Science.gov

Sample records for biochemical evolution iii

  1. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III

    SciTech Connect

    Han, Q.; Robinson, H; Cai, T; Tagle, D; Li, J

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  2. Galapagos III World Evolution Summit: why evolution matters

    PubMed Central

    Paz-y-Miño-C, Guillermo; Espinosa, Avelina

    2016-01-01

    There is no place on Earth like the Galapagos Islands and no better destination to discuss the reality of evolution. Under the theme ‘Why Does Evolution Matter’, the University San Francisco of Quito (USFQ), Ecuador, and its Galapagos Institute for the Arts and Sciences (GAIAS), organized the III World Evolution Summit in San Cristóbal Island. The 200-attendee meeting took place on 1 to 5 June 2013; it included 12 keynote speakers, 20 oral presentations by international scholars, and 31 posters by faculty, postdocs, and graduate and undergraduate students. The Summit encompassed five sessions: evolution and society, pre-cellular evolution and the RNA world, behavior and environment, genome, and microbes and diseases. USFQ and GAIAS launched officially the Lynn Margulis Center for Evolutionary Biology and showcased the Galapagos Science Center, in San Cristóbal, an impressive research facility conceptualized in partnership with the University of North Carolina at Chapel Hill, USA. USFQ and GAIAS excelled at managing the conference with exceptional vision and at highlighting the relevance of Galapagos in the history of modern evolutionary thinking; Charles Darwin’s visit to this volcanic archipelago in 1835 unfolded unprecedented scientific interest in what today is a matchless World Heritage. PMID:26925190

  3. In silico evolution of oscillatory dynamics in biochemical networks

    NASA Astrophysics Data System (ADS)

    Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2015-03-01

    We are studying in silico evolution of complex, oscillatory network dynamics within the framework of a minimal mutational model of protein-protein interactions. In our model we consider two different types of proteins, kinase (activator) and phosphatase(inhibitor). In our model. each protein can either be phosphorylated(active) or unphospphorylated (inactive), represented by binary strings. Active proteins can modify their target based on the Michaelis-Menten kinetics of chemical equation. Reaction rate constants are directly related to sequence dependent protein-protein interaction energies. This model can be stuided for non-trivial behavior e.g. oscillations, chaos, multiple stable states. We focus here on biochemical oscillators; some questions we will address within our framework include how the oscillatory dynamics depends on number of protein species, connectivity of the network, whether evolution can readily converge on a stable oscillator if we start with random intitial parameters, neutral evolution with additional protein components and general questions of robustness and evolavability.

  4. Biochemical Evolution of Iron and Copper Proteins, Substances Vital to Life

    ERIC Educational Resources Information Center

    Frieden, Earl

    1974-01-01

    Summarizes studies in the area of biochemical evolution of iron, copper, and heme proteins to provide an historical outline. Included are lists of major kinds of proteins and enzymes and charts illustrating electron flow in a cytochrome electron transport system and interconversion of jerrous to ferric ion in iron metabolism. (CC)

  5. Genes encoding Δ(8)-sphingolipid desaturase from various plants: identification, biochemical functions, and evolution.

    PubMed

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Hu, Zan-Min; Gao, Wu-Jun

    2016-09-01

    ∆(8)-sphingolipid desaturase catalyzes the C8 desaturation of a long chain base, which is the characteristic structure of various complex sphingolipids. The genes of 20 ∆(8)-sphingolipid desaturases from 12 plants were identified and functionally detected by using Saccharomyces cerevisiae system to elucidate the relationship between the biochemical function and evolution of this enzyme. Results showed that the 20 genes all can encode a functional ∆(8)-sphingolipid desaturase, which catalyzes different ratios of two products, namely, 8(Z) and 8(E)-C18-phytosphingenine. The coded enzymes could be divided into two groups on the basis of biochemical functions: ∆(8)-sphingolipid desaturase with a preference for an E-isomer product and ∆(8)-sphingolipid desaturase with a preference for a Z-isomer product. The conversion rate of the latter was generally lower than that of the former. Phylogenetic analysis revealed that the 20 desaturases could also be clustered into two groups, and this grouping is consistent with that of the biochemical functions. Thus, the biochemical function of ∆(8)-sphingolipid desaturase is correlated with its evolution. The two groups of ∆(8)-sphingolipid desaturases could arise from distinct ancestors in higher plants. However, they might have initially evolved from ∆(8)-sphingolipid desaturases in lower organisms, such as yeasts, which can produce E-isomer products only. Furthermore, almost all of the transgenic yeasts harboring ∆(8)-sphingolipid desaturase genes exhibit an improvement in aluminum tolerance. Our study provided new insights into the biochemical function and evolution of ∆(8)-sphingolipid desaturases in plants. PMID:27294968

  6. Evolution of long-term coloration trends with biochemically unstable ingredients.

    PubMed

    Higginson, Dawn M; Belloni, Virginia; Davis, Sarah N; Morrison, Erin S; Andrews, John E; Badyaev, Alexander V

    2016-05-25

    The evolutionarily persistent and widespread use of carotenoid pigments in animal coloration contrasts with their biochemical instability. Consequently, evolution of carotenoid-based displays should include mechanisms to accommodate or limit pigment degradation. In birds, this could involve two strategies: (i) evolution of a moult immediately prior to the mating season, enabling the use of particularly fast-degrading carotenoids and (ii) evolution of the ability to stabilize dietary carotenoids through metabolic modification or association with feather keratins. Here, we examine evolutionary lability and transitions between the two strategies across 126 species of birds. We report that species that express mostly unmodified, fast-degrading, carotenoids have pre-breeding moults, and a particularly short time between carotenoid deposition and the subsequent breeding season. Species that expressed mostly slow-degrading carotenoids in their plumage accomplished this through increased metabolic modification of dietary carotenoids, and the selective expression of these slow-degrading compounds. In these species, the timing of moult was not associated with carotenoid composition of plumage displays. Using repeated samples from individuals of one species, we found that metabolic modification of dietary carotenoids significantly slowed their degradation between moult and breeding season. Thus, the most complex and colourful ornamentation is likely the most biochemically stable in birds, and depends less on ecological factors, such as moult timing and migration tendency. We suggest that coevolution of metabolic modification, selective expression and biochemical stability of plumage carotenoids enables the use of unstable pigments in long-term evolutionary trends in plumage coloration. PMID:27194697

  7. The need for combined inorganic, biochemical, and nutritional studies of chromium(III).

    PubMed

    Vincent, John B; Love, Sharifa T

    2012-09-01

    The history of biochemical and nutritional studies of the element is unfortunately full of twists and turns, most leading to dead ends. Chromium (Cr), as the trivalent ion, has been proposed to be an essential element, a body mass and muscle development agent, and, in the form of the most popular Cr-containing nutritional supplement, to be toxic when given orally to mammals. None of these proposals, despite significant attention in the popular media, has proven to be correct. Trivalent chromium has also been proposed as a therapeutic agent to increase insulin sensitivity and affect lipid metabolism, although a molecular mechanism for such actions has not been elucidated. Greater cooperative research interactions between nutritionists, biochemists, and chemists might have avoided the earlier issues in nutritional and biochemical Cr research and is necessary to establish the potential role of Cr as a therapeutic agent at a molecular level. PMID:22976981

  8. Procollagen III peptide and fibronectin in alcohol-related chronic liver disease: correlations with morphological features and biochemical tests.

    PubMed

    Gabrielli, G B; Faccioli, G; Casaril, M; Capra, F; Bonazzi, L; Falezza, G; Tomba, A; Baracchino, F; Corrocher, R

    1989-02-22

    In order to clarify the significance of procollagen III peptide (PIIIP) and fibronectin (FN) blood concentration in alcohol related chronic liver disease (ALD), we have investigated their relationships with histological liver features and biochemical liver tests in 44 ALD patients. PIIIP was measured in serum by radioimmunoassay whereas FN was determined in plasma using an immunonephelometric method. In each liver biopsy, steatosis, portal infiltrate, lobular necro-inflammation, portal fibrosis and lobular fibrosis were semiquantitatively assessed by scoring from 0 to 3. A close correlation of PIIIP was found with morphological features of fibrosis (both of lobular and portal type), but not with necro-inflammation or steatosis. PIIIP was also positively correlated with ALP and GGT and exhibited a good diagnostic value in liver fibrosis. On the contrary, FN did not distinguish between normals and patients and was not correlated with any morphological liver feature or biochemical liver test. We also conclude that serum NP3P effectively reflects liver fibrosis, whereas plasma FN seems not related to any of the main histological aspects of liver damage in ALD. PMID:2714004

  9. Hydrogen Evolution from Water Coupled with the Oxidation of As(III) in a Photocatalytic System.

    PubMed

    Zou, Jian-Ping; Wu, Dan-Dan; Bao, Shao-Kui; Luo, Jinming; Luo, Xu-Biao; Lei, Si-Liang; Liu, Hui-Long; Du, Hong-Mei; Luo, Sheng-Lian; Au, Chak-Tong; Suib, Steven L

    2015-12-30

    A series of heterostructured CdS/Sr2(Nb17/18Zn1/18)2O7-δ composites with excellent photocatalytic ability for simultaneous hydrogen evolution and As(III) oxidation under simulated sunlight were synthesized and characterized. Among them, 30% CdS/Sr2(Nb17/18Zn1/18)2O7-δ (30CSNZO) has the highest in activity, exhibiting a H2 production rate of 1669.1 μmol·h(-1)·g(-1) that is higher than that of many photocatalysts recently reported in the literature. At pH 9, As(III) is completely oxidized to As(V) over 30CSNZO in 30 min of irradiation of simulated sunlight. In the photocatalytic system, H2 production rate decreases with the increase of As(III) concentration, and the recycle experiments show that 30CSNZO exhibits excellent stability, durability, and recyclability for photocatalytic hydrogen evolution and As(III) oxidation. We propose a mechanism in which superoxide radical (·O2(-)) is the active species for As(III) oxidation and the oxidation of As(III) has an effect on hydrogen evolution. For the first time, it is demonstrated that simultaneous hydrogen evolution and arsenite oxidation is possible in a photocatalytic system. PMID:26650610

  10. Modeling the Evolution of Incised Streams: III. Model Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incision and ensuing widening of alluvial stream channels is widespread in the midsouth and midwestern United States and represents an important form of channel adjustment. Two accompanying papers have presented a robust computational model for simulating the long-term evolution of incised and resto...

  11. Pele III, plate tectonics, atmospheric and biotic evolution

    SciTech Connect

    Sloan, R.E. . Dept. of Geology and Geophysics)

    1994-04-01

    This paper is an elaboration of Pele I and II, Landis et al GSA Abstr. V. 25 No.6, and Hengst et al GSA Abstr. V. 25 No.6. The Pele hypothesis is that CO[sub 2] concentration in the atmosphere is directly related to the rate of seafloor spreading and the existence of superplumes. Excess CO[sub 2] favors expansion of plants and is converted to O[sub 2] by photosynthesis and deposition of buried carbon and carbonate. O[sub 2] is removed from the atmosphere by weathering. Resulting major variations in atmospheric CO[sub 2] and O[sub 2] have significant impact on the evolution and extinction of organisms.

  12. The evolution of galaxies. III - Metal-enhanced star formation

    NASA Technical Reports Server (NTRS)

    Talbot, R. J., Jr.; Arnett, W. D.

    1973-01-01

    The problem of the paucity of low-metal-abundance low-mass stars is discussed. One alternative to the variable-initial-mass-function (VIMF) solution is proposed. It is shown that this solution - metal-enhanced star formation - satisfies the classical test which prompted the VIMF hypothesis. Furthermore, with no additional parameters it provides improved fits to other tests - e.g., inhomogeneities in the abundances in young stars, concordance of all nucleo-cosmochronologies, and a required yield of heavy-element production which is consistent with current stellar evolution theory. In this model the age of the Galaxy is 18.6 plus or minus 5.7 b.y.

  13. Biochemical evolution II: origin of life in tubular microstructures on weathered feldspar surfaces.

    PubMed

    Parsons, I; Lee, M R; Smith, J V

    1998-12-22

    Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4-0.6 microm wide, forming an orthogonal honeycomb network in a surface zone 50 microm thick, with 2-3 x 10(6) intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth's surface by approximately 3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial "soup." Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria. PMID:9860941

  14. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    SciTech Connect

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W. E-mail: p.colin@crya.unam.m E-mail: alan@astro.unam.m

    2010-06-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size {approx}10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  15. Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth.

    PubMed

    Kukavica, Biljana M; Veljovicc-Jovanovicc, Sonja D; Menckhoff, Ljiljana; Lüthje, Sabine

    2012-07-01

    Cell wall isolated from pea roots was used to separate and characterize two fractions possessing class III peroxidase activity: (i) ionically bound proteins and (ii) covalently bound proteins. Modified SDS-PAGE separated peroxidase isoforms by their apparent molecular weights: four bands of 56, 46, 44, and 41kDa were found in the ionically bound fraction (iPOD) and one band (70kDa) was resolved after treatment of the cell wall with cellulase and pectinase (cPOD). Isoelectric focusing (IEF) patterns for iPODs and cPODs were significantly different: five iPODs with highly cationic pI (9.5-9.2) were detected, whereas the nine cPODs were anionic with pI values between pH 3.7 and 5. iPODs and cPODs showed rather specific substrate affinity and different sensitivity to inhibitors, heat, and deglycosylation treatments. Peroxidase and oxidase activities and their IEF patterns for both fractions were determined in different zones along the root and in roots of different ages. New iPODs with pI 9.34 and 9.5 were induced with root growth, while the activity of cPODs was more related to the formation of the cell wall in non-elongating tissue. Treatment with auxin that inhibits root growth led to suppression of iPOD and induction of cPOD. A similar effect was obtained with the widely used elicitor, chitosan, which also induced cPODs with pI 5.3 and 5.7, which may be specifically related to pathogen defence. The differences reported here between biochemical properties of cPOD and iPOD and their differential induction during development and under specific treatments implicate that they are involved in specific and different physiological processes. PMID:22760472

  16. Mutualistic Co-evolution of Type III Effector Genes in Sinorhizobium fredii and Bradyrhizobium japonicum

    PubMed Central

    Jiang, Yuan; Creason, Allison L.; Thireault, Caitlin A.; Sachs, Joel L.; Chang, Jeff H.

