protein-2 (BMP-2) (1 ?g/defect) was 65%, 61%, and 64%, respectively. The results show that converting a surface layer of the glass to hydroxyapatite or loading the surface-treated scaffolds with BMP-2 can significantly improve the capacity of 13-93 bioactive glass scaffolds to regenerate bone in an osseous defect. Based on their mechanical properties evaluated previously and their capacity to regenerate bone found in this study, these 13-93 bioactive glass scaffolds, pretreated or loaded with BMP-2, are promising in structural bone repair.

Liu, Xin; Rahaman, Mohamed N.; Liu, Yongxing; Bal, B. Sonny; Bonewald, Lynda F.

2013-01-01

43

Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds.  

PubMed

The repair of large bone defects, such as segmental defects in the long bones of the limbs, is a challenging clinical problem. Our recent work has shown the ability to create porous scaffolds of silicate 13-93 bioactive glass by robocasting which have compressive strengths comparable to human cortical bone. The objective of this study was to evaluate the capacity of those strong porous scaffolds with a grid-like microstructure (porosity=50%; filament width=330?m; pore width=300?m) to regenerate bone in a rat calvarial defect model. Six weeks post-implantation, the amount of new bone formed within the implants was evaluated using histomorphometric analysis. The amount of new bone formed in implants composed of the as-fabricated scaffolds was 32% of the available pore space (area). Pretreating the as-fabricated scaffolds in an aqueous phosphate solution for 1, 3 and 6days to convert a surface layer to hydroxyapatite prior to implantation enhanced new bone formation to 46%, 57% and 45%, respectively. New bone formation in scaffolds pretreated for 1, 3 and 6days and loaded with bone morphogenetic protein-2 (BMP-2) (1?g per defect) was 65%, 61% and 64%, respectively. The results show that converting a surface layer of the glass to hydroxyapatite or loading the surface-treated scaffolds with BMP-2 can significantly improve the capacity of 13-93 bioactive glass scaffolds to regenerate bone in an osseous defect. Based on their mechanical properties evaluated previously and their capacity to regenerate bone found in this study, these 13-93 bioactive glass scaffolds, pretreated or loaded with BMP-2, are promising in structural bone repair. PMID:23567939

Liu, Xin; Rahaman, Mohamed N; Liu, Yongxing; Bal, B Sonny; Bonewald, Lynda F

2013-07-01

44

Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection  

Microsoft Academic Search

The objective of this work was to evaluate borate bioactive glass scaffolds (with a composition in the system Na2O–K2O–MgO–CaO–B2O3–P2O5) as devices for the release of the drug Vancomycin in the treatment of bone infection. A solution of ammonium phosphate,\\u000a with or without dissolved Vancomycin, was used to bond borate glass particles into the shape of pellets. The in vitro degradation

Xin Liu; Zongping Xie; Changqing Zhang; Haobo Pan; Mohamed N. Rahaman; Xin Zhang; Qiang Fu; Wenhai Huang

2010-01-01

45

Composite scaffolds of mesoporous bioactive glass and polyamide for bone repair  

PubMed Central

A bone-implanted porous scaffold of mesoporous bioglass/polyamide composite (m-BPC) was fabricated, and its biological properties were investigated. The results indicate that the m-BPC scaffold contained open and interconnected macropores ranging 400–500 ?m, and exhibited a porosity of 76%. The attachment ratio of MG-63 cells on m-BPC was higher than polyamide scaffolds at 4 hours, and the cells with normal phenotype extended well when cultured with m-BPC and polyamide scaffolds. When the m-BPC scaffolds were implanted into bone defects of rabbit thighbone, histological evaluation confirmed that the m-BPC scaffolds exhibited excellent biocompatibility and osteoconductivity, and more effective osteogenesis than the polyamide scaffolds in vivo. The results indicate that the m-BPC scaffolds improved the efficiency of new bone regeneration and, thus, have clinical potential for bone repair.

Su, Jiacan; Cao, Liehu; Yu, Baoqing; Song, Shaojun; Liu, Xinwei; Wang, Zhiwei; Li, Ming

2012-01-01

46

Composite scaffolds of mesoporous bioactive glass and polyamide for bone repair.  

PubMed

A bone-implanted porous scaffold of mesoporous bioglass/polyamide composite (m-BPC) was fabricated, and its biological properties were investigated. The results indicate that the m-BPC scaffold contained open and interconnected macropores ranging 400-500 ?m, and exhibited a porosity of 76%. The attachment ratio of MG-63 cells on m-BPC was higher than polyamide scaffolds at 4 hours, and the cells with normal phenotype extended well when cultured with m-BPC and polyamide scaffolds. When the m-BPC scaffolds were implanted into bone defects of rabbit thighbone, histological evaluation confirmed that the m-BPC scaffolds exhibited excellent biocompatibility and osteoconductivity, and more effective osteogenesis than the polyamide scaffolds in vivo. The results indicate that the m-BPC scaffolds improved the efficiency of new bone regeneration and, thus, have clinical potential for bone repair. PMID:22679367

Su, Jiacan; Cao, Liehu; Yu, Baoqing; Song, Shaojun; Liu, Xinwei; Wang, Zhiwei; Li, Ming

2012-01-01

47

Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation.  

PubMed

In Part I, the in vitro degradation of bioactivAR52115e glass scaffolds with a microstructure similar to that of human trabecular bone, but with three different compositions, was investigated as a function of immersion time in a simulated body fluid. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. This work is an extension of Part I, to investigate the effect of the glass composition on the in vitro response of osteogenic MLO-A5 cells to these scaffolds, and on the ability of the scaffolds to support tissue infiltration in a rat subcutaneous implantation model. The results of assays for cell viability and alkaline phosphatase activity showed that the slower degrading silicate 13-93 and borosilicate 13-93B1 scaffolds were far better than the borate 13-93B3 scaffolds in supporting cell proliferation and function. However, all three groups of scaffolds showed the ability to support tissue infiltration in vivo after implantation for 6 weeks. The results indicate that the required bioactivity and degradation rate may be achieved by substituting an appropriate amount of SiO2 in 13-93 glass with B2O3, and that these trabecular glass scaffolds could serve as substrates for the repair and regeneration of contained bone defects. PMID:20540099

Fu, Qiang; Rahaman, Mohamed N; Bal, B Sonny; Bonewald, Lynda F; Kuroki, Keiichi; Brown, Roger F

2010-10-01

48

Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications.  

PubMed

Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds. PMID:24772196

Coletta, D J; Lozano, D; Rocha-Oliveira, A A; Mortarino, P; Bumaguin, G E; Vitelli, E; Vena, R; Missana, L; Jammal, M V; Portal-Núñez, S; Pereira, M; Esbrit, P; Feldman, S

2014-01-01

49

Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications  

PubMed Central

Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds

Coletta, D.J.; Lozano, D.; Rocha-Oliveira, A.A.; Mortarino, P.; Bumaguin, G.E.; Vitelli, E.; Vena, R.; Missana, L.; Jammal, M. V.; Portal-Nunez, S.; Pereira, M.; Esbrit, P.; Feldman, S.

2014-01-01

50

The surface functionalization of 45S5 Bioglass-based glass-ceramic scaffolds and its impact on bioactivity.  

PubMed

The first and foremost function of a tissue engineering scaffold is its role as a substrate for cell attachment, and their subsequent growth and proliferation. However, cells do not attach directly to the culture substrate; rather they bind to proteins that are adsorbed to the scaffold's surface. Like standard tissue culture plates, tissue engineering scaffolds can be chemically treated to couple proteins without losing the conformational functionality; a process called surface functionalization. In this work, novel highly porous 45S5 Bioglass-based scaffolds have been functionalized applying 3-AminoPropyl-TriethoxySilane (APTS) and glutaraldehyde (GA) without the use of organic solvents. The efficiency and stability of the surface modification was assessed by X-ray photoemission spectroscopy (XPS). The bioactivity of the functionalized scaffolds was investigated using simulated body fluid (SBF) and characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It was found that the aqueous heat-treatment applied at 80 degrees C for 4 hrs during the surface functionalization procedure accelerated the structural transition of the crystalline Na2Ca2Si3O9 phase, present in the original scaffold structure as a result of the sintering process used for fabrication, to an amorphous phase during SBF immersion. The surface functionalized scaffolds exhibited an accelerated crystalline hydroxyapatite layer formation upon immersion in SBF caused by ion leaching and the increased surface roughness induced during the heat treatment step. The possible mechanisms behind this phenomenon are discussed. PMID:17122908

Chen, Q Z; Rezwan, K; Armitage, D; Nazhat, S N; Boccaccini, A R

2006-11-01

51

Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds  

Microsoft Academic Search

Sufficient neovascularization of neotissue is currently a limiting factor for the engineering of large tissue constructs. 45S5 Bioglass® has been investigated extensively in bone tissue engineering but there has been relatively little previous research on its application to soft-tissue engineering. The objectives of this study were to investigate the use of 45S5 Bioglass® in soft-tissue engineering scaffolds using in vitro

Richard M. Day; Aldo R. Boccaccini; Sandra Shurey; Judith A. Roether; Alastair Forbes; Larry L. Hench; Simon M. Gabe

2004-01-01

52

Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response  

PubMed Central

Scaffolds of 13-93 bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 2P2O5, 54SiO2; mol %), containing oriented pores with controllable diameter, were prepared by unidirectional freezing of camphene-based suspensions (10 vol% particles) on a cold substrate (?196°C or 3°C). By varying the annealing time (0–72 h) to coarsen the camphene phase, constructs with the same porosity (86 ± 1%) but with controllable pore diameters (15–160 ?m) were obtained after sublimation of the camphene. The pore diameters had a self-similar distribution that could be fitted by a diffusion-controlled coalescence model. Sintering (1 h at 690°C) was accompanied by a decrease in the porosity and pore diameter, the magnitude of which depended on the pore size of the green constructs, giving scaffolds with a porosity of 20–60% and average pore diameter of 6–120 ?m. The compressive stress vs. deformation response of the sintered scaffolds in the orientation direction was linear, followed by failure. The compressive strength and elastic modulus in the orientation direction varied from 180 MPa and 25 GPa, respectively, (porosity = 20%) to 16 MPa and 4 GPa, respectively, (porosity = 60%), which were 2–3 times larger than the values in the direction perpendicular to the orientation. The potential use of these 13-93 bioactive glass scaffolds for the repair of large defects in load-bearing bones, such as segmental defects in long bones, is discussed.

Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang

2010-01-01

53

Nanosized mesoporous bioactive glass/poly(lactic-co-glycolic acid) composite-coated CaSiO3 scaffolds with multifunctional properties for bone tissue engineering.  

PubMed

It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid) composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering. PMID:24724080

Shi, Mengchao; Zhai, Dong; Zhao, Lang; Wu, Chengtie; Chang, Jiang

2014-01-01

54

Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid) Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering  

PubMed Central

It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid) composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering.

Zhai, Dong; Zhao, Lang

2014-01-01

55

Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review.  

PubMed

Bioactive glasses (BG) show great promise for bone tissue engineering based on their key properties, e.g., biocompatibility, biodegradability, osteoconductivity as well as osteogenic and angiogenic potential, which make them excellent candidates for bone tissue scaffolds and bone substitute materials. Recent work has shown that dissolution products of bioactive glasses have the potential to induce angiogenesis in addition to their known effect of influencing gene expression and promoting osteoblastic differentiation. One of the most interesting features of BG is their ability to bond both to soft and hard tissues, depending on their composition. To intensify the positive impact of BG for medical applications, there are considerable research efforts on using bioactive glass based platforms as carriers for the encapsulation, delivery and controlled release of bioactive molecules and therapeutic drugs. Different types of bioactive glasses have been considered in combination with different therapeutic drugs, hormones, growth factors and peptides. Using bioactive glasses as drug delivery system combines thus the effectiveness of therapeutic drugs (or bioactive/signaling molecules) with the intrinsic advantages of this inorganic biomaterial. Considering research carried out in the last 15 years, this review presents the different chemical compositions and morphologies of bioactive glasses used as carrier for bioactive molecules and therapeutic drugs and discusses the expanding potential of BG with drug delivery capability focusing in the field of bone tissue engineering. PMID:22361998

Hum, Jasmin; Boccaccini, Aldo R

2012-10-01

56

Bioactive scaffolds mimicking natural dentin structure.  

PubMed

Organic scaffolds of poly(ethyl methacrylate-co-hydroxyethyl acrylate) [P(EMA-co-HEA)] 70/30 wt % ratio, with varying proportions of silica SiO(2) from 0 to 20 wt % and aligned tubular pores, were prepared using a fiber-templating fabrication method, with the aim of mimicking structure and properties of the mineralized tissue of natural dentin. Precursors of the copolymer and silica were simultaneously polymerized in a sol-gel process within the fiber template, which was eventually eliminated to generate homogeneously distributed parallel micrometer-sized pores in the material. Scaffolds of PEMA and PHEA were obtained by the same approach. The scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and thermogravimetric analysis. The specific volume was determined by Archimedes' method and the porosity calculated from the geometry. The mechanical properties were analyzed in tensile and compressive modes. The bioactivity of the scaffolds with 15 wt % SiO(2) was tested by immersion in simulated body fluid (SBF) for 7 days followed by immersion in 2x SBF for 7 days. These scaffolds were afterwards characterized by SEM, energy dispersive spectroscopy, and compression assays. Percentages of silica above 10 wt % reinforced mechanically the copolymer, evidenced by the hindrance of the long range motions of the organic chains, altered shrinkage and swelling, and meanwhile conferred bioactivity to its surface. These tubular porous structures, which resemble natural dentin with regard to its structure and properties and induce the precipitation of apatite on their surfaces in vitro, are expected to facilitate the integration in the host mineralized tissue, to stimulate cell growth and to be useful as guiding scaffolds for in vivo dentin regeneration. PMID:19072987

Lluch, A Vallés; Fernández, A Campillo; Ferrer, G Gallego; Pradas, M Monleón

2009-07-01

57

Carbonate formation on bioactive glasses.  

PubMed

The system termed 58S is a sol-gel-synthesized bioactive glass composed of SiO2, CaO, and P2O5, used in medicine as bone prosthetic because, when immersed in a physiological fluid, a layer of hydroxycarbonate apatite is formed on its surface. The mechanism of bioactive glass 58S carbonation was studied in the vacuum by means of in-situ FTIR spectroscopy with the use of CO2, H2O, and CD3CN as probe molecules. The study in the vacuum was necessary to identify both the molecules specifically involved in the carbonation process and the type of carbonates formed. Bioactive glass 58S was compared to a Ca-doped silica and to CaO. On CaO, ionic carbonates could form by contact with CO2 alone, whereas on 58S and on Ca-doped silica carbonation occurred only if both CO2 and an excess of H2O were present on the sample. The function of H2O was not only to block surface cationic sites, so that CO2 could not manifest its Lewis base behavior, but also to form a liquid-like (mono)layer that allowed the formation of carbonate ions. The presence of H2O is also supposed to promote Ca2+ migration from the bulk to the surface. Carbonates formed at the surface of CaO and of Ca-bearing silicas (thus including bioactive glasses) are of the same type, but are produced through two different mechanisms. The finding that a water excess is necessary to start heavy carbonation on bioactive glasses seemed to imply that the mechanism leading to in-situ carbonation simulates, in a simplified and easy-to-reproduce system, what happens both in solution, when carbonates are incorporated in the apatite layer, and during sample shelf-aging. PMID:15248726

Cerruti, Marta; Morterra, Claudio

2004-07-20

58

Effects of borate-based bioactive glass on neuron viability and neurite extension.  

PubMed

Bioactive glasses have recently been shown to promote regeneration of soft tissues by positively influencing tissue remodeling during wound healing. We were interested to determine whether bioactive glasses have the potential for use in the treatment of peripheral nerve injury. In these experiments, degradable bioactive borate glass was fabricated into rods and microfibers. To study the compatibility with neurons, embryonic chick dorsal root ganglia (DRG) were cultured with different forms of bioactive borate glass. Cell viability was measured with no media exchange (static condition) or routine media exchange (transient condition). Neurite extension was measured within fibrin scaffolds with embedded glass microfibers or aligned rod sheets. Mixed cultures of neurons, glia, and fibroblasts growing in static conditions with glass rods and microfibers resulted in decreased cell viability. However, the percentage of neurons compared with all cell types increased by the end of the culture protocol compared with culture without glass. Furthermore, bioactive glass and fibrin composite scaffolds promoted neurite extension similar to that of control fibrin scaffolds, suggesting that glass does not have a significant detrimental effect on neuronal health. Aligned glass scaffolds guided neurite extension in an oriented manner. Together these findings suggest that bioactive glass can provide alignment to support directed axon growth. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 2767-2775, 2014. PMID:24027222

Marquardt, Laura M; Day, Delbert; Sakiyama-Elbert, Shelly E; Harkins, Amy B

2014-08-01

59

Bare Bones of Bioactive Glass  

NASA Technical Reports Server (NTRS)

Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

2000-01-01

60

Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration.  

PubMed

Electrospun scaffolds are widely used for various biomedical applications. In this study, we prepared electrospun bioactive composite scaffolds combining hydroxyapatite, collagen (Col) and a synthetic polymer-PolyActive™-to mimic naturally occurring extracellular matrix for in situ bone regeneration. Human mesenchymal stem cells (hMSCs) adhered and proliferated on these scaffolds. Cells on all scaffold types showed an increased metabolic activity with time. On day 4, the metabolic activity of cells cultured on PolyActive™ (PA)-hydroxyapatite (HA)-Col in 1,1,1,3,3,3-hexafluoro-2-propanolhexafluoro-2-propanol (HFIP) was significantly higher than that of cells grown on PA-Col samples. Furthermore, on day 6, cells on PA-HA-Col in HFIP showed significantly higher metabolic activity than those on PA and PA-Col scaffolds. Quantitative PCR analysis for a panel of osteogenic genes showed statistically significant differences between scaffolds. Cells cultured on PA-HA scaffolds had a significantly higher osteonectin and RunX2 expression compared to those on PA-HA-Col scaffolds. Cells on PA-HA-Col in HFIP scaffolds had significantly higher expression of alkaline phosphatase (ALP) and Col 1 compared to PA and PA-Col scaffolds respectively. The bone morphogenetic protein-2 and S100A4 expression of PA-Col and PA-HA-Col constructs was significantly lower than the basal level expression of cells on PA scaffolds. Although not statistically significant in all cases, cells cultured on PA-HA-Col in HFIP and PA-HA scaffolds had the highest expression for most of the genes analysed. The results of the study demonstrate that bioactive composite scaffolds prepared by electrospinning could find potential use in bone regeneration applications. PMID:20799255

Nandakumar, Anandkumar; Fernandes, Hugo; de Boer, Jan; Moroni, Lorenzo; Habibovic, Pamela; van Blitterswijk, Clemens A

2010-11-10

61

Sol-gel-derived bioactive glass containing SiO2-MgO-CaO-P2O5 as an antibacterial scaffold.  

PubMed

Bioactive glass (BG) composites with a base of SiO2-Na2O-CaO-P2O5 are biocompatible biomaterials. The assessment of their abilities for medical applications has interested researchers. We produced a BG-containing SiO2-MgO-CaO-P2O5 by the sol-gel method. To determine the antibacterial effects, we analyzed the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) properties of this product on three microorganisms, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, known causative agents for biofilm formation on implant surfaces. In addition, we performed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay to study the cytotoxic effects of our composite on animal cells. Our results demonstrated that our BG product inhibited the growth of bacteria in a concentration-dependent manner without any cytotoxic effects. Therefore, our BG product can be utilized as an appropriate implant for treating bone and tooth defects. PMID:23138930

Fooladi, Abbas Ali Imani; Hosseini, Hamideh Mahmoodzadeh; Hafezi, Forough; Hosseinnejad, Fatemeh; Nourani, Mohammad Reza

2013-06-01

62

Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering.  

PubMed

Resorbable 3D macroporous bioactive scaffolds have been produced for tissue-engineering applications by foaming sol-gel-derived bioactive glasses of the 58S (60 mol% SiO2, 36 mol% CaO, 4 mol% P2O5) composition with the aid of a surfactant. Bioactive glasses are known to have the ability to regenerate bone, and to release ionic biological stimuli that promote bone-cell proliferation by gene activation. The foams exhibit a hierarchical structure, with interconnected macropores (10-500 microm), which provide the potential for tissue ingrowth and mesopores (2-50 nm), which enhance bioactivity and release of ionic products. Many factors in the sol-gel and foaming processes can be used to control these pore sizes and distributions. This work concentrates on the effect of the processing temperature, gelling agent concentration, and the amount of water used for the foam generation on the structure, pore morphology, and the properties of the foam scaffold. The simplest and most reproducible method for controlling the modal pore diameter was by the amount of water added during the foaming process. The in vitro dissolution and bioactivity of the bioactive foams were compared to that of unfoamed monoliths and powders (< 20 microm in diameter) of the same composition. PMID:14689494

Jones, Julian R; Hench, Larry L

2004-01-15

63

Bioactive polymer scaffold for fabrication of vascularized engineering tissue.  

PubMed

Tissue engineering seeks strategies to design polymeric scaffolds that allow high-cell-density cultures with signaling molecules and suitable vascular supply. One major obstacle in tissue engineering is the inability to create thick engineered-tissue constructs. A pre-vascularized tissue scaffold appears to be the most favorable approach to avoid nutrient and oxygen supply limitations as well as to allow waste removal, factors that are often hurdles in developing thick engineered tissues. Vascularization can be achieved using strategies in which cells are cultured in bioactive polymer scaffolds that can mimic extracellular matrix environments. This review addresses recent advances and future challenges in developing and using bioactive polymer scaffolds to promote tissue construct vascularization. PMID:22527978

Sukmana, Irza

2012-09-01

64

Bioactive nanofibrous scaffolds for regenerative endodontics.  

PubMed

Here we report the synthesis, materials characterization, antimicrobial capacity, and cytocompatibility of novel antibiotic-containing scaffolds. Metronidazole (MET) or Ciprofloxacin/(CIP) was mixed with a polydioxanone (PDS)polymer solution at 5 and 25 wt% and processed into fibers. PDS fibers served as a control. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), tensile testing, and high-performance liquid chromatography (HPLC) were used to assess fiber morphology, chemical structure, mechanical properties, and drug release, respectively. Antimicrobial properties were evaluated against those of Porphyromonas gingivalis/Pg and Enterococcus faecalis/Ef. Cytotoxicity was assessed in human dental pulp stem cells (hDPSCs). Statistics were performed, and significance was set at the 5% level. SEM imaging revealed a submicron fiber diameter. FTIR confirmed antibiotic incorporation. The tensile values of hydrated 25 wt% CIP scaffold were significantly lower than those of all other groups. Analysis of HPLC data confirmed gradual, sustained drug release from the scaffolds over 48 hrs. CIP-containing scaffolds significantly (p < .00001) inhibited biofilm growth of both bacteria. Conversely, MET-containing scaffolds inhibited only Pg growth. Agar diffusion confirmed the antimicrobial properties against specific bacteria for the antibiotic-containing scaffolds. Only the 25 wt% CIP-containing scaffolds were cytotoxic. Collectively, this study suggests that polymer-based antibiotic-containing electrospun scaffolds could function as a biologically safe antimicrobial drug delivery system for regenerative endodontics. PMID:24056225

Bottino, M C; Kamocki, K; Yassen, G H; Platt, J A; Vail, M M; Ehrlich, Y; Spolnik, K J; Gregory, R L

2013-11-01

65

Preparation and characterization of bioactive mesoporous wollastonite - Polycaprolactone composite scaffold.  

PubMed

A well-defined mesoporous structure of wollastonite with high specific surface area was synthesized using surfactant P123 (triblock copolymer) as template, and its composite scaffolds with poly(epsilon-caprolactone) (PCL) were fabricated by a simple method of solvent casting-particulate leaching. The measurements of the water contact angles suggest that the incorporation of either mesoporous wollastonite (m-WS) or conventional wollastonite (c-WS) into PCL could improve the hydrophilicity of the composites, and the former was more effective than the later. The bioactivity of the composite scaffold was evaluated by soaking the scaffolds in a simulated body fluid (SBF) and the results show that the m-WS/PCL composite (m-WPC) scaffolds can induce a dense and continuous layer of apatite after soaking for 1 week, as compared with the scattered and discrete apatite particles on the c-WS/PCL composite (c-WPC) scaffolds. The m-WPC had a significantly enhanced apatite-forming bioactivity compared with the c-WPC owing to the high specific surface area and pore volume of m-WS. In addition, attachment and proliferation of MG(63) cells on m-WPC scaffolds were significantly higher than that of c-WPC, revealing that m-WPC scaffolds had excellent biocompatibility. Such improved properties of m-WPC should be helpful for developing new biomaterials and may have potential use in hard tissue repair. PMID:19019424

Wei, Jie; Chen, Fangping; Shin, Jung-Woog; Hong, Hua; Dai, Chenglong; Su, Jiancan; Liu, Changsheng

2009-02-01

66

Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression.  

PubMed

Three-dimensional (3D) bioactive organic-inorganic (O/I) hybrid fibrous scaffolds are attractive extracellular matrix (ECM) surrogates for bone tissue engineering. With the aim of regulating osteoblast gene expression in 3D, a new class of hybrid fibrous scaffolds with two distinct fiber diameters (260 and 600 nm) and excellent physico-mechanical properties were fabricated from tertiary (SiO2-CaO-P2O5) bioactive glass (BG) and poly (?-caprolactone) (PCL) by in situ sol-gel and electrospinning process. The PCL/BG hybrid fibrous scaffolds exhibited accelerated wetting properties, enhanced pore sizes and porosity, and superior mechanical properties that were dependent on fiber diameter. Contrary to control PCL fibrous scaffolds that were devoid of bonelike apatite particles, incubating PCL/BG hybrid fibrous scaffolds in simulated body fluid (SBF) revealed bonelike apatite deposition. Osteoblast cells cultured on PCL/BG hybrid fibrous scaffolds spread with multiple attachments and actively proliferated suggesting that the low temperature in situ sol-gel and electrospinning process did not have a detrimental effect. Targeted bone-associated gene expressions by rat calvarial osteoblasts seeded on these hybrid scaffolds demonstrated remarkable spatiotemporal gene activation. Transcriptional-level gene expressions for alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OCN) were significantly higher on the hybrid fibrous scaffolds (p < 0.001) that were largely dependent on fiber diameter compared. Taken together, our results suggest that PCL/BG fibrous scaffolds may accelerate bone formation by providing a favorable microenvironment. PMID:23826710

Allo, Bedilu A; Lin, Shigang; Mequanint, Kibret; Rizkalla, Amin S

2013-08-14

67

Development of robotic dispensed bioactive scaffolds and human adipose-derived stem cell culturing for bone tissue engineering.  

PubMed

Bioactive and degradable scaffolds made from bioactive glass-polycaprolactone with a mineralized surface and a well-defined three-dimensional (3D) pore configuration were produced using a robotic dispensing technique. Human adipose-derived stem cells (hASCs) were cultured on the 3D scaffolds, and the osteogenic development of cells within the scaffolds was addressed under a dynamic flow perfusion system for bone tissue engineering. The bioactive glass component introduced within the composite assisted in the surface mineralization of the 3D scaffolds. The hASCs initially adhered well and grew actively over the mineralized surface, and migrated deep into the channels of the 3D scaffold. In particular, dynamic perfusion culturing helped the cells to proliferate better on the 3D structure compared to that under static culturing condition. After 4 weeks of culturing by dynamic perfusion, the cells not only covered the scaffold surface completely but also filled the pore channels bridging the stems. The osteogenic differentiation of the hASCs with the input of osteogenic factors was stimulated significantly by the dynamic perfusion flow, as determined by alkaline phosphate expression. Overall, the culturing of hASCs upon the currently developed 3D scaffold in conjunction with the dynamic perfusion method may be useful for tissue engineering of bone. PMID:19722827

Oh, Chung-Hun; Hong, Seok-Jung; Jeong, Ishik; Yu, Hye-Sun; Jegal, Seung-Hwan; Kim, Hae-Won

2010-08-01

68

Bioactive scaffolds for engineering vascularized cardiac tissues  

PubMed Central

Functional vascularization is a key requirement for the development and function of most tissues, and most critically cardiac muscle. Rapid and irreversible loss of cardiomyocytes during cardiac infarction directly results from the lack of blood supply. Contractile cardiac grafts, engineered using cardiovascular cells in conjunction with biomaterial scaffolds, are an actively studied method for cardiac repair. In this article, we focus on biomaterial scaffolds designed to mediate the development and maturation of vascular networks, by immobilized growth factors. The interactive effects of multiple vasculogenic factors are discussed in the context of cardiac tissue engineering.

Chiu, Loraine; Radisic, Milica; Vunjak-Novakovic, Gordana

2013-01-01

69

A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry  

PubMed Central

Bioactive glass is a novel material that dissolves and forms a bond with bone when exposed to body fluids. Bioactive glasses are silicate-based, with calcium and phosphate in identical proportions to those of natural bone; therefore, they have high biocompatibility. Bioactive glasses have wide-ranging clinical applications, including the use as bone grafts, scaffolds, and coating materials for dental implants. This review will discuss the effects of ions on the various compositions of bioactive glasses, as well as the clinical applications of bioactive glasses in medicine and dentistry.

Ali, Saqib; Farooq, Imran; Iqbal, Kefi

2013-01-01

70

A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry.  

PubMed

Bioactive glass is a novel material that dissolves and forms a bond with bone when exposed to body fluids. Bioactive glasses are silicate-based, with calcium and phosphate in identical proportions to those of natural bone; therefore, they have high biocompatibility. Bioactive glasses have wide-ranging clinical applications, including the use as bone grafts, scaffolds, and coating materials for dental implants. This review will discuss the effects of ions on the various compositions of bioactive glasses, as well as the clinical applications of bioactive glasses in medicine and dentistry. PMID:24526822

Ali, Saqib; Farooq, Imran; Iqbal, Kefi

2014-01-01

71

Bioinspired Strong and Highly Porous Glass Scaffolds  

PubMed Central

The quest for more efficient energy-related technologies is driving the development of porous and high-performance structural materials with exceptional mechanical strength. Natural materials achieve their strength through complex hierarchical designs and anisotropic structures that are extremely difficult to replicate synthetically. We emulate nature’s design by direct-ink-write assembling of glass scaffolds with a periodic pattern, and controlled sintering of the filaments into anisotropic constructs similar to biological materials. The final product is a porous glass scaffold with a compressive strength (136 MPa) comparable to that of cortical bone and a porosity (60%) comparable to that of trabecular bone. The strength of this porous glass scaffold is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities reported elsewhere. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for a broad array of applications, including tissue engineering, filtration, lightweight composites, and catalyst support.

Saiz, Eduardo; Tomsia, Antoni P.

2011-01-01

72

Bioactive scaffolds mimicking natural dentin structure  

Microsoft Academic Search

Organic scaffolds of poly(ethyl methacrylate-co-hydroxyethyl acrylate) (P(EMA- co-HEA)) 70\\/30 wt % ratio, with varying proportions of silica SiO2 from 0 to 20 wt % and aligned tubular pores, were prepared using a fiber-templating fabrication method, with the aim of mimicking structure and properties of the mineralized tissue of natural dentin. Precursors of the copolymer and silica were simultaneously polymerized in

A. Vallés Lluch; A. Campillo Fernández; G. Gallego Ferrer; M. Monleón Pradas

2008-01-01

73

Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences.  

PubMed

The incorporation of bioactive glass into bone tissue-engineered scaffolds can be widely beneficial based on emerging evidence in the literature about the angiogenic potential of this material, particularly 45S5 Bioglass((R)). This article reviews the literature discussing in vitro studies which have demonstrated that increases in angiogenic indicators have been achieved through both direct and indirect contact of relevant cells with 45S5 Bioglass((R)) particles or with their dissolution products. A few available in vivo studies confirming the ability of bioactive glass, incorporated into scaffolds, to stimulate neovascularization are also discussed. Suggestions for further research are given, highlighting the need for specific investigations designed to assess the effect of particular ion dissolution products from bioactive glasses and their relative concentration on angiogenesis both in vitro and in vivo. PMID:19831556

Gorustovich, Alejandro A; Roether, Judith A; Boccaccini, Aldo R

2010-04-01

74

Fabrication of porous bioactive glass particles by one step sintering  

Microsoft Academic Search

In this study, we reported a facile method to prepare porous bioactive glass microparticles. Porous particles were synthesized by sintering hollow bioactive glass microspheres obtained using a sol–gel co-template technology. The results showed that porous bioactive glass particles possessed a narrow particle size distribution, a relatively porous surface morphology and a hollow structure. It is worth to say that the

Bo Lei; Xiaofeng Chen; Yingjun Wang; Naru Zhao; Guohou Miao; Zhengmao Li; Cai Lin

2010-01-01

75

Reticulated bioactive scaffolds with improved textural properties for bone tissue engineering: Nanostructured surfaces and porosity.  

PubMed

Organised nanoporous SBA-15 type silica precursor (SP) particulate material has been processed into three-dimensional macroporous, reticulated structures using a novel strategy consisting of blending increasing percentages of SP with a SiO2 -CaO-P2 O5 (80Si15Ca5P) mesoporous bioactive glass (MBG) sol. The procedure successfully produced consolidated and functionally competent open-cell scaffolds while preserving the nanoporous order of the SP. Scaffolds were prepared using four different (MBG)/(SP) ratios. These structures were then characterized using field emission gun scanning electron microscopy, X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, and compressive strength testing. Open-cell interconnected structures with dual macro (150-500 ?m) and nano (4-6 nm)-organised porosity were produced. Both the textural and mechanical properties were found to improve with increasing SBA-15 content. The in vitro bioactive response using simulated body fluid confirmed high reactivity for all prepared scaffolds. In addition, the SBA-15 containing scaffolds exhibited a superior ability to delay the pH-triggered lysozyme release with antibiotic activity. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 2982-2992, 2014. PMID:24123840

Ramiro-Gutiérrez, M Lourdes; Will, Julia; Boccaccini, Aldo R; Díaz-Cuenca, Aránzazu

2014-09-01

76

Bioactive borate glass coatings for titanium alloys  

Microsoft Academic Search

Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na2O–CaO–B2O3 system, modified by additions of SiO2, Al2O3, and P2O5, were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction\\u000a analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid

Laxmikanth Peddi; Richard K. Brow; Roger F. Brown

2008-01-01

77

Bioactive glass coatings for orthopedic metallic implants  

SciTech Connect

The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

2003-06-30

78

Bioactive borate glass coatings for titanium alloys.  

PubMed

Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates. PMID:18415004

Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

2008-09-01

79

Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid  

Microsoft Academic Search

A common ceramic processing technique, tape casting, was used to produce thin, flexible sheets of bioactive glass (Bioglass® 45S5) particulate in an organic matrix. Tape casting offers the possibility of producing three-dimensional shapes, as the final material is built up layer by layer. Bioactive glass tapes were sintered together to form small discs for in vitro bioactivity testing in simulated

Daniel C. Clupper; John J. Mecholsky; Guy P. LaTorre; David C. Greenspan

2002-01-01

80

Bioactivity of electro-thermally poled bioactive silicate glass.  

PubMed

A 45S5 bioactive glass (nominal composition: 46.1 mol.% SiO2, 2.6 mol.% P2O5, 26.9 mol.% CaO, 24.4 mol.% Na2O) was electrothermally poled by applying voltages up to 750 V for 45 min at 200 degrees C, and the thermally stimulated depolarization currents (TSDCs) were recorded. Changes in chemical composition and electrical properties after poling were investigated by TSDC measurements, impedance spectroscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). The poling led to the formation of interfacial layers underneath the surface in contact with the electrodes. Under the positive electrode, the layer was characterized by Na+ ion depletion and by a negative charge density, and the layer was more resistive than the bulk. The influence of poling on the bioactivity was studied by immersion of samples in simulated body fluid (SBF) with subsequent cross-sectional SEM/EDX and X-ray diffraction analysis. It was found that poling leads to morphological changes in the silica-rich layer and to changes in the growth rate of amorphous calcium phosphate and bone-like apatite on the glass surface. The bone-like apatite layer under the positive electrode was slightly thicker than that under the negative electrode. PMID:19097952

Mariappan, C R; Yunos, D M; Boccaccini, A R; Roling, B

2009-05-01

81

Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo.  

PubMed

Bioactive glass scaffolds (70S30C; 70% SiO2 and 30% CaO) produced by a sol-gel foaming process are thought to be suitable matrices for bone tissue regeneration. Previous in vitro data showed bone matrix production and active remodelling in the presence of osteogenic cells. Here we report their ability to act as scaffolds for in vivo bone regeneration in a rat tibial defect model, but only when preconditioned. Pretreatment methods (dry, pre-wetted or preconditioned without blood) for the 70S30C scaffolds were compared against commercial synthetic bone grafts (NovaBone® and Actifuse®). Poor bone ingrowth was found for both dry and wetted sol-gel foams, associated with rapid increase in pH within the scaffolds. Bone ingrowth was quantified through histology and novel micro-CT image analysis. The percentage bone ingrowth into dry, wetted and preconditioned 70S30C scaffolds at 11 weeks were 10±1%, 21±2% and 39±4%, respectively. Only the preconditioned sample showed above 60% material-bone contact, which was similar to that in NovaBone and Actifuse. Unlike the commercial products, preconditioned 70S30C scaffolds degraded and were replaced with new bone. The results suggest that bioactive glass compositions should be redesigned if sol-gel scaffolds are to be used without preconditioning to avoid excess calcium release. PMID:23891811

Midha, Swati; Kim, Taek Bo; van den Bergh, Wouter; Lee, Peter D; Jones, Julian R; Mitchell, Christopher A

2013-11-01

82

Composite Films of Gelatin and Hydroxyapatite\\/Bioactive Glass for Tissue-Engineering Applications  

Microsoft Academic Search

Cross-linked gelatin\\/hydroxyapatite\\/bioactive glass (G\\/HA\\/CEL2) films with different compositions (100:0:0 (G1); 30:70:0 (G2); 30:0:70 (G3); 30:35:35 (G4) (%, w\\/w\\/w)) were prepared as scaffold materials for tissue-engineering applications, particularly in the field of bone repair. A bioactive glass with 45% SiO2, 3% P2O5, 26% CaO, 7% MgO, 15% Na2O and 4% K2O molar composition was selected (CEL2). Genipin was used as a

Piergiorgio Gentile; Valeria Chiono; Francesca Boccafoschi; Francesco Baino; Chiara Vitale-Brovarone; Enrica Vernè; Niccoletta Barbani; Gianluca Ciardelli

2010-01-01

83

Solution-mediated effect of bioactive glass in poly (lactic-co-glycolic acid)-bioactive glass composites on osteogenesis of marrow stromal cells  

PubMed Central

A previous study demonstrated that the incorporation of bioactive glass (BG) into poly (lactic-co-glycolic acid) (PLGA) can promote the osteoblastic differentiation of marrow stromal cells (MSCs) on PLGA by promoting the formation of a calcium–phosphate-rich layer on its surface. To further understand the mechanisms underlying the osteogenic effect of PLGA-BG composite scaffolds, whether solution-mediated factors derived from composite scaffolds/hybrids can promote osteogenesis of marrow stromal cells was tested. The dissolution product from PLGA-30%BG scaffold stimulated osteogenesis of MSCs, as was confirmed by increased mRNA expression of osteoblastic markers such as osteocalcin (OCN), alkaline phosphatase (ALP), and bone sialoprotein (BSP). The three-dimensional structure of the scaffolds may contribute to the production of cell-derived factors that promoted distant MSC differentiation. Thus PLGA-BG composites demonstrate significant potential as a bone-replacement material.

Yao, Jun; Radin, Shula; Reilly, Gwendolen; Leboy, Phoebe S.; Ducheyne, Paul

2006-01-01

84

Direct Ink Writing of Highly Porous and Strong Glass Scaffolds for Load-bearing Bone Defects Repair and Regeneration  

PubMed Central

The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires development of porous and high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work, bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inkswere optimized for the printing of features as fine as 30 ?m and of the three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds show a compressive strength (136 ± 22 MPa) comparable to that of human cortical bone (100-150 MPa), while the porosity (60%) is in the range of that of trabecular bone (50-90%).The strength is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in an SBF, the value (77 MPa) is still far above that of trabecular bone after three weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration.

Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.

2011-01-01

85

Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers  

PubMed Central

Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM’s major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure.

Zhang, YZ; Su, B; Venugopal, J; Ramakrishna, S; Lim, CT

2007-01-01

86

Proangiogenic Potential of a Collagen\\/Bioactive Glass Substrate  

Microsoft Academic Search

Purpose  Previous attempts to stimulate angiogenesis have focused on the delivery of growth factors and cytokines, genes encoding for\\u000a specific angiogenic inductive proteins or transcription factors, or participating cells. While high concentrations of bioactive\\u000a glasses have exhibited osteogenic potential, recent studies have demonstrated that low concentrations of particular bioactive\\u000a glasses are angiogenic. We hypothesized that a well known bioactive glass (Bioglass®

Ann Leu; J. Kent Leach

2008-01-01

87

Novel bioactive scaffolds incorporating nanogels as potential drug eluting devices.  

PubMed

Big advances are being achieved in the design of new implantable devices with enhanced properties. For example, synthetic porous three-dimensional structures can mimic the architecture of the tissues, and serve as templates for cell seeding. In addition, polymeric nanoparticles are able to provide a programmable and sustained local delivery of different types of biomolecules. In this study novel alternative scaffolds with controlled bioactive properties and architectures are presented. Two complementary approaches are described. Firstly, scaffolds with nanogels as active controlled release devices incorporated inside the three-dimensional structure are obtained using the thermally induced phase separation (TIPS) method. Secondly, a novel coating method using the spraying technique to load these nanometric crosslinked hydrogels on the surface of two-dimensional (2D) and three-dimensional (3D) biodegradable scaffolds is described. The scanning electron microscopy (SEM) images show the distribution of the nanogels on the surface of different substrates and also inside the porous structure of poly-alpha-hydroxy ester derivative foams. Both of them are compared in terms of manufacturability, dispersion and other processing variables. PMID:20355508

Saez-Martinez, Virginia; Olalde, Beatriz; Juan, Maria Jesus; Jurado, Maria Jesus; Garagorri, Nerea; Obieta, Isabel

2010-04-01

88

Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair.  

PubMed

Due to the intrinsically poor repair potential of articular cartilage, injuries to this soft tissue do not heal and require clinical intervention. Tissue engineered osteochondral grafts offer a promising alternative for cartilage repair. The functionality and integration potential of these grafts can be further improved by the regeneration of a stable calcified cartilage interface. This study focuses on the design and optimization of a stratified osteochondral graft with biomimetic multi-tissue regions, including a pre-designed and pre-integrated interface region. Specifically, the scaffold based on agarose hydrogel and composite microspheres of polylactide-co-glycolide (PLGA) and 45S5 bioactive glass (BG) was fabricated and optimized for chondrocyte density and microsphere composition. It was observed that the stratified scaffold supported the region-specific co-culture of chondrocytes and osteoblasts which can lead to the production of three distinct yet continuous regions of cartilage, calcified cartilage and bone-like matrices. Moreover, higher cell density enhanced chondrogenesis and improved graft mechanical property over time. The PLGA-BG phase promoted chondrocyte mineralization potential and is required for the formation of a calcified interface and bone regions on the osteochondral graft. These results demonstrate the potential of the stratified scaffold for integrative cartilage repair and future studies will focus on scaffold optimization and in vivo evaluations. PMID:20411332

Jiang, Jie; Tang, Amy; Ateshian, Gerard A; Guo, X Edward; Hung, Clark T; Lu, Helen H

2010-06-01

89

Nanoporosity Significantly Enhances the Biological Performance of Engineered Glass Tissue Scaffolds  

PubMed Central

Nanoporosity is known to impact the performance of implants and scaffolds such as bioactive glass (BG) scaffolds, either by providing a higher concentration of bioactive chemical species from enhanced surface area, or due to inherent nanoscale topology, or both. To delineate the role of these two characteristics, BG scaffolds have been fabricated with nearly identical surface area (81 and 83±2?m2/g) but significantly different pore size (av. 3.7 and 17.7?nm) by varying both the sintering temperature and the ammonia concentration during the solvent exchange phase of the sol-gel fabrication process. In vitro tests performed with MC3T3-E1 preosteoblast cells on such scaffolds show that initial cell attachment is increased on samples with the smaller nanopore size, providing the first direct evidence of the influence of nanopore topography on cell response to a bioactive structure. Furthermore, in vivo animal tests in New Zealand rabbits (subcutaneous implantation) indicate that nanopores promote colonization and cell penetration into these scaffolds, further demonstrating the favorable effects of nanopores in tissue-engineering-relevant BG scaffolds.

