Science.gov

Sample records for biobased products

  1. 48 CFR 52.223-1 - Biobased Product Certification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Agriculture in 7 CFR part 2902, subpart B) to be used or delivered in the performance of the contract, other... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Biobased Product....223-1 Biobased Product Certification. As prescribed in 23.406(a), insert the following...

  2. Biobased lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  3. 3 CFR - Driving Innovation and Creating Jobs in Rural America Through Biobased and Sustainable Product...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., but excluding biofuels; (c) a forecast for biobased job creation potential over the next 10 years; (d... biofuels and biobased products, but shall generate separate data for each category. Sec. 7. Education...

  4. New bioactive and biobased product applications of pectin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pectin is well known for its bioactive health-promoting properties and use in biobased products. Recent reports have demonstrated that pectin and pectic fractions have potential as prebiotics, prevent pathogenic bacterial adhesion, increase prostate specific antigen doubling time in patients with re...

  5. Fostering the Bioeconomic Revolution in Biobased Products and Bioenergy: An Environmental Approach

    SciTech Connect

    none,

    2001-01-01

    This document is a product of the Biomass Research and Development Board and presents a high-level summary of the emerging national strategy for biobased products and bioenergy. It provides the first integrated approach to policies and procedures that will promote R&D and demonstration leading to accelerated production of biobased products and bioenergy.

  6. 77 FR 10939 - Driving Innovation and Creating Jobs in Rural America Through Biobased and Sustainable Product...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... memorandum in the Federal Register. (Presidential Sig.) THE WHITE HOUSE, Washington, February 21, 2012 [FR... Creating Jobs in Rural America Through Biobased and Sustainable Product Procurement Memorandum for the... procurement of biobased products to promote rural economic development, create new jobs, and provide...

  7. Biobased organic acids production by metabolically engineered microorganisms.

    PubMed

    Chen, Yun; Nielsen, Jens

    2016-02-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed. PMID:26748037

  8. A Circular Bioeconomy with Biobased Products from CO2 Sequestration.

    PubMed

    Venkata Mohan, S; Modestra, J Annie; Amulya, K; Butti, Sai Kishore; Velvizhi, G

    2016-06-01

    The unprecedented climate change influenced by elevated concentrations of CO2 has compelled the research world to focus on CO2 sequestration. Although existing natural and anthropogenic CO2 sinks have proven valuable, their ability to further assimilate CO2 is now questioned. Thus, we highlight here the importance of biological sequestration methods as alternate and viable routes for mitigating climate change while simultaneously synthesizing value-added products that could sustainably fuel the circular bioeconomy. Four conceptual models for CO2 biosequestration and the synthesis of biobased products, as well as an integrated CO2 biorefinery model, are proposed. Optimizing and implementing this biorefinery model might overcome the limitations of existing sequestration methods and could help realign the carbon balance. PMID:27048926

  9. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    PubMed

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  10. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    PubMed Central

    Clark, James H.; Farmer, Thomas J.; Hunt, Andrew J.; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  11. Finding the Bio in Biobased Products: Electrophoretic Identification of Wheat Proteins in Processed Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verification of the bio-content in bio-based or green products identifies genuine products, exposes counterfeit copies, supports or refutes content claims and ensures consumer confidence. When the bio-content includes protein, elemental nitrogen analysis is insufficient for verification since non-pr...

  12. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. PMID:23199277

  13. 14C determination in different bio-based products

    NASA Astrophysics Data System (ADS)

    Santos Arévalo, Francisco-Javier; Gómez Martínez, Isabel; Agulló García, Lidia; Reina Maldonado, María-Teresa; García León, Manuel

    2015-10-01

    Radiocarbon determination can be used as a tool to investigate the presence of biological elements in different bio-based products, such as biodiesel blends. These products may also be produced from fossil materials obtaining the same final molecules, so that composition is chemically indistinguishable. The amount of radiocarbon in these products can reveal how much of these biological elements have been used, usually mixed with petrol derived components, free of 14C. Some of these products are liquid and thus the handling at the laboratory is not as straightforward as with solid samples. At Centro Nacional de Aceleradores (CNA) we have tested the viability of these samples using a graphitization system coupled to an elemental analyzer used for combustion of the samples, thus avoiding any vacuum process. Samples do not follow any chemical pre-treatment procedure and are directly graphitized. Specific equipment for liquid samples related to the elemental analyzer was tested. Measurement of samples was performed by low-energy AMS at the 1 MV HVEE facility at CNA, paying special attention to background limits and reproducibility during sample preparation.

  14. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  15. 76 FR 3789 - Voluntary Labeling Program for Biobased Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ..., 2005 (70 FR 1792). The guidelines are contained in 7 CFR part 2902, ``Guidelines for Designating... unsaturated polyester resins that are used to fabricate fiberglass-reinforced and particulate reinforced... stated that he supports allowing intermediate ingredients such as biobased plastic resin to be...

  16. Assessing the Economic Viability of Bio-based Products for Missouri Value-added Crop Production

    SciTech Connect

    Nicholas Kalaitzandonakes

    2005-11-30

    While research and development on biobased products has continued strong over the years, parallel attention on the economics and management of such product innovation has been lacking. With the financial support of the Department of Energy, the Economics and Management of Agrobiotechnology Center at the University of Missouri-Columbia has launched a pilot graduate education program that seeks to fill the gap. Within this context, a multi-disciplinary research and teaching program has been structured with an emphasis on new product and innovation economics and management. More specifically, this pilot graduate education program has the following major objectives: (1) To provide students with a strong background in innovation economics, management, and strategy. (2) To diversify the students academic background with coursework in science and technology. (3) To familiarize the student with biobased policy initiatives through interaction with state and national level organizations and policymakers. (4) To facilitate active collaboration with industry involved in the development and production of biobased products. The pilot education program seeks to develop human capital and research output. Although the research is, initially, focused on issues related to the State of Missouri, the results are expected to have national implications for the economy, producers, consumers and environment.

  17. Production of bio-based materials using photobioreactors with binary cultures

    DOEpatents

    Beliaev, Alex S; Pinchuk, Grigoriy E; Hill, Eric A; Fredrickson, Jim K

    2013-08-27

    A method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors or CO.sub.2 and/or bicarbonate. The principal features of the present invention include a method wherein a binary culture is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. The present invention provides a method of cultivation that does not need sparging of a closed bioreactor to remove or add a gaseous byproduct or nutrient from a liquid medium. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape. The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material.

  18. Establishment of a Graduate Certificate Program in Biobased Industrial Products – Final Technical Report

    SciTech Connect

    John R. Schlup

    2005-11-04

    A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented course of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration between KSU

  19. BIOBASED MATERIALS

    EPA Science Inventory

    Biobased materials refer to products that mainly consist of a substance (or substances) derived from living matter (biomass) and either occur naturally or are synthesized, or it may refer to products made by processes that use biomass. Following a strict definition, many common m...

  20. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    SciTech Connect

    John R. Dorgan

    2005-07-31

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the

  1. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    SciTech Connect

    John R. Dorgan

    2005-09-30

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. The original project objectives had to be modified as a result of DOE funding cuts, the Biomass Program did not receive adequate funding to fully fund its selected projects. Nonetheless, effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. PI Dorgan taught one of the newly developed classes will in the Fall 2006, after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revisions. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the

  2. DO BIO-BASED PRODUCTS MOVE US TOWARD SUSTAINABILITY? A LOOK AT THREE CASE STUDIES

    EPA Science Inventory

    The movement to buy "environmentally-friendly" products was recently reinvigorated by the signing of the 2002 Farm Act that requires all federal agencies to give preference to products that are made (in whole or significant part) from bio-based material. This paper add...

  3. Health, safety, and ecological implications of using biobased floor-stripping products.

    PubMed

    Massawe, Ephraim; Geiser, Kenneth; Ellenbecker, Michael; Marshall, Jason

    2007-05-01

    The main objective of the study reported here was to investigate the ecological, health, and safety (EHS) implications of using biobased floor strippers as alternatives to solvent-based products such as Johnson Wax Professional (Pro Strip). The authors applied a quick EHS-scoring technique developed by the Surface Solution Laboratory (SSL) of the Toxics Use Reduction Institute (TURI) to some alternative, biobased products that had previously performed as well as or close to as well as the currently used product. The quick technique is considered an important step in EHS assessment, particularly for toxics use reduction planners and advocates who may not have the resources to subject many alternative products or processes at once to detailed EHS analysis. Taking this step narrows available options to a manageable number. (Technical-performance experiments were also conducted, but the results are not discussed or reported in this paper). The cost of switching to biobased floor strippers was assessed and compared with the cost of using the traditional product, both at full strength and at the dilution ratios recommended by the respective manufacturers. The EHS analysis was based on a framework consisting of five parameters: volatile organic compounds (VOCs); pH; global-warming potential (GWP); ozone depletion potential (ODP); and safety scores in areas such as flammability, stability, and special hazards, based on ratings from the Hazardous Material Classification System (HMIS) and the National Fire Protection Association (NFPA). Total EHS scores were calculated with data derived from the material safety data sheets. For most cleaning products previously investigated by the TURI SSL, the investigators have demonstrated that the five key parameters used in the study reported here can successfully be used for quick screening of the EHS impacts of cleaning alternatives. All eight biobased, or green, products evaluated in the study had better EHS-screening scores than did

  4. DO BIO-BASED PRODUCTS MOVE US TOWARD SUSTAINABILITY? A LOOK AT THREE USEPA CASE STUDIES

    EPA Science Inventory


    Do Bio-Based Products Move Us Toward Sustainability? A Look at Three Case Studies within the US EPA
    Mary Am Curran
    US Environmental Protection Agency, Office of Research & Development, Cincinnati, OH 45268; curran.maryann@epagov
    Abstract The movement to buy "...

  5. 77 FR 25632 - Guidelines for Designating Biobased Products for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ...The U.S. Department of Agriculture (USDA) is proposing to amend 7 CFR part 3201, Guidelines for Designating Biobased Products for Federal Procurement, to incorporate statutory changes to section 9002 of the Farm Security and Rural Investment Act (FSRIA) that were effected when the Food, Conservation, and Energy Act of 2008 (FCEA) was signed into law on June 18,...

  6. Biobased products research at the National Center for Agricultural Utilization Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent research by our group at the NCAUR has concerned the research and development of biobased products, most of which are derived from the residues produced during agricultural processing. These include: novel sophorolipids from yeast as natural emulsifiers and surfactants for certified organic...

  7. 76 FR 53113 - Guidelines for Designating Biobased Products for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... designated items will benefit from preferred procurement by Federal agencies. Estimate of Burden: Public... rules that are applicable to the public. Notices of hearings #0;and investigations, committee meetings...; ] DEPARTMENT OF AGRICULTURE Guidelines for Designating Biobased Products for Federal Procurement AGENCY:...

  8. 48 CFR 970.2304 - Use of recovered materials and biobased products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Use of recovered materials and biobased products. 970.2304 Section 970.2304 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable...

  9. Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli.

    PubMed

    Claypool, Joshua T; Raman, D Raj; Jarboe, Laura R; Nielsen, David R

    2014-08-01

    Styrene is an important commodity chemical used in polymers and resins, and is typically produced from the petrochemical feedstocks benzene and ethylene. Styrene has recently been produced biosynthetically for the first time using engineered Escherichia coli, and this bio-based route may represent a lower energy and renewable alternative to petroleum-derived styrene. However, the economics of such an approach has not yet been investigated. Using an early-stage technoeconomic evaluation tool, a preliminary economic analysis of bio-based styrene from C(6)-sugar feedstock has been conducted. Owing to styrene's limited water solubility, it was assumed that the resulting fermentation broth would spontaneously form two immiscible liquid phases that could subsequently be decanted. Assuming current C(6) sugar prices and industrially achievable biokinetic parameter values (e.g., product yield, specific growth rate), commercial-scale bio-based styrene has a minimum estimated selling price (MESP) of 1.90 USD kg(-1) which is in the range of current styrene prices. A Monte Carlo analysis revealed a potentially large (0.45 USD kg(-1)) standard deviation in the MESP, while a sensitivity analysis showed feedstock price and overall yield as primary drivers of MESP. PMID:24939174

  10. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. PMID:26360870

  11. Bioenergy and biobased products hold promise of reducing pollution emissions

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Trees and other plants have, of course, long been useful for the wood and agricultural benefits they provide. Now, this organic matter is gaining new cachet as “biomass.”Some scientists hope that this stuff can be converted into practically a panacea of goods, including transportation fuels, electricity, commercial products such as chemicals, glues, and paints, and other materials—reducing societal dependence on petrochemical products.

  12. Finding the "bio" in biobased products: electrophoretic identification of wheat proteins in processed products.

    PubMed

    Robertson, George H; Hurkman, William J; Cao, Trung K; Tanaka, Charlene K; Orts, William J

    2010-04-14

    Verification of the biocontent in biobased or "green" products identifies genuine products, exposes counterfeit copies, supports or refutes content claims, and ensures consumer confidence. When the biocontent includes protein, elemental nitrogen analysis is insufficient for verification since non-protein, but nitrogen-rich, content also may be present. However, the proteins can be extracted, separated by electrophoretic methods, and detected by UV absorption, protein stain, or immunoblotting. We utilized capillary zone electrophoresis (CZE) to separate proteins in a gliadin fraction that had been dissolved in aqueous ethanol (70%) and polyacrylamide gel electrophoresis (PAGE) to separate proteins in a gliadin-plus-glutenin fraction that had been dissolved in water containing both sodium dodecyl sulfate (SDS) and a reducing agent, dithiothreitol (DTT). We sought to verify the presence of these wheat grain proteins in wheat bread, a wheat flake cereal, wheat beer, and an enclosure for an antique automobile ignition coil reputed to contain wheat gluten. Proteins extracted from commercial wheat, corn, and soy flours served as standards, and proteins from heat-altered wheat served as process condition references. This approach successfully identified wheat proteins in these products especially if the process temperature did not exceed 120 degrees C. Above this temperature attenuation was nearly complete for proteins analyzed by CZE, but wheat-like patterns could still be recognized by one- and two-dimensional PAGE. Immunoblots reacted with grain-specific antibodies confirmed the identities of the cereal component especially when the protein pattern was greatly altered by thermal modification, specific protein adsorption, or protein digestion. In addition to verifying that wheat proteins are present, the complementary use of these methods can reveal whether whole wheat gluten or merely an alcohol-soluble fraction had been used in the specific product and indicate the

  13. Development Of Sustainable Biobased Products And Bioenergy In Cooperation With The Midwest Consortium For Sustainable Biobased Products And Energy

    SciTech Connect

    Michael Ladisch; Randy Woodson

    2009-03-18

    Collaborative efforts of Midwest Consortium have been put forth to add value to distiller's grains by further processing them into fermentable sugars, ethanol, and a protein rich co-product consistent with a pathway to a biorenewables industry (Schell et al, 2008). These studies were recently published in the enclosed special edition (Volume 99, Issue 12) of Bioresource Technology journal. Part of them have demonstrated the utilization of distillers grains as additional feedstock for increased ethanol production in the current dry grind process (Kim et al., 2008a, b; Dien et al.,2008, Ladisch et al., 2008a, b). Results showed that both liquid hot water (LHW) pretreatment and ammonia fiber expansion (AFEX) were effective for enhancing digestibility of distiller's grains. Enzymatic digestion of distiller's grains resulted in more than 90% glucose yield under standard assay conditions, although the yield tends to drop as the concentration of dry solids increases. Simulated process mass balances estimated that hydrolysis and fermentation of distillers grains can increase the ethanol yield by 14% in the current dry milling process (Kim et al., 2008c). Resulting co-products from the modified process are richer in protein and oil contents than conventional distiller's grains, as determined both experimentally and computationally. Other research topics in the special edition include water solubilization of DDGS by transesterification reaction with phosphite esters (Oshel el al., 2008) to improve reactivity of the DDGS to enzymes, hydrolysis of soluble oligomers derived from DDGS using functionalized mesoporous solid catalysts (Bootsma et al., 2008), and ABE (acetone, butanol, ethanol) production from DDGS by solventogenic Clostridia (Ezeji and Blaschek, 2008). Economic analysis of a modified dry milling process, where the fiber and residual starch is extracted and fermented to produce more ethanol from the distillers grains while producing highly concentrated protein co-product

  14. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].

    PubMed

    Liu, Weixi; Fu, Jing; Zhang, Bo; Chen, Tao

    2013-08-01

    As the rapid development of economy necessitates a large number of oil, the contradiction between energy supply and demand is further exacerbated by the dwindling reserves of petroleum resource. Therefore, the research of the renewable cellulosic biomass resources is gaining unprecedented momentum. Because xylose is the second most abundant monosaccharide after glucose in lignocellulose hydrolyzes, high-efficiency bioconversion of xylose becomes one of the vital factors that affect the industrial prospects of lignocellulose application. According to the research progresses in recent years, this review summarized the advances in bioconversion of xylose, which included identification and redesign of the xylose metabolic pathway, engineering the xylose transport pathway and bio-based chemicals production. In order to solve the energy crisis and environmental pollution issues, the development of advanced bio-fuel technology, especially engineering the microbe able to metabolize xylose and produce ethanol by synthetic biology, is environmentally benign and sustainable. PMID:24364352

  15. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    PubMed

    Philp, Jim C; Ritchie, Rachael J; Allan, Jacqueline E M

    2013-04-01

    Policy issues around biobased chemicals are similar to those for biobased plastics. However, there are significant differences that arise from differences in production volumes and the more specific applications of most chemicals. The drivers for biobased chemicals production are similar to those for biobased plastics, particularly the environmental drivers. However, in Europe, biobased chemical production is further driven by the need to improve the competitiveness of the chemicals industry. PMID:23394962

  16. Pretreatment of spent sulphite liquor via ultrafiltration and nanofiltration for bio-based succinic acid production.

    PubMed

    Pateraki, Chrysanthi; Ladakis, Dimitrios; Stragier, Lutgart; Verstraete, Willy; Kookos, Ioannis; Papanikolaou, Seraphim; Koutinas, Apostolis

    2016-09-10

    Ultrafiltration and nanofiltration of spent sulphite liquor (SSL) has been employed to evaluate the simultaneous production of lignosulphonates and bio-based succinic acid using the bacterial strains Actinobacillus succinogenes and Basfia succiniciproducens. Ultrafiltration with membranes of 10, 5 and 3kDa molecular weight cut-off results in significant losses of lignosulphonates (26-50%) in the permeate stream, while nanofiltration using membrane with 500Da molecular weight cut-off results in high retention yields of lignosulphonates (95.6%) in the retentate stream. Fed-batch bioreactor cultures using permeates from ultrafiltrated SSL resulted in similar succinic acid concentration (27.5g/L) and productivity (0.4g/L/h) by both strains. When permeates from nanofiltrated SSL were used, the strain B. succiniciproducens showed the highest succinic acid concentration (33.8g/L), yield (0.58g per g of consumed sugars) and productivity (0.48g/L/h). The nanofiltration of 1t of thick spent sulphite liquor could lead to the production of 306.3kg of lignosulphonates and 52.7kg of succinic acid, whereas the ultrafiltration of 1t of thick spent sulphite liquor using a 3kDa membrane could result in the production of 237kg of lignosulphonates and 71.8kg of succinic acid when B. succiniproducens is used in both cases. PMID:27374402

  17. Bio-based and biodegradable plastics for use in crop production.

    PubMed

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production. PMID:21114467

  18. Development of bio-based fine chemical production through synthetic bioengineering.

    PubMed

    Hara, Kiyotaka Y; Araki, Michihiro; Okai, Naoko; Wakai, Satoshi; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-01-01

    Fine chemicals that are physiologically active, such as pharmaceuticals, cosmetics, nutritional supplements, flavoring agents as well as additives for foods, feed, and fertilizer are produced by enzymatically or through microbial fermentation. The identification of enzymes that catalyze the target reaction makes possible the enzymatic synthesis of the desired fine chemical. The genes encoding these enzymes are then introduced into suitable microbial hosts that are cultured with inexpensive, naturally abundant carbon sources, and other nutrients. Metabolic engineering create efficient microbial cell factories for producing chemicals at higher yields. Molecular genetic techniques are then used to optimize metabolic pathways of genetically and metabolically well-characterized hosts. Synthetic bioengineering represents a novel approach to employ a combination of computer simulation and metabolic analysis to design artificial metabolic pathways suitable for mass production of target chemicals in host strains. In the present review, we summarize recent studies on bio-based fine chemical production and assess the potential of synthetic bioengineering for further improving their productivity. PMID:25494636

  19. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane.

    PubMed

    Kind, Stefanie; Jeong, Weol Kyu; Schröder, Hartwig; Wittmann, Christoph

    2010-07-01

    In the present work the Gram-positive bacterium Corynebacterium glutamicum was engineered into an efficient, tailor-made production strain for diaminopentane (cadaverine), a highly attractive building block for bio-based polyamides. The engineering comprised expression of lysine decarboxylase (ldcC) from Escherichia coli, catalyzing the conversion of lysine into diaminopentane, and systems-wide metabolic engineering of central supporting pathways. Substantially re-designing the metabolism yielded superior strains with desirable properties such as (i) the release from unwanted feedback regulation at the level of aspartokinase and pyruvate carboxylase by introducing the point mutations lysC311 and pycA458, (ii) an optimized supply of the key precursor oxaloacetate by amplifying the anaplerotic enzyme, pyruvate carboxylase, and deleting phosphoenolpyruvate carboxykinase which otherwise removes oxaloacetate, (iii) enhanced biosynthetic flux via combined amplification of aspartokinase, dihydrodipicolinate reductase, diaminopimelate dehydrogenase and diaminopimelate decarboxylase, and (iv) attenuated flux into the threonine pathway competing with production by the leaky mutation hom59 in the homoserine dehydrogenase gene. Lysine decarboxylase proved to be a bottleneck for efficient production, since its in vitro activity and in vivo flux were closely correlated. To achieve an optimal strain having only stable genomic modifications, the combination of the strong constitutive C. glutamicum tuf promoter and optimized codon usage allowed efficient genome-based ldcC expression and resulted in a high diaminopentane yield of 200 mmol mol(-1). By supplementing the medium with 1 mgL(-1) pyridoxal, the cofactor of lysine decarboxylase, the yield was increased to 300 mmol mol(-1). In the production strain obtained, lysine secretion was almost completely abolished. Metabolic analysis, however, revealed substantial formation of an as yet unknown by-product. It was identified as an

  20. Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals.

    PubMed

    Castro, Ana Rita; Rocha, Isabel; Alves, Maria Madalena; Pereira, Maria Alcina

    2016-12-01

    Bacterial lipids have relevant applications in the production of renewable fuels and biobased oleochemicals. The genus Rhodococcus is one of the most relevant lipid producers due to its capability to accumulate those compounds, mainly triacylglycerols (TAG), when cultivated on different defined substrates, namely sugars, organic acids and hydrocarbons but also on complex carbon sources present in industrial wastes. In this work, the production of storage lipids by Rhodococcus opacus B4 using glucose, acetate and hexadecane is reported for the first time and its productivity compared with Rhodococcus opacus PD630, the best TAG producer bacterium reported. Both strains accumulated mainly TAG from all carbon sources, being influenced by the carbon source itself and by the duration of the accumulation period. R. opacus B4 produced 0.09 and 0.14 g L(-1) at 24 and 72 h, with hexadecane as carbon source, which was 2 and 3.3 fold higher than the volumetric production obtained by R. opacus PD630. Both strains presented similar fatty acids (FA) profiles in intact cells while in TAG produced fraction, R. opacus B4 revealed a higher variability in fatty acid composition than R. opacus PD630, when both strains were cultivated on hexadecane. The obtained results open new perspectives for the use of R. opacus B4 to produce TAG, in particular using oily (alkane-contaminated) waste and wastewater as cheap raw-materials. Combining TAG production with hydrocarbons degradation is a promising strategy to achieve environmental remediation while producing added value compounds. PMID:27179529

  1. 7 CFR 2902.7 - Determining biobased content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... determines biobased content based on the amount of biobased carbon in the material or product as percent of the weight (mass) of the total organic carbon in the material or product. (d) Products with the...

  2. Sustainable Systems Analysis of Production and Transportation Scenarios for Conventional and Bio-based Energy Commodities

    NASA Astrophysics Data System (ADS)

    Doran, E. M.; Golden, J. S.; Nowacek, D. P.

    2013-12-01

    International commerce places unique pressures on the sustainability of water resources and marine environments. System impacts include noise, emissions, and chemical and biological pollutants like introduction of invasive species into key ecosystems. At the same time, maritime trade also enables the sustainability ambition of intragenerational equity in the economy through the global circulation of commodities and manufactured goods, including agricultural, energy and mining resources (UN Trade and Development Board 2013). This paper presents a framework to guide the analysis of the multiple dimensions of the sustainable commerce-ocean nexus. As a demonstration case, we explore the social, economic and environmental aspects of the nexus framework using scenarios for the production and transportation of conventional and bio-based energy commodities. Using coupled LCA and GIS methodologies, we are able to orient the findings spatially for additional insight. Previous work on the sustainable use of marine resources has focused on distinct aspects of the maritime environment. The framework presented here, integrates the anthropogenic use, governance and impacts on the marine and coastal environments with the natural components of the system. A similar framework has been highly effective in progressing the study of land-change science (Turner et al 2007), however modification is required for the unique context of the marine environment. This framework will enable better research integration and planning for sustainability objectives including mitigation and adaptation to climate change, sea level rise, reduced dependence on fossil fuels, protection of critical marine habitat and species, and better management of the ocean as an emerging resource base for the production and transport of commodities and energy across the globe. The framework can also be adapted for vulnerability analysis, resilience studies and to evaluate the trends in production, consumption and

  3. Catalytic modification of fats and oils to value-added biobased products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased materials derived from fats and oils can be relatively benign to the environment because they tend to have good biodegradability. Oils are used in a myriad of applications, including foods, cosmetics, paints, biodegradable lubricants and polymers, biodiesel, and more. For many of these ap...

  4. SUCCESS WITH COMPOSTABLE FOOD SERVICE WARE - USDA CAFETERIA USES BIOBASED PRODUCTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes USDA’s overall concept and expectations for its biobased cafeteria-ware pilot project, including operational strategies, costs, outcomes and lessons learned. The 3 month pilot project was conducted in USDA’s Whitten building employee cafeteria. This venue gave USDA a controlle...

  5. Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families.

    PubMed

    Posen, I Daniel; Jaramillo, Paulina; Griffin, W Michael

    2016-03-15

    Interest in biobased products has been motivated, in part, by the claim that these products have lower life cycle greenhouse gas (GHG) emissions than their fossil counterparts. This study investigates GHG emissions from U.S. production of three important biobased polymer families: polylactic acid (PLA), polyhydroxybutyrate (PHB) and bioethylene-based plastics. The model incorporates uncertainty into the life cycle emission estimates using Monte Carlo simulation. Results present a range of scenarios for feedstock choice (corn or switchgrass), treatment of coproducts, data sources, end of life assumptions, and displaced fossil polymer. Switchgrass pathways generally have lower emissions than corn pathways, and can even generate negative cradle-to-gate emissions if unfermented residues are used to coproduce energy. PHB (from either feedstock) is unlikely to have lower emissions than fossil polymers once end of life emissions are included. PLA generally has the lowest emissions when compared to high emission fossil polymers, such as polystyrene (mean GHG savings up to 1.4 kg CO2e/kg corn PLA and 2.9 kg CO2e/kg switchgrass PLA). In contrast, bioethylene is likely to achieve the greater emission reduction for ethylene intensive polymers, like polyethylene (mean GHG savings up to 0.60 kg CO2e/kg corn polyethylene and 3.4 kg CO2e/kg switchgrass polyethylene). PMID:26895173

  6. Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential.

    PubMed

    Takara, Devin; Khanal, Samir Kumar

    2015-01-01

    Napier grass, Pennisetum purpureum, is a high yielding, perennial feedstock that can be harvested year-round in (sub)tropical geographies of the world. Because of its high moisture content (∼ 80%w/w), Napier grass presents a unique opportunity for fractionation into solid and liquid streams, where the extruded cellulosic fibers can serve as a substrate for biofuel production, and the nutrient-rich juice can serve as a substrate for co-product generation. The aim of this study evaluated the effects of biomass age on constituents relevant to biofuel and biobased product generation. Although obvious morphological changes can be observed in the field due to natural senescence, the results obtained in this work suggested that the cellulose content does not change significantly with respect to age. Data surrounding the hemicellulose and lignin contents, however, were inconclusive as their degree of significance varied with the statistics applied to analyze the raw data. PMID:25727997

  7. Integrated automation for continuous high-throughput synthetic chromosome assembly and transformation to identify improved yeast strains for industrial production of biofuels and bio-based chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An exponential increase in our understanding of genomes, proteomes, and metabolomes provides greater impetus to address critical biotechnological issues such as sustainable production of biofuels and bio-based chemicals and, in particular, the development of improved microbial biocatalysts for use i...

  8. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    PubMed

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on). PMID:24361277

  9. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production.

    PubMed

    Zhuang, Kai H; Herrgård, Markus J

    2015-09-01

    In recent years, bio-based chemicals have gained traction as a sustainable alternative to petrochemicals. However, despite rapid advances in metabolic engineering and synthetic biology, there remain significant economic and environmental challenges. In order to maximize the impact of research investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli and Saccharomyces cerevisiae). The MuSIC framework allows exploration of tradeoffs and interactions between economy-scale objectives (e.g. profit maximization, emission minimization), constraints (e.g. land-use constraints) and process- and cell-scale technology choices (e.g. strain design or oxygenation conditions). We demonstrate that economy-scale assessment can be used to guide specific strain design decisions in metabolic engineering, and that these design decisions can be affected by non-intuitive dependencies across multiple scales. PMID:26116515

  10. Cellulose oligomers production and separation for the synthesis of new fully bio-based amphiphilic compounds.

    PubMed

    Billès, Elise; Onwukamike, Kelechukwu N; Coma, Véronique; Grelier, Stéphane; Peruch, Frédéric

    2016-12-10

    Cellulose oligomers are water-soluble, on the contrary to cellulose, which greatly increase their application range. In this study, cellulose oligomers were obtained from the acidic hydrolysis of cellulose with phosphoric acid. The global yield in water-soluble oligomers was around 23% with polymerization degree (DP) ranging from 1 to 12. The cellulose oligomers DP distribution was successfully reduced by differential solubilisation in methanol as one of the goals of this work was to avoid the use of a time-consuming full chromatographic separation. The methanol-soluble oligomers were mainly low DP (≤3). The oligomers of higher molar mass, composed of 42% of cellotetraose and 36% of cellopentaose, were then functionalized and coupled with stearic acid through azide-alkyne click chemistry to obtain amphiphilic compounds. The self-assembly of these new bio-based compounds was finally investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) and their critical micellar concentration (CMC) was found to be in the same range as alkylmaltosides and alkylglucosides. PMID:27577903

  11. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph

    2014-09-01

    Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production. PMID:24831706

  12. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    PubMed

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  13. 48 CFR 52.223-2 - Affirmative Procurement of Biobased Products Under Service and Construction Contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contract performance requirements; or (iii) At a reasonable price. (2) The product is to be used in an application covered by a USDA categorical exemption (see 7 CFR 2902.10 et seq.). For example, some USDA... Department of Agriculture (USDA)-designated items unless— (1) The product cannot be acquired—...

  14. Biocatalysts and methods for conversion of hemicellulose hydrolysates to biobased products

    SciTech Connect

    Preston, James F

    2015-03-31

    The invention relates to processes and biocatalysts for producing ethanol and other useful products from biomass and/or other materials. Initial processing of lignocellulosic biomass frequently yields methylglucuronoxylose (MeGAX) and related products which are resistant to further processing by common biocatalysts. Strains of Enterobacter asburiae are shown to be useful in bioprocessing of MeGAX and other materials into useful bioproducts such as ethanol, acetate, lactate, and many others. Genetic engineering may be used to enhance production of desired bioproducts.

  15. A synthetic biochemistry module for production of bio-based chemicals from glucose.

    PubMed

    Opgenorth, Paul H; Korman, Tyler P; Bowie, James U

    2016-06-01

    Synthetic biochemistry, the cell-free production of biologically based chemicals, is a potentially high-yield, flexible alternative to in vivo metabolic engineering. To limit costs, cell-free systems must be designed to operate continuously with minimal addition of feedstock chemicals. We describe a robust, efficient synthetic glucose breakdown pathway and implement it for the production of bioplastic. The system's performance suggests that synthetic biochemistry has the potential to become a viable industrial alternative. PMID:27065234

  16. Potential of genetically engineered hybrid poplar for pyrolytic production of bio-based phenolic compounds.

    PubMed

    Toraman, Hilal E; Vanholme, Ruben; Borén, Eleonora; Vanwonterghem, Yumi; Djokic, Marko R; Yildiz, Guray; Ronsse, Frederik; Prins, Wolter; Boerjan, Wout; Van Geem, Kevin M; Marin, Guy B

    2016-05-01

    Wild-type and two genetically engineered hybrid poplar lines were pyrolyzed in a micro-pyrolysis (Py-GC/MS) and a bench scale setup for fast and intermediate pyrolysis studies. Principal component analysis showed that the pyrolysis vapors obtained by micro-pyrolysis from wood of caffeic acid O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase (CCoAOMT) down-regulated poplar trees differed significantly from the pyrolysis vapors obtained from non-transgenic control trees. Both fast micro-pyrolysis and intermediate pyrolysis of transgenic hybrid poplars showed that down-regulation of COMT can enhance the relative yield of guaiacyl lignin-derived products, while the relative yield of syringyl lignin-derived products was up to a factor 3 lower. This study indicates that lignin engineering via genetic modifications of genes involved in the phenylpropanoid and monolignol biosynthetic pathways can help to steer the pyrolytic production of guaiacyl and syringyl lignin-derived phenolic compounds such as guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-vinylguaiacol, syringol, 4-vinylsyringol, and syringaldehyde present in the bio-oil. PMID:26890798

  17. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals.

    PubMed

    Mehtiö, Tuomas; Toivari, Mervi; Wiebe, Marilyn G; Harlin, Ali; Penttilä, Merja; Koivula, Anu

    2016-10-01

    This review considers the chemical and biotechnological synthesis of acids that are obtained by direct oxidation of mono- or oligosaccharide, referred to as sugar acids. It focuses on sugar acids which can be readily derived from plant biomass sources and their current and future applications. The three main classes of sugar acids are aldonic, aldaric and uronic acids. Interest in organic acids derived from sugars has recently increased, as part of the interest to develop biorefineries which produce not only biofuels, but also chemicals to replace those currently derived from petroleum. More than half of the most desirable biologically produced platform chemicals are organic acids. Currently, the only sugar acid with high commercial production is d-gluconic acid. However, other sugar acids such as d-glucaric and meso-galactaric acids are being produced at a lower scale. The sugar acids have application as sequestering agents and binders, corrosion inhibitors, biodegradable chelators for pharmaceuticals and pH regulators. There is also considerable interest in the use of these molecules in the production of synthetic polymers, including polyamides, polyesters and hydrogels. Further development of these sugar acids will lead to higher volume production of the appropriate sugar acids and will help support the next generation of biorefineries. PMID:26177333

  18. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    PubMed

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues. PMID:27118013

  19. Biobased products from soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With recent rises in petroleum crude oil prices to over $50 per barrel and anticipated future price increases as petroleum resources become less available, many applications that depend on petroleum are searching for alternatives. Along with this, more stringent environmental standards, ability to ...

  20. Current Trends in Biobased Lubricant Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased lubricants are those comprising ingredients derived from natural raw materials such as those harvested from farms, forests, etc. Biolubricants provide a number of benefits over petroleum-based products including: biodegradability, renewability, and non-toxicity. As a result, manufacture ...

  1. Biobased Lubricant Development - Problems and Opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased lubricants are those comprising ingredients derived from natural sources such as those harvested from farms, forests, etc. Biolubricants provide a number of economic, environmental and health benefits over petroleum-based products. Among these are: biodegradability, renewability and non-t...

  2. Estolides - biobased lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estolides are a series of biobased materials obtained from the synthesis of oils derived from both plant and animal sources. Estolides are formed when the carboxylic acid functionality of one fatty acid links to the site of unsaturation of another fatty acid to form esters. By varying the types of...

  3. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    PubMed Central

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-ichi

    2015-01-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon. PMID:25648201

  4. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    NASA Astrophysics Data System (ADS)

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  5. Synthesis and verification of biobased terephthalic acid from furfural.

    PubMed

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-ichi

    2015-01-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon. PMID:25648201

  6. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization.

    PubMed

    Negro, Viviana; Mancini, Giuseppe; Ruggeri, Bernardo; Fino, Debora

    2016-08-01

    The citrus peels and residue of fruit juices production are rich in d-limonene, a cyclic terpene characterized by antimicrobial activity, which could hamper energy valorization bioprocess. Considering that limonene is used in nutritional, pharmaceutical and cosmetic fields, citrus by-products processing appear to be a suitable feedstock either for high value product recovery or energy bio-processes. This waste stream, more than 10MTon at 2013 in European Union (AIJN, 2014), can be considered appealing, from the view point of conducting a key study on limonene recovery, as its content of about 1%w/w of high value-added molecule. Different processes are currently being studied to recover or remove limonene from citrus peel to both prevent pollution and energy resources recovery. The present review is aimed to highlight pros and contras of different approaches suggesting an energy sustainability criterion to select the most effective one for materials and energy valorization. PMID:27237574

  7. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass.

    PubMed

    Zhang, Junhua; Li, Junke; Tang, Yanjun; Lin, Lu; Long, Minnan

    2015-10-01

    Recently, the production and utilization of 2,5-furandicarboxylic acid (FDCA) have become a hot research topic in catalyst field and polyester industry for its special chemical structure and a wide range of raw material source. FDCA is a potential replacement for the terephthalic acid monomer used in the production of poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), which opens up a new pathway for obtaining biomass-based polyester to replace or partially replace petroleum based polyester. Here, we mainly reviewed the catalytic pathway for the synthesis of FDCA derived from lignocellulosic biomass or from the related downstream products, such as glucose, 5-hydroxymethylfurfural (HMF). Moreover, the utilization of oxidation catalysts, the reaction mechanism, the existing limitations and unsolved challenges were also elaborated in detail. Therefore, we hope this mini review provides a helpful overview and insight to readers in this exciting research area. PMID:26076643

  8. Biobased and biodegradable polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  9. Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production.

    PubMed

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2016-04-01

    The wet biomass microalgae of Nannochloropsis sp. was converted to biodiesel using direct transesterification (DT) by microwave technique and ionic liquid (IL) as the green solvent. Three different ionic liquids; 1-butyl-3-metyhlimidazolium chloride ([BMIM][Cl], 1-ethyl-3-methylimmidazolium methyl sulphate [EMIM][MeSO4] and 1-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][CF3SO3]) and organic solvents (hexane and methanol) were used as co-solvents under microwave irradiation and their performances in terms of percentage disruption, cell walls ruptured and biodiesel yields were compared at different reaction times (5, 10 and 15 min). [EMIM][MeSO4] showed highest percentage cell disruption (99.73%) and biodiesel yield (36.79% per dried biomass) after 15 min of simultaneous reaction. The results demonstrated that simultaneous extraction-transesterification using ILs and microwave irradiation is a potential alternative method for biodiesel production. PMID:26851899

  10. Preparation of biobased sponges from un-tanned hides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of our research endeavors to address ongoing challenges faced by the U.S. hide and leather industries is to develop innovative uses and novel biobased products from hides to improve prospective markets and to secure a viable future for hides and leather industries. We had previously investigate...