    2013-01-01

    Two diametric paradigms have been proposed to model the molecular co-evolution of microbial mutualists and their eukaryotic hosts. In one, mutualist and host exhibit an antagonistic arms race and each partner evolves rapidly to maximize their own fitness from the interaction at potential expense of the other. In the opposing model, conflicts between mutualist and host are largely resolved and the interaction is characterized by evolutionary stasis. We tested these opposing frameworks in two lineages of mutualistic rhizobia, Sinorhizobium fredii and Bradyrhizobium japonicum. To examine genes demonstrably important for host-interactions we coupled the mining of genome sequences to a comprehensive functional screen for type III effector genes, which are necessary for many Gram-negative pathogens to infect their hosts. We demonstrate that the rhizobial type III effector genes exhibit a surprisingly high degree of conservation in content and sequence that is in contrast to those of a well characterized plant pathogenic species. This type III effector gene conservation is particularly striking in the context of the relatively high genome-wide diversity of rhizobia. The evolution of rhizobial type III effectors is inconsistent with the molecular arms race paradigm. Instead, our results reveal that these loci are relatively static in rhizobial lineages and suggest that fitness conflicts between rhizobia mutualists and their host plants have been largely resolved. PMID:23468637

  17. Adaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation

    PubMed Central

    2012-01-01

    Background A bacterial strain previously isolated from pyrite mine drainage and named BAS-10 was tentatively identified as Klebsiella oxytoca. Unlikely other enterobacteria, BAS-10 is able to grow on Fe(III)-citrate as sole carbon and energy source, yielding acetic acid and CO2 coupled with Fe(III) reduction to Fe(II) and showing unusual physiological characteristics. In fact, under this growth condition, BAS-10 produces an exopolysaccharide (EPS) having a high rhamnose content and metal-binding properties, whose biotechnological applications were proven as very relevant. Results Further phylogenetic analysis, based on 16S rDNA sequence, definitively confirmed that BAS-10 belongs to K. oxytoca species. In order to rationalize the biochemical peculiarities of this unusual enterobacteriun, combined 2D-Differential Gel Electrophoresis (2D-DIGE) analysis and mass spectrometry procedures were used to investigate its proteomic changes: i) under aerobic or anaerobic cultivation with Fe(III)-citrate as sole carbon source; ii) under anaerobic cultivations using Na(I)-citrate or Fe(III)-citrate as sole carbon source. Combining data from these differential studies peculiar levels of outer membrane proteins, key regulatory factors of carbon and nitrogen metabolism and enzymes involved in TCA cycle and sugar biosynthesis or required for citrate fermentation and stress response during anaerobic growth on Fe(III)-citrate were revealed. The protein differential regulation seems to ensure efficient cell growth coupled with EPS production by adapting metabolic and biochemical processes in order to face iron toxicity and to optimize energy production. Conclusion Differential proteomics provided insights on the molecular mechanisms necessary for anaeorobic utilization of Fe(III)-citrate in a biotechnologically promising enterobacteriun, also revealing genes that can be targeted for the rational design of high-yielding EPS producer strains. PMID:23176641

  18. Aging as Evolution-Facilitating Program and a Biochemical Approach to Switch It Off

    NASA Astrophysics Data System (ADS)

    Skulachev, Vladimir P.

    A concept is presented considering aging of living organisms as a final step of their ontogenetic program. It is assumed that such an aging program was invented by biological evolution to facilitate the evolutionary process. Indications are summarized suggesting that controlled production of toxic forms of oxygen (so called reactive oxygen species) by respiring intracellular organelles (mitochondria) is an obligatory component of the aging program. First results of a research project devoted to an attempt to interrupt aging program by antioxidants specifically addressed to mitochondria have been described. Within the framework of the project, antioxidants of a new type (SkQ) were synthesized. SkQs are composed of (i) plastoquinone (an antioxidant moiety), (ii) a penetrating cation, and (iii) a decane or pentane linker. Using planar bilayer phospholipid membranes, we selected SkQ derivatives of the highest penetrability, namely plastoquinonyl decyl triphenylphosphonium (SkQ1), plastoquinonyl decyl rhodamine 19 (SkQR1), and methylplastoquinonyl decyl triphenylphosphonium (SkQ3). Anti- and prooxidant properties of these substances and also of ubiquinonyl-decyl-triphenylphosphonium (MitoQ) were tested in isolated mitochondria. Micromolar concentrations of cationic quinones are found to be very strong prooxidants, but in the lower (sub-micromolar) concentrations they display antioxidant activity which decreases in the series SkQ1 = SkQR1 > SkQ3 > MitoQ. Thus, the window between the anti- and prooxidant effects is the smallest for MitoQ and the largest for SkQ1 and SkQR1. SkQ1 is rapidly reduced by complex III of the mitochondrial respiratory chain, i.e. it is a rechargeable antioxidant. Extremely low concentrations of SkQ1 and SkQR1 completely arrest the H2O2-induced apoptosis in human fibroblasts and HeLa cells (for SkQ1, C 1/2 = 8 · 10-9M). Higher concentrations of SkQ1 are required to block necrosis initiated by reactive oxygen species (ROS). In mice, SkQ1

  19. Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth

    PubMed Central

    Lüthje, Sabine

    2012-01-01

    Cell wall isolated from pea roots was used to separate and characterize two fractions possessing class III peroxidase activity: (i) ionically bound proteins and (ii) covalently bound proteins. Modified SDS–PAGE separated peroxidase isoforms by their apparent molecular weights: four bands of 56, 46, 44, and 41kDa were found in the ionically bound fraction (iPOD) and one band (70kDa) was resolved after treatment of the cell wall with cellulase and pectinase (cPOD). Isoelectric focusing (IEF) patterns for iPODs and cPODs were significantly different: five iPODs with highly cationic pI (9.5–9.2) were detected, whereas the nine cPODs were anionic with pI values between pH 3.7 and 5. iPODs and cPODs showed rather specific substrate affinity and different sensitivity to inhibitors, heat, and deglycosylation treatments. Peroxidase and oxidase activities and their IEF patterns for both fractions were determined in different zones along the root and in roots of different ages. New iPODs with pI 9.34 and 9.5 were induced with root growth, while the activity of cPODs was more related to the formation of the cell wall in non-elongating tissue. Treatment with auxin that inhibits root growth led to suppression of iPOD and induction of cPOD. A similar effect was obtained with the widely used elicitor, chitosan, which also induced cPODs with pI 5.3 and 5.7, which may be specifically related to pathogen defence. The differences reported here between biochemical properties of cPOD and iPOD and their differential induction during development and under specific treatments implicate that they are involved in specific and different physiological processes. Abbreviations:cPODcovalently bound peroxidaseDAB3,3'-diaminobenzidineDEPMPOspin-trap (5-diethoxy-phosphoryl-5-methyl-1-pyrroline-n-oxide)EPRelectron paramagnetic resonanceHRPhorseradish peroxidaseIAAindole-3-acetic acidHRPhorseradish peroxidaseIEFisoelectric focusingiPODionically bound peroxidaseNAAnaphthalene acetic acid

  20. Ancient origin, functional conservation and fast evolution of DNA-dependent RNA polymerase III

    PubMed Central

    Proshkina, Galina M.; Shematorova, Elena K.; Proshkin, Sergey A.; Zaros, Cécile; Thuriaux, Pierre; Shpakovski, George V.

    2006-01-01

    RNA polymerase III contains seventeen subunits in yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and in human cells. Twelve of them are akin to the core RNA polymerase I or II. The five other are RNA polymerase III-specific and form the functionally distinct groups Rpc31-Rpc34-Rpc82 and Rpc37-Rpc53. Currently sequenced eukaryotic genomes revealed significant homology to these seventeen subunits in Fungi, Animals, Plants and Amoebozoans. Except for subunit Rpc31, this also extended to the much more distantly related genomes of Alveolates and Excavates, indicating that the complex subunit organization of RNA polymerase III emerged at a very early stage of eukaryotic evolution. The Sch.pombe subunits were expressed in S.cerevisiae null mutants and tested for growth. Ten core subunits showed heterospecific complementation, but the two largest catalytic subunits (Rpc1 and Rpc2) and all five RNA polymerase III-specific subunits (Rpc82, Rpc53, Rpc37, Rpc34 and Rpc31) were non-functional. Three highly conserved RNA polymerase III-specific domains were found in the twelve-subunit core structure. They correspond to the Rpc17-Rpc25 dimer, involved in transcription initiation, to an N-terminal domain of the largest subunit Rpc1 important to anchor Rpc31, Rpc34 and Rpc82, and to a C-terminal domain of Rpc1 that presumably holds Rpc37, Rpc53 and their Rpc11 partner. PMID:16877568

  1. EVOLUTION OF [O III] {lambda}5007 EMISSION-LINE PROFILES IN NARROW EMISSION-LINE GALAXIES

    SciTech Connect

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2011-11-01

    The active galactic nucleus (AGN)-host co-evolution issue is investigated here by focusing on the evolution of the [O III] {lambda}5007 emission-line profile. A large sample of narrow emission-line galaxies is selected from the Max-Planck Institute for Astrophysics/Johns Hopkins University Sloan Digital Sky Survey DR7 catalog to simultaneously measure both the [O III] line profile and circumnuclear stellar population in an individual spectrum. By requiring that (1) the [O III] line signal-to-noise ratio is larger than 30 and (2) the [O III] line width is larger than the instrumental resolution by a factor of two, our sample is narrowed down to 2333 Seyfert galaxies/LINERs (AGNs), 793 transition galaxies, and 190 star-forming galaxies. In addition to the commonly used profile parameters (i.e., line centroid, relative velocity shift, and velocity dispersion), two dimensionless shape parameters, skewness and kurtosis, are used to quantify the line shape deviation from a pure Gaussian function. We show that the transition galaxies are systematically associated with narrower line widths and weaker [O III] broad wings than the AGNs, which implies that the kinematics of emission-line gas are different in the two kinds of objects. By combining the measured host properties and line shape parameters, we find that the AGNs with stronger blue asymmetries tend to be associated with younger stellar populations. However, a similar trend is not identified in the transition galaxies. The failure likely results from a selection effect in which the transition galaxies are systematically associated with younger stellar populations than the AGNs. The evolutionary significance revealed here suggests that both narrow-line region kinematics and outflow feedback in AGNs co-evolve with their host galaxies.

  2. Evolution of [O III] λ5007 Emission-line Profiles in Narrow Emission-line Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2011-11-01

    The active galactic nucleus (AGN)-host co-evolution issue is investigated here by focusing on the evolution of the [O III] λ5007 emission-line profile. A large sample of narrow emission-line galaxies is selected from the Max-Planck Institute for Astrophysics/Johns Hopkins University Sloan Digital Sky Survey DR7 catalog to simultaneously measure both the [O III] line profile and circumnuclear stellar population in an individual spectrum. By requiring that (1) the [O III] line signal-to-noise ratio is larger than 30 and (2) the [O III] line width is larger than the instrumental resolution by a factor of two, our sample is narrowed down to 2333 Seyfert galaxies/LINERs (AGNs), 793 transition galaxies, and 190 star-forming galaxies. In addition to the commonly used profile parameters (i.e., line centroid, relative velocity shift, and velocity dispersion), two dimensionless shape parameters, skewness and kurtosis, are used to quantify the line shape deviation from a pure Gaussian function. We show that the transition galaxies are systematically associated with narrower line widths and weaker [O III] broad wings than the AGNs, which implies that the kinematics of emission-line gas are different in the two kinds of objects. By combining the measured host properties and line shape parameters, we find that the AGNs with stronger blue asymmetries tend to be associated with younger stellar populations. However, a similar trend is not identified in the transition galaxies. The failure likely results from a selection effect in which the transition galaxies are systematically associated with younger stellar populations than the AGNs. The evolutionary significance revealed here suggests that both narrow-line region kinematics and outflow feedback in AGNs co-evolve with their host galaxies.

  3. SIM-GC-MS analysis of biochemical evolution in Amanita genus

    NASA Astrophysics Data System (ADS)

    Ristoiu, Dumitru; Kovacs, Emoke Dalma; Cobzac, Codruta; Parvu, Marcel; Ristoiu, Tania; Kovacs, Melinda Haydee

    2010-11-01

    Amanita is one of the most well known basidiomycetes genus throughout the world because some of its species that are acknowledged due to their toxic and/or hallucinogenic properties. Considering these properties in the last decades become more important for scientist to dignify exactly the chemical content of these mushroom species. Latter researches shown that A. phalloides contain two main groups of toxins: the amatoxins and the phallotoxins. As regards A. rubescens there are not so much studies referring to its biochemical "fingerprint". Two species (A. rubescens and A. phalloides) of Amanita genus were studied in order to determine the biochemical hall-mark at nanoscale for these basidiomycete's species. Parts as caps, gills, flesh and stem of these mushrooms were analyzed on quadrupole mass spectrometer engaged with a gas chromatograph (GC-qMS) using selective ion monitoring mode (SIM). The biochemical profiles of these species had shown the presence of compounds like fatty acid methyl esters (FAMEs), alkaloids, and volatile compounds (including alcohol compounds, carbonyl compounds, terpenes). The levels of biochemical compounds from these species were compared between the two types of species and also between young, mature and old samples for the same species as well as between the parts of mushroom. After this comparison were between the two species it was observed that in case of A. phalloides the alkaloid content were higher usually with almost 50 %. As regards presence of volatile compounds they have almost similar level in both mushroom species. Considering the levels of fatty acid methyl esters, their levels were higher with 30 - 40 % in case of A. rubescens.

  4. Evolution, biogeography, and systematics of Puriana: evolution and speciation in Ostracoda, III.

    USGS Publications Warehouse

    Cronin, T. M.

    1987-01-01

    Three types of geographic isolation - land barriers, deep water barriers, and climatic barriers - resulted in three distinct evolutionary responses in Neogene and Quaternary species of the epineritic ostracode genus Puriana. Through systematic, paleobiogeographic, and morphologic study of several hundred fossil and Recent populations from the eastern Pacific, western Atlantic, Gulf of Mexico, and the Caribbean, the phylogeny of the genus and the geography of speciation events were determined. Isolation of large populations by the Isthumus of Panama during the Pliocene did not lead to lineage splitting in species known to have existed before the Isthmus formed. Conversely, the establishment of small isolated populations on Caribbean islands by passive dispersal mechanisms frequently led to the evolution of new species or subspecies. Climatic changes along the southeastern United States during the Pliocene also catalyzed possible parapatric speciation as populations that immigrated to the northeastern periphery of the genus' range split to form new species. The results provide evidence that evolutionary models describing the influence of abiotic events on patterns of evolution and speciation can be tested using properly selected tectonic and climatic events and fossil groups amenable to species-level analysis. Two new species, P. bajaensis and P. paikensis, are described. -Author

  5. Photoactivation of the manganese catalyst of O2 evolution. I - Biochemical and kinetic aspects.

    NASA Technical Reports Server (NTRS)

    Cheniae, G. M.; Martin, I. F.

    1971-01-01

    A kinetic analysis is reported of the process of Mn photoactivation that the photosynthetic evolution of O2 requires. This process is investigated in Mn-deficient Anacystis nidulans cells. The implications are discussed of the results obtained.