Wang, Shaojie; Kowal, Tia J.; Marei, Mona K.

2013-01-01

90

Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application  

PubMed Central

The impact of bone diseases and trauma in the whole world has increased significantly in the past decades. Bioactive glasses are regarded as an important bone regeneration material owing to their generally excellent osteoconductivity and osteostimulativity. A new class of bioactive glass, referred to as mesoporous bioglass (MBG), was developed 7 years ago, which possess a highly ordered mesoporous channel structure and a highly specific surface area. The study of MBG for drug/growth factor delivery and bone tissue engineering has grown significantly in the past several years. In this article, we review the recent advances of MBG materials, including the preparation of different forms of MBG, composition–structure relationship, efficient drug/growth factor delivery and bone tissue engineering application. By summarizing our recent research, the interaction of MBG scaffolds with bone-forming cells, the effect of drug/growth factor delivery on proliferation and differentiation of tissue cells and the in vivo osteogenesis of MBG scaffolds are highlighted. The advantages and limitations of MBG for drug delivery and bone tissue engineering have been compared with microsize bioactive glasses and nanosize bioactive glasses. The future perspective of MBG is discussed for bone regeneration application by combining drug delivery with bone tissue engineering and investigating the in vivo osteogenesis mechanism in large animal models.

Wu, Chengtie; Chang, Jiang

2012-01-01

91

Mechanical properties of biodegradable polymer sutures coated with bioactive glass  

Microsoft Academic Search

Combining commercially available Polyglactin 910 (Vicryl®) sutures with bioactive glass powder offers new possibilities for application of composite materials in tissue engineering. Commercial bioactive glass (45S5 Bioglass®) powder was used to coat Vicryl® sutures and the tensile strength of the sutures was tested before and after immersion in simulated body fluid (SBF) as a means to assess the effect of

A. Stamboulis; L. L. Hench; A. R. Boccaccini

2002-01-01

92

Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres  

Microsoft Academic Search

The remarkable tissue-repairing bioactivity and biocompatibility of bioactive glass make it suitable for a wide range of applications. Here, novel mesoporous hollow bioactive glass microspheres (MHBGMs) with a uniform diameter range of 2–5 µm were prepared by a sol–gel method. Structural characterization indicated that the shell of hollow sphere had a mesopore size range between 2 and 10 nm and a thickness

Bo Lei; Xiaofeng Chen; Yingjun Wang; Naru Zhao

2009-01-01

93

Combination of platelet-rich plasma with degradable bioactive borate glass for segmental bone defect repair.  

PubMed

Porous scaffold biomaterials may offer a clinical alternative to bone grafts; however, scaffolds alone are typically insufficient to heal large bone defects. Numerous studies have demonstrated that osteoinductive growth factor significantly improves bone repair. In this study, a strategy combining degradable bioactive borate glass (BG) scaffolds with platelet-rich plasma (PRP) was tested. The bone defect was filled with BG alone, BG combined with autologous PRP or left empty. Bone formation was analyzed at 4, 8 and 12 weeks using both histology and radiology. The PRP treated group yielded better bone formation than the pure BG scaffold as determined by both histology and microcomputer tomography after 12 weeks. In conclusion, PRP improved bone healing in a diaphyseal rabbit model on BG. The combination of PRP and BG may be an effective approach to repair critical defects. PMID:21473456

Zhang, Ya-Dong; Wang, Gang; Sun, Yan; Zhang, Chang-Qing

2011-02-01

94

Bioactivated collagen-based scaffolds embedding protein-releasing biodegradable microspheres: tuning of protein release kinetics.  

PubMed

In tissue engineering, the recapitulation of natural sequences of signaling molecules, such as growth factors, as occurring in the native extracellular matrix (ECM), is fundamental to support the stepwise process of tissue regeneration. Among the manifold of tissue engineering strategies, a promising one is based on the creation of the chrono-programmed presentation of different signaling proteins. This approach is based upon the integration of biodegradable microspheres, loaded with suitable protein molecules, within scaffolds made of collagen and, in case, hyaluronic acid, which are two of the fundamental ECM constituents. However, for the design of bioactivated gel-like scaffolds the determination of release kinetics must be performed directly within the tissue engineering template. In this work, biodegradable poly(lactic-co-glycolic)acid (PLGA) microspheres were produced by the multiple emulsion-solvent evaporation technique and loaded with rhodamine-labelled bovine serum albumin (BSA-Rhod), a fluorescent model protein. The microdevices were dispersed in collagen gels and collagen-hyaluronic acid (HA) semi-interpenetrating networks (semi-IPNs). BSA-Rhod release kinetics were studied directly on single microspheres through confocal laser scanning microscopy (CLSM). To thoroughly investigate the mechanisms governing protein release from PLGA microspheres in gels, BSA-Rhod diffusion in gels was determined by fluorescence correlation spectroscopy (FCS), and water transport through the microsphere bulk was determined by dynamic vapor sorption (DVS). Moreover, the decrease of PLGA molecular weight and glass transition temperature (T(g)) were determined by gel permeation chromatography (GPC) and differential scanning calorimetry (DSC), respectively. Results indicate that protein release kinetics and delivery onset strongly depend on the complex interplay between protein transport through the PLGA matrix and in the collagen-based release media, and water sequestration within the scaffolds, related to the scaffold hydrophilicity, which is dictated by HA content. The proper manipulation of all these features may thus allow the obtainment of a fine control over protein sequential delivery and release kinetics within tissue-engineering scaffolds. PMID:19449203

Biondi, Marco; Indolfi, Laura; Ungaro, Francesca; Quaglia, Fabiana; La Rotonda, Maria Immacolata; Netti, Paolo A

2009-10-01

95

Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling.  

PubMed

Three-dimensional printing (3DP) refers to a group of additive manufacturing techniques that can be utilized in tissue engineering applications. Fused deposition modeling (FDM) is a 3DP method capable of using common thermoplastic polymers. However, the scope of materials applicable for FDM has not been fully recognized. The purpose of this study was to examine the creation of biodegradable porous scaffold structures using different materials in FDM and to determine the compressive properties and the fibroblast cell response of the structures. To the best of our knowledge, the printability of a poly(?-caprolactone)/bioactive glass (PCL/BAG) composite and L-lactide/?-caprolactone 75/25 mol % copolymer (PLC) was demonstrated for the first time. Scanning electron microscope (SEM) images showed BAG particles at the surface of the printed PCL/BAG scaffolds. Compressive testing showed the possibility of altering the compressive stiffness of a scaffold without changing the compressive modulus. Compressive properties were significantly dependent on porosity level and structural geometry. Fibroblast proliferation was significantly higher in polylactide than in PCL or PCL/BAG composite. Optical microscope images and SEM images showed the viability of the cells, which demonstrated the biocompatibility of the structures. PMID:23281260

Korpela, Jyrki; Kokkari, Anne; Korhonen, Harri; Malin, Minna; Närhi, Timo; Seppälä, Jukka

2013-05-01

96

Ageing of pulsed-laser-deposited bioactive glass films  

Microsoft Academic Search

Bioactive glasses are osteoinductive biomaterials of great interest for medical applications as filler material in bone defects and as coating of implants.Bioactive glass thin films have been deposited on silicon plates by ArF laser ablation of silica-based glass targets (53% SiO2, 23% Na2O, 20% CaO, 4% P2O5). Ablation experiments have been carried out in vacuum (10?4mbar) and in a reactive

P González; J Serra; S Liste; S Chiussi; B León; M Pérez-Amor

2002-01-01

97

Creation of microrough surface on sintered bioactive glass microspheres.  

PubMed

Bioactive glasses are surface-active, generally silica-based, synthetic materials that form a firm chemical bond to bone. The aim of this study was to further enhance the bioactivity of glasses by creating a microroughness on their surface. Microroughness increases potential surface area for cell attachment and biomaterial-cell interactions. Three bioactive glasses of different composition were studied. Each material was flame-sprayed into microspheres, and a selected fraction of the spheres (250-300 microm) was sintered to form porous bioactive glass specimens. To create microrough surfaces, different acid etching techniques were tested. Atomic force microscopy (AFM) and back-scattered electron imaging of scanning electron microscopy (BEI-SEM) were used to characterize surface roughness. The degree of roughness was measured by AFM. A novel chemical-etching method, developed through intensive screening of different options, was found consistently to create the desired microroughness, with an average roughness value (R(a)) of 0.35-0.52 microm and a root mean-square roughness value (R(rms)) of 0.42-0.64 microm. Microroughening of the glass surface was obtained even in the internal parts of the porous glass matrices. Measured by BEI-SEM, the etching of a bioactive glass surface did not interfere with the formation of the characteristic surface reactions of bioactive glasses. This was confirmed by immersing the etched and control glass bodies in a simulated body fluid and tris(hydroxymethyl) aminomethane/HCl. The etching process did not significantly affect the mechanical strength of the sintered bioactive glass structures. Based on these experiments, it seems possible to create a reproducible microroughness of appropriate size on the surface of porous bioactive glass. The biologic benefits of such a surface treatment need to be validated with in vivo experiments. PMID:11340600

Itälä, A; Nordström, E G; Ylänen, H; Aro, H T; Hupa, M

2001-08-01

98

The Preparation and Properties of Bioactive Composites Based on Modification Bioactive Glass and Poly(Lactide-Co-Glycolide)  

Microsoft Academic Search

PLGA\\/bioactive glass composites were prepared as promising bone-repairing materials. The bioactive glass was fabricated by Sol-gel method. Surface Modification was done to improve the phase compatibility between polymer and the inorganic phase. PLGA\\/bioactive glass composites were successfully prepared via solution dispersion method. Composites films with different content of bioactive glass were obtained. The mechanical properties of composites were characterized by

Jian Chen; Xin Fan; Zhongcheng Zhou; Jianpeng Zou; Jianming Ruan

2010-01-01

99

Bioactive Electrospun Scaffolds Delivering Growth Factors and Genes for Tissue Engineering Applications  

Microsoft Academic Search

A biomaterial scaffold is one of the key factors for successful tissue engineering. In recent years, an increasing tendency\\u000a has been observed toward the combination of scaffolds and biomolecules, e.g. growth factors and therapeutic genes, to achieve\\u000a bioactive scaffolds, which not only provide physical support but also express biological signals to modulate tissue regeneration.\\u000a Huge efforts have been made on

Wei Ji; Yan Sun; Fang Yang; Jeroen J. J. P. van den Beucken; Mingwen Fan; Zhi Chen; John A. Jansen

2011-01-01

100

The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering.  

PubMed

Tissue engineering offers a promising new approach to bone tissue grafting. One material that has received attention in this regard is the polymer poly (lactic-co-glycolic acid) (PLGA). It has the advantage of controllable bioresorption and ease of processing. Another material of interest is bioactive glass (BG), which shows the ability to stimulate osteoblastic differentiation of osteoprogenitor cells. In this study, we reported on the optimal synthesis parameters and the kinetics of formation of calcium phosphate (Ca-P) phase at the surface of PLGA/BG composites. The formation of calcium phosphate layer was confirmed using scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDXA). PLGA-30%BG microspheres based porous scaffolds for bone tissue engineering were examined for their ability to promote osteogenesis of marrow stromal cells (MSC). This porous scaffold supported both MSC proliferation and promoted MSC differentiation into cells expressing the osteoblast phenotype. It therefore demonstrates significant potential as a bone replacement material. PMID:15576167

Yao, Jun; Radin, Shula; S Leboy, Phoebe; Ducheyne, Paul

2005-05-01

101

Cytotoxicity assessment of modified bioactive glasses with MLO-A5 osteogenic cells in vitro.  

PubMed

The primary objective of this study was to evaluate in vitro responses of MLO-A5 osteogenic cells to two modifications of the bioactive glass 13-93. The modified glasses, which were designed for use as cell support scaffolds and contained added boron to form the glasses 13-93 B1 and 13-93 B3, were made to accelerate formation of a bioactive hydroxyapatite surface layer and possibly enhance tissue growth. Quantitative MTT cytotoxicity tests revealed no inhibition of growth of MLO-A5 cells incubated with 13-93 glass extracts up to 10 mg/ml, moderate inhibition of growth with 13-93 B1 glass extracts, and noticeable inhibition of growth with 13-93 B3 glass extracts. A morphology-based biocompatibility test was also performed and yielded qualitative assessments of the relative biocompatibilities of glass extracts that agree with those obtained by the quantitative MTT test. However, as a proof of concept experiment, when MLO-A5 cells were seeded onto 13-93 B3 scaffolds in a dynamic in vitro environment, cell proliferation occurred as evidenced by qualitative and quantitative MTT labeling of scaffolds. Together these results demonstrate the in vitro toxicity of released borate ion in static experiments; however borate ion release can be mitigated in a dynamic environment similar to the human body where microvasculature is present. Here we argue that despite toxicity in static environments, boron-containing 13-93 compositions may warrant further study for use in tissue engineering applications. PMID:23392968

Modglin, Vernon C; Brown, Roger F; Jung, Steven B; Day, Delbert E

2013-05-01

102

Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties.  

PubMed

Glass-ceramic scaffolds mimicking the structure of cancellous bone were produced via sponge replication technique by using a polyurethane foam as template and glass powder below 30 lm as inorganic phase. Specifically, a SiO?-based glass of complex composition and its corresponding P?O?-based "specular" glass were used as materials for scaffolding. The polymeric sponge was thermally removed and the glass powders were sintered to obtain a replica of the template structure. The scaffolds were investigated and compared from a structural, morphological and mechanical viewpoint by assessing their crystalline phases, volumetric shrinkage, pores content and interconnection, mechanical strength. In addition, the scaffolds were soaked in acellular simulated body fluid to investigate their in vitro behaviour. The produced scaffolds have a great potential for bone reconstructive surgery because their features, such as shape, strength, bioactivity and bioresorption, can be easily tailored according to the end use. PMID:19475339

Vitale-Brovarone, Chiara; Baino, Francesco; Bretcanu, Oana; Verne, Enrica

2009-11-01

103

Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide  

PubMed Central

Background Graphene oxide (GO) is a single layer carbon sheet with a thickness of less than 1 nm. GO has good dispersibility due to surface modifications with numerous functional groups. Reduced graphene oxide (RGO) is produced via the reduction of GO, and has lower dispersibility. We examined the bioactivity of GO and RGO films, and collagen scaffolds coated with GO and RGO. Methods GO and RGO films were fabricated on a culture dish. Some GO films were chemically reduced using either ascorbic acid or sodium hydrosulfite solution, resulting in preparation of RGO films. The biological properties of each film were evaluated by scanning electron microscopy (SEM), atomic force microscopy, calcium adsorption tests, and MC3T3-E1 cell seeding. Subsequently, GO- and RGO-coated collagen scaffolds were prepared and characterized by SEM and compression tests. Each scaffold was implanted into subcutaneous tissue on the backs of rats. Measurements of DNA content and cell ingrowth areas of implanted scaffolds were performed 10 days post-surgery. Results The results show that GO and RGO possess different biological properties. Calcium adsorption and alkaline phosphatase activity were strongly enhanced by RGO, suggesting that RGO is effective for osteogenic differentiation. SEM showed that RGO-modified collagen scaffolds have rough, irregular surfaces. The compressive strengths of GO- and RGO-coated scaffolds were approximately 1.7-fold and 2.7-fold greater, respectively, when compared with the non-coated scaffold. Tissue ingrowth rate was 39% in RGO-coated scaffolds, as compared to 20% in the GO-coated scaffold and 16% in the non-coated scaffold. Conclusion In summary, these results suggest that GO and RGO coatings provide different biological properties to collagen scaffolds, and that RGO-coated scaffolds are more bioactive than GO-coated scaffolds.

Kanayama, Izumi; Miyaji, Hirofumi; Takita, Hiroko; Nishida, Erika; Tsuji, Maiko; Fugetsu, Bunshi; Sun, Ling; Inoue, Kana; Ibara, Asako; Akasaka, Tsukasa; Sugaya, Tsutomu; Kawanami, Masamitsu

2014-01-01

104

Bioactive glass nanoparticles obtained through sol-gel chemistry.  

PubMed

Different sol-gel strategies based on the Stöber method are proposed enabling preparation of nanoparticles of SiO2-CaO bioactive glass with different size, narrow size distribution and good dispersion capability. Eu(3+)-doped glass nanoparticles with luminescent properties can also be obtained. PMID:23772442

Lukowiak, Anna; Lao, Jonathan; Lacroix, Josephine; Nedelec, Jean-Marie

2013-07-28

105

Bioactive glass fiber/polymeric composites bond to bone tissue.  

PubMed

Bioactive glass fibers were investigated for use as a fixation vehicle between a low modulus, polymeric composite and bone tissue. In an initial pilot study, bioactive glass fiber/polysulfone composites and all-polysulfone control rods were implanted into the rabbit tibia; the study was subsequently expanded with implantation into the rabbit femur. Bone tissue exhibited direct contact with the glass fibers and adjacent polymer matrix and displayed a mechanical bond between the composite and bone tissue after six weeks implantation. Interfacial bond strengths after six weeks implantation averaged 12.4 MPa, significantly higher than those of the all-polymer controls. Failure sites for the composite at six weeks generally occurred in the bone tissue or composite, whereas the failure site for the polymer implants occurred exclusively at the implant/tissue interface. The bioactive glass fiber/polysulfone composite achieved fixation to bone tissue through a triple mechanism: a bond to the bioactive glass fiber, mechanical interlocking between the tissue and glass fibers, and close apposition and possible chemical bond between the portions of the polymer and bone tissue. This last mechanism resulted from an overspill of bioactivity reactions from the fibers onto the surface of the surrounding polymer which we call the "halo" effect. PMID:9429107

Marcolongo, M; Ducheyne, P; Garino, J; Schepers, E

1998-01-01

106

Novel resorbable glass-ceramic scaffolds for hard tissue engineering: From the parent phosphate glass to its bone-like macroporous derivatives.  

PubMed

One of the major challenges of hard tissue engineering research focuses on the development of scaffolds that can match the mechanical properties of the host bone and resorb at the same rate as the bone is repaired. The aim of this work was the synthesis and characterization of a resorbable phosphate glass, as well as its application for the fabrication of three dimensional (3-D) scaffolds for bone regeneration. The glass microstructure and behaviour upon heating were analysed by X-ray diffraction, differential scanning calorimetry and hot stage microscopy. The glass solubility was investigated according to relevant ISO standards using distilled water, simulated body fluid (SBF) and Tris-HCl as testing media. The glass underwent progressive dissolution over time in all three media but the formation of a hydroxyapatite-like layer was also observed on the samples soaked in SBF and Tris-HCl, which demonstrated the bioactivity of the material. The glass powder was used to fabricate 3-D macroporous bone-like glass-ceramic scaffolds by adopting polyethylene particles as pore formers: during thermal treatment, the polymer additive was removed and the sintering of glass particles was allowed. The obtained scaffolds exhibited high porosity (87?vol.%) and compressive strength around 1.5?MPa. After soaking for 4 months in SBF, the scaffolds mass loss was 76?wt.% and the pH of the solution did not exceed the 7.55 value, thereby remaining in a physiological range. The produced scaffolds, being resorbable, bioactive, architecturally similar to trabecular bone and exhibiting interesting mechanical properties, can be proposed as promising candidates for bone repair applications. PMID:24080165

Bretcanu, Oana; Baino, Francesco; Verné, Enrica; Vitale-Brovarone, Chiara

2014-05-01

107

Synthesis and electrospinning of ?-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.  

PubMed

Strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate, and function. For this purpose, hybrid biomaterials based on smart combinations of biodegradable polymers and bioactive glasses (BGs) are of particular interest, since they exhibit tailored physical, biological, and mechanical properties, as well as predictable degradation behavior. In this study, hybrid biomaterials with different organic-inorganic ratios were successfully synthesized via a sol-gel process. Poly(?-caprolactone) (PCL) and tertiary bioactive glass (BG) with a glass composition of 70 mol % SiO(2), 26 mol % CaO, and 4 mol % of P(2)O(5) were used as the polymer and inorganic phases, respectively. The polymer chains were successfully introduced into the inorganic sol while the networks were formed. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analyses (TGA), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) were used to investigate the presence of different chemical groups, structural crystallinity, thermal property, elemental composition, and homogeneity of the synthesized hybrid biomaterials. Identification of chemical groups and the presence of molecular interaction by hydrogen bonding between the organic and inorganic phases was confirmed by FTIR. The XRD patterns showed that all PCL/BG hybrids (up to 60% polymer content) were amorphous. The TGA study revealed that the PCL/BG hybrid biomaterials were thermally stable, and good agreement was observed between the experimental and theoretical organic-inorganic ratios. The SEM/EDX results also revealed a homogeneous elemental distribution and demonstrated the successful incorporation of all the elements in the hybrid system. Finally, these synthesized hybrid biomaterials were successfully electrospun into 3D scaffolds. The resultant fibers have potential use as scaffolds for bone regeneration. PMID:21050002

Allo, Bedilu A; Rizkalla, Amin S; Mequanint, Kibret

2010-12-01

108

Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites.  

PubMed

This work investigated the effect of adding nanoparticulate (29 nm) bioactive glass particles on the bioactivity, degradation and in vitro cytocompatibility of poly(3-hydroxybutyrate) (P(3HB)) composites/nano-sized bioactive glass (n-BG). Two different concentrations (10 and 20 wt %) of nanoscale bioactive glass particles of 45S5 Bioglass composition were used to prepare composite films. Several techniques (Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray) were used to monitor their surface and bioreactivity over a 45-day period of immersion in simulated body fluid (SBF). All results suggested the P(3HB)/n-BG composites to be highly bioactive, confirmed by the formation of hydroxyapatite on material surfaces upon immersion in SBF. The weight loss and water uptake were found to increase on increasing bioactive glass content. Cytocompatibility study (cell proliferation, cell attachment, alkaline phosphatase activity and osteocalcin production) using human MG-63 osteoblast-like cells in osteogenic and non-osteogenic medium showed that the composite substrates are suitable for cell attachment, proliferation and differentiation. PMID:19640877

Misra, Superb K; Ansari, Tahera; Mohn, Dirk; Valappil, Sabeel P; Brunner, Tobias J; Stark, Wendelin J; Roy, Ipsita; Knowles, Jonathan C; Sibbons, Paul D; Jones, Eugenia Valsami; Boccaccini, Aldo R; Salih, Vehid

2010-03-01

109

A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics.  

PubMed

Several inorganic materials such as special compositions of silicate glasses, glass-ceramics and calcium phosphates have been shown to be bioactive and resorbable and to exhibit appropriate mechanical properties which make them suitable for bone tissue engineering applications. However, the exact mechanism of interaction between the ionic dissolution products of such inorganic materials and human cells are not fully understood, which has prompted considerable research work in the biomaterials community during the last decade. This review comprehensively covers literature reports which have investigated specifically the effect of dissolution products of silicate bioactive glasses and glass-ceramics in relation to osteogenesis and angiogenesis. Particularly, recent advances made in fabricating dense biomaterials and scaffolds doped with trace elements (e.g. Zn, Sr, Mg, and Cu) and investigations on the effect of these elements on the scaffold biological performance are summarized and discussed in detail. Clearly, the biological response to artificial materials depends on many parameters such as chemical composition, topography, porosity and grain size. This review, however, focuses only on the ion release kinetics of the materials and the specific effect of the released ionic dissolution products on human cell behaviour, providing also a scope for future investigations and identifying specific research needs to advance the field. The biological performance of pure and doped silicate glasses, phosphate based glasses with novel specific compositions as well as several other silicate based compounds are discussed in detail. Cells investigated in the reviewed articles include human osteoblastic and osteoclastic cells as well as endothelial cells and stem cells. PMID:21292319

Hoppe, Alexander; Güldal, Nusret S; Boccaccini, Aldo R

2011-04-01

110

Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds  

Microsoft Academic Search

Challenges remain in tissue engineering to control the spatial, mechanical, temporal and biochemical architectures of scaffolds. Unique capabilities of stereolithography (SL) for fabricating multi-material spatially controlled bioactive scaffolds were explored in this work. To accomplish multi-material builds, a mini-vat setup was designed allowing for self-aligning X–Y registration during fabrication. The mini-vat setup allowed the part to be easily removed and

Karina Arcaute; Brenda Mann; Ryan Wicker

2010-01-01

111

Bioactive sol–gel scaffolds with dual porosity for tissue engineering  

Microsoft Academic Search

Scaffolds containing dual porosity at the nano and macroscale appear to exhibit improved performance in terms of crystallization\\u000a of hydroxycarbonate apatite plus cell adhesion and proliferation, as well as vascularization. The aim of the present work\\u000a is to develop a novel, simple sol–gel process for the preparation of silica-based bioactive porous bone tissue scaffold, with\\u000a a pore structure consisting of

R. M. Almeida; A. Gama; Y. Vueva

2011-01-01

112

Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles.  

PubMed

Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol-gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)-based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)-based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA- and nBG-based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process. PMID:22707209

Valenzuela, Francisco; Covarrubias, Cristian; Martínez, Constanza; Smith, Patricio; Díaz-Dosque, Mario; Yazdani-Pedram, Mehrdad

2012-08-01

113

Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites  

SciTech Connect

Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independent of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.

Chatzistavrou, Xanthippi, E-mail: x.chatzistavrou@imperial.ac.uk [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kantiranis, Nikolaos, E-mail: kantira@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, Eleana, E-mail: kont@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, Konstantinos, E-mail: hrisafis@physics.auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, Labrini, E-mail: lambrini@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, Petros, E-mail: pkoidis@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Boccaccini, Aldo R., E-mail: a.boccaccini@imperial.ac.uk [Department of Materials, Faculty of Engineering, Imperial College, SW7 2AZ London (United Kingdom); Paraskevopoulos, Konstantinos M., E-mail: kpar@auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

2011-01-15

114

Incorporation of bioactive glass in calcium phosphate cement: An evaluation.  

PubMed

Bioactive glasses (BGs) are known for their unique ability to bond to living bone. Consequently, the incorporation of BGs into calcium phosphate cement (CPC) was hypothesized to be a feasible approach to improve the biological performance of CPC. Previously, it has been demonstrated that BGs can successfully be introduced into CPC, with or without poly(d,l-lactic-co-glycolic) acid (PLGA) microparticles. Although an in vitro physicochemical study on the introduction of BG into CPC was encouraging, the biocompatibility and in vivo bone response to these formulations are still unknown. Therefore, the present study aimed to evaluate the in vivo performance of BG supplemented CPC, either pure or supplemented with PLGA microparticles, via both ectopic and orthotopic implantation models in rats. Pre-set scaffolds in four different formulations (1: CPC; 2: CPC/BG; 3: CPC/PLGA; and 4: CPC/PLGA/BG) were implanted subcutaneously and into femoral condyle defects of rats for 2 and 6 weeks. Upon ectopic implantation, incorporation of BG into CPC improved the soft tissue response by improving capsule and interface quality. Additionally, the incorporation of BG into CPC and CPC/PLGA showed 1.8- and 4.7-fold higher degradation and 2.2- and 1.3-fold higher bone formation in a femoral condyle defect in rats compared to pure CPC and CPC/PLGA, respectively. Consequently, these results highlight the potential of BG to be used as an additive to CPC to improve the biological performance for bone regeneration applications. Nevertheless, further confirmation is necessary regarding long-term in vivo studies, which also have to be performed under compromised wound-healing conditions. PMID:23159565

Renno, A C M; van de Watering, F C J; Nejadnik, M R; Crovace, M C; Zanotto, E D; Wolke, J G C; Jansen, J A; van den Beucken, J J J P

2013-03-01

115

Corrosion protection of mesoporous bioactive glass coating on biodegradable magnesium  

NASA Astrophysics Data System (ADS)

A mesoporous bioactive glass (MBG) coating was synthesized and coated on pure Mg substrate using a sol-gel dip-coating method. The MBG coating uniformly covered the Mg substrate with a thickness of ?1.5 ?m. Electrochemical and immersion tests were performed in order to investigate the biodegradation performance of Mg with and without different surface coatings in simulated body fluids (SBF) at 37 °C. Results revealed that the MBG coated Mg displayed a significantly lower biodegradation rate, in comparison with normal bioactive glass (BG) coated and uncoated Mg samples.

Wang, Xiaojian; Wen, Cuie

2014-06-01

116

A study of the electrophoretic deposition of bioactive glass–chitosan composite coating  

Microsoft Academic Search

Bioactive glass is coated on implant's surface to improve corrosion resistance and osseointegration, when placed in the body. Bioactive glass particles were synthesized through a sol–gel process and deposited along with chitosan to form a composite coating on a stainless steel substrate using electrophoretic deposition technique. Stable suspensions of chitosan–bioactive glass were prepared using bioactive glass particles (<1?m) and 0.5g\\/l

Mehrad Mehdipour; Abdollah Afshar

117

Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant  

Microsoft Academic Search

Preparation and characterization of bioactive glass nanopowder and development of bioglass coating for biocompatibility improvement of 316L stainless steel (SS) implant was the aim of this work. Bioactive glass nanopowder was made by sol–gel technique and transmission electron microscopy (TEM) technique was utilized to evaluate the powders shape and size. The prepared bioactive glass nanopowder was immersed in the simulated

M. H. Fathi; A. Doostmohammadi

2009-01-01

118

Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid.  

PubMed

A common ceramic processing technique, tape casting, was used to produce thin, flexible sheets of bioactive glass (Bioglass 45S5) particulate in an organic matrix. Tape casting offers the possibility of producing three-dimensional shapes, as the final material is built up layer by layer. Bioactive glass tapes were sintered together to form small discs for in vitro bioactivity testing in simulated body fluid (SBF). Four different sintering schedules were investigated: 800, 900, and 1000 degrees C for 3 h; and 1000 degrees C for 6 h. Each schedule produced a crystalline material of major phase Na2Ca2Si3O9. Tape cast and sintered bioactive glass-ceramic processed at 1000 degrees C formed crystalline hydroxyapatite layers after 20-24 h in SBF as indicated by Fourier transform infrared spectroscopy, Scanning electron microscopy, and EDS data. FTIR revealed that the greatest amount of hydroxyapatite formation after 2 h was observed for samples sintered at 900 degrees C. The differences in bioactive response were likely caused by the variation in the extent of sintering and, consequently, the amount of surface area available for reaction with SBF. PMID:12033609

Clupper, Daniel C; Mecholsky, John J; LaTorre, Guy P; Greenspan, David C

2002-06-01

119

Retention of insulin-like growth factor I bioactivity during the fabrication of sintered polymeric scaffolds.  

PubMed

The use of growth factors in tissue engineering offers an added benefit to cartilage regeneration. Growth factors, such as insulin-like growth factor I (IGF-I), increase cell proliferation and can therefore decrease the time it takes for cartilage tissue to regrow. In this study, IGF-I was released from poly(lactic-co-glycolic acid) (PLGA) scaffolds that were designed to have a decreased burst release often associated with tissue engineering scaffolds. The scaffolds were fabricated from IGF-I-loaded PLGA microspheres prepared by a double emulsion (W1/O/W2) technique. The microspheres were then compressed, sintered at 49 °C and salt leached. The bioactivity of soluble IGF-I was verified after being heat treated at 37, 43, 45, 49 and 60 °C. Additionally, the bioactivity of IGF-I was confirmed after being released from the sintered scaffolds. The triphasic release lasted 120 days resulting in 20%, 55% and 25% of the IGF-I being released during days 1-3, 4-58 and 59-120, respectively. Seeding bone marrow cells directly onto the IGF-I-loaded scaffolds showed an increase in cell proliferation, based on DNA content, leading to increased glycosaminoglycan production. The present results demonstrated that IGF-I remains active after being incorporated into heat-treated scaffolds, further enhancing tissue regeneration possibilities. PMID:24565886

Clark, Amanda; Milbrandt, Todd A; Hilt, J Zach; Puleo, David A

2014-04-01

120

Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation.  

PubMed

Glass-ceramic macroporous scaffolds for tissue engineering have been developed using a polyurethane sponge template and bioactive glass powders. The starting glass (CEL2) belongs to the system SiO(2)-P(2)O(5)-CaO-MgO-Na(2)O-K(2)O and has been synthesised by a conventional melting-quenching route. A slurry of CEL2 powder, polyvinyl alcohol and water has been prepared in order to coat, by impregnation, the polymeric template. An optimised thermal treatment was then use to remove the sponge and to sinter the glass powders, leading to a glass-ceramic replica of the template. Morphological observations, image analyses, mechanical tests and in vitro tests showed that the obtained devices are good candidates as scaffolds for bone-tissue engineering, in terms of pore-size distribution, pore interconnection, surface roughness, and both bioactivity and biocompatibility. In particular, a human osteoblast cell line (MG-63) seeded onto the scaffold after a standardised preconditioning route in simulated body fluid showed a high degree of cell proliferation and a good ability to produce calcium nodules. The obtained results were enhanced by the addition of bone morphogenetic proteins after cell seeding. PMID:17085090

Vitale-Brovarone, C; Verné, E; Robiglio, L; Appendino, P; Bassi, F; Martinasso, G; Muzio, G; Canuto, R

2007-03-01

121

Silver-containing mesoporous bioactive glass with improved antibacterial properties.  

PubMed

The aim of the present work is the study of the bacteriostatic/bactericidal effect of a silver-containing mesoporous bioactive glass obtained by evaporation-induced self-assembly and successive thermal stabilization. Samples of the manufactured mesophase were characterized by means of transmission electron microscopy and N? adsorption/desorption at 77 K, revealing structural and textural properties similar to SBA-15 mesoporous silica. Glass samples used for bioactivity experiments were put in contact with a standardized, commercially available cell culture medium instead of lab-produced simulated body fluid, and were then characterized by means of X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. All these analyses confirmed the development of a hydroxyl carbonate apatite layer on glass particles. Moreover, the investigated mesostructure showed a very good antibacterial effect against S. aureus strain, with a strong evidence of bactericidal activity already registered at 0.5 mg/mL of glass concentration. A hypothesis about the mechanism by which Ag affects the bacterial viability, based on the intermediate formation of crystalline AgCl, was also taken into account. With respect to what already reported in the literature, these findings claim a deeper insight into the possible use of silver-containing bioactive glasses as multifunctional ceramic coatings for orthopedic devices. PMID:23712538

Gargiulo, Nicola; Cusano, Angela Maria; Causa, Filippo; Caputo, Domenico; Netti, Paolo Antonio

2013-09-01

122

Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration  

PubMed Central

Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration.

Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping

2014-01-01

123

Effect of serum proteins on osteoblast adhesion to surface-modified bioactive glass and hydroxyapatite.  

PubMed

Previous studies indicate that modification of the surface of porous bioactive glass promotes osteoblast function. We hypothesize that bone formation on treated bioactive glass is due to the selective adsorption of serum attachment proteins. To test this hypothesis, we examined the profile of proteins adsorbed to treated bioactive glass and compared these proteins with those adsorbed to untreated bioactive glass and porous hydroxyapatite. Porous bioactive glass was treated with Tris-buffered electrolyte solution to generate a calcium phosphate-rich surface layer and then immersed in tissue-culture medium containing 10% serum. Proteins adsorbed to the ceramic surfaces were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis. Porous hydroxyapatite bound a higher amount of total protein than did the other substrates. However, surface-modified porous bioactive glass adsorbed more fibronectin than did hydroxyapatite. The effect of serum-protein adsorption on osteoblast adhesion to bioactive glass and hydroxyapatite was also evaluated. Cell adhesion to porous bioactive glass that was surface-modified and serum-treated was significantly greater than to porous bioactive glass that was either surface-modified or serum-treated. Furthermore, cell adhesion to porous bioactive glass treated to form the dual layer of calcium phosphate and serum protein was significantly higher than adhesion to porous hydroxyapatite with adsorbed serum protein. Results of the study strongly suggest that adsorption of serum fibronectin to the surface of modified porous bioactive glass coated with calcium phosphate may be responsible for enhanced osteoblast adhesion. PMID:10376721

El-Ghannam, A; Ducheyne, P; Shapiro, I M

1999-05-01

124

Imaging physicochemical reactions occurring at the pore surface in binary bioactive glass foams by micro ion beam analysis.  

PubMed

In this work, the physicochemical reactions occurring at the surface of bioactive sol-gel derived 3D glass scaffolds via a complete PIXE characterization were studied. 3D glass foams in the SiO(2)-CaO system were prepared by sol-gel route. Samples of glass scaffolds were soaked in biological fluids for periods up to 2 days. The surface changes were characterized using particle induced X-ray emission (PIXE) associated to Rutherford backscattering spectroscopy (RBS), which are efficient methods to perform quantitative chemical maps. Elemental maps of major and trace elements at the glass/biological fluids interface were obtained at the micrometer scale for every interaction time. Results revealed interconnected macropores and physicochemical reactions occurring at the surface of pores. The micro-PIXE-RBS characterization of the pores/biological fluids interface shows the glass dissolution and the rapid formation of a Ca rich layer with the presence of phosphorus that came from biological fluids. After 2 days, a calcium phosphate-rich layer containing magnesium is formed at the surface of the glass scaffolds. We demonstrate that quantities of phosphorus provided only by the biological medium have a significant impact on the development and the formation of the phosphocalcic layer. PMID:20527821

Jallot, E; Lao, J; John, L; Soulié, J; Moretto, Ph; Nedelec, J M

2010-06-01

125

Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass  

PubMed Central

Bioactive glass is used as both a bone filler and as a coating on implants, and has been advocated as a potential osteogenic scaffold for tissue engineering. Rat derived mesenchymal stem cells (MSCs) show elevated levels of levels of alkaline phosphatase activity when grown on 45S5 bioactive glass as compared to standard tissue culture plastic. Similarly, exposure to the dissolution products of 45S5 elevates alkaline phosphatase activity and other osteogenic markers in these cells. We investigated whether human MSCs grown under the same laboratory conditions as rat MSCs would exhibit similar responses. In general, human MSCs produce markedly less alkaline phosphatase activity than rat MSCs, regardless of cell culture conditions, and do not respond to the growth factor BMP-2 in the same way as rat MSCs. In our experiments there was no difference in alkaline phosphatase activity between human MSCs grown on 45S5 bioactive glass or tissue culture plastic, in samples from five different orthopaedic patients, regardless of culture media composition. Neither was there any consistent effect of 45S5 dissolution products on human MSCs from three different donors. These results suggest that the positive effects of bioactive glass on bone growth in human patients are not mediated by accelerated differentiation of mesenchymal stem cells.

Reilly, Gwendolen C.; Radin, Shula; Chen, Andrew T.; Ducheyne, Paul

2009-01-01

126

Preparation, characterization and cytocompatibility of bioactive coatings on porous calcium-silicate-hydrate scaffolds  

Microsoft Academic Search

The major goal of this research was to investigate and characterize the deposition of a biomimetic apatite-like coating onto the surface of 3D porous calcium-silicate-hydrate scaffolds with suitable bioactivity for potential application in bone tissue engineering. Basically, Portland cement, water, sand and lime were mixed for preparing the slurry which was poured into molds, and fine aluminum powder was added

Alexandra A. P. Mansur; Herman S. Mansur

2010-01-01

127

In vitro characterisation of zirconia coated by bioactive glass  

Microsoft Academic Search

An in vitro evaluation of a biomedical device, which combines the mechanical properties of zirconia substrates with the bioactivity of two different glass layers (AP40 and RKKP), was performed. In this work, data on different kinds of analysis were reported both on as-sintered zirconia samples and on RKKP- and AP40-coated zirconia substrates. Structure, composition and morphology of the apatite layer

M. Bosetti; E. Vernè; M. Ferraris; A. Ravaglioli; M. Cannas

2001-01-01

128

Crystallization kinetics of tape cast bioactive glass 45S5  

Microsoft Academic Search

The crystallization kinetics of tape cast bioactive glass 45S5 was studied using non-isothermal methods. XRD confirmed that Na2Ca2Si3O9 was formed during heating up to 1000 °C. The modified Kissinger equation was used to determine that the activation energy for crystallization was 350 kJ\\/mol. The Avrami exponent, n, was determined to be 0.96 (Ozawa method) and 0.94 (Augis–Bennett method). Such results

D. C. Clupper; L. L. Hench

2003-01-01

129

The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic- co-glycolic acid)\\/bioactive glass substrate for tissue engineering  

Microsoft Academic Search

Tissue engineering offers a promising new approach to bone tissue grafting. One material that has received attention in this regard is the polymer poly (lactic-co-glycolic acid) (PLGA). It has the advantage of controllable bioresorption and ease of processing. Another material of interest is bioactive glass (BG), which shows the ability to stimulate osteoblastic differentiation of osteoprogenitor cells. In this study,

Jun Yao; Shula Radin; Phoebe S. Leboy; Paul Ducheyne

2005-01-01

130

Effect of crystallinity on crack propagation and mineralization of bioactive glass 45S5  

NASA Astrophysics Data System (ADS)

Bioactive glasses are a type of ceramic material designed to be used as bioresorbable therapeutic bone implants. Thermal treatment of bioactive glass ceramics dictates many important features such as microstructure, degree of crystallinity, mechanical properties, and mineralization. This study investigates the effects of temperature, time, and heating rates on the crystallization kinetics of melt cast bioactive glass 45S5. Bulk crystallization (three dimensional crystallite formation) was found to always occur in bulk bioactive glass 45S5 irrespective of the processing conditions. A comparative study of crack paths in amorphous and crystalline phases of bioactive glass 45S5 revealed crack deflections and higher fracture resistance in partially crystallized bioactive glass. Such toughening is likely attributed to different crystallographic orientations of crystals or residual thermal mismatch strains. Furthermore, in vitro immersion testing of partially crystalline glass ceramic revealed higher adhesion capabilities of the mineralized layer formed on amorphous regions as compared to its crystalline counterpart.

Kashyap, Satadru

131

Synthesis of bioactive coatings on Ti substrates using glass enamel.  

PubMed

Bioactive coatings on titanium can be prepared by dispersing hydroxyapatite particles into a borosilicate glass enamel doped with TiO2. Adhesion of the coating is obtained when the titanium substrate has been preoxidized before enameling in such a way as to form a continuous TiO2-layer. Adhesion results from the diffusion of this TiO2-layer into the liquid glass during enameling. The evolution of the diffusion zone was followed by scanning electron microscopy and electron probe microanalysis. Adhesion disappears after a critical time of firing which corresponds to the completion of the dissolution of the TiO2-layer by the glass. The borosilicate glass wets the hydroxyapatite particles and adheres strongly to them after cooling. PMID:10150175

Van Landuyt, P; Streydio, J M; Delannay, F; Munting, E

1994-01-01

132

Composite films of gelatin and hydroxyapatite/bioactive glass for tissue-engineering applications.  

PubMed

Cross-linked gelatin/hydroxyapatite/bioactive glass (G/HA/CEL2) films with different compositions (100:0:0 (G1); 30:70:0 (G2); 30:0:70 (G3); 30:35:35 (G4) (%, w/w/w)) were prepared as scaffold materials for tissue-engineering applications, particularly in the field of bone repair. A bioactive glass with 45% SiO2, 3% P2O5, 26% CaO, 7% MgO, 15% Na2O and 4% K2O molar composition was selected (CEL2). Genipin was used as a cross-linker for the gelatin component. Samples were characterized in terms of their bioactivity, thermal properties, mechanical behaviour and cell compatibility. After only 3 days of incubation in simulated body fluid (SBF) at 37 degrees C, calcium phosphate crystals precipitated on G3 and G4 surfaces, due to the high CEL2 bioactivity. Cross-linking increased the thermal stability of the gelatine component as indicated by thermal analysis (denaturation temperature was 92.3 degrees C and 97.6 degrees C for not cross-linked and cross-linked gelatin, respectively). Furthermore, tensile modulus of samples increased with increasing the inorganic phase amount (from 4.72 +/- 0.23 MPa for G1 to 6.46 +/- 0.05 MPa for G4). The adhesion and proliferation of human primary osteoblasts on composite films was evaluated. Cell viability was high with respect to the control for all samples and the presence of hydroxyapatite exerted an important role in the ability of mineralization. PMID:20507716

Gentile, Piergiorgio; Chiono, Valeria; Boccafoschi, Francesca; Baino, Francesco; Vitale-Brovarone, Chiara; Vernè, Enrica; Barbani, Niccoletta; Ciardelli, Gianluca

2010-01-01

133

Release of Bioactive Adeno-Associated Virus from Fibrin Scaffolds: Effects of Fibrin Glue Concentrations  

PubMed Central

Fibrin glue (FG) is used in a variety of clinical applications and in the laboratory for localized and sustained release of factors potentially important for tissue engineering. However, the effect of different fibrinogen concentrations on FG scaffold delivery of bioactive adeno-associated viruses (AAVs) has not been established. This study was performed to test the hypothesis that FG concentration alters AAV release profiles, which affect AAV bioavailability. Gene transfer efficiency of AAV-GFP released from FG was measured using HEK-293 cells. Bioactivity of AAV transforming growth factor-beta1 (TGF-?1) released from FG was assessed using the mink lung cell assay, and by measuring induction of cartilage-specific gene expression in human mesenchymal stem cells (hMSCs). Nondiluted FG had longer clotting times, smaller pore sizes, thicker fibers, and slower dissolution rate, resulting in reduced release of AAV. AAV release and gene transfer efficiency was higher with 25% and 50% FG than with the 75% and 100% FG. AAV-TGF-?1 released from dilute-FG transduced hMSCs, resulting in higher concentrations of bioactive TGF-?1 and greater upregulation of cartilage-specific gene expression compared with hMSC from undiluted FG. This study, showing improved release, transduction efficiency, and chondrogenic effect on hMSC of bioactive AAV-TGF-?1 released from diluted FG, provides information important to optimization of this clinically available scaffold for therapeutic gene delivery, both in cartilage regeneration and for other tissue engineering applications.