  11. Development of Biobased Composites of Structural Quality

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher Alan

    Highly biobased composites with properties and costs rivaling those consisting of synthetic constituents are a goal of much current research. The obvious material choices, vegetable oil based resins and natural fibers, present the challenges of poor resin properties and weak fiber/matrix bonding, respectively. Conventional methods of overcoming poor resin quality involve the incorporation of additives, which dilutes the resulting composite's bio-content and increases cost. To overcome these limitations while maintaining high bio-content and low cost, epoxidized sucrose soyate is combined with surface-treated flax fiber to produce biocomposites. These composites are fabricated using methods emphasizing scalability and efficiency, for cost effectiveness of the final product. This approach resulted in the successful production of biocomposites having properties that meet or exceed those of conventional pultruded members. These properties, such as tensile and flexural strengths of 223 and 253 MPa, respectively, were achieved by composites having around 85% bio-content.

  12. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents.

    PubMed

    Lammens, Tijs M; Potting, José; Sanders, Johan P M; De Boer, Imke J M

    2011-10-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased chemicals from glutamic acid with their petrochemical equivalents, that is, N-methylpyrrolidone (NMP), N-vinylpyrrolidone (NVP), acrylonitrile (ACN), and succinonitrile (SCN). A consequential life cycle assessment was performed, wherein glutamic acid was obtained from sugar beet vinasse. The removed glutamic acid was substituted with cane molasses and ureum. The comparison between the four biobased and petrochemical products showed that for NMP and NVP the biobased version had less impact on the environment, while for ACN and SCN the petrochemical version had less impact on the environment. For the latter two an optimized scenario was computed, which showed that the process for SCN can be improved to a level at which it can compete with the petrochemical process. For biobased ACN large improvements are required to make it competitive with its petrochemical equivalent. The results of this LCA and the research preceding it also show that glutamic acid can be a building block for a variety of molecules that are currently produced from petrochemical resources. Currently, most methods to produce biobased products are biotechnological processes based on sugar, but this paper demonstrates that the use of amino acids from low-value byproducts can certainly be a method as well. PMID:21870885

  13. Biobased industrial lubricants and biopreferred program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global chemical industry growth is projected at 3 to 6 percent per year through 2025, while the biobased chemicals market share is expected to grow from 2 to 22 percent and biobased polymers are expected to increase from 0.1 to 10-20 percent market share. Finding a renewable replacement for petrole...

  14. Towards a carbon-negative sustainable bio-based economy

    PubMed Central

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Breusegem, Frank Van; Mey, Marjan De; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy. PMID:23761802

  15. Towards a carbon-negative sustainable bio-based economy.

    PubMed

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Van Breusegem, Frank; De Mey, Marjan; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy. PMID:23761802

  16. Synthesis of biobased succinonitrile from glutamic acid and glutamine.

    PubMed

    Lammens, Tijs M; Le Nôtre, Jérôme; Franssen, Maurice C R; Scott, Elinor L; Sanders, Johan P M

    2011-06-20

    Succinonitrile is the precursor of 1,4-diaminobutane, which is used for the industrial production of polyamides. This paper describes the synthesis of biobased succinonitrile from glutamic acid and glutamine, amino acids that are abundantly present in many plant proteins. Synthesis of the intermediate 3-cyanopropanoic amide was achieved from glutamic acid 5-methyl ester in an 86 mol% yield and from glutamine in a 56 mol % yield. 3-Cyanopropanoic acid can be converted into succinonitrile, with a selectivity close to 100% and a 62% conversion, by making use of a palladium(II)-catalyzed equilibrium reaction with acetonitrile. Thus, a new route to produce biobased 1,4-diaminobutane has been discovered. PMID:21557494

  17. Bio-based polyurethane foams from renewable resources

    NASA Astrophysics Data System (ADS)

    Stanzione, M.; Russo, V.; Sorrentino, A.; Tesser, R.; Lavorgna, M.; Oliviero, M.; Di Serio, M.; Iannace, S.; Verdolotti, L.

    2016-05-01

    In the last decades, bio-derived natural materials, such as vegetable oils, polysaccharides and biomass represent a rich source of hydroxyl precursors for the synthesis of polyols which can be potentially used to synthesize "greener" polyurethane foams. Herein a bio-based precursor (obtained from succinic acid) was used as a partial replacement of conventional polyol to synthesize PU foams. A mixture of conventional and bio-based polyol in presence of catalysts, silicone surfactant and diphenylmethane di-isocyanate (MDI) was expanded in a mold and cured for two hours at room temperature. Experimental results highlighted the suitability of this bio-precursor to be used in the production of flexible PU foams. Furthermore the chemo-physical characterization of the resulting foams show an interesting improvement in thermal stability and elastic modulus with respect to the PU foams produced with conventional polyol.

  18. Biocatalysis for Biobased Chemicals

    PubMed Central

    de Regil, Rubén; Sandoval, Georgina

    2013-01-01

    The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme’s own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis. PMID:24970192

  19. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    PubMed

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants. PMID:26906006

  20. [Progress in biotransformation of bio-based lactic acid ].

    PubMed

    Gao, Chao; Ma, Cuiqing; Xu, Ping

    2013-10-01

    Fermentative production of lactic acid, an important bio-based chemicals, has made considerable progress. In addition to the food industry and production of polylactic acid, lactic acid also can be used as an important platform chemical for the production of acrylic acid, pyruvic acid, 1,2-propanediol, and lactic acid esters. This article summarizes the recent progress in biocatalytic production of lactic acid derivatives by dehydration, dehydrogenation, reduction, and esterification. Trends in the biotransformation of lactic acid are also discussed. PMID:24432656

  1. Structure-triboproperty in biobased amphiphiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils and their derivatives are amphiphilic and display a number of properties critical to their application in tribological processes. Among such properties are: viscosity, viscosity index, oxidation stability, cold flow, boundary friction, etc. The properties of these biobased amphiphiles...

  2. Synergy between bio-based industry and the feed industry through biorefinery.

    PubMed

    Teekens, Amanda M; Bruins, Marieke E; van Kasteren, Johannes Mn; Hendriks, Wouter H; Sanders, Johan Pm

    2016-06-01

    Processing biomass into multi-functional components can contribute to the increasing demand for raw materials for feed and bio-based non-food products. This contribution aims to demonstrate synergy between the bio-based industry and the feed industry through biorefinery of currently used feed ingredients. Illustrating the biorefinery concept, rapeseed was selected as a low priced feed ingredient based on market prices versus crude protein, crude fat and apparent ileal digestible lysine content. In addition it is already used as an alternative protein source in diets and can be cultivated in European climate zones. Furthermore, inclusion level of rapeseed meal in pig diet is limited because of its nutritionally active factors. A conceptual process was developed to improve rapeseeds nutritional value and producing other bio-based building blocks simultaneously. Based on the correlation between market prices of feed ingredients and its protein and fat content, the value of refined products was estimated. Finally, a sensitivity analysis, under two profit scenario, shows that the process is economically feasible. This study demonstrates that using biorefinery processes on feed ingredients can improve feed quality. In conjunction, it produces building blocks for a bio-based industry and creates synergy between bio-based and feed industry for more efficient use of biomass. © 2015 Society of Chemical Industry. PMID:26694859

  3. Boron brings big benefits to bio-based blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solution to the problems with bio-based lubrication can be approached by a combination of blending and additive strategies. However, many additives do not show efficacy when used in bio-based lubricants. Additive addition also lowers the bio-based content of the blend, which in turn limits the a...

  4. Development of expert system for biobased polymer material selection: food packaging application.

    PubMed

    Sanyang, M L; Sapuan, S M

    2015-10-01

    Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material. PMID:26396389

  5. [Preface for special issue on biobased chemicals (2013)].

    PubMed

    Xing, Jianmin

    2013-10-01

    Biobased chemicals are one of the main missions of bioeconomy. In this special issue, we reviewed the recent progress in the metabolic engineering and fermentation control study on biobased succinic acid, adipic acid, lactic acid, 3-hydroxypropanoic acid, glucaric acid, glycerol, xylitol, higher alcohols and ethylene, recombinant construction for the direct utilization of lignocelluloses, biotransformation of bio-based lactic acid, and salting-out extraction of bio-based chemicals. Some research articles on biobased succinic acid, D-mannitol, malic acid, 5-aminolevulinic acid, 1,3-propanediol, and butanol are also included. PMID:24432650

  6. Composites and blends from biobased materials

    SciTech Connect

    Kelley, S.S.

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  7. Encapsulation of a model compound in pectin delays its release from a biobased polymeric material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model compound was encapsulated in pectin and then extruded with thermoplastic starch to form a composite. The intended product was a food-contact tray made of biobased polymers infused with an anti-microbial agent; however, caffeine was used as the model compound in the preliminary work. The mode...

  8. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of packaging materials from renewable resources has for a long time been desirable for sustainability reasons, but with the recent explosion in prices of petroleum products, this now becomes also more economically viable. This paper shows how fundamental chemistry underlying three forms ...

  9. Early-stage comparative sustainability assessment of new bio-based processes.

    PubMed

    Patel, Akshay D; Meesters, Koen; den Uil, Herman; de Jong, Ed; Worrell, Ernst; Patel, Martin K

    2013-09-01

    Our increasing demand for materials and energy has put critical roadblocks on our path towards a sustainable society. To remove these roadblocks, it is important to engage in smart research and development (R&D). We present an early-stage sustainability assessment framework that is used to analyze eight new bio-based process alternatives developed within the CatchBio research consortium in the Netherlands. This assessment relies on a multi-criteria approach, integrating the performance of chemical conversions based on five indicators into an index value. These indicators encompass economics, environmental impact, hazards and risks thereby incorporating elements of green chemistry principles, and techno-economic and life cycle assessments. The analyzed bio-based options target the production of fuels and chemicals through chemical catalysis. For each bio-based process, two R&D stages (current laboratory and expected future) are assessed against a comparable conventional process. The multi-criteria assessment in combination with the uncertainty and scenario analysis shows that the chemical production processes using biomass as feedstock can provide potential sustainability benefits over conventional alternatives. However, further development is necessary to realize the potential benefits from biomass gasification and pyrolysis processes for fuel production. This early stage assessment is intended as an input for R&D decision making to support optimal allocation and utilization of resources to further develop promising bio-based processes. PMID:24078179

  10. Biobased thioethers as metal-absorbing ligands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils have been reacted with thiols (mercaptans) to form biobased thioether-functionalized vegetable oils (TFVO). TFVO were efficient in the extraction of a model heavy-metal ion (Ag+) from an aqueous solution. TFVO, prepared from corn oil, was capable of reducing Ag+ concentration from 600...

  11. Mixed film lubrication with biobased oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most tribological processes (e.g. metalworking), occur in the mixed film regime where the boundary and hydrodynamic properties of the oils play critical roles. In the work described here, the boundary and hydrodynamic properties of various biobased oils were evaluated. The oils were then investiga...

  12. Biobased polymers for corrosion protection of metals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anticorrosive biobased polymers were developed in our lab. We isolated an exopolysaccharide produced by a microbe that, when coated on metal substrates, exhibited unique corrosion inhibition. Corrosion is a worldwide problem and impacts the economy, jeopardizes human health and safety, and impedes t...

  13. Latent heat characteristics of biobased oleochemical carbonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleochemical carbonates represent biobased materials that can be readily prepared through a carbonate interchange reaction between renewably available C10-C18 fatty alcohols. Although these carbonates have commercial use in cosmetics and lubricant applications, they have not been examined as phase ...

  14. Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly (butylene succinate).

    PubMed

    Wang, Caixia; Ming, Wei; Yan, Daojiang; Zhang, Congcong; Yang, Maohua; Liu, Yilan; Zhang, Yu; Guo, Baohua; Wan, Yinhua; Xing, Jianmin

    2014-03-01

    Succinic acid was produced in a novel membrane-based fermentation and separation integrated system. With this integrated system, product inhibition was alleviated by removing acids and replenishing fresh broth. High cell density maintain for a longer time from 75 to 130h and succinic acid concentration increased from 53 to 73g/L. In the developed separation process, succinic acid was crystallized at a recovery of 85-90%. The purity of the obtained succinic acid crystals reached 99.4% as found by HPLC and (1)H NMR analysis. A crystallization experiment indicated that among by-products glucose had a negative effect on succinic acid crystallization. Poly (butylene succinate) (PBS) was synthesized using the purified succinic acid and (1)H NMR analysis confirmed that the composition of the synthesized PBS is in agreement with that from petro-based succinic acid. PMID:24472699

  15. Center for BioBased Binders and Pollution Reduction Technology

    SciTech Connect

    Thiel, Jerry

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  16. Processing biobased polymers using plasticizers: Numerical simulations versus experiments

    NASA Astrophysics Data System (ADS)

    Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa

    2016-03-01

    In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.

  17. Investigation of tribological properties of biobased polymers and polymeric composites

    NASA Astrophysics Data System (ADS)

    Bhuyan, Satyam Kumar

    Worldwide potential demands for replacing petroleum derived raw materials with renewable plant-based ones in the production of valuable polymeric materials and composites are quite significant from the social and environmental standpoints. Therefore, using low-cost renewable resources has deeply drawn the attention of many researchers. Among them, natural oils are expected to be ideal alternative feedstock since oils, derived from plant and animal sources, are found in profusion in the world. The important feature of these types of materials is that they can be designed and tailored to meet different requirements. The real challenge lies in finding applications which would use sufficiently large quantities of these materials allowing biodegradable polymers to compete economically in the market. Lack of material and tribological characterizations have created an awareness to fulfill this essential objective. In order to understand the viability of biobased polymers in structural applications, this thesis work elucidates the study of friction and wear characteristics of polymers and polymeric composites made out of natural oil available profusely in plants and animals. The natural oils used in this study were soybean and tung oil. Various monomeric components like styrene, divinely benzene etc. were used in the synthesis of biobased polymers through Rh-catalyzed isomerization techniques. For the different polymeric composites, spent germ, a byproduct of ethanol production, is used as the filler and an organoclay called montmorillonite is used as the reinforcing agent in the polymer matrix. The effect of crosslinker concentration, filler composition and reinforcement agent concentration was studied under dry sliding. A ball-on-flat tribometer with a probe made out of steel, silicon nitride or diamond was used for most of the experimental work to measure friction and generate wear. The wear tracks were quantified with an atomic force microscope and a contact

  18. Biobased greases: soap structure and composition effects on tribological properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review containing 58 references on bio-based grease. Bio-based grease use is limited but a successful part of the lubricant market and will likely grow considerably due to economic, environmental and legislative factors. There is not one formulation of grease or grease thickener that will be suc...

  19. Bio-based Polymer Foam from Soyoil

    NASA Astrophysics Data System (ADS)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  20. Synthesis of bio-based aldehyde from seaweed polysaccharide and its interaction with bovine serum albumin.

    PubMed

    Kholiya, Faisal; Chaudhary, Jai Prakash; Vadodariya, Nilesh; Meena, Ramavatar

    2016-10-01

    Here, we demonstrate a successful synthesis of bio-based aldehyde namely dialdehyde-carboxymethylagarose (DCMA) using carboxymethyagarose (CMA). Further reaction parameters (i.e. reaction temperature, pH and periodate concentration) were optimized to achieve maximum aldehyde content and product yield. The synthesis of DCMA was confirmed by employing FTIR, (1)H NMR, XRD, SEM, AFM, TGA, DSC, EA and GPC techniques. To investigate the aldehyde functionality, DCMA was allowed to interact with BSA and obtained results were found to be comparable with that of synthetic aldehyde (Formaldehyde). Further interaction of DCMA with BSA was confirmed by using UV-vis, FTIR, fluorescent spectroscopy, CD and DLS analysis. Results of this study revealed that bio-based aldehyde behaves like formaldehyde. This study adds value to abundant marine biopolymers and opens the new research area for polymer researchers. PMID:27312639

  1. The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters.

    PubMed

    Pellis, Alessandro; Herrero Acero, Enrique; Ferrario, Valerio; Ribitsch, Doris; Guebitz, Georg M; Gardossi, Lucia

    2016-04-01

    The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications. PMID:26806112

  2. From petrochemistry to biotech: a European perspective on the bio-based economy

    PubMed Central

    Landeweerd, Laurens; Surette, Monique; van Driel, Corry

    2011-01-01

    This paper gives an account of the issues at play in Europe with regard to the transition to a bio-based economy. Agricultural crops have always been used for the production of food, feed, fibre and fuel. The Model T Ford—the first mass produced car—originally ran on bioethanol, and wood has been in use as a source for energy ever since the discovery of fire. What is new is that the balance between agricultural uses is changing under the pressure of an increasing need for food and feed, as well as the new need for biofuels and biomaterials. At the basis of this change lie several serious issues related to the current use of bio-based feedstock to secure energy supply, the future depletion of natural resources and global climate change. Innovations in industrial biotechnology are expected to play a crucial role in dealing with these issues in biomass use.

  3. [Research progress in salting-out extraction of bio-based chemicals].

    PubMed

    Dai, Jianying; Liu, Chunjiao; Sun, Yaqin; Xiu, Zhilong

    2013-10-01

    Bio-refinery using cheap biomass focuses mainly on strain improvement and fermentation strategies whereas less effort is made on down-stream processing. Using cheap biomass more impurities are introduced into the fermentation broths than mono-sugar substrate, thus down-stream processing for bio-based chemicals becomes the key problem in industrial production. The technique called salting-out extraction (SOE) was introduced in this review, which is used to separate target products from fermentation broth on the basis of partition difference of chemicals in two phases formed by mixing salts and organic solvents (or amphipathic chemicals) with broth at suitable ratios. The effect of solvents and salts on the formation of two aqueous phases, especially short chain alcohols and inorganic salts, and the application of SOE in recovery of bio-based chemicals, such as lactic acid, 1,3-propanediol, 2,3-butanediol and acetoin were summarized. The bio-chemicals were efficiently recovered from fermentation broth, and most of the impurities (cells and proteins) were removed in the same step. This technique is promising in the separation of bio-based chemicals, especially the recovery of hydrophilic molecules with low molecular weights. PMID:24432659

  4. Atomistic modeling of bio-based polymeric fibers

    NASA Astrophysics Data System (ADS)

    Yeh, In-Chul; Rinderspacher, B. Christopher; Andzelm, Jan W.; Cureton, Lashonda T.; La Scala, John

    2013-03-01

    We performed molecular dynamics simulations on the amorphous phase of two bio-based polymers, poly (butylene furanamide) and poly (hexamethylene furanamide). Simulations of corresponding petroleum-based polymers, nylon 4, 6 and nylon 6, 6, were also performed. Glass transition temperatures estimated from a series of simulations were in good agreement with experimental measurements. Stress-strain relationships under uniaxial deformation were also analyzed. Bio-based polymers show higher glass transition temperatures and comparable yield points despite having overall weaker hydrogen bonds compared with their counterparts nylons. This result suggests that the furan ring plays an important role in the thermodynamic and mechanical properties of bio-based polymers.

  5. Development of novel multifunctional biobased polymer composites with tailored conductive network of micro-and-nano-fillers

    NASA Astrophysics Data System (ADS)

    Leung, Siu N.; Ghaffari, Shahriar; Naguib, Hani E.

    2013-04-01

    Biobased/green polymers and nanotechnology warrant a multidisciplinary approach to promote the development of the next generation of materials, products, and processes that are environmentally sustainable. The scientific challenge is to find the suitable applications, and thereby to create the demand for large scale production of biobased/green polymers that would foster sustainable development of these eco-friendly materials in contrast to their petroleum/fossil fuel derived counterparts. In this context, this research aims to investigate the synergistic effect of green materials and nanotechnology to develop a new family of multifunctional biobased polymer composites with promoted thermal conductivity. For instance, such composite can be used as a heat management material in the electronics industry. A series of parametric studies were conducted to elucidate the science behind materials behavior and their structure-toproperty relationships. Using biobased polymers (e.g., polylactic acid (PLA)) as the matrix, heat transfer networks were developed and structured by embedding hexagonal boron nitride (hBN) and graphene nanoplatelets (GNP) in the PLA matrix. The use of hybrid filler system, with optimized material formulation, was found to promote the composite's effective thermal conductivity by 10-folded over neat PLA. This was achieved by promoting the development of an interconnected thermally conductive network through structuring hybrid fillers. The thermally conductive composite is expected to afford unique opportunities to injection mold three-dimensional, net-shape, lightweight, and eco-friendly microelectronic enclosures with superior heat dissipation performance.

  6. Life-cycle analysis of bio-based aviation fuels.

    PubMed

    Han, Jeongwoo; Elgowainy, Amgad; Cai, Hao; Wang, Michael Q

    2013-12-01

    Well-to-wake (WTWa) analysis of bio-based aviation fuels, including hydroprocessed renewable jet (HRJ) from various oil seeds, Fischer-Tropsch jet (FTJ) from corn-stover and co-feeding of coal and corn-stover, and pyrolysis jet from corn stover, is conducted and compared with petroleum jet. WTWa GHG emission reductions relative to petroleum jet can be 41-63% for HRJ, 68-76% for pyrolysis jet and 89% for FTJ from corn stover. The HRJ production stage dominates WTWa GHG emissions from HRJ pathways. The differences in GHG emissions from HRJ production stage among considered feedstocks are much smaller than those from fertilizer use and N2O emissions related to feedstock collection stage. Sensitivity analyses on FTJ production from coal and corn-stover are also conducted, showing the importance of biomass share in the feedstock, carbon capture and sequestration options, and overall efficiency. For both HRJ and FTJ, co-product handling methods have significant impacts on WTWa results. PMID:23978607

  7. 7 CFR 3201.7 - Determining biobased content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... biobased content must be based on third party ASTM/ISO compliant test facility testing using the ASTM International Radioisotope Standard Method D 6866. ASTM International Radioisotope Standard Method D...

  8. [Research and industrialization of biobased materials in China].

    PubMed

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews the research and commercialization progresses of biobased polymeric materials including polyhydroxyalkanoates (PHA), polylactides (PLA), poly (butylene succinate) (PBS) and its monomer succinate, and CO2 copolymer poly (propylene carbonate), especially these efforts made in China. PMID:26672370

  9. 7 CFR 2902.7 - Determining biobased content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... biobased content must be based on third party ASTM/ISO compliant test facility testing using the ASTM International Radioisotope Standard Method D 6866. ASTM International Radioisotope Standard Method D...

  10. Bio-based polycarbonate as synthetic toolbox.

    PubMed

    Hauenstein, O; Agarwal, S; Greiner, A

    2016-01-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity. PMID:27302694

  11. Bio-based polycarbonate as synthetic toolbox

    PubMed Central

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-01-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity. PMID:27302694

  12. Bio-based polycarbonate as synthetic toolbox

    NASA Astrophysics Data System (ADS)

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-06-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity.

  13. To be, or not to be biodegradable… that is the question for the bio-based plastics.

    PubMed

    Prieto, Auxiliadora

    2016-09-01

    Global warming, market and production capacity are being the key drivers for selecting the main players for the next decades in the market of bio-based plastics. The drop-in bio-based polymers such as the bio-based polyethylene terephtalate (PET) or polyethylene (PE), chemically identical to their petrochemical counterparts but having a component of biological origin, are in the top of the list. They are followed by new polymers such as PHA and PLA with a significant market growth rate since 2014 with projections to 2020. Research will provide improved strains designed through synthetic and systems biology approaches; furthermore, the use of low-cost substrates will contribute to the widespread application of these bio- based polymers. The durability of plastics is not considered anymore as a virtue, and interesting bioprospecting strategies to isolate microorganisms for assimilating the recalcitrant plastics will pave the way for in vivo strategies for plastic mineralization. In this context, waste management of bio-based plastic will be one of the most important issues in the near future in terms of the circular economy. There is a clear need for standardized labelling and sorting instructions, which should be regulated in a coordinated way by policymakers and material producers. PMID:27477765

  14. Novel bio-based and biodegradable polymer blends

    NASA Astrophysics Data System (ADS)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  15. Azolla domestication towards a biobased economy?

    PubMed

    Brouwer, Paul; Bräutigam, Andrea; Külahoglu, Canan; Tazelaar, Anne O E; Kurz, Samantha; Nierop, Klaas G J; van der Werf, Adrie; Weber, Andreas P M; Schluepmann, Henriette

    2014-05-01

    Due to its phenomenal growth requiring neither nitrogen fertilizer nor arable land and its biomass composition, the mosquito fern Azolla is a candidate crop to yield food, fuels and chemicals sustainably. To advance Azolla domestication, we research its dissemination, storage and transcriptome. Methods for dissemination, cross-fertilization and cryopreservation of the symbiosis Azolla filiculoides-Nostoc azollae are tested based on the fern spores. To study molecular processes in Azolla including spore induction, a database of 37 649 unigenes from RNAseq of microsporocarps, megasporocarps and sporophytes was assembled, then validated. Spores obtained year-round germinated in vitro within 26 d. In vitro fertilization rates reached 25%. Cryopreservation permitted storage for at least 7 months. The unigene database entirely covered central metabolism and to a large degree covered cellular processes and regulatory networks. Analysis of genes engaged in transition to sexual reproduction revealed a FLOWERING LOCUS T-like protein in ferns with special features induced in sporulating Azolla fronds. Although domestication of a fern-cyanobacteria symbiosis may seem a daunting task, we conclude that the time is ripe and that results generated will serve to more widely access biochemicals in fern biomass for a biobased economy. PMID:24494738

  16. A multi-scale, multi-disciplinary approach for assessing the technological, economic and environmental performance of bio-based chemicals.

    PubMed

    Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai

    2015-12-01

    In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. PMID:26614653

  17. 77 FR 33269 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ...The U.S. Department of Agriculture (USDA) is proposing to amend the Guidelines for Designating Biobased Products for Federal Procurement (Guidelines) to add 12 sections that will designate the following product categories within which biobased products would be afforded Federal procurement preference: Agricultural spray adjuvants; animal cleaning products; deodorants; dethatcher products; fuel......

  18. Development of a cleaner, durable and ash-less biobased firelogs from grass clippings and other agricultural derived residues with plant wax as a binder and starter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invention describes the development of a firelong, mini-firelog, stove pellet and fire-starter comprised of all-natural renewable resources. Besides being totally biobased, developed logs have several distinct advantages. The developed product utilizes renewable biomass as a raw material, prod...

  19. Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased l-Phenylalanine to High-Value Chiral Chemicals.

    PubMed

    Zhou, Yi; Wu, Shuke; Li, Zhi

    2016-09-12

    Sustainable synthesis of useful and valuable chiral fine chemicals from renewable feedstocks is highly desirable but remains challenging. Reported herein is a designed and engineered set of unique non-natural biocatalytic cascades to achieve the asymmetric synthesis of chiral epoxide, diols, hydroxy acid, and amino acid in high yield and with excellent ee values from the easily available biobased l-phenylalanine. Each of the cascades was efficiently performed in one pot by using the cells of a single recombinant strain over-expressing 4-10 different enzymes. The cascade biocatalysis approach is promising for upgrading biobased bulk chemicals to high-value chiral chemicals. In addition, combining the non-natural enzyme cascades with the natural metabolic pathway of the host strain enabled the fermentative production of the chiral fine chemicals from glucose. PMID:27512928

  20. Boundary friction in liquid and dry film biobased lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farm-based raw materials such as fats, seed oils, starches, proteins, and gums can be subjected to various degrees of processing to make them suitable for use in lubrication. The resulting biobased ingredients are then blended with each other and/or with synthetic ingredients to formulate lubricant...

  1. Characterizations of biobased materials using acoustic emission methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many years, the Eastern Regional Research Center (ERRC) has demonstrated that acoustic emission (AE) is a powerful tool for characterizing the properties of biobased materials with fibrous and composite structure. AE often reveals structural information of a material that other methods cannot o...

  2. Development of biobased sandwich structures for mass transit application

    NASA Astrophysics Data System (ADS)

    Munusamy, Sethu Raaj

    Efforts to increase the biobased content in sandwich composites are being investigated to reduce the dependence on synthetically produced or mined, energy-intensive materials for numerous composite applications. Vegetable oil-based polyurethane foams are gaining recognition as good substitutes for synthetic counter parts while utilizing bast fiber to replace fiberglass is also gaining credence. In this study, soy oil-based polyurethane foam was evaluated as a core in a sandwich construction with facesheets of hybridized kenaf and E-glass fibers in a vinyl ester resin matrix to replace traditionally used plywood sheeting on steel frame for mass transit bus flooring systems. As a first step towards implementation, the static performance of the biobased foam was compared to 100% synthetic foam. Secondly, biobased sandwich structures were processed and their static performance was compared to plywood. The biobased sandwich composites designed and processed were shown to hold promise towards replacing plywood for bus flooring applications by displaying an increase of 130% for flexural strength and 135% for flexural modulus plus better indentation values.

  3. Hydrogenated cottonseed oil as raw material for biobased materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been a lot of recent interest in using vegetable oils as biodegradable and renewable raw materials for the syntheses of various biobased materials. Although most of the attention has been paid to soybean oil thus far, cottonseed oil is a viable alternative. An advantage of cottonseed oil...

  4. Biobased oil structure on amphiphilic and tribological properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased oils are those derived from farm-based renewable raw materials. Most are vegetable oils (such as soybean, canola, corn, etc.) or chemical modifications of vegetable oils. They have a number of interesting structural features that impact their amphiphilic and lubrication properties. The basi...

  5. HFRR investigation of biobased and petroleum based oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased oils come in a wide range of chemical structures as do petroleum based oils. In addition, a distinct structural difference exists between these two broad categories of oils. Previous work has shown that, in spite of the structural differences, these two categories of oils display similar pr...

  6. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods.

    PubMed

    Cutter, Catherine Nettles

    2006-09-01

    It has been well documented that vacuum or modified atmosphere packaging materials, made from polyethylene- or other plastic-based materials, have been found to improve the stability and safety of raw or further processed muscle foods. However, recent research developments have demonstrated the feasibility, utilization, and commercial application of a variety of bio-based polymers or bio-polymers made from a variety of materials, including renewable/sustainable agricultural commodities, and applied to muscle foods. A variety of these bio-based materials have been shown to prevent moisture loss, drip, reduce lipid oxidation and improve flavor attributes, as well as enhancing the handling properties, color retention, and microbial stability of foods. With consumers demanding more environmentally friendly packaging and a desire for more natural products, bio-based films or bio-polymers will continue to play an important role in the food industry by improving the quality of many products, including fresh or further processed muscle foods. PMID:22062722

  7. 78 FR 34867 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ...The U.S. Department of Agriculture (USDA) is amending the Guidelines for Designating Biobased Products for Federal Procurement, to add eight sections to designate product categories within which biobased products will be afforded Federal procurement preference, as provided for under section 9002 of the Farm Security and Rural Investment Act of 2002, as amended by the Food, Conservation, and......

  8. 76 FR 56883 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ...The U.S. Department of Agriculture (USDA) is proposing to amend the Guidelines for Designating Biobased Products for Federal Procurement (Guidelines) to add 13 sections that will designate the following product categories within which biobased products would be afforded Federal procurement preference: Air fresheners and deodorizers; asphalt and tar removers; asphalt restorers; blast media;......

  9. Synthesis, properties and applications of bio-based materials

    NASA Astrophysics Data System (ADS)

    Srinivasan, Madhusudhan

    Bio-based feedstock have become very significant as they offer a value proposition in terms of carbon balance and also in terms of endowing biodegradability where needed. Thus a lot of attention is being given to the modification such feedstock for different applications. Soybean oil is one such feedstock. The oil is a triglyceride ester composed of different fatty acids, which are common to other plant oils. Thus soybean oil serves as a platform for plant oils, as modifications of this oil, can in theory be extended to cover other plant oils. Methyl oleate was used as a model fatty acid ester, to synthesize hydroxyesters with ethylene glycol via a two stage oxidative cleavage of the double bonds. Ozone was chosen as the oxidant due to its many advantages. The first stage involved oxidation of the double bond to aldehydes, ozonides and acetals, which were subsequently converted to hydroxyesters (hydroxy values of 220 - 270) in near quantitative yield by treatment with Oxone. This method could be extended to soybean oil to make "polyols" which could find applications in resin syntheses. Silylation was employed as another platform to functionalize soybean oil and fatty acid methyl esters with a reactive silane (vinyltrimethoxy silane). This simple modification produced materials that are cured by atmospheric moisture and are useful as coatings. The silylation was controlled by varying the grafting time, cure temperature and the concentration of the silane. Products with gel content as high as 90% could be achieved. The coating exhibited good adhesion to metal, glass, concrete and paper. Steel panels coated with these coatings exhibited good stability against corrosion in high humidity conditions and moderate stability against a salt spray. The silylation was also successfully utilized to improve the tensile strength of the blend of biodegradable polyester, poly (butylene adipate-co-terephthalate) with talc. A reactive extrusion process was employed to graft vinyl

  10. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules. PMID:26135389

  11. Catalytic Coupling of Carbon Dioxide with Terpene Scaffolds: Access to Challenging Bio-Based Organic Carbonates.

    PubMed

    Fiorani, Giulia; Stuck, Moritz; Martín, Carmen; Belmonte, Marta Martínez; Martin, Eddy; Escudero-Adán, Eduardo C; Kleij, Arjan W

    2016-06-01

    The challenging coupling of highly substituted terpene oxides and carbon dioxide into bio-based cyclic organic carbonates catalyzed by Al(aminotriphenolate) complexes is reported. Both acyclic as well as cyclic terpene oxides were used as coupling partners, showing distinct reactivity/selectivity behavior. Whereas cyclic terpene oxides showed excellent chemoselectivity towards the organic carbonate product, acyclic substrates exhibited poorer selectivities owing to concomitant epoxide rearrangement reactions and the formation of undesired oligo/polyether side products. Considering the challenging nature of these coupling reactions, the isolated yields of the targeted bio-carbonates are reasonable and in most cases in the range 50-60 %. The first crystal structures of tri-substituted terpene based cyclic carbonates are reported and their stereoconnectivity suggests that their formation proceeds through a double inversion pathway. PMID:27159151

  12. Pilot-scale production of washed cottonseed meal and co-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhanced utilization of defatted cottonseed meal (CSM)-based products as industrial and biobased raw materials would increase the profitability of cotton growers and processors. Especially, water washed cottonseed meal has been shown the potential as a biobased wood adhesive. In this work, we propos...

  13. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  14. Biobased lubricant additives derived from limonene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limonene is a natural product widely found in many plants as a constituent of “essential oils.” It is commercially produced as a byproduct of the citrus industry from processing of fruits such as oranges, lemons, lime, tangerines, mandarins, and grapefruits. Limonene is a C10 hydrocarbon with a com...

  15. An attempt towards simultaneous biobased solvent based extraction of proteins and enzymatic saccharification of cellulosic materials from distiller's grains and solubles.

    SciTech Connect

    Datta, S.; Bals, B. D.; Lin, Y. J.; Negri, M. C.; Datta, R.; Pasieta, L.; Ahmad, S. F.; Moradia, A. A.; Dale, B. E.; Snyder, S. W.; Energy Systems; Michigan State Univ.; Vertec BioSolvents Inc.; Illinois Mathematics and Science Academy

    2010-07-01

    Distiller's grains and solubles (DGS) is the major co-product of corn dry mill ethanol production, and is composed of 30% protein and 30-40% polysaccharides. We report a strategy for simultaneous extraction of protein with food-grade biobased solvents (ethyl lactate, d-limonene, and distilled methyl esters) and enzymatic saccharification of glucan in DGS. This approach would produce a high-value animal feed while simultaneously producing additional sugars for ethanol production. Preliminary experiments on protein extraction resulted in recovery of 15-45% of the protein, with hydrophobic biobased solvents obtaining the best results. The integrated hydrolysis and extraction experiments showed that biobased solvent addition did not inhibit hydrolysis of the cellulose. However, only 25-33% of the total protein was extracted from DGS, and the extracted protein largely resided in the aqueous phase, not the solvent phase. We hypothesize that the hydrophobic solvent could not access the proteins surrounded by the aqueous phase inside the fibrous structure of DGS due to poor mass transfer. Further process improvements are needed to overcome this obstacle.

  16. Biobased lubricants and functional products from Cuphea oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cuphea (Lythraceae) is an annual plant that produces a small seed rich in saturated medium-chain triacylglycerols (TAGs). With the need for higher seed yields, oil content, and less seed shattering, Oregon State University began developing promising cuphea crosses. Cuphea PSR23 is a hybrid between C...

  17. Biobased flocculants derived from animal processing protein by-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic polymeric flocculants are class of substances that are widely used to facilitate the removal of particles or colloidal material from a liquid. Sustainable alternatives for these substances are needed. Past attempts to use biological polymers as flocculants have shown limited success. This ...

  18. Grasses and Legumes for Bio-Based Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasses and legumes are the foundation of ruminant animal agriculture, but over the last 50 years the use of forages has declined in the developed world, largely due to their displacement by high-energy grain feedstuffs. Keeping forages on the landscape to take advantage of their many environmental ...

  19. Valorization of an industrial organosolv-sugarcane bagasse lignin: Characterization and use as a matrix in biobased composites reinforced with sisal fibers.

    PubMed

    Ramires, Elaine C; Megiatto, Jackson D; Gardrat, Christian; Castellan, Alain; Frollini, Elisabete

    2010-11-01

    In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties. PMID:20589841

  20. Design, characterization and modeling of biobased acoustic foams

    NASA Astrophysics Data System (ADS)

    Ghaffari Mosanenzadeh, Shahrzad

    Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube

  1. Bio-Based Solvents for Green Extraction of Lipids from Oleaginous Yeast Biomass for Sustainable Aviation Biofuel.

    PubMed

    Breil, Cassandra; Meullemiestre, Alice; Vian, Maryline; Chemat, Farid

    2016-01-01

    Lipid-based oleaginous microorganisms are potential candidates and resources for the sustainable production of biofuels. This study was designed to evaluate the performance of several alternative bio-based solvents for extracting lipids from yeasts. We used experimental design and simulation with Hansen solubility simulations and the conductor-like screening model for realistic solvation (COSMO-RS) to simulate the solubilization of lipids in each of these solvents. Lipid extracts were analyzed by high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes and gas chromatography coupled with a flame ionization detector (GC/FID) to obtain fatty acid profiles. Our aim was to correlate simulation with experimentation for extraction and solvation of lipids with bio-based solvents in order to make a preliminary evaluation for the replacement of hexane to extract lipids from microorganisms. Differences between theory and practice were noted for several solvents, such as CPME, MeTHF and ethyl acetate, which appeared to be good candidates to replace hexane. PMID:26861274

  2. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    SciTech Connect

    Gustafson, Richard

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process control Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  3. Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry.

    PubMed

    Gu, Yanlong; Jérôme, François

    2013-12-21

    Biomass and waste exhibit great potential for replacing fossil resources in the production of chemicals. The search for alternative reaction media to replace petroleum-based solvents commonly used in chemical processes is an important objective of significant environmental consequence. Recently, bio-based derivatives have been either used entirely as green solvents or utilized as pivotal ingredients for the production of innovative solvents potentially less toxic and more bio-compatible. This review presents the background and classification of these new media and highlights recent advances in their use in various areas including organic synthesis, catalysis, biotransformation and separation. The greenness, advantages and limitations of these solvents are also discussed. PMID:24056753

  4. Development of a sweet sorghum juice clarification method in the manufacture of industrial feedstocks for value-added products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been a dramatic increase in interest of sweet sorghum (Sorghum bicolor L. Moench) for small, medium, and large-scale manufacture of renewable, biobased fuels and chemicals. New fermentation organisms hold tremendous potential for the production of biobased fuels, chemical...