  6. Effects of the variation of fundamental constants on Pop III stellar evolution

    SciTech Connect

    Coc, A.; Descouvemont, P.; Uzan, J.-Ph.; Vangioni, E.

    2010-08-12

    The effect of variations of the fundamental constants on the thermonuclear rate of the triple alpha reaction, {sup 4}He({alpha}{alpha}, {gamma}){sup 12}C, that bridges the gap between {sup 4}He and {sup 12}C is investigated. We have followed the evolution of 15 and 60 M{center_dot} zero metallicity stellar models, up to the end of core helium burning. They are assumed to be representative of the first (Population III) stars. The calculated oxygen carbon abundances resulting from helium burning can then be used to constrain the variation of the fundamental constants.

  7. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals

    PubMed Central

    Bae, Young-An; Cai, Guo-Bin; Kim, Seon-Hee; Zo, Young-Gun; Kong, Yoon

    2009-01-01

    Background Phospholipid hydroperoxide glutathione peroxidases (PHGPx), the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown. Results We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH)-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx)-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms. Conclusion Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic expansion/deletion and exon

  8. Evidence from Biochemical Pathways in Favor of Unfinished Evolution Rather than Intelligent Design

    ERIC Educational Resources Information Center

    Behrman, Edward J.; Marzluf, George A.

    2004-01-01

    An argument is made in favor of imperfect or unfinished evolution based on some metabolic pathways in which it seems that intelligent design would have done better. The case studies noted indicate the absence of highly intelligent design and are not intended as comprehensive collection but as a limited sample of inefficient situations in…

  9. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    SciTech Connect

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf; Senger, Robert; Thomas, Daniel; Maraston, Claudia; Steele, Oliver; Masters, Karen L.; Pforr, Janine; Tojeiro, Rita; Johansson, Jonas; Nichol, Robert C.; Chen, Yan-Mei; Wake, David; Bolton, Adam; Brownstein, Joel R.; Leauthaud, Alexie; Schneider, Donald P.; Skibba, Ramin; Pan, Kaike; and others

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurements with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.

  10. Oxygen-dependent coproporphyrinogen-III oxidase from Escherichia coli: one-step purification and biochemical characterisation.

    PubMed

    Macieira, Sofia; Martins, Berta M; Huber, Robert

    2003-09-12

    Coproporphyrinogen-III oxidase (CPO) catalyses the conversion of coproporphyrinogen-III to protoporphyrinogen-IX in the haem biosynthetic pathway, and its deficient activity is associated with human hereditary coproporphyria. The 47% sequence identity between the oxygen-dependent CPO from Escherichia coli and its human counterpart makes the bacterial enzyme a good model system for structural studies of this disease. Therefore, we overexpressed and purified to homogeneity the oxygen-dependent CPO from E. coli and its selenomethionine derivative fused with a His(6)-tag. Both preparations showed a specific activity of 37500 U mg(-1), had a subunit molecular mass of 35 kDa and behaved as a compact shaped dimer. First crystallisation trials produced plate-shaped diffracting crystals. PMID:13129604

  11. Structure/Function Analysis of a Type III Polyketide Synthase in the Brown Alga Ectocarpus siliculosus Reveals a Biochemical Pathway in Phlorotannin Monomer Biosynthesis[W

    PubMed Central

    Meslet-Cladière, Laurence; Delage, Ludovic; Leroux, Cédric J.-J.; Goulitquer, Sophie; Leblanc, Catherine; Creis, Emeline; Gall, Erwan Ar; Stiger-Pouvreau, Valérie; Czjzek, Mirjam; Potin, Philippe

    2013-01-01

    Brown algal phlorotannins are structural analogs of condensed tannins in terrestrial plants and, like plant phenols, they have numerous biological functions. Despite their importance in brown algae, phlorotannin biosynthetic pathways have been poorly characterized at the molecular level. We found that a predicted type III polyketide synthase in the genome of the brown alga Ectocarpus siliculosus, PKS1, catalyzes a major step in the biosynthetic pathway of phlorotannins (i.e., the synthesis of phloroglucinol monomers from malonyl-CoA). The crystal structure of PKS1 at 2.85-Å resolution provided a good quality electron density map showing a modified Cys residue, likely connected to a long chain acyl group. An additional pocket not found in other known type III PKSs contains a reaction product that might correspond to a phloroglucinol precursor. In vivo, we also found a positive correlation between the phloroglucinol content and the PKS III gene expression level in cells of a strain of Ectocarpus adapted to freshwater during its reacclimation to seawater. The evolution of the type III PKS gene family in Stramenopiles suggests a lateral gene transfer event from an actinobacterium. PMID:23983220

  12. Studies on acute in vivo exposure of rats to 2450-MHz microwave radiation. III. Biochemical and hematologic effects

    SciTech Connect

    Galvin, M.J.; Ortner, M.J.; McRee, P.I.

    1982-06-01

    Male rats were exposed to 2450-MHz cw microwave radiation for 8 hr at incident power densities of 0 (sham), 2, or 10 mW/cm/sup 2/. Following exposure, rats were killed by decapitation, and blood samples were collected for determination of hematocrit, hemoglobin, red and white cell count, and differential white cell percentages. The total red and white cell counts were not affected by either exposure level. The blood hemoglobin level was also unaffected by the 8-hr microwave exposure, having a value of approximately 15.5 g% for all three groups. The percentages of lymphocytes and neutrophils for both exposed groups was similar to those of the sham group. The other cell types were also unchanged by the microwave exposure. None of the serum biochemistries examined were affected by either microwave exposure level. These data therefore demonstrate that acute (8 hr) exposure to 2450-MHz cw microwave radiation has no effect on the hematologic and biochemical parameters examined.

  13. Changing physical conditions in star-forming galaxies between redshifts 0 < z < 4: [O III]/H β evolution

    NASA Astrophysics Data System (ADS)

    Cullen, F.; Cirasuolo, M.; Kewley, L. J.; McLure, R. J.; Dunlop, J. S.; Bowler, R. A. A.

    2016-08-01

    We investigate the redshift evolution of the [O III]/H β nebular emission line ratio for a sample of galaxies spanning the redshift range 0 < z < 4. We compare the observed evolution to a set of theoretical models which account for the independent evolution of chemical abundance, ionization parameter and interstellar medium (ISM) pressure in star-forming galaxies with redshift. Accounting for selection effects in the combined data sets, we show that the evolution to higher [O III]/H β ratios with redshift is a real physical effect which is best accounted for by a model in which the ionization parameter is elevated from the average values typical of local star-forming galaxies, with a possible simultaneous increase in the ISM pressure. We rule out the possibility that the observed [O III]/H β evolution is purely due to metallicity evolution. We discuss the implications of these results for using local empirical metallicity calibrations to measure metallicities at high redshift, and briefly discuss possible theoretical implications of our results.

  14. Structural and Biochemical Characterization of SrcA, a Multi-cargo Type III Secretion Chaperone in Salmonella Required for Pathogenic Association with a Host

    SciTech Connect

    Cooper, C.; Zhang, K; Andres, S; Fnag, Y; Kaniuk, N; Hannemann, M; Brumell, J; Foster, L; Junop, M; Coombes, B

    2010-01-01

    Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 {angstrom} revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  15. Water oxidation catalysis upon evolution of molecular Co(III) cubanes in aqueous media.

    PubMed

    Genoni, Andrea; La Ganga, Giuseppina; Volpe, Andrea; Puntoriero, Fausto; Di Valentin, Marilena; Bonchio, Marcella; Natali, Mirco; Sartorel, Andrea

    2015-01-01

    The increasing global energy demand has stimulated great recent efforts in investigating new solutions for artificial photosynthesis, a potential source of clean and renewable solar fuel. In particular, according to the generally accepted modular approach aimed at optimising separately the different compartments of the entire process, many studies have focused on the development of catalytic systems for water oxidation to oxygen. While in recent years there have been many reports on new catalytic systems, the mechanism and the active intermediates operating the catalysis have been less investigated. Well-defined, molecular catalysts, constituted by transition metals stabilised by a suitable ligand pool, could help in solving this aspect. However, in some cases molecular species have been shown to evolve to active metal oxides that constitute the other side of this catalysis dichotomy. In this paper, we address the evolution of tetracobalt(III) cubanes, stabilised by a pyridine/acetate ligand pool, to active species that perform water oxidation to oxygen. Primary evolution of the cubane in aqueous solution is likely initiated by removal of an acetate bridge, opening the coordination sphere of the cobalt centres. This cobalt derivative, where the pristine ligands still impact on the reactivity, shows enhanced electron transfer rates to Ru(bpy)3(3+) (hole scavenging) within a photocatalytic cycle with Ru(bpy)3(2+) as the photosensitiser and S2O8(2-) as the electron sink. A more accentuated evolution occurs under continuous irradiation, where Electron Paramagnetic Resonance (EPR) spectroscopy reveals the formation of Co(ii) intermediates, likely contributing to the catalytic process that evolves oxygen. All together, these results confirm the relevant effect of molecular species, in particular in fostering the rate of the electron transfer processes involved in light activated cycles, pivotal in the design of a photoactive device. PMID:26400662

  16. Chemical, biochemical, and environmental fiber sensors III; Proceedings of the Meeting, Boston, MA, Sept. 4, 5, 1991

    SciTech Connect

    Lieberman, R.A.

    1992-01-01

    Various papers on chemical, biochemical, and environmental fiber sensors are presented. Individual topics addressed include: fiber optic pressure sensor for combustion monitoring and control, viologen-based fiber optic oxygen sensors, renewable-reagent fiber optic sensor for ocean pCO2, transition metal complexes as indicators for a fiber optic oxygen sensor, fiber optic pH measurements using azo indicators, simple reversible fiber optic chemical sensors using solvatochromic dyes, totally integrated optical measuring sensors, integrated optic biosensor for environmental monitoring, radiation dosimetry using planar waveguide sensors, optical and piezoelectric analysis of polymer films for chemical sensor characterization, source polarization effects in an optical fiber fluorosensor, lens-type refractometer for on-line chemical analysis, fiber optic hydrocarbon sensor system, chemical sensors for environmental monitoring, optical fibers for liquid-crystal sensing and logic devices, suitability of single-mode fluoride fibers for evanescent-wave sensing, integrated modules for fiber optic sensors, optoelectronic sensors based on narrowband A3B5 alloys, fiber Bragg grating chemical sensor.

  17. The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader.

    PubMed

    Qin, Rui-Min; Zheng, Yu-Long; Valiente-Banuet, Alfonso; Callaway, Ragan M; Barclay, Gregor F; Pereyra, Carlos Silva; Feng, Yu-Long

    2013-02-01

    There are many non-mutually exclusive mechanisms for exotic invasions but few studies have concurrently tested more than one hypothesis for the same species. Here, we tested the evolution of increased competitive ability (EICA) hypothesis in two common garden experiments in which Chromolaena odorata plants originating from native and nonnative ranges were grown in competition with natives from each range, and the novel weapons hypothesis in laboratory experiments with leachates from C. odorata. Compared with conspecifics originating from the native range, C. odorata plants from the nonnative range were stronger competitors at high nutrient concentrations in the nonnative range in China and experienced far more herbivore damage in the native range in Mexico. In both China and Mexico, C. odorata was more suppressed by species native to Mexico than by species native to China. Species native to China were much more inhibited by leaf extracts from C. odorata than species from Mexico, and this difference in allelopathic effects may provide a possible explanation for the biogeographic differences in competitive ability. Our results indicate that EICA, innate competitive advantages, and novel biochemical weapons may act in concert to promote invasion by C. odorata, and emphasize the importance of exploring multiple, non-mutually exclusive mechanisms for invasions. PMID:23252450

  18. [Toxicological evaluation of colloidal nano-sized silver stabilized polyvinylpyrrolidone. III. Enzymological, biochemical markers, state of antioxidant defense system].

    PubMed

    Gmoshinsky, I V; Shipelin, V A; Vorozhko, I V; Sentsova, T B; Soto, S Kh; Avren'eva, L I; Guseva, G V; Kravchenko, L V; Khotimchenko, S A; Tutelyan, V A

    2016-01-01

    Nanosized colloidal silver (NCS) with primary nanoparticles (NPs) size in the range of 10-80 nm in aqueous suspension was administered to rats with initial weight 80±10 gfor the first 30 day intragastrically and for lasting 62 days with the diet consumed in doses of 0.1; 1.0 and 10 mg/kg of body weight b.w) per day based on silver (Ag). The control animals received deionized water and carrier of NPs - aqueous solution of stabilizer polyvinylpyrrolidone. Activity (Vmax) was determined in liver of microsomal mixed function monooxygenase isoforms CYP 1A1, 1A2 and 2B1 against their specific substrates, the activity of liver conjugating enzymes (glutathione-S-transferase and UDP-glucuronosyltransferase) in the microsomal fraction and a cytosol, and the overall and non-sedimentable activities of lysosomal hydrolases. In blood plasma there were evaluated malonic dialdehyde, PUFA diene conjugates, in erythrocytes - the activity of antioxidant enzymes. A set of standard biochemical indicators of blood serum was also determined. The studies revealed changes in a number of molecular markers of toxic action. Among them - the increase in the activity of key enzymes I and II stages of detoxification of xenobiotics, indicating its functional overvoltage; reducing the activity of glutathione peroxidase (GP), the total arylsulfatase A and B, β-galactosidase (in the absence of changes in their non-sedimentable activity), levels of uric acid, increased alkaline phosphatase activity. These changes occurred mainly at the dose Ag of 10 mg/kg b.w., except for the GP to which the threshold dose was 1 mg/kg b.w. No significant changes in the studied markers in a dose Ag 0,1 mg/kg b.w. were identified. Possible mechanisms of the toxic action of silver NPs are discussed. PMID:27455597

  19. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-03-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 × 107 M ⊙ using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ~1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  20. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  1. Biochemical characterization of a recombinant plant class III chitinase from the pitcher of the carnivorous plant Nepenthes alata.

    PubMed

    Ishisaki, Kana; Arai, Sachiko; Hamada, Tatsuro; Honda, Yuji

    2012-11-01

    A class III chitinase belonging to the GH18 family from Nepenthes alata (NaCHIT3) was expressed in Escherichia coli. The enzyme exhibited hydrolytic activity toward colloidal chitin, ethylene glycol chitin, and (GlcNAc)(n) (n=5 and 6). The enzyme hydrolyzed the fourth glycosidic linkage from the non-reducing end of (GlcNAc)(6). The anomeric form of the products indicated it was a retaining enzyme. The colloidal chitin hydrolytic reaction displayed high activity between pH 3.9 and 6.9, but the pH optimum of the (GlcNAc)(6) hydrolytic reaction was 3.9 at 37 °C. The optimal temperature for activity was 65 °C in 50 mM sodium acetate buffer (pH 3.9). The pH optima of NaCHIT3 and NaCHIT1 might be related to their roles in chitin degradation in the pitcher fluid. PMID:23026711

  2. The effects of convection criteria on the evolution of Population III stars and the detectability of their supernovae

    NASA Astrophysics Data System (ADS)

    Lawlor, T. M.; Young, T. R.; Teffs, J.; MacDonald, J.