Lee, Hannah H.; Haleem, Amgad M.; Yao, Veronica; Li, Juan; Xiao, Xiao

2011-01-01

134

Strength and toughness of tape cast bioactive glass 45S5 following heat treatment  

Microsoft Academic Search

Tape cast and sintered (TCS) bioactive glass 45S5 has been shown to exhibit in vitro bioactivity in SBF and Tris, despite the formation of a crystalline phase (Na2Ca2Si3O9) during heat treatment. In this work, the effective porosity, hardness and flexural strength of TCS bioactive ceramic (composed of bioactive glass 45S5 prior to heat treatment) was determined as a function of

D. C Clupper; L. L Hench; J. J Mecholsky

2004-01-01

135

A Sucrose-derived Scaffold for Multimerization of Bioactive Peptides  

PubMed Central

A spherical molecular scaffold bearing eight terminal alkyne groups was synthesized in one step from sucrose. One or more copies of a tetrapeptide azide, either N3(CH2)5(C=O)-His-dPhe-Arg-Trp-NH2 (MSH4) or N3(CH2)5(C=O)-Trp-Met-Asp-Phe-NH2 (CCK4), were attached to the scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Competitive binding assays using Eu-labeled probes based on the superpotent ligands Ser-Tyr-Ser-Nle-Glu-His-dPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2 (NDP-?-MSH) and Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH2 (CCK8) were used to study the interactions of monovalent and multivalent MSH4 and CCK4 constructs with Hek293 cells engineered to overexpress MC4R and CCK2R. All of the monovalent and multivalent MSH4 constructs exhibited binding comparable to that of the parental ligand, suggesting that either the ligand spacing was inappropriate for multivalent binding, or MSH4 is too weak a binder for a second “anchoring” binding event to occur before the monovalently-bound construct is released from the cell surface. In contrast with this behavior, monovalent CCK4 constructs were significantly less potent than the parental ligand, while multivalent CCK4 constructs were as or more potent than the parental ligand. These results are suggestive of multivalent binding, which may be due to increased residence times for monovalently bound CCK4 constructs on the cell surface relative to MSH4 constructs, the greater residence time being necessary for the establishment of multivalent binding.

Rao, Venkataramanarao; Alleti, Ramesh; Xu, Liping; Tafreshi, Narges K.; Morse, David L.; Gillies, Robert J.; Mash, Eugene A.

2011-01-01

136

The Influence of Peptide Modifications of Bioactive Glass on Human Mesenchymal Stem Cell Growth and Function  

NASA Astrophysics Data System (ADS)

Bioactive glass is known for its potential as a bone scaffold due to its ability to stimulate osteogenesis and induce bone formation. Broadening this potential to include the differentiation of human mesenchymal stem cells (hMSCs) to bone cells will enhance the healing process in bone defects. The surface of bioactive glass made by the sol-gel technique with the composition of 70% SiO2-30% CaO (mol %) was grafted with 3 peptides sequences in different combinations from proteins (fibronectin BMP-2 and BMP-9) that are known to promote the adhesion, differentiation and osteogenesis process. The experiment was done in two forms, a 2D non-porous thin film and a 3D nano-macroporous structure. hMSCs were grown on the materials for a total of five weeks. The 2D materials were tested for the expression of 3 osteogenic markers (osteopontin, osteocalcin and osteonectin) through immunocytochemistry. The 3D forms were monitored for cell's adhesion, morphology, spreading and proliferation by scanning electron microscopy, in addition to proliferation assay and alkaline phosphatase activity measurement. Results showed that hMSCs poorly adhered to the 2D thin films, but the few cells survived showed enhanced expression of the osteogenic markers. On the 3D form, cells showed enhanced proliferation at week one and more survival of the cells on the materials grafted with the adhesion peptide for the successive weeks in comparison to the positive control samples. Enhanced alkaline phosphatase activity was also detected compared to the negative control samples but were still below the positive control samples. In conclusion, the peptide grafting could increase the effect of bioactive glass but more peptide combinations should be examined to improve the effects on the differentiation and osteogenic activity of the hMSCs.

Ammar, Mohamed

137

Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.  

PubMed

Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. (29)Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. PMID:23910338

Miao, Guohou; Chen, Xiaofeng; Dong, Hua; Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing

2013-10-01

138

Soluble starch and composite starch Bioactive Glass 45S5 particles: Synthesis, bioactivity, and interaction with rat bone marrow cells  

Microsoft Academic Search

For many biomedical applications, biodegradable and simultaneously bioactive materials are desired. These materials should at the same time be able to support cell function and co-exist with the organism without triggering a relevant immune response.In this work, the synthesis as well as the bioactivity evaluation of newly developed polymer soluble potato starch and composite (with Bioactive Glass 45S5) micron-size particles

G. A. Silva; A. Pedro; F. J. Costa; N. M. Neves; O. P. Coutinho; R. L. Reis

2005-01-01

139

Bone cell responses of titanium blasted with bioactive glass particles.  

PubMed

Surface modification of Ti-based metals is an important issue in improving the bone cell responses and bone-implant integration. Blasting Ti with granules (mostly alumina) is commonly used to prepare a clean surface and provide a level of roughness. In this study, glass granules with a bioactive composition were used as the blasting source to improve the surface bioactivity and biocompatibility of a Ti substrate. Bioactive glass particles with a composition of 70SiO(2) * 25CaO * 5P(2)O(5) were prepared using a sol-gel method. A Ti disc was blasted with glass particles using a dental blasting unit (BG-Ti). A Ti disc blasted with commercial spherical-shaped glass (G-Ti) and a disc without blasting (Ti) were also prepared for comparison. The blasted Ti contained a large number of glass particles after the blasting process. The surface roughness of the samples in ascending order was G-Ti>BG-Ti>Ti. Murine-derived preosteoblasts (MC3T3-E1) were seeded on the samples, and the cell growth, differentiation, and mineralization behaviors were observed. The osteoblastic cells attached well and spread actively over all the sample groups with extensive cytoskeletal processes. The level of cell growth on the BG-Ti showed a continual increase with culturing up to 7 days, showing good cell viability. However, there was no significant difference (ANOVA, p<0.05) with respect to the G-Ti and Ti groups. In particular, the alkaline phosphatase (AP) activity of the cells was significantly higher on the BG-Ti than on the other groups after culturing for 14 days. Moreover, the mineralization behavior of the cells, as assessed by Alizarin S Red, was superior on the BG-Ti to that observed on the other groups after culturing for 14 and 28 days. Overall, the blasting of Ti with a bioactive glass composition is considered beneficial for producing substrates with enhanced osteogenic potential. PMID:19737811

Choi, Chang-Rak; Yu, Hye-Sun; Kim, Chul-Hwan; Lee, Jae-Hoon; Oh, Chung-Hun; Kim, Hae-Won; Lee, Hae-Hyoung

2010-08-01

140

A modular and supramolecular approach to bioactive scaffolds for tissue engineering  

NASA Astrophysics Data System (ADS)

Bioactive polymeric scaffolds are a prerequisite for the ultimate formation of functional tissues. Here, we show that supramolecular polymers based on quadruple hydrogen bonding ureido-pyrimidinone (UPy) moieties are eminently suitable for producing such bioactive materials owing to their low-temperature processability, favourable degradation and biocompatible behaviour. Particularly, the reversible nature of the hydrogen bonds allows for a modular approach to gaining control over cellular behaviour and activity both in vitro and in vivo. Bioactive materials are obtained by simply mixing UPy-functionalized polymers with UPy-modified biomolecules. Low-molecular-weight bis-UPy-oligocaprolactones with cell adhesion promoting UPy-Gly-Arg-Gly-Asp-Ser (UPy-GRGDS) and the synergistic UPy-Pro-His-Ser-Arg-Asn (UPy-PHSRN) peptide sequences are synthesized and studied. The in vitro results indicate strong and specific cell binding of fibroblasts to the UPy-functionalized bioactive materials containing both UPy-peptides. An even more striking effect is seen in vivo where the formation of single giant cells at the interface between bioactive material and tissue is triggered.

Dankers, Patricia Y. W.; Harmsen, Martin C.; Brouwer, Linda A.; van Luyn, Marja J. A.; Meijer, E. W.

2005-07-01

141

Biocompatibility and bioactivity of designer self-assembling nanofiber scaffold containing FGL motif for rat dorsal root ganglion neurons.  

PubMed

We report here a designer self-assembling peptide nanofiber scaffold developed specifically for nerve tissue engineering. We synthesized a peptide FGL-RADA containing FGL (EVYVVAENQQGKSKA), the motif of neural cell adhesion molecule (NCAM), and then attended to make a FGL nanofiber scaffold (FGL-NS) by assembling FGL-RADA with the peptide RADA-16 (AcN-RADARADARADARADA-CONH2). The microstructures of the scaffolds were tested using atomic force microscopy (AFM), and rheological properties of materials were accessed. Then we demonstrated the biocompatibility and bioactivity of FGL-NS for rat dorsal root ganglion neurons (DRGn). We found that the designer self-assembling peptide scaffold was noncytotoxic to neurons and able to promote adhesion and neurite sprouting of neurons. Our results indicate that the designer peptide scaffold containing FGL had excellent biocompatibility and bioactivity with adult sensory neurons and could be used for neuronal regeneration. PMID:20878982

Zou, Zhenwei; Zheng, Qixin; Wu, Yongchao; Guo, Xiaodong; Yang, Shuhua; Li, Jingfeng; Pan, Haitao

2010-12-15

142

A new class of bioactive glasses: Calcium-magnesium sulfophosphates.  

PubMed

Low-melting ionic sulfophosphate glasses from the system P2 O5 -SO4 -MO-Na2 O (M?=?Zn(2+) , Ca(2+) or Mg(2+) ) have been previously shown by us to allow tuneable aqueous dissolution and also enable processing temperatures well below 400°C. Sulfate ions are extremely safe for use in the body as decades of use of calcium sulfate bone grafts testifies and there is no known limit on their adult oral toxicity. This glass system therefore offers great potential for use as biomaterials, especially in organic-inorganic hybrid systems such as glass-polymer composites for tissue engineering or drug encapsulation and delivery applications. A compositional region was identified where stable sulfophosphates of the type P2 O5 -SO4 -(Ca, Mg, Zn)O-Na2 O can be fabricated. For these glasses, the viscosity-temperature-dependence, glass transformation temperatures (Tg ) and the onset of crystallization were evaluated as the primary processing parameters. As a first step in exploring their potential as a biomaterial, in this study we examine the bioactivity of several compositions of these glasses using fibroblast, monocyte, and osteoclast cell culture models to determine cellular responses in terms of attachment, proliferation, differentiation, and toxicity. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 2842-2848, 2014. PMID:24115563

Bassett, David C; Meszaros, Robert; Orzol, Dominik; Woy, Michel; Ling Zhang, Yu; Tiedemann, Kerstin; Wondraczek, Lothar; Komarova, Svetlana; Barralet, Jake E

2014-08-01

143

Cotton-wool-like bioactive glasses for bone regeneration.  

PubMed

Inorganic sol-gel solutions were electrospun to produce the first bioactive three-dimensional (3-D) scaffolds for bone tissue regeneration with a structure like cotton-wool (or cotton candy). This flexible 3-D fibrous structure is ideal for packing into complex defects. It also has large inter-fiber spaces to promote vascularization, penetration of cells and transport of nutrients throughout the scaffold. The 3-D fibrous structure was obtained by electrospinning, where the applied electric field and the instabilities exert tremendous force on the spinning jet, which is required to be viscoelastic to prevent jet break up. Previously, polymer binding agents were used with inorganic solutions to produce electrospun composite two-dimensional fibermats, requiring calcination to remove the polymer. This study presents novel reaction and processing conditions for producing a viscoelastic inorganic sol-gel solution that results in fibers by the entanglement of the intermolecularly overlapped nanosilica species in the solution, eliminating the need for a binder. Three-dimensional cotton-wool-like structures were only produced when solutions containing calcium nitrate were used, suggesting that the charge of the Ca(2+) ions had a significant effect. The resulting bioactive silica fibers had a narrow diameter range of 0.5-2?m and were nanoporous. A hydroxycarbonate apatite layer was formed on the fibers within the first 12h of soaking in simulated body fluid. MC3T3-E1 preosteoblast cells cultured on the fibers showed no adverse cytotoxic effect and they were observed to attach to and spread in the material. PMID:24874652

Poologasundarampillai, G; Wang, D; Li, S; Nakamura, J; Bradley, R; Lee, P D; Stevens, M M; McPhail, D S; Kasuga, T; Jones, J R

2014-08-01

144

Fluoride release and bioactivity evaluation of glass ionomer: Forsterite nanocomposite  

PubMed Central

Background: The most important limitation of glass ionomer cements (GICs) is the weak mechanical properties. Our previous research showed that higher mechanical properties could be achieved by addition of forsterite (Mg2SiO4) nanoparticles to ceramic part of GIC. The objective of the present study was to fabricate a glass ionomer- Mg2SiO4 nanocomposite and to evaluate the effect of addition of Mg2SiO4 nanoparticles on bioactivity and fluoride release behavior of prepared nanocomposite. Materials and Methods: Forsterite nanoparticles were made by sol-gel process. X-ray diffraction (XRD) technique was used in order to phase structure characterization and determination of grain size of Mg2SiO4 nanopowder. Nanocomposite was fabricated via adding 3wt.% of Mg2SiO4 nanoparticles to ceramic part of commercial GIC (Fuji II GC). Fluoride ion release and bioactivity of nanocomposite were measured using the artificial saliva and simulated body fluid (SBF), respectively. Bioactivity of specimens was investigated by Fourier transitioned-infrared spectroscopy (FTIR), scanning electronmicroscopy (SEM), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and registration of the changes in pH of soaking solution at the soaking period. Statistical analysis was carried out by one Way analysis of variance and differences were considered significant if P < 0.05. Results: The results of XRD analysis confirmed that nanocrystalline and pure Mg2SiO4 powder was obtained. Fluoride ion release evaluation showed that the values of released fluoride ions from nanocomposite are somewhat less than Fuji II GC. SEM images, pH changes of the SBF and results of the ICP-OES and FTIR tests confirmed the bioactivity of the nanocomposite. Statistical analysis showed that the differences between the results of all groups were significant (P < 0.05). Conclusion: Glass ionomer- Mg2SiO4 nanocomposite could be a good candidate for dentistry and orthopedic applications, through of desirable fluoride ion release and bioactivity.

Sayyedan, Fatemeh Sadat; Fathi, Mohammadhossein; Edris, Hossein; Doostmohammadi, Ali; Mortazavi, Vajihesadat; Shirani, Farzaneh

2013-01-01

145

Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.  

PubMed

Highly porous bioresorbable glass-ceramic scaffolds were prepared via sponge replication method by using an open-cell polyurethane foam as a template and phosphate-based glass powders. The glass, belonging to the P2O5-SiO2-CaO-MgO-Na2O-K2O system, was synthesized by a melting-quenching route, ground, and sieved to obtain powders with a grain size of less than 30??m. A slurry containing glass powders, polyvinyl alcohol, and water was prepared to coat the polymeric template. The removal of the polymer and the sintering of the glass powders were performed by a thermal treatment, in order to obtain an inorganic replica of the template structure. The structure and properties of the scaffold were investigated from structural, morphological, and mechanical viewpoints by means of X-ray diffraction, scanning electron microscopy, density measurements, image analysis, and compressive tests. The scaffolds exhibited a trabecular architecture that closely mimics the structure of a natural spongy bone. The solubility of the porous structures was assessed by soaking the samples in acellular simulated body fluid (SBF) and Tris-HCl for different time frames and then by assessing the scaffold weight loss. As far as the test in SBF is concerned, the nucleation of hydroxyapatite on the scaffold trabeculae demonstrates the bioactivity of the material. Biological tests were carried out using human bone marrow stromal cells to test the osteoconductivity of the material. The cells adhered to the scaffold struts and were metabolically active; it was found that cell differentiation over proliferation occurred. Therefore, the produced scaffolds, being biocompatible, bioactive, resorbable, and structurally similar to a spongy bone, can be proposed as interesting candidates for bone grafting. PMID:20566654

Vitale-Brovarone, Chiara; Ciapetti, Gabriela; Leonardi, Elisa; Baldini, Nicola; Bretcanu, Oana; Verné, Enrica; Baino, Francesco

2011-11-01

146

Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration.  

PubMed

Barrier membranes are used in periodontal applications with the aim of supporting periodontal regeneration by physically blocking migration of epithelial cells. The present work proposes a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce a novel guided tissue and bone regeneration membrane, fabricated by solvent casting. The CHT/BG-NP nanocomposite membranes are characterized in terms of water uptake, in mechanical tests, under simulated physiological conditions and in in vitro bioactivity tests. The addition of BG-NPs to CHT membranes decreased the mechanical potential of these membranes, but on the other hand the bioactivity improved. The membranes containing the BG-NPs induced the precipitation of bone-like apatite in simulated body fluid (SBF). Biological tests were carried out using human periodontal ligament cells and human bone marrow stromal cells. CHT/BG-NP composite membranes promoted cell metabolic activity and mineralization. The results indicate that the CHT/BG-NP composite membrane could potentially be used as a temporary guided tissue regeneration membrane in periodontal regeneration, with the possibility to induce bone regeneration. PMID:22771458

Mota, Joana; Yu, Na; Caridade, Sofia G; Luz, Gisela M; Gomes, Manuela E; Reis, Rui L; Jansen, John A; Walboomers, X Frank; Mano, João F

2012-11-01

147

Bioactive glass-polymer materials for controlled release of ibuprofen.  

PubMed

The ibuprofen (IB) release from samples composed by SiO2-CaO-P2O5 bioactive glass, poly-L-lactic acid (PLA), and polymethylmethacrylate (PMMA) has been studied. Data showed a fast anti-inflammatory drug release during the first 8h when these polyphasic materials are soaked in simulated body fluid (SBF). The analysis of the samples before and after different soaking periods in SBF demonstrates the growth of an apatite-like layer on the materials surface. The IB release rate is related with the growth kinetics of this layer, that is slower when the materials do not contain the biodegradable polymer PLA. On the other hand, different IB and/or glass contents do not affect the in vitro behavior of these materials. PMID:12834599

Ladrón de Guevara-Fernández, S; Ragel, C V; Vallet-Regí, M

2003-10-01

148

Nano-Hydroxyapatite/Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation  

NASA Astrophysics Data System (ADS)

Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work--fluoridated bioglass (Cao-P2O5-Na2O3-CaF2) and unfluoridated bioglass (Cao-P2O5-Na2O3) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm, respectively. The pellets were sintered at four different temperatures i.e. 1000 °C, 1150 °C, 1250 °C and 1350 °C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with ?-TCP (tricalcium phosphate) and ?-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 °C and 1150 °C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 °C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 °C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 °C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and sintered pellets, showing higher bioactivity in the green pellets.

Batra, Uma; Kapoor, Seema; Sharma, J. D.

2011-12-01

149

Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles.  

PubMed

The aim of the development of composite materials is to combine the most desired properties of two or more materials. In this work, the biodegradable character, good controlled-release properties, and natural origin of starch-based biomaterials are combined with the bioactive and bone-bonding properties of bioactive glass (BG). Novel, bioactive composite starch-BG microparticles were synthesized starting from a blend of starch and polylactic acid (50%/50% wt) with BG 45S5 powder using a simple emulsion method. Morphological and chemical characterization showed that these particles exhibited a spherical morphology with sizes up to 350 microm and that BG 45S5 was incorporated successfully into the composite particles. Upon immersion in a solution simulating body fluids, for periods up to 3 weeks, their bioactive nature was confirmed, as a calcium-phosphate layer resembling biological apatite was formed onto their surface. The short-term cytotoxicity of these materials was also tested by placing 24-h leachables of the materials extracted in culture medium in contact with a fibroblastic cell line (L929) up to 72 h. At this time period, two biochemical tests--MTT and total protein quantification--were performed. The results showed that these materials are not cytotoxic. These results constitute the basis of future encapsulation studies using bone-acting therapeutic agents such as bone morphogenetic proteins or other bone-relevant factors. The particles developed here may be very useful for applications in which controlled release, degradability, and bone-bonding ability are the main requirements. PMID:15293318

Silva, G A; Costa, F J; Coutinho, O P; Radin, S; Ducheyne, P; Reis, R L

2004-09-01

150

Assessment of polymer/bioactive glass-composite microporous spheres for tissue regeneration applications.  

PubMed

Conformable scaffold materials capable of rapid vascularization and tissue infiltration would be of value in the therapy of inaccessible wounds. Microporous spheres of poly(D,L-lactide-co-glycolide) (PLGA) containing bioactive glass (BG) were prepared using a thermally induced phase separation (TIPS) technique, and the bioactivity, in vitro degradation, and tissue integration of the microporous spheres were assessed. Microporous spheres containing 10% (w/w) BG stimulated a significant increase in vascular endothelial growth factor secretion from myofibroblasts consistently over a 10-day period (p < 0.01) compared with the neat PLGA microporous spheres. The microporous spheres degraded steadily in vitro over a 16-week period, with the neat PLGA microporous spheres retaining 82% of their original weight and microporous spheres containing 10% (w/w) BG retaining 77%. Both types of microporous spheres followed a similar pattern of size reduction throughout the degradation study, resulting in a 23% and 20% reduction after 16 weeks for the neat PLGA microporous spheres and PLGA microporous spheres containing 10% (w/w) BG, respectively (p < 0.01). After in vivo implantation into a subcutaneous wound model, the TIPS microporous spheres became rapidly integrated (interspherically and intraspherically) with host tissue, including vascularization of voids inside the microporous sphere. The unique properties of TIPS microporous spheres make them ideally suited for regenerative medicine applications where tissue augmentation is required. PMID:19061428

Keshaw, Hussila; Georgiou, George; Blaker, Jonny J; Forbes, Alastair; Knowles, Jonathan C; Day, Richard M

2009-07-01

151

Bioabsorbable scaffolds for guided bone regeneration and generation  

Microsoft Academic Search

Several different bioabsorbable scaffolds designed and manufactured for guided bone regeneration and generation have been developed. In order to enhance the bioactivity and potential osteoconductivity of the scaffolds, different bioabsorbable polymers, composites of polymer and bioactive glass, and textured surface structures of the manufactured devices and composites were investigated in in vitro studies and experimental animal models. Solid, self-reinforced polyglycolide

Minna Kellomäki; Henna Niiranen; Katja Puumanen; Nureddin Ashammakhi; Timo Waris; Pertti Törmälä

2000-01-01

152

The bioactivity of rhBMP-2 immobilized poly(lactide-co-glycolide) scaffolds.  

PubMed

In this study, immobilization of rhBMP-2 on polylactone-type polymer scaffolds via plasma treatment was investigated. To introduce proper functional groups on the surface of poly(lactide-co-glycolide) (PLGA) matrix, PLGA films were treated under different atmospheres, such as oxygen, ammonia and carbon dioxide, respectively, and then incubated in rhBMP-2 solution of de-ionized water. The effect of various plasma-treated PLGA films on binding rhBMP-2 was investigated and compared. It was found that PLGA binding ability to rhBMP-2 was enhanced by carbon dioxide and oxygen plasma treatment, and the binding ability of the oxygen plasma-treated PLGA (OT-PLGA) to rhBMP-2 was the strongest after oxygen plasma treating for 10 min under a power of 50 W. The changes of surface chemistry and surface topography of PLGA matrix induced by oxygen plasma treatment played main roles in improving the PLGA binding ability to rhBMP-2. The stability of rhBMP-2 bound on OT-PLGA film was determined under a dynamic condition by a Parallel Plate Flow Chamber. The result showed that the rhBMP-2 had been immobilized on the OT-PLGA film. Mouse OCT-1 osteoblast-like cell as a model cell was cultured on the rhBMP-2 bound OT-PLGA (OT-PLGA/BMP) in vitro, which showed that the bound rhBMP-2 via oxygen plasma treatment was bioactive. Depending on hydrophilicity and rich polar O-containing groups of the OT-PLGA scaffold, different amount of rhBMP-2 could be evenly immobilized on the surface of the OT-PLGA scaffold. The immobilized rhBMP-2 had stimulated differentiation of OCT-1 cell and accelerated process of mineralization of OCT-1 cell in the scaffold. It revealed the rhBMP-2 immobilized PLGA scaffold had good cell affinity. PMID:19232709

Shen, Hong; Hu, Xixue; Yang, Fei; Bei, Jianzhong; Wang, Shenguo

2009-06-01

153

Characterization of microrough bioactive glass surface: surface reactions and osteoblast responses in vitro.  

PubMed

The current study characterized the in vitro surface reactions of microroughened bioactive glasses and compared osteoblast cell responses between smooth and microrough surfaces. Three different bioactive glass compositions were used and surface microroughening was obtained using a novel chemical etching method. Porous bioactive glass specimens made of sintered microspheres were immersed in simulated body fluid (SBF) or Tris solutions for 1, 6, 24, 48, or 72 h, and the formation of reaction layers was studied by means of a scanning electron microscope/energy dispersive X-ray analysis (SEM/EDXA). Cell culture studies were performed on bioactive glass disks to examine the influence of surface microroughness on the attachment and proliferation of human osteoblast-like cells (MG-63). Cell attachment was evaluated by means of microscopic counting of in situ stained cells. Cell proliferation was analyzed with a nonradioactive cell proliferation assay combined with in situ staining and laser confocal microscopy. The microroughening of the bioactive glass surface increased the rate of the silica gel layer formation during the first hours of the immersion. The formation of calcium phosphate layer was equal between control and microroughened glass surfaces. In cell cultures on bioactive glass, the microrough surface enhanced the attachment of osteoblast-like cells but did not have an effect on the proliferation rate or morphology of the cells as compared with smooth glass surface. In conclusion, microroughening significantly accelerated the early formation of surface reactions on three bioactive glasses and had a positive effect on initial cell attachment. PMID:12209926

Itälä, A; Ylänen, H O; Yrjans, J; Heino, T; Hentunen, T; Hupa, M; Aro, H T

2002-12-01

154

Biologic significance of surface microroughing in bone incorporation of porous bioactive glass implants.  

PubMed

A novel chemical etching method was recently developed to create a controlled microrough surface on porous bioactive glass implants. Our earlier in vitro studies showed enhanced attachment of osteoblast-like MG63 cells on a microrough bioactive glass surface. The purpose of our current study was to confirm the in vivo significance of surface microroughening for bone bonding of bioactive glass. Porous bioactive glass cones made of sintered microspheres were surgically implanted in the anterior cortex of rabbit femurs. Peripheral quantitative computed tomography (pQCT), biomechanical push-out testing, histomorphometry, and electron microscopy (BEI-SEM) were used to analyze bone ingrowth and osseointegration at 7, 10, 14, 28, 56, and 84 days after implantation. The results showed that microroughening of the bioactive glass surface significantly enhanced the bone-bonding response of the biomaterial. The positive response was seen in one of the three bioactive glass compositions studied. The affinity index of new bone on the glass surface was significantly (p = 0.02) increased with a trend (p = 0.10) toward improved mechanical incorporation. New bone formation was dependent on the glass composition, and it was found to occur not only through the mechanism of bone ingrowth but also based on in situ osteogenesis within implant interstices. Based on these results, the procedure of microroughening could enhance the osteopromotive properties of certain bioactive glass compositions. PMID:14566790

Itälä, Ari; Koort, Jyri; Ylänen, Heimo O; Hupa, Mikko; Aro, Hannu T

2003-11-01

155

In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.  

PubMed

Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection. PMID:23820937

Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

2013-10-01

156

A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration  

PubMed Central

Background Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. Materials and Methods The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. Results CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. Conclusions A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration.

Zhao, Kang; Tang, Yufei; Cheng, Zhe; Chen, Jun; Zang, Yuan; Wu, Jianwei; Kong, Liang; Liu, Shuai; Lei, Wei; Wu, Zixiang

2013-01-01

157

A new synthesis route to high surface area sol gel bioactive glass through alcohol washing  

PubMed Central

Bioactive glass is one of the widely used bone repair material due to its unique properties like osteoconductivity, osteoinductivity and biodegradability. In this study bioactive glass is prepared by the sol gel process and stabilized by a novel method that involves a solvent instead of the conventional calcinations process. This study represents the first attempt to use this method for the stabilization of bioactive glass. The bioactive glass stabilized by this ethanol washing process was characterized for its physicochemical and biomimetic property in comparison with similar composition of calcined bioactive glass. The compositional similarity of the two stabilized glass powders was confirmed by spectroscopic and thermogravimetric analysis. Other physicochemical characterizations together with the cell culture studies with L929 fibroblast cells and bone marrow mesenchymal stem cells proved that the stabilization was achieved with the retention of its inherent bioactive potential. However an increase in the surface area of the glass powder was obtained as a result of this ethanol washing process and this add up to the success of the study. Hence the present study exhibits a promising route for high surface area bioactive glass for increasing biomimicity.

M. Mukundan, Lakshmi; Nirmal, Remya; Vaikkath, Dhanesh; Nair, Prabha D.

2013-01-01

158

Functionally graded bioactive glass coating on magnesia partially stabilized zirconia (Mg-PSZ) for enhanced biocompatibility.  

PubMed

The coating of magnesia partially stabilized zirconia (Mg-PSZ) with a bioactive glass was investigated for enhancing the bioactivity and bone-bonding ability of Mg-PSZ orthopedic implants. Individual coatings of three different bioactive glasses were prepared by depositing a concentrated suspension of the glass particles on Mg-PSZ substrates, followed by sintering at temperatures between 750 degrees C and 850 degrees C. Two silicate-based glass compositions (designated 13-93 and 6P68), and a borosilicate glass composition (H12) were investigated. The microstructure and adhesive strength of the coatings were characterized, and the in vitro bioactivity of the glasses was compared by measuring their conversion kinetics to hydroxyapatite in an aqueous phosphate solution at 37 degrees C. The 6P68 glass provided the highest adhesive strength (40 +/- 2 MPa) but showed very limited bioactivity, whereas the H12 glass had lower adhesive strength (18 +/- 2 MPa) but the highest bioactivity. A functionally graded coating, consisting of a 6P68 interfacial layer and an H12 surface layer, was developed to provide a coating with high adhesive strength coupled with rapid in vitro bioactivity. PMID:18157512

Rahaman, Mohamed N; Li, Yadong; Bal, B Sonny; Huang, Wenhai

2008-06-01

159

Silver coated bioactive glass particles for wound healing applications.  

PubMed

Bioactive glass particles (0.42SiO(2)-0.15CaO-0.23Na(2)O-0.20ZnO) of varying size (<90 ?m and 425-850 ?m) were synthesized and coated with silver (Ag) to produce Ag coated particles (PAg). These were compared against the uncoated analogous particles (Pcon.). Surface area analysis determined that Ag coating of the glass particles resulted in increased the surface area from 2.90 to 9.12 m(2)/g (90 ?m) and 1.09-7.71 m(2)/g (425-850 ?m). Scanning electron microscopy determined that the Ag coating remained at the surface and there was little diffusion through the bulk. Antibacterial (Escherichia coli--13 mm and Staphylococcus epidermidis--12 mm) and antifungal testing (Candida albicans--7.7 mm) determined that small Ag-coated glass particles exhibited the largest inhibition zones compared to uncoated particles. pH analysis determined an overall higher pH consider in the smaller particles, where after 24 h the large uncoated and Ag coated particles were 8.27 and 8.74 respectively, while the smaller uncoated and Ag coated particles attained pH values of 9.63 and 9.35 respectively. PMID:22426653

Wren, A W; Coughlan, A; Hassanzadeh, P; Towler, M R

2012-05-01

160

Anterior cervical dissectomy with intervertebral bioactive glass-ceramic prostheses replacement  

Microsoft Academic Search

The authors present their experiences with bioactive glass-ceramic prostheses in anterior cervical dissectomy (ACD) for treatment of a variety of cervical spinal disorders, including spondylosis, degenerative disc disease and trauma. This study was undertaken to compare the efficacy and advantage of bioactive glass-ceramic prostheses with classic tricortical autograft in ACD.From December 1997 until July 1998, 48 glass-ceramic prostheses were implanted

M. Vaverka; L. Hrabalek

2002-01-01

161

Fascinating properties of bioactive templated glasses: A new generation of nanostructured bioceramics  

NASA Astrophysics Data System (ADS)

This review article, dedicated to Prof. Osamu Terasaki, is focused on current trends in nanostructured bioceramics in the field of bone repair and regeneration. This communication overviews the main characteristics of so called "templated glasses" recently described which exhibit an outstanding bioactive behavior compared with conventional bioactive glasses. A deep study regarding the control of textural, structural and compositional properties in the nanometric scale in relation to the charming bioactivity properties described for these nanostructured materials is herein discussed. The possibility to tailor such properties offers a wide range of reactivity/bioactivity depending on the medical application requested.

Izquierdo-Barba, Isabel; Vallet-Regí, María

2011-04-01

162

Effects of acidic catalysts on the microstructure and biological property of sol–gel bioactive glass microspheres  

Microsoft Academic Search

Sol–gel bioactive glasses have been developed for bone tissue regeneration and drug delivery systems as they have the unique\\u000a mesoporous structure and high bioactivity in vitro. To develop more reliable drug delivery and bone tissue repair systems,\\u000a it is necessary to control the morphology and microstructure of bioactive glasses. For this purpose, bioactive glass microspheres\\u000a (BGMs) were prepared by a

Bo Lei; Xiaofeng Chen; Young-Hag Koh

2011-01-01

163

Influence of sodium content on the properties of bioactive glasses for use in air abrasion.  

PubMed

Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. PMID:24287337

Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

2013-12-01

164

Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes  

PubMed Central

The tissue engineering strategy is a new approach for the regeneration of cementum, which is essential for the regeneration of the periodontal tissue. This strategy involves the cell cultures present in this tissue, called cementoblasts, and located on an appropriate substrate for posterior implantation in the regeneration site. Prior studies from our research group have shown that the proliferation and viability of cementoblasts increase in the presence of the ionic dissolution products of bioactive glass particles. Therefore, one possible approach to obtaining adequate substrates for cementoblast cultures is the development of composite membranes containing bioactive glass. In the present study, composite films of chitosan-polyvinyl alcohol-bioactive glass containing different glass contents were developed. Glutaraldehyde was also added to allow for the formation of cross-links and changes in the degradation rate. The glass phase was introduced in the material by a sol-gel route, leading to an organic-inorganic hybrid. The films were characterized by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Bioactivity tests were also conducted by immersion of the films in simulated body fluid (SBF). Films containing up to 30% glass phase could be obtained. The formation of calcium phosphate was observed after the immersion of the films. A calcium phosphate layer formed more quickly on materials containing higher bioactive glass contents. In the hybrid containing 23% bioactive glass, a complete layer was formed after 24 h immersion, showing the high bioactivity of this material. However, despite the higher in vitro bioactivity, the film with 23% glass showed lower mechanical properties compared with films containing up to 17% glass.

Dias, Luisa L.S.; Mansur, Herman S.; Donnici, Claudio Luis; Pereira, Marivalda M.

2011-01-01

165

Tissue-engineered matrices as functional delivery systems: adsorption and release of bioactive proteins from degradable composite scaffolds.  

PubMed

A tissue-engineered bone graft should imitate the ideal autograft in both form and function. However, biomaterials that have appropriate chemical and mechanical properties for grafting applications often lack biological components that may enhance regeneration. The concept of adding proteins such as growth factors to scaffolds has therefore emerged as a possible solution to improve overall graft design. In this study, we investigated this concept by loading porous hydroxyapatite-poly(lactide-co-glycolide) (HA-PLAGA) scaffolds with a model protein, cytochrome c, and then studying its release in a phosphate-buffered saline solution. The HA-PLAGA scaffold has previously been shown to be bioactive, osteoconductive, and to have appropriate physical properties for tissue engineering applications. The loading experiments demonstrated that the HA-PLAGA scaffold could also function effectively as a substrate for protein adsorption and release. Scaffold protein adsorptive loading (as opposed to physical entrapment within the matrix) was directly related to levels of scaffold HA-content. The HA phase of the scaffold facilitated protein retention in the matrix following incubation in aqueous buffer for periods up to 8 weeks. Greater levels of protein retention time may improve the protein's effective activity by increasing the probability for protein-cell interactions. The ability to control protein loading and delivery simply via composition of the HA-PLAGA scaffold offers the potential of forming robust functionalized bone grafts. PMID:20198692

Cushnie, Emily K; Khan, Yusuf M; Laurencin, Cato T

2010-08-01

166

Synthesis of nano-bioactive glass-ceramic powders and its in vitro bioactivity study in bovine serum albumin protein  

NASA Astrophysics Data System (ADS)

Bioactive glasses and ceramics have proved to be able to chemically bond to living bone due to the formation of an apatite-like layer on its surface. The aim of this work was preparation and characterization of bioactive glass-ceramic by sol-gel method. Nano-bioglass-ceramic material was crushed into powder and its bioactivity was examined in vitro with respect to the ability of hydroxyapatite layer to form on the surface as a result of contact with bovine serum albumin (BSA) protein. The obtained nano-bioactive glass-ceramic was analyzed before and after contact with BSA solution. This study used scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis to examine its morphology, crystallinity and composition. The TEM images showed that the NBG particles size were 10-40 nm. Bioactivity of nanopowder was confirmed by SEM and XRD due to the presence of a rich bone-like apatite layer. Therefore, this nano-BSA-bioglass-ceramic composite material is promising for medical applications such as bone substitutes and drug carriers.

Nabian, Nima; Jahanshahi, Mohsen; Rabiee, Sayed Mahmood

2011-07-01

167

Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass.  

PubMed

Attempts to stimulate therapeutic angiogenesis using gene therapy or delivery of recombinant growth factors, such as vascular endothelial growth factor (VEGF), have failed to demonstrate unequivocal efficacy in human trials. Bioactive glass stimulates fibroblasts to secrete significantly increased amounts of angiogenic growth factors and therefore has a number of potential applications in therapeutic angiogenesis. The aim of this study was to assess whether it is possible to encapsulate specific quantities of bioactive glass and fibroblasts into alginate beads, which will secrete growth factors capable of stimulating angiogenesis. Human fibroblasts (CCD-18Co) were encapsulated in alginate beads with specific quantities of 45S5 bioactive glass and incubated in culture medium (0-17 days). The conditioned medium was collected and assayed for VEGF or used to assess its ability to stimulate angiogenesis by measuring the proliferation of human dermal microvascular endothelial cells. At 17 days the beads were lysed and the amount of VEGF retained by the beads measured. Fibroblasts encapsulated in alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass particles secreted increased quantities of VEGF compared with cells encapsulated with 0% or 1% (w/v) 45S5 bioactive glass particles. Lysed alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass contained significantly more VEGF (p<0.01) compared with beads containing no glass particles. Endothelial cell proliferation was significantly increased (p<0.01) by conditioned medium collected from alginate beads containing 0.1% (w/v) 45S5 bioactive glass particles. The results of this study demonstrate that bioactive glass and fibroblasts can be successfully incorporated into alginate beads for use in delivering angiogenic growth factors. With further optimization, this technique offers a novel delivery device for stimulating therapeutic angiogenesis. PMID:15664644

Keshaw, Hussila; Forbes, Alastair; Day, Richard M

2005-07-01

168

45S5 Bioglass ®-derived glass–ceramic scaffolds for bone tissue engineering  

Microsoft Academic Search

Three-dimensional (3D), highly porous, mechanically competent, bioactive and biodegradable scaffolds have been fabricated for the first time by the replication technique using 45S5 Bioglass® powder. Under an optimum sintering condition (1000°C\\/1h), nearly full densification of the foam struts occurred and fine crystals of Na2Ca2Si3O9 formed, which conferred the scaffolds the highest possible compressive and flexural strength for this foam structure.

Qizhi Z. Chen; Ian D. Thompson; Aldo R. Boccaccini

2006-01-01

169

Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules.  

PubMed

Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 ?g ml(-1). Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration. PMID:23100043

El-Fiqi, Ahmed; Kim, Tae-Hyun; Kim, Meeju; Eltohamy, Mohamed; Won, Jong-Eun; Lee, Eun-Jung; Kim, Hae-Won

2012-12-01

170

High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses  

Microsoft Academic Search

Bioactive glass-containing toothpastes for treating dentine hypersensitivity work by precipitating hydroxycarbonate apatite (HCA) onto the tooth surface, but concerns exist over the long-term durability of HCA in the mouth. Fluoride-containing bioactive glasses form fluorapatite (FAp) in physiological solutions, which is more chemically stable against acid attack. The influence of phosphate content on apatite formation was investigated by producing a low-phosphate

Mohammed Mneimne; Robert G. Hill; Andrew J. Bushby; Delia S. Brauer

2011-01-01

171

Bioactivity in glass\\/PMMA composites used as drug delivery system  

Microsoft Academic Search

Gentamicin sulfate has been incorporated in composites prepared from a SiO2–CaO–P2O5 bioactive glass and polymethylmethacrylate. Data showed that these materials could be used as drug delivery system, keeping the bioactive behavior of the glass. The composites supply high doses of the antibiotic during the first hours when they are soaked in simulated body fluid (SBF). Thereafter, a slower drug release

D. Arcos; C. V. Ragel; M. Vallet-Reg??

2001-01-01

172

Peripheral quantitative computed tomography in evaluation of bioactive glass incorporation with bone  

Microsoft Academic Search

This laboratory study examined the feasibility of non-invasive, in vivo peripheral quantitative computed tomography (pQCT) method in evaluation of bioactive glass incorporation with bone. An intramedullary defect model of the rat tibia was applied. The defect was filled with bioactive glass microspheres (diameter of 250–315?m) or was left to heal without filling (empty controls). The results of the pQCT analysis

Ville-Valtteri Välimäki; Niko Moritz; Jessica J. Yrjans; Michel Dalstra; Hannu T. Aro

2005-01-01

173

In-vitro Comparison of Cytotoxicity of Two Bioactive Glasses in Micropowder and Nanopowder forms.  