  5. Osteoblasts growth behaviour on bio-based calcium carbonate aragonite nanocrystal.

    PubMed

    Shafiu Kamba, Abdullahi; Zakaria, Zuki Abu Bakar

    2014-01-01

    Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process. PMID:24734228

  6. Potential Biological Applications of Bio-Based Anacardic Acids and Their Derivatives

    PubMed Central

    Hamad, Fatma B.; Mubofu, Egid B.

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30–35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported. PMID:25894225

  7. Potential biological applications of bio-based anacardic acids and their derivatives.

    PubMed

    Hamad, Fatma B; Mubofu, Egid B

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported. PMID:25894225

  8. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. PMID:26794953

  9. Biobased grease with improved oxidation performance for industrial application.

    PubMed

    Sharma, Brajendra K; Adhvaryu, Atanu; Perez, Joseph M; Erhan, Sevim Z

    2006-10-01

    Vegetable oils have significant potential as a base fluid and a substitute for mineral oil for grease formulation. This paper describes the preparation of biobased grease with high oxidative stability and a composition useful for industrial, agriculture/farming equipment, and forestry applications. The process utilizes more oxidatively stable epoxy vegetable oils as the base fluid, metal-soap thickener, and several specialty chemicals identified to address specific applications. Performance characteristics of greases used for industrial and automotive applications are largely dependent on the hardness and the oxidative stability of grease. Grease hardness was determined using standard test methods, and their oxidative stabilities were determined using pressurized differential scanning calorimetry and rotary bomb oxidation tests. Wear data were generated using standard test methods in a four-ball test geometry. Results indicate that grease developed with this method can deliver at par or better performance properties (effective lubrication, wear protection, corrosion resistance, friction reduction, heat removal, etc.) than existing mineral oil-based greases currently used in similar trades. Therefore, developed greases can be a good substitute for mineral oil-based greases in industrial, agriculture, forestry, and marine applications. PMID:17002427

  10. Biobased Polyamides: Recent Advances in Basic and Applied Research.

    PubMed

    Winnacker, Malte; Rieger, Bernhard

    2016-09-01

    Polyamides represent a very important class of polymers for a wide range of applications. After establishing in the 1930s with Nylon and Perlon, their impact on many branches has been continuously growing. In the context of developing sustainable polymers from renewable resources, many polyamides have meanwhile been described, which are based on natural building blocks. In addition to their sustainability, these biobased starting materials can provide special structural features to the resulting polymers and their properties, e.g., side groups, functionalities, or stereoinformation. While some biopolyamides are known for decades and well established (e.g., PA-11, Rilsan), many other promising candidates have been described in fundamental research studies, which have high potential but whose capability-especially for large scale and/or high-performance materials-will have to be proved in the future. Other candidates are very interesting from a scientific point of view, but with less potential for a market establishment due to price and/or feasibility reasons. This article aims at collating the recent developments in the field of biopolyamides and elucidating their properties and potential for different applications. PMID:27457825

  11. Spray-assisted nanocoating of the biobased material urushiol.

    PubMed

    Watanabe, Hirohmi; Fujimoto, Aya; Takahara, Atsushi

    2015-03-01

    We have demonstrated the spray-assisted coating of the catechol derivative, urushiol. Spraying a mixture of urushiol and iron(II) acetate formed a uniform coating about 10 nm thick, as confirmed by AFM observations. XPS measurements revealed that various substrates, including polyolefins and thermosetting resins, were successfully coated with urushiol. The coating showed good solvent tolerance and coating adhesion after baking at 100 °C for 10 min or after aerobic oxidation for several days. Interestingly, quartz crystal microbalance (QCM) measurements and strain-induced elastic buckling instability for mechanical measurements (SIEBIMM) revealed that density and Young's modulus of the spray-assisted nanocoatings were higher than those of spray-coated samples. Moreover, the coating was uninvolved in physical properties except surface properties, as demonstrated by several experiments. Because urushiol is a promising biobased material, our unique spray-assisted coating technique could provide a general approach for material-independent surface modification techniques that are environmentally sustainable. PMID:25669426

  12. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    PubMed Central

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m−1 at a low dosage as 0.100 g L−1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  13. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m-1 at a low dosage as 0.100 g L-1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  14. Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.

    PubMed

    Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C

    2014-08-01

    A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. PMID:24777954

  15. Unravelling emotional viewpoints on a bio-based economy using Q methodology.

    PubMed

    Sleenhoff, Susanne; Cuppen, Eefje; Osseweijer, Patricia

    2015-10-01

    A transition to a bio-based economy will affect society and requires collective action from a broad range of stakeholders. This includes the public, who are largely unaware of this transition. For meaningful public engagement people's emotional viewpoints play an important role. However, what the public's emotions about the transition are and how they can be taken into account is underexposed in public engagement literature and practice. This article aims to unravel the public's emotional views of the bio-based economy as a starting point for public engagement. Using Q methodology with visual representations of a bio-based economy we found four emotional viewpoints: (1) compassionate environmentalist, (2) principled optimist, (3) hopeful motorist and (4) cynical environmentalist. These provide insight into the distinct and shared ways through which members of the public connect with the transition. Implications for public engagement are discussed. PMID:24928568

  16. Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase.

    PubMed

    Wu, Kejing; Wu, Yulong; Chen, Yu; Chen, Hao; Wang, Jianlong; Yang, Mingde

    2016-06-22

    Different biobased chemicals are produced during the conversion of biomass into fuels through various feasible technologies (e.g., hydrolysis, hydrothermal liquefaction, and pyrolysis). The challenge of transforming these biobased chemicals with high hydrophilicity is ascribed to the high water content of the feedstock and the inevitable formation of water. Therefore, aqueous-phase processing is an interesting technology for the heterogeneous catalytic conversion of biobased chemicals. Different reactions, such as dehydration, isomerization, aldol condensation, ketonization, and hydrogenation, are applied for the conversion of sugars, furfural/hydroxymethylfurfural, acids, phenolics, and so on over heterogeneous catalysts. The activity, stability, and reusability of the heterogeneous catalysts in water are summarized, and deactivation processes and several strategies are introduced to improve the stability of heterogeneous catalysts in the aqueous phase. PMID:27158985

  17. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants.

    PubMed

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m(-1) at a low dosage as 0.100 g L(-1) of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  18. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis

  19. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    PubMed

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications. PMID:24621374

  20. Bio-based thermosetting copolymers of eugenol and tung oil

    NASA Astrophysics Data System (ADS)

    Handoko, Harris

    There has been an increasing demand for novel synthetic polymers made of components derived from renewable sources to cope with the depletion of petroleum sources. In fact, monomers derived vegetable oils and plant sources have shown promising results in forming polymers with good properties. The following is a study of two highly viable renewable sources, eugenol and tung oil (TO) to be copolymerized into fully bio-based thermosets. Polymerization of eugenol required initial methacrylate-functionalization through Steglich esterification and the synthesized methacrylated eugenol (ME) was confirmed by 1H-NMR. Rheological studies showed ideal Newtonian behavior in ME and five other blended ME resins containing 10 -- 50 wt% TO. Free-radical copolymerization using 5 mol% of tert-butyl peroxybenzoate (crosslinking catalyst) and curing at elevated temperatures (90 -- 160 °C) formed a series of soft to rigid highly-crosslinked thermosets. Crosslinked material (89 -- 98 %) in the thermosets were determined by Soxhlet extraction to decrease with increase of TO content (0 -- 30%). Thermosets containing 0 -- 30 wt% TO possessed ultimate flexural (3-point bending) strength of 32.2 -- 97.2 MPa and flexural moduli of 0.6 -- 3.5 GPa, with 3.2 -- 8.8 % strain-to-failure ratio. Those containing 10 -- 40 wt% TO exhibited ultimate tensile strength of 3.3 -- 45.0 MPa and tensile moduli of 0.02 GPa to 1.12 GPa, with 8.5 -- 76.7 % strain-to-failure ratio. Glass transition temperatures ranged from 52 -- 152 °C as determined by DMA in 3-point bending. SEM analysis on fractured tensile test specimens detected a small degree of heterogeneity. All the thermosets are thermally stable up to approximately 300 °C based on 5% weight loss.

  1. The potential of the aquatic water fern Azolla within a biobased economy

    NASA Astrophysics Data System (ADS)

    Nierop, Klaas G. J.; Jongerius, Anna L.; Bijl, Peter K.; Bruijnincx, Pieter C. A.; Klein Gebbink, Robertus J. M.; Reichart, Gert-Jan

    2014-05-01

    Azolla is a free-floating freshwater fern capable of fixing atmospheric carbon dioxide and nitrogen, the latter of which through its symbiosis with the cyanobacteria Anabaena azollae. It is currently ranked among the fastest growing plants on Earth and occurs in both tropical and temperate freshwater ecosystems. Therefore, it is non-directly competitive with food crops. In addition, Azolla does not require inorganic fertilizers, which makes it a potential and unique source of biomass for the sustainable production of fuels and chemicals that are currently derived from fossil (fuel) sources. The biochemical composition of Azolla allows the production of biofuel or biobased chemicals that are of interest to the chemical industry. Of Azolla, two extractable groups of compounds are of particular interest, i.e. the polyphenols (condensed tannins and ester-bound caffeic acid) and the lipids. The antioxidant property of polyphenols and their application to the treatment of cancer, diabetes and cardiovascular diseases has further contributed to the growth of the polyphenol market. In addition, they can be chemically transformed into aromatic platform and specialty chemicals. The composition of the lipid fraction of Azolla is characterized by highly specific compounds consisting of C26-C36 carbon chains all bearing a ω20-hydroxy group. Such compounds produce an oil fraction upon hydrous pyrolysis, or, alternatively, are well suited to be converted to e.g. various specialty chemicals that are hardly available from both natural sources. Indeed, upon chemical conversion these lipids may yield components for fuels, plastics, cosmetics, and lubricants. Another group of interesting compounds within the lipid group are the polyunsaturated fatty acids (PUFAs). The demand for PUFAs has witnessed a significant increase over the last three years, particularly due to their benefits as cholesterol lowering agents. Here we will present some of the thermal and chemical conversions of the

  2. Polysulfide and bio-based EP additive performance in vegetable vs. paraffinic base oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twist compression test (TCT) and 4-ball extreme pressure (EP) methods were used to investigate commercial polysulfide (PS) and bio-based polyester (PE) EP additives in paraffinic (150N) and refined soybean (SOY) base oils of similar viscosity. Binary blends of EP additive and base oil were investiga...

  3. Use of NMR Imaging to Determine the Diffusion Coefficient of Water in Bio-based Hydrogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diffusion of liquid in a hydrogel material is a fundamental property which must be controlled in order to create effective delivery systems for the agricultural and pharmaceutical industries. NMR spectroscopy has been used to determine the diffusion of water and deuterium oxide in a bio-based h...

  4. Diffusion coefficients of water in biobased hydrogel polymer matrices by nuclear magnetic resonance imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...

  5. Latent Heat Characteristics of Biobased Oleochemical Carbonates as Novel Phase Change Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleochemical carbonates are biobased materials that were readily prepared through a carbonate interchange reaction between renewable C10-C18 fatty alcohols and dimethyl or diethyl carbonate in the presence of a catalyst. These carbonates have various commercial uses in cosmetic, fuel additive and l...

  6. ‘GREENER’ SURFACTANTS FROM BIO-BASED WASTE AS EFFICIENT ALTERNATIVES TO NONYLPHENOL ETHOXYLATES

    EPA Science Inventory

    All bio-based surfactants synthesized over the course of the project will be tested for their ability to lower the surface tension at the air-water interface using a Du Nüoy ring tensiometer. The cleaning efficiency of the surfactants will be tested at the Toxics Use Reduc...

  7. Processing and characterization of novel biobased and biodegradable materials

    NASA Astrophysics Data System (ADS)

    Pilla, Srikanth

    Human society has benefited tremendously from the use of petroleum-based plastics. However, there are growing concerns with their adverse environmental impacts and volatile costs attributed to the skyrocketing oil prices. Additionally most of the petroleum-based polymers are non-biodegradable causing problems about their disposal. Thus, during the last couple of decades, scientists ail over the world have been focusing on developing new polymeric materials that are biobased and biodegradable, also termed as green plastics . This study aims to develop green materials based on polylactide (PLA) biopolymer that can be made from plants. Although PLA can provide important advantages in terms of sustainability and biodegradability, it has its own challenges such as high cost, brittleness, and narrow processing window. These challenges are addressed in this study by investigating both new material formulations and processes. To improve the material properties and control the material costs, PLA was blended with various fillers and modifiers. The types of fillers investigated include carbon nanotube (CNT) nanoparticles and various natural fibers such as pine-wood four, recycled-wood fibers and flax fiber. Using natural fibers as fillers for PLA can result in fully biodegradable and eco-friendly biocomposites. Also due to PLA's sensitivity to moisture and temperature, molecular degradation can occur during processing leading to inferior material properties. To address this issue, one of the approaches adopted by this study was to incorporate a multifunctional chain-extender into PLA, which increased the molecular weight of PLA thereby improving the material properties. To improve the processability and reduce the material cost, both microcellular injection molding and extrusion processes have been studied. The microcellular technology allows the materials to be processed at a lower temperature, which is attractive for thermo- and moisture-sensitive materials like PLA. They

  8. Production of novel microbial biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms are well known to produce a wide variety of biobased polymers. These biopolymers have found a wide range of commercial uses, including food, feed, and consumer and industrial products. The production and possible uses of several novel biopolymers from both bacteria and fungi will be d...

  9. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals.

    PubMed

    Schwartz, Thomas J; Shanks, Brent H; Dumesic, James A

    2016-04-01

    Advances in metabolic engineering have allowed for the development of new biological catalysts capable of selectively de-functionalizing biomass to yield platform molecules that can be upgraded to biobased chemicals using high efficiency continuous processing allowed by heterogeneous chemical catalysis. Coupling these disciplines overcomes the difficulties of selectively activating COH bonds by heterogeneous chemical catalysis and producing petroleum analogues by biological catalysis. We show that carboxylic acids, pyrones, and alcohols are highly flexible platforms that can be used to produce biobased chemicals by this approach. More generally, we suggest that molecules with three distinct functionalities may represent a practical upper limit on the extent of functionality present in the platform molecules that serve as the bridge between biological and chemical catalysis. PMID:26785391

  10. Hybrid hierarchical bio-based materials: Development and characterization through experimentation and computational simulations

    NASA Astrophysics Data System (ADS)

    Haq, Mahmoodul

    Environmentally friendly bio-based composites with improved properties can be obtained by harnessing the synergy offered by hybrid constituents such as multiscale (nano- and micro-scale) reinforcement in bio-based resins composed of blends of synthetic and natural resins. Bio-based composites have recently gained much attention due to their low cost, environmental appeal and their potential to compete with synthetic composites. The advantage of multiscale reinforcement is that it offers synergy at various length scales, and when combined with bio-based resins provide stiffness-toughness balance, improved thermal and barrier properties, and increased environmental appeal to the resulting composites. Moreover, these hybrid materials are tailorable in performance and in environmental impact. While the use of different concepts of multiscale reinforcement has been studied for synthetic composites, the study of mukiphase/multiscale reinforcements for developing new types of sustainable materials is limited. The research summarized in this dissertation focused on development of multiscale reinforced bio-based composites and the effort to understand and exploit the synergy of its constituents through experimental characterization and computational simulations. Bio-based composites consisting of petroleum-based resin (unsaturated polyester), natural or bio-resin (epoxidized soybean and linseed oils), natural fibers (industrial hemp), and nanosilicate (nanoclay) inclusions were developed. The work followed the "materials by Mahmoodul Haq design" philosophy by incorporating an integrated experimental and computational approach to strategically explore the design possibilities and limits. Experiments demonstrated that the drawbacks of bio-resin addition, which lowers stiffness, strength and increases permeability, can be counter-balanced through nanoclay reinforcement. Bio-resin addition yields benefits in impact strength and ductility. Conversely, nanoclay enhances stiffness

  11. Isosorbide as the structural component of bio-based unsaturated polyesters for use as thermosetting resins.

    PubMed

    Sadler, Joshua M; Toulan, Faye R; Nguyen, Anh-Phuong T; Kayea, Ronald V; Ziaee, Saeed; Palmese, Giuseppe R; La Scala, John J

    2014-01-16

    In recent years, the development of renewable bio-based resins has gained interest as potential replacements for petroleum based resins. Modified carbohydrate-based derivatives have favorable structural features such as fused bicyclic rings that offer promising candidates for the development of novel renewable polymers with improved thermomechanical properties when compared to early bio-based resins. Isosorbide is one such compound and has been utilized as the stiffness component for the synthesis of novel unsaturated polyesters (UPE) resins. Resin blends of BioUPE systems with styrene were shown to possess viscosities (120-2200 cP) amenable to a variety of liquid molding techniques, and after cure had Tgs (53-107 °C) and storage moduli (430-1650 MPa) that are in the desired range for composite materials. These investigations show that BioUPEs containing isosorbide can be tailored during synthesis of the prepolymer to meet the needs of different property profiles. PMID:24188843

  12. Biobased building blocks for the rational design of renewable block polymers.

    PubMed

    Holmberg, Angela L; Reno, Kaleigh H; Wool, Richard P; Epps, Thomas H

    2014-10-14

    Block polymers (BPs) derived from biomass (biobased) are necessary components of a sustainable future that relies minimally on petroleum-based plastics for applications ranging from thermoplastic elastomers and pressure-sensitive adhesives to blend compatibilizers. To facilitate their adoption, renewable BPs must be affordable, durable, processable, versatile, and reasonably benign. Their desirability further depends on the relative sustainability of the renewable resources and the methods employed in the monomer and polymer syntheses. Various strategies allow these BPs' characteristics to be tuned and enhanced for commercial applications, and many of these techniques also can be applied to manipulate the wide-ranging mechanical and thermal properties of biobased and self-assembling block polymers. From feedstock to application, this review article highlights promising renewable BPs, plus their material and assembly properties, in support of de novo design strategies that could revolutionize material sustainability. PMID:25131385

  13. Clay-filled bio-based blends of poly(lactic acid) and polyamide 11

    NASA Astrophysics Data System (ADS)

    Nuzzo, Anna; Acierno, Domenico; Filippone, Giovanni

    2012-07-01

    We investigate the effect of small amounts of organoclay on the crystallinity and dynamic-mechanical properties of bio-based blends of poly(lactic acid) (PLA) and polyamide 11 (PA11). Virgin and filled blends were prepared by melt-compounding the constituents using a twin-screw extruder. Wettability considerations suggest that the filler unevenly distribute inside the material. This affect both the crystallinity of each phase and the blend microstructure. Controlling such phenomena can lead to highly "engineerized" materials with tailored properties. In particular, the typically poor mechanical performances of bio-based polymers can be overcame owing to the synergism among reinforcing action of the filler, its possible compatibilizing action and its impact on the crystallinity of the hosting phase.

  14. 7 CFR 3201.62 - Bath products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Bath products. 3201.62 Section 3201.62 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.62 Bath products....

  15. 7 CFR 3201.62 - Bath products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Bath products. 3201.62 Section 3201.62 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.62 Bath products....

  16. 7 CFR 3201.62 - Bath products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Bath products. 3201.62 Section 3201.62 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.62 Bath products....

  17. Poly(carbonate–amide)s Derived from Bio-Based Resources: Poly(ferulic acid-co-tyrosine)

    PubMed Central

    2015-01-01

    Ferulic acid (FA), a bio-based resource found in fruits and vegetables, was coupled with a hydroxyl-amino acid to generate a new class of monomers to afford poly(carbonate–amide)s with potential to degrade into natural products. l-Serine was first selected as the hydroxyl-amino partner for FA, from which the activated p-nitrophenyl carbonate monomer was synthesized. Unfortunately, polymerizations were unsuccessful, and the elimination product was systematically obtained. To avoid elimination, we revised our strategy and used l-tyrosine ethyl ester, which lacks an acidic proton on the α position of the ethyl ester. Four new monomers were synthesized and converted into the corresponding poly(carbonate–amide)s with specific regioselectivities. The polymers were fully characterized through thermal and spectroscopic analyses. Preliminary fluorescent studies revealed interesting photophysical properties for the monomers and their corresponding poly(carbonate–amide)s, beyond the fluorescence characteristics of l-tyrosine and FA, making these materials potentially viable for sensing and/or imaging applications, in addition to their attractiveness as engineering materials derived from renewable resources. PMID:24839309

  18. 3D printing of new biobased unsaturated polyesters by microstereo-thermallithography.

    PubMed

    Gonçalves, Filipa A M M; Costa, Cátia S M F; Fabela, Inês G P; Farinha, Dina; Faneca, Henrique; Simões, Pedro N; Serra, Arménio C; Bártolo, Paulo J; Coelho, Jorge F J

    2014-09-01

    New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester's properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area. PMID:25190707

  19. Enhanced electromechanical performance of bio-based gelatin/glycerin dielectric elastomer by cellulose nanocrystals.

    PubMed

    Ning, Nanying; Wang, Zhifei; Yao, Yang; Zhang, Liqun; Tian, Ming

    2015-10-01

    To meet the growing demand of environmental protection and resource saving, it is imperative to explore bio-based elastomers as next-generation dielectric elastomers (DEs). In this study, we used a bio-based gelatin/glycerin (GG) elastomer as the DE matrix because GG exhibits high dielectric constant (ɛr). Cellulose nanocrystals (CNCs), extracted from natural cellulose fibers, were used to improve the mechanical strength of GG elastomer. The results showed that CNCs with a large number of hydroxyl groups disrupted the hydrogen bonds between gelatin molecules and formed new stronger hydrogen bonds with gelatin molecules. A good interfacial adhesion between CNCs and GG was formed, and thus a good dispersion of CNCs in GG matrix was obtained, leading to the improved mechanical strength of GG. More interestingly, the ɛr of GG elastomer was obviously increased by adding 5 wt% of CNCs, ascribed to the increase in the polarizability of gelatin chains caused by the disruption of hydrogen bonds of gelatin. As a result, a 230% increase in the actuated strain at low electric field of GG was obtained by adding 5 wt% of CNCs. Since CNCs, gelatin and glycerol are all bio-based, this study offers a new method to prepare high performance DE for its application in biological and medical fields. PMID:26076625

  20. High biobased content epoxy-anhydride thermosets from epoxidized sucrose esters of Fatty acids.

    PubMed

    Pan, Xiao; Sengupta, Partha; Webster, Dean C

    2011-06-13

    Novel highly functional biobased epoxy compounds, epoxidized sucrose esters of fatty acids (ESEFAs), were cross-linked with a liquid cycloaliphatic anhydride to prepare polyester thermosets. The degree of cure or conversion was studied using differential scanning calorimetry (DSC), and the sol content of the thermosets was determined using solvent extraction. The mechanical properties were studied using tensile testing to determine Young's modulus, tensile stress, and elongation at break. Dynamic mechanical analysis (DMA) was used to determine glass-transition temperature, storage modulus, and cross-link density. The nanomechanical properties of the surfaces were studied using nanoindentation to determine reduced modulus and indentation hardness. The properties of coatings on steel substrates were studied to determine coating hardness, adhesion, solvent resistance, and mechanical durability. Compared with the control, epoxidized soybean oil, the anhydride-cured ESEFAs have high modulus and are hard and ductile, high-performance thermoset materials while maintaining a high biobased content (71-77% in theory). The exceptional performance of the ESEFAs is attributed to the unique structure of these macromolecules: well-defined compact structures with high epoxide functionality. These biobased thermosets have potential uses in applications such as composites, adhesives, and coatings. PMID:21561167

  1. 75 FR 6795 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... procurement preference: Disposable tableware; expanded polystyrene foam recycling products; heat transfer... products; heat transfer fluids; ink removers and cleaners; mulch and compost materials; multipurpose... describe. 4. Some items (e.g., ``disposable tableware,'' ``heat transfer fluids,'' and ``ink removers...

  2. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants.

    PubMed

    Das, Beauty; Mandal, Manabendra; Upadhyay, Aadesh; Chattopadhyay, Pronobesh; Karak, Niranjan

    2013-06-01

    The fabrication of a smart magnetically controllable bio-based polymeric nanocomposite (NC) has immense potential in the biomedical domain. In this context, magneto-thermoresponsive sunflower oil modified hyperbranched polyurethane (HBPU)/Fe3O4 NCs with different wt.% of magnetic nanoparticles (Fe3O4) were prepared by an in situ polymerization technique. Fourier-transform infrared, x-ray diffraction, vibrating sample magnetometer, scanning electron microscope, transmission electron microscope, thermal analysis and differential scanning calorimetric were used to analyze various physico-chemical structural attributes of the prepared NC. The results showed good interfacial interactions between HBPU and well-dispersed superparamagnetic Fe3O4, with an average diameter of 7.65 nm. The incorporation of Fe3O4 in HBPU significantly improved the thermo-mechanical properties along with the shape-memory behavior, antibacterial activity, biocompatibility as well as biodegradability in comparison to the pristine system. The cytocompatibility of the degraded products of the NC was also verified by in vitro hemolytic activity and MTT assay. In addition, the in vivo biocompatibility and non-immunological behavior, as tested in Wistar rats after subcutaneous implantation, show promising signs for the NC to be used as antibacterial biomaterial for biomedical device and implant applications. PMID:23532037

  3. 77 FR 72653 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... product category designated in Round 2 (73 FR 27954, May 14, 2008) and a subcategory for wheel bearing and chassis grease to the greases product category designated in Round 3 (73 FR 27974, May 14, 2008). In... products? Will a product category create a high demand for biobased feed stock? Does manufacturing...

  4. 7 CFR 3201.82 - Foot care products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Foot care products. 3201.82 Section 3201.82... Designated Items § 3201.82 Foot care products. (a) Definition. Products formulated to be used in the soothing or cleaning of feet. (b) Minimum biobased content. The Federal preferred procurement product...

  5. 7 CFR 3201.82 - Foot care products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Foot care products. 3201.82 Section 3201.82... Designated Items § 3201.82 Foot care products. (a) Definition. Products formulated to be used in the soothing or cleaning of feet. (b) Minimum biobased content. The Federal preferred procurement product...

  6. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    PubMed

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate. PMID:25045161

  7. Effect of supercritical carbon dioxide as an exfoliation aid on bio-based polyethylene terephthalate glycol-modified/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Kwangho; Lee, Jae Wook; Hong, In-Kwon; Lee, Sangmook

    2013-08-01

    Bio-based PETG (bio-based glycol modified polyethylene terephthalate, Ecozen T95) / clay (organo-modified montmorillonite, OMMT, C10A) nanocomposites were prepared by co-rotating twin screw extruder attached with supercritical carbon dioxide (scCO2) injection system. The effects of nano-clay and scCO2 on the properties of PETG/clay nanocomposites were investigated by measuring thermal, rheological, tensile, impact, and barrier properties. The thermal and mechanical properties decreased with increasing nano-clay content, but they recovered or even exceeded the properties of neat PETG as scCO2 was added. It was verified due to a good dispersion of the nano-clay in PETG matrix for PETG/clay nanocomposites by XRD, SEM, and TEM. It was thought that scCO2 could be an effective exfoliation agent for many nanocomposites systems as well as for bio-based PET/clay nanocomposites.

  8. 75 FR 71491 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... first six items designated for preferred procurement (71 FR 13686, March 16, 2006), USDA stated that it... accelerators; concrete and asphalt cleaners; cuts, burns, and abrasions ointments; dishwashing products... proposed today (concrete and asphalt cleaners, dishwashing detergent, floor cleaners and protectors,...

  9. 76 FR 41179 - Federal Acquisition Regulation; Biobased Procurements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... 7 CFR 2902.8). PART 23--ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES..., and Energy Act of 2008 (Pub. L. 110-246). 7 U.S.C. 8102 requires Federal agencies to establish a... Products Preference Program was originally implemented in the FAR on November 7, 2007 (72 FR 63040)....

  10. Design of biobased and biodegradable - compostable engineered plastics based on poly(lactide)

    NASA Astrophysics Data System (ADS)

    Schneider, Jeffrey Samuelson

    Poly(lactide) (PLA) is a biobased and biodegradable - compostable plastic that is derived from renewable resources such as corn and sugar cane. It possesses excellent strength and stiffness properties and is recognized as safe for biomedical and food packaging applications. Commercially, it costs $1/lb and is now competitive with petroleum based polymers that have dominated the industry for decades. However, the material has some inherently weak properties that prevent it from certain applications - most notably, its rheological properties, brittleness, and poor high temperature performance. Cost effective modifications of the polymer to enhance these deficiencies could allow for increased applications and further its commercial growth. Multiple synthetic strategies have been developed to address PLA's performance property deficiencies. PLA typically exhibits poor melt strength and does not have the ability to strain harden, partially a result of its highly linear nature. Strain hardening and high melt strength are crucial elements of a material when producing blown films, a large untapped market for PLA. By increasing molecular weight and introducing long-chain branching into the material, these properties can be improved. Epoxy-functionalized PLA (EF-PLA) was synthesized by reacting PLA with a multifunctional epoxy polymer (MEP) using reactive extrusion processing (REX). These modified PLA polymers can function as a rheology modifier for PLA and a compatibilizer for blends with other biopolyesters. The modified PLA showed an increased melt strength and exhibited significant strain hardening, thus making it more suited for blown film applications. Blown films comprised of PLA and poly(butylene adipate-co-terephthalate) (PBAT) were produced using EF-PLA as a reactive modifier for rheological enhancement and compatibilization. This resulted in films with better processability (as seen by increased bubble stability) and improved mechanical properties, compared to a

  11. 77 FR 20281 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Property Management 7 CFR Part 3201 RIN 0599-AA14 Designation of Product Categories for Federal Procurement..., a proposed rule in the Federal Register (FR) for the purpose of designating a total of 13 product... following objectives of section 9002: To improve demand for biobased products; to spur development of...

  12. 7 CFR 3201.89 - Animal cleaning products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Animal cleaning products. 3201.89 Section 3201.89... Designated Items § 3201.89 Animal cleaning products. (a) Definition. Products designed to clean, condition, or remove substances from animal hair or other parts of an animal. (b) Minimum biobased content....

  13. 7 CFR 3201.89 - Animal cleaning products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Animal cleaning products. 3201.89 Section 3201.89... Designated Items § 3201.89 Animal cleaning products. (a) Definition. Products designed to clean, condition, or remove substances from animal hair or other parts of an animal. (b) Minimum biobased content....

  14. Metabolic engineering with plants for a sustainable biobased economy.

    PubMed

    Yoon, Jong Moon; Zhao, Le; Shanks, Jacqueline V

    2013-01-01

    Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants. PMID:23540288

  15. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect

    Anthony Terrinoni; Sean Gifford

    2008-06-30

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  16. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  17. Bio-Based Nano Composites from Plant Oil and Nano Clay

    NASA Astrophysics Data System (ADS)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  18. Bio-based alternative to the diglycidyl ether of bisphenol A with controlled materials properties.

    PubMed

    Maiorana, Anthony; Spinella, Stephen; Gross, Richard A

    2015-03-01

    A series of biobased epoxy monomers were prepared from diphenolic acid (DPA) by transforming the free acid into n-alkyl esters and the phenolic hydroxyl groups into diglycidyl ethers. NMR experiments confirmed that the diglycidyl ethers of diphenolates (DGEDP) with methyl and ethyl esters have 6 and 3 mol % of glycidyl ester. Increasing the chain length of DGEDP n-alkyl esters from methyl to n-pentyl resulted in large decreases in epoxy resin viscosity (700-to-11 Pa·s). Storage modulus of DPA epoxy resins, cured with isophorone diamine, also varied with n-alkyl ester chain length (e.g., 3300 and 2100 MPa for the methyl and n-pentyl esters). The alpha transition temperature of the cured materials showed a linear decrease from 158 to 86 °C as the ester length increases. The Young's modulus and tensile strengths were about 1150 and 40 MPa, respectively, for all the cured resins tested (including DGEBA) and varied little as a function of ester length. Degree of cure for the different epoxy resins, determined by FTIR and DSC, closely approached the theoretical maximum. The result of this work demonstrates that diglycidyl ethers of n-alkyl diphenolates represent a new family of biobased liquid epoxy resins that, when cured, have similar properties to those from DGEBA. PMID:25633466

  19. Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals.

    PubMed

    Kong, Xiaohua; Zhao, Liyan; Curtis, Jonathan M

    2016-11-01

    High solids content polyurethane (PU) nanocomposites with enhanced thermal and mechanical properties were produced by incorporating of low fractions of cellulose nanocrystals (CNC) in a solvent-free process. This involved the use of a simple procedure to produce well dispersed and stable suspensions of CNC in biobased polyols, which were then used to produce PU-CNC nanocomposites. Transmission electron microscopy revealed that individual CNC particles were dispersed homogenously within the PU matrix. FTIR results suggested that CNC particles are covalently bonded to the PU molecular chains during polymerization. The thermal mechanical properties of the nanocomposites are significantly improved over pure PU as indicated by differential scanning calorimetry and dynamic mechanical analysis. Compared to pure PU, the PU nanocomposites made with the addition of only 0.5% of CNC had glass transition temperatures that were 6°C higher, their Young's moduli were about 10% higher and their abrasion resistance was higher by about 25%. The optimal composition contains only 0.5% CNC (w/w) which indicates that there is good potential for utilization of low levels of CNC for reinforcement of PU composites made using biobased polyols. PMID:27516296

  20. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives.

    PubMed

    Satoh, Kotaro; Lee, Dong-Hyung; Nagai, Kanji; Kamigaito, Masami

    2014-01-01

    Bio-based polymer materials from renewable resources have recently become a growing research focus. Herein, a novel thermoplastic elastomer is developed via controlled/living radical polymerization of plant-derived itaconic acid derivatives, which are some of the most abundant renewable acrylic monomers obtained via the fermentation of starch. The reversible addition-fragmentation chain-transfer (RAFT) polymerizations of itaconic acid imides, such as N-phenylitaconimide and N-(p-tolyl)itaconimide, and itaconic acid esters, such as di-n-butyl itaconate and bis(2-ethylhexyl) itaconate, are examined using a series of RAFT agents to afford well-defined polymers. The number-average molecular weights of these polymers increase with the monomer conversion while retaining relatively narrow molecular weight distributions. Based on the successful controlled/living polymerization, sequential block copolymerization is subsequently investigated using mono- and di-functional RAFT agents to produce block copolymers with soft poly(itaconate) and hard poly(itaconimide) segments. The properties of the obtained triblock copolymer are evaluated as bio-based acrylic thermoplastic elastomers. PMID:24243816

  1. The effect of biobased plastic resins containing chichen feather fibers on the growth and flowering of Begonia boliviensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate growth and flowering of Begoniaboliviensis A. DC. 'Bonfire' when grown in medium mixed with pellets made from biobased plastic resins containing chicken feather fibers. We also analyzed macro- and macro-elements in soil and leaf tissues during different develope...

  2. Novel biobased photo-crosslinked polymer networks prepared from vegetable oil and 2,5-furan diacrylate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel biobased crosslinked polymer networks were prepared from vegetable oil with 2,5-furan diacrylate as a difunctional stiffener through UV photopolymerization, and the mechanical properties of the resulting films were evaluated. The vegetable oil raw materials used were acrylated epoxidized soybe...

  3. Two-step biocatalytic route to biobased functional polyesters from omega-carboxy fatty acids and diols.

    PubMed

    Yang, Yixin; Lu, Wenhua; Zhang, Xiaoyan; Xie, Wenchun; Cai, Minmin; Gross, Richard A

    2010-01-11

    Biobased omega-carboxy fatty acid monomers 1,18-cis-9-octadecenedioic, 1,22-cis-9-docosenedioic, and 1,18-cis-9,10-epoxy-octadecanedioic acids were synthesized in high conversion yields from oleic, erucic and epoxy stearic acids by whole-cell biotransformations catalyzed by C. tropicalis ATCC20962. Maximum volumetric yields in shake-flasks were 17.3, 14.2, and 19.1 g/L after 48 h conversion for oleic acid and 72 h conversions for erucic and epoxy stearic acids, respectively. Studies in fermentor with better control of pH and glucose feeding revealed that conversion of oleic acid to 1,18-cis-9-octadecenedioic acid by C. tropicalis ATCC20962 occurred with productivities up to 0.5 g/L/h. The conversion of omega-carboxy fatty acid monomers to polyesters was then studied using immobilized Candida antarctica Lipase B (N435) as catalyst. Polycondensations with diols were performed in bulk as well as in diphenyl ether. The retension of functionality from fatty acid, to omega-carboxy fatty acid monomer and to corresponding polyesters resulted in polymers with with unsaturated and epoxidized repeat units and M(w) values ranging from 25000 to 57000 g/mol. These functional groups along chains disrupted crystallization giving materials that are low melting (23-40 degrees C). In contrast, saturated polyesters prepared from 1,18-octadecanedioic acid and 1,8-octanediol have correspondingly higher melting transitions (88 degrees C). TGA results indicated that all synthesized polyesters showed high thermal stabilities. Thus, the preparation of functional monomers from C. tropicalis omega-oxidation of fatty acids provides a wide range of new monomer building blocks to construct functional polymers. PMID:20000460

  4. 77 FR 69381 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ... in the Federal Register (FR) for the purpose of designating a total of 12 product categories for the preferred procurement of biobased products by Federal agencies (referred to hereafter in this FR notice as the ``preferred procurement program''). This proposed rule can be found at 77 FR 33270....

  5. Synthesis and structure design of new bio-based elastomers via Thiol-ene-Click Reactions.

    PubMed

    Khan, Shafiullah; Wang, Zhao; Wang, Runguo; Zhang, Liqun

    2016-10-01

    The additions of 2-mercaptoethanol to (S)-(-)-limonene via click reaction is described as an adaptable and efficient way to obtain alcohol functionalized renewable monomer for the synthesis of new cross-linkable bio-based elastomers. Thiol first reacted with the limonene endocyclic double bond and then reacted with the exocyclics double bond to form the difunctional monomer. The structure of the monomer was determined by using FTIR, (1)H NMR and mass spectrometry. Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetrys (DSC) characterization exposed that this monomer could be used to synthesize elastomers with excellent and adaptable thermal properties. The molecular weight of the synthesized elastomer could reach 186kDaa via melting polycondensation route and the structure-properties relationship was deliberated. Finally, these elastomers were mixed with dicumyl peroxide (DCP) to form cross-linked elastomers with certain mechanical property, and the gel contents of the elastomers were confirmed by using Soxhlet extraction method. PMID:27287154

  6. Chemoenzymatic Synthesis of Oligo(L-cysteine) for Use as a Thermostable Bio-Based Material.

    PubMed

    Ma, Yinan; Sato, Ryota; Li, Zhibo; Numata, Keiji

    2016-01-01

    Oligomerization of thiol-unprotected L-cysteine ethyl ester (Cys-OEt) catalyzed by proteinase K in aqueous solution has been used to synthesize oligo(L-cysteine) (OligoCys) with a well-defined chemical structure and relatively large degree of polymerization (DP) up to 16-17 (average 8.8). By using a high concentration of Cys-OEt, 78.0% free thiol content was achieved. The thermal properties of OligoCys are stable, with no glass transition until 200 °C, and the decomposition temperature could be increased by oxidation. Chemoenzymatically synthesized OligoCys has great potential for use as a thermostable bio-based material with resistance to oxidation. PMID:26388290

  7. N-Alkylated dinitrones from isosorbide as cross-linkers for unsaturated bio-based polyesters.

    PubMed

    Goerz, Oliver; Ritter, Helmut

    2014-01-01

    Isosorbide was esterified with acryloyl chloride and crotonic acid yielding isosorbide diacrylate (9a) and isosorbide dicrotonate (9b), which were reacted with benzaldehyde oxime in the presence of zinc(II) iodide and boron triflouride etherate as catalysts to obtain N-alkylated dinitrones 10a/b. Poly(isosorbide itaconite -co- succinate) 13 as a bio-based unsaturated polyester was cross-linked by a 1,3-dipolar cycloaddition with the received dinitrones 10a/b. The 1,3-dipolar cycloaddition led to a strong change of the mechanical properties which were investigated by rheological measurements. Nitrones derived from methyl acrylate (3a) and methyl crotonate (3b) were used as model systems and reacted with dimethyl itaconate to further characterize the 1,3-dipolaric cycloaddition. PMID:24991239

  8. N-Alkylated dinitrones from isosorbide as cross-linkers for unsaturated bio-based polyesters

    PubMed Central

    Goerz, Oliver

    2014-01-01

    Summary Isosorbide was esterified with acryloyl chloride and crotonic acid yielding isosorbide diacrylate (9a) and isosorbide dicrotonate (9b), which were reacted with benzaldehyde oxime in the presence of zinc(II) iodide and boron triflouride etherate as catalysts to obtain N-alkylated dinitrones 10a/b. Poly(isosorbide itaconite -co- succinate) 13 as a bio-based unsaturated polyester was cross-linked by a 1,3-dipolar cycloaddition with the received dinitrones 10a/b. The 1,3-dipolar cycloaddition led to a strong change of the mechanical properties which were investigated by rheological measurements. Nitrones derived from methyl acrylate (3a) and methyl crotonate (3b) were used as model systems and reacted with dimethyl itaconate to further characterize the 1,3-dipolaric cycloaddition. PMID:24991239

  9. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    NASA Astrophysics Data System (ADS)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  10. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.