    2015-06-01

    The first stars continue to elude modern telescopes, but much has been accomplished in observing the glow of the first galaxies. As detection capabilities improve we will eventually resolve these galaxies, but hopes of observing an individual star remains dim for the foreseeable future. However, our first view of an individual first star may be possible due to its explosion. In this work, we present evolution calculations for Population III (Pop III) stars and their subsequent supernovae explosions. Our evolution models include a mass range of 15-100 M⊙, each with initial heavy element abundance Z = 10-14. Our models are evolved from pre-main sequence through formation of an iron core, and thus near to core collapse. We find that modelling the evolution of these stars is very sensitive to the choice of convection criterion; here we provide evolution results using both the Schwarzschild and Ledoux criteria. We also use the final structure from our models for numerical simulation of their supernovae light curves using a radiation hydrodynamics code. In doing so, we estimate a lower bound of initial model mass that may be possible to observe in near future. We also find that our 40 M⊙ Schwarzschild evolution model produces the brightest supernova peak and statistically should be the most frequently observed. At our highest redshift z = 15, only the 60 M⊙ Schwarzschild model at peak magnitude starts to rival the 40 M⊙ model in brightness.

  3. The Assembly and Evolution of Eastern Laurentia: Evidence from the QM-III Experiment

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Levin, V. L.; Menke, W. H.; Bastow, I. D.; Petrescu, L.; Boyce, A.; Klaser, M.; Dunham, B.; Servali, A.; Neitz, T.

    2014-12-01

    Eastern North America is an excellent region to test hypotheses about the evolution through time of tectonic processes, the growth of continental crust and the assembly of continents. Over a spatial scale of just a few hundred kilometres, the surface geology records almost 3 billion years of Earth history, with a transition from the Archean Superior craton through the Proterozoic Grenville orogenic belt to the Phanerozoic Appalachian terranes and the edge of the North American continent. The boundaries between these major tectonic provinces have been mapped at the surface, and crustal-scale geophysical studies (e.g. LITHOPROBE) have been able to trace their complex signatures to the Moho and below in some parts of eastern Canada. Nevertheless, the nature of the boundaries across the region, and their continuation into the lithospheric mantle, remains enigmatic. The high wavespeed lithospheric keel of the Canadian Shield extends beneath the Proterozoic terranes; however it is still unclear whether this material represents a continuation of Archean lithosphere over which the Grenville terranes have been thrust, or whether the Grenville can be associated with its own thick keel. The transition from Proterozoic to Phanerozoic lithosphere beneath the Appalachian Front is likewise ambiguous. To shed new light on the tectonic evolution of the region, and the nature of the major tectonic boundaries, a broadband seismograph network was installed in eastern Canada in 2012-2013 through the QM-III (Quebec-Maine Across Three Sutures) experiment; stations will remain in place for 2-3 years. The network consists of a dense NW-SE profile from the southern tip of Hudson Bay to coastal Maine, supplemented by existing more sparsely-distributed stations, and a 2D deployment across Maritime Canada. Data acquisition is ongoing, but preliminary results from receiver function analysis, travel-time tomography and surface-wave dispersion are already showing some intriguing variations in

  4. EVOLUTION OF VERY MASSIVE POPULATION III STARS WITH MASS ACCRETION FROM PRE-MAIN SEQUENCE TO COLLAPSE

    SciTech Connect

    Ohkubo, Takuya; Nomoto, Ken'ichi; Umeda, Hideyuki; Yoshida, Naoki; Tsuruta, Sachiko E-mail: umeda@astron.s.u-tokyo.ac.j E-mail: naoki.yoshida@ipmu.j

    2009-12-01

    We calculate the evolution of zero-metallicity Population III (Pop III) stars whose mass grows from the initial mass of approx1 M{sub sun} by accreting the surrounding gases. Our calculations cover whole evolutionary stages from the pre-main sequence, via various nuclear burning stages, through the final core-collapse or pair-creation instability phases. We adopt two different sets of stellar mass accretion rates as our fiducial models. One is derived from a cosmological simulation of the first generation (PopIII.1) stars, and the other is derived from a simulation of the second generation stars that are affected by radiation from PopIII.1 stars. The latter represents one case of PopIII.2 stars. We also adopt additional models that include radiative feedback effects. We show that the final mass of Pop III.1 stars can be as large as approx1000 M {sub sun}, beyond the mass range (140-300 M{sub sun}) for the pair-instability supernovae. Such massive stars undergo core-collapse to form intermediate-mass black holes, which may be the seeds for merger trees to supermassive black holes. On the other hand, Pop III.2 stars become less massive (approx<40-60 M{sub sun}), being in the mass range of ordinary iron core-collapse stars. Such stars explode and eject heavy elements to contribute to chemical enrichment of the early universe as observed in the abundance patterns of extremely metal-poor stars in the Galactic halo. In view of the large range of possible accretion rates, further studies are important to see if these fiducial models are actually the cases.

  5. A prescription and fast code for the long-term evolution of star clusters - III. Unequal masses and stellar evolution

    NASA Astrophysics Data System (ADS)

    Alexander, Poul E. R.; Gieles, Mark; Lamers, Henny J. G. L. M.; Baumgardt, Holger

    2014-08-01

    We present a new version of the fast star cluster evolution code EVOLVE ME A CLUSTER OF STARS (EMACSS). While previous versions of EMACSS reproduced clusters of single-mass stars, this version models clusters with an evolving stellar content. Stellar evolution dominates early evolution, and leads to: (1) reduction of the mean mass of stars due to the mass loss of high-mass stars; (2) expansion of the half-mass radius; (3) for (nearly) Roche Volume filling clusters, the induced escape of stars. Once sufficient relaxation has occurred (≃10 relaxation times-scales), clusters reach a second, `balanced' state whereby the core releases energy as required by the cluster as a whole. In this state: (1) stars escape due to tidal effects faster than before balanced evolution; (2) the half-mass radius expands or contracts depending on the Roche volume filling factor; and (3) the mean mass of stars increases due to the preferential ejection of low-mass stars. We compare the EMACSS results of several cluster properties against N-body simulations of clusters spanning a range of initial number of stars, mass, half-mass radius, and tidal environments, and show that our prescription accurately predicts cluster evolution for this data base. Finally, we consider applications for EMACSS, such as studies of galactic globular cluster populations in cosmological simulations.

  6. Coordination polymers of Fe(iii) and Al(iii) ions with TCA ligand: distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction.

    PubMed

    Dhara, Barun; Sappati, Subrahmanyam; Singh, Santosh K; Kurungot, Sreekumar; Ghosh, Prasenjit; Ballav, Nirmalya

    2016-04-28

    Fe and Al belong to different groups in the periodic table, one from the p-block and the other from the d-block. In spite of their different groups, they have the similarity of exhibiting a stable 3+ oxidation state. Here we have prepared Fe(iii) and Al(iii) based coordination polymers in the form of metal-organic gels with the 4,4',4''-tricarboxyltriphenylamine (TCA) ligand, namely Fe-TCA and Al-TCA, and evaluated some important physicochemical properties. Specifically, the electrical conductivity, redox-activity, porosity, and electrocatalytic activity (oxygen evolution reaction) of the Fe-TCA system were noted to be remarkably higher than those of the Al-TCA system. As for the photophysical properties, almost complete quenching of the fluorescence originating from TCA was observed in case of the Fe-TCA system, whereas for the Al-TCA system a significant retention of fluorescence with red-shifted emission was observed. Quantum mechanical calculations based on density functional theory (DFT) were performed to unravel the origin of such discriminative behaviour of these coordination polymer systems. PMID:26961352

  7. Type III polyketide synthase repertoire in Zingiberaceae: computational insights into the sequence, structure and evolution.

    PubMed

    Mallika, Vijayanathan; Aiswarya, Girija; Gincy, Paily Thottathil; Remakanthan, Appukuttan; Soniya, Eppurathu Vasudevan

    2016-07-01

    Zingiberaceae or 'ginger family' is the largest family in the order 'Zingiberales' with more than 1300 species in 52 genera, which are mostly distributed throughout Asia, tropical Africa and the native regions of America with their maximum diversity in Southeast Asia. Many of the members are important spice, medicinal or ornamental plants including ginger, turmeric, cardamom and kaempferia. These plants are distinguished for the highly valuable metabolic products, which are synthesised through phenylpropanoid pathway, where type III polyketide synthase is the key enzyme. In our present study, we used sequence, structural and evolutionary approaches to scrutinise the type III polyketide synthase (PKS) repertoire encoded in the Zingiberaceae family. Highly conserved amino acid residues in the sequence alignment and phylogram suggested strong relationships between the type III PKS members of Zingiberaceae. Sequence and structural level investigation of type III PKSs showed a small number of variations in the substrate binding pocket, leading to functional divergence among these PKS members. Molecular evolutionary studies indicate that type III PKSs within Zingiberaceae evolved under strong purifying selection pressure, and positive selections were rarely detected in the family. Structural modelling and protein-small molecule interaction studies on Zingiber officinale PKS 'a representative from Zingiberaceae' suggested that the protein is comparatively stable without much disorder and exhibited wide substrate acceptance. PMID:27138283

  8. Evolution of the DSCS phase III satellite through the 1990's

    NASA Astrophysics Data System (ADS)

    Donovan, R.; Kelley, R.; Swimm, K.

    The Defense Satellite Communications Systems (DSCS) initiated its third generation when the first DSCS, Phase III (DSCS III) satellite was successfully launched in late 1982. DSCS III features a multibeam receive nulling antenna, six independent channels and a 10 year lifetime giving better jamming protection, operational flexibility and life cycle costs. DSCS III also supplies AFSATCOM service. During the 1980s DSCS III will incorporate solid state amplifiers, more redundancy, new COMSEC devices, an SHF AFSATCOM downlink, more autonomy and wider channel bandwidths to improve spacecraft reliability and mission performance. By the early 1990s new payloads enhancing mission capabilities are feasible. Possibilities include advanced wideband user and AFSATCOM payloads. The new wideband payload could feature EHF links, adaptive nulling, on-board despreading, and an active transmit array giving higher capacity and jammer protection. The AFSATCOM payload could include EHF and UHF links plus multichannel digital demodulation to give higher jamming protection and capacity in a MILSTAR backup role and EHF telemetry/commanding. Both payloads could utilize satellite crosslinks to improve global netting.

  9. The effects of stimulated star formation on the evolution of the galaxy. III - The chemical evolution of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Ferrini, Federico; Palla, Francesco

    1987-01-01

    The evolution of models for star formation in galaxies with disk and halo components is discussed. Two phases for the halo (gas and stars) and three for the disk (including clouds) are used in these calculations. The star-formation history is followed using nonlinear phase-coupling models which completely determine the populations of the phases as a function of time. It is shown that for a wide range of parameters, including the effects of both spontaneous and stimulated star formation and mass exchange between the spatial components of the system, the observed chemical history of the galaxy can easily be obtained. The most sensitive parameter in the detailed metallicity and star-formation history for the system is the rate of return of gas to the diffuse phase upon stellar death.

  10. INTERACTING BINARIES WITH ECCENTRIC ORBITS. III. ORBITAL EVOLUTION DUE TO DIRECT IMPACT AND SELF-ACCRETION

    SciTech Connect

    Sepinsky, J. F.; Willems, B.; Kalogera, V.; Rasio, F. A. E-mail: b-willems@northwestern.ed E-mail: rasio@northwestern.ed

    2010-11-20

    The rapid circularization and synchronization of the stellar components in an eccentric binary system at the onset of Roche lobe overflow is a fundamental assumption common to all binary stellar evolution and population synthesis codes, even though the validity of this assumption is questionable both theoretically and observationally. Here we calculate the evolution of the orbital elements of an eccentric binary through the direct three-body integration of a massive particle ejected through the inner Lagrangian point of the donor star at periastron. The trajectory of this particle leads to three possible outcomes: direct accretion onto the companion star within a single orbit, self-accretion back onto the donor star within a single orbit, or a quasi-periodic orbit around the companion star, possibly leading to the formation of a disk. We calculate the secular evolution of the binary orbit in the first two cases and conclude that direct impact accretion can increase as well as decrease the orbital semimajor axis and eccentricity, while self-accretion always decreases the orbital semimajor axis and eccentricity. In cases where mass overflow contributes to circularizing the orbit, circularization can set in on timescales as short as a few percent of the mass-transfer timescale. In cases where mass overflow increases the eccentricity, the orbital evolution is governed by competition between mass overflow and tidal torques. In the absence of tidal torques, mass overflow results in direct impact can lead to substantially subsynchronously rotating donor stars. Contrary to assumptions common in the literature, direct impact accretion furthermore does not always provide a strong sink of orbital angular momentum in close mass-transferring binaries; in fact, we instead find that a significant part can be returned to the orbit during the particle orbit. The formulation presented in this paper together with our previous work can be combined with stellar and binary evolution

  11. Cerium(III) Complex Modified Gold Electrode: An Efficient Electrocatalyst for the Oxygen Evolution Reaction.

    PubMed

    Garain, Samiran; Barman, Koushik; Sinha, Tridib Kumar; Jasimuddin, Sk; Haeberle, Jörg; Henkel, Karsten; Schmeisser, Dieter; Mandal, Dipankar

    2016-08-24

    Exploring efficient and inexpensive electrocatalysts for the oxidation of water is of great importance for various electrochemical energy storage and conversion technologies. In the present study, a new water-soluble [Ce(III)(DMF) (HSO4)3] complex was synthesized and characterized by UV-vis, photoluminescence, and high-resolution X-ray photoelectron spectroscopy techniques. Owing to classic 5d → 4f transitions, an intense photoluminescence in the UV region was observed from the water-soluble [Ce(III)(DMF) (HSO4)3] complex. A stacking electrode was designed where self-assembled l-cysteine monolayer modified gold was immobilized with the synthesized cerium complex and was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The resulting electrode, i.e., [Ce(III)(DMF) (HSO4)3]-l-cysteine-Au stacks shows high electrocatalytic water oxidation behavior at an overpotential of η ≈ 0.34 V under neutral pH conditions. We also demonstrated a way where the overpotential is possible to decrease upon irradiation of UV light. PMID:27490440

  12. Spectral evolution of galaxies. III - Cosmological predictions for the Space Telescope faint object camera

    NASA Astrophysics Data System (ADS)

    Bruzual A., G.