PubMed

The cytotoxicity of the biomaterials is a key issue that should be addressed prior to pre-clinical applications. This study was designed to evaluate and compare the cytotoxixity of two forms of bioactive glasses:nanopowder and micropowder. Human HGF1-PI53 gingival fibroblast cells were used to evaluate the cytotoxicity of 0.5, 1, 1.5, 2, 5, 10, 15 and 20 mg/ mL concentrations of the two bioactive glasses via MTT assay. The results were statistically analyzed using analysis of variance and Tukey's test. A p-value less than 0.05 was considered statistically significant. Results showed that two bioactive glasses had statistically significant differences at 5, 10, 15 and 20 mg/mL concentrations (p-value < 0.05) and there was no correlation between time and cell cytotoxicity of bioactive glasses (p-value > 0.05), using t-test and Spearman's correlation coefficient. We conclude that that cytotoxicity of nanopowder bioactive glass at concentrations ? 2 mg/mL was similar to micropowder bioactive glass at 24 and 48 h, however, it is more cytotoxic at concentrations ? 5 mg/mL in the first 48 h of applications. PMID:24250650

Rismanchian, Mansour; Khodaeian, Niloufar; Bahramian, Lida; Fathi, Mohammadhosein; Sadeghi-Aliabadi, Hojjat

2013-01-01

174

In-vitro Comparison of Cytotoxicity of Two Bioactive Glasses in Micropowder and Nanopowder forms  

PubMed Central

The cytotoxicity of the biomaterials is a key issue that should be addressed prior to pre-clinical applications. This study was designed to evaluate and compare the cytotoxixity of two forms of bioactive glasses:nanopowder and micropowder. Human HGF1-PI53 gingival fibroblast cells were used to evaluate the cytotoxicity of 0.5, 1, 1.5, 2, 5, 10, 15 and 20 mg/ mL concentrations of the two bioactive glasses via MTT assay. The results were statistically analyzed using analysis of variance and Tukey’s test. A p-value less than 0.05 was considered statistically significant. Results showed that two bioactive glasses had statistically significant differences at 5, 10, 15 and 20 mg/mL concentrations (p-value < 0.05) and there was no correlation between time and cell cytotoxicity of bioactive glasses (p-value > 0.05), using t-test and Spearman’s correlation coefficient. We conclude that that cytotoxicity of nanopowder bioactive glass at concentrations ? 2 mg/mL was similar to micropowder bioactive glass at 24 and 48 h, however, it is more cytotoxic at concentrations ? 5 mg/mL in the first 48 h of applications.

Rismanchian, Mansour; Khodaeian, Niloufar; Bahramian, Lida; Fathi, Mohammadhosein; Sadeghi-Aliabadi, Hojjat

2013-01-01

175

Structural modifications and biological compatibility of doped bio-active glasses.  

PubMed

The Raman laser and infrared spectra of doped bio-active glasses of the 45S5 type are presented and discussed. The spectroscopic results show that the doping agents cause the destruction of the basic glass structure and the consequent formation of SiO4(4-) units in the glass network. When the doped glasses have been immersed in a physiological solution (199 medium), a film of calcite forms on the glass surface and this modification is related to the type of doping agent used, decisive for close linking between metal supports and the glass. The presence of doping agents does not prevent the normal growth of the bone onto the surface of doped bioactive glasses. Histological tests show that tissue response to very fine powders of doped glasses increases up to 15 days more or less according to the structural modifications revealed by spectroscopic measurements. PMID:3224140

Krajewski, A; Ravaglioli, A; Bertoluzza, A; Monti, P; Battaglia, M A; Pizzoferrato, A; Olmi, R; Moroni, A

1988-11-01

176

Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings.  

PubMed

Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 ?m and 20-80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulated body fluid (SBF) for up to 21 days. Fourier transform infrared (FTIR) spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings. PMID:25007822

Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo R

2014-01-01

177

Dental applications of nanostructured bioactive glass and its composites  

PubMed Central

To improve treatments for bone or dental trauma, and for diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among these important properties are the capability of BG to form strong interfaces with both hard and soft tissues, and its release of ions upon dissolution. Recent developments in nanotechnology have introduced opportunities for materials sciences to advance dental and bone therapies. For example, the applications for BG expand as it becomes possible to finely control structures and physicochemical properties of materials at the molecular level. Here we review how the properties of these materials have been enhanced by the advent of nanotechnology; and how these developments are producing promising results in hard-tissue regeneration and development of innovative BG-based drug-delivery systems.

Polini, Alessandro; Bai, Hao; Tomsia, Antoni P.

2013-01-01

178

Structural characterization of the metal/glass interface in bioactive glass coatings on Ti-6Al-4V  

SciTech Connect

Coating Ti-based implants with bioactive materials promotes joining between the prostheses and the bone as well as increasing long-term implant stability. In the present work, the interface between Ti-6Al-4V and bioactive silicate glass coatings, prepared using a simple enameling technique, is analyzed. High-resolution transmission electron microscopy of the glass/alloy interface shows the formation of a reaction layer ({approx}150 nm thick) composed of Ti5Si3 nanoparticles with a size of {approx}20 nm. This nanostructured interface facilitates the formation of a stable joint between the glass coating and the alloy.

Oku, T.; Suganuma, K.; Wallemberg, L.R.; Tomsia, A.P.; Gomez-Vega, J.M.; Saiz, E.

1999-12-01

179

Structural characterization of the metal/glass interface in bioactive glass coatings on Ti-6Al-4V.  

PubMed

Coating Ti-based implants with bioactive materials promotes joining between the prostheses and the bone as well as increasing long-term implant stability. In the present work, the interface between Ti-6Al-4V and bioactive silicate glass coatings, prepared using a simple enameling technique, is analyzed. High-resolution transmission electron microscopy of the glass/alloy interface shows the formation of a reaction layer ( approximately 150 nm thick) composed of Ti5Si3 nanoparticles with a size of approximately 20 nm. This nanostructured interface facilitates the formation of a stable joint between the glass coating and the alloy. PMID:15348280

Oku, T; Suganuma, K; Wallenberg, L R; Tomsia, A P; Gomez-Vega, J M; Saiz, E

2001-05-01

180

Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation  

PubMed Central

Bioactive glasses are able to bond to bone through the formation of hydroxy-carbonate apatite in body fluids while strontium (Sr)-releasing bioactive glasses are of interest for patients suffering from osteoporosis, as Sr was shown to increase bone formation both in vitro and in vivo. A melt-derived glass series (SiO2–P2O5–CaO–Na2O) with 0–100% of calcium (Ca) replaced by Sr on a molar base was prepared. pH change, ion release and apatite formation during immersion of glass powder in simulated body fluid and Tris buffer at 37°C over up to 8 h were investigated and showed that substituting Sr for Ca increased glass dissolution and ion release, an effect owing to an expansion of the glass network caused by the larger ionic radius of Sr ions compared with Ca. Sr release increased linearly with Sr substitution, and apatite formation was enhanced significantly in the fully Sr-substituted glass, which allowed for enhanced osteoblast attachment as well as proliferation and control of osteoblast and osteoclast activity as shown previously. Studying the composition–structure–property relationship in bioactive glasses enables us to successfully design next-generation biomaterials that combine the bone regenerative properties of bioactive glasses with the release of therapeutically active Sr ions.

Fredholm, Yann C.; Karpukhina, Natalia; Brauer, Delia S.; Jones, Julian R.; Law, Robert V.; Hill, Robert G.

2012-01-01

181

Bioactivity of Apatite-Wollastonite Glass-Ceramics Produced by Melting Casting  

NASA Astrophysics Data System (ADS)

Glass-ceramics containing only apatite and wollastonite crystals were produced in the system MgO-CaO-SiO2-P2O5-F by the melt casting process. The bioactivity of the glass-ceramics was determined by immersing the glass-ceramics in a simulated body fluid (SBF) and by assessing the resulting apatite formation on the free surface after various immersion durations. A 12-?m-thick apatite layer formed on the surface of the glass-ceramic containing only apatite crystals after 20 days immersion in SBF. However, the thickness of the apatite layer formed on the surface of the glass-ceramic containing apatite and wollastonite crystals was 1 ?m. Results have shown that the bioactivity of glass-ceramic depends strongly on the type of crystal(s) developed during the glass-ceramic process and their proportion in the glassy matrix.

Park, Jongee; Ozturk, Abdullah

2013-02-01

182

Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications  

NASA Astrophysics Data System (ADS)

Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

Ottomeyer, Megan

183

TiO2-doped phosphate glass microcarriers: A stable bioactive substrate for expansion of adherent mammalian cells  

PubMed Central

Scalable expansion of cells for regenerative cell therapy or to produce large quantities for high-throughput screening remains a challenge for bioprocess engineers. Laboratory scale cell expansion using t-flasks requires frequent passaging that exposes cells to many poorly defined bioprocess forces that can cause damage or alter their phenotype. Microcarriers offer a potential solution to scalable production, lending themselves to cell culture processes more akin to fermentation, removing the need for frequent passaging throughout the expansion period. One main problem with microcarrier expansion, however, is the difficulty in harvesting cells at the end of the process. Therefore, therapies that rely on cell delivery using biomaterial scaffolds could benefit from a microcarrier expansion system whereby the cells and microcarriers are transplanted together. In the current study, we used bioactive glass microcarriers doped with 5% TiO2 that display a controlled rate of degradation and conducted experiments to assess biocompatibility and growth of primary fibroblast cells as a model for cell therapy products. We found that the microcarriers are highly biocompatible and facilitate cell growth in a gradual controlled manner. Therefore, even without additional biofunctionalization methods, Ti-doped bioactive glass microcarriers offer potential as a cell expansion platform.

Guedes, Joana C; Park, Jeong-Hui; Lakhkar, Nilay J; Kim, Hae-Won; Knowles, Jonathan C

2013-01-01

184

Borate Glass Supports the In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells  

Microsoft Academic Search

Bioactive ceramics have the ability to bond to surrounding bone and potentially enhance bone in-growth. Silicate based bioactive glasses and glass-ceramics, such as 45S5 bioactive glass, have been widely investigated for bone repair or as scaffolds for cell-based bone tissue engineering. Recent data have demonstrated that silica-free borate glasses also exhibit bioactive behavior and have been shown to convert to

Nicholas W. Marion; Wen Liang; Gwendolen C. Reilly; Delbert E. Day; Mohamed N. Rahaman; Jeremy J. Mao

2005-01-01

185

Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)\\/Bioglass ® composites  

Microsoft Academic Search

This study compares the effects of introducing micro (m-BG) and nanoscale (n-BG) bioactive glass particles on the various properties (thermal, mechanical and microstructural) of poly(3hydroxybutyrate) (P(3HB))\\/bioactive glass composite systems. P(3HB)\\/bioactive glass composite films with three different concentrations of m-BG and n-BG (10, 20 and 30wt%, respectively) were prepared by a solvent casting technique. The addition of n-BG particles had a

Superb K. Misra; Dirk Mohn; Tobias J. Brunner; Wendelin J. Stark; Sheryl E. Philip; Ipsita Roy; Vehid Salih; Jonathan C. Knowles; Aldo R. Boccaccini

2008-01-01

186

Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process  

NASA Astrophysics Data System (ADS)

Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

2011-01-01

187

Comprehensive Genetic Analysis of Early Host Body Reactions to the Bioactive and Bio-Inert Porous Scaffolds  

PubMed Central

To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1? and IL-10 are important cytokines in tissue responses to biomaterials because IL-1? promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1? was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations.

Ehashi, Tomo; Takemura, Taro; Hanagata, Nobutaka; Minowa, Takashi; Kobayashi, Hisatoshi; Ishihara, Kazuhiko; Yamaoka, Tetsuji

2014-01-01

188

Bioactive glass-coated silicone for percutaneous devices with improved tissue interaction  

NASA Astrophysics Data System (ADS)

The discovery of bioactive glasses, in the early 1970s, has produced a material that develops a strong adherent bond with soft tissue. Many medical applications currently use silicone as an implant material, but are hindered by the formation of fibrous scar tissue surrounding the device. This fibrous scar tissue can lead to pain, infection, and/or extrusion of these devices. Bioactive ceramic materials are inherently brittle and can not be used in applications where a flexible material is needed. Therefore, the coating of existing flexible silicone medical devices, like catheters, with a bioactive glass material would give the advantages of both. The research presented here is of methods used to coat silicone with a bioactive glass powder (Bioglass°ler) and the in vitro testing of those coatings. The bioactivity of these coatings was measured using scanning electron microscopy, inductively coupled plasma spectroscopy, and Fourier transform infrared spectroscopy. It was observed that hydroxyapatite, a bonelike apatite, was formed in vitro on both the bioactive glass particles and the silicone surface between these particles. From these results a new theory was developed that related the distance between particles on a surface with the formation of an apatite layer. A critical distance between particles for the formation of an apatite layer on the substrate exists. This critical distance is a function of both the particle size and composition. In addition, a method to coat silicone catheters with bioactive glass powder is also discussed. This coated catheter could ultimately be used for improved percutaneous access in peritoneal dialysis. The one barrier to greater peritoneal dialysis use and the reason many patients switch from peritoneal to hemodialysis is recurrent exit-site infections and subsequent peritonitis. These infections are caused by the lack of a tight seal and downgrowth of epidermal tissue around the catheter at the catheter-skin interface.

Marotta, James Scott

189

Bioactive glass-ionomer cement with potential therapeutic function to dentin capping mineralization.  

PubMed

We have developed a novel bioactive resin-modified glass-ionomer cement system with therapeutic function to dentin capping mineralization. In the system, the newly synthesized star-shape poly(acrylic acid) was formulated with water, Fuji II LC filler, and bioactive glass S53P4 to form resin-modified glass-ionomer cement. Compressive strength (CS) was used as a screening tool for evaluation. The commercial glass-ionomer cement Fuji II LC was used as a control. All the specimens were conditioned in simulated body fluid (SBF) at 37 degrees C prior to testing. The effect of aging in SBF on CS and microhardness of the cements was investigated. Scanning electron microscopy was used to examine the in vitro dentin surface changes caused by the incorporation of bioactive glass. The results show that the system not only provided strengths comparable to original commercial Fuji II LC cement but also allowed the cement to help mineralize the dentin in the presence of SBF. It appears that this bioactive glass-ionomer cement system has direct therapeutic impact on dental restorations that require root surface fillings. PMID:18821992

Xie, Dong; Zhao, Jun; Weng, Yiming; Park, Jong-Gu; Jiang, Hui; Platt, Jeffrey A

2008-10-01

190

Electrophoretic deposition of carbon nanotubes and bioactive glass particles for bioactive composite coatings  

Microsoft Academic Search

The production of bioactive coatings consisting of 45S5 Bioglass® and mutli-walled carbon nanotubes (CNTs) by electrophoretic deposition (EPD) was investigated. In addition to pure Bioglass® coatings, the co-deposition and sequential deposition of Bioglass® particles (size <5?m) and CNTs on stainless steel substrates were carried out in order to fabricate bioactive, nanostructured composite layers. The optimal experimental conditions were determined using

M. Charlotte Schausten; Decheng Meng; Rainer Telle; Aldo R. Boccaccini

2010-01-01

191

Macro-to-micro porous special bioactive glass and ceftriaxone–sulbactam composite drug delivery system for treatment of chronic osteomyelitis: an investigation through in vitro and in vivo animal trial  

Microsoft Academic Search

A systematic and extensive approach incorporating in vitro and in vivo experimentation to treat chronic osteomyelitis in animal\\u000a model were made using antibiotic loaded special bioactive glass porous scaffolds. After thorough characterization for porosity,\\u000a distribution, surface charge, a novel drug composite were infiltrated by using vacuum infiltration and freeze-drying method\\u000a which was subsequently analyzed by SEM–EDAX and studied for in

Biswanath Kundu; Samit Kumar Nandi; Sudip Dasgupta; Someswar Datta; Prasenjit Mukherjee; Subhasis Roy; Aruna Kumari Singh; Tapan Kumar Mandal; Partha Das; Rupnarayan Bhattacharya; Debabrata Basu

2011-01-01

192

Peripheral quantitative computed tomography in evaluation of bioactive glass incorporation with bone.  

PubMed

This laboratory study examined the feasibility of non-invasive, in vivo peripheral quantitative computed tomography (pQCT) method in evaluation of bioactive glass incorporation with bone. An intramedullary defect model of the rat tibia was applied. The defect was filled with bioactive glass microspheres (diameter of 250-315 microm) or was left to heal without filling (empty controls). The results of the pQCT analysis were compared with those of histomorphometry. In the control defects, there was a good correlation (r2 = 0.776, p < 0.001) between the pQCT density of the intramedullary space and the amount of new bone measured by histomorphometry. In the defects filled with bioactive glass, the use of thresholding techniques of the applied pQCT system (Stratec XCT Research M) failed in separation of new bone formation and bioactive glass particles. However, detailed analysis of the pQCT attenuation profiles showed time-related changes which well matched with the histomorphometric results of new bone formation both in control and bioactive glass filled defects. The biphasic pQCT attenuation profiles of bioactive glass filled defects could be separated into two distinct peaks. In statistical analysis of various variables, the center (i.e. the value of attenuation) of the major attenuation peak was found to be the most significant indicator of the incorporation process. The center of the peak initially decreased (during the first 4 weeks of healing) and thereafter increased. These two phases probably reflect the primary resorption and reactivity of the bioactive glass microspheres in vivo followed by secondary new bone formation on their surfaces. Based on these results, pQCT-method seems to be suitable for in vivo follow-up of the bioactive glass incorporation processes. Although the imaging technique is not able to discriminate the individual microspheres from invading new bone unambiguously, the attenuation profiling seems to give adequate information about the state of the incorporation process. This information may help to establish non-invasive imaging techniques of synthetic bone substitutes for preclinical and clinical testing of their efficacy. PMID:15941582

Välimäki, Ville-Valtteri; Moritz, Niko; Yrjans, Jessica J; Dalstra, Michel; Aro, Hannu T

2005-11-01

193

pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass.  

PubMed

Biomaterials made of biodegradable poly(?-hydroxyesters) such as poly(lactide-co-glycolide) (PLGA) are known to decrease the pH in the vicinity of the implants. Bioactive glass (BG) is being investigated as a counteracting agent buffering the acidic degradation products. However, in dentistry the question arises whether an antibacterial effect is rather obtained from pure PLGA or from BG/PLGA composites, as BG has been proved to be antimicrobial. In the present study the antimicrobial properties of electrospun PLGA and BG45S5/PLGA fibres were investigated using human oral bacteria (specified with mass spectrometry) incubated for up to 24 h. BG45S5 nanoparticles were prepared by flame spray synthesis. The change in colony-forming units (CFU) of the bacteria was correlated with the pH of the medium during incubation. The morphology and structure of the scaffolds as well as the appearance of the bacteria were followed bymicroscopy. Additionally, we studied if the presence of BG45S5 had an influence on the degradation speed of the polymer. Finally, it turned out that the pH increase induced by the presence of BG45S5 in the scaffold did not last long enough to show a reduction in CFU. On the contrary, pure PLGA demonstrated antibacterial properties that should be taken into consideration when designing biomaterials for dental applications. PMID:23816650

Hild, Nora; Tawakoli, Pune N; Halter, Jonas G; Sauer, Bärbel; Buchalla, Wolfgang; Stark, Wendelin J; Mohn, Dirk

2013-11-01

194

Review: emerging developments in the use of bioactive glasses for treating infected prosthetic joints.  

PubMed

Bacterial contamination of implanted orthopedic prostheses is a serious complication that requires prolonged systemic antibiotic therapy, major surgery to remove infected implants, bone reconstruction, and considerable morbidity. Local delivery of high doses of antibiotics using poly(methyl methacrylate) (PMMA) cement as the carrier, along with systemic antibiotics, is the standard treatment. However, PMMA is not biodegradable, and it can present a surface on which secondary bacterial infection can occur. PMMA spacers used to treat deep implant infections must be removed after resolution of the infection. Alternative carrier materials for antibiotics that could also restore deficient bone are therefore of interest. In this article, the development of bioactive glass-based materials as a delivery system for antibiotics is reviewed. Bioactive glass is osteoconductive, converts to hydroxyapatite, and heals to hard and soft tissues in vivo. Consequently, bioactive glass-based carriers can provide the combined functions of controlled local antibiotic delivery and bone restoration. Recently-developed borate bioactive glasses are of particular interest since they have controllable degradation rates coupled with desirable properties related to osteogenesis and angiogenesis. Such glasses have the potential for providing a new class of biomaterials, as substitutes for PMMA, in the treatment of deep bone infections. PMID:24907755

Rahaman, Mohamed N; Bal, B Sonny; Huang, Wenhai

2014-08-01

195

In Vitro and In Vivo Evaluations of Nano-Hydroxyapatite/Polyamide 66/Glass Fibre (n-HA/PA66/GF) as a Novel Bioactive Bone Screw  

PubMed Central

In this study, we prepared nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) bioactive bone screws. The microstructure, morphology and coating of the screws were characterised, and the adhesion, proliferation and viability of MC3T3-E1 cells on n-HA/PA66/GF scaffolds were determined using scanning electron microscope, CCK-8 assays and cellular immunofluorescence analysis. The results confirmed that n-HA/PA66/GF scaffolds were biocompatible and had no negative effect on MC3T3-E1 cells in vitro. To investigate the in vivo biocompatibility, internal fixation properties and osteogenesis of the bioactive screws, both n-HA/PA66/GF screws and metallic screws were used to repair intercondylar femur fractures in dogs. General photography, CT examination, micro-CT examination, histological staining and biomechanical assays were performed at 4, 8, 12 and 24 weeks after operation. The n-HA/PA66/GF screws exhibited good biocompatibility, high mechanical strength and extensive osteogenesis in the host bone. Moreover, 24 weeks after implantation, the maximum push-out load of the bioactive screws was greater than that of the metallic screws. As shown by their good cytocompatibility, excellent biomechanical strength and fast formation and ingrowth of new bone, n-HA/PA66/GF screws are thus suitable for orthopaedic clinical applications.

Su, Bao; Peng, Xiaohua; Jiang, Dianming; Wu, Jun; Qiao, Bo; Li, Weichao; Qi, Xiaotong

2013-01-01

196

Polymer powder processing of cryomilled polycaprolactone for solvent-free generation of homogeneous bioactive tissue engineering scaffolds.  

PubMed

Synthetic polymers used in tissue engineering require functionalization with bioactive molecules to elicit specific physiological reactions. These additives must be homogeneously dispersed in order to achieve enhanced composite mechanical performance and uniform cellular response. This work demonstrates the use of a solvent-free powder processing technique to form osteoinductive scaffolds from cryomilled polycaprolactone (PCL) and tricalcium phosphate (TCP). Cryomilling is performed to achieve micrometer-sized distribution of PCL and reduce melt viscosity, thus improving TCP distribution and improving structural integrity. A breakthrough is achieved in the successful fabrication of 70 weight percentage of TCP into a continuous film structure. Following compaction and melting, PCL/TCP composite scaffolds are found to display uniform distribution of TCP throughout the PCL matrix regardless of composition. Homogeneous spatial distribution is also achieved in fabricated 3D scaffolds. When seeded onto powder-processed PCL/TCP films, mesenchymal stem cells are found to undergo robust and uniform osteogenic differentiation, indicating the potential application of this approach to biofunctionalize scaffolds for tissue engineering applications. PMID:24740849

Lim, Jing; Chong, Mark Seow Khoon; Chan, Jerry Kok Yen; Teoh, Swee-Hin

2014-06-01

197

The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration  

PubMed Central

Heparin-conjugated electrospun poly(?-caprolactone) (PCL)/gelatin scaffolds were developed to provide controlled release of platelet-derived growth factor-BB (PDGF-BB) and allow prolonged bioactivity of this molecule. A mixture of PCL and gelatin was electrospun into three different morphologies. Next, heparin molecules were conjugated to the reactive surface of the scaffolds. This heparin-conjugated scaffold allowed the immobilization of PDGF-BB via electrostatic interaction. In vitro PDGF-BB release profiles indicated that passive physical adsorption of PDGF-BB to non-heparinized scaffolds resulted in an initial burst release of PDGF-BB within 5 days, which then leveled off. However, electrostatic interaction between PDGF-BB and the heparin-conjugated scaffolds gave rise to a sustained release of PDGF-BB over the course of 20 days without an initial burst. Moreover, PDGF-BB that was strongly bound to the heparin-conjugated scaffolds enhanced smooth muscle cell (SMC) proliferation. In addition, scaffolds composed of 3.0 µm diameter fibers that were immobilized with PDGF-BB accelerated SMC infiltration into the scaffold when compared to scaffolds composed of smaller diameter fibers or scaffolds that did not release PDGF-BB. We concluded that the combination of the large pore structure in the scaffolds and the heparin-mediated delivery of PDGF-BB provided the most effective cellular interactions through synergistic physical and chemical cues.

Lee, Jongman; Yoo, James J.; Atala, Anthony; Lee, Sang Jin

2013-01-01

198

TiO2-Bioactive Glass Nanostructure Composite Films Produced by a Sol-Gel Method: In Vitro Behavior and UV-Enhanced Bioactivity  

NASA Astrophysics Data System (ADS)

The aim of this study is to develop TiO2, titania, -based composite films for 316 stainless steel substrate and to improve their apatite-forming activity. A series of sol-gel derived bioactive glass (49S) and bioactive glass (49S)-TiO2 films were deposited on the 316L stainless steel substrates by the spin-coating method. Amorphous bioactive glass (49S) film and polycrystalline titania-bioactive glass composite films were obtained after annealing the deposited layers at 600 °C. The microstructure and in vitro bioactivity of the composite films as well as the effect of titania nanopowder content and ultra violet (UV) irradiation on the in vitro bioactivity were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). While bioactivity tests are often carried out within 28-day periods, SEM and EDS data show that, after soaking in SBF for just 7 days, the prepared composite surfaces are covered with an apatite layer. The grown apatite layer consists of spherulites formed by nanosized needle-like aggregates. Fourier transform infrared spectroscopy investigations confirm apatite formation and suggest that the formed apatite is carbonated.

Omid-Bakhtiari, Marzie; Nasr-Esfahani, Mojtaba; Nourmohamadi, Abolghasem

2014-01-01

199

High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses.  

PubMed

Bioactive glass-containing toothpastes for treating dentine hypersensitivity work by precipitating hydroxycarbonate apatite (HCA) onto the tooth surface, but concerns exist over the long-term durability of HCA in the mouth. Fluoride-containing bioactive glasses form fluorapatite (FAp) in physiological solutions, which is more chemically stable against acid attack. The influence of phosphate content on apatite formation was investigated by producing a low-phosphate (about 1 mol% P(2)O(5)) and a high-phosphate (about 6 mol%) series of melt-derived bioactive glasses in the system SiO(2)P(2)O(5)CaONa(2)O; increasing amounts of CaF(2) were added by keeping the ratio of all other components constant. pH change, ion release and apatite formation during immersion in Tris buffer at 37°C over up to 7 days were investigated. Crystal phases formed in Tris buffer were characterized using infrared spectroscopy, X-ray diffraction and solid-state nuclear magnetic resonance (NMR) spectroscopy. An increase in phosphate or fluoride content allowed for apatite formation at lower pH; fluoride enhanced apatite formation due to lower solubility of FAp compared to hydroxyapatite or HCA. High phosphate content glasses formed apatite significantly faster (within 6h) than low phosphate content glasses (within 3 days). In addition, an increase in phosphate content favoured apatite formation rather than fluorite (CaF(2)). (19)F magic angle spinning NMR showed the apatite formed by fluoride-containing glasses to be FAp, which makes these glasses of particular interest for dental applications. This study shows that by varying the phosphate content, the reactivity and apatite formation of bioactive glasses can be controlled successfully. PMID:21115144

Mneimne, Mohammed; Hill, Robert G; Bushby, Andrew J; Brauer, Delia S

2011-04-01

200

Preparation and characterization of a novel bioactive bone cement: Glass based nanoscale hydroxyapatite bone cement  

Microsoft Academic Search

A novel type of glass-based nanoscale hydorxypatite (HAP) bioactive bone cement (designed as GBNHAPC) was synthesized by adding nanoscale hydroxyapatite (HAP) crystalline (20–40 nm), into the self-setting glass-based bone cement (GBC). The inhibition rate of nanoscale HAP and micron HAP on osteosarcoma U2-OS cells was examined. The effects of nanoscale HAP on the crystal phase, microstructure and compressive strength of

Qiang Fu; Nai Zhou; Wenhai Huang; Deping Wang; Liying Zhang; Haifeng Li

2004-01-01

201

Bioactivity of thermal plasma synthesized bovine hydroxyapatite/glass ceramic composites  

NASA Astrophysics Data System (ADS)

Bone injuries and failures often require the inception of implant biomaterials. Research in this area is receiving increasing attention worldwide. A variety of artificial bone materials, such as metals, polymeric materials, composites and ceramics, are being explored to replace diseased bones. Calcium phosphate ceramics are currently used as biomaterials for many applications in both dentistry and orthopedics. Bioactive silicate-based glasses show a higher bioactive behaviour than calcium phosphate materials. It is very interesting to study the mixtures of HA and silicate-based glasses. In the present study; natural bovine hydroxyapatite / SiO2-CaO-MgO glass composites were produced using the Transferred arc plasma (TAP) melting method. TAP melting route is a brisk process of preparation of glass-ceramics in which the raw materials are melted in the plasma and crystallization of the melt occurs while cooling down at a much faster rate in relatively short processing times compared to the conventional methods of manufacture of glass ceramics/composites. It is well known that; one essential step to the understanding of the biological events occurring at the bone tissue/material interface is the biological investigation by in vitro tests. Cell lines are commonly used for biocompatibility tests, and are very efficient because of their reproducibility and culture facility. In this study, we report the results of a study on the response of primary cultures of human fibroblast cells to TAP melted bioactive glass ceramics.

Yoganand, C. P.; Selvarajan, V.; Rouabhia, Mahmoud; Cannillo, Valeria; Sola, Antonella

2010-02-01

202

Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model  

PubMed Central

Purpose Poly(lactic-co-glycolic acid) (PLGA) is excellent as a scaffolding matrix due to feasibility of processing and tunable biodegradability, yet the virgin scaffolds lack osteoconduction and osteoinduction. In this study, nano-hydroxyapatite (nHA) was coated on the interior surfaces of PLGA scaffolds in order to facilitate in vivo bone defect restoration using biomimetic ceramics while keeping the polyester skeleton of the scaffolds. Methods PLGA porous scaffolds were prepared and surface modification was carried out by incubation in modified simulated body fluids. The nHA coated PLGA scaffolds were compared to the virgin PLGA scaffolds both in vitro and in vivo. Viability and proliferation rate of bone marrow stromal cells of rabbits were examined. The constructs of scaffolds and autogenous bone marrow stromal cells were implanted into the segmental bone defect in the rabbit model, and the bone regeneration effects were observed. Results In contrast to the relative smooth pore surface of the virgin PLGA scaffold, a biomimetic hierarchical nanostructure was found on the surface of the interior pores of the nHA coated PLGA scaffolds by scanning electron microscopy. Both the viability and proliferation rate of the cells seeded in nHA coated PLGA scaffolds were higher than those in PLGA scaffolds. For bone defect repairing, the radius defects had, after 12 weeks implantation of nHA coated PLGA scaffolds, completely recuperated with significantly better bone formation than in the group of virgin PLGA scaffolds, as shown by X-ray, Micro-computerized tomography and histological examinations. Conclusion nHA coating on the interior pore surfaces can significantly improve the bioactivity of PLGA porous scaffolds.

Wang, De-Xin; He, Yao; Bi, Long; Qu, Ze-Hua; Zou, Ji-Wei; Pan, Zhen; Fan, Jun-Jun; Chen, Liang; Dong, Xin; Liu, Xiang-Nan; Pei, Guo-Xian; Ding, Jian-Dong

2013-01-01

203

Bioactive glass-ceramic containing crystalline apatite and wollastonite initiates biomineralization in bone cell cultures  

Microsoft Academic Search

Rat bone cells were cultured in the presence of bioactive glass-ceramic containing crystalline apatite and wollaston te. Scanning electron microscopy observations of the surface of the seeded ceramic disks revealed that cells attached, spread, and proliferated on the material surface. Soaking in cell-free culture medium showed that no change occurred in the surface structure. However, when cultured with bone cells

J. M. Sautier; T. Kokubo; T. Ohtsuki; J. R. Nefussi; H. Boulekbache; M. Oboeuf; S. Loty; C. Loty; N. Forest

1994-01-01

204

Preparation of bioactive glass ceramic beads with hierarchical pore structure using polymer self-assembly technique  

Microsoft Academic Search

Hierarchically mesoporous–macroporous bioactive glass ceramic beads with well interconnected pore structures were fabricated in hydrophobic solvent, chloroform, by the triblock copolymer templating and sol–gel techniques. The beads have oblong pore structure with a size of several hundreds ?m and these macropore are comprised of several tens of ?m pores, several of ?m pores, and several tens of nm pores. The

Hui-suk Yun; Seung-eon Kim; Young-taek Hyun

2009-01-01

205

An in vitro evaluation of selective demineralised enamel removal using bio-active glass air abrasion.  

PubMed

Unnecessary over-preparation of carious enamel often occurs clinically during operative caries management. The working hypothesis to be investigated in this study is the potential for bio-active glass air abrasion to remove selectively only demineralised enamel in artificial enamel lesions when compared to equivalent alumina air abrasion, so potentially minimising cavity over-preparation. Bisected artificial, paired smooth surface enamel lesions on ethics-approved, extracted sound human molars were created and subsequently air abraded with 27 ?m alumina (n?=?19) and bio-active glass (n?=?19). The difference between pre-operative lesion boundary and post-operative cavity margin was calculated following optical confocal fluorescent assessment of the lesion boundary. Data indicated mean% over-preparation (sound enamel removal) of 176% with alumina and 15.2% for bio-active glass (p?=?0.005). Bio-active glass abrasion removed completely the demineralised enamel from artificial lesions with clinically insignificant over-preparation of sound tissue, indicating technique selectivity towards grossly demineralised enamel. Alumina air abrasion resulted in substantial enamel removal in both sound and demineralised tissues indicating the operator selectivity required to use the techniques effectively in clinical practice. PMID:20941634

Banerjee, Avijit; Pabari, Hiten; Paolinelis, George; Thompson, Ian D; Watson, Timothy F

2011-12-01

206

Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content.  

PubMed

Inorganic phosphate (Pi) is a physiological regulator of osteoblasts and chondrocytes, suggesting that phosphate may contribute to the biological response of these cells to bioactive glasses like Bioglass 45S5, which is composed of 45% SiO2, 24.5% CaO, 24.5% Na2O, and 6% P2O5. We investigated the effect of varying the Pi content of bioactive glass disks (0%, 3%, 6% and 12% P2O5) using human osteoblast-like MG63 cells as the model. Cell number on 6% Pi disks was comparable to cultures on tissue culture plastic, but was reduced at higher and lower Pi concentrations. Alkaline phosphatase specific activity of isolated cells and cell layer lysates, as well as PGE2, TGF-beta1 and NO levels in conditioned media, were elevated in cultures grown on bioactive glass and varied with the Pi content. The greatest effects were observed in cultures grown on disks with the lowest Pi concentrations. Thus, growth on the bioactive glasses enhances cell function in comparison with tissue culture plastic and lower Pi content favors osteoblast differentiation. PMID:14751740

Lossdörfer, S; Schwartz, Z; Lohmann, C H; Greenspan, D C; Ranly, D M; Boyan, B D

2004-06-01

207

Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study  

NASA Astrophysics Data System (ADS)

In this research, submicron bioactive glass (BG) particles were synthesized by a sol-gel process and were then coated on a 316L stainless steel substrate using an electrophoretic deposition (EPD) technique. Stable suspension of bioactive glass powders in ethanol solvent was prepared by addition of triethanol amine (TEA), which increased zeta potential from 16.5 ± 1.6 to 20.3 ± 1.4 (mv). Thickness, structure and electrochemical behavior of the coating were characterized. SEM studies showed that increasing EPD voltage leads to a coating with more agglomerated particles, augmented porosity and micro cracks. The results of Fourier transformed infrared (FTIR) spectroscopy revealed the adsorption of TEA via methyl and amid groups on bioactive glass particles. Presence of bioactive glass coating reduced corrosion current density (icorr) and shifted corrosion potential (Ecorr) toward more noble values in artificial saliva at room temperature. Percent porosity of the coating measured by potentiodynamic polarization technique increased as EPD voltage was raised. The results of impedance spectroscopic studies demonstrated that the coating acts as a barrier layer in artificial saliva.

Mehdipour, Mehrad; Afshar, Abdollah; Mohebali, Milad

2012-10-01

208

Sintering temperature effects on the in vitro bioactive response of tape cast and sintered bioactive glass-ceramic in Tris buffer.  

PubMed

Tape casting procedures were used to form thin polymeric sheets (100 microm thickness) loaded with bioactive glass particulate. Blanks were punched from the sheets, stacked, laminated, and heated in air to 500 degrees C to remove the organic phase. The resulting bioactive glass discs were sintered at 800 degrees C, 900 degrees C, or 1000 degrees C. Because the material is built up in layers and can be machined in the green state, such a processing technique can be used to form complex-shaped materials. The in vitro bioactivity of the tape cast sintered (TCS) bioactive glass-ceramic discs was then assessed in Tris buffer. The sample surface area to volume buffer (SA/V) ratio was approximately 0.1 cm(2)/mL. Tape cast bioactive glass-ceramic sintered at 900 degrees C and 1000 degrees C formed crystalline hydroxyapatite layers after 24 h in Tris buffer as indicated by FTIR, SEM, and EDS analysis. Decreasing the SA/V ratio to 0.013 cm(2)/mL allowed for the formation of crystalline hydroxyapatite layers on the surface of 800C TCS bioactive glass-ceramic. Given the dependence of the bioactive response as a function of the processing schedule and SA/V ratio, it may be possible to tailor the response to that desired in vivo or in vitro for tissue engineering studies. Biaxial flexural strength of TCS bioactive glass-ceramic increased with increasing sintering temperature. Strength of samples sintered at 1000 degrees C for 3 h increased from 87 to 120 MPa after 2 weeks' immersion in Tris buffer. PMID:11553883

Clupper, D C; Mecholsky, J J; LaTorre, G P; Greenspan, D C

2001-12-15

209

Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications.  

PubMed

Poly(3-hydroxybutyrate) (P(3HB)) composites with bioactive glass particles and multiwall carbon nanotubes (MWCNTs) were prepared and used to identify whether the electrical properties of MWCNTs can be used to detect the bioactivity of P(3HB)/bioactive glass composites. The presence of MWCNTs (2-7 wt.%) increased the surface roughness of the composites. The presence of MWCNTs in low quantity enhanced MG-63 osteoblast-like cell attachment and proliferation compared to composites with higher concentration of MWCNTs. Current-voltage measurements demonstrated that the electrical resistance of the composites containing bioactive glass particles decreased over a 45-day immersion period in SBF, whereas composites without bioactive glass showed no significant change over the same period. PMID:19800427

Misra, Superb K; Ohashi, F; Valappil, Sabeel P; Knowles, Jonathan C; Roy, I; Silva, S Ravi P; Salih, Vehid; Boccaccini, Aldo R

2010-03-01

210

In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass.  

PubMed

The cytotoxicity of silver-containing borate bioactive glass was evaluated in vitro from the response of osteoblastic and fibroblastic cells in media containing the dissolution products of the glass. Glass frits containing 0-2 weight percent (wt %) Ag were prepared by a conventional melting and quenching process. The amount of Ag dissolved from the glass into a simulated body fluid (SBF), measured using atomic emission spectroscopy, increased rapidly within the first 48 h, but slowed considerably at longer times. Structural and microchemical analysis showed that the formation of a hydroxyapatite-like layer on the glass surface within 14 days of immersion in the SBF. The response of MC3T3-E1 and L929 cells to the dissolution products of the glass was evaluated using SEM observation of cell morphology, and assays of MTT hydrolysis, lactate dehydrogenase release, and alkaline phosphatase activity after incubation for up to 48 h. Cytotoxic effects were found for the borate glass containing 2 wt % Ag, but not for 0.75 and 1 wt % Ag. This borate glass containing up to ?1 wt % Ag could provide a coating material for bacterial inhibition and enhanced bioactivity of orthopaedic implant materials such as titanium. PMID:20878930

Luo, Shi-Hua; Xiao, Wei; Wei, Xiao-Juan; Jia, Wei-Tao; Zhang, Chang-Qing; Huang, Wen-Hai; Jin, Dong-Xu; Rahaman, Mohamed N; Day, Delbert E

2010-11-01

211

Evaluation of a bioactive bone-inducing material consisting of collagen scaffolds and collagen-binding bone morphogenetic protein 2.  

PubMed

Bioactive bone-inducing material (BBIM) is a collagen-based scaffold composed of demineralized bone matrix and collagen-binding domain bone morphogenetic protein 2 (BMP-2). BBIM is regarded as a promising bone-inducing scaffold to repair bone defects. In this work, we evaluated the biocompatibility and osteogenecity of BBIM. Using enzyme-linked immunosorbent assay, the level of BMP-2 on BBIM was detected and considered adequate. Kunming mice were used as the animal model to investigate the acute systemic toxicity, long-term bone regeneration, ectopic bone formation, and chronic systemic toxicity. Results show that BBIM induced no serious inflammatory reaction or acute and chronic systemic toxicity. Our analyses also demonstrated significant homogeneous ectopic bone formation as well as significantly high numbers of erythrocytes in the BBIM groups in the chronic systemic toxicity study, a phenomenon which may provide indirect proof of the bone regeneration capacity of BBIM, which may be considered as a bioactivity indicator in future studies. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3093-3101, 2014. PMID:24123791

Han, Qianqian; Zhang, Beibei; Chen, Bing; Dai, Jianwu; Xu, Jianxia; Wang, Chunren; Wang, Zhaoxu

2014-09-01

212

Image-Based Three-Dimensional Analysis to Characterize the Texture of Porous Scaffolds  

PubMed Central

The aim of the present study is to characterize the microstructure of composite scaffolds for bone tissue regeneration containing different ratios of chitosan/gelatin blend and bioactive glasses. Starting from realistic 3D models of the scaffolds reconstructed from micro-CT images, the level of heterogeneity of scaffold architecture is evaluated performing a lacunarity analysis. The results demonstrate that the presence of the bioactive glass component affects not only macroscopic features such as porosity, but mainly scaffold microarchitecture giving rise to structural heterogeneity, which could have an impact on the local cell-scaffold interaction and scaffold performances. The adopted approach allows to investigate the scale-dependent pore distribution within the scaffold and the related structural heterogeneity features, providing a comprehensive characterization of the scaffold texture.

Pennella, Francesco; Gallo, Diego; Ciardelli, Gianluca; Bignardi, Cristina; Audenino, Alberto; Morbiducci, Umberto

2014-01-01

213

Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications.  

PubMed

Nanotechnology offers a new strategy to develop novel bioactive materials, given that nano-scaled biomaterials exhibit an enhanced biocompatibility and bioactivity. In this work, we developed a method for the synthesis of spherical bioactive glass nanoparticles (BGNP) aimed at producing biomaterials for potential use in the repair of hard tissues. The BGNP were prepared using the sol-gel process based on the reaction of alkoxides and other precursors in aqueous media for obtaining the oxide-ternary system with the stoichiometric proportion of 60% SiO2, 36% CaO and 4% P2O5. The system was extensively characterized by Fourier transform infrared, x-ray diffraction and scanning electron microscope/energy-dispersive x-ray spectroscopy with regard to chemical composition, crystallinity and morphology. Moreover, the results suggested the BGNP to be highly bioactive, which was confirmed by the formation of a hydroxyapatite biomimetic layer on the material surfaces upon immersion in simulated body fluid solution. In addition, the bioactivity response toward the developed BGNPs was assessed by direct contact of osteoblast cells using resazurin and alkaline phosphatase assays. The new BGNP have presented a significant increase in the osteoblast in vitro cytocompatibility behavior as compared to similar micro-sized bioactive glass particles. Such improvement in the overall bioactive behavior of BGNP was attributed to the much higher surface area causing enhanced interactions at the cell-nanomaterial interfaces. Hence, based on the results, the BGNP produced are the biomaterials to be potentially utilized in hard tissue engineering applications. PMID:23502808

de Oliveira, Agda Aline Rocha; de Souza, Dickson Alves; Dias, Luisa Lima Silveira; de Carvalho, Sandhra Maria; Mansur, Herman Sander; de Magalhães Pereira, Marivalda

2013-04-01

214

Use of a bioactive scaffold for the repair of bone defects in a novel reproducible vertebral body defect model.  