    PubMed

    Benhamou, Karima; Kaddami, Hamid; Magnin, Albert; Dufresne, Alain; Ahmad, Azizan

    2015-05-20

    Novel bio-based polyurethane (PU) nanocomposites composed of cellulose nanofiller extracted from the rachis of date palm tree and polycaprolactone (PCL) diol based PU were prepared by casting/evaporation. Two types of nanofiber were used: cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs). The mechanical and thermal properties of the nanocomposite films were studied by DMA, DSC, and tensile tests and the morphology was investigated by SEM. Bionanocomposites presented good mechanical properties in comparison to neat PU. While comparing both nanofillers, the improvement in mechanical and thermal properties was more pronounced for the nanocomposites based on CNF which could be explained, not only by the higher aspect ratio of CNF, but also by their better dispersion in the PU matrix. Calculation of the solubility parameters of the nanofiller surface polymers and of the PU segments portend a better interfacial adhesion for CNF based nanocomposites compared to CNC. PMID:25817660

  11. Bio-based ionic liquid crystalline quaternary ammonium salts: properties and applications.

    PubMed

    Sasi, Renjith; Rao, Talasila P; Devaki, Sudha J

    2014-03-26

    In the present work, we describe the preparation, properties, and applications of novel ionic liquid crystalline quaternary ammonium salts (QSs) of 3-pentadecylphenol, a bio-based low-cost material derived from cashew nut shell liquid. Amphotropic liquid crystalline phase formation in QSs was characterized using a combination of techniques, such as DSC, PLM, XRD, SEM, and rheology, which revealed the formation of one, two, and three dimensionally ordered mesophases in different length scales. On the basis of these results, a plausible mechanism for the formation of specific modes of packing in various mesophases was proposed. Observation of anisotropic ionic conductivity and electrochemical stability suggests their application as a solid electrolyte. PMID:24571658

  12. Bio-based Wrinkled Surfaces Harnessed from Biological Design Principles of Wood and Peroxidase Activity.

    PubMed

    Izawa, Hironori; Okuda, Noriko; Ifuku, Shinsuke; Morimoto, Minoru; Saimoto, Hiroyuki; Rojas, Orlando J

    2015-11-01

    A new and simple approach for surface wrinkling inspired by polymer assemblies in wood fibers is introduced. A hard skin is synthesized on a linear polysaccharide support that resembles the structural units of the cell wall. This skin, a wood mimetic layer, is produced through immersion in a solution containing phenolic precursor and subsequent surface reaction by horseradish peroxidase. A patterned surface with micron-scale wrinkles is formed upon drying and as a result of inhomogeneous shrinkage. We demonstrate that the design of the wrinkled surfaces can be controlled by the molecular structure of the phenolic precursor, temperature, and drying stress. It is noteworthy that this is a totally bio-based system involving green materials and processes. PMID:26489384

  13. Microwave-assisted maleation of tung oil for bio-based products with versatile applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, a simple, “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. This modifying process did not involve any solvent, catalyst, or initiator, but demonstrated the most efficiency of functionalizing...

  14. 48 CFR 52.223-2 - Affirmative Procurement of Biobased Products Under Service and Construction Contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... application covered by a USDA categorical exemption (see 7 CFR 2902.10 et seq.). For example, some USDA-designated items such as mobile equipment hydraulic fluids, diesel fuel additives, and penetrating...

  15. Research Extension and Education Programs on Bio-based Energy Technologies and Products

    SciTech Connect

    Jackson, Sam; Harper, David; Womac, Al

    2010-03-02

    The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: • Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. • Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomass and Biomass Deconstruction and Evaluation. • Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. • Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: • A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing • A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. • Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.

  16. Utilization of biobased polymers in food packaging: Assessment of materials, production and commercialization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food packaging contains and protects food, keeps it safe and secure, retains food quality and freshness, and increases shelf-life of food. Packaging should be affordable and biodegradable. Packaging is the core of the businesses of fast-foods, ready meals, on-the-go beverages, snacks and manufacture...

  17. Aspergillus flavus Genomic Data Mining Provides Clues for Its Use in Producing Biobased Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is notorious for its ability to produce aflatoxins. It is also an opportunistic pathogen that infects plants, animals and human beings. The ability to survive in the natural environment, living on plant tissues (leaves or stalks), live or dead insects make A. flavus a ubiquitous...

  18. Bio-based products via microwave-assisted maleation of tung oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. The mechanism of this microwave-assisted maleation was investigated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). T...

  19. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    PubMed

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials. PMID:24758045

  20. Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization.

    PubMed

    Liu, Guang-Chen; He, Yi-Song; Zeng, Jian-Bing; Li, Qiu-Tong; Wang, Yu-Zhong

    2014-11-10

    A fully biobased and supertough thermoplastic vulcanizate (TPV) consisting of polylactide (PLA) and a biobased vulcanized unsaturated aliphatic polyester elastomer (UPE) was fabricated via peroxide-induced dynamic vulcanization. Interfacial compatibilization between PLA and UPE took place during dynamic vulcanization, which was confirmed by gel measurement and NMR analysis. After vulcanization, the TPV exhibited a quasi cocontinuous morphology with vulcanized UPE compactly dispersed in PLA matrix, which was different from the pristine PLA/UPE blend, exhibiting typically phase-separated morphology with unvulcanized UPE droplets discretely dispersed in matrix. The TPV showed significantly improved tensile and impact toughness with values up to about 99.3 MJ/m(3) and 586.6 J/m, respectively, compared to those of 3.2 MJ/m(3) and 16.8 J/m for neat PLA, respectively. The toughening mechanisms under tensile and impact tests were investigated and deduced as massive shear yielding of the PLA matrix triggered by internal cavitation of VUPE. The fully biobased supertough PLA vulcanizate could serve as a promising alternative to traditional commodity plastics. PMID:25287757

  1. Grain Sorghum is a Viable Feedstock for Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and bio-based products from processed sorghum. The main focus was to understand the relatio...

  2. Production and Modification of Sophorolipids from Agricultural Feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As petroleum prices and environmental concerns continue to raise, interest in bio-based materials, that may act as substitutes for or additives to currently used products, is becoming increasingly popular. Biosurfactants, particularly glycolipids, are one class of molecule that is receiving added a...

  3. Soil functional zone management: a vehicle for enhancing production and soil ecosystem services in row-crop agroecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increasing demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has made great gains in production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as Conservation ...

  4. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  5. Bio-based Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled-Release Urea Fertilizers.

    PubMed

    Zhang, Shugang; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Zhao, Chenhao

    2016-07-20

    A novel polymer-coated nitrogen (N) fertilizer was developed using bio-based polyurethane (PU) derived from liquefied locust sawdust as the coating material. The bio-based PU was successfully coated on the surface of the urea fertilizer prills to form polymer-coated urea (PCU) fertilizer for controlled N release. Epoxy resin (EP) was also used to further modify the bio-based PU to synthesize the interpenetrating network (IPN), enhancing the slow-release properties of the PCU. The N release characteristics of the EP-modified PCU (EMPCU) in water were determine at 25 °C and compared to that of PCU and EP-coated urea (ECU). The results showed that the EP modification reduced the N release rate and increased the longevity of the fertilizer coated with bio-based PU. A corn growth study was conducted to further evaluate the filed application of the EMPCU. In comparison to commercial PCU and conventional urea fertilizer, EMPCU was more effective and increased the yield and total dry matter accumulation of the corn. Findings from this work indicated that bio-based PU derived from sawdust can be used as coating materials for PCU, particularly after EP modification. The resulting EMPCU was more environmentally friendly and cost-effective than conventional urea fertilizers coated by EP. PMID:27352017

  6. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.

    PubMed

    Zia, Khalid Mahmood; Noreen, Aqdas; Zuber, Mohammad; Tabasum, Shazia; Mujahid, Mohammad

    2016-01-01

    A significantly growing interest is to design a new strategy for development of bio-polyesters from renewable resources due to limited fossil fuel reserves, rise of petrochemicals price and emission of green house gasses. Therefore, this review aims to present an overview on synthesis of biocompatible, biodegradable and cost effective polyesters from biomass and their prospective in different fields including packaging, coating, tissue engineering, drug delivery system and many more. Isosorbide, 2,4:3,5-di-O-methylene-d-mannitol, bicyclic diacetalyzed galactaric acid, 2,5-furandicarboxylic acid, citric, 2,3-O-methylene l-threitol, dimethyl 2,3-O-methylene l-threarate, betulin, dihydrocarvone, decalactone, pimaric acid, ricinoleic acid and sebacic acid, are some important monomers derived from biomass which are used for bio-based polyester manufacturing, consequently, replacing the petrochemical based polyesters. The last part of this review highlights some recent advances in polyester blends and composites in order to improve their properties for exceptional biomedical applications i.e. skin tissue engineering, guided bone regeneration, bone healing process, wound healing and wound acceleration. PMID:26492854

  7. High T(g) bio-based aliphatic polyesters from bicyclic D-mannitol.

    PubMed

    Lavilla, Cristina; Alla, Abdelilah; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián

    2013-03-11

    The carbohydrate-based diol 2,4:3,5-di-O-methylene-d-mannitol (Manx) has been used to obtain aliphatic polyesters. Manx is a symmetric bicyclic compound consisting of two fused 1,3-dioxane rings and bearing two primary hydroxyl groups. In terms of stiffness, it is comparable to the widely known isosorbide, but it affords the additional advantages of being much more reactive in polycondensation and capable of producing stereoregular polymers with fairly high molecular weights. A fully bio-based homopolyester (PManxS) has been synthesized by polycondensation in the melt from dimethyl succinate and Manx. The high thermal stability of PManxS, its relatively high glass transition temperature (Tg = 68 °C) and elastic modulus, and its enhanced sensitivity to the action of lipases point to PManxS as a polyester of exceptional interest for those applications where biodegradability and molecular stiffness are priority requirements. In addition, random copolyesters (PBxManxyS) covering a broad range of compositions have been obtained using mixtures of Manx and 1,4-butanediol in the reaction with dimethyl succinate. All PBxManxyS were semicrystalline and displayed Tg values from -29 to +51 °C steadily increasing with the content in Manx units. The stress-strain behavior of these copolyesters largely depended on their content in Manx and they were enzymatically degraded faster than PBS. PMID:23363397

  8. Polymerization and Structure of Bio-Based Plastics: A Computer Simulation

    NASA Astrophysics Data System (ADS)

    Khot, Shrikant N.; Wool, Richard P.

    2001-03-01

    We recently examined several hundred chemical pathways to convert chemically functionalized plant oil triglycerides, monoglycerides and reactive diluents into high performance plastics with a broad range of properties (US Patent No. 6,121,398). The resulting polymers had linear, branched, light- and highly-crosslinked chain architectures and could be used as pressure sensitive adhesives, elastomers and high performance rigid thermoset composite resins. To optimize the molecular design and minimize the number of chemical trials in this system with excess degrees of freedom, we developed a computer simulation of the free radical polymerization process. The triglyceride structure, degree of chemical substitution, mole fractions, fatty acid distribution function, and reaction kinetic parameters were used as initial inputs on a 3d lattice simulation. The evolution of the network fractal structure was computed and used to measure crosslink density, dangling ends, degree of reaction and defects in the lattice. The molecular connectivity was used to determine strength via a vector percolation model of fracture. The simulation permitted the optimal design of new bio-based materials with respect to monomer selection, cure reaction conditions and desired properties. Supported by the National Science Foundation

  9. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    SciTech Connect

    Petrik, Michael; Ruhl, Robert

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  10. Biobased poly(lactides)/poly(methyl methacrylate) blends: A perfect association for durable and smart applications?

    NASA Astrophysics Data System (ADS)

    Samuel, Cédric; Raquez, Jean-Marie; Dubois, Philippe

    2015-05-01

    Biobased poly(L-lactide) (PLLA) undoubtedly represents an interesting alternative to petro-based polymers, but still remains excluded from most of high-value and durable applications. The introduction of poly(methyl methacrylate) (PMMA) in poly(lactides)-based materials is thereby exposed to develop miscible polymer blends with new functionalities and superior thermomechanical properties. The miscibility between PLLA and PMMA was first evaluated and only miscible blends were recovered using melt-processes. Interestingly, these miscible binary blends are marked by a high transparency with tunable, enhanced and promising thermomechanical and barrier performances. PMMA was also found to be miscible with stereocomplexable poly(lactides) and, surprisingly, the amount of PLA stereocomplexes formed during high-speed cooling is significantly enhanced by PMMA. Consequently, highly-crystalline ternary PLLA/PDLA /PMMA blends can be easily produced with impressive and complex thermomechanical behavior. Shape-memory properties of miscible PLLA / PMMA blends were also investigated and triple-shape memory effects were demonstrated. Under appropriate stretching conditions, multiple shapes could be stored and recover. The symmetric formulation was found to be particularly suitable for advanced triple-shape memory applications.

  11. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes.

    PubMed

    Zhang, Chaoqun; Ding, Rui; Kessler, Michael R

    2014-06-01

    A novel method, epoxidation/reduction of vegetable oils, is developed to prepare bio-based polyols for the manufacture of polyurethanes (PUs). These polyols are synthesized from castor oil (CO), epoxidized soybean oil, and epoxidized linseed oil and their molecular structures are characterized. They are used to prepare a variety of PUs, and their thermomechanical properties are compared to those of PU made with petroleum-based polyol (P-450). It is shown that PUs made with polyols from soybean and linseed oil exhibit higher glass transition temperatures, tensile strength, and Young's modulus and PU made with polyol from CO exhibits higher elongation at break and toughness than PU made with P-450. However, PU made with P-450 displays better thermal resistance because of tri-ester structure and terminal functional groups. The method provides a versatile way to prepare bio-polyols from vegetable oils, and it is expected to partially or completely replace petroleum-based polyols in PUs manufacture. PMID:24668919

  12. Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan.

    PubMed

    de Mesquita, João P; Donnici, Claudio L; Pereira, Fabiano V

    2010-02-01

    A new biodegradable nanocomposite was obtained from layer-by-layer (LBL) technique using highly deacetylated chitosan and eucalyptus wood cellulose nanowhiskers (CNWs). Hydrogen bonds and electrostatic interactions between the negatively charged sulfate groups on the whisker surface and the ammonium groups of chitosan were the driving forces for the growth of the multilayered films. The film growth was followed by UV-vis spectroscopy through the maximum value of the absorption band at 194 nm and showed the deposition of 14.7 mg.m(-2) of chitosan polymer in each cycle. Scanning electron microscopy showed high density and homogeneous distribution of CNWs adsorbed on each chitosan layer. Cross-section characterization of the assembled films indicates an average of approximately 7 nm of thickness per bilayer. The results presented in this work indicate that the methodology used can be extended to different biopolymers for the design of new biobased nanocomposites in a wide range of applications such as biomedical and food packaging. PMID:20055503

  13. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis

  14. Rapid approach to biobased telechelics through two one-pot thiol-ene click reactions.

    PubMed

    Lluch, Cristina; Ronda, Joan C; Galià, Marina; Lligadas, Gerard; Cádiz, Virginia

    2010-06-14

    The application of environmentally friendly thiol-ene chemistry to the preparation of biobased telechelics is presented in this work. This methodology is based on two one-pot photoinitiated thiol-ene click processes: step-growth polymerization using a 3,6-dioxa-1,8-octanedithiol and end-group postpolymerization modification with three functional thiols: 2-mercaptoethanol, 3-mercaptopropionic acid, and 3-mercaptopropyltrimethoxysilane. We applied this approach to a potentially 100% biomass-derived monomer, allyl ester of 10-undecenoic acid (UDA). To show the generality and scope of this methodology, a series of well-defined telechelics with molecular weight ranging from 1000-3000 g/mol and hydroxyl, carboxyl, or trimethoxysilyl groups at the polymer terminus were prepared. An exhaustive (1)H NMR and MALDI-TOF MS analyses demonstrates the highly end-group fidelity of this methodology being an interesting procedure for the accelerated preparation of telechelics derived from divinyl monomers. UDA-based thelechelic diol prepared using this methodology was reacted with 4,4'-methylenebis(phenylisocyanate) and 1,4-butanediol as the chain extender to obtain multiblock poly(ester urethane). PMID:20462176

  15. Evaluation of new computer-enhanced identification program for microorganisms: adaptation of BioBASE for identification of members of the family Enterobacteriaceae.

    PubMed Central

    Miller, J M; Alachi, P

    1996-01-01

    We report the use of BioBASE, a computer-enhanced numerical identification software package, as a valuable aid for the rapid identification of unknown enteric bacilli when using conventional biochemicals. We compared BioBASE identification results with those of the Centers for Disease Control and Prevention's mainframe computer to determine the former's accuracy in identifying both common and rare unknown isolates of the family Enterobacteriaceae by using the same compiled data matrix. Of 293 enteric strains tested by BioBASE, 278 (94.9%) were correctly identified to the species level; 13 (4.4%) were assigned unacceptable or low discrimination profiles, but 8 of these (2.7%) were listed as the first choice; and 2 (0.7%) were not identified correctly because of their highly unusual biochemical profiles. The software is user friendly, rapid, and accurate and would be of value to any laboratory that uses conventional biochemicals. PMID:8748298

  16. Fabrication of Biobased Polyelectrolyte Capsules and Their Application for Glucose-Triggered Insulin Delivery.

    PubMed

    Shi, Dongjian; Ran, Maoshuang; Zhang, Li; Huang, He; Li, Xiaojie; Chen, Mingqing; Akashi, Mitsuru

    2016-06-01

    To enhance the glucose sensitivity and self-regulated release of insulin, biobased capsules with glucose-responsive and competitive properties were fabricated based on poly(γ-glutamic acid) (γ-PGA) and chitosan oligosaccharide (CS) polyelectrolytes. First, poly(γ-glutamic acid)-g-3-aminophenylboronic acid) (γ-PGA-g-APBA) and galactosylated chitosan oligosaccharide (GC) were synthesized by grafting APBA and lactobionic acid (LA) to γ-PGA and CS, respectively. The (γ-PGA-g-APBA/GC)5 capsules were then prepared by layer-by-layer (LBL) assembly of γ-PGA-g-APBA and GC via electrostatic interaction. The size and morphology of the particles and capsules were investigated by DLS, SEM, and TEM. The size of the (γ-PGA-g-APBA/GC)5 capsules increased with increasing glucose concentration due to the swelling of the capsules. The capsules could be dissociated at high glucose concentration due to the breaking of the cross-linking bonds between APBA and LA by the competitive reaction of APBA with glucose. The encapsulated insulin was able to undergo self-regulated release from the capsules depending on the glucose level and APBA composition. The amount of insulin release increased with incubation in higher glucose concentration and decreased with higher APBA composition. Moreover, the on-off regulation of insulin release from the (γ-PGA-g-APBA/GC)5 capsules could be triggered with a synchronizing and variation of the external glucose concentration, whereas the capsules without the LA functional groups did not show the on-off regulated release. Furthermore, the (γ-PGA-g-APBA/GC)5 capsules are biocompatible. These (γ-PGA-g-APBA/GC)5 with good stability, glucose response, and controlled insulin delivery are expected to be used for future applications to glucose-triggered insulin delivery. PMID:27210795

  17. Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan.

    PubMed

    Shibata, Mitsuhiro; Enjoji, Motohiro; Sakazume, Katsumi; Ifuku, Shinsuke

    2016-06-25

    Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. PMID:27083797

  18. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation.

    PubMed

    Borreani, Giorgio; Tabacco, Ernesto

    2015-01-01

    The research was aimed at studying whether the polyethylene (PE) film currently used to cover maize silage could be replaced with bio-based biodegradable films, and at determining the effects on the fermentative and microbiological quality of the resulting silages in laboratory silo conditions. Biodegradable plastic film made in 2 different formulations, MB1 and MB2, was compared with a conventional 120-μm-thick PE film. A whole maize crop was chopped; ensiled in MB1, MB2, and PE plastic bags, 12.5kg of fresh weight per bag; and opened after 170d of conservation. At silo opening, the microbial and fermentative quality of the silage was analyzed in the uppermost layer (0 to 50mm from the surface) and in the whole mass of the silo. All the silages were well fermented with little differences in fermentative quality between the treatments, although differences in the mold count and aerobic stability were observed in trial 1 for the MB1 silage. These results have shown the possibility of successfully developing a biodegradable cover for silage for up to 6mo after ensiling. The MB2 film allowed a good silage quality to be obtained even in the uppermost part of the silage close to the plastic film up to 170d of conservation, with similar results to those obtained with the PE film. The promising results of this experiment indicate that the development of new degradable materials to cover silage till 6mo after ensiling could be possible. PMID:25468689

  19. Antiviral effects of polyphenols: development of bio-based cleaning wipes and filters.

    PubMed

    Catel-Ferreira, Manuella; Tnani, Hédia; Hellio, Claire; Cosette, Pascal; Lebrun, Laurent

    2015-02-01

    Polyphenol molecules play multiple essential roles in plant physiology such as defences against plant-pathogens and micro-organisms. The present study reports a chemical modification of the surface of non-woven cellulosic fibre filters (Kimwipes(®)) by fixing polyphenol in order to confer them antiviral properties. The grafting of the non-woven fibres by the antiviral entity was performed using laccase. T4D bacteriophage virus of Escherichia coli B was used as virus model. Catechin polyphenol was tested as antiviral entity. Proteomic experiments were performed to quantify the potential protein target of catechin on viruses. When the modified filter was in contact with the viral suspension a large improvement in the reduction of the viral concentration was observed (5-log after 1h). Thus, we propose that this material could be used as virucidal wipes for the virus elimination from contaminated surfaces. Virus filtration experiments were performed by spraying an aerial suspension of T4D bacteriophage virus through the designed filter. The best virus capture factor f (ratio of upstream to downstream virus contents) was obtained when using 2 functionalized filters (f=2.9×10(3)). When these 2 layers were placed inside a commercial medical mask in place of its cellulose layer (Kolmi M24001 mask) (f=3.5×10(4)), the f ratio then reached 2.6×10(5) for 2h of filtration. Based on these results, this novel bio-based antiviral mask represents a significant improvement over conventional medical masks. PMID:25446514

  20. Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity.

    PubMed

    Ma, Songqi; Liu, Xiaoqing; Fan, Libo; Jiang, Yanhua; Cao, Lijun; Tang, Zhaobin; Zhu, Jin

    2014-02-01

    A bio-based epoxy resin (denoted TEIA) with high epoxy value (1.16) and low viscosity (0.92 Pa s, 258C) was synthesized from itaconic acid and its chemical structure was confirmed by 1H NMR and 13C NMR spectroscopy. Its curing reaction with poly(propylene glycol) bis(2-aminopropyl ether) (D230) and methyl hexahydrophthalic anhydride (MHHPA) was investigated. For comparison, the commonly used diglycidyl ether of bisphenol A (DGEBA) was also cured with the same curing agents. The results demonstrated that TEIA showed higher curing reactivity towards D230/MHHPA and lower viscosity compared with DGEBA, resulting in the better processability. Owing to its high epoxy value and unique structure, comparable or better glass transition temperature as well as mechanical properties could be obtained for the TEIA-based network relative to the DGEBA-based network. The results indicated that itaconic acid is a promising renewable feedstock for the synthesis of bio-based epoxy resin with high performance. PMID:24136894

  1. Smart, Sustainable, and Ecofriendly Chemical Design of Fully Bio-Based Thermally Stable Thermosets Based on Benzoxazine Chemistry.

    PubMed

    Froimowicz, Pablo; R Arza, Carlos; Han, Lu; Ishida, Hatsuo

    2016-08-01

    A smart synthetic chemical design incorporating furfurylamine, a natural renewable amine, into a partially bio-based coumarin-containing benzoxazine is presented. The versatility of the synthetic approach is shown to be flexible and robust enough to be successful under more ecofriendly reaction conditions by replacing toluene with ethanol as the reaction solvent and even under solventless conditions. The chemical structure of this coumarin-furfurylamine-containing benzoxazine is characterized by FTIR, (1) H NMR spectroscopy and two-dimensional (1) H-(1) H nuclear Overhauser effect spectroscopy (2D (1) H-(1) H NOESY). The thermal properties of the resin toward polymerization are characterized by differential scanning calorimetry (DSC) and the thermal stability of the resulting polymers by thermogravimetric analysis (TGA). The results reveal that the furanic moiety induces a co-operative activating effect, thus lowering the polymerization temperature and also contributes to a better thermal stability of the resulting polymers. These results, in addition to those of natural renewable benzoxazine resins reviewed herein, highlight the positive and beneficial implication of designing novel bio-based polybenzoxazine and possibly other thermosets with desirable and competitive properties. PMID:27480785

  2. Catalytic Products from a Bench-Scale, Simulated Fluidized-Bed Pyrolyzer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass (e.g. lignocellulosics and lipids) were catalytically converted under thermochemical conditions to bio-based, fungible industrial chemicals and products. The focus was on high temperature catalytic conversions of feedstocks in a bench-scale reactor designed to replicate a packed- or fluidiz...

  3. Erratum: Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry.

    PubMed

    2016-01-01

    A correction was made to: Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry. There was a spelling error in one of the authors' surname. The author's name was corrected from: Juan Pedro Navarro to: Juan Navarro-Aviñó. PMID:27387492

  4. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    NASA Astrophysics Data System (ADS)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  5. Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks

    NASA Astrophysics Data System (ADS)

    Altuna, F. I.; Antonacci, J.; Arenas, G. F.; Pettarin, V.; Hoppe, C. E.; Williams, R. J. J.

    2016-04-01

    Green laser irradiation successfully activated self-healing processes in epoxy-acid networks modified with low amounts of gold nanoparticles (NPs). A bio-based polymer matrix, obtained by crosslinking epoxidized soybean oil (ESO) with an aqueous citric acid (CA) solution, was self-healed through molecular rearrangements produced by transesterification reactions of β-hydroxyester groups generated in the polymerization reaction. The temperature increase required for the triggering of these thermally activated reactions was attained by green light irradiation of the damaged area. Compression force needed to assure a good contact between crack faces was achieved by volume dilatation generated by the same temperature rise. Gold NPs dispersed in the polymer efficiently generated heat in the presence of electromagnetic radiation under plasmon resonance, acting as nanometric heating sources and allowing remote activation of the self-healing in the crosslinked polymer.

  6. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion. PMID:26448524

  7. Human 2-D PAGE databases for proteome analysis in health and disease: http://biobase.dk/cgi-bin/celis.

    PubMed

    Celis, J E; Gromov, P; Ostergaard, M; Madsen, P; Honoré, B; Dejgaard, K; Olsen, E; Vorum, H; Kristensen, D B; Gromova, I; Haunsø, A; Van Damme, J; Puype, M; Vandekerckhove, J; Rasmussen, H H

    1996-12-01

    Human 2-D PAGE Databases established at the Danish Centre for Human Genome Research are now available on the World Wide Web (http://biobase.dk/cgi-bin/celis). The databanks, which offer a comprehensive approach to the analysis of the human proteome both in health and disease, contain data on known and unknown proteins recorded in various IEF and NEPHGE 2-D PAGE reference maps (non-cultured keratinocytes, non-cultured transitional cell carcinomas, MRC-5 fibroblasts and urine). One can display names and information on specific protein spots by clicking on the image of the gel representing the 2-D gel map in which one is interested. In addition, the database can be searched by protein name, keywords or organelle or cellular component. The entry files contain links to other databases such as Medline, Swiss-Prot, PIR, PDB, CySPID, OMIM, Methabolic pathways, etc. The on-line information is updated regularly. PMID:8977092

  8. Improved solubility of DNA in recyclable and reusable bio-based deep eutectic solvents with long-term structural and chemical stability.

    PubMed

    Mondal, Dibyendu; Sharma, Mukesh; Mukesh, Chandrakant; Gupta, Vishal; Prasad, Kamalesh

    2013-10-25

    The solubility of DNA in bio-based deep eutectic solvents (DESs) consisting of mixtures of choline chloride with levulinic acid, glycerol, ethylene glycol, sorbitol and resorcinol was investigated. The macromolecule was found to be soluble and chemically and structurally stable in DESs consisting of mixtures containing glycerol and ethylene glycol. Furthermore recyclability of the DESs was demonstrated over three consecutive reuses in DNA dissolution. PMID:24022824

  9. Unexpected stimulation of soil methane uptake by bio-based residue application: An emerging property of agricultural soils offsetting greenhouse gas balance.

    NASA Astrophysics Data System (ADS)

    Ho, Adrian; Reim, Andreas; Ruijs, Rienke; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; Putten, Wim H. vd.; Bodelier, Paul L. E.

    2016-04-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over two months. Unexpectedly, after amendments with specific residues we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotrophic population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus spp. may facilitate methane oxidation in the agricultural soils. Studies are under way to identify the active methane-oxidizers at near atmospheric methane concentrations using PLFA-Stable isotope probing (SIP). While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that the methane oxidation rate can be stimulated, leading to higher soil methane uptake. Moreover, the addition of

  10. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    NASA Astrophysics Data System (ADS)

    Javadi, Alireza

    Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique

  11. Tailoring lignin biosynthesis for efficient and sustainable biofuel production.

    PubMed

    Liu, Chang-Jun; Cai, Yuanheng; Zhang, Xuebin; Gou, Mingyue; Yang, Huijun

    2014-12-01

    Increased global interest in a bio-based economy has reinvigorated the research on the cell wall structure and composition in plants. In particular, the study of plant lignification has become a central focus, with respect to its intractability and negative impact on the utilization of the cell wall biomass for producing biofuels and bio-based chemicals. Striking progress has been achieved in the last few years both on our fundamental understanding of lignin biosynthesis, deposition and assembly, and on the interplay of lignin synthesis with the plant growth and development. With the knowledge gleaned from basic studies, researchers are now able to invent and develop elegant biotechnological strategies to sophisticatedly manipulate the quantity and structure of lignin and thus to create economically viable bioenergy feedstocks. These concerted efforts open an avenue for the commercial production of cost-competitive biofuel to meet our energy needs. PMID:25209835

  12. Development and validation of a technoeconomic analysis tool for early-stage evaluation of bio-based chemical production processes.

    PubMed

    Claypool, Joshua T; Raman, D Raj

    2013-12-01

    By using cost correlations and standard scale-factors, a spreadsheet-based early-stage cost estimation tool was developed. Named BioPET (Biorenewables Process Evaluation Tool), this tool allows users to specify up to seven primary unit operations--fermentation, separation, three catalytic stages, and purification--along with key parameters for each. BioPET then computes an estimated minimum selling price for the pathway. Model validation was conducted by selecting three molecules (ethanol, succinic acid, and adipic acid), and comparing BioPET's results to literature values and to results from a commercial process design tool. BioPET produced virtually identical prices to the process design tool, although the costs were not identically distributed amongst the categories. BioPET produced estimates that were within 40% of other literature values at low feedstock costs, and within 5% at high feedstock costs. PMID:24041977

  13. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties

    PubMed Central

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C

    2014-01-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and 1H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was −47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress–strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4–9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. PMID:24812276

  14. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

    PubMed

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2014-09-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was -47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. PMID:24812276

  15. Effect of organoclay on morphology and properties of linear low density polyethylene and Vietnamese cassava starch biobased blend.

    PubMed

    Nguyen, D M; Vu, T T; Grillet, Anne-Cécile; Ha Thuc, H; Ha Thuc, C N

    2016-01-20

    Linear low density polyethylene (LLDPE)/thermal plastic starch (TPS) blend was studied to prepare the biobased nanocomposite material using organoclay nanofil15 (N15) modified by alkilammonium as the reinforced phase. The LLDPE/TPS blend and its nanocomposites were elaborated by melt mixing method at 160 °C for 7 min. And the compounded sample was filmed by blowing method at three different zones of temperature profile which are 160-170-165 °C. The good dispersion of clay in the polymer blend matrix is showed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM), and a semi-exfoliated structure was obtained. The thermal and mechanical properties of materials are enhanced when N15 is added to the mixture. The effect of N15 on morphology and particles size of TPS phase is also investigated. The biodegradation test shows that more than 60% in weight of LLDPE/TPS film is degraded into CO2, H2O, methane and biomass after 5 months in compost soil. PMID:26572342

  16. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    NASA Astrophysics Data System (ADS)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-03-01

    The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  17. Biobased films prepared from collagen solutions derived from un-tanned hides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. hide and leather industries are facing challenges of meeting environmental imperatives; quantifying, maintaining, and improving current hides and leather product quality; developing new processes and products; and improving utilization of waste. One of our contributions to address these on...

  18. Biobased films prepared from collagen solutions derived from un-tanned hides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. hide and leather industries are facing challenges of meeting environmental imperatives; quantifying, maintaining, and improving current hides and leather product quality; developing new processes and products; and improving utilization of waste. One of our efforts to address these new chal...

  19. PARAMETRIC SIMULATION OF INJECTION MOLDING PLASTIC COMPOSITES WITH BIO-BASED FILLERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the nation continues to demand greater supplies of energy, the fuel ethanol industry is poised to contribute substantial quantities of transportation fuel for the foreseeable future. Ethanol manufacturing from corn grain results in three main products: bioethanol, the primary end product; resid...

  20. Biobased composition boards made from cotton gin and guayule wates: Select physical and mechanical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vast quantities of cotton gin byproducts (CGB) are being produced annually. Similarly, guayule wastes after rubber latex production (guayule bagasse) is expected to increase as this industry begins to expand. Use of these waste materials into value-added products can help the economics of the crops,...

  1. Biobased composition boards made from cotton gin and guayule watse: Select physical and mechanical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vast quantities of cotton gin byproducts (CGB) are being produced annually. Similarly, guayule wastes after rubber latex production (guayule bagasse) is expected to increase as this industry begins to expand. Use of these waste materials into value-added products can help the economics of the crops,...

  2. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  3. Termite resistance of biobased composition boards made from cotton byproducts and guayule bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large quantities of cotton gin byproducts (CGB), also known as cotton gin trash or cotton gin waste, are being produced across the cotton belt of the United States annually. Similarly, guayule wastes after rubber latex production is expected to increase as this industry begins to expand. Use of thes...

  4. Bio-based adhesives from residues of consolidated bioprocessing of cellulosic substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic bacteria (Clostridium thermocellum or Ruminococcus species) that ferment cellulosic materials to ethanol or other low molecular weight products have been proposed to serve as a basis for single-reactor bioconversions of cellulosics in a scheme termed consolidated bioprocessing (CBP). Thes...

  5. New Bio-Based Materials From Vegetable Oil: Amination and Click Reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For some time we have been interested in utilizing vegetable oils as cheap and bio-renewable raw materials. We have found derivatization reactions with nitrogen-containing reagents to be good pathways to achieve a range of new vegetable oil-based products. One of our approaches is to derivatize ep...

  6. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas

    PubMed Central

    2012-01-01

    Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than

  7. Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions

    SciTech Connect

    Freeman, Charles J.; Jones, Susanne B.; Padmaperuma, Asanga B.; Santosa, Daniel M.; Valkenburg, Corinne; Shinn, John

    2013-04-01

    In order to meet U.S. biofuel objectives over the coming decade the conversion of a broad range of biomass feedstocks, using diverse processing options, will be required. Further, the production of both gasoline and diesel biofuels will employ biomass conversion methods that produce wide boiling range intermediate oils requiring treatment similar to conventional refining processes (i.e. fluid catalytic cracking, hydrocracking, and hydrotreating). As such, it is widely recognized that leveraging existing U.S. petroleum refining infrastructure is key to reducing overall capital demands. This study examines how existing U.S. refining location, capacities and conversion capabilities match in geography and processing capabilities with the needs projected from anticipated biofuels production.

  8. Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development.

    PubMed

    Chen, Rachel; Dou, Jennifer

    2016-02-01

    Interest in developing a sustainable technology for fuels and chemicals has unleashed tremendous creativity in metabolic engineering for strain development over the last few years. This is driven by the exceptionally recalcitrant substrate, lignocellulose, and the necessity to keep the costs down for commodity products. Traditional methods of gene expression and evolutionary engineering are more effectively used with the help of synthetic biology and -omics techniques. Compared to the last biomass research peak during the 1980s oil crisis, a more diverse range of microorganisms are being engineered for a greater variety of products, reflecting the broad applicability and effectiveness of today's gene technology. We review here several prominent and successful metabolic engineering strategies with emphasis on the following four areas: xylose catabolism, inhibitor tolerance, synthetic microbial consortium, and cellulosic oligomer assimilation. PMID:26466596

  9. From plant biomass to bio-based chemicals: latest developments in xylan research.

    PubMed

    Deutschmann, Rudolf; Dekker, Robert F H

    2012-01-01

    For a hundred years or more, oil and natural gas has supplied fuel and other raw chemicals to support economic growth. In the last decades their shrinking reservoirs and the increasing cost of production has become obvious, leading researchers to look for alternative substitutes of all the chemical materials presently derived from oil and gas. This review is focused on xylan, the second most abundant plant polysaccharide on our planet. Some xylan-derived products have already found commercial applications (ethanol, xylitol, xylo-oligosaccharides) while others could have a great future in a wide range of industries. The chemical and structural variations of xylans produced by different plants, and the concentration of xylan in various plant resources are summarized. This review discusses the latest research developments in extraction and purification methodologies, and chemical modification, as well as the analytical methods necessary for xylan related research. PMID:22776161

  10. Biosensors and bio-based methods for the separation and detection of foodborne pathogens.

    PubMed

    Bhunia, Arun K

    2008-01-01

    The safety of our food supply is always a major concern to consumers, food producers, and regulatory agencies. A safer food supply improves consumer confidence and brings economic stability. The safety of foods from farm-to-fork through the supply chain continuum must be established to protect consumers from debilitating, sometimes fatal episodes of pathogen outbreaks. The implementation of preventive strategies like hazard analysis critical control points (HACCP) assures safety but its full utility will not be realized unless supportive tools are fully developed. Rapid, sensitive, and accurate detection methods are such essential tools that, when integrated with HACCP, will improve safety of products. Traditional microbiological methods are powerful, error-proof, and dependable but these lengthy, cumbersome methods are often ineffective because they are not compatible with the speed at which the products are manufactured and the short shelf life of products. Automation in detection methods is highly desirable, but is not achievable with traditional methods. Therefore, biosensor-based tools offer the most promising solutions and address some of the modern-day needs for fast and sensitive detection of pathogens in real time or near real time. The application of several biosensor tools belonging to the categories of optical, electrochemical, and mass-based tools for detection of foodborne pathogens is reviewed in this chapter. Ironically, geometric growth in biosensor technology is fueled by the imminent threat of bioterrorism through food, water, and air and by the funding through various governmental agencies. PMID:18291303

  11. Microbial production of 1,3-propanediol.

    PubMed

    Sauer, Michael; Marx, Hans; Mattanovich, Diethard

    2008-01-01

    The introduction of economic production processes for 1,3-propanediol is a success story for the creation of a new market for a (bulk) chemical. The compound and its favorable properties have long been known; also the fermentation of glycerol to 1,3-propanediol had been described more than 120 years ago. Nevertheless, the product remained a specialty chemical until recently, when two new processes were introduced, providing 1,3-propanediol at a competitive price. Remarkably, one of the processes is in the field of white biotechnology and based on microbial fermentation, converting a renewable carbon source into a bulk chemical. This review covers the most important patents that led to the commercialization of bio-based 1,3-propanediol. Furthermore, some of the recent developments towards a sustainable industry are addressed. Similar questions arise for a variety of products if they are to be produced bio-based in large scale. However, special emphasis is given to 1,3-propanediol production. PMID:19075867

  12. Single step purification of concanavalin A (Con A) and bio-sugar production from jack bean using glucosylated magnetic nano matrix.