    1983-10-01

    The galactic spectral evolutionary models of Bruzual A. (1981) are employed to estimate parameters which will be observable by the wide-field camera and faint-object camera of the Space Telescope. The capabilities and bandpasses of the instruments are reviewed, and the results are presented in tables and graphs. Parameters calculated include the amplitude of the Lyman discontinuity at 912 A, stellar and galaxy rest-frame colors, color evolution, two-color diagrams as a function of redshift, luminosity evolution, surface brightness profiles, galaxy counts, and color and redshift distributions. In general, it is predicted that the space measurements will follow the trends noted in round-based observations.

  13. Modification of Ti6Al4V surfaces using collagen I, III, and fibronectin. I. Biochemical and morphological characteristics of the adsorbed matrix.

    PubMed

    Bierbaum, Susanne; Beutner, René; Hanke, Thomas; Scharnweber, Dieter; Hempel, Ute; Worch, Hartmut

    2003-11-01

    Studies in developmental and cell biology have established the fact that responses of cells are influenced to a large degree by morphology and composition of the extracellular matrix. Goal of this work is to use this basic principle to improve the biological acceptance of implants by modifying the surfaces with components of the extracellular matrix (ECM). Aiming at load-bearing applications in bone contact, in this study the modification of titanium surfaces with the collagen types I and III in combination with fibronectin was undertaken; fibrillogenesis, fibril morphology and adsorption of type I, III and I/III-cofibrils onto titanium were assessed. Increasing the collagen type III amount resulted in a decrease of fibril diameter, while no significant changes in adsorption could be detected. The amount of fibronectin bound to the heterotypic fibrils depended on fibrillogenesis parameters such as ionic strength or concentration of phosphate, and varied with the percentage of integrated type III collagen. PMID:14566782

  14. Exploring Photoinduced Excited State Evolution in Heterobimetallic Ru(II)-Co(III) Complexes.

    PubMed

    Kuhar, Korina; Fredin, Lisa A; Persson, Petter

    2015-06-18

    Quantum chemical calculations provide detailed theoretical information concerning key aspects of photoinduced electron and excitation transfer processes in supramolecular donor-acceptor systems, which are particularly relevant to fundamental charge separation in emerging molecular approaches for solar energy conversion. Here we use density functional theory (DFT) calculations to explore the excited state landscape of heterobimetallic Ru-Co systems with varying degrees of interaction between the two metal centers, unbound, weakly bound, and tightly bound systems. The interplay between structural and electronic factors involved in various excited state relaxation processes is examined through full optimizations of multiple charge/spin states of each of the investigated systems. Low-energy relaxed heterobimetallic states of energy transfer and excitation transfer character are characterized in terms of energy, structure, and electronic properties. These findings support the notion of efficient photoinduced charge separation from a Ru(II)-Co(III) ground state, via initial optical excitation of the Ru-center, to low-energy Ru(III)-Co(II) states. The strongly coupled system has significant involvement of the conjugated bridge, qualitatively distinguishing it from the other two weakly coupled systems. Finally, by constructing potential energy surfaces for the three systems where all charge/spin state combinations are projected onto relevant reaction coordinates, excited state decay pathways are explored. PMID:25719556

  15. Enthalpy-Based Thermal Evolution of Loops: III. Comparison of Zero-Dimensional Models

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Bradshaw, Stephen J.; Klimchuk, James A.

    2012-01-01

    Zero dimensional (0D) hydrodynamic models, provide a simple and quick way to study the thermal evolution of coronal loops subjected to time-dependent heating. This paper presents a comparison of a number of 0D models that have been published in the past and is intended to provide a guide for those interested in either using the old models or developing new ones. The principal difference between the models is the way the exchange of mass and energy between corona, transition region and chromosphere is treated, as plasma cycles into and out of a loop during a heating-cooling cycle. It is shown that models based on the principles of mass and energy conservation can give satisfactory results at some, or, in the case of the Enthalpy Based Thermal Evolution of Loops (EBTEL) model, all stages of the loop evolution. Empirical models can lead to low coronal densities, spurious delays between the peak density and temperature, and, for short heating pulses, overly short loop lifetimes.

  16. ENTHALPY-BASED THERMAL EVOLUTION OF LOOPS. III. COMPARISON OF ZERO-DIMENSIONAL MODELS

    SciTech Connect

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2012-10-10

    Zero-dimensional (0D) hydrodynamic models provide a simple and quick way to study the thermal evolution of coronal loops subjected to time-dependent heating. This paper presents a comparison of a number of 0D models that have been published in the past and is intended to provide a guide for those interested in either using the old models or developing new ones. The principal difference between the models is the way the exchange of mass and energy between corona, transition region, and chromosphere is treated, as plasma cycles into and out of a loop during a heating-cooling cycle. It is shown that models based on the principles of mass and energy conservation can give satisfactory results at some or, in the case of the Enthalpy-based Thermal Evolution of Loops model, all stages of the loop evolution. Empirical models can have significant difficulties in obtaining accurate behavior due to invocation of assumptions incompatible with the correct exchange of mass and energy between corona, transition region, and chromosphere.

  17. Degradation of connective tissue matrices by macrophages. III. Morphological and biochemical studies on extracellular, pericellular, and intracellular events in matrix proteolysis by macrophages in culture

    SciTech Connect

    Werb, Z.; Bainton, D.F.; Jones, P.A.

    1980-12-01

    The aim of the present study was to determine the localization of macrophage-mediated degradation of matrix proteins. The sites of matrix degradation were examined ultrastructurally, and the effects of modulation of macrophage secretion, endocytosis, and activity of macrophage hydrolases on matrix degradation were monitored biochemically.

  18. The evolution of the EGFRvIII (rindopepimut) immunotherapy for glioblastoma multiforme patients

    PubMed Central

    Paff, Michelle; Alexandru-Abrams, Daniela; Hsu, Frank P K; Bota, Daniela A

    2015-01-01

    Glioblastoma Multiforme (GBM) is the most common type of brain tumor and it is uniformly fatal. The community standard of treatment for this disease is gross or subtotal resection of the tumor, followed by radiation and temozolomide. At recurrence bevacizumab can be added for increased progression free survival. Many challenges are encountered while trying to devise new drugs to treat GBM, such as the presence of the blood brain barrier which is impermeable to most drugs. Therefore in the past few years attention was turned to immunological means for the treatment of this devastating disease. EGFRvIII targeting has proven a good way to attack glioblastoma cells by using the immune system. Although in still in development, this approach holds the promise as a great first step toward immune-tailored drugs for the treatment of brain cancers. PMID:25625931

  19. Charge state evolution in the solar wind. III. Model comparison with observations

    SciTech Connect

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B.

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  20. Charge State Evolution in the Solar Wind. III. Model Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; van der Holst, B.

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  1. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways.

    PubMed

    Slesak, Ireneusz; Slesak, Halina; Kruk, Jerzy

    2012-08-01

    In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment. PMID:22970865

  2. Rotating black holes at future colliders. III. Determination of black hole evolution

    SciTech Connect

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-06-15

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes.

  3. Evolution of the electron acoustic signal as function of doping level in III-V semiconductors

    SciTech Connect

    Bresse, J.F.; Papadopoulo, A.C.

    1988-07-01

    The evolution of the electron acoustic signal has been measured for Be- and Si-doped GaAs and Ga/sub 0.28/Al/sub 0.19/In/sub 0.53/As layers with doping levels from10/sup 17/ to 10/sup 20/ at. cm/sup -3/. The samples have also been analyzed by cathodoluminescence spectroscopy for near-band-edge transition and deep level emission. The results are explained by the reduction of the mean free path of phonons, giving rise to a lattice thermal conductivity decrease. Meanwhile, the electronic part of the thermal conductivity of these compounds is found to be nearly negligible.

  4. Oxygen and Hydrogen Peroxide in the Early Evolution of Life on Earth: In silico Comparative Analysis of Biochemical Pathways

    PubMed Central

    Ślesak, Halina; Kruk, Jerzy

    2012-01-01

    Abstract In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O2, reactive oxygen species (ROS), among them hydrogen peroxide (H2O2), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O2 appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O2 and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O2-and H2O2-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O2-and H2O2-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H2O2 and O2 should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O2/H2O2 was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment. Key Words: Hydrogen peroxide—Oxygen—Origin of life—Photosynthesis—Superoxide dismutase—Superoxide reductase. Astrobiology 12, 775–784. PMID:22970865

  5. Thermal evolution and sintering of chondritic planetesimals. III. Modelling the heat conductivity of porous chondrite material

    NASA Astrophysics Data System (ADS)

    Henke, Stephan; Gail, Hans-Peter; Trieloff, Mario

    2016-04-01

    Context. The construction of models for the internal constitution and temporal evolution of large planetesimals, which are the parent bodies of chondrites, requires as accurate as possible information on the heat conductivity of the complex mixture of minerals and iron metal found in chondrites. The few empirical data points on the heat conductivity of chondritic material are severely disturbed by impact-induced microcracks modifying the thermal conductivity. Aims: We attempt to evaluate the heat conductivity of chondritic material with theoretical methods. Methods: We derived the average heat conductivity of a multi-component mineral mixture and granular medium from the heat conductivities of its mixture components. We numerically generated random mixtures of solids with chondritic composition and packings of spheres. We solved the heat conduction equation in high spatial resolution for a test cube filled with such matter. We derived the heat conductivity of the mixture from the calculated heat flux through the cube. Results: For H and L chondrites, our results are in accord with empirical thermal conductivity at zero porosity. However, the porosity dependence of heat conductivity of granular material built from chondrules and matrix is at odds with measurements for chondrites, while our calculations are consistent with data for compacted sandstone. The discrepancy is traced back to subsequent shock modification of the currently available meteoritic material resulting from impacts on the parent body over the last 4.5 Ga. This causes a structure of void space made of fractures/cracks, which lowers the thermal conductivity of the medium and acts as a barrier to heat transfer. This structure is different from the structure that probably exists in the pristine material where voids are represented by pores rather than fractures. The results obtained for the heat conductivity of the pristine material are used for calculating models for the evolution of the H chondrite

  6. Thermal evolution and sintering of chondritic planetesimals. III. Modelling the heat conductivity of porous chondrite material

    NASA Astrophysics Data System (ADS)

    Henke, Stephan; Gail, Hans-Peter; Trieloff, Mario

    2016-05-01

    Context. The construction of models for the internal constitution and temporal evolution of large planetesimals, which are the parent bodies of chondrites, requires as accurate as possible information on the heat conductivity of the complex mixture of minerals and iron metal found in chondrites. The few empirical data points on the heat conductivity of chondritic material are severely disturbed by impact-induced microcracks modifying the thermal conductivity. Aims: We attempt to evaluate the heat conductivity of chondritic material with theoretical methods. Methods: We derived the average heat conductivity of a multi-component mineral mixture and granular medium from the heat conductivities of its mixture components. We numerically generated random mixtures of solids with chondritic composition and packings of spheres. We solved the heat conduction equation in high spatial resolution for a test cube filled with such matter. We derived the heat conductivity of the mixture from the calculated heat flux through the cube. Results: For H and L chondrites, our results are in accord with empirical thermal conductivity at zero porosity. However, the porosity dependence of heat conductivity of granular material built from chondrules and matrix is at odds with measurements for chondrites, while our calculations are consistent with data for compacted sandstone. The discrepancy is traced back to subsequent shock modification of the currently available meteoritic material resulting from impacts on the parent body over the last 4.5 Ga. This causes a structure of void space made of fractures/cracks, which lowers the thermal conductivity of the medium and acts as a barrier to heat transfer. This structure is different from the structure that probably exists in the pristine material where voids are represented by pores rather than fractures. The results obtained for the heat conductivity of the pristine material are used for calculating models for the evolution of the H chondrite

  7. Evolution of planetary nebulae. III. Position-velocity images of butterfly-type nebulae

    SciTech Connect

    Icke, V.; Preston, H.L.; Balick, B.

    1989-02-01

    Observations of the motions of the shells of the planetary nebulae NGC 2346, NGC 2371-2, NGC 2440, NGC 6058, NGC 6210, IC 1747, IC 5217, J-320, and M2-9 are presented. These are all 'butterfly' type PNs, and show evidence for bipolar shocks. The observations are interpreted in terms of a fast spherical wind, driven by the central star into a quasi-toroidal envelope deposited earlier by the star, during its slow-wind phase on the asymptotic giant branch. It is shown that this model, which is a straightforward extension of a mechanism previously invoked to account for elliptical PNs, reproduces the essential kinematic features of butterfly PNs. It is inferred that the envelopes of butterflies must have a considerable equator-to-pole density gradient, and it is suggested that the origin of this asphericity must be sought in an as yet unknown mechanism during the AGB, Mira, or OH/IR phases of late stellar evolution. 28 references.

  8. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). III. Karyotype relationships of ten Microtus species.

    PubMed

    Lemskaya, Natalia A; Romanenko, Svetlana A; Golenishchev, Feodor N; Rubtsova, Nadezhda V; Sablina, Olga V; Serdukova, Natalya A; O'Brien, Patricia C M; Fu, Beiyuan; Yiğit, Nuri; Ferguson-Smith, Malcolm A; Yang, Fengtang; Graphodatsky, Alexander S

    2010-06-01

    The genus Microtus consists of 65 extant species, making it one of the rodentia genera with the highest number of species. The extreme karyotype diversification in Microtus has made them an ideal species group for comparative cytogenetics and cytotaxonomy. Conventional comparative cytogenetic studies in Microtus have been based mainly on chromosomal banding patterns; the number of Microtus species examined by molecular cytogenetics-cross-species chromosome painting-is limited. In this study, we used whole chromosome painting probes of the field vole Microtus agrestis to detect regions of homology in the karyotypes of eight Microtus species. For almost all investigated species, species-specific associations of conserved chromosomal segments were revealed. Analysis of data obtained here and previously published data allowed us to propose that the ancestral Microtus species had a 2n = 54 karyotype, including two associations of field vole chromosomal segments (MAG 1/17 and 2/8). Further mapping of the chromosome rearrangements onto a molecular phylogenetic tree allows the reconstruction of a karyotype evolution pathway in the Microtus genus. PMID:20379801

  9. Galaxy Assembly and the Evolution of Structure over the First Third of Cosmic Time - III

    NASA Astrophysics Data System (ADS)

    Faber, Sandra

    2011-10-01

    This survey will document the first third of galactic evolution fromz=8 to 1.5 andtest for evolution in the properties of Type Ia supernovae to z 2 byimaging more than 250,000 galaxies with WFC3/IR and ACS. Five premiermulti-wavelength regions are selected from within the Spitzer SEDSsurvey, providing complementaryIRAC data down to 26.5 AB mag, a unique resource forstellar masses at high redshifts. The use of five widely separatedfields mitigates cosmic variance and yields statistically robustsamples of galaxies down to 10^9 M_Sun out to z 8.We adopt a two-tiered strategy with a "Wide" component {roughly 2orbits deep over 0.2 sq. degrees} and a "Deep" component {roughly 12orbits deep over 0.04 sq. degrees}. Combining these with ultra-deepimaging from the Cycle 17 HUDF09 program yields a three-tieredstrategy for efficient sampling of both rare/bright and faint/commonobjects.Three of the Wide-survey fields are located in COSMOS, EGS, andUKIDSS/UDS. Each of these consists of roughly 3x15 WFC3/IR tiles.Each WFC3 tile will be observed for 2 orbits, with single orbitsseparated in time to allow a search for high-redshift Type Ia SNe.The co-added exposure times will be approximately 2/3 orbit in J{F125W} and 4/3 orbit in H {F160W}. ACS parallels overlap most of theWFC3 area and will consist of roughly 2/3 orbits in V {F606W} and4/3 orbit in I {F814W}. Because of the larger area of ACS,this results in effective exposures that are twice as long {4/3 in V,8/3 in I}, making a very significant improvement to existing ACSmosaics in COSMOS and EGS and creating a new ACS mosaic in UDS/UKIDSSwhere none now exists. Other Wide-survey components are located inthe GOODS fields {North and South} surrounding the Deep-survey areas.The Deep-survey fields cover roughly half of each GOODS field, withexact areas and placements to be determined as part of the Phase-2process. Each WFC3/IR tile within the Deep regions will receiveapproximately 12 orbits of exposure time split between Y{F105W}, J

  10. Coronal hole boundaries evolution at small scales. III. EIS and SUMER views

    NASA Astrophysics Data System (ADS)

    Madjarska, M. S.; Huang, Z.; Doyle, J. G.; Subramanian, S.