PubMed

Bone defects in vertebral bodies (VB) usually occur after the reduction of fractures or are caused by bone disease. Besides the treatment of original disease, repair of the bone defect can restore the structure of VB and improve stabilization of the spine to protect the spinal cord nerves. To aid studies of the efficacy of bioengineering techniques for repair of VB, we developed a rat model with a critical size bone defect in VB. Air-motivated burrs were used to create two sizes of bone defect (2 x 3 x 1.5 mm; 2 x 3 x 3 mm) in the anterior part of VB in 6-month-old Fischer 344 rats. Quantitative CT analyses and histological assays demonstrated that neither defects self-repaired by 8 weeks post surgery. Moreover, the tendency of bone formation was monitored in the same animal by serial CT image evaluations, allowing us to demonstrate that there was significant bone growth during the 4- to 6-week period after the creation of the bone defect. We then implanted sintered poly(lactic-co-glycolic acid) (PLGA) microsphere scaffolds loaded with Matrigel with or without recombinant human bone morphogenetic protein 2 (rhBMP2; 2.0 microg rhBMP2/10 microL Matrigel/scaffold) into the bone defect (2 x 3 x 3 mm) in the VB. Bone formation was detected by quantitative analyses of serial CT images, which demonstrated bone growth in rats that received the rhBMP2 implant, in both surrounding areas and inside area of the scaffold. In addition to a rapid increase within 2 weeks of the operation, another significant bone formation period was found between 4 and 8 weeks after the implantation. By contrast, the control group that received the implant without rhBMP2 did not show similar bone formation tendencies. The results of CT analyses were confirmed by histological studies. This study suggests that a critical size bone defect of the anterior VB can be developed in a rat model. Characterization of this model demonstrated that 4 to 6 weeks after creation of the defect was a significant bone growth period for VB bone repair in rats. This animal model has further utility for the study of different biomaterials for VB bone repair. Implantation of a bioactive PLGA scaffold carrying rhBMP2 allowed more successful repair of the VB defect. Although further characterization studies are needed, the bioactive PLGA scaffold developed in this study will likely adapt easily to other in vivo osteogenesis applications. PMID:20580872

Liang, Haixiang; Wang, Kun; Shimer, Adam L; Li, Xudong; Balian, Gary; Shen, Francis H

2010-08-01

215

The influence of the phosphorus content on the bioactivity of sol-gel glass ceramics.  

PubMed

The aim of this work was to study the influence of the phosphorus on the crystallization and bioactivity of glass-ceramics obtained from sol-gel glasses. For this purpose two sol-gel glasses with a similar composition but one of them containing P2O5 (70% SiO2; 30% CaO and 70% SiO2; 26% CaO; 4% P2O5, mol%) were prepared. Pieces of these glasses were treated at temperatures ranging between 700 degrees C and 1400 degrees C for 3 h. The obtained materials were characterized by XRD, FTIR, SEM-EDS and the biaxial flexural strength was determined in samples heated at 1100 degrees C. In addition, an in vitro bioactivity study in simulated body fluid (SBF) was carried out. The results showed that phosphorus plays an important role in the crystallization of the glasses: it induced the crystallization of calcium phosphate phases, the stabilization of the wollastonite phase at high temperature as well as the crystallization of SiO2 phases at low temperatures. Moreover, the presence of phosphorus produced a heterogeneous distribution of defects in the pieces and, therefore, the flexural strength of samples containing this element decreased. Finally, glass-ceramics obtained from glasses containing phosphorus showed the fastest formation rate of the apatite layer when soaked in SBF. PMID:15276355

Padilla, S; Román, J; Carenas, A; Vallet-Regí, M

2005-02-01

216

Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1. Processing.  

PubMed

Silicate-based glasses with thermal expansion coefficients that match those of Ti6A14V were prepared and used to coat Ti6A14V by a simple enameling technique. Bioglass (BG) or hydroxyapatite (HA) particles were embedded on the coatings in order to enhance their bioactivity. HA particles were immersed partially during heating and remained firmly embedded on the coating after cooling. There was no apparent reaction at the glass/HA interface at the temperatures used in this work (800-840 degrees C). In contrast, BG particles softened and some infiltration into the glass coating took place during heat treatment. In this case, particles with sizes over 45 microm were required, otherwise the particles became hollow due to the infiltration and crystallization of the glass surface. The concentration of the particles on the coating was limited to 20% of surface coverage. Concentrations above this value resulted in cracked coatings due to excessive induced stress. Cracks did not propagate along the interfaces when coatings were subjected to Vickers indentation tests, indicating that the particle/glass and glass/metal interfaces exhibited strong bonds. Enameling, producing excellent glass/metal adhesion with well-attached bioactive particles on the surface, is a promising method of forming reliable and lasting implants which can endure substantial chemical and mechanical stresses. PMID:10632392

Gomez-Vega, J M; Saiz, E; Tomsia, A P; Marshall, G W; Marshall, S J

2000-01-01

217

A study of the mechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles.  

PubMed

The mechanical properties of highly porous (90% porosity) poly(l-lactide) (PLLA), poly(?-caprolactone) (PCL) and poly(l-lactide/?-caprolactone) (PLCL) were investigated. Young's modulus of non-porous PLLA, PCL and PLCL dropped from 2263.4, 183.7 and 5.7MPa to 16.8, 1.0 and 1.0MPa, respectively, for their ~90% porous counterparts. Elongation at break of PCL decreased noticeably with porosity fraction while PLCL maintained a highly elastomeric character and strain recovery capacity even in the presence of pores. Inorganic bioactive particles (hydroxyapatite or bioglass) were added to confer bioactivity to the aforementioned synthetic bioresorbable polymers, and their effect on the mechanical properties was also investigated. Addition of 15vol.% of inorganic bioactive particles increased the Young's modulus of highly porous PLLA from 16.2 to ~30MPa. On the contrary, the difference between Young's modulus of filled and unfilled PCL and PLCL scaffolds was not statistically significant. Finally, an in vitro study of the cytocompatibility and adhesion of adipose derived stem cells (ADSCs) was conducted. The observed viability and excellent adhesion of these cells to both porous and non-porous templates indicate that the employed materials can be good candidates for application in tissue engineering. PMID:25063141

Larrañaga, A; Diamanti, E; Rubio, E; Palomares, T; Alonso-Varona, A; Aldazabal, P; Martin, F J; Sarasua, J R

2014-09-01

218

Surface transformation of bioactive glass in bioreactors simulating microgravity conditions. Part I: experimental study.  

PubMed

Surface modified bioactive glass with surface properties akin to those of the bone mineral phase is an attractive candidate for use as a microcarrier material for 3-D growth of bone-like tissue in rotating wall vessel bioreactors (RWVs). The critical surface properties of this material are the result of reaction in solution. Because an RWV environment is completely different from conditions previously employed for bioactive glass testing, a detailed study of the surface reactions is warranted. Under properly chosen conditions, RWVs can also provide a simulated microgravity environment for the bioactive glass (BG) particles. In this sense, this study is also a report on the behavior of a bioactive material under microgravity conditions simulated on earth. A high aspect ratio vessel (HARV) and carefully selected experimental conditions enabled the simulation of microgravity in our laboratory. A complimentary numerical study was simultaneously conducted to ascertain the appropriateness of the experimental parameters (particle size, particle density, medium density, medium viscosity, and rotational speed) that ensure simulated microgravity conditions for the glass particles in the HARV. Physiological solutions (pH 7.4) with and without electrolytes, and also with serum proteins, were used to study the change in surface character resulting from simulated microgravity. Control tests at normal gravity, both static and dynamic, were also conducted. Solution and surface analyses revealed major effects of simulated microgravity. The rates of leaching of constituent ions (Si-, Ca-, and P-ions) were greatly increased in all solutions tested. The enhanced dissolution was followed by the enhanced formation of bone-like minerals at the BG surface. This enhancement is expected to affect adsorption of serum proteins and attachment molecules, which, in turn, may favorably affect bone cell adhesion and function. The findings of the study are important for the use of bioactive materials as microcarriers to generate and analyze 3-D bone-like tissue structures in bioreactors under microgravity conditions or otherwise. PMID:11590610

Radin, S; Ducheyne, P; Ayyaswamy, P S; Gao, H

2001-11-01

219

Fabrication and characterization of bioactive ?-Ca2SiO4/PHBV composite scaffolds.  

PubMed

A key challenge in tissue engineering is the construction of a scaffold with adequate properties which would mimic extracellular matrix (ECM) to induce the cells' efficient adhesion, proliferation and proper differentiation. Novel ?-Ca2SiO4/PHBV composite scaffolds were fabricated by integrating ?-Ca2SiO4 nanoparticles with PHBV backbone via a modified solvent casting-particulates leaching method, which generates interconnected porous structure and the high porosity, about 87%, of these scaffolds. Compared with PHBV scaffolds, ?-Ca2SiO4/PHBV composite scaffolds facilitate the adhesion of human osteoblast-like MG-63 cells due to their increased hydrophilicity. The ?-Ca2SiO4/PHBV composite scaffolds containing 2.5 or 5% ?-Ca2SiO4 nanoparticles significantly enhance the proliferation of MG-63 cells by stimulating the transcription of the transforming growth factor-?1 (TGF-?1) and bone morphogenetic protein-7 (BMP-7) genes. These scaffolds also induce early differentiation via promoting the transcription of alkaline phosphatase (ALP). The results suggest the potential application of ?-Ca2SiO4/PHBV composites in bone tissue engineering. PMID:23498261

Wang, Nana; Zhou, Zheng; Xia, Leilei; Dai, Yao; Liu, Hairong

2013-05-01

220

Molecular biologic comparison of new bone formation and resorption on microrough and smooth bioactive glass microspheres.  

PubMed

In a recent in vitro study, chemical microroughening of a bioactive glass surface was shown to enhance attachment of MG-63 osteoblastic cells to glass. The current study was designed to delineate the effects of microroughening on the gene expression patterns of bone markers during osteogenesis and new bone remodeling on bioactive glass surface in vivo. With the use of a rat model of paired comparison, a portion of the medullary canal in the proximal tibia was evacuated through cortical windows and filled with microroughened or smooth bioactive glass microspheres. The primary bone-healing response and subsequent remodeling were analyzed at 1, 2, and 8 weeks, respectively, by radiography, pQCT, histomorphometry, BEI-SEM, and molecular biologic analyses. The expression of various genes for bone matrix components (type I collagen, osteocalcin, osteopontin, osteonectin) and proteolytic enzymes (cathepsin K, MMP-9) were determined by Northern analysis of the respective mRNAs. Paired comparison showed significant differences in the mRNAs levels for specific bone matrix components at 2 weeks: osteopontin was significantly higher (p =.01) and osteonectin significantly lower (p =.05) in bones filled with microroughened microspheres than in those filled with smooth microspheres. Bones filled with microrough microspheres also showed significantly increased ratios of cathepsin K and MMP-9 (both markers of osteoclastic resorption) to type I collagen (p =.02 and p =.02, respectively) at 2 weeks and a significantly increased expression of MMP-9 at 8 weeks (p =.05). The pQCT, histomorphometric, and BEI-SEM analyses revealed no significant differences in the pattern of bone-healing response. Based on these results, microroughening of a bioactive glass surface could trigger temporal changes in the expression of specific genes especially by promoting the resorption part of new bone-remodeling processes. Future studies are needed to evaluate if the observed changes of gene expression are directly related to the microrough surface of any biomaterial or are biomaterial specific. PMID:12632386

Itälä, A; Välimäki, V V; Kiviranta, R; Ylänen, H O; Hupa, M; Vuorio, E; Aro, H T

2003-04-15

221

Effect of heat treatment on the properties of SiO2-CaO-MgO-P 2O 5 bioactive glasses.  

PubMed

Since the invention of 45S5 Bioglass, researchers never stopped exploring new generation bioactive glass (BG) materials for wider applications in regenerative medicine, among which a novel SiO(2)-CaO-MgO-P(2)O(5) bioactive glass (BG20) is an excellent candidate. However, apart from their biocompatibility and bioactivity, a porous structure is also a must for a tissue engineering scaffold in successfully fixing bone defect. The porosity is the outcome of the high temperature (500-1,000 °C) treatment in the fabricating process of the bioglass scaffold. Under the high temperature, the amorphous glass material will become crystallized at certain percentage in the glass matrix, and possibly leading to consequent changes in the mechanical strength, biodegradability and bioactivity. To elucidate the effect of phase transition on the change of the properties of BG20, the experiments in this report were designed to fine-tuning the heat treating temperatures to fabricate a series of BG20 powders with different crystallization structures. X-ray diffraction revealed a positive correlation between the heating temperature and the crystallization, as well as the compressive strength of the materials. In vitro degradation and ion analysis by ICP-AES demonstrated a similar releasing behavior of different ions including Mg(2+), Ca(2+) and Si(4+), which in common is the tendency of decreasing of the ion concentration along with the increasing of the treating temperature. Cell proliferation assay using both mouse fibroblasts (NIH3T3) and bone marrow stromal cells (BMSCs) showed little toxicity of the ionic extract of the BG20 powders at all the treating temperatures, while fibroblasts demonstrated a significant promoting in the percentage of proliferation. Furthermore, reverse-transcription and polymerase chain reaction analysis on two representative marker genes for early osteogenesis and endochondral ossification, respectively, type I collagen alpha 1 and Indian Hedge-hog, showed an interesting induction of both genes over their basal levels by the treatment of the ionic extract of BG20, implying its important capability in regulating the fate of differentiation of the BMSCs as a novel biomaterial in bone tissue engineering. PMID:22699712

Zhou, Yue; Li, Hongying; Lin, Kaili; Zhai, Wanying; Gu, Weiming; Chang, Jiang

2012-09-01

222

New bioactive glass-ceramic: synthesis and application in PMMA bone cement composites.  

PubMed

In present study, a new composition of glass-ceramic was synthesized based on the Na2O-CaO-SiO2-P2O5 glass system. Heat treatment of glass powder was carried out in 2 stages: 600 °C as the nucleation temperature and different temperature on crystallization at 850, 950 and 1000 °C. The glass-ceramic heat-treated at 950 °C was selected as bioactive filler in commercial PMMA bone cement; (PALACOS® LV) due to its ability to form 2 high crystallization phases in comparison with 850 and 1000 °C. The results of this newly glass-ceramic filled PMMA bone cement at 0-16 wt% of filler loading were compared with those of hydroxyapatite (HA). The effect of different filler loading on the setting properties was evaluated. The peak temperature during the polymerization of bone cement decreased when the liquid to powder (L/P) ratio was reduced. The setting time, however, did not show any trend when filler loading was increased. In contrast, dough time was observed to decrease with increased filler loading. Apatite morphology was observed on the surface of the glass-ceramic and selected cement after bioactivity test. PMID:22182792

Abd Samad, Hamizah; Jaafar, Mariatti; Othman, Radzali; Kawashita, Masakazu; Abdul Razak, Noor Hayati

2011-01-01

223

Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry  

PubMed Central

Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion.

Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat

2013-01-01

224

Multilayer approach to fabricate bioactive glass coatings on Ti alloys.  

National Technical Information Service (NTIS)

Glasses in the system Si-Ca-Na-Mg-P-K-O with thermal expansion coefficients close to that of Ti6Al4V were used to coat the titanium alloy by a simple enameling technique. Firings were done in air at temperatures between 800 and 840 C and times up to 1 min...

J. M. Gomez-Vega E. Saiz A. P. Tomsia G. W. Marshall S. J. Marshall

1998-01-01

225

Bioactive Nano-Fibrous Scaffolds for Bone and Cartilage Tissue Engineering  

NASA Astrophysics Data System (ADS)

Scaffolds that can mimic the structural features of natural extracellular matrix and can deliver biomolecules in a controlled fashion may provide cells with a favorable microenvironment to facilitate tissue regeneration. Biodegradable nanofibrous scaffolds with interconnected pore network have previously been developed in our laboratory to mimic collagen matrix and advantageously support both bone and cartilage regeneration. This dissertation project aims to expand both the structural complexity and the biomolecule delivery capacity of such biomimetic scaffolds for tissue engineering. We first developed a nanofibrous scaffold that can release an antibiotic (doxycycline) with a tunable release rate and a tunable dosage, which was demonstrated to be able to inhibit bacterial growth over a prolonged time period. We then developed a nanofibrous tissue-engineciing scaffold that can release basic fibroblast growth factor (bFGF) in a spatially and temporally controlled fashion. In a mouse subcutaneous implantation model, the bFGF-releasing scaffold was shown to enhance cell penetration, tissue ingrowth and angiogenesis. It was also found that both the dose and the release rate of bFGF play roles in the biologic function of the scaffold. After that, we developed a nanofibrous PLLA scaffold that can release both bone morphogenetic protein 7 (BMP-7) and platelet-derived growth factor (PDGF) with distinct dosages and release kinetics. It was demonstrated that BMP-7 and PDGF could synergistically enhance bone regeneration using a mouse ectopic bone formation model and a rat periodontal fenestration defect regeneration model. The regeneration outcome was dependent on the dosage, the ratio and the release kinetics of the two growth factors. Last, we developed an anisotropic composite scaffold with an upper layer mimicking the superficial zone of cartilage and a lower layer mimicking the middle zone of cartilage. The thin superficial layer was fabricated using an electrospinning technique to support a more parallel ECM orientation to the cartilage surface. The lower layer was fabricated using a phase-separation technique to support a more isotropic ECM distribution. Human bone marrow-derived mesenchymal stem cells (hMSCs) were seeded on this complex scaffold and cultured under chondrogenic conditions. The results showed that the composite scaffold was indeed able to support anisotropic cartilage tissue structure formation.

Feng, Kai

226

Evaluating optimal combination of clodronate and bioactive glass for dental application.  

PubMed

Both clodronate and bioactive glass are mostly used alone as treatment in various bone diseases but, they are also known to have beneficial effects in dental application. The same processes that lead to loss of bone can also result in alveolar bone loss. The object of this study was to define the optimal combination of clodronate and bioactive glass (BAG) to be used locally in dentistry. The evaluation was based on measurements and solid state properties obtained with pH, scanning electron microscopy (SEM), differential scanning calorimetric (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and Focused-ion beam (FIB) and energy dispersive X-ray spectroscopic (EDS) mapping. The results indicate that if too much calcium clodronate precipitation is formed, the activity of BAG is affected negatively. As there is more reaction surface to form calcium clodronate, similar to the amount of clodronate present, this reduces the bioactivity of BAG. Therefore, in dental treatment the most suitable BAG and clodronate combination product would have apatite (HA, hydroxyapatite) formation ability and amount of clodronate enough to enhance the bioactivity of BAG allowing HA formation. Based on combinations investigated, the one with 200mg clodronate and 1g BAG with particle size 0.5-0.8mm was chosen to be the most promising for local dental application. PMID:24726634

Rosenqvist, Kirsi; Airaksinen, Sari; Vehkamäki, Marko; Juppo, Anne Mari

2014-07-01

227

Studies on a novel bioactive glass and composite coating with hydroxyapatite on titanium based alloys: Effect of ?-sterilization on coating  

Microsoft Academic Search

A novel silicate based bioactive glass coating composition containing B2O3 and TiO2 having matching thermal properties with that of Ti6Al4V implants was developed and characterized. A conventional vitreous enamelling technique was used for coating small flat surface and curved surface of small rods. Hydroxyapatite (HAp) micro and nano-crystalline particles were used to prepare bioactive glass-HAp composite coating. Scratch testing was

Sanghamitra Bharati; Chidambaram Soundrapandian; Debabrata Basu; Someswar Datta

2009-01-01

228

Bioactive glass hybrids: a simple route towards the gelatin-SiO2-CaO system.  

PubMed

Bioactive glass hybrids are among the most promising materials for bone regeneration, but the incorporation of calcium, a key element for mineralization properties of the implant, into the inorganic part of the hybrid network is challenging. We present here a synthesis route towards both class I and II gelatin-bioactive glass hybrids allowing the efficient incorporation of calcium ions at low temperature. PMID:24961549

Dieudonné, Xavier; Montouillout, Valérie; Jallot, Edouard; Fayon, Franck; Lao, Jonathan

2014-08-14

229

In Vitro Attachment of Staphylococcus Epidermidis to Surgical Sutures with and without Ag-Containing Bioactive Glass Coating  

Microsoft Academic Search

The ability of a silver-doped bioactive glass (AgBG) coating to prevent bacterial colonization on surgical sutures was investigated in vitro. Bioactive glass powders, in the form of 45S5 Bioglass® and AgBG, were used to coat Mersilk® sutures using an optimized ‘in house’ slurry-dipping process. In vitro experiments were carried out using Staphylococcus epidermidis under both batch and flow conditions. While

Jonathan Pratten; Showan N. Nazhat; Jonny J. Blaker; Aldo R. Boccaccini

2004-01-01

230

In vitro surface reaction layer formation and dissolution of calcium phosphate cement–bioactive glass composites  

Microsoft Academic Search

Composites of hydrated calcium phosphate cement (CPC) and bioactive glass (BG) containing Si were immersed in vitro to study the effect of chemical composition on surface reaction layer formation and dissolution\\/precipitation behavior. The solutions used were 0.05 M tris hydroxymethyl aminomethane\\/HCl (tris buffer), tris buffer supplemented with plasma electrolyte (TE) with pH 7.4 at 37 °C, and this solution complemented

Changsheng Liu; Chien-Wen Chen; Paul Ducheyne

2008-01-01

231

Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition  

Microsoft Academic Search

Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO2 doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF* (?=248nm, ??7ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400–550°C) range. The depositions were performed

E. Gyorgy; S. Grigorescu; G. Socol; I. N. Mihailescu; D. Janackovic; A. Dindune; Z. Kanepe; E. Palcevskis; E. L. Zdrentu; S. M. Petrescu

2007-01-01

232

Bioactive glass coatings affect the behavior of osteoblast-like cells  

Microsoft Academic Search

Functionally graded coatings (FGCs) of bioactive glass on titanium alloy (Ti6Al4V) were fabricated by the enameling technique. These innovative coatings may be an alternative to plasma-sprayed, hydroxyapatite-coated implants. Previously we determined that a preconditioning treatment in simulated body fluid (SBF) helped to stabilize FGCs [Foppiano S et al. Acta Biomater 2006;2(2):133–42]. The primary goal of this work was to assess

Silvia Foppiano; Sally J. Marshall; Grayson W. Marshall; Eduardo Saiz; Antoni P. Tomsia

2007-01-01

233

Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass.  

PubMed

A multifunctional magnetic mesoporous bioactive glass (MMBG) has been widely used for a drug delivery system, but its biological properties have been rarely reported. Herein, the effects of mesopores and Fe3O4 nanoparticles on drug loading-release property, bactericidal property and biocompatibility have been investigated by using mesoporous bioactive glass (MBG) and non-mesoporous bioactive glass (NBG) as control samples. Both MMBG and MBG have better drug loading efficiency than NBG because they possess ordered mesoporous channels, big specific surface areas and high pore volumes. As compared with MBG, the Fe3O4 nanoparticles in MMBG not only provide magnetic property, but also improve sustained drug release property. For gentamicin-loaded MMBG (Gent-MMBG), the sustained release of gentamicin and the Fe3O4 nanoparticles minimize bacterial adhesion significantly and prevent biofilm formation against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). Moreover, the magnetic Fe3O4 nanoparticles in MMBG can promote crucial cell functions such as cell adhesion, spreading and proliferation. The excellent biocompatibility and drug delivery property of MMBG suggest that Gent-MMBG has great potentials for treatment of implant-associated infections. PMID:24907752

Liu, Yi-Zhuo; Li, Yang; Yu, Xi-Bin; Liu, Li-Na; Zhu, Zhen-An; Guo, Ya-Ping

2014-08-01

234

Synthesis of novel tricalcium phosphate-bioactive glass composite and functionalization with rhBMP-2.  

PubMed

A functionalization is required for calcium phosphate-based bone substitute materials to achieve an entire bone remodeling. In this study it was hypothesized that a tailored composite of tricalcium phosphate and a bioactive glass can be loaded sufficiently with rhBMP-2 for functionalization. A composite of 40 wt% tricalcium phosphate and 60 wt% bioactive glass resulted in two crystalline phases, wollastonite and rhenanite after sintering. SEM analysis of the composite's surface revealed a spongious bone-like morphology after treatment with different acids. RhBMP-2 was immobilized non-covalently by treating with chrome sulfuric acid (CSA) and 3-aminopropyltriethoxysilane (APS) and covalently by treating with CSA/APS, and additionally with 1,1'-carbonyldiimidazole. It was proved that samples containing non-covalently immobilized rhBMP-2 on the surface exhibit significant biological activity in contrast to the samples with covalently bound protein on the surface. We conclude that a tailored composite of tricalcium phosphate and bioactive glass can be loaded sufficiently with BMP-2. PMID:21308404

Schickle, Karolina; Zurlinden, Kristin; Bergmann, Christian; Lindner, Markus; Kirsten, Armin; Laub, Markus; Telle, Rainer; Jennissen, Herbert; Fischer, Horst

2011-04-01

235

Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.  

PubMed

The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses. PMID:23171477

Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

2012-12-18

236

Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses.  

PubMed

Phosphate-based bioactive glasses containing fluoride ions offer the potential of a biomaterial which combines the bioactive properties of the phosphate glass and the protection from dental caries by fluoride. We conduct accurate first-principles molecular dynamics simulations of two compositions of fluorinated phosphate-based glass to assess its suitability as a biomaterial. There is a substantial amount of F-P bonding and as a result the glass network will be structurally homogeneous on medium-range length scales, without the inhomogeneities which reduce the bioactivity of other fluorinated bioactive glasses. We observe a decrease in the network connectivity with increasing F content, caused by the replacement of bridging oxygen atoms by non-bridging fluorine atoms, but this decrease is small and can be opposed by an increase in the phosphate content. We conclude that the structural changes caused by the incorporation of fluoride into phosphate-based glasses will not adversely affect their bioactivity, suggesting that fluorinated phosphate glasses offer a superior alternative to their silicate-based counterparts. PMID:24802671

Christie, Jamieson K; Ainsworth, Richard I; de Leeuw, Nora H

2014-08-01

237

Design, multicomponent synthesis, and bioactivities of novel neonicotinoid analogues with 1,4-dihydropyridine scaffold.  

PubMed

Novel neonicotinoid analogues bearing a 1,4-dihydropridine scaffold were designed and synthesized by multicomponent reactions (MCRs) to enhance pi-pi stacking. The synthesized compounds were identified by (1)H NMR, (13)C NMR, high-resolution mass spectroscopy, and elemental analysis. Bioassay tests showed that some of them exhibited high insecticidal activities against pea aphid ( Aphis craccivora ). PMID:20000775

Zhang, Wenwen; Yang, Xiaobao; Chen, Weidong; Xu, Xiaoyong; Li, Lu; Zhai, Hongbin; Li, Zhong

2010-03-10

238

Characterisation of bioactive glass coatings on titanium substrates produced using a CO2 laser.  

PubMed

Titanium and its alloys are widely used in load-bearing bioinert implants. Bioactive glasses (BAGs) form a chemical bond with bone, but they are not suitable for load-bearing applications. Creating a BAG coating on a titanium implant could combine the best properties of both materials. The results tend to be poor when conventional firing methods are applied to coat titanium with BAG. A local application of heat to melt the glass can be achieved by a CO2 laser. A new method is introduced to create BAG coatings on titanium locally in a controlled manner, with a focused CO2 laser beam. The coatings produced by this method precipitate calcium phosphate in vitro. Processing parameters (number of coated layers, laser power, and processing atmosphere) providing a firm attachment of the glass and good in vitro bioactivity were identified. XRD analysis showed no crystallisation of the glass due to processing with the laser. EDXA indicated the formation of a calcium phosphate layer, which FTIR suggested to be a hydroxyapatite. The results show CO2 laser processing to be a promising technique for the manufacture of 30-40 microm BAG coatings on titanium. PMID:15387414

Moritz, N; Vedel, E; Ylänen, H; Jokinen, M; Hupa, M; Yli-Urpo, A

2004-07-01

239

A nanotectonics approach to produce hierarchically organized bioactive glass nanoparticles-based macrospheres  

NASA Astrophysics Data System (ADS)

Bioactive particles have been widely used in a series of biomedical applications due to their ability to promote bone-bonding and elicit favorable biological responses in therapies associated with the replacement and regeneration of mineralized tissues. In this work hierarchical architectures are prepared by an innovative methodology using SiO2-CaO sol-gel based nanoparticles. Inspired by colloidal crystals, spherical aggregates were formed on biomimetic superhydrophobic surfaces using bioactive glass nanoparticles (BG-NPs) able to promote bone regeneration. A highly ordered organization, a common feature of mineralized structures in Nature, was achieved at both nano- and microlevels, being the crystallization degree of the structures controlled by the evaporation rates taking place at room temperature (RT) or at 4 °C. The crystallization degree of the structures influenced the Ca/P ratio of the apatitic film formed at their surface, after 7 days of immersion in SBF. This allows the regulation of bioactive properties and the ability to release potential additives that could be also incorporated in such particles with a high efficiency. Such a versatile method to produce bioactive particles with controlled size and internal structure could open new possibilities in designing new spherical devices for orthopaedic applications, including tissue engineering.

Luz, Gisela M.; Mano, João F.

2012-09-01

240

Comparison of the Remineralizing Effects of Sodium Fluoride and Bioactive Glass Using Bioerodible Gel Systems  

PubMed Central

Background and aims A carious lesion is the accumulation of numerous episodes of de- and remineralization, rather than a unidirectional demineralization process. Tooth destruction can be arrested or reversed by the frequent delivery of fluoride or calcium/phosphorous ions to the tooth surface. The present study compared and evaluated the remineralization potential of sodium fluoride and bioactive glass delivered through a bioerodible gel system. Materials and methods Longitudinal sections of artificial carious lesions, created at the gingivofacial surface of 64 pri-mary maxillary incisors were photographed under a polarized light microscope and quantified for demineralization. The sec-tions were repositioned into the tooth form and randomly mounted in sets of four that simulated an arch form. The teeth were divided into 4 groups: 1) sodium fluoride films, 2) bioactive glass films, 3) control films placed interproximally and 4) non-treatment group. Following exposure to artificial saliva for 30 days, the lesions were again photographed and quantified as above. The recorded values were statistically analyzed using Student’s paired t-test for intragroup comparison, one-way ANOVA and Post-Hoc Tukey’s test for pairwise comparison. Results The sodium fluoride and bioactive gel groups showed significant remineralization compared with the control groups (P < 0.001). Conclusion Bioerodible gel films can be used to deliver remineralizing agents to enhance remineralization.

Ramashetty Prabhakar, Attiguppe; Arali, Veena

2009-01-01

241

A multilayer approach to fabricate bioactive glass coatings on Ti alloys  

SciTech Connect

Glasses in the system Si-Ca-Na-Mg-P-K-O with thermal expansion coefficients close to that of Ti6Al4V were used to coat the titanium alloy by a simple enameling technique. Firings were done in air at temperatures between 800 and 840 C and times up to 1 minute. Graded compositions were obtained by firing multilayered glass coatings. Hydroxyapatite (HA) particles were mixed with the glass powder and the mixture was placed on the outer surface of the coatings to render them more bioactive. Coatings with excellent adhesion to the substrate and able to form apatite when immersed in a simulated body fluid (SBF) can be fabricated by this methodology.

Gomez-Vega, J.M.; Saiz, E.; Tomsia, A.P.; Marshall, G.W.; Marshall, S.J.

1998-12-01

242

Comparison between the in vitro surface transformations of AP40 and RKKP bioactive glasses.  

PubMed

Two bioactive silica-phosphate glasses, AP40 and RKKP, were compared in their behaviour in simulated biological environment. Their chemical composition is practically identical, except that RKKP contains small amounts of amphoteric network-former oxides Ta2O5 and La2O3 (composition in wt% for AP40: beta-Ca3(PO4)2 24.50, SiO2 44.30, CaO 18.60, Na2O 4.60, K2O 0.19, MgO 2.82, CaF2 4.99; RKKP: beta-Ca3(PO4)2 24.23, SiO2 43.82, CaO 18.40, Na2O 4.55, K2O 0.19, MgO 2.79, CaF2 4.94, Ta2O5 0.99, La2O3 0.09). Previous investigations showed a better performance in osteopenic bone for RKKP. To gain more insight into these differences in biological behaviour, the in vitro bioactivity of the glasses was studied by treatment with a continuously replenished Hanks' Balanced Salt Solution (HBSS). The glasses were examined before and after HBSS treatment for 20 and 40 days by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Energy Dispersion (EDX), Raman and IR vibrational spectroscopies. Some slight but notable differences between the two glasses were observed after HBSS treatment. IR and EDX analyses showed that deposits formed on both glasses were composed of a calcium deficient carbonate-apatite; however, the layer formed on RKKP glass was found to be slightly more calcium deficient and thinner. EDX analysis evidenced the presence of a small percentage of F- ions only in the layers formed on the RKKP samples. The differences disclosed, although slight, can contribute to the understanding of the different biological behaviour previously observed. PMID:15744599

Krajewski, A; Ravaglioli, A; Tinti, A; Taddei, P; Mazzocchi, M; Martinetti, R; Fagnano, C; Fini, M

2005-02-01

243

Bioactive glasses-incorporated, core-shell-structured polypeptide/polysaccharide nanofibrous hydrogels.  

PubMed

Although the synthetic hydrogel materials capable of accelerating wound healing are being developed at a rapid pace, achieving inorganic-organic hybrid at nanoscale dimension in nanofibrous hydrogels is still a great challenge because of its notorious brittleness and microstructural stability in wet state. Here, we developed a new nanofibrous gelatin/bioactive glass (NF-GEL/BG) composite hydrogel by phase separation method and followed by arming the nanofibers network with counterionic chitosan-hyaluronic acid pairs for improving microstructural and thermal integrity. We achieve this feature by carrying an optimal balance of charges that allows the inorganic ion release in aqueous solution without minimal structure collapse. Therefore, such NF-GEL-based, polysaccharide-crosslinked bioactive hydrogel could afford a close biomimicry to the fibrous nanostructure and constituents of the hierarchically organized natural soft tissues to facilitate chronic, nonhealing wound treatment. PMID:23218343

Chen, Jian; Chen, Xiaoyi; Yang, Xianyan; Han, Chunmao; Gao, Changyou; Gou, Zhongru

2013-01-30

244

Hierarchical porous bioactive glasses/PLGA-magnetic SBA-15 for dual-drug release.  

PubMed

The hierarchical porous bioglass combined with magnetic SBA-15 was synthesized. The bioactive glass materials possess a hierarchical porous structure with the macroporous (50?m) and the mesoporous (3.86nm) structures derived from the plant template (cattail stem) and triblock polyethylene oxide-propylene oxide block copolymer (P123), respectively. Magnetic SBA-15 was synthesized by adopting the post assembly method using Fe(NO3)3 as iron source and ethylene glycol as reduction. After coating PLGA, PLGA-IBU-magnetic SBA-15 also possessed super-paramagnetism and the corresponding saturation magnetizations (Ms) could reach 2.6emug(-1). Metformin HCl (MH) and ibuprofen (IBU) were used as model drugs, and the drug release kinetics was studied. MH and IBU could release 60% and 85% from the sample respectively. The system shows excellent dual-drug controlled delivery performance and good bioactivity in vitro that leads to good potential application on bone regeneration. PMID:24863192

Ma, Jie; Lin, Huiming; Li, Xiaofeng; Bian, Chunhui; Xiang, Di; Han, Xiao; Wu, Xiaodan; Qu, Fengyu

2014-06-01

245

The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments.  

PubMed

The study aims at the manufacture and investigation of biodegradable glass microspheres incorporated with yttrium potentially useful for radionuclide therapy of cancer. The glass microspheres in the SiO2-Na2O-P2O5-CaO-K2O-MgO system containing yttrium were prepared by conventional melting and flame spheroidization. The behaviour of the yttrium silicate glass microspheres was investigated under in vitro conditions using simulated body fluid (SBF) and Tris buffer solution (TBS), for different periods of time, according to half-life time of the Y-90. The local structure of the glasses and the effect of yttrium on the biodegradability process were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy and Back Scattered Electron Imaging of Scanning Electron Microscopy (BEI-SEM) equipped with Energy Dispersive X-ray (EDX) analysis. UV-VIS spectrometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used for analyzing the release behaviour of silica and yttrium in the two used solutions. The results indicate that the addition of yttrium to a bioactive glass increases its structural stability which therefore, induced a different behaviour of the glasses in simulated body environments. PMID:17701304

Cacaina, D; Ylänen, H; Simon, S; Hupa, M

2008-03-01

246

Bone bonding in bioactive glass ceramics combined with a new synthesized agent TAK-778.  

PubMed

We studied the stimulatory effects of TAK-778, a new synthetic 3-benzothiepin derivative that promotes osteoblast differentiation, in the bonding of bone to bioactive glass ceramic implants in rabbit tibiae. Smooth-surfaced, rectangular plates (15 x 10 x 2 mm) made of apatite-wollastonite-containing glass ceramic were implanted bilaterally into the proximal metaphyses of rabbit tibiae. Sustained-release microcapsules containing TAK-778 were packed into the medullary cavity in one limb and untreated microcapsules were packed into the contralateral limb to serve as a paired control. At 4, 8, and 16 weeks after implantation, bonding at the bone/implant interfaces was evaluated using a detaching test and histological examination of undecalcified specimens. The tensile failure load increased during weeks 4 to 16 in both groups; the tensile failure load in the TAK-778-treated group was significantly greater than that in the control group at each interval after implantation. Histologically, the TAK-778-treated specimens showed greater active new bone formation mainly in the medullary cavity and more extensive bonding between the implant and bone than the untreated specimens. The results of this study suggest that adding the bone formation-promoting TAK-778 to bioactive glass ceramic implants may significantly accelerate bone apposition to the implants and improve the bonding process at the interface. This would help to establish earlier and stronger bonding of orthopedic ceramic implants to the surrounding bone tissue. PMID:11484193

Kato, H; Neo, M; Tamura, J; Nakamura, T

2001-11-01

247

Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process  

NASA Astrophysics Data System (ADS)

Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO2-CaO-P2O5 mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1-9.1 wt% and significantly decreased from 328.7 to 204.0 m2/g in the concentration range of 9.1-12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

Shih, Chi-Chung; Chien, Chi-Sheng; Kung, Jung-Chang; Chen, Jian-Chih; Chang, Shy-Shin; Lu, Pei-Shan; Shih, Chi-Jen

2013-01-01

248

Enhanced osseous implant fixation with strontium-substituted bioactive glass coating.  

PubMed

The use of endosseous implants is firmly established in skeletal reconstructive surgery, with rapid and permanent fixation of prostheses being a highly desirable feature. Implant coatings composed of hydroxyapatite (HA) have become the standard and have been used with some success in prolonging the time to revision surgery, but aseptic loosening remains a significant issue. The development of a new generation of more biologically active coatings is a promising approach for tackling this problem. Bioactive glasses are an ideal candidate material due to the osteostimulative properties of their dissolution products. However, to date, they have not been formulated with stability to devitrification or thermal expansion coefficients (TECs) that are suitable for stable coating onto metal implants while still retaining their bioactive properties. Here, we present a strontium-substituted bioactive glass (SrBG) implant coating which has been designed to encourage peri-implant bone formation and with a TEC similar to that of HA. The coating can be successfully applied to roughened Ti6Al4V and after implantation into the distal femur and proximal tibia of twenty-seven New Zealand White rabbits for 6, 12, or 24 weeks, it produced no adverse tissue reaction. The glass dissolved over a 6 week period, stimulating enhanced peri-implant bone formation compared with matched HA coated implants in the contralateral limb. Furthermore, superior mechanical fixation was evident in the SrBG group after 24 weeks of implantation. We propose that this coating has the potential to enhance implant fixation in a variety of orthopedic reconstructive surgery applications. PMID:24471799

Newman, Simon D; Lotfibakhshaiesh, Nasrin; O'Donnell, Matthew; Walboomers, X Frank; Horwood, Nicole; Jansen, John A; Amis, Andrew A; Cobb, Justin P; Stevens, Molly M

2014-07-01

249

In situ pH within particle beds of bioactive glasses.  

PubMed

The in vitro behavior of three bioactive glasses with seven particle size distributions was studied by measuring the in situ pH inside the particle beds for 48h in simulated body fluid (SBF). After immersion, the surface of the particles was characterized with a field emission scanning electron microscope equipped with an energy-dispersive X-ray analyzer. In addition, the results were compared with the reactions of the same glasses formed as plates. A similar trend in pH as a function of immersion time was observed for all systems. However, the pH inside the particle beds was markedly higher than that in the bulk SBF of the plates. The pH decreased as power functions with increasing particle size, i.e. with decreasing surface area. The in vitro reactivity expressed as layer formation strongly depended on the particle size and glass composition. The average thickness of the total reaction layer decreased with the increase in sample surface area. Well-developed silica and calcium phosphate layers typically observed on glass plates could be detected only on some particles freely exposed to the solution. No distinct reaction layers were observed on the finest particles, possibly because the layers spread out on the large surface area. Differences in the properties of the bulk SBF and the solution inside the particle bed were negligible for particles larger than 800microm. The results enhance our understanding of the in vitro reactions of bioactive glasses in various product forms and sizes. PMID:18502193

Zhang, Di; Hupa, Mikko; Hupa, Leena

2008-09-01

250

In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO 2 -CaO-Al 2 O 3 -P 2 O 5 Na 2 O-MgO-CaF 2  

Microsoft Academic Search

In this study, bioactivity of glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2 was investigated. For this purpose, a glass sample was prepared by the traditional melting method. Crystallization behavior\\u000a of bioactive glass was also investigated using differential thermal analyses. The Avrami constant of bioactive glass sample\\u000a calculated according to the Ozawa equation was 3.72 ± 0.4, which indicates bulk crystallization. Using the

Melek Erol

2010-01-01

251

Biological evaluation of poly- l -lactic acid composite containing bioactive glass  

Microsoft Academic Search

Biodegradable and biocompatible materials are the basis for medical application. As an initial step for developing bone internal\\u000a fixation materials, the biological evaluation of poly-l-lactic acid\\/bioactive glass (PLLA\\/BG) composite in vitro and in vivo, including the hemolysis test, pyrogen test, acute systemic\\u000a toxicity test, genetic toxicity test, anaphylaxis test, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)\\u000a test, direct cell culture and in vivo implant experiment, was

Zhihua Zhou; Jianan Zhou; Qingfeng Yi; Lihua Liu; Yanmin Zhao; Huidong Nie; Xiaoping Liu; Jianpeng Zou; Lianglong Chen

2010-01-01

252

Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications  

Microsoft Academic Search

A novel silver-doped bioactive glass powder (AgBG) was used to coat resorbable Vicryl® (polyglactin 910) and non-resorbable Mersilk® surgical sutures, thereby imparting bioactive, antimicrobial and bactericidal properties to the sutures. Stable and homogeneous coatings on the surface of the sutures were achieved using an optimised aqueous slurry-dipping technique. Dynamic mechanical analysis (DMA) was used to investigate the viscoelastic parameters of

J. J. Blaker; S. N. Nazhat; A. R. Boccaccini

2004-01-01

253

Injectable self-curing bioactive acrylic-glass composites charged with specific anti-inflammatory\\/analgesic agent  

Microsoft Academic Search

Injectable bioactive acrylic formulations based on poly(methyl methacrylate) (PMMA) and different amounts of bioactive glasses in the system SiO2–CaO–Na2O–P2O5 have been prepared in the presence of the anti-inflammatory analgesic drug fosfosal, the sodium salt of 2-phosphonoxibenzoic acid, to be used in minimally invasive surgery. The injectability of the formulations evaluated according to the established protocol was around 80%. The experimental

J. A. Méndez; M. Fernández; A. González-Corchón; M. Salvado; F. Coll??a; J. A. de Pedro; B. L. Levenfeld; A. López-Bravo; B. Vázquez; J. San Román

2004-01-01

254

Synthesis of biomedical composite scaffolds by laser sintering: Mechanical properties and in vitro bioactivity evaluation  

NASA Astrophysics Data System (ADS)

In this study, biomedical composite materials were employed to fabricate bone scaffolds using a self-developed rapid prototyping (RP) apparatus. The slurry formed by combining hydroxyapatite (HA), silica sol, and sodium tripolyphosphate (STPP) was heated by a CO2 laser. Under appropriate processing parameters, a biocomposite green body was subsequently fabricated. Its mechanical properties, including surface roughness, bending and compression strengths, volume shrinkage rate, and surface microstructure, were analyzed after heat treatment to 1200 °C, 1300 °C, and 1400 °C. The results showed that after heating the specimen to 1200 °C, its compression and bending strengths increased significantly to 43.26 MPa and 1.28 MPa, respectively; the surface roughness was 12 ?m; and surface pores were of size 5-25 ?m. Furthermore, the results of WST-1 and LDH assay indicate that the biocomposites showed no cytotoxicity on 3T3 fibroblast. An optical density (OD) of 1.1 was also achieved, and the specimen was suitable for the adhesion and growth of osteoblast-like cells (MG63). Therefore, the biocomposite bone scaffolds fabricated in this study have potential to be bone implants for developing hard tissue.

Liu, Fwu-Hsing

2014-04-01

255

Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification.  