    PubMed

    Kim, Ho Myeong; Cho, Eun Jin; Bae, Hyeun-Jong

    2016-08-01

    Jack bean (JB, Canavalia ensiformis) is the source of bio-based products, such as proteins and bio-sugars that contribute to modern molecular biology and biomedical research. In this study, the use of jack bean was evaluated as a source for concanavalin A (Con A) and bio-sugar production. A novel method for purifying Con A from JBs was successfully developed using a glucosylated magnetic nano matrix (GMNM) as a physical support, which facilitated easy separation and purification of Con A. In addition, the enzymatic conversion rate of 2% (w/v) Con A extracted residue to bio-sugar was 98.4%. Therefore, this new approach for the production of Con A and bio-sugar is potentially useful for obtaining bio-based products from jack bean. PMID:26923569

  13. Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; Śliwa, Michał; van der Waal, Jan C; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M; Bruijnincx, Pieter C A; van Es, Daan S

    2015-09-21

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity. Subsequent one-pot, liquid-phase dehydration and dehydrogenation of the hydrogenated adduct using a physical mixture of acidic zeolites or resins in combination with metal on a carbon support then allows aromatization with yields as high as 84 % of total aromatics under relatively mild conditions. The mechanism of the final aromatization reaction step unexpectedly involves a lactone as primary intermediate. PMID:26235971

  14. Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar.

    PubMed

    Suastegui, Miguel; Matthiesen, John E; Carraher, Jack M; Hernandez, Nacu; Rodriguez Quiroz, Natalia; Okerlund, Adam; Cochran, Eric W; Shao, Zengyi; Tessonnier, Jean-Philippe

    2016-02-12

    Biorefineries aim to convert biomass into a spectrum of products ranging from biofuels to specialty chemicals. To achieve economically sustainable conversion, it is crucial to streamline the catalytic and downstream processing steps. In this work, a route that combines bio- and electrocatalysis to convert glucose into bio-based unsaturated nylon-6,6 is reported. An engineered strain of Saccharomyces cerevisiae was used as the initial biocatalyst for the conversion of glucose into muconic acid, with the highest reported muconic acid titer of 559.5 mg L(-1) in yeast. Without any separation, muconic acid was further electrocatalytically hydrogenated to 3-hexenedioic acid in 94 % yield despite the presence of biogenic impurities. Bio-based unsaturated nylon-6,6 (unsaturated polyamide-6,6) was finally obtained by polymerization of 3-hexenedioic acid with hexamethylenediamine. PMID:26840213

  15. Combining Metabolic Engineering and Electrocatalysis. Application to the Production of Polyamides from Sugar

    DOE PAGESBeta

    Suastegui, Miguel; Matthiesen, John E.; Carraher, Jack M.; Hernandez, Nacu; Rodriguez Quiroz, Natalia; Okerlund, Adam; Cochran, Eric W.; Shao, Zengyi; Tessonnier, Jean-Philippe

    2016-01-14

    Biorefineries aim to convert biomass into a spectrum of products ranging from biofuels to specialty chemicals. To achieve economically sustainable conversion, it is crucial to streamline the catalytic and downstream processing steps. In this work, a route that combines bio- and electrocatalysis to convert glucose into bio-based unsaturated nylon-6,6 is reported. An engineered strain of Saccharomyces cerevisiae was used as the initial biocatalyst for the conversion of glucose into muconic acid, with the highest reported muconic acid titer of 559.5 mg L-1 in yeast. Without any separation, muconic acid was further electrocatalytically hydrogenated to 3-hexenedioic acid in 94 % yieldmore » despite the presence of biogenic impurities. Bio-based unsaturated nylon-6,6 (unsaturated polyamide-6,6) was finally obtained by polymerization of 3-hexenedioic acid with hexamethylenediamine.« less

  16. A Novel Partially Biobased PAN-Lignin Blend as a Potential Carbon Fiber Precursor

    PubMed Central

    Seydibeyoğlu, M. Özgür

    2012-01-01

    Blends of polyacrylonitrile (PAN) and lignin were prepared with three different lignin types by solution blending and solution casting. Among three types of lignin, one type was chosen and different blend concentrations were prepared and casted. The casted blend films were characterized chemically with fourier transform infrared spectroscopy (FTIR), and thermally with thermogravimetric analysis (TGA). The mechanical properties of the blends were measured using dynamic mechanical analysis (DMA). FTIR analysis shows an excellent interaction of PAN and lignin. The interaction of the lignins and PAN was confirmed by TGA analysis. The DMA results reveal that the lignin enhance the mechanical properties of PAN at room temperature and elevated temperatures. The blend structure and morphology were observed using scanning electron microscopy (SEM). SEM images show that excellent polymer blends were prepared. The results show that it is possible to develop a new precursor material with a blend of lignin and PAN. These studies show that the side product of paper and cellulosic bioethanol industries, namely, lignin can be used for new application areas. PMID:23118513

  17. Novel bio-based thermoset resins based on epoxidized vegetable oils for structural adhesives

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Shivshankar

    Conventional engineered wood composites are bonded for the most part through formaldehyde-based structural adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), phenol formaldehyde (PF) and resorcinol formaldehyde (RF). Formaldehyde is a known human carcinogen; the occupational exposure and emission after manufacturing of these binders is raising more and more concern. With increasing emphasis on environmental issues, there is clear incentive to replace these hazardous conventional formaldehyde-based binders with cco-friendly resins having similar properties but derived from renewable sources, bearing in mind the economics of the structural wood composite industry. In this thesis, the curing reaction of bio-derived epoxy thermosets with inexpensive, low-toxicity precursors, including polyimines and amino acids was investigated. Epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO) were successfully crosslinked with both branched polyethyleneimine (PEI) and triethylenetetramine (fETA). Epoxidized castor oil (ECO) was crosslinked with polyethyleneimine (PEI), having different molecular weights. Curing conditions were optimized through solvent uptake and soluble fraction analysis. Finally, the mechanical properties of the optimized compositions of rigid bioepoxies were evaluated using dynamic mechanical rheological testing (DMRT). While not as stiff as conventional materials, optimized materials have sufficient room temperature moduli to show promise for coatings and as binders in engineered wood products.

  18. Lignin model compounds as bio-based reactive diluents for liquid molding resins.

    PubMed

    Stanzione, Joseph F; Sadler, Joshua M; La Scala, John J; Wool, Richard P

    2012-07-01

    Lignin is a copious paper and pulping waste product that has the potential to yield valuable, low molecular weight, single aromatic chemicals when strategically depolymerized. The single aromatic lignin model compounds, vanillin, guaiacol, and eugenol, were methacrylated by esterification with methacrylic anhydride and a catalytic amount of 4-dimethylaminopyridine. Methacrylated guaiacol (MG) and methacrylated eugenol (ME) exhibited low viscosities at room temperature (MG: 17 cP and ME: 28 cP). When used as reactive diluents in vinyl ester resins, they produced resin viscosities higher than that of vinyl ester-styrene blends. The relative volatilities of MG (1.05 wt% loss in 18 h) and ME (0.96 wt% loss in 18 h) measured by means of thermogravimetric analysis (TGA) were considerably lower than that of styrene (93.7 wt% loss in 3 h) indicating the potential of these chemicals to be environmentally friendly reactive diluents. Bulk polymerization of MG and ME generated homopolymers with glass transition temperatures (T(g)s) of 92 and 103 °C, respectively. Blends of a standard vinyl ester resin with MG and ME (50 wt % reactive diluent) produced thermosets with T(g)s of 127 and 153 °C, respectively, which are comparable to vinyl ester-styrene resins, thus demonstrating the ability of MG and ME to completely replace styrene as reactive diluents in liquid molding resins without sacrificing cured-resin thermal performance. PMID:22517580

  19. Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.

    2013-08-01

    The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.

  20. Biobased Fat Mimicking Molecular Structuring Agents for Medium-Chain Triglycerides (MCTs) and Other Edible Oils.

    PubMed

    Silverman, Julian R; John, George

    2015-12-01

    To develop sustainable value-added materials from biomass, novel small-molecule sugar ester gelators were synthesized using biocatalysis. The facile one-step regiospecific coupling of the pro-antioxidant raspberry ketone glucoside and unsaturated or saturated long- and medium-chain fatty acids provides a simple approach to tailor the structure and self-assembly of the amphiphilic product. These low molecular weight molecules demonstrated the ability to self-assemble in a variety of solvents and exhibited supergelation, with a minimum gelation concentration of 0.25 wt %, in numerous organic solvents, as well as in a range of natural edible oils, specifically a relatively unstudied group of liquids: natural medium-chain triglyceride oils, notably coconut oil. Spectroscopic analysis details the gelator structure as well as the intermolecular noncovalent interactions, which allow for gelation. X-ray diffraction studies indicate fatty acid chain packing of gelators is similar to that of natural fats, signifying the crystalline nature may lead to desirable textural properties and mouthfeel. PMID:26624525

  1. Advantages and limitations of exergy indicators to assess sustainability of bioenergy and biobased materials

    SciTech Connect

    Maes, Dries Van Passel, Steven

    2014-02-15

    Innovative bioenergy projects show a growing diversity in biomass pathways, transformation technologies and end-products, leading to complex new processes. Existing energy-based indicators are not designed to include multiple impacts and are too constrained to assess the sustainability of these processes. Alternatively, indicators based on exergy, a measure of “qualitative energy”, could allow a more holistic view. Exergy is increasingly applied in analyses of both technical and biological processes. But sustainability assessments including exergy calculations, are not very common and are not generally applicable to all types of impact. Hence it is important to frame the use of exergy for inclusion in a sustainability assessment. This paper reviews the potentials and the limitations of exergy calculations, and presents solutions for coherent aggregation with other metrics. The resulting approach is illustrated in a case study. Within the context of sustainability assessment of bioenergy, exergy is a suitable metric for the impacts that require an ecocentric interpretation, and it allows aggregation on a physical basis. The use of exergy is limited to a measurement of material and energy exchanges with the sun, biosphere and lithosphere. Exchanges involving services or human choices are to be measured in different metrics. This combination provides a more inclusive and objective sustainability assessment, especially compared to standard energy- or carbon-based indicators. Future applications of this approach in different situations are required to clarify the potential of exergy-based indicators in a sustainability context. -- Highlights: • Innovative bioenergy projects require more advanced sustainability assessments to incorporate all environmental impacts. • Exergy-based indicators provide solutions for objective and robust measurements. • The use of exergy in a sustainability assessment is limited to material exchanges, excluding exchanges with society

  2. Alternative bio-based solvents for extraction of fat and oils: solubility prediction, global yield, extraction kinetics, chemical composition and cost of manufacturing.

    PubMed

    Sicaire, Anne-Gaëlle; Vian, Maryline; Fine, Frédéric; Joffre, Florent; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2015-01-01

    The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop's byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil) and non-food (bio fuel) applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols). Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF) as alternative solvent compared to hexane as petroleum solvent. PMID:25884332

  3. Novel L-DOPA-derived poly(ester amide)s: monomers, polymers, and the first L-DOPA-functionalized biobased adhesive tape.

    PubMed

    Manolakis, Ioannis; Noordover, Bart A J; Vendamme, Richard; Eevers, Walter

    2014-01-01

    The synthesis, characterization, and testing of a range of novel bio-inspired L-DOPA-derived poly(ester amide)s is presented, using a widely applicable, straightforward chemistry. A model system is used to study and establish the monomer and polymer synthetic protocols, and to provide a set of optimum reaction conditions. It is further shown that fully biobased L-DOPA-containing adhesive tapes can be fabricated, which are positively evaluated in terms of their adhesive properties. The newly developed synthetic protocol constitutes a versatile platform for accessing and tailoring a plethora of relevant structures, including a variety of potentially biocompatible poly(ethylene glycol)-based materials. PMID:24265232

  4. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing

    PubMed Central

    Sicaire, Anne-Gaëlle; Vian, Maryline; Fine, Frédéric; Joffre, Florent; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2015-01-01

    The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil) and non-food (bio fuel) applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols). Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF) as alternative solvent compared to hexane as petroleum solvent. PMID:25884332

  5. Supramolecular Assembly of Biobased Graphene Oxide Quantum Dots Controls the Morphology of and Induces Mineralization on Poly(ε-caprolactone) Films.

    PubMed

    Hassanzadeh, Salman; Adolfsson, Karin H; Wu, Duo; Hakkarainen, Minna

    2016-01-11

    Biobased 2D graphene oxide quantum dots (GOQDs) were synthesized from waste paper via carbon nanosphere intermediates and evaluated as property-enhancing additives for poly(ε-caprolactone) (PCL). The morphology of PCL films was controlled by supramolecular assembly of the small, 2D GOQDs in the polymer matrix. Phase behavior studies of PCL-GOQD in the solid state indicated concentration-dependent self-association of GOQD sheets, which was confirmed by SEM observations. Depending on the GOQD concentration, the formation of, e.g., spheres and stacked sheets was observed. GOQDs also induced mineralization on the surface of the films. A calcium phosphate (CaP) mineralization test revealed that the density of growing CaP crystals was controlled by the type of GOQD aggregates formed. Thus, utilization of the aggregation behavior of small GOQD sheets in polymeric matrices paves the way for tuning the morphology and properties of nanocomposites. PMID:26650535

  6. Evaluating PHA Productivity of Bioengineered Rhodosprillum rubrum

    PubMed Central

    Jin, Huanan; Nikolau, Basil J.

    2014-01-01

    This study explored the potential of using Rhodosprillum rubrum as the biological vehicle to convert chemically simple carbon precursors to a value-added bio-based product, the biopolymer PHA. R. rubrum strains were bioengineered to overexpress individually or in various combinations, six PHA biosynthetic genes (phaC1, phaA, phaB, phaC2, phaC3, and phaJ), and the resulting nine over-expressing strains were evaluated to assess the effect on PHA content, and the effect on growth. These experiments were designed to genetically evaluate: 1) the role of each apparently redundant PHA polymerase in determining PHA productivity; 2) identify the key gene(s) within the pha biosynthetic operon that determines PHA productivity; and 3) the role of phaJ to support PHA productivity. The result of overexpressing each PHA polymerase-encoding gene indicates that phaC1 and phaC2 are significant contributors to PHA productivity, whereas phaC3 has little effect. Similarly, over-expressing individually or in combination the three PHA biosynthesis genes located in the pha operon indicates that phaB is the key determinant of PHA productivity. Finally, analogous experiments indicate that phaJ does not contribute significantly to PHA productivity. These bioengineering strains achieved PHA productivity of up to 30% of dry biomass, which is approximately 2.5-fold higher than the non-engineered control strain, indicating the feasibility of using this approach to produce value added bio-based products. PMID:24840941

  7. Microbial production of short chain diols.

    PubMed

    Jiang, Yudong; Liu, Wei; Zou, Huibin; Cheng, Tao; Tian, Ning; Xian, Mo

    2014-01-01

    Short chain diols (propanediols, butanediols, pentanediols) have been widely used in bulk and fine chemical industries as fuels, solvents, polymer monomers and pharmaceutical precursors. The chemical production of short chain diols from fossil resources has been developed and optimized for decades. Consideration of the exhausting fossil resources and the increasing environment issues, the bio-based process to produce short chain diols is attracting interests. Currently, a variety of biotechnologies have been developed for the microbial production of the short chain diols from renewable feed-stocks. In order to efficiently produce bio-diols, the techniques like metabolically engineering the production strains, optimization of the fermentation processes, and integration of a reasonable downstream recovery processes have been thoroughly investigated. In this review, we summarized the recent development in the whole process of bio-diols production including substrate, microorganism, metabolic pathway, fermentation process and downstream process. PMID:25491899

  8. Participatory Development and Analysis of a Fuzzy Cognitive Map of the Establishment of a Bio-Based Economy in the Humber Region

    PubMed Central

    Penn, Alexandra S.; Knight, Christopher J. K.; Lloyd, David J. B.; Avitabile, Daniele; Kok, Kasper; Schiller, Frank; Woodward, Amy; Druckman, Angela; Basson, Lauren

    2013-01-01

    Fuzzy Cognitive Mapping (FCM) is a widely used participatory modelling methodology in which stakeholders collaboratively develop a ‘cognitive map’ (a weighted, directed graph), representing the perceived causal structure of their system. This can be directly transformed by a workshop facilitator into simple mathematical models to be interrogated by participants by the end of the session. Such simple models provide thinking tools which can be used for discussion and exploration of complex issues, as well as sense checking the implications of suggested causal links. They increase stakeholder motivation and understanding of whole systems approaches, but cannot be separated from an intersubjective participatory context. Standard FCM methodologies make simplifying assumptions, which may strongly influence results, presenting particular challenges and opportunities. We report on a participatory process, involving local companies and organisations, focussing on the development of a bio-based economy in the Humber region. The initial cognitive map generated consisted of factors considered key for the development of the regional bio-based economy and their directional, weighted, causal interconnections. A verification and scenario generation procedure, to check the structure of the map and suggest modifications, was carried out with a second session. Participants agreed on updates to the original map and described two alternate potential causal structures. In a novel analysis all map structures were tested using two standard methodologies usually used independently: linear and sigmoidal FCMs, demonstrating some significantly different results alongside some broad similarities. We suggest a development of FCM methodology involving a sensitivity analysis with different mappings and discuss the use of this technique in the context of our case study. Using the results and analysis of our process, we discuss the limitations and benefits of the FCM methodology in this case

  9. Participatory development and analysis of a fuzzy cognitive map of the establishment of a bio-based economy in the Humber region.

    PubMed

    Penn, Alexandra S; Knight, Christopher J K; Lloyd, David J B; Avitabile, Daniele; Kok, Kasper; Schiller, Frank; Woodward, Amy; Druckman, Angela; Basson, Lauren

    2013-01-01

    Fuzzy Cognitive Mapping (FCM) is a widely used participatory modelling methodology in which stakeholders collaboratively develop a 'cognitive map' (a weighted, directed graph), representing the perceived causal structure of their system. This can be directly transformed by a workshop facilitator into simple mathematical models to be interrogated by participants by the end of the session. Such simple models provide thinking tools which can be used for discussion and exploration of complex issues, as well as sense checking the implications of suggested causal links. They increase stakeholder motivation and understanding of whole systems approaches, but cannot be separated from an intersubjective participatory context. Standard FCM methodologies make simplifying assumptions, which may strongly influence results, presenting particular challenges and opportunities. We report on a participatory process, involving local companies and organisations, focussing on the development of a bio-based economy in the Humber region. The initial cognitive map generated consisted of factors considered key for the development of the regional bio-based economy and their directional, weighted, causal interconnections. A verification and scenario generation procedure, to check the structure of the map and suggest modifications, was carried out with a second session. Participants agreed on updates to the original map and described two alternate potential causal structures. In a novel analysis all map structures were tested using two standard methodologies usually used independently: linear and sigmoidal FCMs, demonstrating some significantly different results alongside some broad similarities. We suggest a development of FCM methodology involving a sensitivity analysis with different mappings and discuss the use of this technique in the context of our case study. Using the results and analysis of our process, we discuss the limitations and benefits of the FCM methodology in this case and in

  10. Estolides: biobased lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estolides were originally developed as a cost effective derivative from vegetable oil sources to overcome the problems associated with standard vegetable oils as lubricants. Classic estolides are formed by the formation of a carbocation at the site of unsaturation that can undergo nucleophilic addi...

  11. Compatibilized blends and value added products from leather industry waste

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Di Landro, Luca

    2014-05-01

    Blends based on poly(ethylene-co-vinyl acetate) (EVA) and hydrolyzed proteins (IP), derived from waste products of the leather industry, have been obtained by reactive blending and their chemical physical properties as well as mechanical and rheological behavior were evaluated. The effect of vinyl acetate content and of transesterification agent addition to increase interaction between polymer and bio-based components were considered. These blends represent a new type of biodegradable material and resulted promising for industrial application in several fields such as packaging and agriculture as transplanting or mulching films with additional fertilizing action of IP.

  12. Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes

    PubMed Central

    Cao, Yujin; Zhang, Rubing; Sun, Chao; Cheng, Tao; Liu, Yuhua; Xian, Mo

    2013-01-01

    Succinate is a valuable platform chemical for multiple applications. Confronted with the exhaustion of fossil energy resources, fermentative succinate production from renewable biomass to replace the traditional petrochemical process is receiving an increasing amount of attention. During the past few years, the succinate-producing process using microbial fermentation has been made commercially available by the joint efforts of researchers in different fields. In this review, recent attempts and experiences devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation engineering, and downstream processing. The key limitations and challenges faced in current microbial production systems are also proposed. PMID:24396827

  13. Fabrication and electromagnetic properties of bio-based helical soft-core particles by way of Ni-Fe alloy electroplating

    NASA Astrophysics Data System (ADS)

    Lan, Mingming; Zhang, Deyuan; Cai, Jun; Zhang, Wenqiang; Yuan, Liming

    2011-12-01

    Ni-Fe alloy electroplating was used as a bio-limited forming process to fabricate bio-based helical soft-core ferromagnetic particles, and a low frequency vibration device was applied to the cathode to avoid microorganism ( Spirulina platens) cells adhesion to the copper net during the course of plating. The morphologies and ingredients of the coated Spirulina cells were characterized using scanning electron microscopy and energy dispersive spectrometer. The complex permittivity and permeability of the samples containing the coated Spirulina cells before and after heat treatment were measured and investigated by a vector network analyzer. The results show that the Spirulina cells after plating keep their initial helical shape, and applying low frequency vibration to the copper net cathode in the plating process can effectively prevent agglomeration and intertwinement of the Spirulina cells. The microwave absorbing and electromagnetic properties of the samples containing the coated Spirulina cells particles with heat treatment are superior to those samples containing the coated Spirulina cells particles without heat treatment.

  14. Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers.

    PubMed

    Yang, Yuechao; Tong, Zhaohui; Geng, Yuqing; Li, Yuncong; Zhang, Min

    2013-08-28

    In this paper, we synthesized a biobased polyurethane using liquefied corn stover, isocyanate, and diethylenetriamine. The synthesized polyurethane was used as a coating material to control nitrogen (N) release from polymer-coated urea. A novel superabsorbent composite was also formulated from chicken feather protein (CFP), acrylic acid, and N,N'-methylenebisacrylamide and used as an outer coating material for water retention. We studied the N release characteristics and water-retention capability of the double-layer polymer-coated urea (DPCU) applied in both water and soils. The ear yields, dry matter accumulation, total N use efficiency and N leaching from a sweet corn soil-plant system under two different irrigation regimes were also investigated. Comparison of DPCU treatments with conventional urea fertilizer revealed that DPCU treatments reduced the N release rate and improved water retention capability. Evaluation of soil and plant characteristics within the soil-plant system revealed that DPCU application effectively reduced N leaching loss, improved total N use efficiency, and increased soil water retention capability. PMID:23923819

  15. Supertoughened Biobased Poly(lactic acid)-Epoxidized Natural Rubber Thermoplastic Vulcanizates: Fabrication, Co-continuous Phase Structure, Interfacial in Situ Compatibilization, and Toughening Mechanism.

    PubMed

    Wang, Youhong; Chen, Kunling; Xu, Chuanhui; Chen, Yukun

    2015-09-10

    In the presence of dicumyl peroxide (DCP), biobased thermoplastic vulcanizates (TPVs) composed of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) were prepared through dynamic vulcanization. Interfacial in situ compatibilization between PLA and ENR phases was confirmed by Fourier transform infrared spectroscopy (FT-IR). A novel "sea-sea" co-continuous phase in the PLA/ENR TPVs was observed through scanning electron microscopy (SEM) and differed from the typical "sea-island" morphology that cross-linked rubber particles dispersed in plastic matrix. A sharp, brittle-ductile transition occurred with 40 wt % of ENR, showing a significantly improved impact strength of 47 kJ/m(2), nearly 15 times that of the neat PLA and 2.6 times that of the simple blend with the same PLA/ENR ratio. Gel permeation chromatography (GPC) and dynamic mechanical analysis (DMA) results suggested that a certain amount of DCP was consumed in the PLA phase, causing a slight cross-linking or branching of PLA molecules. the effects of various DCP contents on the impact property were investigated. The toughening mechanism under impact testing was researched, and the influence factors for toughening were discussed. PMID:26301924

  16. Some physical and mechanical properties of bio-based composition boards made from cotton gin and guayule wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vast quantities of cotton wastes are being produced annually. Similarly, guayule wastes after rubber latex production is expected to increase as this industry begins to expand. Use of these waste materials into value-added products can help the economics of the crops, and importantly, aid in allevia...

  17. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production. PMID:27394995

  18. Toward biotechnological production of adipic acid and precursors from biorenewables.

    PubMed

    Polen, Tino; Spelberg, Markus; Bott, Michael

    2013-08-20

    Adipic acid is the most important commercial aliphatic dicarboxylic acid in the chemical industry and is primarily used for the production of nylon-6,6 polyamide. The current adipic acid market volume is about 2.6 million tons/y and the average annual demand growth rate forecast to stay at 3-3.5% worldwide. Hitherto, the industrial production of adipic acid is carried out by petroleum-based chemo-catalytic processes from non-renewable fossil fuels. However, in the past years, efforts were made to find alternative routes for adipic acid production from renewable carbon sources by biotechnological processes. Here we review the approaches and the progress made toward bio-based production of adipic acid. PMID:22824738

  19. Heterologous expression of Mus musculus immunoresponsive gene 1 (irg1) in Escherichia coli results in itaconate production

    PubMed Central

    Vuoristo, Kiira S.; Mars, Astrid E.; van Loon, Stijn; Orsi, Enrico; Eggink, Gerrit; Sanders, Johan P. M.; Weusthuis, Ruud A.

    2015-01-01

    Itaconic acid, a C5-dicarboxylic acid, is a potential biobased building block for the polymer industry. It is obtained from the citric acid cycle by decarboxylation of cis-aconitic acid. This reaction is catalyzed by CadA in the native itaconic acid producer Aspergillus terreus. Recently, another enzyme encoded by the mammalian immunoresponsive gene 1 (irg1), was found to decarboxylate cis-aconitate to itaconate in vitro. We show that heterologous expression of irg1 enabled itaconate production in Escherichia coli with production titres up to 560 mg/L. PMID:26347730

  20. Heterologous expression of Mus musculus immunoresponsive gene 1 (irg1) in Escherichia coli results in itaconate production.

    PubMed

    Vuoristo, Kiira S; Mars, Astrid E; van Loon, Stijn; Orsi, Enrico; Eggink, Gerrit; Sanders, Johan P M; Weusthuis, Ruud A

    2015-01-01

    Itaconic acid, a C5-dicarboxylic acid, is a potential biobased building block for the polymer industry. It is obtained from the citric acid cycle by decarboxylation of cis-aconitic acid. This reaction is catalyzed by CadA in the native itaconic acid producer Aspergillus terreus. Recently, another enzyme encoded by the mammalian immunoresponsive gene 1 (irg1), was found to decarboxylate cis-aconitate to itaconate in vitro. We show that heterologous expression of irg1 enabled itaconate production in Escherichia coli with production titres up to 560 mg/L. PMID:26347730

  1. Bioreactors and in situ product recovery techniques for acetone-butanol-ethanol fermentation.

    PubMed

    Li, Si-Yu; Chiang, Chung-Jen; Tseng, I-Ting; He, Chi-Ruei; Chao, Yun-Peng

    2016-07-01

    The microbial fermentation process is one of the sustainable and environment-friendly ways to produce 1-butanol and other bio-based chemicals. The success of the fermentation process greatly relies on the choice of bioreactors and the separation methods. In this review, the history and the performance of bioreactors for the acetone-butanol-ethanol (ABE) fermentation is discussed. The subject is then focused on in situ product recovery (ISPR) techniques, particularly for the integrated extraction-gas stripping. The usefulness of this promising hybrid ISPR device is acknowledged by its incorporation with batch, fed-batch and continuous processes to improve the performance of ABE fermentation. PMID:27190167

  2. Highly transparent and flexible bio-based polyimide/TiO2 and ZrO2 hybrid films with tunable refractive index, Abbe number, and memory properties

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Tien; Tsai, Chia-Liang; Tateyama, Seiji; Kaneko, Tatsuo; Liou, Guey-Sheng

    2016-06-01

    The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system, the hybrid materials have a lower LUMO energy level which could facilitate and stabilize the charge transfer complex. Therefore, memory devices derived from these PI hybrid films exhibited tunable memory properties from DRAM, SRAM, to WORM with a different TiO2 or ZrO2 content from 0 wt% to 50 wt% with a high ON/OFF ratio (108). In addition, the different energy levels of TiO2 and ZrO2 revealed specifically unique memory characteristics, implying the potential application of the prepared 4ATA-PI/TiO2 and 4ATA-PI/ZrO2 hybrid films in highly transparent memory devices.The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system

  3. Scalable production of mechanically tunable block polymers from sugar.

    PubMed

    Xiong, Mingyong; Schneiderman, Deborah K; Bates, Frank S; Hillmyer, Marc A; Zhang, Kechun

    2014-06-10

    Development of sustainable and biodegradable materials is essential for future growth of the chemical industry. For a renewable product to be commercially competitive, it must be economically viable on an industrial scale and possess properties akin or superior to existing petroleum-derived analogs. Few biobased polymers have met this formidable challenge. To address this challenge, we describe an efficient biobased route to the branched lactone, β-methyl-δ-valerolactone (βMδVL), which can be transformed into a rubbery (i.e., low glass transition temperature) polymer. We further demonstrate that block copolymerization of βMδVL and lactide leads to a new class of high-performance polyesters with tunable mechanical properties. Key features of this work include the creation of a total biosynthetic route to produce βMδVL, an efficient semisynthetic approach that employs high-yielding chemical reactions to transform mevalonate to βMδVL, and the use of controlled polymerization techniques to produce well-defined PLA-PβMδVL-PLA triblock polymers, where PLA stands for poly(lactide). This comprehensive strategy offers an economically viable approach to sustainable plastics and elastomers for a broad range of applications. PMID:24912182

  4. Scalable production of mechanically tunable block polymers from sugar

    PubMed Central

    Xiong, Mingyong; Schneiderman, Deborah K.; Bates, Frank S.; Hillmyer, Marc A.; Zhang, Kechun

    2014-01-01

    Development of sustainable and biodegradable materials is essential for future growth of the chemical industry. For a renewable product to be commercially competitive, it must be economically viable on an industrial scale and possess properties akin or superior to existing petroleum-derived analogs. Few biobased polymers have met this formidable challenge. To address this challenge, we describe an efficient biobased route to the branched lactone, β-methyl-δ-valerolactone (βMδVL), which can be transformed into a rubbery (i.e., low glass transition temperature) polymer. We further demonstrate that block copolymerization of βMδVL and lactide leads to a new class of high-performance polyesters with tunable mechanical properties. Key features of this work include the creation of a total biosynthetic route to produce βMδVL, an efficient semisynthetic approach that employs high-yielding chemical reactions to transform mevalonate to βMδVL, and the use of controlled polymerization techniques to produce well-defined PLA–PβMδVL–PLA triblock polymers, where PLA stands for poly(lactide). This comprehensive strategy offers an economically viable approach to sustainable plastics and elastomers for a broad range of applications. PMID:24912182

  5. DEMONSTRATING THE FEASIBILITY OF A BIOFUEL: PRODUCTION AND USE OF BIODIESEL FROM WASTE OIL FEEDSTOCK AND BIO-BASED METHANOL AT MIDDLEBURY COLLEGE

    EPA Science Inventory

    Fossil fuel combustion results in the emission of greenhouse gases. Currently, the earth is experiencing unprecedented, human-induced changes in the atmosphere with consequent and threatening changes to its climate. This event is due, in large part, to fossil fuel emissions.

  6. Urea Inclusion Compound-Based Fractionation for the Eco-Friendly Purification of Ethyl Ferulate in a Bio-Based Sunscreen Product Stream

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urea inclusion compound (UIC)-based fractionation of free fatty acids (FFA) has been employed for over 50 years on both analytical and preparative scales. This approach, which fractionates lipids, mainly based on their degree of saturation, has potential value as a large-scale and continuous-mode p...

  7. The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials.

    PubMed

    Li, Yonghua; Beisson, Fred

    2009-06-01

    Oxygenated fatty acids such as ricinoleic acid and vernolic acid can serve in the industry as synthons for the synthesis of a wide range of chemicals and polymers traditionally produced by chemical conversion of petroleum derivatives. Oxygenated fatty acids can also be useful to synthesize specialty chemicals such as cosmetics and aromas. There is thus a strong interest in producing these fatty acids in seed oils (triacylglycerols) of crop species. In the last 15 years or so, much effort has been devoted to isolate key genes encoding proteins involved in the synthesis of oxygenated fatty acids and to express them in the seeds of the model plant Arabidopsis thaliana or crop species. An often overlooked but rich source of enzymes catalyzing the synthesis of oxygenated fatty acids and their esterification to glycerol is the biosynthetic pathways of the plant lipid polyesters cutin and suberin. These protective polymers found in specific tissues of all higher plants are composed of a wide variety of oxygenated fatty acids, many of which have not been reported in seed oils (e.g. saturated omega-hydroxy fatty acids and alpha,omega-diacids). The purpose of this mini-review is to give an overview of the recent advances in the biosynthesis of cutin and suberin and discuss their potential utility in producing specific oxygenated fatty acids for specialty chemicals. Special emphasis is given to the role played by specific acyltransferases and P450 fatty acid oxidases. The use of plant surfaces as possible sinks for the accumulation of high value-added lipids is also highlighted. PMID:19344744

  8. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.

    PubMed

    Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik

    2015-02-01

    A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g. PMID:25227587

  9. Isolation and characterization of a hydrocarbonoclastic bacterial enrichment from total petroleum hydrocarbon contaminated sediments: potential candidates for bioaugmentation in bio-based processes.

    PubMed

    Di Gregorio, Simona; Siracusa, Giovanna; Becarelli, Simone; Mariotti, Lorenzo; Gentini, Alessandro; Lorenzi, Roberto

    2016-06-01

    Seven hydrocarbonoclastic new bacterial isolates were isolated from dredged sediments of a river estuary in Italy. The sediments were contaminated by shipyard activities since decades, mainly ascribable to the exploitation of diesel oil as the fuel for recreational and commercial navigation of watercrafts. The bacterial isolates were able to utilize diesel oil as sole carbon source. Their metabolic capacities were evaluated by GC-MS analysis, with reference to the depletion of both the normal and branched alkanes, the nC18 fatty acid methyl ester and the unresolved complex mixture of organic compounds. They were taxonomically identified as different species of Stenotrophomonas and Pseudomonas spp. by the combination of amplified ribosomal DNA restriction analysis (ARDRA) and repetitive sequence-based PCR (REP-PCR) analysis. The metabolic activities of interest were analyzed both in relation to the single bacterial strains and to the combination of the latter as a multibacterial species system. After 6 days of incubation in mineral medium with diesel oil as sole carbon source, the Stenotrophomonas sp. M1 strain depleted 43-46 % of Cn-alkane from C28 up to C30, 70 % of the nC18 fatty acid methyl ester and the 46 % of the unresolved complex mixture of organic compounds. On the other hand, the Pseudomonas sp. NM1 strain depleted the 76 % of the nC18 fatty acid methyl ester, the 50 % of the unresolved complex mixture of organic compounds. The bacterial multispecies system was able to completely deplete Cn-alkane from C28 up to C30 and to deplete the 95 % of the unresolved complex mixture of organic compounds. The isolates, either as single strains and as a bacterial multispecies system, were proposed as candidates for bioaugmentation in bio-based processes for the decontamination of dredged sediments. PMID:26755178

  10. Highly transparent and flexible bio-based polyimide/TiO2 and ZrO2 hybrid films with tunable refractive index, Abbe number, and memory properties.

    PubMed

    Huang, Tzu-Tien; Tsai, Chia-Liang; Tateyama, Seiji; Kaneko, Tatsuo; Liou, Guey-Sheng

    2016-07-01

    The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system, the hybrid materials have a lower LUMO energy level which could facilitate and stabilize the charge transfer complex. Therefore, memory devices derived from these PI hybrid films exhibited tunable memory properties from DRAM, SRAM, to WORM with a different TiO2 or ZrO2 content from 0 wt% to 50 wt% with a high ON/OFF ratio (10(8)). In addition, the different energy levels of TiO2 and ZrO2 revealed specifically unique memory characteristics, implying the potential application of the prepared 4ATA-PI/TiO2 and 4ATA-PI/ZrO2 hybrid films in highly transparent memory devices. PMID:27297905

  11. Termite resistance and mechanical properties of biobased composition boards made from cotton gin byproducts and guayule bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vast quantities of cotton gin byproducts (CGB), also known as cotton gin trash or cotton gin waste, are being produced across the cotton belt of the United States annually. Similarly, guayule wastes after rubber latex production, also known as guayule bagasse (GB), is expected to increase as this in...

  12. A biobased nitrogen-containing lubricant additive synthesized from expoxidized methyl oleate using an ionic liquid catalyst

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilizing an epoxidation route, an aniline adduct was synthesized from methyl oleate. An ionic liquid, 1-methylimidazolium tetrafluoroborate, was found to be the key for this catalytic system. The reaction produces a product with the aniline incorporated into the fatty chain, at the 9(10) position, ...

  13. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources.