    2012-09-01

    Context. We report on the plasma properties of small-scale transient events identified in the quiet Sun, coronal holes and their boundaries. Aims: We aim at deriving the physical characteristics of events that were identified as small-scale transient brightenings in XRT images. Methods: We used spectroscopic co-observations from SUMER/SoHO and EIS/Hinode combined with high-cadence imaging data from XRT/Hinode. We measured Doppler shifts using single and multiple Gaussian fits of the transition region and coronal lines as well as electron densities and temperatures. We combined co-temporal imaging and spectroscopy to separate brightening expansions from plasma flows. Results: The transient brightening events in coronal holes and their boundaries were found to be very dynamical, producing high-density outflows at high speeds. Most of these events represent X-ray jets from pre-existing or newly emerging coronal bright points at X-ray temperatures. The average electron density of the jets is log10 Ne ≈ 8.76 cm-3 while in the flaring site it is log10 Ne ≈ 9.51 cm-3. The jet temperatures reach a maximum of 2.5 MK but in the majority of the cases the temperatures do not exceed 1.6 MK. The footpoints of jets have maximum temperatures of 2.5 MK, though in a single event scanned a minute after the flaring the measured temperature was 12 MK. The jets are produced by multiple microflaring in the transition region and corona. Chromospheric emission was only detected in their footpoints and was only associated with downflows. The Doppler shift measurements in the quiet Sun transient brightenings confirmed that these events do not produce jet-like phenomena. The plasma flows in these phenomena remain trapped in closed loops. Conclusions: We can conclude that the dynamic day-by-day and even hour-by-hour small-scale evolution of coronal hole boundaries reported in Paper I is indeed related to coronal bright points. The XRT observations reported in Paper II revealed that these

  11. WINGS-SPE. III. Equivalent width measurements, spectral properties, and evolution of local cluster galaxies

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Poggianti, B. M.; Cava, A.; Moretti, A.; Varela, J.; Bettoni, D.; Couch, W. J.; D'Onofrio D'Onofrio, M.; Dressler, A.; Fasano, G.; Kjærgaard, P.; Marziani, P.; Moles, M.; Omizzolo, A.

    2014-06-01

    Context. Cluster galaxies are the ideal sites to look at when studying the influence of the environment on the various aspects of the evolution of galaxies, such as the changes in their stellar content and morphological transformations. In the framework of wings, the WIde-field Nearby Galaxy-cluster Survey, we have obtained optical spectra for ~6000 galaxies selected in fields centred on 48 local (0.04 < z < 0.07) X-ray selected clusters to tackle these issues. Aims: By classifying the spectra based on given spectral lines, we investigate the frequency of the various spectral types as a function of both the clusters' properties and the galaxies' characteristics. In this way, using the same classification criteria adopted for studies at higher redshift, we can consistently compare the properties of the local cluster population to those of their more distant counterparts. Methods: We describe a method that we have developed to automatically measure the equivalent width of spectral lines in a robust way, even in spectra with a non optimal signal-to-noise ratio. This way, we can derive a spectral classification reflecting the stellar content, based on the presence and strength of the [Oii] and Hδ lines. Results: After a quality check, we are able to measure 4381 of the ~6000 originally observed spectra in the fields of 48 clusters, of which 2744 are spectroscopically confirmed cluster members. The spectral classification is then analysed as a function of galaxies' luminosity, stellar mass, morphology, local density, and host cluster's global properties and compared to higher redshift samples (MORPHS and EDisCS). The vast majority of galaxies in the local clusters population are passive objects, being also the most luminous and massive. At a magnitude limit of MV < -18, galaxies in a post-starburst phase represent only ~11% of the cluster population, and this fraction is reduced to ~5% at MV < -19.5, which compares to the 18% at the same magnitude limit for high

  12. SN 1993J VLBI. III. The Evolution of the Radio Shell

    NASA Astrophysics Data System (ADS)

    Bietenholz, M. F.; Bartel, N.; Rupen, M. P.

    2003-11-01

    A sequence of images of supernova 1993J at 31 epochs, from 50 days to ~9 yr after shock breakout, shows the evolution of the expanding radio shell of an exploded star in detail. The images were obtained from 24 observing sessions at 8.4 GHz and 19 at 5.0 GHz and from our last session at 1.7 GHz. The images are all phase-referenced to the stable reference point of the core of the host galaxy M81. This allows us to display them relative to the supernova explosion center. The earliest image shows an almost unresolved source with a radius of 520 AU. The shell structure becomes discernible 175 days after shock breakout. The brightness of the ridge of the projected shell is not uniform, but rather varies by a factor of 2, having a distinct peak or maximum to the southeast and a gap or minimum to the west. Over the next ~350 days, this pattern rotates counterclockwise, with the gap rotating from west to north-northeast. After 2 years, the structure becomes more complex with hot spots developing in the east, south, and west. The pattern of modulation continues to change, and after 5 years the hot spots are located to the north-northwest, south, and south-southeast. After 9 years, the radio shell has expanded to a radius of 19,000 AU. The brightness in the center of the images is lower than expected for an optically thin, spherical shell. Absorption in the center is favored over a thinner shell in the back and/or front. Allowing for absorption, we find that the thickness of the shell is 25%+/-3% of its outer radius. We place a 3 σ upper limit of 4.4% on the mean polarization of the bright part of the shell, consistent with internal Faraday depolarization. We find no compact source in the central region above a brightness limit of 0.05 mJy beam-1 at 8.4 GHz, corresponding to 30% of the current spectral luminosity of the Crab Nebula. We conclude either that any pulsar nebula in the center of SN 1993J is much fainter than the Crab or that there is still significant internal

  13. Galaxy Assembly and the Evolution of Structure over the First Third of Cosmic Time - III

    NASA Astrophysics Data System (ADS)

    Faber, Sandra

    2011-10-01

    This survey will document the first third of galactic evolution fromz=8 to 1.5 andtest for evolution in the properties of Type Ia supernovae to z 2 byimaging more than 250,000 galaxies with WFC3/IR and ACS. Five premiermulti-wavelength regions are selected from within the Spitzer SEDSsurvey, providing complementaryIRAC data down to 26.5 AB mag, a unique resource forstellar masses at high redshifts. The use of five widely separatedfields mitigates cosmic variance and yields statistically robustsamples of galaxies down to 10^9 M_Sun out to z 8.We adopt a two-tiered strategy with a "Wide" component {roughly 2orbits deep over 0.2 sq. degrees} and a "Deep" component {roughly 12orbits deep over 0.04 sq. degrees}. Combining these with ultra-deepimaging from the Cycle 17 HUDF09 program yields a three-tieredstrategy for efficient sampling of both rare/bright and faint/commonobjects.Three of the Wide-survey fields are located in COSMOS, EGS, andUKIDSS/UDS. Each of these consists of roughly 3x15 WFC3/IR tiles.Each WFC3 tile will be observed for 2 orbits, with single orbitsseparated in time to allow a search for high-redshift Type Ia SNe.The co-added exposure times will be approximately 2/3 orbit in J{F125W} and 4/3 orbit in H {F160W}. ACS parallels overlap most of theWFC3 area and will consist of roughly 2/3 orbits in V {F606W} and4/3 orbit in I {F814W}. Because of the larger area of ACS,this results in effective exposures that are twice as long {4/3 in V,8/3 in I}, making a very significant improvement to existing ACSmosaics in COSMOS and EGS and creating a new ACS mosaic in UDS/UKIDSSwhere none now exists. Other Wide-survey components are located inthe GOODS fields {North and South} surrounding the Deep-survey areas.The Deep-survey fields cover roughly half of each GOODS field, withexact areas and placements to be determined as part of the Phase-2process. Each WFC3/IR tile within the Deep regions will receiveapproximately 12 orbits of exposure time split between Y{F105W}, J

  14. Biochemical and Structural Characterization of Germicidin Synthase: Analysis of a Type III Polyketide Synthase That Employs Acyl-ACP as a Starter Unit Donor

    SciTech Connect

    Chemler, Joseph A.; Buchholz, Tonia J.; Geders, Todd W.; Akey, David L.; Rath, Christopher M.; Chlipala, George E.; Smith, Janet L.; Sherman, David H.

    2012-08-10

    Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 {angstrom} germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.

  15. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance.

    PubMed

    Negin, Boaz; Moshelion, Menachem

    2016-10-01

    Abscisic acid is found in a wide variety of organisms. In the plant kingdom, ABA's role in mediating responses to abiotic stress has been conserved and enhanced throughout evolution. The emergence of plants to terrestrial environments required the development of mechanisms to cope with ongoing and severe abiotic stress such as drought and rapid changes in humidity and temperature. The common understanding is that terrestrial plants evolved strategies ranging from desiccation-tolerance mechanisms (mosses) to drought tolerance (CAM plants), to better exploit different ecological niches. In between these divergent water regulation strategies, ABA plays a significant role in managing plants' adaptation to new environments by optimizing water-use efficiency (WUE) under particular environmental conditions. ABA plays some very different roles in the regulation of WUE. ABA's role in the regulation of guard cells and transpiration has yielded a wide variety of WUE-regulation mechanisms, ranging from no sensitivity (ferns) to low sensitivity (anisohydric behavior) to hypersensitivity to ABA (isohydric behavior and putatively CAM plants). ABA also plays a role in the regulation of non-stomatal, biochemical mechanisms of WUE regulation. In angiosperms, this includes the control of osmotic adjustment and morphological changes, including changes in leaf size, stomatal density, stomatal size and root development. Under severe stress, ABA also appears to initiate leaf senescence via transcriptional regulation, to directly inhibit photosynthesis. PMID:27593466

  16. POISSON project. III. Investigating the evolution of the mass accretion rate

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; García López, R.; Nisini, B.; Caratti o Garatti, A.; Giannini, T.; Lorenzetti, D.

    2014-12-01

    Context. As part of the Protostellar Optical-Infrared Spectral Survey On NTT (POISSON) project, we present the results of the analysis of low-resolution near-IR spectroscopic data (0.9-2.4 μm) of two samples of young stellar objects in the Lupus (52 objects) and Serpens (17 objects) star-forming clouds, with masses in the range of 0.1 to 2.0 M⊙ and ages spanning from 105 to a few 107 yr. Aims: After determining the accretion parameters of the targets by analysing their H i near-IR emission features, we added the results from the Lupus and Serpens clouds to those from previous regions (investigated in POISSON with the same methodology) to obtain a final catalogue (143 objects) of mass accretion rate values (Ṁacc) derived in a homogeneous and consistent fashion. Our final goal is to analyse how Ṁacc correlates with the stellar mass (M∗) and how it evolves in time in the whole POISSON sample. Methods: We derived the accretion luminosity (Lacc) and Ṁacc for Lupus and Serpens objects from the Brγ (Paβ in a few cases) line by using relevant empirical relationships available in the literature that connect the H i line luminosity and Lacc. To minimise the biases that arise from adopting literature data that are based on different evolutionary models and also for self-consistency, we re-derived mass and age for each source of the POISSON samples using the same set of evolutionary tracks. Results: We observe a correlation Ṁacc~M*2.2 between mass accretion rate and stellar mass, similarly to what has previously been observed in several star-forming regions. We find that the time variation of Ṁacc is roughly consistent with the expected evolution of the accretion rate in viscous disks, with an asymptotic decay that behaves as t-1.6. However, Ṁacc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Conclusions: Although part of the scattering may be related to systematics due to the

  17. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  18. Amylose chain behavior in an interacting context. III. Complete occupancy of the AMY2 barley alpha-amylase cleft and comparison with biochemical data.

    PubMed

    André, G; Buléon, A; Haser, R; Tran, V

    1999-12-01

    In the first two papers of this series, the tools necessary to evaluate substrate ring deformations were developed, and then the modeling of short amylose fragments (maltotriose and maltopentaose) inside the catalytic site of barley alpha-amylase was performed. In this third paper, this docking has been extended to the whole catalytic cleft. A systematic approach to extend the substrate was used on the reducing side from the previous enzyme/pentasaccharide complex. However, due to the lack of an obvious subsite at the nonreducing side, an alternate protocol has been chosen that incorporates biochemical information on the enzyme and features on the substrate shape as well. As a net result, ten subsites have been located consistent with the distribution of Ajandouz et al. (E. H. Ajandouz, J. Abe, B. Svensson, and G. Marchis-Mouren, Biochimica Biophysica Acta, 1992, Vol. 1159, pp. 193-202) and corresponding binding energies were estimated. Among them, two extreme subsites (-6) and (+4), with stacking residues Y104 and Y211, respectively, have strong affinities with glucose rings added to the substrate. No other deformation has been found for the new glucose rings added to the substrate; therefore, only ring A of the DP 10 fragment has a flexible form when interacting with the inner stacking residues Y51. Global conservation of the helical shape of the substrate can be postulated in spite of its significant distortion at subsite (-1). PMID:10547530

  19. Simultaneous occurrence of the 11778 (ND4) and the 9438 (COX III) mtDNA mutations in Leber hereditary optic neuropathy: Molecular, biochemical, and clinical findings

    SciTech Connect

    Oostra, R.J.; Bleeker-Wagemakers, E.M.; Zwart, R.