PubMed

Microsphere systems with the ideal properties for bone regeneration need to be bioactive, and at the same time possess the capacity for controlled protein/drug-delivery; however, the current crop of microsphere system fails to fulfill these properties. The aim of this study was to develop a novel protein-delivery system of bioactive mesoporous glass (MBG) microspheres by a biomimetic method through controlling the density of apatite on the surface of microspheres, for potential bone tissue regeneration. MBG microspheres were prepared by using the method of alginate cross-linking with Ca(2+) ions. The cellular bioactivity of MBG microspheres was evaluated by investigating the proliferation and attachment of bone marrow stromal cell (BMSC). The loading efficiency (LE) and release kinetics of bovine serum albumin (BSA) on MBG microspheres were investigated after coprecipitating with biomimetic apatite in simulated body fluids (SBF). The results showed that MBG microspheres supported BMSC attachment and the Si-containing ionic products from MBG microspheres stimulated BMSCs proliferation. The density of apatite on MBG microspheres increased with the length of soaking time in SBF. BSA-LE of MBG was significantly enhanced by coprecipitating with apatite. Furthermore, the LE and release kinetics of BSA could be controlled by controlling the density of apatite formed on MBG microspheres. Our results suggest that MBG microspheres are a promising protein-delivery system as a filling material for bone defect healing and regeneration. PMID:20648544

Wu, Chengtie; Zhang, Yufeng; Ke, Xuebin; Xie, Yuxuan; Zhu, Huaiyong; Crawford, Ross; Xiao, Yin

2010-11-01

256

New PMMA-co-EHA glass-filled composites for biomedical applications: Mechanical properties and bioactivity.  

PubMed

A bioactive glass of the 3CaO.P(2)O(5)-MgO-SiO(2) system was incorporated as a filler into poly(methylmethacrylate)-co-(ethylhexylacrylate) (PMMA-co-EHA) copolymer. The effect of filler proportion (0, 30, 40 and 50wt.%) on the bending properties was evaluated and a maximum flexural strength of 29MPa coupled with an elastic modulus of 1.1GPa was obtained at an intermediate filler concentration (30wt.%). These values are slightly higher than those usually reported for human cancellous bone. The in vitro bioactivity was assessed by determining the changes in surface morphology and composition after soaking in simulated body fluid (SBF, Kokubo solution). Inductively coupled plasma was used to trace the evolution of ionic concentrations in the SBF solution, namely Ca and P. X-ray diffraction and scanning electron microscopy confirmed the growth of spherical calcium phosphate aggregates on the surface of composites, indicating that the composites are potentially bioactive. PMID:18706877

Lopes, Poliana; Corbellini, Marcelo; Ferreira, Bárbara Leite; Almeida, Nuno; Fredel, Márcio; Fernandes, Maria Helena; Correia, Rui

2009-01-01

257

Silicate and borate glasses as composite fillers: a bioactivity and biocompatibility study.  

PubMed

Composites filled with a silicate glass (CSi) and a new borate glass (CB) were developed and compared in terms of their in vitro behaviour both in acellular and cellular media. Acellular tests were carried out in SBF and the composites were characterized by SEM-EDS, XRD and ICP. Biocompatibility studies were investigated by in vitro cell culture with MG-63 osteoblast-like and human bone marrow cells. The growth of spherical calcium phosphate aggregates was observed in acellular medium on all composite surfaces indicating that these materials became potentially bioactive. The biological assessment resulted in a dissimilar behavior of the composites. The CSi demonstrated an inductive effect on the proliferation of cells. The cells showed a normal morphology and high growth rate when compared to standard culture plates. Contrarily, inhibition of cell proliferation occurred in the CB probably due to its high degradation rate, leading to high B and Mg ionic concentration in the cell culture medium. PMID:21556978

Lopes, P P; Ferreira, B J M Leite; Gomes, P S; Correia, R N; Fernandes, M H; Fernandes, M H V

2011-06-01

258

A bioactive sol-gel glass implant for in vivo gentamicin release. Experimental model in Rabbit.  

PubMed

Biomaterial pieces with osteogenic properties, suitable for use in the treatment of bone defects, were synthesized. The materials, which avoid bone infections, are exclusively composed of gentamicin sulfate and bioactive SiO2-CaO-P2O5 sol-gel glass (synthesized previously), and were manufactured by means of uniaxial and isostatic pressure of the mixed components. After implanting the pieces into rabbit femur, we studied (1) antibiotic release, determining the concentration in proximal and distal bone, liver, kidney, and lung as a function of time, and (2) bone growth as a consequence of the glass reactivity in the biological environment. The results demonstrated that the implants are good carriers for local gentamicin release into the local osseous tissue, where they show excellent biocompatibility and bone integration. Moreover, these implants are able to promote bone growth during the resorption process. PMID:16450408

Meseguer-Olmo, L; Ros-Nicolás, Mj; Vicente-Ortega, V; Alcaraz-Baños, M; Clavel-Sainz, M; Arcos, D; Ragel, C V; Vallet-Regí, M; Meseguer-Ortiz, Cl

2006-03-01

259

Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass® particles for tissue engineering applications  

Microsoft Academic Search

Poly(DL-lactide) (PDLLA) foams and bioactive glass (Bioglass®) particles were used to form bioresorbable and bioactive composite scaffolds for applications in bone tissue engineering. A thermally induced phase separation process was applied to prepare highly porous PDLLA foams filled with 10 wt % Bioglass® particles. Stable and homogeneous layers of Bioglass® particles on the surface of the PDLLA\\/Bioglass® composite foams as

A. R. Boccaccini; I. Notingher; V. Maquet; R. Jérôme

2003-01-01

260

Micropatterning of bioactive glass nanoparticles on chitosan membranes for spatial controlled biomineralization.  

PubMed

Bioactive glass nanoparticles (BG-NPs) capable of inducing apatite precipitation upon immersion in simulated body fluid (SBF) were patterned on free-standing chitosan membranes by microcontact printing using a poly(dimethylsiloxane) (PDMS) stamp inked in a BG-NPs pad. Formation of the patterns was characterized by scanning electron microscopy (SEM). Mineralization of the bioactive glass patterns was induced in vitro by soaking the samples in SBF over different time points up to 7 days. The confined apatite deposition in the patterned regions with diameters of 50 ?m was confirmed by Fourier-transformed infrared spectroscopy (FTIR), energy-dispersive X-ray (EDX) analysis, and SEM. In vitro tests confirmed the preferential attachment and proliferation of L929 cells to the areas printed with BG-NPs of the membranes. This approach permits one to spatially control the properties of biomaterials at the microlevel and could be potentially used in guided tissue regeneration for skin, vascular, articular, and bone tissue engineering and in cellular cocultures or to develop substrates able to confine cells in regions with controlled geometry at the cell's length scale. PMID:22480212

Luz, Gisela M; Boesel, Luciano; del Campo, Aránzazu; Mano, João F

2012-05-01

261

Gentamicin-Loaded Borate Bioactive Glass Eradicates Osteomyelitis Due to Escherichia coli in a Rabbit Model  

PubMed Central

The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli.

Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang

2013-01-01

262

The effect of variation in physical properties of porous bioactive glass on the expression and maintenance of the osteoblastic phenotype  

NASA Astrophysics Data System (ADS)

Revision surgery to replace failed hip implants is a significant health care issue that is expected to escalate as life expectancy increases. A major goal of revision surgery is to reconstruct femoral intramedullary bone-stock loss. To address this problem of bone loss, grafting techniques are widely used. Although fresh autografts remain the optimal material for all forms of surgery seeking to restore structural integrity to the skeleton, it is evident that the supply of such tissue is limited. In recent years, calcium phosphate ceramics have been studied as alternatives to autografts and allografts. The significant limitations associated with the use of biological and synthetic grafts have led to a growing interest in the in vitro synthesis of bone tissue. The approach is to synthesize bone tissue in vitro with the patient's own cells, and use this tissue for the repair of bony defects. Various substrates including metals, polymers, calcium phosphate ceramics and bioactive glasses, have been seeded with osteogenic cells. The selection of bioactive glass in this study is based on the fact that this material has shown an intense beneficial biological effect which has not been reproduced by other biomaterials. Even though the literature provides extensive data on the effect of pore size and porosity on in vivo bone tissue ingrowth into porous materials for joint prosthesis fixation, the data from past studies cannot be applied to the use of bioactive glass as a substrate for the in vitro synthesis of bone tissue. First, unlike the in vivo studies in the literature, this research deals with the growth of bone tissue in vitro. Second, unlike the implants used in past studies, bioactive glass is a degradable and resorbable material. Thus, in order to establish optimal substrate characteristics (porosity and pore size) for bioactive glass, it was important to study these parameters in an in vitro model. We synthesized porous bioactive glass substrates (BG) with varying pore sizes and porosity and determined the effect of substrate properties on the expression and maintenance of the osteoblastic phenotype, using an in vitro culture of osteoblast-like cells. Our data showed that porous bioactive glass substrates support the proliferation and maturation of osteoblast-like cells. Within the conditions of the experiment, we also found that at a given porosity of 44% the pore size of bioactive glass neither directs nor modulates the in vitro expression of the osteoblastic phenotype. On the other hand, at an average pore size of 92 mum, when cultures are maintained for 14 days, cell activity is greatly affected by the substrate porosity. As the porosity increases from 35% to 59%, osteoblast activity is adversely affected. (Abstract shortened by UMI.)

Effah Kaufmann, Elsie Akosua Biraa

263

Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition  

NASA Astrophysics Data System (ADS)

Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10(PO 4) 6(OH) 2, or bioglasses in the system SiO 2-Na 2O-K 2O-CaO-MgO-P 2O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* ( ? = 248 nm, ? > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2O vapors, while the bioglass layers were deposited in O 2. Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications.

Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I. N.; Petrovic, R.; Janackovic, Dj.

2007-12-01

264

Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass.  

PubMed

Various bioactive glass/hydroxyapatite (HA) functional coatings were designed by the suspension plasma spraying (SPS) technique. Their microstructure, scratch resistance, and apatite-forming ability in a simulated body fluid (SBF) were compared. The functional coatings design included: (i) composite coating, that is, randomly distributed constituent phases; (ii) duplex coating with glass top layer onto HA layer; and (iii) graded coating with a gradual changing composition starting from pure HA at the interface with the metal substrate up to pure glass on the surface. The SPS was a suitable coating technique to produce all the coating designs. The SBF tests revealed that the presence of a pure glass layer on the working surface significantly improved the reactivity of the duplex and graded coatings, but the duplex coating suffered a relatively low scratch resistance because of residual stresses. The graded coating therefore provided the best compromise between mechanical reliability and apatite-forming ability in SBF. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 551-560, 2014. PMID:24123895

Cattini, Andrea; Bellucci, Devis; Sola, Antonella; Paw?owski, Lech; Cannillo, Valeria

2014-04-01

265

Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.  

PubMed

This study compares the effects of introducing micro (m-BG) and nanoscale (n-BG) bioactive glass particles on the various properties (thermal, mechanical and microstructural) of poly(3hydroxybutyrate) (P(3HB))/bioactive glass composite systems. P(3HB)/bioactive glass composite films with three different concentrations of m-BG and n-BG (10, 20 and 30 wt%, respectively) were prepared by a solvent casting technique. The addition of n-BG particles had a significant stiffening effect on the composites, modulus when compared with m-BG. However, there were no significant differences in the thermal properties of the composites due to the addition of n-BG and m-BG particles. The systematic addition of n-BG particles induced a nanostructured topography on the surface of the composites, which was not visible by SEM in m-BG composites. This surface effect induced by n-BG particles considerably improved the total protein adsorption on the n-BG composites compared to the unfilled polymer and the m-BG composites. A short term in vitro degradation (30 days) study in simulated body fluid (SBF) showed a high level of bioactivity as well as higher water absorption for the P(3HB)/n-BG composites. Furthermore, a cell proliferation study using MG-63 cells demonstrated the good biocompatibility of both types of P(3HB)/bioactive glass composite systems. The results of this investigation confirm that the addition of nanosized bioactive glass particles had a more significant effect on the mechanical and structural properties of a composite system in comparison with microparticles, as well as enhancing protein adsorption, two desirable effects for the application of the composites in tissue engineering. PMID:18255139

Misra, Superb K; Mohn, Dirk; Brunner, Tobias J; Stark, Wendelin J; Philip, Sheryl E; Roy, Ipsita; Salih, Vehid; Knowles, Jonathan C; Boccaccini, Aldo R

2008-04-01

266

Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions  

Microsoft Academic Search

Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials\\u000a for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate\\u000a bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution\\u000a at 37°C. The borate glass

Wenhai Huang; Delbert E. Day; Kanisa Kittiratanapiboon; Mohamed N. Rahaman

2006-01-01

267

Molecular biological evaluation of bioactive glass microspheres and adjunct bone morphogenetic protein 2 gene transfer in the enhancement of new bone formation.  

PubMed

Bioactive glass is a promising osteoconductive silica-based biomaterial for guidance of new bone growth. On the basis of several in vitro studies, the material appears able to promote osteoblast functions. In our in vivo study, the osteopromotive effect of bioactive glass microspheres seemed to surpass the osteoinductive action of direct adenovirus-mediated human bone morphogenetic protein 2 (BMP-2) gene transfer in a noncritical size bone defect model. The current study was initiated to elucidate the molecular mechanism behind bioactive glass action with or without adjunct BMP-2 gene transfer. A standardized bone defect of the rat tibia was filled with bioactive glass microspheres and injected with adenovirus carrying the human BMP-2 gene (RAdBMP-2). Control defects were left empty or filled with bioactive glass microspheres with injection of adenovirus carrying the lacZ reporter gene or saline. Quantitative polymerase chain reaction confirmed the expression of the transferred human BMP-2 gene at the defect area at 4 days, but not in intact reference tissues. Bone matrix components (collagens I, II, and III, osteocalcin, osteonectin, and osteopontin) and resorption markers (cathepsin K and MMP-9), determined by Northern analysis, showed a completely different pattern of gene expression in defects filled with bioactive glass compared with control defects left to heal without filling. Bioactive glass induced a long-lasting production of bone matrix with concurrent upregulation of osteoclastic markers, a sign of high bone turnover. Combining RAdBMP-2 gene transfer with bioactive glass decelerated the high turnover, but did not influence the balance of synthesis and resorption. This molecular analysis confirmed not only the highly osteopromotive effect of bioactive glass microspheres, but also the accelerated rate of new bone resorption on its surface. At least in noncritical size defects this impact of bioactive glass seems to saturate new bone formation on its surface and thereby overshadow the effect of BMP-2 gene transfer. PMID:15869418

Välimäki, Ville-Valtteri; Yrjans, Jessica J; Vuorio, Eero I; Aro, Hannu T

2005-01-01

268

Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses.  

PubMed

The possibility of using phytic acid as a precursor to synthesize CaO-P(2)O(5)-SiO(2) glasses by sol-gel method has been explored and the pseudo ternary phase diagram has been established. It was shown that gel-glasses over a broader range of compositions could be prepared compared to other phosphorus precursors or melt-quenching method. Furthermore, phytic acid was found to assist calcium being incorporated into glass networks. In vitro tests in simulated body fluid (SBF) were performed on the above gel-glasses and it was found that they were bioactive over a much broader compositional range especially at high phosphate content, thus enabling one to design bioactive materials with various degradation rates by adjusting the phosphate content. PMID:22042461

Li, Ailing; Qiu, Dong

2011-12-01

269

Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells  

PubMed Central

We propose a new methodology to enhance the vascular differentiation of human embryonic stem cells (hESCs) by encapsulation in a bioactive hydrogel. hESCs were encapsulated in a dextran-based hydrogel with or without immobilized regulatory factors: a tethered RGD peptide and microencapsulated VEGF165. The fraction of cells expressing vascular endothelial growth factor (VEGF) receptor KDR/Flk-1, a vascular marker, increased up to 20-fold, as compared to spontaneously differentiated embryoid bodies (EBs). The percentage of encapsulated cells in hydrogels with regulatory factors expressing ectodermal markers including nestin or endodermal markers including ?-fetoprotein decreased 2 or 3 fold, respectively, as compared to EBs. When the cells were removed from these networks and cultured in media conditions conducive for further vascular differentiation, the number of vascular cells was higher than the number obtained through EBs, using the same media conditions. Functionalized dextran-based hydrogels could thus enable derivation of vascular cells in large quantities, particularly endothelial cells, for potential application in tissue engineering and regenerative medicine.

Ferreira, Lino S.; Gerecht, Sharon; Fuller, Jason; Shieh, Hester F.; Vunjak-Novakovic, Gordana; Langer, Robert

2007-01-01

270

Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses.  

PubMed

We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed. PMID:24709542

Kapoor, Saurabh; Goel, Ashutosh; Tilocca, Antonio; Dhuna, Vikram; Bhatia, Gaurav; Dhuna, Kshitija; Ferreira, José M F

2014-07-01

271

Fused aryl-phenazines: scaffold for the development of bioactive molecules.  

PubMed

Fused aryl phenazine derivatives (benzo[a]phenazine, pyrido[a]phenazine, benzo[a]phenazine diones, tetrahydropyrido[a]phenazine (dermacozines), etc) are important heterocyclic compounds, which exhibit various pharmacological activities, prominently in cancer cell lines. These compounds significantly intercalate between DNA base pairs and inhibit the activities of topoisomerase I and II enzymes (Topo I and II). XR11576, XR5944, NC-190 and NC-182 belong to phenazine/fused aryl phenazine category and are under clinical studies. Several fused aryl phenazine dione compounds such as pyridazino[4,5-b]phenazine-5,12-diones, 6,11-dihydro-pyrido[2,3-b]phenazine-6,11-diones, 6,11-dihydrobenzo[2,3-b]phenazine-6,11-diones, tetrahydropyrido[a]phenazine, etc possessed anticancer activities on various cancer cell lines. Benzo[a]phenazine diimine and various other fused aryl phenazine compounds form coordination complex with the metal ions (Ru, Rh, Zn and Pt) that intercalate with the DNA and are used for the treatment of cancer. These molecules have influence on MDR cancer cells and serve as anticancer agents in MDR cancer cells. The structure activity relationship of the fused aryl phenazine derivatives revealed that the occurrence of four or more nitrogen atoms in the compounds has better anticancer activity than those molecules with less number of nitrogen atoms. Phenazine antibiotics derived from marine microbes are used for the treatment of microbial and worm diseases. Recent patents on these scaffolds showed that the benzo[a]phenazine derivatives have inhibitory activity on topoisomerase enzymes (Topo I and II) and that act as anticancer agents. PMID:24499398

Moorthy, N S Hari Narayana; Pratheepa, Vijayakumari; Ramos, Maria J; Vasconcelos, Vitor; Fernandes, Pedro A

2014-01-01

272

Effect of various additives on microstructure, mechanical properties, and in vitro bioactivity of sodium oxide-calcium oxide-silica-phosphorus pentoxide glass-ceramics.  

PubMed

The partial substitution of MgO, TiO2, or CaF2 for CaO in the Na2O-CaO-SiO2-P2O5 (45S5) system was conducted by the sol-gel method and a comparative study on structural, mechanical properties, and bioactivity of the glasses was reported. Based on thermogravimetric and differential thermal analysis, the gels were sintered with a suitable heat treatment procedure. The glass-ceramic properties were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and so on, and the bioactivity of the glass-ceramic was evaluated by in vitro assays in simulated body fluid (SBF). Results indicate that with the partial substitution of MgO, TiO2, CaF2 for CaO in glass composition, the mechanical properties of the glass-ceramics have been significantly improved. Furthermore, CaF2 promotes glass crystallization and the crystallization does not inhibit the glass-ceramic bioactivity. All samples possess bioactivity; however, the bioactivity of these glass-ceramics is quite different. Compared with 45S5, the introduction of MgO decreases the ability of apatite induction. The addition of TiO2 does not significantly improve the bioactivity, and the replacement of CaO by CaF2 shows a higher bioactivity. PMID:23777867

Li, H C; Wang, D G; Hu, J H; Chen, C Z

2013-09-01

273

Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy  

NASA Astrophysics Data System (ADS)

In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na2Ca2Si3O9, with the thickness of ?1.0 ?m, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (Ecorr) form -1.60 V to -1.48 V, and a reduction of corrosion current density (icorr) from 4.48 ?A cm-2 to 0.16 ?A cm-2, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

Ye, Xinyu; Cai, Shu; Dou, Ying; Xu, Guohua; Huang, Kai; Ren, Mengguo; Wang, Xuexin

2012-10-01

274

Luminescence properties of Eu 3+ ions in phosphate-based bioactive glasses  

NASA Astrophysics Data System (ADS)

Eu 2O 3-doped phosphate-based bioactive glasses have been prepared by varying the calcium/potassium to phosphate ratio and their luminescence properties have been studied through absorption and emission spectra and decay rate analysis. Second and fourth rank crystal-field (CF) parameters and the CF strength parameters have been calculated by assuming the C 2V symmetry for Eu 3+ ions in the present glasses. Judd-Ofelt analysis has been used to derive radiative properties such as transition probabilities, branching ratios, radiative lifetimes and peak-stimulated emission cross-sections for 5D 0 ? 7F J ( J = 0-4) transitions. The relative luminescence intensity ratio of 5D 0 ? 7F 2 and 5D 0 ? 7F 1 transitions has been evaluated to estimate the local site symmetry around Eu 3+ ions. The observed 5D 0 ? 7F 0 transition for higher calcium content indicates two distinct sites for Eu 3+ ion. Decay rates for the 5D 0 level of Eu 3+ ions in these glasses have been measured by monitoring the 5D 0 ? 7F 2 transition. The lifetimes of the 5D 0 level are found to decrease with increase in calcium contents.

Srinivasa Rao, Ch.; Upendra Kumar, K.; Jayasankar, C. K.

2011-06-01

275

Microscopic and spectroscopic investigation of bioactive glasses for antibiotic controlled release  

NASA Astrophysics Data System (ADS)

Bioactive glass with the composition 0.55SiO2·0.41CaO·0.04P2O5 was prepared following the sol-gel route as controlled delivery systems for tetracycline (TC). The maturation and drying of the gel under different conditions led to different behavior regarding the loading and release of TC from these matrices. The pore size modifications upon TC loading evidenced by BET method show different ability of the glass matrices with respect to TC incorporation, also supported by experimental EPR and fluorescence spectroscopy. EPR spectra of both TC solution and immobilized TC on the porous structure of glass specimens demonstrated changes in tetracycline structure during loading and upon adsorption. The TC release profile monitored by differential pulse voltammetry shows a maximum concentration after 2 h and a continuously slow release during the next 24 h. The obtained results demonstrate that the pores size modification related to different maturation and drying procedures seems to be a determinative factor in tetracycline release process.

Cavalu, S.; Banica, F.; Gruian, C.; Vanea, E.; Goller, G.; Simon, V.

2013-05-01

276

Characterisation of the inhomogeneity of sol–gel-derived SiO 2 –CaO bioactive glass and a strategy for its improvement  

Microsoft Academic Search

Sol–gel derived bioactive glasses are one of the most promising materials for bone regeneration. The nanostructure of the\\u000a glasses is critical regarding their interaction with the physiological environment. Composition is one of the most important\\u000a factors affecting the nanostructure. In this study, inhomogeneity (a translucent component surrounded by an opaque component)\\u000a was found within sol–gel derived bioactive glass monoliths (70 mol%

Sen Lin; Claudia Ionescu; Simon Baker; Mark E. Smith; Julian R. Jones

2010-01-01

277

Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants.  

PubMed

Despite their widespread application, metallic orthopaedic prosthesis failure still occurs because of lack of adequate bone-bonding and the incidence of post-surgery infections. The goal of this research was to develop multifunctional composite chitosan/Bioglass coatings loaded with gentamicin antibiotic as a suitable strategy to improve the surface properties of metallic implants. Electrophoretic deposition (EPD) was applied as a single-step technology to simultaneously deposit the biopolymer, bioactive glass particles, and the antibiotic on stainless steel substrate. The microstructure and composition of the coatings were characterized using SEM/EDX, XRD, FTIR, and TGA/DSC, respectively. The in vitro bioactivity of the coatings was demonstrated by formation of hydroxyapatite after immersion in simulated body fluid (SBF) in a short period of 2 days. High-performance liquid chromatography (HPLC) measurements indicated the release of 40% of the loaded gentamicin in phosphate buffered saline (PBS) within the first 5 days. The developed composite coating supported attachment and proliferation of MG-63 cells up to 10 days. Moreover, disc diffusion test showed improved bactericidal effect of gentamicin-loaded composite coatings against S. aureus compared to control non-gentamicin-loaded coatings. PMID:24827466

Pishbin, Fatemehsadat; Mouriño, Viviana; Flor, Sabrina; Kreppel, Stefan; Salih, Vehid; Ryan, Mary P; Boccaccini, Aldo R

2014-06-11

278

On the microstructure of biocomposites sintered from Ti, HA and bioactive glass.  

PubMed

Sintering reactions and fine structures of the biocomposites prepared from powder mixtures of titanium ( alpha -Ti), hydroxyapatite (HA) and bioactive glass (BG) (SiO2-CaO-P2O5-B2O3-MgO-TiO2-CaF2) were investigated by X-ray diffraction and transmission electron microscopy. The results showed that complex reactions among the starting materials mainly depended on the initial Ti/HA ratios as well as the sintering temperatures. And the reaction could be expressed by the following illustrative equation: Ti+Ca10(PO4)6(OH)2-->CaTiO3+CaO+TixPy+(Ti2O)+(Ca4P2O9)+H2O. PMID:15020110

Ning, C Q; Zhou, Y

2004-08-01

279

High-resolution PLA-based composite scaffolds via 3-D printing technology.  

PubMed

Fabrication of new biodegradable scaffolds that guide and stimulate tissue regeneration is still a major issue in tissue engineering approaches. Scaffolds that possess adequate biodegradability, pore size, interconnectivity, bioactivity and mechanical properties in accordance with the injured tissue are required. This work aimed to develop and characterize three-dimensional (3-D) scaffolds that fulfill the aforementioned requirements. For this, a nozzle-based rapid prototyping system was used to combine polylactic acid and a bioactive CaP glass to fabricate 3-D biodegradable scaffolds with two patterns (orthogonal and displaced double layer). Scanning electron microscopy and micro-computer tomography showed that 3-D scaffolds had completely interconnected porosity, uniform distribution of the glass particles, and a controlled and repetitive architecture. Surface properties were also assessed, showing that the incorporation of glass particles increased both the roughness and the hydrophilicity of the scaffolds. Mechanical tests indicated that compression strength is dependent on the scaffold geometry and the presence of glass. Preliminary cell response was studied with primary mesenchymal stem cells (MSC) and revealed that CaP glass improved cell adhesion. Overall, the results showed the suitability of the technique/materials combination to develop 3-D porous scaffolds and their initial biocompatibility, both being valuable characteristics for tissue engineering applications. PMID:23142224

Serra, T; Planell, J A; Navarro, M

2013-03-01

280

Injectable self-curing bioactive acrylic-glass composites charged with specific anti-inflammatory/analgesic agent.  

PubMed

Injectable bioactive acrylic formulations based on poly(methyl methacrylate) (PMMA) and different amounts of bioactive glasses in the system SiO2-CaO-Na2O-P2O5 have been prepared in the presence of the anti-inflammatory analgesic drug fosfosal, the sodium salt of 2-phosphonoxibenzoic acid, to be used in minimally invasive surgery. The injectability of the formulations evaluated according to the established protocol was around 80%. The experimental formulations provided maximum temperatures in the range 50-60 degrees C, which were lower than those of commercial acrylic bone cements currently used in percutaneous vertebroplasty (PVP). Residual monomer content of any formulation was inferior to 5%. Compressive yield strength of dry specimens was in the range 80-95 MPa, but it decreased after immersion in SBF to values in the range 30-50 MPa, due to the dissolution of the bioactive glasses and the drug in the medium. The release of fosfosal was evaluated in vitro (pH = 7.0). The release profile against time obtained from a PMMA cement was quasi-linear and the 80% of the initial amount of drug was released in 175 h. However, for bioactive cements, the 80-100% of the fosfosal charged was released in approximately 48 h, due to the dissolution of the glasses in the medium. Values of weight loss of the cements determined gravimetrically ranged between 16% and 26% depending on the initial amount of fosfosal, i.e. 20 or 30 wt%, respectively. The weight loss and the water uptake were simultaneous processes, and values of hydration degree were around 10-14%. The formation of an apatite-like layer was detected on the surface of the cements at different periods of time depending on the composition of the bioactive glasses. The cements containing the glasses with P2O5 produced the growth of the apatite layer in shorter periods of time. The presence of fosfosal accelerated the precipitation of this layer independently on the glasses. The in vivo biocompatibility studied by intramuscular implantation in rats showed the absence of an anti-inflammatory response and a fibrous layer around the implant for the cement prepared with PMMA/fosfosal which is attributed to the therapeutic action of fosfosal acting in situ. The response to cements prepared with bioactive glasses and fosfosal showed a mild inflammatory reaction with the formation of the typical fibrous capsule around the implanted material. PMID:14741603

Méndez, J A; Fernández, M; González-Corchón, A; Salvado, M; Collía, F; de Pedro, J A; Levenfeld, B L; López-Bravo, A; Vázquez, B; San Román, J

2004-05-01

281

Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titanium discs in vitro.  

PubMed

We evaluated the effectiveness of different sizes of bioactive glass S53P4 against Staphylococcus aureus biofilms grown on metal discs in vitro. S. aureus biofilms were cultivated on titanium discs. BAG-S53P4 (0.5-0.8 mm and <45 µm) were placed in contact with the discs containing biofilms. Glass beads (0.5 mm) were used as a control. After each interval, the pH from each sample was measured. Colony forming units were counted for the biofilm recovery verification. In parallel, we tested the activity of bioactive glass against S. aureus planktonic cells. We found that BAG-S53P4 can suppress S. aureus biofilm formation on titanium discs in vitro. The suppression rate of biofilm cells by BAG-S53P4 <45 µm was significantly higher than by BAG-S53P4 0.5-0.8 mm. BAG-S53P4 has a clear growth-inhibitory effect on S. aureus biofilms. BAG-S53P4 <45 µm is more efficient against biofilm growth in vitro comparing with BAG-S53P4 0.5-0.8 mm. Bioactive glass S53P4 has potential to be used as bone substitute for the resolution of infection complications in joint replacement surgeries and treatment of chronic osteomyelitis. PMID:24108602

Coraça-Huber, Débora C; Fille, Manfred; Hausdorfer, Johann; Putzer, David; Nogler, Michael

2014-01-01

282

Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration  

PubMed Central

Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this paper, we review the current state of bioactive and biodegradable nanocomposite and O/I hybrid biomaterials and their applications in bone regeneration. We focus specifically on nanocomposites based on nano-sized hydroxyapatite (HA) and bioactive glass (BG) fillers in combination with biodegradable polyesters and their hybrid counterparts. Topics include 3D scaffold design, materials that are widely used in bone regeneration, and recent trends in next generation biomaterials. We conclude with a perspective on the future application of nanocomposites and O/I hybrid biomaterials for regeneration of bone.

Allo, Bedilu A.; Costa, Daniel O.; Dixon, S. Jeffrey; Mequanint, Kibret; Rizkalla, Amin S.

2012-01-01

283

Injectable bioactive glass/biodegradable polymer composite for bone and cartilage reconstruction: concept and experimental outcome with thermoplastic composites of poly(epsilon-caprolactone-co-D,L-lactide) and bioactive glass S53P4.  

PubMed

Injectable composites (Glepron) of particulate bioactive glass S53P4 (BAG) and Poly(epsilon-caprolactone-co-D,L-lactide) as thermoplastic carrier matrix were investigated as bone fillers in cancellous and cartilagineous subchondral bone defects in rabbits. Composites were injected as viscous liquid or mouldable paste. The glass granules of the composites resulted in good osteoconductivity and bone bonding that occurred initially at the interface between the glass and the host bone. The bone bioactivity index (BBI) indicating bone contacts between BAG and bone, as well as the bone coverage index (BCI) indicating bone ongrowth, correlated with the amount of glass in the composites. The indices were highest with 70 wt % of BAG, granule size 90-315 microm and did not improve by the addition of sucrose as in situ porosity creating agent in the composite or by using smaller (<45 microm) glass granules. The percentage of new bone ingrowth into the composite with 70 wt % of BAG was 6-8% at 23 weeks. At the articular surface cartilage regeneration with chondroblasts and mature chondrocytes was often evident. The composites were osteoconductive and easy to handle with short setting time. They were biocompatible with low foreign body cellular reaction. Results indicate a suitable working concept as a filler bone substitute for subchondral cancellous bone defects. PMID:15516880

Aho, Allan J; Tirri, Teemu; Kukkonen, Juha; Strandberg, Niko; Rich, Jaana; Seppälä, Jukka; Yli-Urpo, Antti

2004-10-01

284

In vitro apatite forming ability of type I collagen hydrogels containing bioactive glass and silica sol-gel particles.  

PubMed

Type I collagen hydrogel containing bioactive glass (CaO-P2O5-SiO2) and silica sol-gel micrometric particles were prepared and their in vitroapatite-forming ability in simulated body fluid assessed. X-ray diffraction and scanning electron microscopy analysis showed that bioactive glass particles entrapment in collagen matrix did not inhibit calcium phosphate formation and induced morphology variations on the crystalline phase precipitated on the hydrogel surface. The silica--collagen hydrogel composite precipitated calcium phosphate whereas silica particles and collagen hydrogel alone did not, indicating a possible synergetic effect between collagen and silica on the apatite-forming ability. Mechanisms of calcium phosphate precipitation and its relevance to biomaterial development are discussed. PMID:16502249

Eglin, David; Maalheem, Sonia; Livage, Jacques; Coradin, Thibaud

2006-02-01

285

Direct cytotoxicity evaluation of 63S bioactive glass and bone-derived hydroxyapatite particles using yeast model and human chondrocyte cells by microcalorimetry  

Microsoft Academic Search

In this study, the cytotoxicity evaluation of prepared 63S bioactive glass and bone-derived hydroxyapatite particles with yeast and human chondrocyte cells was carried out using isothermal micro-nano calorimetry (IMNC), which is a new method for studying cell\\/biomaterial interactions. Bioactive glass particles were made via sol–gel method and hydroxyapatite was obtained from bovine bone. Elemental analysis was carried out by XRF

A. Doostmohammadi; A. Monshi; M. H. Fathi; S. Karbasi; O. Braissant; A. U. Daniels

2011-01-01

286

Preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant  

Microsoft Academic Search

The aim of this work was preparation, development and characterization of bioactive glass coating by sol–gel technique for improvement of biocompatibility of 316L stainless steel implant used in dentistry and orthopaedic surgery.Bioglass powder was made by sol–gel technique and thermal properties of the prepared powder were studied using differential thermal analysis (DTA). The prepared bioglass powder was immersed in the

M. H. Fathi; A. Doost Mohammadi

2008-01-01

287

Preparation and characterization of biodegradable poly( d , l -lactide) and surface-modified bioactive glass composites as bone repair materials  

Microsoft Academic Search

In order to improve filler dispersion and phase compatibility between poly(d,l-lactide) (PDLLA) and inorganic bioactive glass (BG) particles, and to enhance the mechanical properties of PDLLA\\/BG composites,\\u000a the silane coupling agent 3-glycidoxypropyltrimethoxysilane (KH570) was used to modify the surface of BG particles (represented\\u000a by KBG). The structure and properties of PDLLA\\/BG and PDLLA\\/KBG composites were investigated by mechanical property testing

Du Juan Zhang; Li Fang Zhang; Zuo Chun Xiong; Wei Bai; Cheng Dong Xiong

2009-01-01

288

Combined effect of BMP-2 gene transfer and bioactive glass microspheres on enhancement of new bone formation.  

PubMed

Adenovirus-mediated recombinant human BMP-2 (RAdBMP-2) gene transfer has been found to have significant osteoinductive properties. The hypothesis of the current study was that bioactive glass surface could provide favorable osteoconductive conditions for cellular action of osteoinductive RAdBMP-2 gene transfer. In the rat proximal tibia, a portion of the medullary cavity was evacuated and filled with bioactive glass microspheres and injected with adenovirus carrying the human BMP-2 gene (BG/RAdBMP-2). Control defects filled with BG microspheres were injected with adenovirus carrying the LacZ reporter gene (BG/RAdLacZ) or saline (BG). Empty control defects were also used. Bone healing response was analyzed at 4 days, and at 2 and 8 weeks by radiography, peripheral quantitative computed tomography (pQCT), histomorphometry, and backscattered electron imaging of scanning electron microscopy (BEI-SEM) equipped with energy dispersive X-ray analysis (EDXA). In empty controls, the amount of intramedullary new bone peaked at 2 weeks, whereas defects filled with bioactive glass with and without RAdBMP-2 gene transfer showed a constant time-related increase of intramedullary new bone. At 8 weeks, there was significantly more new bone in defects treated with BG and RAdBMP-2 than in defects left to heal without filling (p < 0.001). Compared with the other controls (BG only or BG/RAdLacZ), the difference was not significant. In the current model, the osteopromotive effect of bioactive glass microspheres appears synergistic with the osteoinductive action of BMP-2 gene transfer, or one overshadows the other, as no additive effect was observed. PMID:16116592

Välimäki, V-V; Yrjans, J J; Vuorio, E; Aro, H T

2005-12-01

289

Management of radicular cysts using platelet-rich fibrin and bioactive glass: A report of two cases.  

PubMed

Platelet-rich fibrin (PRF) created by Choukroun's protocol concentrates most platelets and leukocytes from a blood harvest into a single autologous fibrin biomaterial. However, no current data is available concerning the use of PRF for the treatment of periapical lesions. Two cases of radicular cysts were reported using an interdisciplinary approach, including regular endodontic therapy followed by surgical management with PRF and bioactive glass. Two cases of radicular cysts presented as an incidental radiographic finding, appearing as an apical radiolucency with well-circumscribed sclerotic borders. After regular endodontic retreatment, cystic lining/granulation tissues were enucleated and the periradicular bony defect was grafted using PRF and bioactive glass. Then, PRF was applied to serve as a membrane over the grafted defects. Recall periapical radiographs of Case 1 and cone beam computer tomography of Case 2 showed satisfactory healing of the periapical pathosis. In Case 2, the bony defect appeared completely healed at 4 months surgical reentry and the new bone was clinically very dense and mature. The results of these case reports show that the combination of PRF and bioactive glass is an effective modality of regenerative treatment for radicular cysts. PMID:24961190

Zhao, Jiing-Huei; Tsai, Chung-Hung; Chang, Yu-Chao

2014-07-01

290

Good short-term outcome of primary total hip arthroplasty with cementless bioactive glass ceramic bottom-coated implants  

PubMed Central

Background and purpose Cementless total hip arthroplasty is currently favored by many orthopedic surgeons. The design of the porous surface is critically important for long-term fixation. We examined the clinical and radiographic outcome of the cementless titanium hip implant with a bottom coating of apatite-wollastonite containing bioactive glass ceramic. Methods We retrospectively reviewed 109 hips (92 patients) that had undergone primary cementless total hip arthroplasty with bioactive glass ceramic bottom-coated implants. The mean follow-up period was 7 (3–9) years. Hip joint function was evaluated with the Merle d’Aubigné and Postel hip score, and radiographic changes were determined from anteroposterior radiographs. Results The mean hip score improved from 9.7 preoperatively to 17 at the final follow-up. The overall survival rate was 100% at 9 years, when radiographic loosening or revision for any reason was used as the endpoint. 3 stems in 2 patients subsided more than 3 mm vertically within 1 year after implantation. Radiographs of the interface of the stem and femur were all classified as bone ingrowth fixation. Conclusions The short-term results of this study show good outcome for cementless implants with a bottom coating of apatite-wollastonite containing bioactive glass ceramic.

2012-01-01

291

Structural changes of methemoglobin after adsorption on bioactive glass, as a function of surface functionalization and salt concentration  

NASA Astrophysics Data System (ADS)

Functional protein adsorption at liquid-solid interfaces has been intensively studied in the last years, however it is difficult to evidence directly conformational changes of the protein which are likely to appear upon adsorption. Spin labeling in combination with Electron Paramagnetic Resonance (EPR) spectroscopy was applied in this study to investigate adsorption of horse methemoglobin to bioactive glass (BG) similar in composition with 45S5 Bioglass®. X-band cw-EPR spectra of spin labeled methemoglobin in solution were compared to those obtained after adsorption on bioactive glass surface (functionalized and non-functionalized with glutaraldehyde), to extract information of the structure and dynamics in the vicinity of position ?-93. The concentration of methemoglobin adsorbed on BG substrate was determined from the intensity of cw-EPR spectra and correlated with images obtained by Scanning Electron Microscopy (SEM). Line shape analysis of the EPR spectra revealed that ionic strength does not induce significant conformational changes in the protein structure upon adsorption, however, the chemical treatment applied to the bioactive glass surface positively influences protein adsorption.

Gruian, C.; Vulpoi, A.; Steinhoff, H.-J.; Simon, S.

2012-05-01

292

Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications  

NASA Astrophysics Data System (ADS)

For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-?-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

2008-02-01

293

Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition  

NASA Astrophysics Data System (ADS)

Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO 2 doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF * ( ? = 248 nm, ? ? 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 °C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.

Gyorgy, E.; Grigorescu, S.; Socol, G.; Mihailescu, I. N.; Janackovic, D.; Dindune, A.; Kanepe, Z.; Palcevskis, E.; Zdrentu, E. L.; Petrescu, S. M.

2007-07-01

294

The attachment affinity of hemoglobin toward silver-containing bioactive glass functionalized with glutaraldehyde.  

PubMed

Bioactive glasses belonging to the 56SiO2·(40 - x)CaO·4P2O5·xAg2O system, with x = 0, 2, and 8 mol %, were surface functionalized with the protein coupling agent glutaraldehyde (GA) and further evaluated in terms of hemoglobin affinity. The bare and GA-functionalized samples were investigated before and after protein attachment, by electron paramagnetic resonance (EPR) spectroscopy combined with spin-labeling procedure. Methanethiosulfonate spin label was used to explore the local environment of ?-93 cysteine in horse hemoglobin, in terms of spin label side chain mobility. The EPR simulation methods were employed to quantify the rotational correlational times and fraction of the immobilized spin labels. The EPR absorption spectrum was further exploited to estimate the amount of hemoglobin loaded on the substrates. The surface elemental composition obtained by X-ray photoelectron spectroscopy revealed similar tendency in terms of surface coverage. Changes in surface architecture, that is, changes in surface morphology after protein coverage, were observed by scanning electron microscopy. It was concluded that GA improves the stability of protein attachment and induces polymerization of hemoglobin molecules. PMID:24308353

Gruian, C; Vulpoi, A; Vanea, E; Oprea, B; Steinhoff, H-J; Simon, S

2013-12-27

295

In vitro antibiofilm activity of bioactive glass S53P4.  

PubMed

Aim: This work aimed to investigate the ability of different formulations of bioactive glass (BAG)-S53P4 to interfere with bacterial biofilm produced on prosthetic material by methicillin-resistant Staphylococcus aureus and multi-drug-resistant Pseudomonas aeruginosa. Materials & methods: Antibiofilm activity of three formulations of bioglass was assessed at different time points through two different analyses: Crystal Violet and confocal laser scanning microscopy assays. Results: Significant differences in the whole biofilm were observed between BAG-S53P4-treated and control samples, while no marked changes in antibiofilm activity were observed among the tested formulations. Data from colorimetric assay were confirmed by confocal laser scanning microscopy analysis, which evidenced the significant reduction in biomass and a decrease of total cell volume when both S. aureus and P. aeruginosa biofilms were treated with BAG-S53P4. Conclusion: BAG-S53P4 can be considered as an excellent adjuvant in the treatment of prosthetic infections related to biofilm. PMID:24957087

Drago, Lorenzo; Vassena, Christian; Fenu, Simone; Vecchi, Elena De; Signori, Valentina; Francesco, Raffaele De; Romanò, Carlo Luca

2014-05-01

296

Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration.  