    PubMed

    Noreen, Aqdas; Zia, Khalid Mahmood; Zuber, Mohammad; Ali, Muhammad; Mujahid, Mohammad

    2016-05-01

    Algal biomass is an excellent renewable resource for the production of polymers and other products due to their higher growth rate, high photosynthetic efficiency, great potential for carbon dioxide fixation, low percentage of lignin and high amount of carbohydrates. Algae contain unique metabolites which are transformed into monomers suitable for development of novel polyesters. This review article mainly focuses on algal bio-refinery concept for polyester synthesis and on exploitation of algae-based biodegradable polyester blends and composites in tissue engineering and controlled drug delivery system. Algae-derived hybrid polyester scaffolds are extensively used for bone, cartilage, cardiac and nerve tissue regeneration due to their biocompatibility and tunable biodegradability. Microcapsules and microspheres of algae-derived polyesters have been used for controlled and continuous release of several pharmaceutical agents and macromolecules to produce humoral and cellular immunity with efficient intracellular delivery. PMID:26808018

  14. Biological materials: Part A. tuning LCST of raft copolymers and gold/copolymer hybrid nanoparticles and Part B. Biobased nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Ning

    The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery "wastes": lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization (≤ 5-10 μm), but it was concluded that cellulose was not a suitable binder. Cellulose lignin fibers before carbonization showed up to 90% decrease in moisture uptake compared to pure cellulose. Peptidoglycan (a bacterial cell wall

  15. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    SciTech Connect

    Biswas, Kaushik; Abhari, Mr. Ramin; Shukla, Dr. Nitin; Kosny, Dr. Jan

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installed in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.

  16. Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification.

    PubMed

    Choi, Sol; Song, Hyohak; Lim, Sung Won; Kim, Tae Yong; Ahn, Jung Ho; Lee, Jeong Wook; Lee, Moon-Hee; Lee, Sang Yup

    2016-10-01

    Succinic acid (SA) is one of the fermentative products of anaerobic metabolism, and an important industrial chemical that has been much studied for its bio-based production. The key to the economically viable bio-based SA production is to develop an SA producer capable of producing SA with high yield and productivity without byproducts. Mannheimia succiniciproducens is a capnophilic rumen bacterium capable of efficiently producing SA. In this study, in silico genome-scale metabolic simulations were performed to identify gene targets to be engineered, and the PALK strain (ΔldhA and Δpta-ackA) was constructed. Fed-batch culture of PALK on glucose and glycerol as carbon sources resulted in the production of 66.14 g/L of SA with the yield and overall productivity of 1.34 mol/mol glucose equivalent and 3.39 g/L/h, respectively. SA production could be further increased to 90.68 g/L with the yield and overall productivity of 1.15 mol/mol glucose equivalent and 3.49 g/L/h, respectively, by utilizing a mixture of magnesium hydroxide and ammonia solution as a pH controlling solution. Furthermore, formation of byproducts was drastically reduced, resulting in almost homo-fermentative SA production. This allowed the recovery and purification of SA to a high purity (99.997%) with a high recovery yield (74.65%) through simple downstream processes composed of decolorization, vacuum distillation, and crystallization. The SA producer and processes developed in this study will allow economical production of SA in an industrial-scale. Biotechnol. Bioeng. 2016;113: 2168-2177. © 2016 Wiley Periodicals, Inc. PMID:27070659

  17. Microbial production of lactate-containing polyesters

    PubMed Central

    Yang, Jung Eun; Choi, So Young; Shin, Jae Ho; Park, Si Jae; Lee, Sang Yup

    2013-01-01

    Due to our increasing concerns on environmental problems and limited fossil resources, biobased production of chemicals and materials through biorefinery has been attracting much attention. Optimization of the metabolic performance of microorganisms, the key biocatalysts for the efficient production of the desired target bioproducts, has been achieved by metabolic engineering. Metabolic engineering allowed more efficient production of polyhydroxyalkanoates, a family of microbial polyesters. More recently, non-natural polyesters containing lactate as a monomer have also been produced by one-step fermentation of engineered bacteria. Systems metabolic engineering integrating traditional metabolic engineering with systems biology, synthetic biology, protein/enzyme engineering through directed evolution and structural design, and evolutionary engineering, enabled microorganisms to efficiently produce natural and non-natural products. Here, we review the strategies for the metabolic engineering of microorganisms for the in vivo biosynthesis of lactate-containing polyesters and for the optimization of whole cell metabolism to efficiently produce lactate-containing polyesters. Also, major problems to be solved to further enhance the production of lactate-containing polyesters are discussed. PMID:23718266

  18. Microbial production of specialty organic acids from renewable and waste materials.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation. PMID:24754448

  19. Bio-refinery system of DME or CH4 production from black liquor gasification in pulp mills.

    PubMed

    Naqvi, M; Yan, J; Fröling, M

    2010-02-01

    There is great interest in developing black liquor gasification technology over recent years for efficient recovery of bio-based residues in chemical pulp mills. Two potential technologies of producing dimethyl ether (DME) and methane (CH(4)) as alternative fuels from black liquor gasification integrated with the pulp mill have been studied and compared in this paper. System performance is evaluated based on: (i) comparison with the reference pulp mill, (ii) fuel to product efficiency (FTPE) and (iii) biofuel production potential (BPP). The comparison with the reference mill shows that black liquor to biofuel route will add a highly significant new revenue stream to the pulp industry. The results indicate a large potential of DME and CH(4) production globally in terms of black liquor availability. BPP and FTPE of CH(4) production is higher than DME due to more optimized integration with the pulping process and elimination of evaporation unit in the pulp mill. PMID:19767203

  20. Cryogel-supported titanate nanotubes for waste treatment: Impact on methane production and bio-fertilizer quality.

    PubMed

    Önnby, Linda; Harald, Kirsebom; Nges, Ivo Achu

    2015-08-10

    By reducing the cadmium (Cd(2+)) content in biomass used for bio-based products such as biogas, a less toxic bio-based fertilizer can be obtained. In this work, we demonstrate how a macroporous polymer can support titanate nanotubes, and we take advantage of its known selective adsorption behavior towards Cd(2+) in an adsorption process from real nutrient-rich process water from hydrolysis of seaweed, a pollutant-rich biomass. We show that pretreatment steps involving alteration in area-to-volume ratio performed in aerated and acidic conditions release the most Cd(2+) from the solid material. By integrating an adsorption step between hydrolysis and the biomethane, we show that it was possible to obtain high Cd(2+) removal (ca. 94%) despite molar excess (between 100 and 500) of co-present ions (e.g., Mg(2+), Ca(2+), Na(+), K(+)) and with maintained total phosphorous content. The bio-methane potential did not significantly decrease as compared to a process without cadmium removal and the yielded bio-fertilizer followed Swedish guideline values. This study provides a sound and promising alternative for a novel remediation step, enabling higher use of otherwise tricky and to some extent overlooked biomass sources. PMID:26015262

  1. 48 CFR 23.405 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...' affirmative procurement program when purchasing products that contain recovered material, or services that could include the use of products that contain recovered material. (2) Biobased products. Contracting... that contain biobased material or when purchasing services that could include supplies that...

  2. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2008-11-26

    Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process. PMID:18942836

  3. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    PubMed

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. PMID:25450194

  4. Quality and utilization of food co-products and residues

    NASA Astrophysics Data System (ADS)

    Cooke, P.; Bao, G.; Broderick, C.; Fishman, M.; Liu, L.; Onwulata, C.

    2010-06-01

    Some agricultural industries generate large amounts of low value co-products/residues, including citrus peel, sugar beet pulp and whey protein from the production of orange juice, sugar and cheese commodities, respectively. National Program #306 of the USDA Agricultural Research Service aims to characterize and enhance quality and develop new processes and uses for value-added foods and bio-based products. In parallel projects, we applied scanning microscopies to examine the molecular organization of citrus pectin gels, covalent crosslinking to reduce debonding in sugar beet pulp-PLA composites and functional modification of whey protein through extrusion in order to evaluate new methods of processing and formulating new products. Also, qualitative attributes of fresh produce that could potentially guide germ line development and crop management were explored through fluorescence imaging: synthesis and accumulation of oleoresin in habanero peppers suggest a complicated mechanism of secretion that differs from the classical scheme. Integrated imaging appears to offer significant structural insights to help understand practical properties and features of important food co-products/residues.

  5. 7 CFR 2902.31 - Greases.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. The applicable minimum biobased contents are:...

  6. Starch based polyhydroxybutyrate production in engineered Escherichia coli.

    PubMed

    Bhatia, Shashi Kant; Shim, Young-Ha; Jeon, Jong-Min; Brigham, Christopher J; Kim, Yong-Hyun; Kim, Hyun-Joong; Seo, Hyung-Min; Lee, Ju-Hee; Kim, Jung-Ho; Yi, Da-Hye; Lee, Yoo Kyung; Yang, Yung-Hun

    2015-08-01

    Every year, the amount of chemosynthetic plastic accumulating in the environment is increasing, and significant time is required for decomposition. Bio-based, biodegradable plastic is a promising alternative, but its production is not yet a cost effective process. Decreasing the production cost of polyhydroxyalkanoate by utilizing renewable carbon sources for biosynthesis is an important aspect of commercializing this biodegradable polymer. An Escherichia coli strain that expresses a functional amylase and accumulate polyhydroxybutyrate (PHB), was constructed using different plasmids containing the amylase gene of Panibacillus sp. and PHB synthesis genes from Ralstonia eutropha. This engineered strain can utilize starch as the sole carbon source. The maximum PHB production (1.24 g/L) was obtained with 2% (w/v) starch in M9 media containing 0.15% (w/v) yeast extract and 10 mM glycine betaine. The engineered E. coli SKB99 strain can accumulate intracellular PHB up to 57.4% of cell dry mass. PMID:25820819

  7. 7 CFR 3430.702 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... convert renewable biomass into: (1) Heat; (2) Power; (3) Biobased products; or (4) Advanced biofuels... biofuels and biobased products; and (2) May produce electricity. Board means the Biomass Research and... processing units necessary to convert biomass feedstock into biofuels/bioenergy/biobased products at...

  8. 7 CFR 3430.702 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... convert renewable biomass into: (1) Heat; (2) Power; (3) Biobased products; or (4) Advanced biofuels... biofuels and biobased products; and (2) May produce electricity. Board means the Biomass Research and... processing units necessary to convert biomass feedstock into biofuels/bioenergy/biobased products at...

  9. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose

    PubMed Central

    2014-01-01

    Background Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. Results A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Conclusions Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals. PMID:24885968

  10. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system.

    PubMed

    Ntaikou, I; Valencia Peroni, C; Kourmentza, C; Ilieva, V I; Morelli, A; Chiellini, E; Lyberatos, G

    2014-10-20

    The operational efficiency of a two stage pilot scale system for polyhydroxyalkanoates (PHAs) production from three phase olive oil mill wastewater (OMW) was investigated in this study. A mixed anaerobic, acidogenic culture derived from a municipal wastewater treatment plant, was used in the first stage, aiming to the acidification of OMW. The effluent of the first bioreactor that was operated in continuous mode, was collected in a sedimentation tank in which partial removal of the suspended solids was taking place, and was then forwarded to an aerobic reactor, operated in sequential batch mode under nutrient limitation. In the second stage an enriched culture of Pseudomonas sp. was used as initial inoculum for the production of PHAs from the acidified waste. Clarification of the acidified waste, using aluminium sulphate which causes flocculation and precipitation of solids, was also performed, and its effect on the composition of the acidified waste as well as on the yields and properties of PHAs was investigated. It was shown that clarification had no significant qualitative or quantitative effect on the primary carbon sources, i.e. short chain fatty acids and residual sugars, but only on the values of total suspended solids and total chemical oxygen demand of the acidified waste. The type and thermal characteristics of the produced PHAs were also similar for both types of feed. However the clarification of the waste seemed to have a positive impact on final PHAs yield, measured as gPHAs/100g of VSS, which reached up to 25%. Analysis of the final products via nuclear magnetic resonance spectroscopy revealed the existence of 3-hydroxybutyrate (3HB) and 3-hydroxyoctanoate (HO) units, leading to the conclusion that the polymer could be either a blend of P3HB and P3HO homopolymers or/and the 3HB-co-3HO co-polymer, an unusual polymer occurring in nature with advanced properties. PMID:25157746

  11. 7 CFR 3201.24 - Graffiti and grease removers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... biobased content of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  12. 7 CFR 3201.24 - Graffiti and grease removers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... biobased content of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  13. 7 CFR 3201.9 - Funding for testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... General § 3201.9 Funding for testing. (a) USDA use of funds for biobased content and BEES testing. USDA will use funds to support testing for biobased content and conduct of BEES testing for products...

  14. 7 CFR 3201.9 - Funding for testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... General § 3201.9 Funding for testing. (a) USDA use of funds for biobased content and BEES testing. USDA will use funds to support testing for biobased content and conduct of BEES testing for products...

  15. 7 CFR 3201.9 - Funding for testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... General § 3201.9 Funding for testing. (a) USDA use of funds for biobased content and BEES testing. USDA will use funds to support testing for biobased content and conduct of BEES testing for products...

  16. 7 CFR 2902.9 - Funding for testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....9 Funding for testing. (a) USDA use of funds for biobased content and BEES testing. USDA will use funds to support testing for biobased content and conduct of BEES testing for products within items...

  17. 78 FR 8500 - Biomass Research and Development Technical Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... of Energy Efficiency and Renewable Energy Biomass Research and Development Technical Advisory... Open Meeting. SUMMARY: This notice announces an open meeting of the Biomass Research and Development... promotes research and development leading to the production of biobased fuels and biobased...

  18. 7 CFR 2902.44 - Corrosion preventatives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... biobased content of at least 53 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  19. 7 CFR 2902.39 - Floor strippers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... biobased content of at least 78 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  20. 7 CFR 2902.29 - Disposable cutlery.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... biobased content of at least 48 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  1. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... through biobased energy and product technologies; and (d) Enhance the efficiency of bioenergy and biomass... FCEA) to fund subgrants and activities that: (a) Enhance national energy security through the development, distribution, and implementation of biobased energy technologies; (b) Promote diversification...

  2. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... through biobased energy and product technologies; and (d) Enhance the efficiency of bioenergy and biomass... FCEA) to fund subgrants and activities that: (a) Enhance national energy security through the development, distribution, and implementation of biobased energy technologies; (b) Promote diversification...

  3. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... through biobased energy and product technologies; and (d) Enhance the efficiency of bioenergy and biomass... FCEA) to fund subgrants and activities that: (a) Enhance national energy security through the development, distribution, and implementation of biobased energy technologies; (b) Promote diversification...

  4. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... through biobased energy and product technologies; and (d) Enhance the efficiency of bioenergy and biomass... FCEA) to fund subgrants and activities that: (a) Enhance national energy security through the development, distribution, and implementation of biobased energy technologies; (b) Promote diversification...

  5. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.

    PubMed

    Nikodinovic-Runic, Jasmina; Guzik, Maciej; Kenny, Shane T; Babu, Ramesh; Werker, Alan; O Connor, Kevin E

    2013-01-01

    Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show

  6. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment.

    PubMed

    van der Pol, Edwin; Bakker, Rob; van Zeeland, Alniek; Sanchez Garcia, David; Punt, Arjen; Eggink, Gerrit

    2015-04-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretreatment included acetic, glycolic and coumaric acid in concentrations up to 40, 21 and 2.5 g/kg dry weight bagasse respectively. Alkaline pretreated material contained up to 45 g/kg bagasse DW of sodium. Acid and autohydrolysis pretreatment results in a furan formation of 14 g/kg and 25 g/kg DW bagasse respectively. Enzyme monomerization efficiencies of pretreated solid material after 72 h were 81% for acid pretreatment, 77% for autohydrolysis and 57% for alkaline pretreatment. Solid material was washed with superheated water to decrease the amount of by-products. Washing decreased organic acid, phenol and furan concentrations in solid material by at least 60%, without a major sugar loss. PMID:25643957

  7. Study of mechanical and morphological properties of bio-based polyethylene (HDPE) and sponge-gourds (Luffa-cylindrica) agroresidue composites

    NASA Astrophysics Data System (ADS)

    Escocio, Viviane A.; Visconte, Leila L. Y.; Cavalcante, Andre de P.; Furtado, Ana Maria S.; Pacheco, Elen B. A. V.

    2015-05-01

    Brazil has a remarkable position in the use of renewable energy. The potential of natural resources in Brazil has motivated the use of these renewable resources to make technologies more sustainable. From the large variety of commercially available High Density Polyethylene (HDPE) from different sources, two were chosen for investigation: one produced from sugarcane ethanol, and the other one, a conventional polyethylene, produced from fossil resources. In the preparation of the composites, sponge-gourds also called Luffa cylindrica were selectec. The main application of this product is as bath sponge, whose production generates scraps that are generally burnt. In this work, the composites were prepared by blending the sponge scrap at different proportions (10, 20, 30 and 40% wt/wt) with high density polyethylene (HDPE) from renewable source by extrusion. The melt flow index analysis of the composites was determined and specimens were obtained by injection molding for the assessment of mechanical properties such as tensile (elasticity modulus), flexural and Izod impact strengths. The microstructure of the impact fractured surface of the specimen also was determined. The results showed that the addition of sponge scrap affects positively all the properties studied as compared to HDPE. The results of tensile strength, elasticity modulus and flexural strength were similar to those observed in the literature for composites of HDPE from fossil source. The microstructure corroborates the results of mechanical properties. It was shown that the sponge scrap has potential to be applied as cellulosic filler for renewable polyethylene, providing a totally renewable material with good mechanical properties.

  8. 75 FR 41166 - Notice of Solicitation of Nominations for Appointment as a Member of the Biomass Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... individual affiliated with the biofuels industry; (B) an individual affiliated with the biobased industrial... who has expertise in biofuels and biobased products; (D) 2 prominent engineers or scientists from government or academia who have expertise in biofuels and biobased products; (E) an individual...

  9. 76 FR 36102 - Biomass Research and Development Technical Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... the biofuels industry; (B) an individual affiliated with the biobased industrial and commercial... in biofuels and biobased products; (D) 2 prominent engineers or scientists from government or academia that have expertise in biofuels and biobased products; (E) an individual affiliated with...

  10. 7 CFR 2902.14 - Penetrating lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... biobased products provide information for the BioPreferred Web site of qualifying biobased products about.... The designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. ... and bolts, power tools, gears, valves, chains, and cables. (b) Minimum biobased content. The...

  11. 7 CFR 3202.1 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Purpose and scope. 3202.1 Section 3202.1 Agriculture..., DEPARTMENT OF AGRICULTURE VOLUNTARY LABELING PROGRAM FOR BIOBASED PRODUCTS § 3202.1 Purpose and scope. The... Biobased Product” certification mark. This part establishes the criteria that biobased products must...

  12. 7 CFR 3202.1 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Purpose and scope. 3202.1 Section 3202.1 Agriculture..., DEPARTMENT OF AGRICULTURE VOLUNTARY LABELING PROGRAM FOR BIOBASED PRODUCTS § 3202.1 Purpose and scope. The... Biobased Product” certification mark. This part establishes the criteria that biobased products must...

  13. Carob pod water extracts as feedstock for succinic acid production by Actinobacillus succinogenes 130Z.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2014-10-01

    Carob pods are a by-product of locust bean gum industry containing more than 50% (w/w) sucrose, glucose and fructose. In this work, carob pod water extracts were used, for the first time, for succinic acid production by Actinobacillus succinogenes 130Z. Kinetic studies of glucose, fructose and sucrose consumption as individual carbon sources till 30g/L showed no inhibition on cell growth, sugar consumption and SA production rates. Sugar extraction from carob pods was optimized varying solid/liquid ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Batch fermentations containing 10-15g/L total sugars resulted in a maximum specific SA production rate of 0.61Cmol/Cmol X.h, with a yield of 0.55Cmol SA/Cmol sugar and a volumetric productivity of 1.61g SA/L.h. Results demonstrate that carob pods can be a promising low cost feedstock for bio-based SA production. PMID:25164341

  14. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu. PMID:24616376

  15. Cytoxicity, dynamic and thermal properties of bio-based rosin-epoxy resin/ castor oil polyurethane/ carbon nanotubes bio-nanocomposites.

    PubMed

    Huo, Li; Wang, Dan; Liu, Hongmei; Jia, Pan; Gao, Jungang

    2016-08-01

    In order to prepare bio-nanocomposites with no-cytotoxicity, the rosin-based epoxy resin (MPAER) and castor oil-based polyurethane (COPU) were synthesized and carbon nanotubes (CNTs) was used to enhance the properties of curing MPAER/COPU materials. The curing reaction, dynamic mechanical and thermal properties of this system were characterized by FTIR, NMR, DMA, TG et al. The cytotoxicity of materials is evaluated for HeLa cells using a MTT cell-viability assay. The results showed that COPU can cure MPAER and CNTs can increase effectively the properties of MPAER/COPU nanocomposites. The Tg of MPAER/COPU/CNTs has the highest value when CNTs content is 0.4 wt%, which is 52.4 °C higher than the pure MPAER/COPU. Thermal stability of the nanocomposites is enhanced by the addition of CNTs, the initial decomposition temperature Td5 of the sample No. 0.4 has increased from 284.5 to 305.2 °C, which is 20.7 °C higher than No. 0. The impact strength of the No. 0.4 film is 15 kg cm higher than the pure resin system. The survival rate of HeLa cells to the products is greater than 90% within 48 and 72 h, which demonstrate that this material has excellent biocompatibility and no obvious cytotoxicity for HeLa cells, which may be used in the medical treatment. PMID:27117086

  16. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    PubMed

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels. PMID:23650260

  17. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  18. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae

    PubMed Central

    Shi, Shuobo; Si, Tong; Liu, Zihe; Zhang, Hongfang; Ang, Ee Lui; Zhao, Huimin

    2016-01-01

    n-Butanol has several favourable properties as an advanced fuel or a platform chemical. Bio-based production of n-butanol is becoming increasingly important for sustainable chemical industry. Synthesis of n-butanol can be achieved via more than one metabolic pathway. Here we report the metabolic engineering of Saccharomyces cerevisiae to produce n-butanol through a synergistic pathway: the endogenous threonine pathway and the introduced citramalate pathway. Firstly, we characterized and optimized the endogenous threonine pathway; then, a citramalate synthase (CimA) mediated pathway was introduced to construct the synergistic pathway; next, the synergistic pathway was optimized by additional overexpression of relevant genes identified previously; meanwhile, the n-butanol production was also improved by overexpression of keto-acid decarboxylases (KDC) and alcohol dehydrogenase (ADH). After combining these strategies with co-expression of LEU1 (two copies), LEU4, LEU2 (two copies), LEU5, CimA, NFS1, ADH7 and ARO10*, we achieved an n-butanol production of 835 mg/L in the final engineered strain, which is almost 7-fold increase compared to the initial strain. Furthermore, the production showed a 3-fold of the highest titer ever reported in yeast. Therefore, the engineered yeast strain represents a promising alternative platform for n-butanol production. PMID:27161023

  19. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    PubMed Central

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  20. Fumaric Acid Production in Saccharomyces cerevisiae by In Silico Aided Metabolic Engineering

    PubMed Central

    Xu, Guoqiang; Zou, Wei; Chen, Xiulai; Xu, Nan; Liu, Liming; Chen, Jian

    2012-01-01

    Fumaric acid (FA) is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1 was selected as the target gene on the basis of extensive literature mining. Flux balance analysis (FBA) revealed that FUM1 deletion can lead to FA production and slightly lower growth of S. cerevisiae. The engineered S. cerevisiae strain obtained by deleting FUM1 can produce FA up to a concentration of 610±31 mg L–1 without any apparent change in growth in fed-batch culture. FT-IR and 1H and 13C NMR spectra confirmed that FA was synthesized by the engineered S. cerevisiae strain. FBA identified pyruvate carboxylase as one of the factors limiting higher FA production. When the RoPYC gene was introduced, S. cerevisiae produced 1134±48 mg L–1 FA. Furthermore, the final engineered S. cerevisiae strain was able to produce 1675±52 mg L–1 FA in batch culture when the SFC1 gene encoding a succinate–fumarate transporter was introduced. These results demonstrate that the model shows great predictive capability for metabolic engineering. Moreover, FA production in S. cerevisiae can be efficiently developed with the aid of in silico metabolic engineering. PMID:23300594

  1. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae.

    PubMed

    Shi, Shuobo; Si, Tong; Liu, Zihe; Zhang, Hongfang; Ang, Ee Lui; Zhao, Huimin

    2016-01-01

    n-Butanol has several favourable properties as an advanced fuel or a platform chemical. Bio-based production of n-butanol is becoming increasingly important for sustainable chemical industry. Synthesis of n-butanol can be achieved via more than one metabolic pathway. Here we report the metabolic engineering of Saccharomyces cerevisiae to produce n-butanol through a synergistic pathway: the endogenous threonine pathway and the introduced citramalate pathway. Firstly, we characterized and optimized the endogenous threonine pathway; then, a citramalate synthase (CimA) mediated pathway was introduced to construct the synergistic pathway; next, the synergistic pathway was optimized by additional overexpression of relevant genes identified previously; meanwhile, the n-butanol production was also improved by overexpression of keto-acid decarboxylases (KDC) and alcohol dehydrogenase (ADH). After combining these strategies with co-expression of LEU1 (two copies), LEU4, LEU2 (two copies), LEU5, CimA, NFS1, ADH7 and ARO10(*), we achieved an n-butanol production of 835 mg/L in the final engineered strain, which is almost 7-fold increase compared to the initial strain. Furthermore, the production showed a 3-fold of the highest titer ever reported in yeast. Therefore, the engineered yeast strain represents a promising alternative platform for n-butanol production. PMID:27161023

  2. Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli.

    PubMed

    Chan, Sitha; Kanchanatawee, Sunthorn; Jantama, Kaemwich

    2012-01-01

    Sucrose-utilizing genes (cscKB and cscA) from Escherichia coli KO11 were cloned and expressed in a metabolically engineered E. coli KJ122 to enhance succinate production from sucrose. KJ122 harboring a recombinant plasmid, pKJSUC, was screened for the efficient sucrose utilization by growth-based selection and adaptation. KJ122-pKJSUC-24T efficiently utilized sucrose in a low-cost medium to produce high succinate concentration with less accumulation of by-products. Succinate concentrations of 51 g/L (productivity equal to 1.05 g/L/h) were produced from sucrose in anaerobic bottles, and concentrations of 47 g/L were produced in 10L bioreactor within 48 h. Antibiotics had no effect on the succinate production by KJ122-pKJSUC-24T. In addition, succinate concentrations of 62 g/L were produced from sugarcane molasses in anaerobic bottles, and concentrations of 56 g/L in 10 L bioreactor within 72 h. These results demonstrated that KJ122-pKJSUC-24T would be a potential strain for bio-based succinate production from sucrose and sugarcane molasses. PMID:22023966

  3. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    PubMed

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. PMID:27559924

  4. The antioxidant hydroxytyrosol: biotechnological production challenges and opportunities.

    PubMed

    Achmon, Yigal; Fishman, Ayelet

    2015-02-01

    Hydroxytyrosol (HT) is a highly potent antioxidant originating in nature as a second metabolite of plants, most abundantly in olives (Olea europaea). In the last decade, numerous research studies showed the health benefits of antioxidants in general and those of HT in particular. As olive oil is a prime constituent of the health-promoting Mediterranean diet, HT has obtained recognition for its attributes, supported by a recent health claim of the European Food Safety Authority. HT is already used as a food supplement and in cosmetic products, but it has the potential to be used as a food additive and drug, based on its anticarcinogenic, anti-inflammatory, antiapoptotic and neuroprotective activity. Nevertheless, there is a large gap between the potential of HT and its current availability in the market due to its high price tag. In this review, the challenges of producing HT using biotechnological methods are described with an emphasis on the substrate source, the biocatalyst and the process parameters, in order to narrow the gap towards an efficient bio-based industrial process. PMID:25547836

  5. Research in biomass production and utilization: Systems simulation and analysis

    NASA Astrophysics Data System (ADS)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  6. Arundo donax L.: a non-food crop for bioenergy and bio-compound production.

    PubMed

    Corno, Luca; Pilu, Roberto; Adani, Fabrizio

    2014-12-01

    Arundo donax L., common name giant cane or giant reed, is a plant that grows spontaneously in different kinds of environments and that it is widespread in temperate and hot areas all over the world. Plant adaptability to different kinds of environment, soils and growing conditions, in combination with the high biomass production and the low input required for its cultivation, give to A. donax many advantages when compared to other energy crops. A. donax can be used in the production of biofuels/bioenergy not only by biological fermentation, i.e. biogas and bio-ethanol, but also, by direct biomass combustion. Both its industrial uses and the extraction of chemical compounds are largely proved, so that A. donax can be proposed as the feedstock to develop a bio-refinery. Nowadays, the use of this non-food plant in both biofuel/bioenergy and bio-based compound production is just beginning, with great possibilities for expanding its cultivation in the future. To this end, this review highlights the potential of using A. donax for energy and bio-compound production, by collecting and critically discussing the data available on these first applications for the crop. PMID:25457226

  7. Syntheses of novel protein products (milkglyde, saliglyde, and soyglyde) from vegetable epoxy oils and gliadin.

    PubMed

    Harry-O'kuru, Rogers E; Mohamed, Abdellatif; Gordon, Sherald H; Xu, James

    2012-02-22

    The aqueous alcohol-soluble fraction of wheat gluten is gliadin. This component has been implicated as the causative principle in celiac disease, which is a physiological condition experienced by some infants and adults. The outcome of the ingestion of whole wheat products by susceptible individuals is malabsorption of nutrients resulting from loss of intestinal vili, the nutrient absorption regions of the digestive system. This leads to incessant diarrhea and weight loss in these individuals. Only recently has this health condition been properly recognized and accurately diagnosed in this country. The culprit gliadin is characterized by preponderant glutamine side-chain residues on the protein surface. Gliadin is commercially available as a wheat gluten extract, and in our search for new biobased and environmentally friendly products from renewable agricultural substrates, we have exploited the availability of the glutamine residues of gliadin as synthons to produce novel elastomeric nonfood products dubbed "milkglyde", "saliglyde", and soyglyde from milkweed, salicornia and soybean oils. The reaction is an amidolysis of the oxirane groups of derivatized milkweed, salicornia, and soybean oils under neat reaction conditions with the primary amide functionalties of glutamine to give the corresponding amidohyroxy gliadinyl triglycerides, respectively. The differential scanning calorimetry, thermogravimetric analyses, and rheological data from a study of these products indicate properties similar to those of synthetic rubber. PMID:22250811

  8. 3-Amino-4-hydroxybenzoic acid production from sweet sorghum juice by recombinant Corynebacterium glutamicum.

    PubMed

    Kawaguchi, Hideo; Sasaki, Kengo; Uematsu, Kouji; Tsuge, Yota; Teramura, Hiroshi; Okai, Naoko; Nakamura-Tsuruta, Sachiko; Katsuyama, Yohei; Sugai, Yoshinori; Ohnishi, Yasuo; Hirano, Ko; Sazuka, Takashi; Ogino, Chiaki; Kondo, Akihiko

    2015-12-01

    The production of the bioplastic precursor 3-amino-4-hydroxybenzoic acid (3,4-AHBA) from sweet sorghum juice, which contains amino acids and the fermentable sugars sucrose, glucose and fructose, was assessed to address the limitations of producing bio-based chemicals from renewable feedstocks. Recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI derived from Streptomyces griseus produced 3,4-AHBA from the sweet sorghum juice of cultivar SIL-05 at a final concentration (1.0 g l(-1)) that was 5-fold higher than that from pure sucrose. Fractionation of sweet sorghum juice by nanofiltration (NF) membrane separation (molecular weight cut-off 150) revealed that the NF-concentrated fraction, which contained the highest concentrations of amino acids, increased 3,4-AHBA production, whereas the NF-filtrated fraction inhibited 3,4-AHBA biosynthesis. Amino acid supplementation experiments revealed that leucine specifically enhanced 3,4-AHBA production by strain KT01. Taken together, these results suggest that sweet sorghum juice is a potentially suitable feedstock for 3,4-AHBA production by recombinant C. glutamicum. PMID:26409852

  9. Peptide Binding for Bio-Based Nanomaterials.

    PubMed

    Bedford, N M; Munro, C J; Knecht, M R

    2016-01-01

    Peptide-based strategies represent transformative approaches to fabricate functional inorganic materials under sustainable conditions by modeling the methods exploited in biology. In general, peptides with inorganic affinity and specificity have been isolated from organisms and through biocombinatorial selection techniques (ie, phage and cell surface display). These peptides recognize and bind the inorganic surface through a series of noncovalent interactions, driven by both enthalpic and entropic contributions, wherein the biomolecules wrap the metallic nanoparticle structure. Through these interactions, modification of the inorganic surface can be accessed to drive the incorporation of significantly disordered surface metal atoms, which have been found to be highly catalytically active for a variety of chemical transformations. We have employed synthetic, site-directed mutagenesis studies to reveal localized binding effects of the peptide at the metallic nanoparticle structure to begin to identify the biological basis of control over biomimetic nanoparticle catalytic activity. The protocols described herein were used to fabricate and characterize peptide-capped nanoparticles in atomic resolution to identify peptide sequence effects on the surface structure of the materials, which can then be directly correlated to the catalytic activity to identify structure/function relationships. PMID:27586350

  10. Tribological properties of biobased ester phosphonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three phosphonate derivatives of methyl oleate (MeOl) were chemically synthesized in a radical chain reaction and their physical and tribological properties investigated. The three phosphonates differed from each other in the structure of the alkoxy groups attached to the phosphorous, which were as ...

  11. Biobased, environmentally friendly lubricants for processing plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oil based lubricants have excellent lubricity, biodegradability, good viscosity temperature characteristics and low evaporation loss, but poor thermos-oxidative stability and cold flow properties. This paper presents a systematic approach to improve the oxidative and cold flow behavior of...

  12. Pressure-viscosity coefficient of biobased lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  13. Guest editorial, special issue on biobased adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is a preface for a special issue that showcases significant developments on adhesives made with biorenewable materials, such as agricultural crops (soybean, corn), plant extractives (bark, tannins), and marine sources (mussels). This collection of pioneering studies and reviews on bioba...

  14. Biosolvents for Coatings, Resins and Biobased Materials

    SciTech Connect

    Datta, Rathin

    2009-08-31

    With close collaboration with several industrial coatings manufacturers several solvent blends were developed tested and optimized. These were then piloted in the commercial company’s reactors and systems. Three were successfully tested in commercial applications and two of these - Methotate replacement and a specialty ketone replacement were sold in commercial quantities in 2009. Further sales are anticipated in 2010 and the following years.

  15. Biobased lactams as novel arthropod repellents.

    PubMed

    Chauhan, Kamlesh R; Khanna, Hemant; Bathini, Nagendra Babu; Le, Thanh C; Grieco, John

    2014-12-01

    Enanatiomerically pure 4aS,7S,7aR and 4aS,7S,7aS-nepetalactams and their analogs have been prepared in just two steps from 4aS,7S,7aR and 4aS,7S,7aS-nepetalactones, major components of catnip oil. Lactams or cyclic amides from iridoid monoterpenes are generated and being evaluated as a new class of compounds as arthropod deterrents against disease vectors. PMID:25632454

  16. Novel fermentation process strengthening strategy for production of propionic acid and vitamin B12 by Propionibacterium freudenreichii.

    PubMed

    Wang, Peng; Jiao, Youjing; Liu, Shouxin

    2014-12-01

    An efficient fermentation-strengthening approach was developed to improve the anaerobic production of propionic acid and vitamin B12 by co-fermentation with Propionibacterium freudenreichii. Vitamin B12 production from glucose resulted in relatively high productivity (0.35 mg/L h) but a low propionic acid yield (0.55 g/g). By contrast, glycerol gave a high propionic acid yield (0.63 g/g) but low productivity (0.16 g/L h). Co-fermentation of glycerol and glucose with a gradual addition strategy gave high yields (propionic acid: 0.71 g/g; vitamin B12: 0.72 mg/g) and productivities (propionic acid: 0.36 g/L h; vitamin B12: 0.36 mg/L h). Finally, the integrated feedstock and fermentation system strengthening strategy was demonstrated as an efficient method for the economic production of bio-based propionic acid and vitamin B12. PMID:25261985

  17. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate

    PubMed Central

    Su, Buli; Zhang, Zhe; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2016-01-01

    High costs and low production efficiency are a serious constraint to bio-based xylitol production. For industrial-scale production of xylitol, a plasmid-free Escherichia coli for arabitol-free xylitol production from corncob hemicellulosic hydrolysate has been constructed. Instead of being plasmid and inducer dependent, this strain relied on multiple-copy integration of xylose reductase (XR) genes into the chromosome, where their expression was controlled by the constitutive promoter P43. In addition, to minimize the flux from L-arabinose to arabitol, two strategies including low XR total activity and high selectivity of XR has been adopted. Arabitol was significantly decreased using plasmid-free strain which had lower XR total activity and an eight point-mutations of XR with a 27-fold lower enzyme activity toward L-arabinose was achieved. The plasmid-free strain in conjunction with this mutant XR can completely eliminate arabitol formation in xylitol production. In fed-batch fermentation, this plasmid-free strain produced 143.8 g L−1 xylitol at 1.84 g L−1 h−1 from corncob hemicellulosic hydrolysate. From these results, we conclude that this route by plasmid-free E. coli has potential to become a commercially viable process for xylitol production. PMID:27225023

  18. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate.

    PubMed

    Su, Buli; Zhang, Zhe; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2016-01-01

    High costs and low production efficiency are a serious constraint to bio-based xylitol production. For industrial-scale production of xylitol, a plasmid-free Escherichia coli for arabitol-free xylitol production from corncob hemicellulosic hydrolysate has been constructed. Instead of being plasmid and inducer dependent, this strain relied on multiple-copy integration of xylose reductase (XR) genes into the chromosome, where their expression was controlled by the constitutive promoter P43. In addition, to minimize the flux from L-arabinose to arabitol, two strategies including low XR total activity and high selectivity of XR has been adopted. Arabitol was significantly decreased using plasmid-free strain which had lower XR total activity and an eight point-mutations of XR with a 27-fold lower enzyme activity toward L-arabinose was achieved. The plasmid-free strain in conjunction with this mutant XR can completely eliminate arabitol formation in xylitol production. In fed-batch fermentation, this plasmid-free strain produced 143.8 g L(-1) xylitol at 1.84 g L(-1) h(-1) from corncob hemicellulosic hydrolysate. From these results, we conclude that this route by plasmid-free E. coli has potential to become a commercially viable process for xylitol production. PMID:27225023

  19. n-butanol: challenges and solutions for shifting natural metabolic pathways into a viable microbial production.

    PubMed

    Branduardi, Paola; Porro, Danilo

    2016-04-01

    The economic upturn of the past 200 years would not have been conceivable without fossil resources such as coal and oil. However, the fossil-based economy increasingly reaches its limits and displays contradictions. Bioeconomy, strategically combining economy and ecology willing to make biobased and sustainable growth possible, is promising to make a significant contribution towards solving these issues. In this context, microbial bioconversions are promising to support partially the increasing need for materials and fuels starting from fresh, preferably waste, biomass. Butanol is a very attractive molecule finding applications both as a chemical platform and as a fuel. Today it principally derives from petroleum, but it also represents the final product of microbial catabolic pathways. Because of the need to maximize yield, titer and productivity to make the production competitive and viable, the challenge is to transform a robustly regulated metabolic network into the principal cellular activity. However, this goal can only be accomplished by a profound understanding of the cellular physiology, survival strategy and sensing/signalling cascades. Here, we shortly review on the natural cellular pathways and circumstances that lead to n-butanol accumulation, its physiological consequences that might not match industrial needs and on possible solutions for circumventing these natural constraints. PMID:27020412

  20. Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties

    PubMed Central

    Akhtar, M. Kalim; Dandapani, Hariharan; Thiel, Kati; Jones, Patrik R.