    1995-10-01

    Three mtDNA point mutations at nucleotide position (np) 3460, at np 11778 and at np 14484, are thought to be of primary importance in the pathogenesis of Leber hereditary optic neuropathy (LHON), a maternally inherited disease characterized by subacute central vision loss. These mutations are present in genes coding for subunits of complex I (NADH dehydrogenase) of the respiratory chain, occur exclusively in LHON maternal pedigrees, and have never been reported to occur together. Johns and Neufeld postulated that an mtDNA mutation at np 9438, in the gene coding for one of the subunits (COX III) of complex IV (cytochrome c oxidase), was also of primary importance. Johns and Neufeld (1993) found this mutation, which changed a conserved glycine to a serine, in 5 unrelated LHON probands who did not carry one of the presently known primary mutations, but they did not find it in 400 controls. However, the role of this sequence variant has been questioned in the Journal when it has been found to occur in apparently healthy African and Cuban individuals. Subsequently, Johns et al. described this mutation in two Cuban individuals presenting with optic and peripheral neuropathy. 22 refs., 1 fig., 1 tab.

  20. Biochemical evolution III: Polymerization on organophilic silica-rich surfaces, crystal–chemical modeling, formation of first cells, and geological clues

    PubMed Central

    Smith, Joseph V.; Arnold, Frederick P.; Parsons, Ian; Lee, Martin R.

    1999-01-01

    Catalysis at organophilic silica-rich surfaces of zeolites and feldspars might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and other geological sources. Crystal–chemical modeling yielded packings for amino acids neatly encapsulated in 10-ring channels of the molecular sieve silicalite-ZSM-5-(mutinaite). Calculation of binding and activation energies for catalytic assembly into polymers is progressing for a chemical composition with one catalytic Al–OH site per 25 neutral Si tetrahedral sites. Internal channel intersections and external terminations provide special stereochemical features suitable for complex organic species. Polymer migration along nano/micrometer channels of ancient weathered feldspars, plus exploitation of phosphorus and various transition metals in entrapped apatite and other microminerals, might have generated complexes of replicating catalytic biomolecules, leading to primitive cellular organisms. The first cell wall might have been an internal mineral surface, from which the cell developed a protective biological cap emerging into a nutrient-rich “soup.” Ultimately, the biological cap might have expanded into a complete cell wall, allowing mobility and colonization of energy-rich challenging environments. Electron microscopy of honeycomb channels inside weathered feldspars of the Shap granite (northwest England) has revealed modern bacteria, perhaps indicative of Archean ones. All known early rocks were metamorphosed too highly during geologic time to permit simple survival of large-pore zeolites, honeycombed feldspar, and encapsulated species. Possible microscopic clues to the proposed mineral adsorbents/catalysts are discussed for planning of systematic study of black cherts from weakly metamorphosed Archaean sediments. PMID:10097060

  1. Changing physical conditions in star-forming galaxies between redshifts 0 < z < 4: [O III]/H β evolution

    NASA Astrophysics Data System (ADS)

    Cullen, F.; Cirasuolo, M.; Kewley, L. J.; McLure, R. J.; Dunlop, J. S.; Bowler, R. A. A.

    2016-08-01

    We investigate the redshift evolution of the [OIII]/Hb nebular emission line ratio for a sample of galaxies spanning the redshift range 0 < z < 4. We compare the observed evolution to a set of theoretical models which account for the independent evolution of chemical abundance, ionization parameter and interstellar-medium (ISM) pressure in star-forming galaxies with redshift. Accounting for selection effects in the combined datasets, we show that the evolution to higher [OIII]/Hb ratios with redshift is a real physical effect which is best accounted for by a model in which the ionization parameter is elevated from the average values typical of local star-forming galaxies, with a possible simultaneous increase in the ISM pressure. We rule out the possibility that the observed [OIII]/Hb evolution is purely due to metallicity evolution. We discuss the implications of these results for using local empirical metallicity calibrations to measure metallicities at high redshift, and briefly discuss possible theoretical implications of our results.

  2. One-Pot Synthesis of Fe(III)-Polydopamine Complex Nanospheres: Morphological Evolution, Mechanism, and Application of the Carbonized Hybrid Nanospheres in Catalysis and Zn-Air Battery.

    PubMed

    Ang, Jia Ming; Du, Yonghua; Tay, Boon Ying; Zhao, Chenyang; Kong, Junhua; Stubbs, Ludger Paul; Lu, Xuehong

    2016-09-13

    We report one-pot synthesis of Fe(III)-polydopamine (PDA) complex nanospheres, their structures, morphology evolution, and underlying mechanism. The complex nanospheres were synthesized by introducing ferric ions into the reaction mixture used for polymerization of dopamine. It is verified that both the oxidative polymerization of dopamine and Fe(III)-PDA complexation contribute to the "polymerization" process, in which the ferric ions form coordination bonds with both oxygen and nitrogen, as indicated by X-ray absorption fine-structure spectroscopy. In the "polymerization" process, the morphology of the complex nanostructures is gradually transformed from sheetlike to spherical at the feed Fe(III)/dopamine molar ratio of 1/3. The final size of the complex spheres is much smaller than its neat PDA counterpart. At higher feed Fe(III)/dopamine molar ratios, the final morphology of the "polymerization" products is sheetlike. The results suggest that the formation of spherical morphology is likely to be driven by covalent polymerization-induced decrease of hydrophilic functional groups, which causes reself-assembly of the PDA oligomers to reduce surface area. We also demonstrate that this one-pot synthesis route for hybrid nanospheres enables the facile construction of carbonized PDA (C-PDA) nanospheres uniformly embedded with Fe3O4 nanoparticles of only 3-5 nm in size. The C-PDA/Fe3O4 nanospheres exhibit catalytic activity toward oxygen reduction reaction and deliver a stable discharge voltage for over 200 h when utilized as the cathode in a primary Zn-air battery and are also good recyclable catalyst supports. PMID:27550631

  3. Adiabatic Survey of Subdwarf B Star Oscillations. III. Effects of Extreme Horizontal Branch Stellar Evolution on Pulsation Modes

    NASA Astrophysics Data System (ADS)

    Charpinet, S.; Fontaine, G.; Brassard, P.; Dorman, Ben

    2002-06-01

    We present the final results of a large, systematic survey of the adiabatic oscillation properties of models of subdwarf B (sdB) stars. This survey is aimed at providing the minimal theoretical background with which to understand the asteroseismological characteristics of the recently discovered class of pulsating sdB stars (the EC 14026 objects). In this paper, the last of a series of three, we consider the effects of stellar evolution on the pulsation eigenmodes of sdB star models. We specifically analyze the adiabatic properties of 149 equilibrium models culled from seven distinct extreme horizontal branch evolutionary sequences. Those have been chosen in order to span fully the region of parameter space where real sdB stars are found. We primarily focus on the evolution of the pulsation periods (P) and the rates of period change (dP/dt), which are both a priori observable quantities. Both the acoustic and gravity branches of stellar oscillations are considered. In light of the results derived in the first two papers of this series, we discuss how the values of P and dP/dt relate to the various structural adjustments that sdB stars undergo during evolution. We find that the acoustic modes react primarily to the secular variations of the surface gravity. In contrast, we identify three main factors that regulate the period evolution of gravity modes: these are the variations brought about by evolution in both the surface gravity and the effective temperature, as well as the onset and growth of a chemical discontinuity between the C-O-enriched nucleus and the helium-rich mantle. We also find, as expected from our previous results, that the period evolution of the pulsation modes in sdB stars is further complicated by trapping effects (microtrapping in the case of p-modes) and by avoided crossings between modes. The latter occur preferentially in certain regions of parameter space. We provide our final results in the form of extensive tabular data in the appendices

  4. On wind-type flows in astrophysical jets. III - Temporal evolution of perturbations and the formation of shocks

    NASA Technical Reports Server (NTRS)

    Trussoni, E.; Ferrari, A.; Rosner, R.; Tsinganos, K.

    1988-01-01

    The temporal evolution of disturbances in a spherically symmetric polytropic wind from a central object is studied. Such disturbances may be due to localized momentum addition/subtraction, as, for example, by MHD waves, heating/cooling mechanisms in the outflow, or localized deviations from spherical symmetric expansion. The evolution of an initial perturbed state to a continuous or discontinuous final equilibrium state, as predicted by previous analytic calculations for stationary flows, is followed. It is shown that some of the predicted discontinuous equilibrium states are not physically accessible, while the attainment of the remaining equilibrium states depends on both the temporal and the spatial parameters characterizing the perturbation. The results are derived for solar conditions, but in fact can be applied to outflows in other astrophysical systems. In particular, applications to the solar wind and flows in astrophysical jets are discussed.

  5. A unified N-body and statistical treatment of stellar dynamics. III - Early postcollapse evolution of globular clusters

    NASA Technical Reports Server (NTRS)

    Mcmillan, S. L. W.

    1986-01-01

    The period immediately following the core collapse phase in the evolution of a globular cluster is studied using a hybrid N-body/Fokker-Planck stellar dynamical code. Several core oscillations of the type predicted in earlier work are seen. The oscillations are driven by the formation, hardening, and ejection of binaries by three-body processes, and appear to decay on a timescale of about 10 to the 7th yr, for the choice of 'typical' cluster parameters made here. There is no evidence that they are gravothermal in nature. The mechanisms responsible for the decay are discussed in some detail. The distribution of hard binaries produced by the oscillations is compared with theoretical expectations and the longer term evolution of the system is considered.

  6. Evolution

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  7. Galaxy evolution in nearby galaxy groups - III. A GALEX view of NGC 5846, the largest group in the local universe

    NASA Astrophysics Data System (ADS)

    Marino, Antonietta; Mazzei, Paola; Rampazzo, Roberto; Bianchi, Luciana

    2016-06-01

    We explore the co-evolution of galaxies in nearby groups (Vhel ≤ 3000 km s-1) with a multiwavelength approach. We analyse GALEX far-UV (FUV) and near-UV (NUV) imaging, and Sloan Digital Sky Survey u, g, r, i, z data of groups spanning a large range of dynamical phases. We characterize the photometric properties of spectroscopically confirmed galaxy members and investigate the global properties of the groups through a dynamical analysis. Here, we focus on NGC 5846, the third most massive association of early-type galaxies (ETGs) after the Virgo and Fornax clusters. The group, composed of 90 members, is dominated by ETGs (about 80 per cent), and among ETGs about 40 per cent are dwarfs. Results are compared with those obtained for three groups in the LeoII cloud, which are radically different both in member-galaxy population and dynamical properties. The FUV-NUV cumulative colour distribution and the normalized UV luminosity function (LF) significantly differ due to the different fraction of late-type galaxy population. The UV LF of NGC 5846 resembles that of the Virgo cluster, however our analysis suggests that star formation episodes are still occurring in most of the group galaxies, including ETGs. The NUV-i colour distribution, the optical-UV colour-colour diagram, and NUV-r versus Mr colour-magnitude relation suggest that the gas contribution cannot be neglected in the evolution of ETG-type group members. Our analysis highlights that NGC 5846 is still in an active phase of its evolution, notwithstanding the dominance of dwarf and bright ETGs and its virialized configuration.

  8. Examining marginal sequence similarities between bacterial type III secretion system components and Trypanosoma cruzi surface proteins: horizontal gene transfer or convergent evolution?

    PubMed Central

    Silva, Danielle C. F.; Silva, Richard C.; Ferreira, Renata C.; Briones, Marcelo R. S.

    2013-01-01

    The cell invasion mechanism of Trypanosoma cruzi has similarities with some intracellular bacterial taxa especially regarding calcium mobilization. This mechanism is not observed in other trypanosomatids, suggesting that the molecules involved in this type of cell invasion were a product of (1) acquisition by horizontal gene transfer (HGT); (2) secondary loss in the other trypanosomatid lineages of the mechanism inherited since the bifurcation Bacteria-Neomura (1.9 billion to 900 million years ago); or (3) de novo evolution from non-homologous proteins via convergent evolution. Similar to T. cruzi, several bacterial genera require increased host cell cytosolic calcium for intracellular invasion. Among intracellular bacteria, the mechanism of host cell invasion of genus Salmonella is the most similar to T. cruzi. The invasion of Salmonella occurs by contact with the host's cell surface and is mediated by the type III secretion system (T3SS) that promotes the contact-dependent translocation of effector proteins directly into host's cell cytoplasm. Here we provide evidence of distant sequence similarities and structurally conserved domains between T. cruzi and Salmonella spp T3SS proteins. Exhaustive database searches were directed to a wide range of intracellular bacteria and trypanosomatids, exploring sequence patterns for comparison of structural similarities and Bayesian phylogenies. Based on our data we hypothesize that T. cruzi acquired genes for calcium mobilization mediated invasion by ancient HGT from ancestral Salmonella lineages. PMID:23967008

  9. Biochemical and structural investigation of two paralogous glycoside hydrolases from Zobellia galactanivorans: novel insights into the evolution, dimerization plasticity and catalytic mechanism of the GH117 family.

    PubMed

    Ficko-Blean, Elizabeth; Duffieux, Delphine; Rebuffet, Étienne; Larocque, Robert; Groisillier, Agnes; Michel, Gurvan; Czjzek, Mirjam

    2015-02-01

    The family 117 glycoside hydrolase (GH117) enzymes have exo-α-1,3-(3,6-anhydro)-L-galactosidase activity, removing terminal nonreducing α-1,3-linked 3,6-anhydro-L-galactose residues from their red algal neoagarose substrate. These enzymes have previously been phylogenetically divided into clades, and only the clade A enzymes have been experimentally studied to date. The investigation of two GH117 enzymes, Zg3615 and Zg3597, produced by the marine bacterium Zobellia galactanivorans reveals structural, biochemical and further phylogenetic diversity between clades. A product complex with the unusual β-3,6-anhydro-L-galactose residue sheds light on the inverting catalytic mechanism of the GH117 enzymes as well as the structure of this unique sugar produced by hydrolysis of the agarophyte red algal cell wall. PMID:25664732

  10. Infrared Spectroscopic Data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), SDSS-III Data Release 10

    DOE Data Explorer

    Sloan Digital Sky Survey (SDSS) Data Release 10 is the first spectroscopic release from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), including spectra and derived stellar parameters for more than 50,000 stars. APOGEE is an ongoing survey of ~100,000 stars accessing all parts of the Milky Way. By operating in the infrared (H-band) portion of the electromagnetic spectrum, APOGEE is better able to detect light from stars lying in dusty regions of the Milky Way than surveys conducted in the optical, making this survey particularly well-suited for exploring the Galactic disk and bulge. APOGEE's high resolution spectra provide detailed information about the stellar atmospheres; DR10 provides derived effective temperatures, surface gravities, overall metallicities, and information on the abundances of several chemical elements. [copied from http://www.sdss3.org/dr10/irspec/

  11. Infrared photometry and evolution of mass-losing AGB stars. III. Mass loss rates of MS and S stars

    NASA Astrophysics Data System (ADS)

    Guandalini, R.