PubMed

Engineering dermal substitutes with electrospun nanofibres have lately been of prime importance for skin tissue regeneration. Simple electrospinning technology served to produce nanofibrous scaffolds morphologically and structurally similar to the extracellular matrix of native tissues. The nanofibrous scaffolds of poly(L-lactic acid)-co-poly(?-caprolactone) (PLACL) and PLACL/gelatin complexes were fabricated by the electrospinning process. These nanofibres were characterized for fibre morphology, membrane porosity, wettability and chemical properties by FTIR analysis to culture human foreskin fibroblasts for skin tissue engineering. The nanofibre diameter was obtained between 282 and 761 nm for PLACL and PLACL/gelatin scaffolds; expressions of amino and carboxyl groups and porosity up to 87% were obtained for these fibres, while they also exhibited improved hydrophilic properties after plasma treatment. The results showed that fibroblasts proliferation, morphology, CMFDA dye expression and secretion of collagen were significantly increased in plasma-treated PLACL/gelatin scaffolds compared to PLACL nanofibrous scaffolds. The obtained results prove that the plasma-treated PLACL/gelatin nanofibrous scaffold is a potential biocomposite material for skin tissue regeneration. PMID:21205999

Chandrasekaran, Arun Richard; Venugopal, J; Sundarrajan, S; Ramakrishna, S

2011-02-01

297

Bioresorbable and bioactive polymer\\/Bioglass® composites with tailored pore structure for tissue engineering applications  

Microsoft Academic Search

An overview about the development of porous bioresorbable composite materials for applications as scaffolds in tissue engineering is presented. A thermally induced phase separation method was developed to fabricate porous foam-like structures of poly(lactide-co-glycolide) (PLGA) containing bioactive glass particle additions (up to 50 wt.%) and exhibiting well-defined, oriented and interconnected porosity. The in vitro bioactivity and the degradability of the

Aldo R. Boccaccini; Veronique Maquet

2003-01-01

298

Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-?-caprolactone scaffolds.  

PubMed

The objective of this study was to develop a scaffold for mesenchymal stromal cell (MSC) recruitment, proliferation, and chondrogenic differentiation. The concept behind the design is to mimic the cartilage matrix and contain stimulatory agents that make continuous supply of inductive factors redundant. Nanofibrous (N: ~400 nm) and microfibrous (M: ~10 ?m) poly-?-caprolactone (PCL) scaffolds were combined with 1% high-molecular-weight sodium hyaluronate (NHA/MHA), 1% hyaluronan (HA) and 200 ng transforming growth factor-beta 1 (TGF-?1; NTGF/MTGF), or 0.1% bovine serum albumin (N/M). Scaffolds were seeded with MSCs from bone marrow and cultured without growth factors in vitro. Cultures with chondrogenic medium supplemented with TGF-?1 served as controls. Proliferation, migration, and release of TGF-?1 were investigated. Cell differentiation was evaluated by polymerase chain reaction (PCR) and real-time PCR. NTGF and MTGF exhibited primarily an initial release of TGF-?1. None of the factors released by the scaffolds recruited MSCs. The expression of aggrecan was dependent on the scaffold ultrastructure with nanofibers promoting increasing and microfibers decreasing expression levels. Composites containing HA demonstrated elevated seeding efficiency and lower type I collagen expression. Expression of type II collagen was dependent on continuous or late supply of TGF-?1, which was not provided by our scaffold design. The initial release of TGF-?1 induced an expression of type I collagen and osteogenic marker genes. In conclusion, nanofibrous PCL scaffolds with or without augmentation are suitable for chondrogenic initiation of MSCs. Initial release of HA is sufficient in terms of directing the implanted MSCs toward a chondrogenic end, whereas a late release of TGF-?1 is preferred to foster type II and avoid type I collagen expression. PMID:23184542

Schagemann, J C; Paul, S; Casper, M E; Rohwedel, J; Kramer, J; Kaps, C; Mittelstaedt, H; Fehr, M; Reinholz, G G

2013-06-01

299

Towards the controlled release of metal nanoparticles from biomaterials: Physico-chemical, morphological and bioactivity features of Cu-containing sol-gel glasses  

NASA Astrophysics Data System (ADS)

Two Cu-containing bioactive glasses were prepared and characterized in order to obtain a detailed description of chemical, morphological and bioactivity proprieties of potential Cu releasing systems. The characterization has demonstrated that by varying the synthesis procedure is possible to obtain two systems with Cu species in two different oxidation states and aggregation: (i) SGCu(ox) - oxidated Cu - (Cu oxidation state +2) homogeneously dispersed in the glass network matrix and (ii) SGCu(red) - metallic Cu - (Cu oxidation state 0) containing nano-particles (5-130 nm range) mainly present on the glass surface. The introduction of Cu maintains the bioactivity of the Cu-containing glasses almost unchanged, inducing a partial delay in the hydroxyapatite/hydroxy-carbonate apatite (HA/HCA) formation on the glass surface with respect to the reference glass (free Cu glass). During the bioactivity test, Cu is released from both Cu-containing glasses, in particular in the case of the SGCu(red) the presence of Cu nanoparticles (CuNPs) of diameter in the range 5-10 nm has been detected in solution.

Aina, Valentina; Cerrato, Giuseppina; Martra, Gianmario; Malavasi, Gianluca; Lusvardi, Gigliola; Menabue, Ledi

2013-10-01

300

Morphology and immersion behavior of plasma-sprayed hydroxyapatite/bioactive glass coatings.  

PubMed

A series of hydroxyapatite/bioactive glass (HA/BG) coatings have been plasma-sprayed on Ti6Al-4V substrate using HA/BG powders that were prepared by both sinter-granulation and direct mixing methods. The morphology and immersion behavior of these coatings in a simulated body fluid (SBF) were investigated. The results showed that in-house fabricated BG and sinter-granulated HA powders were irregularly shaped and dense. When 5 wt % or more BG was added in HA, the powder became rough and porous. X-ray diffraction (XRD) patterns showed that the presence of BG enhanced the decomposition of HA structure during fabrication of the powders. Reasonably high bond strengths were obtained from all coatings. The granulated type HA/BG coatings showed no significant differences in bond strength from the mixed type HA/BG coatings. The plasma spray process itself and the presence of BG enhanced the decomposition of apatite. Surface morphology of all sinter-granulated type coatings was similar to that of monolithic HA coating, that was comprised of patches of smooth and shiny glassy film and irregularly-shaped particles on its surface. The dissolution depth of plasma-sprayed coatings immersed in SBF was largely dependent on the type and composition of the coating. Granulated type HA/BG coatings were much less dissolvable than monolithic HA or mixed type HA/BG coatings. It seems that the presently used granulation method for the preparation of HA/BG powders plays a predominant role in determining the dissolution behavior of the plasma-sprayed coatings. PMID:15348047

Ding, S J; Ju, C P; Lin, J H

2000-03-01

301

Bioactive glass coatings affect the behavior of osteoblast-like cells  

PubMed Central

Functionally graded coatings (FGCs) of bioactive glass on titanium alloy (Ti6Al4V) were fabricated by the enameling technique. These innovative coatings may be an alternative to plasma-sprayed, hydroxyapatite-coated implants. Previously we determined that a preconditioning treatment in simulated body fluid (SBF) helped to stabilize FGCs (Foppiano, S., et al., Acta Biomater, 2006; 2(2):133-42). The primary goal of this work was to assess the in vitro cytocompatibility of preconditioned FGCs with MC3T3-E1.4 mouse pre-osteoblastic cells. We evaluated cell adhesion, proliferation and mineralization on FGCs in comparison to uncoated Ti6Al4V and tissue culture polystyrene (TCPS). No difference in cell adhesion was identified, whereas proliferation was significantly different on all materials, being highest on FGCs followed by TCPS and Ti6Al4V. Qualitative and quantitative mineralization assays indicated that mineralization occurred on all materials. The amount of inorganic phosphate released by the mineralizing layers was significantly different, being highest on TCPS, followed by FGC and uncoated Ti6Al4V. The secondary objective of this work was to assess the ability of the FGCs to affect gene expression, indirectly, by means of their dissolution products, which was assessed by real-time reverse-transcription polymerase chain reaction. The FGC dissolution products induced a 2-fold increase in the expression of Runx-2, and a 20% decrease in the expression of collagen type 1 with respect to TCPS extract. These genes are regulators of osteoblast differentiation and mineralization, respectively. The findings of this study indicate that preconditioned FGCs are cytocompatible and suggest that future work may allow composition changes to induce preferred gene expression.

Foppiano, Silvia; Marshall, Sally J.; Marshall, Grayson W.; Saiz, Eduardo; Tomsia, Antoni P.

2007-01-01

302

Bioactive glass coatings affect the behavior of osteoblast-like cells.  

PubMed

Functionally graded coatings (FGCs) of bioactive glass on titanium alloy (Ti6Al4V) were fabricated by the enameling technique. These innovative coatings may be an alternative to plasma-sprayed, hydroxyapatite-coated implants. Previously we determined that a preconditioning treatment in simulated body fluid (SBF) helped to stabilize FGCs [Foppiano S et al. Acta Biomater 2006;2(2):133-42]. The primary goal of this work was to assess the in vitro cytocompatibility of preconditioned FGCs with MC3T3-E1.4 mouse pre-osteoblastic cells. We evaluated cell adhesion, proliferation and mineralization on FGCs in comparison to uncoated Ti6Al4V and tissue culture polystyrene (TCPS). No difference in cell adhesion was identified, whereas proliferation was significantly different on all materials, being highest on FGCs followed by TCPS and Ti6Al4V. Qualitative and quantitative mineralization assays indicated that mineralization occurred on all materials. The amount of inorganic phosphate released by the mineralizing layers was significantly different, being highest on TCPS, followed by FGC and uncoated Ti6Al4V. The secondary objective of this work was to assess the ability of the FGCs to affect gene expression, indirectly, by means of their dissolution products, which was assessed by real-time reverse-transcription polymerase chain reaction. The FGC dissolution products induced a 2-fold increase in the expression of Runx-2, and a 20% decrease in the expression of collagen type 1 with respect to TCPS extract. These genes are regulators of osteoblast differentiation and mineralization, respectively. The findings of this study indicate that preconditioned FGCs are cytocompatible and suggest that future work may allow composition changes to induce preferred gene expression. PMID:17466608

Foppiano, Silvia; Marshall, Sally J; Marshall, Grayson W; Saiz, Eduardo; Tomsia, Antoni P

2007-09-01

303

Effect of magnesia on the degradability and bioactivity of sol-gel derived SiO2-CaO-MgO-P2O5 system glasses.  

PubMed

Mesoporous 58SiO(2)-(38-x)CaO-xMgO-4P(2)O(5) glasses (where x=0, 5, 10 and 20 mol%) have been prepared by the sol-gel synthesis route. The effects of the substitution of MgO for CaO on glass degradation and bioactivity were studied in tris-(hydroxymethyl)-aminomethane and hydrochloric acid buffer solution (Tris-HCl) and simulated body fluid (SBF), respectively. It is observed that the synthesized glasses with various MgO contents possess the similar textural properties. The studies of in vitro degradability and bioactivity show that the rate of glass degradation gradually decreases with the increase of MgO and the formation of apatite layer on glass surface is retarded. The influences of the composition upon glass properties are explained in terms of their internal structures. PMID:20667433

Ma, J; Chen, C Z; Wang, D G; Jiao, Y; Shi, J Z

2010-11-01

304

Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule  

NASA Astrophysics Data System (ADS)

Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

2013-12-01

305

Assembly and function of the tRNA-modifying GTPase MnmE adsorbed to surface functionalized bioactive glass.  

PubMed

Protein adsorption onto solid surfaces is a common phenomenon in tissue engineering related applications, and considerable progress was achieved in this field. However, there are still unanswered questions or contradictory opinions concerning details of the protein's structure, conformational changes, or aggregation once adsorbed onto solid surfaces. Electron paramagnetic resonance (EPR) spectroscopy and site-directed spin labeling (SDSL) were employed in this work to investigate the conformational changes and dynamics of the tRNA-modifying dimeric protein MnmE from E. coli, an ortholog of the human GTPBP3, upon adsorption on bioactive glass mimicking the composition of the classical 45S5 Bioglass. In addition, prior to protein attachment, the bioactive glass surface was modified with the protein coupling agent glutaraldehyde. Continuous wave EPR spectra of different spin labeled MnmE mutants were recorded to assess the dynamics of the attached spin labels before and after protein adsorption. The area of the continuous wave (cw)-EPR absorption spectrum was further used to determine the amount of the attached protein. Double electron-electron resonance (DEER) experiments were conducted to measure distances between the spin labels before and after adsorption. The results revealed that the contact regions between MnmE and the bioactive glass surface are located at the G domains and at the N-terminal domains. The low modulation depths of all DEER time traces recorded for the adsorbed single MnmE mutants, corroborated with the DEER measurements performed on MnmE double mutants, show that the adsorption process leads to dissociation of the dimer and alters the tertiary structure of MnmE, thereby abolishing its functionality. However, glutaraldehyde reduces the aggressiveness of the adsorption process and improves the stability of the protein attachment. PMID:24785159

Gruian, C; Boehme, S; Simon, S; Steinhoff, H-J; Klare, J P

2014-05-28

306

Stress-corrosion crack growth of Si-Na-K-Mg-Ca-P-O bioactive glasses in simulated human physiological environment  

PubMed Central

This paper describes research on the stress-corrosion crack growth (SCCG) behavior of a new series of bioactive glasses designed to fabricate coatings on Ti and Co-Cr-based implant alloys. These glasses should provide improved implant fixation between implant and exhibit good mechanical stability in vivo. It is then important to develop an understanding of the mechanisms that control environmentally-assisted crack growth in this new family of glasses and its effect on their reliability. Several compositions have been tested in both static and cyclic loading in simulated body fluid. These show only small dependences of stress-corrosion crack growth behavior on the composition. Traditional SCCG mechanisms for silicate glasses appear to be operative for the new bioactive glasses studied here. At higher velocities, hydrodynamic effects reduce growth rates under conditions that would rarely pertain for small natural flaws in devices.

Bloyer, D. R.; McNaney, J. M.; Cannon, R. M.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O.

2007-01-01

307

The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds  

Microsoft Academic Search

Our strategy entails investigating the influence of varied concentrations (0, 10, 100 and 1000ng\\/ml) of human recombinant bone morphogenetic protein-2 (rhBMP-2) on the osteogenic expression of canine osteoblasts, seeded onto poly-caprolactone 20% tricalcium phosphate (PCL-TCP) scaffolds in vitro. Biochemical assay revealed that groups with rhBMP-2 displayed an initial burst in cell growth that was not dose-dependent. However, after 13 days,

B Rai; S. H Teoh; K. H Ho; D. W Hutmacher; T Cao; F Chen; K Yacob

2004-01-01

308

The influence of phosphorus precursors on the synthesis and bioactivity of SiO2-CaO-P 2O 5 sol-gel glasses and glass-ceramics.  

PubMed

Bioactive glasses and glass-ceramics of the SiO(2)-CaO-P(2)O(5) system were synthesised by means of a sol-gel method using different phosphorus precursors according to their respective rates of hydrolysis-triethylphosphate (OP(OC(2)H(5))(3)), phosphoric acid (H(3)PO(4)) and a solution prepared by dissolving phosphorus oxide (P(2)O(5)) in ethanol. The resulting materials were characterised by differential scanning calorimetry and thermogravimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and by in vitro bioactivity tests in acellular simulated body fluid. The different precursors significantly affected the main steps of the synthesis, beginning with the time required for gel formation. The most striking influence of these precursors was observed during the thermal treatments at 700-1,200 °C that were used to convert the gels into glasses and glass-ceramics. The samples exhibited very different mineralisation behaviours; especially those prepared using the phosphoric acid, which had a reduced onset temperature of crystallisation and an increased resistance to devitrification. However, all resulting materials were bioactive. The in vitro bioactivity of these materials was strongly affected by the heat treatment temperature. In general, their bioactivity decreased with increasing treatment temperature. For crystallised samples obtained above 900 °C, the bioactivity was favoured by the presence of two crystalline phases: wollastonite (CaSiO(3)) and tricalcium phosphate (?-Ca(3)(PO(4))(2)). PMID:23114636

Siqueira, Renato Luiz; Zanotto, Edgar Dutra

2013-02-01

309

Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering.  

PubMed

Silicon is known to have an influence on calcium phosphate deposition and on the differentiation of bone precursor cells. This study explores the effect of the incorporation of silanol (Si-OH) groups into polymeric scaffolds on the osteogenic differentiation of human adipose stem cells (hASC) cultured under dynamic and static conditions. A blend of corn starch with polycaprolactone (30/70 wt.%, SPCL) was used to produce three-dimensional fibre meshes scaffolds by the wet-spinning technique, and a calcium silicate solution was used as a non-solvent to develop an in situ functionalization with Si-OH groups. In vitro assessment, using hASC, of functionalized and non-functionalized scaffolds was evaluated in either ?-MEM or osteogenic medium under static and dynamic conditions (provided by a flow perfusion bioreactor). The functionalized materials, SPCL-Si, exhibit the capacity to sustain cell proliferation and induce their differentiation into the osteogenic lineage. The formation of mineralization nodules was observed in cells cultured on the SPCL-Si materials. Culturing under dynamic conditions using a flow perfusion bioreactor was shown to enhance the hASC proliferation and differentiation and a better distribution of cells within the material. The present work demonstrates the potential of these functionalized materials for future applications in bone tissue engineering. Additionally, these results highlight the simplicity, economic and reliable production process of those materials. PMID:22659174

Rodrigues, A I; Gomes, M E; Leonor, I B; Reis, R L

2012-10-01

310

Characterization of human primary osteoblast response on bioactive glass (BaG 13-93)- coated poly-L,DL-lactide (SR-PLA70) surface in vitro.  

PubMed

Bioabsorbable polylactide-based polymers are commonly used for bone reconstruction. Although these polymers have proven successful in many applications, they do not have the capacity to induce osteoconduction. Therefore, several strategies have been developed to manufacture osteoconductive polylactide-based composites. In this study, we have investigated in vitro response of human primary osteoblasts for self-reinforced poly-L,DL-lactide 70/30 (SR-PLA70) plates coated with spheres of bioactive glass 13-93 (SR-PLA70 + BaG). Osteoblasts were cultured on SR-PLA70 and SR-PLA70 + BaG plates for 2, 7, or 14 days. By day 7, both materials induced a reduction in total cell population. However, by day 14 the proliferative response of osteoblasts on SR-PLA70 + BaG surface was such that the cell population had regained similar levels as that of day 2 controls. Alkaline phosphatase activity was higher on SR-PLA70 at day 7 but declined to control levels by day 14. There were no significant time-dependent variations in alkaline phosphatase activity on SR-PLA70 + BaG. After in vitro hydrolysis for 7 days, the elemental analysis of SR-PLA70 + BaG surface showed the presence of mineral precipitates that were confirmed as crystalline hydroxyapatite. This was accompanied by osteoblast spreading, protrusions of microvilli adhered to BaG 19-39 surface, cuboidal phenotype and cell surface associated formation of hydroxyapatite microspheres. In conclusion, the SR-PLA70 + BaG composite is capable of inducing a proliferative response of human primary osteoblasts, and appears to support the development of mature osteoblast phenotype. Therefore, the SR-PLA70 + BaG composites appear as promising osteoconductive scaffold candidates for reconstruction and regeneration of bone matrix. PMID:16292763

Ruuttila, P; Niiranen, H; Kellomäki, M; Törmälä, P; Konttinen, Y T; Hukkanen, M

2006-07-01

311

The in vitro antibacterial effect of S53P4 bioactive glass and gentamicin impregnated polymethylmethacrylate beads.  

PubMed

Osteomyelitis is a disease that is still difficult to treat, with considerable morbidity and associated costs. The current "gold standard" in treatment - debridement and implantation of antibiotic impregnated polymethylmethacrylate (PMMA) beads - presents the disadvantage of a second surgical intervention required for the removal of the beads. We comparatively investigated the in vitro antibacterial effect of S53P4 bioactive glass (BAG) and gentamicin impregnated PMMA beads. Bacterial viability was assessed hourly by Standard Plate Count during 24 hours of incubation, by determining the number of colony forming units (CFU) of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Klebsiella pneumoniae. Both tested materials showed an antibacterial effect on all studied bacteria. In case of S. aureus, BAG granules were almost as effective as gentamicin impregnated PMMA beads, with no statistically significant differences. In contrast, PMMA beads had a superior antibacterial effect on S. epidermidis and K. pneumoniae. The antibacterial effect of BAG was greatly influenced by granule size and contact time. There was a statistically significant correlation between pH values and the number of CFU in the case of S53P4 BAG granules. As a biocompatible and biodegradable bone substitute, S53P4 bioactive glass can be a good alternative in the local management of osteomyelitis. PMID:24939683

Gergely, István; Zazgyva, Ancuta; Man, Adrian; Zuh, Sándor György; Pop, Tudor Sorin

2014-06-01

312

Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S bioactive gel-glass ionic dissolution products.  

PubMed

Bioactive glasses dissolve upon immersion in culture medium, releasing their constitutive ions in solution. There is evidence suggesting that these ionic dissolution products influence osteoblast-specific processes. Here, we investigated the effect of 58S sol-gel-derived bioactive glass (60 mol % SiO2, 36 mol % CaO, 4 mol % P2O5) dissolution products on primary osteoblasts derived from human fetal long bone explant cultures (hFOBs). We used U133A human genome GeneChip oligonucleotide arrays to examine 22,283 transcripts and variants, which represent over 18,000 well-substantiated human genes. Hybridization of samples (biotinylated cRNA) derived from monolayer cultures of hFOBs on the arrays revealed that 10,571 transcripts were expressed by these cells, with high confidence. These included transcripts representing osteoblast-related genes coding for growth factors and their associated molecules or receptors, protein components of the extracellular matrix (ECM), enzymes involved in degradation of the ECM, transcription factors, and other important osteoblast-associated markers. A 24-h treatment with a single dosage of ionic products of sol-gel 58S dissolution induced the differential expression of a number of genes, including IL-6 signal transducer/gp130, ISGF-3/STAT1, HIF-1 responsive RTP801, ERK1 p44 MAPK (MAPK3), MAPKAPK2, IGF-I and IGFBP-5. The over 2-fold up-regulation of gp130 and MAPK3 and down-regulation of IGF-I were confirmed by real-time RT-PCR analysis. These data suggest that 58S ionic dissolution products possibly mediate the bioactive effect of 58S through components of the IGF system and MAPK signaling pathways. PMID:16333845

Christodoulou, Ioannis; Buttery, Lee D K; Tai, Guangping; Hench, Larry L; Polak, Julia M

2006-05-01

313

Differentiation of preosteoblasts using a delivery system with BMPs and bioactive glass microspheres.  

PubMed

Bone morphogenetic proteins (BMPs) and 45S5 Bioglass microspheres (bioactive GM) can increase the differentiation of osteoblasts. Recombinant human BMP-2 (rhBMP-2) is presently the BMP most frequently used in delivery systems and it has already been used in clinical bone healing studies. We have developed a delivery system that combines a collagen Type I gel, BMP and bioactive GM. Since BMP-9 seems to be more osteogenic than BMP-2, we compared the differentiation of MC3T3-E1 preosteoblasts induced by our delivery system containing either a peptide derived from BMP-9 (pBMP-9), or rhBMP-2, both at 100 ng/mL. After 5 days, alkaline phosphatase staining showed that pBMP-9 induced more differentiation than rhBMP-2 in all experimental conditions. Also, bioactive GM increased this BMP effect. Since preosteoblasts secreted matrix metalloproteinases (MMPs) that can degrade collagen, we then studied the influence of the delivery system on MMPs production. We observed that MMP-2 was the major MMP involved in all experimental conditions. In addition, pBMP-9 with bioactive GM generated less MMP-2 than did rhBMP-2 on days 3 and 5. Thus, a delivery system using collagen Type I gel with pBMP-9 and bioactive GM seems to be a promising system for bone regeneration. PMID:17323156

Bergeron, E; Marquis, M E; Chrétien, I; Faucheux, N

2007-02-01

314

Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications.  

PubMed

Poly(3-hydroxybutyrate) (P(3HB)) foams exhibiting highly interconnected porosity (85% porosity) were prepared using a unique combination of solvent casting and particulate leaching techniques by employing commercially available sugar cubes as porogen. Bioactive glass (BG) particles of 45S5 Bioglass grade were introduced in the scaffold microstructure, both in micrometer ((m-BG), <5 microm) and nanometer ((n-BG), 30 nm) sizes. The in vitro bioactivity of the P(3HB)/BG foams was confirmed within 10 days of immersion in simulated body fluid and the foams showed high level of protein adsorption. The foams interconnected porous microstructure proved to be suitable for MG-63 osteoblast cell attachment and proliferation. The foams implanted in rats as subcutaneous implants resulted in a non-toxic and foreign body response after one week of implantation. In addition to showing bioactivity and biocompatibility, the P(3HB)/BG composite foams also exhibited bactericidal properties, which was tested on the growth of Staphylococcus aureus. An attempt was made at developing multifunctional scaffolds by incorporating, in addition to BG, selected concentrations of Vitamin E or/and carbon nanotubes. P(3HB) scaffolds with multifunctionalities (viz. bactericidal, bioactive, electrically conductive, antioxidative behaviour) were thus produced, which paves the way for next generation of advanced scaffolds for bone tissue engineering. PMID:20045554

Misra, Superb K; Ansari, Tahera I; Valappil, Sabeel P; Mohn, Dirk; Philip, Sheryl E; Stark, Wendelin J; Roy, Ipsita; Knowles, Jonathan C; Salih, Vehid; Boccaccini, Aldo R

2010-04-01

315

Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: Synthesis, microstructure and biological responsiveness.  

PubMed

Presently, there is an increasing interest towards the composites of calcium phosphates, especially ?-tricalcium phosphate (TCP), and bioactive glasses. In the present contribution, the recently developed BG_Ca/Mix glass has been used because its low tendency to crystallize allows to sinter the composites at relatively low temperature (i.e. 850°C), thus minimizing the glass devitrification and the interaction with TCP. A further improvement is the introduction of lab-produced TCP powders doped with specific ions instead of non-doped commercial powders, since the biological properties of materials for bone replacement can be modulated by doping them with certain metallic ions, such as Mg and Sr. Therefore, novel binary composites have been produced by sintering the BG_Ca/Mix glass with the addition of pure, Mg-substituted, Sr-substituted or Mg/Sr bisubstituted TCP powders. After an accurate characterization of the starting TCP powders and of the obtained samples, the composites have been used as three-dimensional supports for the culture of mouse calvaria-derived pre-osteoblastic cells. The samples supported cell adhesion and proliferation and induced promising mechanisms of differentiation towards an osteoblastic phenotype. In particular, the Mg/Sr bi-doped samples seemed to better promote the differentiation process thus suggesting a combined stimulatory effect of Mg(2+) and Sr(2+) ions. PMID:25063124

Bellucci, Devis; Sola, Antonella; Cacciotti, Ilaria; Bartoli, Cristina; Gazzarri, Matteo; Bianco, Alessandra; Chiellini, Federica; Cannillo, Valeria

2014-09-01

316

Microsphere-integrated gelatin-siloxane hybrid scaffolds for bone tissue engineering: in vitro bioactivity & antibacterial activity  

Microsoft Academic Search

Microsphere integrated gelatin-siloxane hybrid scaffolds were successfully synthesized by using a combined sol-gel processing,\\u000a post-gelation soaking and freeze-drying process. A bone-like apatite layer was able to form in the Ca2+-containing porous hybrids upon soaking in a simulated body fluid (SBF) up to 1 day. The rate of gentamicin sulfate (GS) release\\u000a from the GS-loaded gelatin-siloxane hybrid microsphere became constant after

Lin Wang; Bing Yu; Li-ping Sun; Lei Ren; Qi-qing Zhang

2008-01-01

317

In vitro evaluation of bioactivity of CaO-SiO 2-P 2O 5-Na 2O-Fe 2O 3 glasses  

NASA Astrophysics Data System (ADS)

Glasses with compositions 41CaO(52 - x)SiO 24P 2O 5· xFe 2O 33Na 2O (2 ? x ? 10 mol.%) were prepared by melt quenching method. Bioactivity of the different glass compositions was studied in vitro by treating them with simulated body fluid (SBF). The glasses treated for various time periods in SBF were evaluated by examining apatite formation on their surface using grazing incidence X-ray diffraction, Fourier transform infrared reflection spectroscopy, scanning electron microscopy and energy dispersive spectroscopy techniques. Increase in bioactivity with increasing iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass composition.

Singh, Rajendra Kumar; Kothiyal, G. P.; Srinivasan, A.

2009-05-01

318

Three-dimensional visualization of bioactive glass-bone integration in a rabbit tibia model using synchrotron X-ray microcomputed tomography.  

PubMed

Synchrotron X-ray microcomputed tomography (SR microCT), with a micron resolution, was used to evaluate the osteoconduction and osteointegration by borate bioactive glass after implantation 12 weeks in a rabbit tibia model. The study focused on the biomaterial-bone interface. Results from SR microCT two-dimensional and three-dimensional (3D) reconstructions provided precise imaging of the biomaterial-bone integration and detailed microarchitecture of both the bone-like glass graft and the newly formed trabecular bone. Osteoconduction, the formation of new trabecular bone within a tibia defect, occurred only in the tibiae implanted with teicoplanin-loaded borate glass but not in those with teicoplanin-loaded CaSO(4) beads, indicating the excellent biocompatibility of the glass implants. 3D reconstruction of the tibiae also showed the infiltration of vascular tissue in both the bioactive glass graft and the new trabecular bone. This study indicates that SR microCT can serve as a valuable complementary technique for imaging bone repair when using bioactive glass implants. PMID:21875330

Fu, Qiang; Huang, Wenhai; Jia, Weitao; Rahaman, Mohamed N; Liu, Xin; Tomsia, Antoni P

2011-12-01

319

Three-Dimensional Visualization of Bioactive Glass-Bone Integration in a Rabbit Tibia Model Using Synchrotron X-Ray Microcomputed Tomography  

PubMed Central

Synchrotron X-ray microcomputed tomography (SR microCT), with a micron resolution, was used to evaluate the osteoconduction and osteointegration by borate bioactive glass after implantation 12 weeks in a rabbit tibia model. The study focused on the biomaterial–bone interface. Results from SR microCT two-dimensional and three-dimensional (3D) reconstructions provided precise imaging of the biomaterial–bone integration and detailed microarchitecture of both the bone-like glass graft and the newly formed trabecular bone. Osteoconduction, the formation of new trabecular bone within a tibia defect, occurred only in the tibiae implanted with teicoplanin-loaded borate glass but not in those with teicoplanin-loaded CaSO4 beads, indicating the excellent biocompatibility of the glass implants. 3D reconstruction of the tibiae also showed the infiltration of vascular tissue in both the bioactive glass graft and the new trabecular bone. This study indicates that SR microCT can serve as a valuable complementary technique for imaging bone repair when using bioactive glass implants.

Huang, Wenhai; Jia, Weitao; Rahaman, Mohamed N.; Liu, Xin; Tomsia, Antoni P.

2011-01-01

320

Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix  

Microsoft Academic Search

The objective of the study was to examine the effect of alkali ion release, pH control and buffer capacity on the expression of the osteoblastic phenotype. In addition, we determined the importance of modifications of the surface of porous bioactive glass (BG) on the activity of rat calvaria osteoblasts in vitro. We found that at a low tissue culture medium

A. El-Ghannam; P. Ducheyne; I. M. Shapiro

1997-01-01

321

Tissue regeneration and repair of goat segmental femur defect with bioactive triphasic ceramic-coated hydroxyapatite scaffold.  

PubMed

Bone tissue engineering which is a developing and challenging field of science, is expected to enhance the regeneration and repair of bone lost from injury or disease and ultimately to gain its aesthetic contour. The objective of this study was to fabricate a tissue-engineered construct in vitro using a triphasic ceramic-coated hydroxypatite (HASi) in combination with stem cells and to investigate its potential in healing segmental defect in goat model. To accomplish this attempt, mesenchymal stem cells isolated from goat bone marrow were seeded onto HASi scaffolds and induced to differentiate into the osteogenic lineage in vitro. Scanning electron microscopy and light microscopy revealed adhesion and spread-out cells, which eventually formed a cell-sheet like canopy over the scaffold. Cells migrated and distributed themselves within the internal voids of the porous ceramic. Concurrently, the neo-osteogenesis of the tissue-engineered construct was validated in vivo in comparison with bare HASi (without cells) in goat femoral diaphyseal segmental defect (2 cm) at 4 months postimplantation through radiography, computed tomography, histology, histomorphometry, scanning electron microscopy and inductively coupled plasma spectrometry. Good osteointegration and osteoconduction was observed in bare and tissue-engineered HASi. The performance of tissue-engineered HASi was better and faster which was evident by the lamellar bone organization of newly formed bone throughout the defect together with the degradation of the material. On the contrary with bare HASi, immature woven bony bridges still intermingled with scattered small remnants of the material was observed in the mid region of the defect at 4 months. Encouraging results from this preclinical study has proved the capability of the tissue-engineered HASi as a promising candidate for the reconstruction of similar bony defects in humans. PMID:19065569

Nair, Manitha B; Varma, H K; Menon, K V; Shenoy, Sachin J; John, Annie

2009-12-01

322

Toward a Rational Design of Bioactive Glasses with Optimal Structural Features: Composition-Structure Correlations Unveiled by Solid-State NMR and MD Simulations  

PubMed Central

The physiological responses of silicate-based bioactive glasses (BGs) are known to depend critically on both the P content (nP) of the glass and its silicate network connectivity (N?BOSi). However, while the bioactivity generally displays a nonmonotonic dependence on nP itself, recent work suggest that it is merely the net orthophosphate content that directly links to the bioactivity. We exploit molecular dynamics (MD) simulations combined with 31P and 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy to explore the quantitative relationships between N?BOSi, nP, and the silicate and phosphate speciations in a series of Na2O–CaO–SiO2–P2O5 glasses spanning 2.1 ? N?BOSi ? 2.9 and variable P2O5 contents up to 6.0 mol %. The fractional population of the orthophosphate groups remains independent of nP at a fixed N?BOSi-value, but is reduced slightly as N?BOSi increases. Nevertheless, P remains predominantly as readily released orthophosphate ions, whose content may be altered essentially independently of the network connectivity, thereby offering a route to optimize the glass bioactivity. We discuss the observed composition-structure links in relation to known composition-bioactivity correlations, and define how Na2O–CaO–SiO2–P2O5 compositions exhibiting an optimal bioactivity can be designed by simultaneously altering three key parameters: the silicate network connectivity, the (ortho)phosphate content, and the nNa/nCa molar ratio.

2013-01-01

323

New sol-gel bioactive glass and titania composites with enhanced physico-chemical and biological properties.  

PubMed

We developed TiO2 matrix composites modified by sol-gel bioactive glasses (SBG) of either high CaO content (A2) or high SiO2 content (S2). The latter were mixed with titanium dioxide (TiO2 ) at 75:25, 50:50, and 25:75 weight ratios and sintered at 1250°C for 2 h. We examined the effects of various types (A2 or S2) and compositional TiO2 :SBG ratios on the mechanical properties of resulting composites, their bioactivity and human bone marrow mesenchymal stem cells (MSC) response. The chemistry of SBGs influenced the phase composition, mechanical and biological properties of the composites. Rutile and titanite prevailed in A2-TiO2 composites, and rutile and crystobalite in S2-TiO2 composites. Compressive strength increased significantly for 25A2-TiO2 composites (140 MPa) compared to matrix TiO2 (58 MPa). Composites containing 50-75 wt % of either SBG displayed bioactive properties as determined by simulated body fluid test. Compared to TiO2 , human bone marrow stromal cell (BMSC) viability was enhanced on the composites containing 25 wt % of either SBG, whereas the composites modified by 25 wt % of S2 enhanced alkaline phosphatase activity and mineralization in cultures treated with osteogenic inducers-dexamethasone (Dex) or bone morphogenetic protein. Increasing amounts of A2 in TiO2 matrix decreased cell viability but increased collagen deposition and mineralized matrix production by BMSC. Considering the physico-chemical and biological properties of the presented composites, the modification of TiO2 with SBG may prove useful strategy in several bone tissue related regeneration strategies. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 2383-2394, 2014. PMID:23913875

Pawlik, Justyna; Widzio?ek, Magdalena; Cholewa-Kowalska, Katarzyna; L?czka, Maria; Osyczka, Anna Maria

2014-07-01

324

Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively  

NASA Astrophysics Data System (ADS)

The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

2014-06-01

325

Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(?-caprolactone) composites for bone tissue engineering.  

PubMed

This study investigated the effect of the addition of sol-gel derived nanoscale bioactive glass (NBG) particles on the mechanical properties and biological performances of PCL polymer, in order to evaluate the potential applications of PCL/NBG composites for bone tissue regeneration. Regardless of the NBG contents (10, 20, and 30 wt.%), the NBG particles, which were synthesized through the sol-gel process using polyethylene glycol (PEG) polymer as a template, could be uniformly dispersed in the PCL matrix, while generating pores in the PCL/NBG composites. The elastic modulus of the PCL/NBG composites increased remarkably from 89±11 MPa to 383±50 MPa with increasing NBG content from 0 to 30 wt.%, while still showing good ultimate tensile strength in the range of 15-19 MPa. The hydrophilicity, water absorption and degradation behavior of the PCL/NBG composites were also enhanced by the addition of the NBG particles. Furthermore, the PCL/NBG composite with a NBG content of 30 wt.% showed significantly enhanced in vitro bioactivity and cellular response compared to those of the pure PCL. PMID:23827548

Lei, Bo; Shin, Kwan-Ha; Noh, Da-Young; Jo, In-Hwan; Koh, Young-Hag; Kim, Hyoun-Ee; Kim, Sung Eun

2013-04-01

326

Gold-containing bioactive glasses: a solid-state synthesis to produce alternative biomaterials for bone implantations  

PubMed Central

A new melted bioactive system containing gold nanoparticles (AuNPs) was prepared exploiting a post-synthesis thermal treatment that allows one to modify crystal phases and nature, shape and distribution of the gold species in the glass-ceramic matrix as evidenced by UV–visible spectroscopy, transmission electron microscopy and powder X-ray diffraction analysis. In human MG-63 osteoblasts the presence of Aun+ species caused an increase of lactate dehydrogenase leakage and malonyldialdehyde production, whereas Hench's Bioglass HAu-600-17 containing only AuNPs did not cause any effect. In addition, HAu-600-17 caused in vitro hydroxyapatite formation and an increase of specific surface area with a controlled release of gold species; this material is then suitable to be used as a model system for the controlled delivery of nanoparticles.

Aina, Valentina; Cerrato, Giuseppina; Martra, Gianmario; Bergandi, Loredana; Costamagna, Costanzo; Ghigo, Dario; Malavasi, Gianluca; Lusvardi, Gigliola; Menabue, Ledi

2013-01-01

327

Treatment of an early failing implant by guided bone regeneration using resorbable collagen membrane and bioactive glass  

PubMed Central

Implant failure can be divided into early (prior to prosthetic treatment) or late (after prosthetic rehabilitation). Early failure is generally due to interference in the healing process after implant placement. Implants undergoing early failure will show progressive bone loss on radiographs during the healing period (4 to 6 weeks). In the present case report, early progressive bone loss was seen at 6 weeks, after placement of a non-submerged single piece mini implant. Clinical examination revealed peri-implant bleeding on probing and pocket and grade-1 mobility. Treatment protocol included mechanical debridement (plastic curettes), chemical detoxification with supersaturated solution of citric acid, antibiotics and guided bone regeneration therapy using the collagen membrane as guided bone regeneration barrier in combination with bioactive glass as bone grafting material. The 6 month postoperative examination showed complete resolution of the osseous defect, thus suggesting that this technique may hold promise in the treatment of implants undergoing early failure.

Talreja, Prakash S.; Gayathri, G. V.; Mehta, D. S.

2013-01-01

328

Treatment of an early failing implant by guided bone regeneration using resorbable collagen membrane and bioactive glass.  

PubMed

Implant failure can be divided into early (prior to prosthetic treatment) or late (after prosthetic rehabilitation). Early failure is generally due to interference in the healing process after implant placement. Implants undergoing early failure will show progressive bone loss on radiographs during the healing period (4 to 6 weeks). In the present case report, early progressive bone loss was seen at 6 weeks, after placement of a non-submerged single piece mini implant. Clinical examination revealed peri-implant bleeding on probing and pocket and grade-1 mobility. Treatment protocol included mechanical debridement (plastic curettes), chemical detoxification with supersaturated solution of citric acid, antibiotics and guided bone regeneration therapy using the collagen membrane as guided bone regeneration barrier in combination with bioactive glass as bone grafting material. The 6 month postoperative examination showed complete resolution of the osseous defect, thus suggesting that this technique may hold promise in the treatment of implants undergoing early failure. PMID:23633789

Talreja, Prakash S; Gayathri, G V; Mehta, D S

2013-01-01

329

Comparisons between surfactant-templated mesoporous and conventional sol-gel-derived CaO-B{sub 2}O{sub 3}-SiO{sub 2} glasses: Compositional, textural and in vitro bioactive properties  

SciTech Connect

Compositional, textural and in vitro bioactive comparisons between surfactant-templated mesoporous (MCBS) and conventional sol-gel-derived CaO-B{sub 2}O{sub 3}-SiO{sub 2} (CBS) glasses are studied in this paper. CBS glasses are heterogeneous in composition. Due to the heterogeneity, melting boron oxide that formed during the heat treatment will fill in the pores that should have been generated by decomposition of calcium species. So, unlike other conventional sol-gel-derived bioactive glasses that have disordered and widely distributed mesopores, the CBS glasses are almost nonporous. MCBS glasses are more homogeneous in composition than CBS glasses, mainly ascribed to the effect of the surfactant. MCBS glasses of different compositions possess wormhole-like mesoporous structure and have similar pore size. In vitro bioactive tests show that wormhole-like MCBS glasses are more bioactive than CBS glasses, due to their high porosity. - Graphical abstract: Surfactant-templated mesoporous CaO-B{sub 2}O{sub 3}-SiO{sub 2} glasses (MCBS) are superior to conventional sol-gel-derived CaO-B{sub 2}O{sub 3}-SiO{sub 2} glasses (CBS) in compositional homogeneity, textural properties and in vitro bioactivity. Display Omitted.

Xiu Tongping [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, 1295 Dingxi Road, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100039 (China); Liu Qian [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, 1295 Dingxi Road, Shanghai 200050 (China)], E-mail: qianliu@sunm.shcnc.ac.cn; Wang Jiacheng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, 1295 Dingxi Road, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100039 (China)

2008-04-15

330

Nickel nanoparticle-doped paper as a bioactive scaffold for targeted and robust immobilization of functional proteins.  

PubMed

Cellulose-based materials are widely used in analytical chemistry as platforms for chromatographic and immunodiagnostic techniques. Due to its countless advantages (e.g., mechanical properties, three-dimensional structure, large surface to volume area, biocompatibility and biodegradability, and high industrial availability), paper has been rediscovered as a valuable substrate for sensors. Polymeric materials such as cellulosic paper present high protein capture ability, resulting in a large increase of detection signal and improved assay sensitivity. However, cellulose is a rather nonreactive material for direct chemical coupling. Aiming at developing an efficient method for controlled conjugation of cellulose-based materials with proteins, we devised and fabricated a hybrid scaffold based on the adsorption and in situ self-assembly of surface-oxidized Ni nanoparticles on filter paper, which serve as "docking sites" for the selective immobilization of proteins containing polyhistidine tags (His-tag). We demonstrate that the interaction between the nickel substrate and the His-tagged protein G is remarkably resilient toward chemicals at concentrations that quickly disrupt standard Ni-NTA and Ni-IDA complexes, so that this system can be used for applications in which a robust attachment is desired. The bioconjugation with His-tagged protein G allowed the binding of anti-Salmonella antibodies that mediated the immuno-capture of live and motile Salmonella bacteria. The versatility and biocompatibility of the nickel substrate were further demonstrated by enzymatic reactions. PMID:24811229

Bodelón, Gustavo; Mourdikoudis, Stefanos; Yate, Luis; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Liz-Marzán, Luis M

2014-06-24

331

The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments  

Microsoft Academic Search

The study aims at the manufacture and investigation of biodegradable glass microspheres incorporated with yttrium potentially\\u000a useful for radionuclide therapy of cancer. The glass microspheres in the SiO2–Na2O–P2O5–CaO–K2O–MgO system containing yttrium were prepared by conventional melting and flame spheroidization. The behaviour of the yttrium\\u000a silicate glass microspheres was investigated under in vitro conditions using simulated body fluid (SBF) and Tris

D. Cacaina; H. Ylänen; S. Simon; M. Hupa

2008-01-01

332

New Formulation of Functionalized Bioactive Glasses to Be Used as Carriers for the Development of pH-Stimuli Responsive Biomaterials for Bone Diseases.  