    2014-01-01

    The development of sustainable, bio-based technologies to convert solar energy and carbon dioxide into fuels is a grand challenge. A core part of this challenge is to produce a fuel that is compatible with the existing transportation infrastructure. This task is further compounded by the commercial desire to separate the fuel from the biotechnological host. Based on its fuel characteristics, 1-octanol was identified as an attractive metabolic target with diesel-like properties. We therefore engineered a synthetic pathway specifically for the biosynthesis of 1-octanol in Escherichia coli BL21(DE3) by over-expression of three enzymes (thioesterase, carboxylic acid reductase and aldehyde reductase) and one maturation factor (phosphopantetheinyl transferase). Induction of this pathway in a shake flask resulted in 4.4 mg 1-octanol L−1 h−1 which exceeded the productivity of previously engineered strains. Furthermore, the majority (73%) of the fatty alcohol was localised within the media without the addition of detergent or solvent overlay. The deletion of acrA reduced the production and excretion of 1-octanol by 3-fold relative to the wild-type, suggesting that the AcrAB–TolC complex may be responsible for the majority of product efflux. This study presents 1-octanol as a potential fuel target that can be synthesised and naturally accumulated within the media using engineered microbes. PMID:27066394

  1. Fully Integrated Lignocellulosic Biorefinery with Onsite Production of Enzymes and Yeast

    SciTech Connect

    Manoj Kumar, PhD

    2010-06-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  2. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  3. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    SciTech Connect

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  4. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].

    PubMed

    Wang, Jiming; Liu, Wei; Xu, Xin; Zhang, Haibo; Xian, Mo

    2013-10-01

    Confronted with the gradual exhaustion of the earth's fossil energy resources and the grimmer environmental deterioration, the bio-based process to produce high-value added platform chemicals from renewable biomass is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to various advantages, such as clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. This review focuses on recent progresses in metabolic engineering of E. coli that lead to efficient recombinant biocatalysts for production of high-value organic acids such as succinic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like glycerol and xylitol. Besides, this review also discusses several other platform chemicals, including 2,5-furan dicarboxylic acid, aspartic acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxy-gamma-butyrolactone and sorbitol, which have not been produced by E. coli until now. PMID:24432652

  5. Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates.

    PubMed

    Saha, Basudeb; Abu-Omar, Mahdi M

    2015-04-13

    Since the U.S. Department of Energy (DOE) published a perspective article that described the potential of the top ten biomass-derived platform chemicals as petroleum replacements for high-value commodity and specialty chemicals, researchers around the world have been motivated to develop technologies for the conversion of biomass and biomass-derived intermediates into chemicals and fuels. Among several biorefinery processes, the conversion of biomass carbohydrates into 2,5-dimethylfuran (DMF) has received significant attention because of its low oxygen content, high energy content, and high octane value. DMF can further serve as a petroleum-replacement, biorenewable feedstock for the production of p-xylene (pX). In this review, we aim specifically to present a concise and up-to-date analysis of DMF production technologies with a critical discussion on catalytic systems, mechanistic insight, and process economics, which includes sensitivity analysis, so that more effective catalysts can be designed. Special emphasis has been given to bifunctional catalysts that improve DMF yields and selectivity and the synergistic effect of the bifunctional sites. Process economics for the current processes and the scope for further improvement are discussed. It is anticipated that the chemistry detailed in this review will guide researchers to develop more practical catalytic processes to enable the economic production of bio-based DMF. Processes for the upgrade of DMF to pX are also described. PMID:25703838

  6. l-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste.

    PubMed

    Bernardo, Marcela Piassi; Coelho, Luciana Fontes; Sass, Daiane Cristina; Contiero, Jonas

    2016-01-01

    Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid), a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively. PMID:27266630

  7. By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels.

    PubMed

    van der Pol, Edwin C; Bakker, Robert R; Baets, Peter; Eggink, Gerrit

    2014-12-01

    Lignocellulose might become an important feedstock for the future development of the biobased economy. Although up to 75 % of the lignocellulose dry weight consists of sugar, it is present in a polymerized state and cannot be used directly in most fermentation processes for the production of chemicals and fuels. Several methods have been developed to depolymerize the sugars present in lignocellulose, making the sugars available for fermentation. In this review, we describe five different pretreatment methods and their effect on the sugar and non-sugar fraction of lignocellulose. For several pretreatment methods and different types of lignocellulosic biomass, an overview is given of by-products formed. Most unwanted by-products present after pretreatment are dehydrated sugar monomers (furans), degraded lignin polymers (phenols) and small organic acids. Qualitative and quantitative effects of these by-products on fermentation processes have been studied. We conclude this review by giving an overview of techniques and methods to decrease inhibitory effects of unwanted by-products. PMID:25370992

  8. Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine

    PubMed Central

    Chae, Tong Un; Kim, Won Jun; Choi, Sol; Park, Si Jae; Lee, Sang Yup

    2015-01-01

    Bio-based production of chemicals from renewable resources is becoming increasingly important for sustainable chemical industry. In this study, Escherichia coli was metabolically engineered to produce 1,3-diaminopropane (1,3-DAP), a monomer for engineering plastics. Comparing heterologous C4 and C5 pathways for 1,3-DAP production by genome-scale in silico flux analysis revealed that the C4 pathway employing Acinetobacter baumannii dat and ddc genes, encoding 2-ketoglutarate 4-aminotransferase and L-2,4-diaminobutanoate decarboxylase, respectively, was the more efficient pathway. In a strain that has feedback resistant aspartokinases, the ppc and aspC genes were overexpressed to increase flux towards 1,3-DAP synthesis. Also, studies on 128 synthetic small RNAs applied in gene knock-down revealed that knocking out pfkA increases 1,3-DAP production. Overexpression of ppc and aspC genes in the pfkA deleted strain resulted in production titers of 1.39 and 1.35 g l−1 of 1,3-DAP, respectively. Fed-batch fermentation of the final engineered E. coli strain allowed production of 13 g l−1 of 1,3-DAP in a glucose minimal medium. PMID:26260768

  9. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli.

    PubMed

    de Oliveira, Rafael R; Nicholson, Wayne L

    2016-01-01

    To reduce dependence on petroleum, an alternative route to production of the chemical feedstock 2,3-butanediol (2,3-BD) from renewable lignocellulosic sources is desirable. In this communication, the genes encoding the pathway from pyruvate to 2,3-BD (alsS, alsD, and bdhA encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase, respectively) from Bacillus subtilis were engineered into a single tricistronic operon under control of the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible Pspac promoter in a shuttle plasmid capable of replication and expression in either B. subtilis or Escherichia coli. We describe the construction and performance of a shuttle plasmid carrying the IPTG-inducible synthetic operon alsSDbdhA coding for 2,3-BD pathway capable of (i) expression in two important representative model microorganisms, the gram-positive B. subtilis and the gram-negative E. coli; (ii) increasing 2,3-BD production in B. subtilis; and (iii) successfully introducing the B. subtilis 2,3-BD pathway into E. coli. The synthetic alsSDbdhA operon constructed using B. subtilis native genes not only increased the 2,3-BD production in its native host but also efficiently expressed the pathway in the heterologous organism E. coli. Construction of an efficient shuttle plasmid will allow investigation of 2,3-BD production performance in related organisms with industrial potential for production of bio-based chemicals. PMID:26454865

  10. Hydrogen production

    NASA Technical Reports Server (NTRS)

    England, C.; Chirivella, J. E.; Fujita, T.; Jeffe, R. E.; Lawson, D.; Manvi, R.

    1975-01-01

    The state of hydrogen production technology is evaluated. Specific areas discussed include: hydrogen production fossil fuels; coal gasification processes; electrolysis of water; thermochemical production of hydrogen; production of hydrogen by solar energy; and biological production of hydrogen. Supply options are considered along with costs of hydrogen production.

  11. The Separative Bioreactor: A Continuous Separation Process for the Simultaneous Production and Direct Capture of Organic Acids

    PubMed Central

    Arora, M. B.; Hestekin, J. A.; Snyder, S. W.; St. Martin, E. J.; Lin, Y. J.; Donnelly, M. I.; Millard, C. Sanville

    2007-01-01

    Abstract The replacement of petrochemicals with biobased chemicals requires efficient bioprocesses, biocatalysis, and product recovery. Biocatalysis (e.g., enzyme conversion and fermentation) offers an attractive alternative to chemical processing because biocatalysis utilize renewable feedstocks under benign reaction conditions. One class of chemical products that could be produced in large volumes by biocatalysis is organic acids. However, biocatalytic reactions to produce organic acids typically result in only dilute concentrations of the product because of product inhibition and acidification that drives the reaction pH outside of the optimal range for the biocatalyst. Buffering or neutralization results in formation of the acid salt rather than the acid, which requires further processing to recover the free acid product. To address these barriers to biocatalytic organic acid production, we developed the “separative bioreactor” based on resin wafer electrodeionization, which is an electro-deionization platform that uses resin wafers fabricated from ion exchange resins. The separative bioreactor simultaneously separates the organic acid from the biocatalyst as it is produced, thus it avoids product inhibition enhancing reaction rates. In addition, the separative bioreactor recovers the product in its acid form to avoid neutralization. The instantaneous separation of acid upon formation in the separative bioreactor is one of the first truly one-step systems for producing organic acids. The separative bioreactor was demonstrated with two systems. In the first demonstration, the enzyme glucose fructose oxidoreductase (GFOR) was immobilized in the reactor and later regenerated in situ. GFOR produced gluconic acid (in its acid form) continuously for 7 days with production rates up to 1000 mg/L/hr at >99% product recovery and GFOR reactivity >30mg gluconic acid/mg GFOR/hour. In the second demonstration, the E. coli strain CSM1 produced lactic acid for up to 24

  12. Irrigation with Treated Urban Wastewater for Bioenergy Crop Production in the Far West Texas

    NASA Astrophysics Data System (ADS)

    Ganjegunte, G. K.; Clark, J. A.; Wu, Y.

    2011-12-01

    In the recent years, interest in biobased fuels is increasing and the congressionally mandated goal is to use at least 36 billion gallons of bio-based transportation fuels by 2022. However, in 2009 the U.S. produced about 10.75 billion gallons of ethanol, primarily as corn starch ethanol and 550 million gallons of biodiesel. Thus, there is a huge gap between the current capacity and the mandated goal. USDA estimates that about 27 million acres of land has to be brought under bioenergy crops to produce 36 billion gallons of bio-based fuels. Meeting the challenge of bridging this huge gap requires a comprehensive regional strategy that includes bringing addition area from different regions within the country under bioenergy crops. In the southwest U.S. region such as west Texas or southern New Mexico, bringing vast abandoned crop lands and areas having permeable soils under bioenergy crops can be a part of such a regional strategy. While the region has adequate supply of land, finding reliable source of water to produce bioenergy crops is the main challenge. This challenge can be met by developing marginal quality water sources for bioenergy crops production. Use of marginal quality waters such as treated urban wastewater/saline groundwater to irrigate bioenergy crops may prove beneficial, if the bioenergy crops can grow under elevated salinity and the effects on soil and shallow groundwater can be minimized by appropriate management. The region has enormous potential for marginal quality water irrigation to produce bioenergy crops for a greater farm return. For example, at present, in El Paso alone, the total volume of treated municipal and industrial wastewater is about 65,000 acre-feet/year, of which only 13% is being reused for industrial processes and irrigating urban landscapes. The major concern associated with treated wastewater irrigation is its salinity (electrical conductivity or EC which measures salinity ranges from 1.8 to 2.1 dS m-1) and sodicity

  13. Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes

    NASA Astrophysics Data System (ADS)

    Tan, J. P.; Jahim, J. M.; Wu, T. Y.; Harun, S.; Mumtaz, T.

    2016-06-01

    Expensive raw materials are the driving force that leads to the shifting of the petroleum-based succinic acid production into bio-based succinic acid production by microorganisms. Cost of fermentation medium is among the main factors contributing to the total production cost of bio-succinic acid. After carbon source, nitrogen source is the second largest component of the fermentation medium, the cost of which has been overlooked for the past years. The current study aimed at replacing yeast extract- a costly nitrogen source with corn steep liquor for economical production of bio-succinic acid by Actinobacillus succinogenes 130Z. In this study, a final succinic acid concentration of 20.6 g/L was obtained from the use of corn steep liquor as the nitrogen source, which was comparable with the use of yeast extract as the nitrogen source that had a final succinate concentration of 21.4 g/l. In terms of economical wise, corn steep liquor was priced at 200 /ton, which was one fifth of the cost of yeast extract at 1000 /ton. Therefore, corn steep liquor can be considered as a potential nitrogen source in biochemical industries instead of the costly yeast extract.

  14. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    PubMed

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed. PMID:25163531

  15. Biotechnology for Chemical Production: Challenges and Opportunities.

    PubMed

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper. PMID:26683567

  16. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products.

    PubMed

    Devappa, Rakshit K; Rakshit, Sudip K; Dekker, Robert F H

    2015-11-01

    The global forestry industry after experiencing a market downturn during the past decade has now aimed its vision towards the integrated biorefinery. New business models and strategies are constantly being explored to re-invent the global wood and pulp/paper industry through sustainable resource exploitation. The goal is to produce diversified, innovative and revenue generating product lines using on-site bioresources (wood and tree residues). The most popular product lines are generally produced from wood fibers (biofuels, pulp/paper, biomaterials, and bio/chemicals). However, the bark and other tree residues like foliage that constitute forest wastes, still remain largely an underexploited resource from which extractives and phytochemicals can be harnessed as by-products (biopharmaceuticals, food additives and nutraceuticals, biopesticides, cosmetics). Commercially, Populus (poplar) tree species including hybrid varieties are cultivated as a fast growing bioenergy crop, but can also be utilized to produce bio-based chemicals. This review identifies and underlines the potential of natural products (phytochemicals) from Populus species that could lead to new business ventures in biorefineries and contribute to the bioeconomy. In brief, this review highlights the importance of by-products/co-products in forest industries, methods that can be employed to extract and purify poplar phytochemicals, the potential pharmaceutical and other uses of >160 phytochemicals identified from poplar species - their chemical structures, properties and bioactivities, the challenges and limitations of utilizing poplar phytochemicals, and potential commercial opportunities. Finally, the overall discussion and conclusion are made considering the recent biotechnological advances in phytochemical research to indicate the areas for future commercial applications from poplar tree species. PMID:25733011

  17. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    PubMed

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates. PMID:26043971

  18. Cellulosic ethanol production from green solvent-pretreated rice straw

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural deep eutectic solvents (NADES) are recently developed “green solvents” consisted of bio-based ionic liquids and deep eutectic solvents mainly from plant based metabolites. NADES are biodegradable, non-toxic and environment-friendly. Conventional chemically synthesized ionic liquids have be...

  19. Evaluation of the environmental performance of alternatives for polystyrene production in Brazil.

    PubMed

    Hansen, Adriana Petrella; da Silva, Gil Anderi; Kulay, Luiz

    2015-11-01

    The global demand for polystyrene is supposed to reach an overall baseline of 23.5 million tons by 2020. The market has experienced the effects of such growth, especially regarding the environmental performance of the production processes. In Brazil, renewable assets have been used to overcome the adverse consequences of this expansion. This study evaluates this issue for the production of Brazilian polystyrene resins, general-purpose polystyrene (GPPS) and high-impact polystyrene (HIPS). The effects of replacing fossil ethylene with a biobased alternative are also investigated. Life Cycle Assessment is applied for ten scenarios, with different technological approaches for renewable ethylene production and an alternative for obtaining bioethanol, which considers the export of electricity. The fossil GPPS and HIPS show a better performance than the partially renewable sources in terms of Climate Change (CC), Terrestrial Acidification (TA), Photochemical Oxidant Formation (POF), and Water Depletion (WD). The exception is Fossil Depletion (FD), a somewhat predictable result. The main environmental loads associated with the renewable options are related to the sugarcane production. Polybutadiene fails to provide greater additional impact to HIPS when compared to GPPS. With regard to obtaining ethylene from ethanol, Adiabatic Dehydration (AD) technology consumes less sugarcane than Adiabatic Dehydration at High Pressure (ADHP), which leads to gains in TA and POF. In contrast, ADHP was more eco-friendly for WD because of its lower water losses and in terms of CC because of the advantageous balance of fossil CO2(eq) at the agricultural stage and the lower consumption of natural gas in ethylene production. The electricity export is an auspicious environmental opportunity because it can counterbalance some of the negative impacts associated with the renewable route. According to a "cradle-to-grave" perspective, the partially renewable resins show a more favorable balance of

  20. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    PubMed

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover. PMID:25947618

  1. Life cycle assessment of potential biojet fuel production in the United States.

    PubMed

    Agusdinata, Datu B; Zhao, Fu; Ileleji, Klein; DeLaurentis, Dan

    2011-11-01

    The objective of this paper is to reveal to what degree biobased jet fuels (biojet) can reduce greenhouse gas (GHG) emissions from the U.S. aviation sector. A model of the supply and demand chain of biojet involving farmers, biorefineries, airlines, and policymakers is developed by considering factors that drive the decisions of actors (i.e., decision-makers and stakeholders) in the life cycle stages. Two kinds of feedstock are considered: oil-producing feedstock (i.e., camelina and algae) and lignocellulosic biomass (i.e., corn stover, switchgrass, and short rotation woody crops). By factoring in farmer/feedstock producer and biorefinery profitability requirements and risk attitudes, land availability and suitability, as well as a time delay and technological learning factor, a more realistic estimate of the level of biojet supply and emissions reduction can be developed under different oil price assumptions. Factors that drive biojet GHG emissions and unit production costs from each feedstock are identified and quantified. Overall, this study finds that at likely adoption rates biojet alone would not be sufficient to achieve the aviation emissions reduction target. In 2050, under high oil price scenario assumption, GHG emissions can be reduced to a level ranging from 55 to 92%, with a median value of 74%, compared to the 2005 baseline level. PMID:21958200

  2. 7 CFR 3430.704 - Project types and priorities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) relevant to production of raw materials for conversion to biofuels and biobased products. (2) Biofuels and... biofuels and biobased products; and (ii) Product diversification through technologies relevant to... potentially can increase the feasibility of fuel production in a biorefinery. (3) Biofuels...

  3. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis.

    PubMed

    Zhang, Hongsen; Liu, Gang; Zhang, Jian; Bao, Jie

    2016-11-01

    High titer gluconic acid and xylonic acid were simultaneously fermented by Gluconobacter oxydans DSM 2003 using corn stover feedstock after dry dilute sulfuric acid pretreatment, biodetoxification and high solids content hydrolysis. Maximum sodium gluconate and xylonate were produced at the titer of 132.46g/L and 38.86g/L with the overall yield of 97.12% from glucose and 90.02% from xylose, respectively. The drawbacks of filamentous fungus Aspergillus niger including weak inhibitor tolerance, large pellet formation and no xylose utilization were solved by using the bacterium strain G. oxydans. The obtained sodium gluconate/xylonate product was highly competitive as cement retarder additive to the commercial product from corn feedstock. The techno-economic analysis (TEA) based on the Aspen Plus modeling was performed and the minimum sodium gluconate/xylonate product selling price (MGSP) was calculated as $0.404/kg. This study provided a practical and economic competitive process of lignocellulose utilization for production of value-added biobased chemicals. PMID:27484668

  4. Modeling potential freshwater ecotoxicity impacts due to pesticide use in biofuel feedstock production: the cases of maize, rapeseed, salix, soybean, sugar cane, and wheat.

    PubMed

    Nordborg, Maria; Cederberg, Christel; Berndes, Göran

    2014-10-01

    The inclusion of ecotoxicity impacts of pesticides in environmental assessments of biobased products has long been hampered by methodological challenges. We expanded the pesticide database and the regional coverage of the pesticide emission model PestLCI v.2.0, combined it with the impact assessment model USEtox, and assessed potential freshwater ecotoxicity impacts (PFEIs) of pesticide use in selected biofuel feedstock production cases, namely: maize (Iowa, US, two cases), rapeseed (Schleswig-Holstein, Germany), Salix (South Central Sweden), soybean (Mato Grosso, Brazil, two cases), sugar cane (São Paulo, Brazil), and wheat (Schleswig-Holstein, Germany). We found that PFEIs caused by pesticide use in feedstock production varied greatly, up to 3 orders of magnitude. Salix has the lowest PFEI per unit of energy output and per unit of cultivated area. Impacts per biofuel unit were 30, 750, and 1000 times greater, respectively, for the sugar cane, wheat and rapeseed cases than for Salix. For maize genetically engineered (GE) to resist glyphosate herbicides and to produce its own insecticidal toxin, maize GE to resist glyphosate, soybeans GE to resist glyphosate and conventional soybeans, the impacts were 110, 270, 305, and 310 times greater than for Salix, respectively. The significance of field and site-specific conditions are discussed, as well as options for reducing negative impacts in biofuel feedstock production. PMID:25207789

  5. Evaluation of an integrated biorefinery based on fractionation of spent sulphite liquor for the production of an antioxidant-rich extract, lignosulphonates and succinic acid.

    PubMed

    Alexandri, Maria; Papapostolou, Harris; Komaitis, Michael; Stragier, Lutgart; Verstraete, Willy; Danezis, Georgios P; Georgiou, Constantinos A; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2016-08-01

    Spent sulphite liquor (SSL) has been used for the production of lignosulphonates (LS), antioxidants and bio-based succinic acid. Solvent extraction of SSL with isopropanol led to the separation of approximately 80% of the total LS content, whereas the fermentations carried out using the pretreated SSL with isopropanol led to the production of around 19g/L of succinic acid by both Actinobacillus succinogenes and Basfia succiniciproducens. Fractionation of SSL via nanofiltration to separate the LS and solvent extraction using ethyl acetate to separate the phenolic compounds produced a detoxified sugar-rich stream that led to the production of 39g/L of succinic acid by B. succiniciproducens. This fractionation scheme resulted also in the production of 32.4g LS and 1.15g phenolic-rich extract per 100g of SSL. Both pretreatment schemes removed significant quantities of metals and heavy metals. This novel biorefinery concept could be integrated in acidic sulphite pulping mills. PMID:27176670

  6. 7 CFR 2902.8 - Determining life cycle costs, environmental and health benefits, and performance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... analytical approaches: The BEES analytical tool along with the qualifications of the independent testing... standard for evaluating and reporting on environmental performance of biobased products D7075. Both...

  7. d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Kumar, Amit; Hardwidge, Philip R; Tanaka, Tsutomu; Kondo, Akihiko; Vadlani, Praveen V

    2016-03-01

    d-lactic acid is of great interest because of increasing demand for biobased poly-lactic acid (PLA). Blending poly-l-lactic acid with poly-d-lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d-lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l-lactate-deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1-pCU-PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d-lactic acid yield and productivity. d-lactic acid (27.3 g L(-1) ) and productivity (0.75 g L(-1) h(-1) ) was obtained from corn stover and d-lactic acid (22.0 g L(-1) ) and productivity (0.65 g L(-1) h(-1) ) was obtained from sorghum stalks using ΔldhL1-pCU-PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d-lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d-lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271-278, 2016. PMID:26700935

  8. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.

    PubMed

    Bansal, Sunil; Durrett, Timothy P

    2016-01-01

    Triacylglycerols (TAG) containing modified fatty acids with functionality beyond those found in commercially grown oil seed crops can be used as feedstocks for biofuels and bio-based materials. Over the years, advances have been made in transgenically engineering the production of various modified fatty acids in the model plant Arabidopsis thaliana. However, the inability to produce large quantities of transgenic seed has limited the functional testing of the modified oil. In contrast, the emerging oil seed crop Camelina sativa possesses important agronomic traits that recommend it as an ideal production platform for biofuels and industrial feedstocks. Camelina possesses low water and fertilizer requirements and is capable of yields comparable to other oil seed crops, particularly under stress conditions. Importantly, its relatively short growing season enables it to be grown as part of a double cropping system. In addition to these valuable agronomic features, Camelina is amenable to rapid metabolic engineering. The development of a simple and effective transformation method, combined with the availability of abundant transcriptomic and genomic data, has allowed the generation of transgenic Camelina lines capable of synthesizing high levels of unusual lipids. In some cases these levels have surpassed what was achieved in Arabidopsis. Further, the ability to use Camelina as a crop production system has allowed for the large scale growth of transgenic oil seed crops, enabling subsequent physical property testing. The application of new techniques such as genome editing will further increase the suitability of Camelina as an ideal platform for the production of biofuels and bio-materials. PMID:26107412

  9. [Sustainable production of bulk chemicals by application of "white biotechnology"].

    PubMed

    Patel, M K; Dornburg, V; Hermann, B G; Shen, Li; van Overbeek, Leo

    2008-12-01

    Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bacteria (or yeasts) or enzymes for the conversion of the fermentable sugar to the target product. It is shown that White Biotechnology offers substantial savings of non-renewable energy use and greenhouse gas emissions for nearly all of the products studied. Under favorable boundary conditions up to two thirds (67%) of the current non-renewable energy use for the production of the selected chemicals can be saved by 2050 if substantial technological progress is made and if the use of lignocellulosic feedstocks is successfully developed. The analysis for Europe (E.U. 25 countries) shows that land requirements related to White Biotechnology chemicals are not likely to become a critical issue in the next few decades, especially considering the large unused and underutilized resources in Eastern Europe. Substantial macroeconomic savings can be achieved under favourable boundary conditions. In principle, natural bacteria and enzymes can be used for White Biotechnology but, according to many experts in the fields, Genetically Modified Organisms (GMO) will be necessary in order to achieve the high yields, concentrations and productivities that are required to reach economic viability. Safe containment and inactivation of GMOs after release is very important because not all possible implications caused by the interaction of recombinant genes with other populations can be foreseen. If adequate precautionary measures are taken, the risks related to the use of genetically modified organisms in White Biotechnology are manageable. We conclude that the core requirements to be fulfilled in order to make clear steps towards a bio-based chemical industry are substantial technological progress in the

  10. 75 FR 33497 - Competitive and Noncompetitive Nonformula Federal Assistance Programs-Administrative Provisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... research on and development and demonstration of biofuels and biobased products; and the methods, practices, and technologies for the production of biofuels and biobased products. Should the Secretaries of USDA... abundant commercial production of biofuels at prices competitive with fossil fuels; (b) high-value...

  11. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Sesquiterpenes are a class of natural products with a diverse range of attractive industrial proprieties. Due to economic difficulties of sesquiterpene production via extraction from plants or chemical synthesis there is interest in developing alternative and cost efficient bioprocesses. The hydrocarbon α-santalene is a precursor of sesquiterpenes with relevant commercial applications. Here, we construct an efficient Saccharomyces cerevisiae cell factory for α-santalene production. Results A multistep metabolic engineering strategy targeted to increase precursor and cofactor supply was employed to manipulate the yeast metabolic network in order to redirect carbon toward the desired product. To do so, genetic modifications were introduced acting to optimize the farnesyl diphosphate branch point, modulate the mevalonate pathway, modify the ammonium assimilation pathway and enhance the activity of a transcriptional activator. The approach employed resulted in an overall α-santalene yield of a 0.0052 Cmmol (Cmmol glucose)-1 corresponding to a 4-fold improvement over the reference strain. This strategy, combined with a specifically developed continuous fermentation process, led to a final α-santalene productivity of 0.036 Cmmol (g biomass)-1 h-1. Conclusions The results reported in this work illustrate how the combination of a metabolic engineering strategy with fermentation technology optimization can be used to obtain significant amounts of the high-value sesquiterpene α-santalene. This represents a starting point toward the construction of a yeast “sesquiterpene factory” and for the development of an economically viable bio-based process that has the potential to replace the current production methods. PMID:22938570

  12. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems

    PubMed Central

    Williams, Alwyn; Kane, Daniel A.; Ewing, Patrick M.; Atwood, Lesley W.; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S.; Grandy, A. Stuart; Huerd, Sheri C.; Hunter, Mitchell C.; Koide, Roger T.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde S.; Spokas, Kurt A.; Yannarell, Anthony C.; Jordan, Nicholas R.

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services); and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services

  13. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    PubMed

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  14. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds.

    PubMed

    Sonoki, Tomonori; Morooka, Miyuki; Sakamoto, Kimitoshi; Otsuka, Yuichiro; Nakamura, Masaya; Jellison, Jody; Goodell, Barry

    2014-12-20

    The decarboxylation reaction of protocatechuate has been described as a bottleneck and a rate-limiting step in cis,cis-muconate (ccMA) bioproduction from renewable feedstocks such as sugar. Because sugars are already in high demand in the development of many bio-based products, our work focuses on improving protocatechuate decarboxylase (Pdc) activity and ccMA production in particular, from lignin-related aromatic compounds. We previously had transformed an Escherichia coli strain using aroY, which had been used as a protocatechuate decarboxylase encoding gene from Klebsiella pneumoniae subsp. pneumoniae A170-40, and inserted other required genes from Pseudomonas putida KT2440, to allow the production of ccMA from vanillin. This recombinant strain produced ccMA from vanillin, however the Pdc reaction step remained a bottleneck during incubation. In the current study, we identify a way to increase protocatechuate decarboxylase activity in E. coli through enzyme production involving both aroY and kpdB; the latter which encodes for the B subunit of 4-hydroxybenzoate decarboxylase. This permits expression of Pdc activity at a level approximately 14-fold greater than the strain with aroY only. The expression level of AroY increased, apparently as a function of the co-expression of AroY and KpdB. Our results also imply that ccMA may inhibit vanillate demethylation, a reaction step that is rate limiting for efficient ccMA production from lignin-related aromatic compounds, so even though ccMA production may be enhanced, other challenges to overcome vanilate demethylation inhibition still remain. PMID:25449108

  15. Production facilities

    SciTech Connect

    Not Available

    1989-01-01

    This book presents a cross section of different solutions to the many unique production problems operators face. Sections address benefit vs. cost options for production facility designs, oil and gas separation processes and equipment, oil treating and desalting systems, and water treating methods and equipment. Papers were selected to give an overall view of factors involved in optimizing the design of cost-effective production facilities.

  16. L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans.

    PubMed

    Ou, Mark S; Ingram, Lonnie O; Shanmugam, K T

    2011-05-01

    Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150-180 g l(-1)) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l(-1) and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to L: (+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations. PMID:20694852

  17. Household Production.

    ERIC Educational Resources Information Center

    Scholl, Kathleen K.; And Others

    1982-01-01

    Compiled to give readers information on current research in household production, this special issue focuses on the family as a provider of goods and services. It includes five feature articles, a summary of a survey of American farm women, and a brief analysis of sources of time-use data for estimating the value of household production. Covered…

  18. Solvent Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities such as corn and molasses was an important historical fermentation. Unfortunately,...

  19. Hydrogen Production

    SciTech Connect

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  20. Agricultural Production.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This brochure describes the philosophy and scope of a secondary-level course in agricultural production. Addressed in the individual units of the course are the following topics: careers in agriculture and agribusiness, animal science and livestock production, agronomy, agricultural mechanics, supervised occupational experience programs, and the…

  1. Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews the current process technologies for fuel ethanol production. In the US, almost all commercial fuel ethanol is produced from corn whereas cane sugar is used almost exclusively in Brazil. In Europe, two major types of feedstock considered for fuel ethanol production are be...

  2. Productive Failure

    ERIC Educational Resources Information Center

    Kapur, Manu

    2008-01-01

    This study demonstrates an existence proof for "productive failure": engaging students in solving complex, ill-structured problems without the provision of support structures can be a productive exercise in failure. In a computer-supported collaborative learning setting, eleventh-grade science students were randomly assigned to one of two…

  3. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept

    PubMed Central

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL−1 and 4.96 [±0.15] g dry weight L−1) compared closely to those of Turbo (37.43 [±1.99] mg mL−1 and 4.78 [±0.10] g L−1, respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4. PMID:25401067

  4. Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production.

    PubMed

    Li, Ting; Fan, Jun; Chen, Wensen; Shu, Jiayan; Qian, Xueren; Wei, Haifeng; Wang, Qingwen; Shen, Jing

    2016-09-20

    The sustainable, efficient use of renewable bio-based additives in the production of various materials fits well into the concept of sustainability. Here, the concept of coaggregation of mineral filler particles and starch granules for improving filler-fiber interaction in paper-based cellulosic networks is presented. Coaggregation of precipitated calcium carbonate filler particles and uncooked, unmodified corn starch granules by cationic polyacrylamide (a cationic high molecular weight polymer flocculant) in combination with bentonite (an anionic microparticle) prior to addition to cellulosic fiber slurry delivered enhanced filler bondability with cellulosic fibers. For instance, under the conditions studied, preaggregation resulted in an increase in filler bondability factor from 9.24 to 15.21 at starch dosage of 1% (on the basis of the dry weight of papermaking stock). The swelling and gelatinization of the starch granules in starch-filler preaggregates or hybrids enabled the "bridging" of the gaps in cellulosic networks, leading to structural consolidation and strength enhancement. PMID:27261726

  5. 76 FR 35318 - Competitive and Noncompetitive Nonformula Federal Assistance Programs-Administrative Provisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... interim rule amending 7 CFR part 3430 which was published at 75 FR 33497 on June 14, 2010, is adopted as a... demonstration of biofuels and biobased products; and the methods, practices, and technologies for the production of biofuels and biobased products. No program specific comments were received. NIFA will proceed...

  6. Household Products

    MedlinePlus

    The products you use for cleaning, carpentry, auto repair, gardening, and many other household uses can contain ingredients that can harm you, your family, and the environment. These include Oven and ...

  7. Household Products

    MedlinePlus

    The products you use for cleaning, carpentry, auto repair, gardening, and many other household uses can contain ingredients that can harm you, your family, and the environment. These include Oven and drain cleaners Laundry ...

  8. Simultaneous and selective decarboxylation of L-serine and deamination of L-phenylalanine in an amino acid mixture--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Witte-van Dijk, Susan C M; Sanders, Johan P M

    2016-01-25

    Amino acids (AAs) obtained from the hydrolysis of biomass-derived proteins are interesting feedstocks for the chemical industry. They can be prepared from the byproduct of biofuel production and agricultural wastes. They are rich in functionalities needed in petrochemicals, providing the opportunity to save energy, reagents, and process steps. However, their separation is required before they can be applied for further applications. Electrodialysis (ED) is a promising separation method, but its efficiency needs to be improved when separating AAs with similar isoelectric points. Thus, specific conversions are required to form product with different charges. Here we studied the enzymatic conversions which can be used as a means to aid the ED separation of neutral AAs. A model mixture containing L-serine, L-phenylalanine and L-methionine was used. The reactions of L-serine decarboxylase and L-phenylalanine ammonia-lyase were employed to specifically convert serine and phenylalanine into ethanolamine and trans-cinnamic acid. At the isoelectric point of methionine (pH 5.74), the charge of ethanolamine and trans-cinnamic acid are +1 and -1, therefore facilitating potential separation into three different streams by electrodialysis. Here the enzyme kinetics, specificity, inhibition and the operational stabilities were studied, showing that both enzymes can be applied simultaneously to aid the ED separation of neutral AAs. PMID:25976628

  9. Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate.

    PubMed

    Vuoristo, Kiira S; Mars, Astrid E; Sangra, Jose Vidal; Springer, Jan; Eggink, Gerrit; Sanders, Johan P M; Weusthuis, Ruud A

    2015-12-01

    Itaconic acid, an unsaturated C5-dicarboxylic acid, is a biobased building block for the polymer industry. The purpose of this study was to establish proof of principle for an anaerobic fermentation process for the production of itaconic acid by modification of the mixed acid fermentation pathway of E. coli. E. coli BW25113 (DE3) and the phosphate acetyltransferase (pta) and lactate dehydrogenase (ldhA) deficient strain E. coli BW25113 (DE3) Δpta-ΔldhA were used to study anaerobic itaconate production in E. coli. Heterologous expression of the gene encoding cis-aconitate decarboxylase (cadA) from A. terreus in E. coli BW25113 (DE3) did not result in itaconate production under anaerobic conditions, but 0.08 mM of itaconate was formed when the genes encoding citrate synthase (gltA) and aconitase (acnA) from Corynebacterium glutamicum were also expressed. The same amount was produced when cadA was expressed in E. coli BW25113 (DE3) Δpta-ΔldhA. The titre increased 8 times to 0.66 mM (1.2 % Cmol) when E. coli BW25113 (DE3) Δpta-ΔldhA also expressed gltA and acnA. In addition, this strain produced 8.5 mM (13 % Cmol) of glutamate. The use of a nitrogen-limited growth medium reduced the accumulation of glutamate by nearly 50 % compared to the normal medium, and also resulted in a more than 3-fold increase of the itaconate titre to 2.9 mM. These results demonstrated that E. coli has potential to produce itaconate and glutamate under anaerobic conditions, closing the redox balance by co-production of succinate or ethanol with H2 and CO2. PMID:26384341

  10. The Impact of Region, Nitrogen Use Efficiency, and Grower Incentives on Greenhouse Gas Mitigation in Canola (Brassica napus) Production

    NASA Astrophysics Data System (ADS)

    Hammac, W. A.; Pan, W.; Koenig, R. T.; McCracken, V.

    2012-12-01

    The Environmental Protection Agency (EPA) has mandated through the second renewable fuel standard (RFS2) that biodiesel meet a minimum threshold requirement (50% reduction) for greenhouse gas (GHG) emission reduction compared to fossil diesel. This designation is determined by life cycle assessment (LCA) and carries with it potential for monetary incentives for biodiesel feedstock growers (Biomass Crop Assistance Program) and biodiesel processors (Renewable Identification Numbers). A national LCA was carried out for canola (Brassica napus) biodiesel feedstock by the EPA and it did meet the minimum threshold requirement. However, EPA's national LCA does not provide insight into regional variation in GHG mitigation. The authors propose for full GHG reduction potential of biofuels to be realized, LCA results must have regional specificity and should inform incentives for growers and processors on a regional basis. The objectives of this work were to determine (1) variation in biofuel feedstock production related GHG emissions between three agroecological zones (AEZs) in eastern Washington State (2) the impact of nitrogen use efficiency (NUE) on GHG mitigation potential for each AEZ and (3) the impact of incentives on adoption of oilseed production. Results from objective (1) revealed there is wide variability in range for GHG estimates both across and within AEZs based on variation in farming practices and environment. It is expected that results for objective (2) will show further GHG mitigation potential due to minimizing N use and therefore fertilizer transport and soil related GHG emission while potentially increasing biodiesel production per hectare. Regional based incentives may allow more timely achievement of goals for bio-based fuels production. Additionally, incentives may further increase GHG offsetting by promoting nitrogen conserving best management practices implementation. This research highlights the need for regional assessment/incentive based

  11. Cordless Products

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Apollo-era technology spurred the development of cordless products that we take for granted everyday. In the 1960s, NASA asked Black Decker to develop a special drill that would be powerful enough to cut through hard layers of the lunar surface and be lightweight, compact, and operate under its own power source, allowing Apollo astronauts to collect lunar samples further away from the Lunar Experiment Module. In response, Black Decker developed a computer program that analyzed and optimized drill motor operations. From their analysis, engineers were able to design a motor that was powerful yet required minimal battery power to operate. Since those first days of cordless products, Black Decker has continued to refine this technology and they now sell their rechargeable products worldwide (i.e. the Dustbuster, cordless tools for home and industrial use, and medical tools.)