PubMed

The aim of the present contribution is to prepare a functionalized bioactive glass potentially useful as prosthetic material, but also able to release organic molecules in response to a change of the pH environment. By this approach it is possible to develop devices which can be used for a triggered drug release in response to specific stimuli; this is an attractive research field, in order to avoid either systemic and/or local toxic effects of drugs. In particular, in the present paper we report data related to the development of a new formulation of bioactive glasses, their functionalization with organic molecules to obtain a pH-sensitive bond, their physicochemical characterization and in vitro bioactivity in simulated biological fluids (SBF), and organic molecule delivery tests at different pH. The glass functionalization, by means of a covalent reaction, allows us to produce a model of pH-responsive bioactive biomaterial: when it is exposed to specific pH changes, it can favor the release of the organic molecules directly at the target site. Cysteamine and 5-aminofluorescein are used as model molecules to simulate a drug. The materials, before and after the different functionalization steps and in vitro release tests at different pH, have been characterized by means of different experimental techniques such as X-ray powder diffraction (XRPD), Raman, FTIR and fluorescence spectroscopies, N2 adsorption, thermogravimetric (TGA) and elemental analysis. PMID:24701982

Aina, Valentina; Magistris, Claudio; Cerrato, Giuseppina; Martra, Gianmario; Viscardi, Guido; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

2014-04-29

333

Synthesis of organic–inorganic hybrid composite and its thermal conversion to porous bioactive glass monolith  

Microsoft Academic Search

We report the synthesis and bioactivity studies of 3-dimensional macro-porous material produced by thermal treatment of organic–inorganic hybrid composite. This is prepared by sol–gel processing of co-poly(methylmethacrylate (MMA)-vinyltriethoxysilane (VTS)) with tetraethoxysilane (TEOS), calcium nitrate and zinc nitrate, ([CH2C(CH3)(CO2CH3)]0.8n-[CH2-CH(Si(OEt)3]0.2n-SiO2-CaO-ZnO) (1). Thermal treatment of this polymer at 600 °C yielded macro-porous bioglass monolith, with pore size distribution between 1 and 5?m and

Aderemi Oki; Xiangdong Qiu; Olajide Alawode; Bridget Foley

2006-01-01

334

Fatigue characteristics of bioactive glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for biomedical application.  

PubMed

A new surface-coating method by which CaP invert glass is used to improve the bioactivity of titanium alloys has been developed recently. In this method, the powder of CaP invert glass (CaO-P2O5-TiO2-Na2O) is coated on the surface of titanium alloy samples and heated between 1073 and 1123 K. With this treatment, a calcium phosphate layer mainly containing beta-Ca3(PO4)2 phase can be coated easily on titanium alloy samples. In the present study, the effect of this coating process on the fatigue properties of Ti-29Nb-13Ta-4.6Zr, a new metastable beta alloy for biomedical applications, has been investigated. The fatigue endurance limit of the coated alloy was found to be about 15% higher than that of uncoated alloy, as a result of the formation of a hard (alpha + beta) layer and a small amount of the omega phase during the coating process. The coating exhibits excellent adhesion to the substrate during the tensile and fatigue tests. Subsequent ageing at 673 K for 259.2 ks greatly improves the fatigue resistance of the coated alloy due to isothermal omega phase precipitation, and does not have obvious detrimental effect on the coating properties. PMID:15020109

Li, S J; Niinomi, M; Akahori, T; Kasuga, T; Yang, R; Hao, Y L

2004-08-01

335

A bioactive glass material for the delivery of bone morphogenetic proteins: Synthesis by the solution sol-gel method, physical and chemical analyses, and in vitro testing  

NASA Astrophysics Data System (ADS)

Although work of other investigators to date has provided much insight into the mechanism of bone repair using bone morphogenetic proteins (BMPs), the most fundamental clinical questions have remained unanswered; i.e., whether the BMPs can be placed in vivo in such a way as to force the initiation of bone regeneration and whether the regeneration response can be restricted to the desired location only. In this way, the choice of a suitable substrate for their delivery is central to the BMP repair methodology. In this research, highly homogeneous bioactive glasses outside of the normally accepted bioactivity composition range were synthesized by the solution sol-gel technique. They were subsequently assessed for bioactivity in vitro and their ion exchange with a simulated body fluid was measured over a 7-day period. Their immersion in the fluid resulted in rapid precipitation of fine-grained hydroxyapatite crystals, as observed by SEM and FT-IR techniques. The experimental glasses were also tested for cellular compatibility by culturing osteoblast cells on the surface of pressed discs of the material. Here, the glass was shown to Provide a suitable substrate for cell growth and proliferation. Altogether, these findings suggest that this type glass may serve as a suitable bone grafting material and delivery substrate for BMPs in the repair of osseous defects.

Mitchell, John Christopher

336

3D conductive nanocomposite scaffold for bone tissue engineering  

PubMed Central

Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli.

Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

2014-01-01

337

Histopathological, cytotoxicity and genotoxicity evaluation of Biosilicate® glass-ceramic scaffolds.  

PubMed

This study evaluated the biocompatibility of Biosilicate® scaffolds by means of histopathological, cytotoxicity, and genotoxicity analysis. The histopathologic analysis of the biomaterial was performed using 65 male rats, distributed into the groups: control and Biosilicate®, evaluated at 7, 15, 30, 45, and 60 days after implantation. The cytotoxicity analysis was performed by the methyl thiazolyl tetrazolium (MTT) assay, with various concentrations of extracts from the biomaterial in culture of osteoblasts and fibroblasts after 24, 72, and 120 h. The genotoxicity analysis (comet assay) was performed in osteoblasts and fibroblasts after contact with the biomaterial during 24, 72, and 96 h. In the histopathology analysis, we observed a foreign body reaction, characterized by the presence of granulation tissue after 7 days of implantation of the biomaterial, and fibrosis connective tissue and multinucleated giant cells for longer periods. In the cytotoxicity analysis, extracts from the biomaterial did not inhibit the proliferation of osteoblasts and fibroblasts, and relatively low concentrations (12.5% and 25%) stimulated the proliferation of both cell types after 72 and 120 h. The analysis of genotoxicity showed that Biosilicate® did not induce DNA damage in both lineages tested in all periods. The results showed that the Biosilicate® scaffolds present in vivo and in vitro biocompatibility. PMID:22941855

Kido, Hueliton W; Oliveira, Poliani; Parizotto, Nivaldo A; Crovace, Murilo C; Zanotto, Edgar D; Peitl-Filho, Oscar; Fernandes, Kristianne P S; Mesquita-Ferrari, Raquel A; Ribeiro, Daniel A; Renno, Ana Claudia M

2013-03-01

338

Physical and cytocompatibility properties of bioactive glass–polyvinyl alcohol–sodium alginate biocomposite foams prepared via sol–gel processing for trabecular bone regeneration  

Microsoft Academic Search

In the present work, biocomposite foams of bioactive glass along with polyvinyl alcohol and sodium alginate are designed and\\u000a developed as a potential biomaterial for bone regeneration. These biocomposite foams have a low density of 0.92 g\\/cm3, providing desired property for bone tissue engineering applications. Biocomposite foams were prepared via surfactant foaming.\\u000a Scanning electron microscopic characterization revealed pore size of 200–500 ?m

Ruchi Mishra; Bikramjit Basu; Ashok Kumar

2009-01-01

339

Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO-MgO-SiO2-Na2O-P2O5-CaF2.  

PubMed

New compositions of bioactive glasses are proposed in the CaO-MgO-SiO(2)-Na(2)O-P(2)O(5)-CaF(2) system. Mineralization tests with immersion of the investigated glasses in simulated body fluid (SBF) at 37°C showed that the glasses favour the surface formation of hydroxyapatite (HA) from the early stages of the experiments. In the case of daily renewable SBF, monetite (CaHPO(4)) formation competed with the formation of HA. The influence of structural features of the glasses on their mineralization (bioactivity) performance is discussed. Preliminary in vitro experiments with osteoblasts' cell-cultures showed that the glasses are biocompatible and there is no evidence of toxicity. Sintering and devitrification studies of glass powder compacts were also performed. Glass-ceramics with attractive properties were obtained after heat treatment of the glasses at relatively low temperatures (up to 850°C). PMID:21188484

Tulyaganov, D U; Agathopoulos, S; Valerio, P; Balamurugan, A; Saranti, A; Karakassides, M A; Ferreira, J M F

2011-02-01

340

Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.  

PubMed

A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and ?-CaSiO(3). (?-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of ?-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. PMID:24780435

Li, H C; Wang, D G; Meng, X G; Chen, C Z

2014-06-01

341

Evaluation of Angiogenesis of Bioactive Glass in the Arteriovenous Loop Model  

PubMed Central

In this study, the angiogenetic effect of sintered 45S5 Bioglass® was quantitatively assessed for the first time in the arteriovenous loop (AVL) model. An AVL was created by interposition of a venous graft from the contralateral side between the femoral artery and vein in the medial thigh of eight rats. The loop was placed in a Teflon isolation chamber and was embedded in a sintered 45S5 Bioglass® granula matrix filled with fibrin gel. Specimens were investigated 3 weeks postoperatively by means of microcomputed tomography, histological, and morphometrical techniques. All animals tolerated the operations well. At 3 weeks, both microcomputed tomography and histology demonstrated a dense network of newly formed vessels originating from the AVL. All constructs were filled with cell-rich, highly vascularized connective tissue around the vascular axis. Analysis of vessel diameter revealed constant small vessel diameters, indicating immature new vessel sprouts. This study shows for the first time axial vascularization of a sintered 45S5 Bioglass® granula matrix. After 3 weeks, the newly generated vascular network already interfused most parts of the scaffolds and showed signs of immaturity. The intrinsic type of vascularization allows transplantation of the entire construct using the AVL pedicle.

Balzer, Amelie; Buehrer, Gregor; Arnold, Isabel; Hoppe, Alexander; Detsch, Rainer; Newby, Phillipa; Fey, Tobias; Greil, Peter; Horch, Raymund E.; Boccaccini, Aldo R.; Kneser, Ulrich

2013-01-01

342

Bioactivation of Ni-free Zr-based bulk metallic glass by surface modification  

Microsoft Academic Search

A bone-like apatite layer was successfully deposited on the surface of the Ni-free Zr60.5Cu19.5Fe5Al9.5Ti5.5 bulk metallic glass (BMG) by using a hybrid technique of micro-arc oxidation (MAO) and a biomimetic process. The Zr-based BMG was initially modified via MAO which led to the formation of a porous and rough ZrO2 layer on the BMG surface. After subsequent immersion in a

L. Liu; K. C. Chan; Y. Yu; Q. Chen

2010-01-01

343

Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity.  

PubMed

Anophthalmic orbit restoration with artificial implants is usually accompanied with the risks of bacterial penetration and implant exposure. Here, we develop a facile evaporation-inducing self-assembly approach to modify the porous hydroxyapatite (pHA) orbital implants by using sol-gel derived CuO-containing mesoporous bioactive glass (Cu-MBG). The Cu-MBG coatings with 0-5 mol% CuO were prepared in the pore wall of pHA by immersion-evaporation-ageing route in the sol precursor of Cu-MBG. Brunauer-Emmett-Teller and Barrette-Joyner-Halenda analyses showed that the specific surface area and pore volume were slightly decreased with increasing CuO content, while the Cu-MBG-modified pHA maintained a sustained release of ofloxacin and significantly inhibited the bacterial viability (Staphylococcus aureus and Escherichia coli). These studies demonstrate that the Cu-MBG modification provides an effective and facile strategy to endow combined biological performances of pHA orbital implants and potentially reduce implant-related side effects. PMID:24563298

Ye, Juan; He, Jinjing; Wang, Changjun; Yao, Ke; Gou, Zhongru

2014-05-01

344

Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.  

PubMed

This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. PMID:24863874

Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

2014-08-01

345

Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering.  

PubMed

Spatial and temporal control of bioactive signals in three-dimensional (3D) tissue engineering scaffolds is greatly desired. Coupled together, these attributes may mimic and maintain complex signal patterns, such as those observed during axonal regeneration or neovascularization. Seamless polymer constructs may provide a route to achieve spatial control of signal distribution. In this study, a novel microparticle-based scaffold fabrication technique is introduced as a method to create 3D scaffolds with spatial control over model dyes using uniform poly(D,L-lactide-co-glycolide) microspheres. Uniform microspheres were produced using the Precision Particle Fabrication technique. Scaffolds were assembled by flowing microsphere suspensions into a cylindrical glass mold, and then microspheres were physically attached to form a continuous scaffold using ethanol treatment. An ethanol soak of 1 h was found to be optimum for improved mechanical characteristics. Morphological and physical characterization of the scaffolds revealed that microsphere matrices were porous (41.1 +/- 2.1%) and well connected, and their compressive stiffness ranged from 142 to 306 kPa. Culturing chondrocytes on the scaffolds revealed the compatibility of these substrates with cell attachment and viability. In addition, bilayered, multilayered, and gradient scaffolds were fabricated, exhibiting excellent spatial control and resolution. Such novel scaffolds can serve as sustained delivery devices of heterogeneous signals in a continuous and seamless manner, and may be particularly useful in future interfacial tissue engineering investigations. PMID:18795865

Singh, Milind; Morris, Casey P; Ellis, Ryan J; Detamore, Michael S; Berkland, Cory

2008-12-01

346

Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition.  

PubMed

Thermally induced phase separation (TIPS) has proven to be a suitable method for the preparation of porous structures for tissue engineering applications, and particular attention has been paid to increasing the pore size without the use of possible toxic surfactants. Within this context, an alternative method to control the porosity of polymeric scaffolds via the combination with a bioglass is proposed in this work. The addition of a bioactive glass from the 3CaO x P2O5-MgO-SiO2 system enables the porous structure of high molecular weight poly(l-lactic) acid (PLLA) scaffolds prepared by TIPS to be tailored. Bioglass acts as a nucleating catalyst agent of the PLLA matrix, promoting its crystallization, and the glass solubility controls the pore size. A significant increase in the pore size is observed as the bioglass content increases and scaffolds with large pore size (approximately 150 microm) can be prepared. In addition, the bioactive character of the scaffolds is proved by in vitro tests in synthetic plasma. The importance of this approach resides on the combination of the ability to tailor the porosity of polymeric scaffolds via the tunable solubility of bioglasses, without the use of toxic surfactants, leading to a composite structure with suitable properties for bone tissue engineering applications. PMID:20350622

Barroca, N; Daniel-da-Silva, A L; Vilarinho, P M; Fernandes, M H V

2010-09-01

347

Long-term controlled release of 125I-tagged BMP-2 by mesoporous bioactive glass with ordered nanopores  

PubMed Central

The aim of this study was to investigate the ability of mesoporous bioactive glass with ordered nanopores (80S MBG) to adsorb and provide the delayed release of 125I-tagged bone morphogenetic protein-2 (BMP-2). A 50 mg piece of 80S MBG was produced, which comprised SiO2, CaO and P2O5 in a component molar ratio of 80:15:5. Each MBG piece adsorbed 30 ?g 125I-BMP-2. Persistent radioactivity in the MBG was periodically measured in simulated body fluid. The total amount of BMP-2 released and the mean amount released per day were calculated. A delayed release curve of BMP-2 was constructed. SPSS 15.0 software was used to perform a statistical analysis. The amount of BMP-2 released in the first two days was one-quarter of the total load. A line equation, y = 490.55×1/2 + 7268.82, was obtained from the square root of protein release doses value at 3–94 days. The total amount of BMP-2 released over 94 days was 11.894 ?g, which was ~39.6% of the total load. The half-life of the release time was 248 days. From the second week, the rate of BMP release had stabilized to a mean of 37.42±18.67 ng/day and the difference of the mean amount released per day had no statistical significance (P>0.05). High adsorption and delayed release effects of BMP-2 were observed in 80S MBG. The delayed release conforms to the Higuchi equation, which indicates possible applications in promoting bone healing.

ZHANG, QUAN; ZHANG, YE; CHEN, WENJUN; ZHANG, BINGWEN; WANG, SHILONG

2013-01-01

348

Interactive exploration of chemical space with Scaffold Hunter.  

PubMed

We describe Scaffold Hunter, a highly interactive computer-based tool for navigation in chemical space that fosters intuitive recognition of complex structural relationships associated with bioactivity. The program reads compound structures and bioactivity data, generates compound scaffolds, correlates them in a hierarchical tree-like arrangement, and annotates them with bioactivity. Brachiation along tree branches from structurally complex to simple scaffolds allows identification of new ligand types. We provide proof of concept for pyruvate kinase. PMID:19561620

Wetzel, Stefan; Klein, Karsten; Renner, Steffen; Rauh, Daniel; Oprea, Tudor I; Mutzel, Petra; Waldmann, Herbert

2009-08-01

349

Effects of materials parameters on mineralization and degradation of sol-gel bioactive glasses with 3D-ordered macroporous structures.  

PubMed

Bioactive glasses (BGs) with three-dimensionally ordered macroporous (3DOM) structures were prepared by combining a sol-gel synthesis with colloidal crystal templating. 3DOM sol-gel BGs with two compositions (20 mol % CaO-80% SiO2 and 20 mol % CaO-4% P2O5-76% SiO2) and three macropore sizes (average: 345, 440, and 790 nm) were prepared. Glasses were separated into two particle sizes (212 microm< small < 355 microm and 600 microm < large < 1000 microm). The glasses were soaked in simulated body fluid at 37 degrees C for 2 or 4 days and the effects of composition, particle size, and macropore size on the formation of apatite and glass degradation were characterized. Within the parameter range of the experiments, several comparisons could be made. First, the formation of apatite and degradation of the glass were slightly enhanced for the phosphate containing composition. Second, large particles formed less apatite and degraded less completely compared with small particles. Lastly, an increase in macropore size slowed down the glass degradation and apatite formation processes, an effect related to the decreased internal surface area of the larger pore materials. PMID:12926039

Zhang, Kai; Yan, Hongwei; Bell, David C; Stein, Andreas; Francis, Lorraine F

2003-09-15

350

Effects of bioactive glass S53P4 or beta-tricalcium phosphate and bone morphogenetic protein-2 and bone morphogenetic protein-7 on osteogenic differentiation of human adipose stem cells  

PubMed Central

The effects of bioactive glass S53P4 or beta-tricalcium phosphate; and bone morphogenetic proteins bone morphogenetic protein-2, bone morphogenetic protein-7, or bone morphogenetic protein-2 + 7 on osteogenic differentiation of human adipose stem cells were compared in control medium, osteogenic medium, and bone morphogenetic protein-supplemented osteogenic medium to assess suitability for bone tissue engineering. Cell amount was evaluated with qDNA measurements; osteogenic differentiation using marker gene expression, alkaline phosphate activity, and angiogenic potential was measured by vascular endothelial growth factor expression. As compared to beta-tricalcium phosphate, cell amount was significantly greater for bioactive glass in control medium after 7 days and in osteogenic medium after 14 days, and alkaline phosphate activity was always significantly greater for bioactive glass in control medium. However, alkaline phosphate activity increased for beta-tricalcium phosphate and decreased for bioactive glass granules in osteogenic medium. For both biomaterials, bone morphogenetic protein supplementation decreased cell amount and osteogenic differentiation of human adipose stem cells, and vascular endothelial growth factor expressions correlated with cell amounts. Effects of culture medium on human adipose stem cells are biomaterial dependent; bioactive glass in control medium enhanced osteogenic differentiation most effectively.

Patrikoski, Mimmi; Juntunen, Miia; Kujala, Kasperi; Kaariainen, Minna; Kuokkanen, Hannu; Sandor, George K; Vapaavuori, Outi; Suuronen, Riitta; Mannerstrom, Bettina; von Rechenberg, Brigitte; Miettinen, Susanna

2012-01-01

351

Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid.  

PubMed

Microfibrous bioactive glasses are showing a considerable capacity to heal soft tissue wounds, but little information is available on the mechanism of healing. In the present study, the conversion of microfibrous borate bioactive glass (diameter = 0.2-5 ?m) with the composition designated 13-93B3 (5.5 Na2O, 11.1 K2O, 4.6 MgO, 18.5 CaO, 3.7 P2O5, 56.6 B2O3 wt%) was evaluated in vitro as a function of immersion time in a simulated body fluid (SBF) at 37 °C using structural and chemical techniques. Silicate 45S5glass microfibers (45 SiO2, 24.5 Na2O, 24.5 CaO, 6 P2O5 wt%) were also studied for comparison. Microfibrous 13-93B3 glass degraded almost completely and converted to a calcium phosphate material within 7-14 days in SBF, whereas >85 % of the silica remained in the 45S5 microfibers, forming a silica gel phase. An amorphous calcium phosphate (ACP) product that formed on the 13-93B3 microfibers crystallized at a slower rate to hydroxyapatite (HA) when compared to the ACP that formed on the 45S5 fibers. For immersion times >3 days, the 13-93B3 fibers released a higher concentration of Ca into the SBF than the 45S5 fibers. The fast and more complete degradation, slow crystallization of the ACP product, and higher concentration of dissolved Ca in SBF could contribute to the capacity of the microfibrous borate 13-93B3 glass to heal soft tissue wounds. PMID:23233025

Liu, Xin; Rahaman, Mohamed N; Day, Delbert E

2013-03-01

352

On the dissolution/reaction of small-grain Bioglass ® 45S5 and F-modified bioactive glasses in artificial saliva (AS)  

NASA Astrophysics Data System (ADS)

The reaction of small-grain Bioglass ® 45S5 in artificial saliva (AS), to produce a layer of hydroxy-apatite (HA) and/or hydroxy-carbonate apatite (HCA), has been studied and compared to the results obtained in a simple buffered solution (TRIS). Some potentially bioactive glasses based on the composition of Bioglass ® and containing CaF 2 (HCaCaF 2 5% and HNaCaF 2 5%) have also been studied, in order to analyze the effects/changes produced when a F-containing glass surface is contacted with AS. The insertion of fluorine has been proposed to improve bioactive glass bone-bonding ability, and to parallel fluorine-containing glass-ceramics currently used in dentistry. ICP-OES analysis of the solution, and FTIR spectroscopy of the solid samples provided compositional information on the stages of reaction. These data were integrated with XRD and the textural and morphological data, obtained by specific surface areas determination and TEM-EDS measurements. In the case of Bioglass ® 45S5, a comparison at corresponding reaction times indicates that the precipitation of an amorphous Ca-phosphate phase is faster in AS, but the crystallization of HA/HCA is delayed in AS with respect to the TRIS solution. For fluoride-containing glasses, the sample HCaCaF 2 5%, in which CaF 2 replaces part of CaO, possesses the fastest rate for HA/HCA crystallization (1 week) in AS. Some lines of interpretation for these results are proposed.

Aina, Valentina; Bertinetti, Luca; Cerrato, Giuseppina; Cerruti, Marta; Lusvardi, Gigliola; Malavasi, Gianluca; Morterra, Claudio; Tacconi, Linda; Menabue, Ledi

2011-02-01

353

Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2 glass-ceramics containing apatite and wollastonite.  

PubMed

Some ceramics show bone-bonding ability, i.e. bioactivity. Apatite formation on ceramics is an essential condition to bring about direct bonding to living bone when implanted into bony defects. A controlled surface reaction of the ceramic is an important factor governing the bioactivity and biodegradation of the implanted ceramic. Among bioactive ceramics, glass-ceramic A-W containing apatite and wollastonite shows high bioactivity, as well as high mechanical strength. In this study, glass-ceramics containing zinc oxide were prepared by modification of the composition of the glass-ceramic A-W. Zinc oxide was selected to control the reactivity of the glass-ceramics since zinc is a trace element that shows stimulatory effects on bone formation. Glass-ceramics were prepared by heat treatment of glasses with the general composition: xZnOx(57.0-x)CaOx35.4SiO(2)x7.2P(2)O(5)x0.4CaF(2) (where x=0-14.2mol.%). Addition of ZnO increased the chemical durability of the glass-ceramics, resulting in a decrease in the rate of apatite formation in a simulated body fluid. On the other hand, the release of zinc from the glass-ceramics increased with increasing ZnO content. Addition of ZnO may provide bioactive CaO-SiO(2)-P(2)O(5)-CaF(2) glass-ceramics with the capacity for appropriate biodegradation, as well as enhancement of bone formation. PMID:16765885

Kamitakahara, M; Ohtsuki, C; Inada, H; Tanihara, M; Miyazaki, T

2006-07-01

354

Effect of soft laser and bioactive glass on bone regeneration in the treatment of infra-bony defects (a clinical study)  

Microsoft Academic Search

This study aimed to investigate the influence of low-power 830 nm gallium–aluminium–arsenide (GaAlAs) laser [continuous wave\\u000a (CW) 40 mW and fluence 4 J\\/cm2, with total energy density of 16 J\\/cm2] on the healing of human infra-bony defects treated with bioactive glass graft material. Twenty patients with chronic periodontitis\\u000a and bilateral infra-bony defects were included. Using a split mouth design, we treated 20 defects with

Nayer S. AboElsaad; Mena Soory; Laila M. A. Gadalla; Laila I. Ragab; Stephen Dunne; Khaled R. Zalata; Chris Louca

2009-01-01

355

Ceramic Identity Contributes to Mechanical Properties and Osteoblast Behavior on Macroporous Composite Scaffolds  

PubMed Central

Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide) (PLG) and either hydroxyapatite (HA), ?-tricalcium phosphate (TCP), or bioactive glass (Bioglass 45S®, BG) were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts) to composite scaffolds by alkaline phosphatase (ALP) activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC) was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing.

Morales-Hernandez, Diana G.; Genetos, Damian C.; Working, David M.; Murphy, Kaitlin C.; Leach, J. Kent

2012-01-01

356

Fabrication of a novel poly(3-hydroxyoctanoate) / nanoscale bioactive glass composite film with potential as a multifunctional wound dressing  

NASA Astrophysics Data System (ADS)

Fabrication of a composite scaffold of nanobioglass (n-BG) 45S5 and poly(3-hydroxyocatnoate), P(3HO) was studied for the first time with the aim of developing a novel, multifunctional wound dressing. The incorporation of n-BG accelerated blood clotting time and its incorporation in the polymer matrix enhanced the wettability, surface roughness and bio-compatibility of the scaffold.

Rai, Ranjana; Boccaccini, Aldo R.; Knowles, Jonathan C.; Locke, Ian C.; Gordge, Michael P.; McCormick, Aine; Salih, Vehid; Mordon, Nicola; Keshavarz, Tajalli; Roy, Ipsita

2010-06-01

357

Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering.  

PubMed

A biomimetic scaffold which can very closely mimic the extracellular matrix of the bone was fabricated by incorporating nano-bioceramic particles such as nano bioglass (nBG) and nano hydroxyapatite (nHAp) within electrospun nanofibrous scaffold. A comparative study between nHAp incorporated poly(caprolactone) (PCL)-chitosan (CS) and nBG incorporated PCL-CS nanofibrous scaffolds was carried out and their feasibility in tissue engineering was investigated. All the samples were optimized to obtain fibers of similar diameter from 100-200 nm for the ease of comparison between the samples. Protein adsorption studies showed that PCL-CS incorporated with 3 wt% nHAp and 3 wt% nBG adsorbed more proteins on their surface than other samples. Cell attachment and proliferation studies using human periodontal ligament fibroblast cells (hPLFs) and osteoblast like cells (MG-63 cell lines) showed that nBG incorporated samples are slightly superior to nHAp incorporated counterparts. Cell viability test using alamar blue assay and live/dead staining confirms that the scaffolds are cytocompatible. ALP activity confirmed the osteoblastic behavior of hPDLFs. Also the presence of nHAp and nBG enhanced the ALP activity of hPDLF on the PCH3 and PCB3 scaffolds. These studies indicate that nBG incorporated electrospun scaffolds are comparatively better candidates for orthopedic and periodontal tissue engineering applications. PMID:23620999

Shalumon, K T; Sowmya, S; Sathish, D; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

2013-03-01

358

Porous poly( ?-hydroxyacid)\\/Bioglass ® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation  

Microsoft Academic Search

Highly porous composites scaffolds of poly-d,l-lactide (PDLLA) and poly(lactide-co-glycolide) (PLGA) containing different amounts (10, 25 and 50wt%) of bioactive glass (45S5 Bioglass®) were prepared by thermally induced solid–liquid phase separation (TIPS) and subsequent solvent sublimation. The addition of increasing amounts of Bioglass® into the polymer foams decreased the pore volume. Conversely, the mechanical properties of the polymer materials were improved.

V. Maquet; A. R. Boccaccini; L. Pravata; I. Notingher; R. Jérôme

2004-01-01

359

Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.  

PubMed

Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.% P(2)O(5) were crystallized through two stage thermal treatments. By carefully controlling these treatments we separately studied the effects on the mechanical properties of two important microstructural features not studied before, crystallized volume fraction and crystal size. Fracture strength, elastic modulus and indentation fracture toughness were measured as a function of crystallized volume fraction for a constant crystal size. Glass-ceramics with a crystalline volume fraction between 34% and 60% exhibited a three-fold improvement in fracture strength and an increase of 40% in indentation fracture toughness compared with the parent glass. For the optimal crystalline concentration (34% and 60%) these mechanical properties were then measured for different grain sizes, from 5 to 21 ?m. The glass-ceramic with the highest fracture strength and indentation fracture toughness was that with 34% crystallized volume fracture and 13 ?m crystals. Compared with the parent glass, the average fracture strength of this glass-ceramic was increased from 80 to 210 MPa, and the fracture toughness from 0.60 to 0.95 MPa.m(1/2). The increase in indentation fracture toughness was analyzed using different theoretical models, which demonstrated that it is due to crack deflection. Fortunately, the elastic modulus E increased only slightly; from 60 to 70 GPa (the elastic modulus of biomaterials should be as close as possible to that of cortical bone). In summary, the flexural strength of our best material (215 MPa) is significantly greater than that of cortical bone and comparable with that of apatite-wollastonite (A/W) bioglass ceramics, with the advantage that it shows a much lower elastic modulus. These results thus provide a relevant guide for the design of bioactive glass-ceramics with improved microstructure. PMID:22032913

Peitl, Oscar; Zanotto, Edgar D; Serbena, Francisco C; Hench, Larry L

2012-01-01

360

Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study.  

PubMed

Purpose of this study was to compare bioactive glass and autogenous bone as a bone substitute material in tibial plateau fractures. We designed a prospective, randomized study consisting of 25 consecutive operatively treated patients with depressed unilateral tibial comminuted plateau fracture (AO classification 41 B2 and B3).14 patients (7 females, 7 males, mean age 57 years, range 25-82) were randomized in the bioglass group (BG) and 11 patients (6 females, 5 males, mean age 50 years, range 31-82) served as autogenous bone control group (AB). Clinical examination of the patients was performed at 3 and 12 months, patients' subjective and functional results were evaluated at 12 months. Radiological analysis was performed preoperatively, immediately postoperatively and at 3 and 12 months. The postoperative redepression for both studied groups was 1 mm until 3 months and remained unchanged at 12 months. No differences were identified in the subjective evaluation, functional tests and clinical examination between the two groups during 1 year follow-up. We conclude that bioactive glass granules can be clinically used as filler material instead of autogenous bone in the lateral tibial plateau compression fractures. PMID:21431354

Heikkilä, Jouni T; Kukkonen, Juha; Aho, Allan J; Moisander, Susanna; Kyyrönen, Timo; Mattila, Kimmo

2011-04-01

361

Preparation and characterization of macroporous chitosan\\/wollastonite composite scaffolds for tissue engineering  

Microsoft Academic Search

Chitosan\\/wollastonite composite scaffolds were prepared by a thermally induced phase separation method. The microstructure, mechanical performance and in vitro bioactivity of the composite scaffolds were investigated. The composite scaffolds were macroporous and wollastonite particles were dispersed uniformly on the surface of the pore walls. Scanning electron microscope images of the composite scaffolds demonstrated that the scaffolds had interconnected pores with

Li Zhao; Jiang Chang

2004-01-01

362

Effects of surfactants on the microstructure of porous ceramic scaffolds fabricated by foaming for bone tissue engineering  

SciTech Connect

A porous scaffold comprising a {beta}-tricalcium phosphate matrix and bioactive glass powders was fabricated by foaming method and the effects of surfactants as foaming agent on microstructure of scaffolds were investigated. Foaming capacity and foam stability of different surfactants in water firstly were carried out to evaluate their foam properties. The porous structure and pore size distribution of the scaffolds were systematically characterized by scanning electron microscopy (SEM) and an optical microscopy connected to an image analyzer. The results showed that the foam stability of surfactant has more remarkable influence on their microstructure such as pore shape, size and interconnectivity than the foaming ability of one. Porous scaffolds fabricated using nonionic surfactant Tween 80 with large foam stability exhibited higher open and total porosities, and fully interconnected porous structure with a pore size of 750-850 {mu}m.

Wang Xi, E-mail: nano-sun@hotmail.com [College of Chemistry and Chemical Engineering, Central South University, Lushan Road South, Changsha, Hunan 410083 (China); Ruan Jianming [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China); Chen Qiyuan [College of Chemistry and Chemical Engineering, Central South University, Lushan Road South, Changsha, Hunan 410083 (China)

2009-06-03

363

Physical and degradation properties of PLGA scaffolds fabricated by salt fusion technique.  

PubMed

Tissue engineering scaffolds require a controlled pore size and interconnected pore structures to support the host tissue growth. In the present study, three dimensional (3D) hybrid scaffolds of poly lactic acid (PLA) and poly glycolic acid (PGA) were fabricated using solvent casting/particulate leaching. In this case, partially fused NaCl particles were used as porogen (200-300µ) to improve the overall porosity (?90%) and internal texture of scaffolds. Differential scanning calorimeter (DSC) analysis of these porous scaffolds revealed a gradual reduction in glass transition temperature (Tg) (from 48°C to 42.5°C) with increase in hydrophilic PGA content. The potential applications of these scaffolds as implants were further tested for their biocompatibility and biodegradability in four simulated body fluid (SBF) types in vitro. Whereas, simulated body fluid (SBF) Type1 with the optimal amount of HCO3 (-) ions was found to be more appropriate and sensible for testing the bioactivity of scaffolds. Among three combinations of polymer scaffolds, sample B with a ratio of 75:25 of PLA: PGA showed greater stability in body fluids (pH 7.2) with an optimum degradation rate (9% to 12% approx). X-ray diffractogram also confirmed a thin layer of hydroxyapatite deposition over sample B with all SBF types in vitro. PMID:23885272

Mekala, Naveen Kumar; Baadhe, Rama Raju; Parcha, Sreenivasa Rao; Yalavarthy, Prameela Devi

2013-07-01

364

Physical and degradation properties of PLGA scaffolds fabricated by salt fusion technique  

PubMed Central

Tissue engineering scaffolds require a controlled pore size and interconnected pore structures to support the host tissue growth. In the present study, three dimensional (3D) hybrid scaffolds of poly lactic acid (PLA) and poly glycolic acid (PGA) were fabricated using solvent casting/particulate leaching. In this case, partially fused NaCl particles were used as porogen (200-300µ) to improve the overall porosity (?90%) and internal texture of scaffolds. Differential scanning calorimeter (DSC) analysis of these porous scaffolds revealed a gradual reduction in glass transition temperature (Tg) (from 48°C to 42.5°C) with increase in hydrophilic PGA content. The potential applications of these scaffolds as implants were further tested for their biocompatibility and biodegradability in four simulated body fluid (SBF) types in vitro. Whereas, simulated body fluid (SBF) Type1 with the optimal amount of HCO3? ions was found to be more appropriate and sensible for testing the bioactivity of scaffolds. Among three combinations of polymer scaffolds, sample B with a ratio of 75:25 of PLA: PGA showed greater stability in body fluids (pH 7.2) with an optimum degradation rate (9% to 12% approx). X-ray diffractogram also confirmed a thin layer of hydroxyapatite deposition over sample B with all SBF types in vitro.

Mekala, Naveen Kumar; Baadhe, Rama Raju; Parcha, Sreenivasa Rao; Yalavarthy, Prameela Devi

2013-01-01

365

Bioactive glass-mesoporous silica coatings on Ti6Al4V through enameling and triblock-copolymer-templated sol-gel processing.  

PubMed

The combination of thick glass coatings that can protect Ti6Al4V from corrosion in the body fluids, and mesoporous silica films able to readily induce the formation of apatite when immersed in a simulated body fluid (SBF), has been investigated in this work as a possible route towards more resistant and long-lasting implants. Glasses in the system Si-Ca-Mg-Na-K-P-O with thermal expansion coefficients close to that of Ti6Al4V were prepared and used to coat this alloy by an enameling technique. However, the glasses apt to coat Ti6Al4V exhibited a very limited capacity to induce apatite formation in SBF. In order to enhance their bioactivity, a thin film of mesoporous silica was applied on the exterior of the specimens by spin coating a sol-gel solution. When tested in SBF, these coatings induced apatite formation after 7 days. The mesoporosity of the silica film was created through a triblock-copolymer-templating process. The diameters of the mesochannels could be adjusted by changing the size of the directing agent. A preferred alignment of the mesostructure was observed. The removal of the organic templates could be achieved through a photocalcination treatment, which, compared to conventional thermocalcination, offered several advantages. PMID:11372056

Gomez-Vega, J M; Hozumi, A; Saiz, E; Tomsia, A P; Sugimura, H; Takai, O

2001-09-01

366

Investigating the effect of SiO2-TiO 2-CaO-Na 2O-ZnO bioactive glass doped hydroxyapatite: characterisation and structural evaluation.  

PubMed

The effects of increasing bioactive glass additions, SiO2-TiO2-CaO-Na2O-ZnO up to 25 wt% in increments of 5 wt%, on the physical and mechanical properties of hydroxyapatite (HA) sintered at 900, 1000, 1100 and 1200 °C for 2 h was investigated. Increasing both the glass content and the temperature resulted in increased HA decomposition. This resulted in the formation of a number of bioactive phases. However the presence of the liquidus glass phase did not result in increased densification levels. At 1000 and 1100 °C the additions of 5 wt% glass resulted in a decrease in density which never recovered with increasing glass content. At 1200 °C a cyclic pattern resulted from increasing glass content. There was no direct relationship between strength and density with all samples experiencing no change or a decrease in strength with increasing glass content. Weibull statistics displayed no pattern with increasing glass content. PMID:24748516

Yatongchai, Chokchai; Wren, Anthony W; Curran, Declan J; Hampshire, Stuart; Towler, Mark R

2014-07-01

367

Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering.  

PubMed

Novel multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds exhibiting potential for drug delivery were developed for bone tissue engineering. 45S5 Bioglass-based glass-ceramic scaffolds of high interconnected porosity produced using the foam-replication technique were coated with biodegradable microspheres (size<2 microm) made from poly(3-hydroxybutyrate), P(3HB), produced using Bacillus cereus SPV. A solid-in-oil-in-water emulsion solvent extraction/evaporation technique was used to produce these P(3HB) microspheres. A simple slurry-dipping method, using a 1 wt.% suspension of P(3HB) microspheres in water, dispersed by an ultrasonic bath, was used to coat the scaffold, producing a uniform microsphere coating throughout the three-dimensional scaffold structure. Compressive strength tests confirmed that the microsphere coating slightly enhanced the scaffold mechanical strength. It was also confirmed that the microsphere coating did not inhibit the bioactivity of the scaffold when immersed in simulated body fluid (SBF) for up to 4 weeks. The hydroxyapatite (HA) growth rate on P(3HB) microsphere-coated 45S5 Bioglass composite scaffolds was very similar to that on the uncoated control sample, qualitatively indicating similar bioactivity. However, the surface topography of the HA surface layer was affected as shown by results obtained from white light interferometry. The roughness of the surface was much higher for the P(3HB) microsphere-coated scaffolds than for the uncoated samples, after 7 days in SBF. This feature would facilitate cell attachment and proliferation. Finally, gentamycin was successfully encapsulated into the P(3HB) microspheres to demonstrate the drug delivery capability of the scaffolds. Gentamycin release kinetics was determined using liquid chromatography-mass spectrometry. The release of the drug from the coated composite scaffolds was slow and controlled when compared to the observed fast and relatively uncontrolled drug release from the bone scaffold (without microsphere coating). Thus, this unique multifunctional bioactive composite scaffold has the potential to enhance cell attachment and to provide controlled delivery of relevant drugs for bone tissue engineering. PMID:20056174

Francis, Lydia; Meng, Decheng; Knowles, Jonathan C; Roy, Ipsita; Boccaccini, Aldo R

2010-07-01

368

Functionalized synthetic biodegradable polymer scaffolds for tissue engineering.  

PubMed

Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biodegradable polymers with functional groups that are used to couple bioactive agents. Presenting bioactive agents on scaffolding surfaces is the most efficient way to elicit desired cell/material interactions. This paper reviews recent advancements in the development of functionalized biodegradable polymer scaffolds for tissue engineering, emphasizing the syntheses of functional biodegradable polymers, and surface modification of polymeric scaffolds. PMID:22396193

Liu, Xiaohua; Holzwarth, Jeremy M; Ma, Peter X

2012-07-01

369

A bioactive bone cement containing Bis-GMA resin and A-W glass-ceramic as an augmentation graft material on mandibular bone.  

PubMed

The potential of a bioactive bone cement (BABC) as an onlay graft material for the mandible with and without the periosteum was investigated in rabbits. Its matrix consists of bisphenol-alpha-glycidyl methacrylate (Bis-GMA) and triethylene-glycol dimetacrylate (TEGDMA) and its filler is silane-treated CaO-SiO2-P2O5-MgO-CaF2 glass (A-W glass-ceramic) powder. The BABC was pasted onto the mandible under the periosteum in Group 1, and onto the mandible with the periosteum removed in Group 2 and allowed to set in situ. In both groups, the cement-bone interface was filled by new bone at 4, 12 and 48 weeks, and bone grew from adjacent bone tissue into the cement-soft tissue interface at 12 and 48 weeks. There were no differences in the rate of bone formation between the groups. The shearing strength increased progressively from 0.25+/-0.10 MPa (mean+/-SD) at week 1 to 7.98+/-0.62 MPa at week 48. The results suggest that the BABC has good handling properties, a high bonding strength and good biocompatibility, and that it has potential for clinical application as a substitute material for autogenous bone transplantation. PMID:12969371

Fujimura, Kazuma; Bessho, Kazuhisa; Okubo, Yasunori; Segami, Natsuki; Iizuka, Tadahiko

2003-10-01

370

Bioactive glass-ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol-gel vs melt-processing route)  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Bioactive glass-ceramic coatings for bone tissue repair and regeneration. Black-Right-Pointing-Pointer Pulsed Lased Deposition allowed congruent transfer of target composition to coating. Black-Right-Pointing-Pointer Target was prepared by sol-gel process suitable for compositional tailoring. Black-Right-Pointing-Pointer Titanium, widely used for orthopaedics and dental implants, was used as substrate. Black-Right-Pointing-Pointer The physico-chemical properties of the prepared coatings are reported. -- Abstract: The deposition of innovative glass-ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol-gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm{sup 2} and 500 Degree-Sign C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 {mu}m thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 {mu}m thick sol-gel films with the hardness of 17 GPa were obtained.

Rau, J.V., E-mail: giulietta.rau@ism.cnr.it [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Teghil, R. [Universita della Basilicata, Dipartimento di Chimica 'A.M. Tamburro', Via dell'Ateneo Lucano, 10-85100 Potenza (Italy) [Universita della Basilicata, Dipartimento di Chimica 'A.M. Tamburro', Via dell'Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Fosca, M. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy) [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Universita di Roma 'La Sapienza', Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); De Bonis, A. [Universita della Basilicata, Dipartimento di Chimica 'A.M. Tamburro', Via dell'Ateneo Lucano, 10-85100 Potenza (Italy) [Universita della Basilicata, Dipartimento di Chimica 'A.M. Tamburro', Via dell'Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Cacciotti, I.; Bianco, A. [Universita di Roma 'Tor Vergata', Dipartimento di Ingegneria Industriale, UR INSTM 'Roma Tor Vergata', Via del Politecnico, 1-00133 Rome (Italy)] [Universita di Roma 'Tor Vergata', Dipartimento di Ingegneria Industriale, UR INSTM 'Roma Tor Vergata', Via del Politecnico, 1-00133 Rome (Italy); Albertini, V. Rossi [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy)] [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Caminiti, R. [Universita di Roma 'La Sapienza', Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy)] [Universita di Roma 'La Sapienza', Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); Ravaglioli, A. [Parco Torricelli delle Arti e delle Scienze,