  12. Bottom production

    SciTech Connect

    Baines, J.; Baranov, S.P.; Bartalini, P.; Bay, A.; Bouhova, E.; Cacciari, M.; Caner, A.; Coadou, Y.; Corti, G.; Damet, J.; Dell-Orso, R.; De Mello Neto, J.R.T.; Domenech, J.L.; Drollinger, V.; Eerola, P.; Ellis, N.; Epp, B.; Frixione, S.; Gadomski, S.; Gavrilenko, I.; Gennai, S.; George, S.; Ghete, V.M.; Guy, L.; Hasegawa, Y.; Iengo, P.; Jacholkowska, A.; Jones, R.; Kharchilava, A.; Kneringer, E.; Koppenburg, P.; Korsmo, H.; Kramer, M.; Labanca, N.; Lehto, M.; Maltoni, F.; Mangano, M.L.; Mele, S.; Nairz, A.M.; Nakada, T.; Nikitin, N.; Nisati, A.; Norrbin, E.; Palla, F.; Rizatdinova, F.; Robins, S.; Rousseau, D.; Sanchis-Lozano, M.A.; Shapiro, M.; Sherwood, P.; Smirnova, L.; Smizanska, M.; Starodumov, A.; Stepanov, N.; Vogt, R.

    2000-03-15

    In the context of the LHC experiments, the physics of bottom flavoured hadrons enters in different contexts. It can be used for QCD tests, it affects the possibilities of B decays studies, and it is an important source of background for several processes of interest. The physics of b production at hadron colliders has a rather long story, dating back to its first observation in the UA1 experiment. Subsequently, b production has been studied at the Tevatron. Besides the transverse momentum spectrum of a single b, it has also become possible, in recent time, to study correlations in the production characteristics of the b and the b. At the LHC new opportunities will be offered by the high statistics and the high energy reach. One expects to be able to study the transverse momentum spectrum at higher transverse momenta, and also to exploit the large statistics to perform more accurate studies of correlations.

  13. Preface: Biocatalysis and Agricultural Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book was assembled with the intent of bringing together current advances and in-depth reviews of biocatalysis and agricultural biotechnology with emphasis on bio-based products and agricultural biotechnology. Recent energy and food crises point out the importance of bio-based products from ren...

  14. 7 CFR 3430.702 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... renewable biomass into: (1) Heat; (2) Power; (3) Biobased products; or (4) Advanced biofuels. Biorefinery means a facility (including equipment and processes) that— (1) Converts renewable biomass into biofuels... processing units necessary to convert biomass feedstock into biofuels/bioenergy/biobased products at...

  15. 7 CFR 3430.701 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... production of biofuels at prices competitive with fossil fuels; (b) High-value biobased products— (1) To enhance the economic viability of biofuels and power, (2) To serve as substitutes for petroleum-based... biomass for conversion to biofuels, bioenergy, and biobased products....

  16. 7 CFR 3430.701 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... production of biofuels at prices competitive with fossil fuels; (b) High-value biobased products— (1) To enhance the economic viability of biofuels and power, (2) To serve as substitutes for petroleum-based... biomass for conversion to biofuels, bioenergy, and biobased products....

  17. 7 CFR 3430.701 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... production of biofuels at prices competitive with fossil fuels; (b) High-value biobased products— (1) To enhance the economic viability of biofuels and power, (2) To serve as substitutes for petroleum-based... biomass for conversion to biofuels, bioenergy, and biobased products....

  18. 7 CFR 3201.29 - Disposable cutlery.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... one-time use in eating food. (b) Minimum biobased content. The preferred procurement product must have... product. (c) Preference compliance date. No later than May 14, 2009, procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased disposable cutlery. By...

  19. 7 CFR 3201.29 - Disposable cutlery.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... one-time use in eating food. (b) Minimum biobased content. The preferred procurement product must have... product. (c) Preference compliance date. No later than May 14, 2009, procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased disposable cutlery. By...

  20. 78 FR 29125 - Biomass Research and Development Technical Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... of Energy Efficiency and Renewable Energy Biomass Research and Development Technical Advisory... open meeting. SUMMARY: This notice announces an open meeting of the Biomass Research and Development... development leading to the production of biobased fuels and biobased products. Tentative Agenda: Agenda...

  1. TENSILE AND FLEXURAL PROPERTIES OF BM0 TO BM20 BIOCOMPOSITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plastic products containing up to 20% biomass (BM20) will meet the goal of U.S. Executive Order 13101 mandating that goods purchased by the Federal Government contain biobased or recycled materials. The availability of products in the marketplace containing biobased materials such as poly(lactic) a...

  2. 7 CFR 2902.14 - Penetrating lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... biobased content is 68 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c.... The designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11....

  3. Novolak Production

    NASA Astrophysics Data System (ADS)

    Aiba, Hiroshi

    Novolak resins are produced by reacting formaldehyde (30-55% concentration) with phenol under acidic conditions, with oxalic acid as the preferred catalyst and in special conditions, sulfuric acid. Depending on the batch size, all raw material components can be introduced into the reactor, or when there is an increase in the batch size as well as in the reactor volume, the reaction exotherm is controlled by a gradual addition of formaldehyde. Modern novolak production facilities are automated and programmed for reduced operational cost. A flow diagram of a general production line for the manufacture of novolak is shown. Recovery of the novolak is accomplished by the removal of water and devolatilization of crude novolak to molten, low-free phenol novolak resin which can be isolated as flake or pastille or dissolved in appropriate solvents. Novolak is stored either in a solid flake or pastille form or in solution. Most production is conducted under atmospheric conditions, but there are some recent, novel activities such as pressure in a hermetically-closed reactor reaching 0.1-10 MPa by using the heat of reaction without reflux to shorten reaction time, accelerating dehydration time by flash distillation, and providing economic benefit in the cost of novolak production.

  4. Transplant production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For field pepper (Capsicum spp.) production, plants can be established from direct seed or transplants depending on the location and cultural practices for the specific pepper type grown. Direct seeding can result in slow, variable, and reduced plant stands due to variations in soil temperature, wat...

  5. Secondary Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of their name, "secondary" products are essential for plant survival. They are required for basic cell functions as well as communicating the plant's presence to the surrounding environment and defense against pests as defined in the broad sense (i.e., diseases, nematodes, insects and plan...

  6. New Products.

    ERIC Educational Resources Information Center

    TechTrends, 1992

    1992-01-01

    Reviews new educational technology products, including a microcomputer-based tutoring system, laser barcode reader, video/data projectors, CD-ROM for notebook computers, a system to increase a printer's power, data cartridge storage shell, knowledge-based decision tool, video illustrator, interactive videodiscs, surge protectors, scanner system,…

  7. Metabolic engineering of Escherichia coli for ethanol production without foreign genes

    NASA Astrophysics Data System (ADS)

    Kim, Youngnyun

    . coli provides a potential biocatalyst for conversion of pentoses derived from cellulosic biomass to biobased products without the introduction of new genes.

  8. Community proteomics provides functional insight into polyhydroxyalkanoate production by a mixed microbial culture cultivated on fermented dairy manure.

    PubMed

    Hanson, Andrea J; Guho, Nicholas M; Paszczynski, Andrzej J; Coats, Erik R

    2016-09-01

    Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures (MMCs). To maximize PHA production, MMCs are enriched for bacteria with a high polymer storage capacity through the application of aerobic dynamic feeding (ADF) in a sequencing batch reactor (SBR), which consequently induces a feast-famine metabolic response. Though the feast-famine response is generally understood empirically at a macro-level, the molecular level is less refined. The objective of this study was to investigate the microbial community composition and proteome profile of an enriched MMC cultivated on fermented dairy manure. The enriched MMC exhibited a feast-famine response and was capable of producing up to 40 % (wt. basis) PHA in a fed-batch reactor. High-throughput 16S rRNA gene sequencing revealed a microbial community dominated by Meganema, a known PHA-producing genus not often observed in high abundance in enrichment SBRs. The application of the proteomic methods two-dimensional electrophoresis and LC-MS/MS revealed PHA synthesis, energy generation, and protein synthesis prominently occurring during the feast phase, corroborating bulk solution variable observations and theoretical expectations. During the famine phase, nutrient transport, acyl-CoA metabolism, additional energy generation, and housekeeping functions were more pronounced, informing previously under-determined MMC functionality under famine conditions. During fed-batch PHA production, acetyl-CoA acetyltransferase and PHA granule-bound phasin proteins were in increased abundance relative to the SBR, supporting the higher PHA content observed. Collectively, the results provide unique microbial community structural and functional insight into feast-famine PHA production from waste feedstocks using MMCs. PMID:27147532

  9. Cellulosic ethanol production from natural deep eutectic solvent-pretreated rice straw

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural deep eutectic solvents (NADES) are recently developed “green solvents” consisted of bio-based ionic liquids and deep eutectic solvents mainly from plant based metabolites. NADES are biodegradable, non-toxic and environment-friendly. Conventional chemically synthesized ionic liquids have be...

  10. 7 CFR 2902.6 - Providing product information to Federal agencies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to the Federal Trade Commission Guides for the Use of Environmental Marketing Claims, 16 CFR part 260. ... Web site. An informational USDA Web site implementing section 9002 can be found at: http://www.biobased.oce.usda.gov. USDA will maintain a voluntary Web-based information site for manufacturers...

  11. 7 CFR 2902.6 - Providing product information to Federal agencies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to the Federal Trade Commission Guides for the Use of Environmental Marketing Claims, 16 CFR part 260. ... Web site. An informational USDA Web site implementing section 9002 can be found at: http://www.biobased.oce.usda.gov. USDA will maintain a voluntary Web-based information site for manufacturers...

  12. Oil Production

    Energy Science and Technology Software Center (ESTSC)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  13. Tequila production.

    PubMed

    Cedeño, M

    1995-01-01

    Tequila is obtained from the distillation of fermented juice of agave plant, Agave tequilana, to which up to 49% (w/v) of an adjunct sugar, mainly from cane or corn, could be added. Agave plants require from 8 to 12 years to mature and during all this time cleaning, pest control, and slacken of land are required to produce an initial raw material with the appropriate chemical composition for tequila production. Production process comprises four steps: cooking to hydrolyze inulin into fructose, milling to extract the sugars, fermentation with a strain of Saccharomyces cerevisiae to convert the sugars into ethanol and organoleptic compounds, and, finally, a two-step distillation process. Maturation, if needed, is carried out in white oak barrels to obtain rested or aged tequila in 2 or 12 months, respectively. PMID:7736598

  14. Product separator

    DOEpatents

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  15. Aqueous production.

    PubMed

    Krupin, T; Wax, M; Moolchandani, J

    1986-01-01

    The formation of aqueous humour by the ciliary body is a complex process. Active transport of solutes by the ciliary process epithelium is an energy-dependent mechanism that selectively transports substances against an electrochemical gradient across the cell membranes. Water passively follows the active solute transport. In addition to these active transport processes, ultrafiltration contributes to the formation of aqueous humour. The ciliary epithelium contains enzyme systems that function in the production of aqueous humour. The enzymes sodium-potassium-activated adenosine triphosphatase [(Na+:K+)ATPase] and carbonic anhydrase participate in the active transport across this epithelium. Inhibition of these enzymes lowers intraocular pressure (IOP) by decreasing aqueous humour production. the ciliary epithelium contains both alpha- and beta-adrenergic receptors. Electrophysiologic studies on the isolated iris-ciliary body (I-CB) preparation provide a means to study direct effects of the adrenergic agents on transepithelial properties of the ciliary epithelium. This paper will discuss the enzymatic and adrenergic properties of the ciliary epithelium as they relate to active transport and thereby aqueous humour production. PMID:3026067

  16. Comparative life cycle assessment (LCA) of construction and demolition (C&D) derived biomass and U.S. northeast forest residuals gasification for electricity production.

    PubMed

    Nuss, Philip; Gardner, Kevin H; Jambeck, Jenna R

    2013-04-01

    With the goal to move society toward less reliance on fossil fuels and the mitigation of climate change, there is increasing interest and investment in the bioenergy sector. However, current bioenergy growth patterns may, in the long term, only be met through an expansion of global arable land at the expense of natural ecosystems and in competition with the food sector. Increasing thermal energy recovery from solid waste reduces dependence on fossil- and biobased energy production while enhancing landfill diversion. Using inventory data from pilot processes, this work assesses the cradle-to-gate environmental burdens of plasma gasification as a route capable of transforming construction and demolition (C&D) derived biomass (CDDB) and forest residues into electricity. Results indicate that the environmental burdens associated with CDDB and forest residue gasification may be similar to conventional electricity generation. Land occupation is lowest when CDDB is used. Environmental impacts are to a large extent due to coal cogasified, coke used as gasifier bed material, and fuel oil cocombusted in the steam boiler. However, uncertainties associated with preliminary system designs may be large, particularly the heat loss associated with pilot scale data resulting in overall low efficiencies of energy conversion to electricity; a sensitivity analysis assesses these uncertainties in further detail. PMID:23496419

  17. Fuel product

    SciTech Connect

    Christie, G.M.; Holmes, J.M.

    1985-01-22

    A coal fines log comprising a composite log made of a mixture of 90 to 98% coal particles having a size of roughly 10 microns, the log also containing paper and other cellulosic fibers such as bark in the range of 2 to 10% and grounded limestone is also provided in the log to neutralize the sulfur dioxide while burning. The log is contained in a hermetically sealed polyethylene envelope, the product so-formed is readily ignited and can sustain combustion over a relatively long period of time.

  18. Metallized Products

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Since the early 1960's, virtually all NASA spacecraft have used metallized films for a variety of purposes, principally thermal radiation insulation. King Seeley manufactures a broad line of industrial and consumer oriented metallized film, fabric, paper and foam in single layer sheets and multi-layer laminates. A few examples, commercialized by MPI Outdoor Safety Products, are the three ounce Thermos Emergency Blanket which reflects and retains up to 80 percent of the user's body heat helping prevent post accident shock or keeping a person warm for hours under emergency cold weather conditions.

  19. Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops

    PubMed Central

    2011-01-01

    Background The use of energy crops and agricultural residues is expected to increase to fulfil the legislative demands of bio-based components in transport fuels. Ensiling methods, adapted from the feed sector, are suitable storage methods to preserve fresh crops throughout the year for, for example, biogas production. Various preservation methods, namely ensiling with and without acid addition for whole crop maize, fibre hemp and faba bean were investigated. For the drier fibre hemp, alkaline urea treatment was studied as well. These treatments were also explored as mild pretreatment methods to improve the disassembly and hydrolysis of these lignocellulosic substrates. Results The investigated storage treatments increased the availability of the substrates for biogas production from hemp and in most cases from whole maize but not from faba bean. Ensiling of hemp, without or with addition of formic acid, increased methane production by more than 50% compared to fresh hemp. Ensiling resulted in substantially increased methane yields also from maize, and the use of formic acid in ensiling of maize further enhanced methane yields by 16%, as compared with fresh maize. Ensiled faba bean, in contrast, yielded somewhat less methane than the fresh material. Acidic additives preserved and even increased the amount of the valuable water-soluble carbohydrates during storage, which affected most significantly the enzymatic hydrolysis yield of maize. However, preservation without additives decreased the enzymatic hydrolysis yield especially in maize, due to its high content of soluble sugars that were already converted to acids during storage. Urea-based preservation significantly increased the enzymatic hydrolysability of hemp. Hemp, preserved with urea, produced the highest carbohydrate increase of 46% in enzymatic hydrolysis as compared to the fresh material. Alkaline pretreatment conditions of hemp improved also the methane yields. Conclusions The results of the present

  20. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  1. NULLJOB product

    SciTech Connect

    Hughart, N.; Ritchie, D.

    1987-05-01

    The ever increasing demand for more CPU cycles for data analysis on our Central VAX Cluster led us to investigate new ways to utilize more fully the resources that were available. A review of the experiment and software development VAX systems on site revealed many unused computing cycles. Furthermore, these systems were all connected by DECnet which would allow easy file transfer and remote batch job submission. A product was developed to allow jobs to be submitted on the Central VAX Cluster but actually to be run on one of the remote systems. The processing of the jobs was arranged, to the greatest extent possible, to be transparent to the user and to have minimal impact on both the Central VAX Cluster and remote systems.

  2. Software Products

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MAST is a decision support system to help in the management of dairy herds. Data is collected on dairy herds around the country and processed at regional centers. One center is Cornell University, where Dr. Lawrence Jones and his team developed MAST. The system draws conclusions from the data and summarizes it graphically. CLIPS, which is embedded in MAST, gives the system the ability to make decisions without user interaction. With this technique, dairy managers can identify herd problems quickly, resulting in improved animal health and higher milk quality. CLIPS (C Language Integrated Production System) was developed by NASA's Johnson Space Center. It is a shell for developing expert systems designed to permit research, development and delivery on conventional computers.

  3. 7 CFR 3202.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Definitions. 3202.2 Section 3202.2 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE VOLUNTARY LABELING PROGRAM FOR BIOBASED PRODUCTS § 3202.2 Definitions. Applicable minimum biobased content. The...

  4. 7 CFR 2902.21 - Disposable containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Guideline, 40 CFR 247.10. EPA provides recovered materials content recommendations for paper and paper... storage or transportation of materials including, but not limited to, food items. (b) Minimum biobased... BioPreferred Web site of qualifying biobased products about the intended uses of the...

  5. 7 CFR 2902.21 - Disposable containers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Guideline, 40 CFR 247.10. EPA provides recovered materials content recommendations for paper and paper... storage or transportation of materials including, but not limited to, food items. (b) Minimum biobased... BioPreferred Web site of qualifying biobased products about the intended uses of the...

  6. 7 CFR 3430.701 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... biofuels at prices competitive with fossil fuels; (b) High-value biobased products— (1) To enhance the economic viability of biofuels and power, (2) To serve as substitutes for petroleum-based feedstocks and... for conversion to biofuels, bioenergy, and biobased products....

  7. Dedicated herbaceous biomass feedstock genetics and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels and bio-based products can be produced from a wide variety of plant feedstocks. To supply enough biomass to meet the proposed need for a bio-based economy a suite of dedicated biomass species must be developed to accommodate a range of growing environments throughout the United States. Re...

  8. 7 CFR 3202.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Definitions. 3202.2 Section 3202.2 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE VOLUNTARY LABELING PROGRAM FOR BIOBASED PRODUCTS § 3202.2 Definitions. Applicable minimum biobased content. The...

  9. 7 CFR 3201.72 - Oven and grill cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... loosen charred food, grease, and residue. (b) Minimum biobased content. The Federal preferred procurement... the finished product. (c) Preference compliance date. No later than July 23, 2012, procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased oven...

  10. 7 CFR 3201.72 - Oven and grill cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... loosen charred food, grease, and residue. (b) Minimum biobased content. The Federal preferred procurement... the finished product. (c) Preference compliance date. No later than July 23, 2012, procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased oven...

  11. 7 CFR 2902.29 - Disposable cutlery.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... use in eating food. (b) Minimum biobased content. The preferred procurement product must have a.... (c) Preference compliance date. No later than May 14, 2009, procuring agencies, in accordance with this part, will give a procurement preference for qualifying biobased disposable cutlery. By that...

  12. Breakthrough CO₂ adsorption in bio-based activated carbons.

    PubMed

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration. PMID:26257348

  13. Applications of common beans in food and biobased materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion method has been used to cook different food materials by employing the combination of high temperature, pressure and shearing stresses. Effects of extrusion cooking on functional, physicochemical and nutritional properties of common bean (Phaseolus vulgaris L.) have been reported for years...

  14. Thioether-functionalized vegetable oils: Metal-absorbing biobased ligands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils containing thioether groups have been synthesized and used to effectively remove a heavy metal ion from an aqueous solution. The use of thioether-functionalized corn oil (TF-corn oil) and thioether-functionalized canola oil (TF-canola oil) were both effective in the extraction of Ag+ ...

  15. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of substation of modified CNCs is determined by quantitative direct carbon MAS NMR for malonate CNCs, malate CNCs and Citrate CNCs are found to be 0.16, 0.22 and 0.18, respectively. Re-hydrolysis experiments are performed and the yield of citrate CNCs was increased to 55% with little effect on CNC crystallinity or morphology. Citrate CNCs are then used for a myriad of applications such as polymer reinforcement (polyvinyl alcohol (PVOH) and bio-temptation of inorganic nanoparticles. Introduction of just 1% citrate CNCs results in a 40°C increase in PVOH's thermal stability (T50%). Appendant citrate groups are used for the direct reduction of silver nanoparticles without any external reducing agents. Finally citrate CNCs are used to reinforce collagen hydrogels. Chapter four builds on "grafting from" reactions of poly(methyl methacrylate) (PMMA) onto the surface of CNCs to further increase the HDT of PLAs above 100°C. Taking advantage of the PMMA-PLLA miscibility, the presence of PMMA grafts on the CNC surface clearly improves CNC dispersion in PLLA, and reduces CNC aggregation thus enhancing the PLAs HDT. Herein "grafting from" reactions of poly(methyl methacrylate) (PMMA) on the surface of CNCs was is performed by free-radical grafting in water using two different redox initiators: Fe2+/H2O2 (Fenton's reagent) and ceric ammonium nitrate (CAN). The amount of grafted PMMA could be easily tuned according to the initiator and CAN clearly represents the most efficient initiator. From rheological data, high grafting levels favor the percolation of CNC with the development of a long-range 3D network. PLA's (HDT) higher was increased to over 130°C. Chapter five reports blending PLA with another renewable poly(o-hydroxytetradecanoic acid) (PC14).The goal of this chapter is to enhance the poor brittleness of PLA by blending with a rubbery polymer such as PC14. Like most polymer blends, PLA and PC14 are however found to be immiscible by simple blending. To achieve this goal, a fully bio-sourced PLA based polymer blend is conceived by incorporating

  16. Improved biobased lubricants from chemically modified vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils possess a number of desirable properties for lubricant application such as excellent boundary properties, high viscosity index, low volatility, low traction coefficient, renewability, and biodegradability. Unfortunately, they also have a number of weaknesses that make them less desira...

  17. Crystallographic Recognition Controls Peptide Binding for Bio-Based Nanomaterials

    SciTech Connect

    R Coppage; J Slocik; B Briggs; A Frenkel; H Heinz; R Naik; M Knecht

    2011-12-31

    The ability to control the size, shape, composition, and activity of nanomaterials presents a formidable challenge. Peptide approaches represent new avenues to achieve such control at the synthetic level; however, the critical interactions at the bio/nano interface that direct such precision remain poorly understood. Here we present evidence to suggest that materials-directing peptides bind at specific time points during Pd nanoparticle (NP) growth, dictated by material crystallinity. As such surfaces are presented, rapid peptide binding occurs, resulting in the stabilization and size control of single-crystal NPs. Such specificity suggests that peptides could be engineered to direct the structure of nanomaterials at the atomic level, thus enhancing their activity.

  18. 76 FR 43808 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ..., on November 23, 2010, a proposed rule in the Federal Register (FR) for the purpose of designating a... hereafter in this FR notice as the ``preferred procurement program''). This proposed rule can be found at 75 FR 71492. This rulemaking is referred to in this preamble as Round 7 (RIN 0503-AA36). In the...

  19. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of substation of modified CNCs is determined by quantitative direct carbon MAS NMR for malonate CNCs, malate CNCs and Citrate CNCs are found to be 0.16, 0.22 and 0.18, respectively. Re-hydrolysis experiments are performed and the yield of citrate CNCs was increased to 55% with little effect on CNC crystallinity or morphology. Citrate CNCs are then used for a myriad of applications such as polymer reinforcement (polyvinyl alcohol (PVOH) and bio-temptation of inorganic nanoparticles. Introduction of just 1% citrate CNCs results in a 40°C increase in PVOH's thermal stability (T50%). Appendant citrate groups are used for the direct reduction of silver nanoparticles without any external reducing agents. Finally citrate CNCs are used to reinforce collagen hydrogels. Chapter four builds on "grafting from" reactions of poly(methyl methacrylate) (PMMA) onto the surface of CNCs to further increase the HDT of PLAs above 100°C. Taking advantage of the PMMA-PLLA miscibility, the presence of PMMA grafts on the CNC surface clearly improves CNC dispersion in PLLA, and reduces CNC aggregation thus enhancing the PLAs HDT. Herein "grafting from" reactions of poly(methyl methacrylate) (PMMA) on the surface of CNCs was is performed by free-radical grafting in water using two different redox initiators: Fe2+/H2O2 (Fenton's reagent) and ceric ammonium nitrate (CAN). The amount of grafted PMMA could be easily tuned according to the initiator and CAN clearly represents the most efficient initiator. From rheological data, high grafting levels favor the percolation of CNC with the development of a long-range 3D network. PLA's (HDT) higher was increased to over 130°C. Chapter five reports blending PLA with another renewable poly(o-hydroxytetradecanoic acid) (PC14).The goal of this chapter is to enhance the poor brittleness of PLA by blending with a rubbery polymer such as PC14. Like most polymer blends, PLA and PC14 are however found to be immiscible by simple blending. To achieve this goal, a fully bio-sourced PLA based polymer blend is conceived by incorporating small quantities of poly(o-hydroxytetradecanoic acid) (PC14). PC14 is produced by polycondensation, thus we explore ring opening polymerization of poly(w-pentadecalactone) using enzymatic reactive extrusion. The final chapter of this thesis concerns the feasibility of conducting an enzymatic ring-opening polymerization on the basis of lipase enzymes by reactive extrusion (REX) at high shear and temperature conditions. The ability of lipases to catalyze ring-opening and condensation polymerizations at relatively low temperatures (e.g. 70--90°C) is advantageous to reduce energy input and to preserve thermally sensitive chemical moieties. However, when high molecular weight polymer synthesis is desired, corresponding diffusional constraints must be overcome by either running reactions at higher temperatures (e.g. 150--220°C) or by adding solvent. Reactive extrusion (REX) has been used to overcome the aforementioned problems of bulk polymerizations that slows chain growth. In the chapter using immobilized Candida antarctica Lipase B (CALB) as catalyst at temperatures ranging from 90 to 130°C is investigated. (Abstract shortened by UMI.).

  20. EP Additive Performance in Biobased vs. Paraffinic Base Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of commercial extreme pressure (EP) additives containing sulfur, phosphorus, and chlorine were investigated for their EP properties in soybean (SBO) and paraffinic (PRFN) base oils. The investigations were conducted using a 4-ball (4B) and twist-compression (TC) tribometers. The concentra...

  1. Bio-Based Nanocomposites: An Alternative to Traditional Composites

    ERIC Educational Resources Information Center

    Tate, Jitendra S.; Akinola, Adekunle T.; Kabakov, Dmitri

    2009-01-01

    Polymer matrix composites (PMC), often referred to as fiber reinforced plastics (FRP), consist of fiber reinforcement (E-glass, S2-glass, aramid, carbon, or natural fibers) and polymer matrix/resin (polyester, vinyl ester, polyurethane, phenolic, and epoxies). Eglass/ polyester and E-glass/vinyl ester composites are extensively used in the marine,…

  2. 75 FR 63695 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... 9002 of the Farm Security and Rural Investment Act of 2002 (FSRIA), as amended by the Food... procurement preference, as provided for under section 9002 of the Farm Security and Rural Investment Act of... rule in the Federal Register (FR) for the purpose of designating a total of nine items for...

  3. Elastohydrodynamic properties of biobased heat-bodied oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat-bodied oils were prepared by thermal treatment of soybean oil under inert atmosphere. Different viscosity grades of heat-bodied oils synthesized by varying the reaction time were investigated for various properties including viscosity, viscosity index, elastohydrodynamic film thickness, and pre...

  4. Effect of temperature on lubrication with biobased oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature is an important parameter affecting the performance of lubricant ingredients. It affects such important tribological characteristics as viscosity, film thickness, adsorption, desorption, friction, and wear. Temperature also promotes oxidation, polymerization, and degradation which nega...

  5. Biobased alternatives to guar gum as tackifiers for hydromulch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Guar gum, obtained from guar [Cyamopsis tetragonoloba (L.) Taub.] seeds, is currently the principal gum used as a tackifier (binder) for hydraulically-applied mulches (hydromulches) used in erosion control. The oil industry’s increased use of guar gum in hydraulic fracturing together with lower glo...

  6. Bio-based extraction and stabilization of anthocyanins.

    PubMed

    Roy, Anirban; Mukherjee, Rudra Palash; Howard, Luke; Beitle, Robert

    2016-05-01

    This work reports a novel method of recovering anthocyanin compounds from highly-pigmented grapes via a fermentation based approach. It was hypothesized that batch growth of Zymomonas mobilis on simple medium would produce both ethanol and enzymes/biomass-acting materials, the combination of which will provide a superior extraction when compared to simple alcohol extraction. To examine this hypothesis, Z. mobilis was fermented in a batch consisting of mashed Vitis vinifera and glucose, and the recovered anthocyanin pool was compared to that recovered via extraction with ethanol. Data indicated higher amounts of anthocyanins were recovered when compared to simple solvent addition. Additionally, the percent polymeric form of the anthocyanins could be manipulated by the level of aeration maintained in the fermentation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:601-605, 2016. PMID:26996151

  7. Recent progress in chitosan bio-based soft nanomaterials.

    PubMed

    El Kadib, Abdelkrim; Bousmina, Mosto; Brunel, Daniel

    2014-01-01

    Polysaccharides are a new class of pervasive biopolymers that display many advantages including wide availability, sustainability, inherent inclusion of chemical functionality, biocompatibility and biodegradability. Current efforts are focused on the catalytic transformation of these macromolecules into fuels and platform chemicals. However, there is growing interest in using biopolymers directly to create functional materials. Particularly, the ability of some polysaccharides to form physical and chemical porous hydrogels has opened new avenues for material synthesis and has been the driving force for rethinking the strategies used to create value-added nanomaterials from naturally available biomass. Among them, chitosan is on the rise due to the presence of amino groups on the polymer backbone that distinguishes it as a unique natural cationic polymer. This contribution sheds light on the opportunities offered by engineering the secondary structure of chitosan fibrillar hydrogels. The optimization and stabilization of the open framework structure of these soft-materials are crucial to designing novel functional hybrid materials, dispersed chitosan-metal nanoparticles and hierarchical porous inorganic materials. PMID:24730265

  8. 76 FR 81940 - Submission for OMB Review; Biobased Procurements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Register at 76 FR 41179, on July 13, 2011. Only one comment was received in response to the Federal... National Aeronautics and Space Administration (NASA). ACTION: Notice of request for public comments... procurements. Public comments are particularly invited on: Whether this collection of information is...

  9. 76 FR 6319 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... the Use of Environmental Marketing Claims.'' G. 7 CFR 2902.8--Determining Life Cycle Costs....8 Determining life cycle costs, environmental and health benefits, and performance. (a) Providing information on life cycle costs and environmental and health benefits. Federal agencies may not...

  10. 76 FR 6366 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... 2902.8--Determining Life Cycle Costs, Environmental and Health Benefits, and Performance USDA is... Determining life cycle costs, environmental and health benefits, and performance. (a) Providing information on life cycle costs and environmental and health benefits. Federal agencies may not require...

  11. Carbonates from oleochemicals: Biobased materials to value added green chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presented is a review with 55 references describing the preparation of oleochemical-based carbonates (esters of carbonic acid H2CO2) utilizing vegetable oil, or vegetable oil derivatives as starting materials. Synthetic routes to prepare both linear and cyclic carbonates are presented, as well as t...

  12. Biobased absorbents derived from seashore mallow stem tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seashore Mallow (SM), Kosteletzkya pentacarpos (L.) Ledeb. (formerly classified as K. virginica K. Presl. ex Gray), a perennial halophytic member of the Malvaceae, is native to coastal areas of North America as well as Eurasia. SM can grow in saline soils up to salinity levels of 0.9%, and thus cou...

  13. Biobased extreme pressure additives: Structure-property considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extreme pressure additives are widely used in lubricant formulations for engine oils, hydraulic fluids, gear oils, metalworking fluids, and many others. Extreme pressure additives contain selected elements such as sulfur, phosphorus, and halogens in their structures. These elements, under extreme tr...

  14. EVALUATION OF CURRENT SUSTAINABILITY ASSESSMENT OF BIOBASED TECHNOLOGY

    EPA Science Inventory

    Sustainable technology is driven by economic competitiveness, government policies and public pressure. The claim of inherent cleanliness for biotechnology is too simplistic. Each application of biotechnology must be evaluated for suitable characteristics of sustainability. The ...

  15. 77 FR 23365 - Federal Acquisition Regulation; Biobased Procurements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... Federal Register at 76 FR 41179 on July 13, 2011, to implement section 9002 of the Farm Security and Rural... 2004-032, which was published in the Federal Register at 72 FR 63040, November 7, 2007. This final rule... relocation of the program's rules in the Code of Federal Regulations (see 76 FR 53631 dated August 29,...

  16. Production Density Diffusion Equation Propagation and Production

    NASA Astrophysics Data System (ADS)

    Shirai, Kenji; Amano, Yoshinori

    When we call the production flow to transition elements in the next step in the process of product manufactured one, the production flow is considered to be displaced in the direction of the unit production density. Density and production, as captured from different perspectives, also said production costs per unit of production. However, it is assumed that contributed to the production cost of manufacturing 100 percent. They may not correspond to the physical propagation conditions after each step of the production density, the equations governing the manufacturing process, which is intended to be represented by a single diffusion equation. We can also apply the concept of energy levels in statistical mechanics, production density function, in other words, in statistical mechanics “place” that if you use the world of manufacturing and production term. If the free energy in this production (potential) that are consuming the substance is nothing but the entropy production. That is, productivity is defined as the entropy production has to be. Normally, when we increase the number of production units, the product nears completion at year-end number of units completed and will aim to be delivered to the contractor from the turnover order. However, if you stop at any number of units, that will increase production density over time. Thus, the diffusion does not proceed from that would be irreversible. In other words, the congestion will occur in production. This fact and to report the results of analysis based on real data.

  17. An epoxy monomer derived from Tung oil fatty acids and its products cured by two synergistic reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new bio-based epoxy monomer containing conjugated double bonds, the glycidyl ester of eleostearic acid (GEEA), was synthesized from tung oil fatty acids. It was characterized using 1H-NMR, 13C-NMR and mass spectrometric analysis. Differential scanning calorimetry (DSC) and FT-IR spectroscopy were ...

  18. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol

    PubMed Central

    2014-01-01

    Background Lactobacillus reuteri converts glycerol to 3-hydroxypropionic acid (3HP) and 1,3-propanediol (1,3PDO) via 3-hydroxypropionaldehyde (3HPA) as an intermediate using enzymes encoded in its propanediol-utilization (pdu) operon. Since 3HP, 1,3PDO and 3HPA are important building blocks for the bio-based chemical industry, L. reuteri can be an attractive candidate for their production. However, little is known about the kinetics of glycerol utilization in the Pdu pathway in L. reuteri. In this study, the metabolic fluxes through the Pdu pathway were determined as a first step towards optimizing the production of 3HPA, and co-production of 3HP and 1,3PDO from glycerol. Resting cells of wild-type (DSM 20016) and recombinant (RPRB3007, with overexpressed pdu operon) strains were used as biocatalysts. Results The conversion rate of glycerol to 3HPA by the resting cells of L. reuteri was evaluated by in situ complexation of the aldehyde with carbohydrazide to avoid the aldehyde-mediated inactivation of glycerol dehydratase. Under operational conditions, the specific 3HPA production rate of the RPRB3007 strain was 1.9 times higher than that of the wild-type strain (1718.2 versus 889.0 mg/gCDW.h, respectively). Flux analysis of glycerol conversion to 1,3PDO and 3HP in the cells using multi-step variable-volume fed-batch operation showed that the maximum specific production rates of 3HP and 1,3PDO were 110.8 and 93.7 mg/gCDW.h, respectively, for the wild-type strain, and 179.2 and 151.4 mg/gCDW.h, respectively, for the RPRB3007 strain. The cumulative molar yield of the two compounds was ~1 mol/mol glycerol and their molar ratio was ~1 mol3HP/mol1,3PDO. A balance of redox equivalents between the glycerol oxidative and reductive pathway branches led to equimolar amounts of the two products. Conclusions Metabolic flux analysis was a useful approach for finding conditions for maximal conversion of glycerol to 3HPA, 3HP and 1,3PDO. Improved specific production rates were

  19. Efficient Whole-Cell Biocatalyst for Acetoin Production with NAD+ Regeneration System through Homologous Co-Expression of 2,3-Butanediol Dehydrogenase and NADH Oxidase in Engineered Bacillus subtilis

    PubMed Central

    Rao, Zhiming; Zhao, Xiaojing; Zhang, Rongzhen; Yang, Taowei; Xu, Zhenghong; Yang, Shangtian

    2014-01-01

    Acetoin (3-hydroxy-2-butanone), an extensively-used food spice and bio-based platform chemical, is usually produced by chemical synthesis methods. With increasingly requirement of food security and environmental protection, bio-fermentation of acetoin by microorganisms has a great promising market. However, through metabolic engineering strategies, the mixed acid-butanediol fermentation metabolizes a certain portion of substrate to the by-products of organic acids such as lactic acid and acetic acid, which causes energy cost and increases the difficulty of product purification in downstream processes. In this work, due to the high efficiency of enzymatic reaction and excellent selectivity, a strategy for efficiently converting 2,3-butandiol to acetoin using whole-cell biocatalyst by engineered Bacillus subtilis is proposed. In this process, NAD+ plays a significant role on 2,3-butanediol and acetoin distribution, so the NADH oxidase and 2,3-butanediol dehydrogenase both from B. subtilis are co-expressed in B. subtilis 168 to construct an NAD+ regeneration system, which forces dramatic decrease of the intracellular NADH concentration (1.6 fold) and NADH/NAD+ ratio (2.2 fold). By optimization of the enzymatic reaction and applying repeated batch conversion, the whole-cell biocatalyst efficiently produced 91.8 g/L acetoin with a productivity of 2.30 g/(L·h), which was the highest record ever reported by biocatalysis. This work indicated that manipulation of the intracellular cofactor levels was more effective than the strategy of enhancing enzyme activity, and the bioprocess for NAD+ regeneration may also be a useful way for improving the productivity of NAD+-dependent chemistry-based products. PMID:25036158

  20. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.

    PubMed

    Bao, Teng; Zhang, Xian; Rao, Zhiming; Zhao, Xiaojing; Zhang, Rongzhen; Yang, Taowei; Xu, Zhenghong; Yang, Shangtian

    2014-01-01

    Acetoin (3-hydroxy-2-butanone), an extensively-used food spice and bio-based platform chemical, is usually produced by chemical synthesis methods. With increasingly requirement of food security and environmental protection, bio-fermentation of acetoin by microorganisms has a great promising market. However, through metabolic engineering strategies, the mixed acid-butanediol fermentation metabolizes a certain portion of substrate to the by-products of organic acids such as lactic acid and acetic acid, which causes energy cost and increases the difficulty of product purification in downstream processes. In this work, due to the high efficiency of enzymatic reaction and excellent selectivity, a strategy for efficiently converting 2,3-butandiol to acetoin using whole-cell biocatalyst by engineered Bacillus subtilis is proposed. In this process, NAD+ plays a significant role on 2,3-butanediol and acetoin distribution, so the NADH oxidase and 2,3-butanediol dehydrogenase both from B. subtilis are co-expressed in B. subtilis 168 to construct an NAD+ regeneration system, which forces dramatic decrease of the intracellular NADH concentration (1.6 fold) and NADH/NAD+ ratio (2.2 fold). By optimization of the enzymatic reaction and applying repeated batch conversion, the whole-cell biocatalyst efficiently produced 91.8 g/L acetoin with a productivity of 2.30 g/(L·h), which was the highest record ever reported by biocatalysis. This work indicated that manipulation of the intracellular cofactor levels was more effective than the strategy of enhancing enzyme activity, and the bioprocess for NAD+ regeneration may also be a useful way for improving the productivity of NAD+-dependent chemistry-based products. PMID:25036158