    2010-04-01

    Context. The asymptotic giant branch (AGB) phase marks the end of the evolution for low- and intermediate-mass stars, which are fundamental contributors to the mass return to the interstellar medium and to the chemical evolution of galaxies. The detailed understanding of mass loss processes is hampered by the poor knowledge of the luminosities and distances of AGB stars. Aims: In a series of papers we are trying to establish criteria permitting a more quantitative determination of luminosities for the various types of AGB stars, using the infrared (IR) fluxes as a basis. An updated compilation of the mass loss rates is also required, as it is crucial in our studies of the evolutionary properties of these stars. In this paper we concentrate our analysis on the study of the mass loss rates for a sample of galactic S stars. Methods: We reanalyze the properties of the stellar winds for a sample of galactic MS, S, SC stars with reliable estimates of the distance on the basis of criteria previously determined. We then compare the resulting mass loss rates with those previously obtained for a sample of C-rich AGB stars. Results: Stellar winds in S stars are on average less efficient than those of C-rich AGB stars of the same luminosity. Near-to-mid infrared colors appear to be crucial in our analysis. They show a good correlation with mass loss rates in particular for the Mira stars. We suggest that the relations between the rates of the stellar winds and both the near-to-mid infrared colors and the periods of variability improve the understanding of the late evolutionary stages of low mass stars and could be the origin of the relation between the rates of the stellar winds and the bolometric magnitudes.

  12. The UV-Optical Galaxy Color-Magnitude Diagram. III. Constraints on Evolution from the Blue to the Red Sequence

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Wyder, Ted K.; Schiminovich, David; Barlow, Tom A.; Forster, Karl; Friedman, Peter G.; Morrissey, Patrick; Neff, Susan G.; Seibert, Mark; Small, Todd; Welsh, Barry Y.; Bianchi, Luciana; Donas, José; Heckman, Timothy M.; Lee, Young-Wook; Madore, Barry F.; Milliard, Bruno; Rich, R. Michael; Szalay, Alex S.; Yi, Sukyoung K.

    2007-12-01

    We introduce a new quantity, the mass flux density of galaxies evolving from the blue sequence to the red sequence. We propose a simple technique for constraining this mass flux using the volume-corrected number density in the extinction-corrected UV-optical color-magnitude distribution, the stellar age indexes HδA and Dn(4000), and a simple prescription for spectral evolution using a quenched star formation history. We exploit the excellent separation of red and blue sequences in the NUV-r band Hess function. The final value we measure, ρT˙=0.033 Msolar yr-1 Mpc-3, is strictly speaking an upper limit due to the possible contributions of bursting, composite, and extincted galaxies. However, it compares favorably with estimates of the average mass flux that we make based on the red luminosity function evolution derived from the DEEP2 and COMBO-17 surveys, ρ˙R=+0.034 Msolar yr-1 Mpc-3. We find that the blue sequence mass has remained roughly constant since z=1 (ρB˙~=0.01 Msolar yr-1 Mpc-3, but the average on-going star formation of ρ˙SF~=0.037 Msolar yr-1 Mpc-3 over 0

  13. Decomposition driven interface evolution for layers of binary mixtures. III. Two-dimensional steady films with flat and modulated surfaces

    NASA Astrophysics Data System (ADS)

    Bribesh, Fathi A. M.; Fraštia, Ľubor; Thiele, Uwe

    2012-06-01

    We study two-dimensional steady concentration and film thickness profiles for isothermal free surface films of a binary liquid mixture on a solid substrate employing model-H that couples the diffusive transport of the components of the mixture (convective Cahn-Hilliard equation) and the transport of momentum (Navier-Stokes-Korteweg equations). The analysis is based on minimising the underlying free energy equivalent to solving the static limit of model-H. Additionally, the linear stability (in time) of relevant layered films is analyzed. This allows for a comparison of the position of certain branching points in the bifurcation diagrams of steady solutions with the value predicted as onset of a linear instability. Results are presented for the cases of (i) a flat film without energetic bias at the free surface, (ii) a flat film with energetic bias, (iii) a height-modulated film without energetic bias, and (iv) a height-modulated film with energetic bias. In all cases we discuss symmetries of the various steady solutions allowing us to order them and to infer properties of solution branches and relations between them.

  14. Metal Accretion onto White Dwarfs. III. A Still Better Approach Based on the Coupling of Diffusion with Evolution

    NASA Astrophysics Data System (ADS)

    Brassard, Pierre; Fontaine, Gilles

    2015-06-01

    The accretion-diffusion picture is the model par excellence for describing the presence of planetary debris polluting the atmospheres of relatively cool white dwarfs. In the time-dependent approach used in Paper II of this series (Fontaine et al. 2014), the basic assumption is that the accreted metals are trace elements and do not influence the background structure, which may be considered static in time. Furthermore, the usual assumption of instantaneous mixing in the convection zone is made. As part of the continuing development of our local evolutionary code, diffusion in presence of stellar winds or accretion is now fully coupled to evolution. Convection is treated as a diffusion process, i.e., the assumption of instantaneous mixing is relaxed, and, furthermore, overshooting is included. This allows feedback on the evolving structure from the accreting metals. For instance, depending of its abundance, a given metal may contribute enough to the overall opacity (especially in a He background) to change the size of the convection zone as a function of time. Our better approach also allows to include in a natural way the mechanism of thermohaline convection, which we discuss at some length. Also, it is easy to consider sophisticated time-dependent models of accretion from circumstellar disks, such as those developed by Roman Rafikov at Princeton for instance. The current limitations of our approach are 1) the calculations are extremely computer-intensive, and 2) we have not yet developed detailed EOS megatables for metals beyond oxygen.

  15. Temporal evolution of neurophysiological and behavioral features of synapsin I/II/III triple knock-out mice

    PubMed Central

    Cambiaghi, Marco; Cursi, Marco; Monzani, Elena; Benfenati, Fabio; Comi, Giancarlo; Minicucci, Fabio; Valtorta, Flavia; Leocani, Letizia

    2013-01-01

    Summary Deletion of one or more synapsin genes in mice results in a spontaneous epilepsy. In these animals, seizures can be evoked by opening or moving the cage. Aim of the present study was to characterize the evolution of the epileptic phenotype by neurophysiological examination and behavioral observation in synapsin triple knock-out (Syn-TKO) mice. Syn-TKO mice were studied from 20 postnatal days (PND) up to 6 months of age by video-EEG recording and behavioral observation. Background EEG spectral analysis was performed and data were compared to WT animals. Syn-TKO revealed rare spontaneous seizures and increased susceptibility to evoked seizures in mice from 60 to 100 PND. Spontaneous and evoked seizures presented similar duration and morphology. At times, seizures were followed by a post-ictal phase characterized by a 4 Hz rhythmic activity and immobility of the animal. Spectral analysis of background EEG evidenced a slowing of the theta-alpha peak in Syn-TKO mice compared to WT mice within the period from PND 40 to 100. These data indicate that Syn-TKO mice do not exhibit a linear progression of the epileptic phenotype, with the period corresponding to a higher susceptibility to evoked seizures characterized by background EEG slowing. This aspect might be connected to brain dysfunction often associated to epilepsy in the interictal period. PMID:22846639

  16. The MUSIC of Galaxy Clusters - III. Properties, evolution and Y-M scaling relation of protoclusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sembolini, Federico; De Petris, Marco; Yepes, Gustavo; Foschi, Emma; Lamagna, Luca; Gottlöber, Stefan

    2014-06-01

    In this work, we study the properties of protoclusters of galaxies by employing the MultiDark SImulations of galaxy Clusters (MUSIC) set of hydrodynamical simulations, featuring a sample of 282 resimulated clusters with available merger trees up to z = 4. We study the characteristics and redshift evolution of the mass and the spatial distribution for all the protoclusters, which we define as the most massive progenitors of the clusters identified at z = 0. We extend the study of the baryon content to redshifts larger than 1 also in terms of gas and stars budgets: no remarkable variations with redshift are discovered. Furthermore, motivated by the proven potential of Sunyaev-Zel'dovich surveys to blindly search for faint distant objects, we compute the scaling relation between total object mass and integrated Compton y-parameter. We find that the slope of this scaling law is steeper than what expected for a self-similarity assumption among these objects, and it increases with redshift mainly when radiative processes are included. We use three different criteria to account for the dynamical state of the protoclusters, and find no significant dependence of the scaling parameters on the level of relaxation. We exclude the dynamical state as the cause of the observed deviations from self-similarity in protoclusters.

  17. Surface decoration of amine-rich carbon nitride with iron nanoparticles for arsenite (As(III)) uptake: The evolution of the Fe-phases under ambient conditions.

    PubMed

    Georgiou, Y; Mouzourakis, E; Bourlinos, A B; Zboril, R; Karakassides, M A; Douvalis, A P; Bakas, Th; Deligiannakis, Y

    2016-07-15

    A novel hybrid material (gC3N4-rFe) consisting of amine-rich graphitic carbon nitride (gC3N4), decorated with reduced iron nanoparticles (rFe) is presented. XRD and TEM show that gC3N4-rFe bears aggregation-free Fe-nanoparticles (10nm) uniformly dispersed over the gC3N4 surface. In contrast, non-supported iron nanoparticles are strongly aggregated, with non-uniform size distribution (20-100nm). (57)Fe-Mössbauer spectroscopy, dual-mode electron paramagnetic resonance (EPR) and magnetization measurements, allow a detailed mapping of the evolution of the Fe-phases after exposure to ambient O2. The as-prepared gC3N4-rFe bears Fe(2+) and Fe° phases, however only after long exposure to ambient O2, a Fe-oxide layer is formed around the Fe° core. In this [Fe°/Fe-oxide] core-shell configuration, the gC3N4-rFe hybrid shows enhanced As(III) uptake capacity of 76.5mgg(-1), i.e., ca 90% higher than the unmodified carbonaceous support, and 300% higher than the non-supported Fe-nanoparticles. gC3N4-rFe is a superior As(III) sorbent i.e., compared to its single counterparts or vs. graphite/graphite oxide or activated carbon analogues (11-36mgg(-1)). The present results demonstrate that the gC3N4 matrix is not simply a net that holds the particles, but rather an active component that determines particle formation dynamics and ultimately their redox profile, size and surface dispersion homogeneity. PMID:27037479

  18. Quantum chemistry of the oxygen evolution reaction on cobalt(ii,iii) oxide - implications for designing the optimal catalyst.

    PubMed

    Plaisance, Craig P; Reuter, Karsten; van Santen, Rutger A

    2016-07-01

    Density functional theory is used to examine the changes in electronic structure that occur during the oxygen evolution reaction (OER) catalyzed by active sites on three different surface terminations of Co3O4. These three active sites have reactive oxo species with differing degrees of coordination by Co cations - a μ(3)-oxo on the (311) surface, a μ(2)-oxo on the (110)-A surface, and an η-oxo on the (110)-B surface. The kinetically relevant step on all surfaces over a wide range of applied potentials is the nucleophilic addition of water to the oxo, which is responsible for formation of the O-O bond. The intrinsic reactivity of a site for this step is found to increase as the coordination of the oxo decreases with the μ(3)-oxo on the (311) surface being the least reactive and the η-oxo on the (110)-B surface being the most reactive. A detailed analysis of the electronic changes occurring during water addition on the three sites reveals that this trend is due to both a decrease in the attractive local Madelung potential on the oxo and a decrease in electron withdrawal from the oxo by Co neighbors. Applying a similar electronic structure analysis to the oxidation steps preceding water addition in the catalytic cycle shows that analogous electronic changes occur during this process, explaining a correlation observed between the oxidation potential of a site and its intrinsic reactivity for water addition. This concept is then used to specify criteria for the design of an optimal OER catalyst at a given applied potential. PMID:27108887

  19. Star formation in the first galaxies - III. Formation, evolution, and characteristics of the first metal-enriched stellar cluster

    NASA Astrophysics Data System (ADS)

    Safranek-Shrader, Chalence; Montgomery, Michael H.; Milosavljević, Miloš; Bromm, Volker

    2016-01-01

    We simulate the formation of a low-metallicity (10-2 Z⊙) stellar cluster at redshift z ˜ 14. Beginning with cosmological initial conditions, the simulation utilizes adaptive mesh refinement and sink particles to follow the collapse and evolution of gas past the opacity limit for fragmentation, thus resolving the formation of individual protostellar cores. A time- and location-dependent protostellar radiation field, which heats the gas by absorption on dust, is computed by integration of protostellar evolutionary tracks. The simulation also includes a robust non-equilibrium chemical network that self-consistently treats gas thermodynamics and dust-gas coupling. The system is evolved for 18 kyr after the first protostellar source has formed. In this time span, 30 sink particles representing protostellar cores form with a total mass of 81 M⊙. Their masses range from ˜0.1 to 14.4 M⊙ with a median mass ˜0.5-1 M⊙. Massive protostars grow by competitive accretion while lower mass protostars are stunted in growth by close encounters and many-body ejections. In the regime explored here, the characteristic mass scale is determined by the cosmic microwave background temperature floor and the onset of efficient dust-gas coupling. It seems unlikely that host galaxies of the first bursts of metal-enriched star formation will be detectable with the James Webb Space Telescope or other next-generation infrared observatories. Instead, the most promising access route to the dawn of cosmic star formation may lie in the scrutiny of metal-poor, ancient stellar populations in the Galactic neighbourhood. The observable targets corresponding to the system simulated here are ultra-faint dwarf satellite galaxies such as Boötes II and Willman I.

  20. Structure and Activity Analyses of Escherichia coli K-12 NagD Provide Insight into the Evolution of Biochemical Function in the Haloakanoic Acid Dehlogenase Superfamily

    SciTech Connect

    Tremblay,L.; Dunaway-Mariano, D.; Allen, K.

    2006-01-01

    The HAD superfamily is a large superfamily of proteins which share a conserved core domain that provides those active site residues responsible for the chemistry common to all family members. The superfamily is further divided into the four subfamilies I, IIA, IIB, and III, based on the topology and insertion site of a cap domain that provides substrate specificity. This structural and functional division implies that members of a given HAD structural subclass may target substrates that have similar structural characteristics. To understand the structure/function relationships in all of the subfamilies, a type IIA subfamily member, NagD from Escherichia coli K-12, was selected (type I, IIB, and III members have been more extensively studied). The structure of the NagD protein was solved to 1.80 Angstroms with R{sub work} = 19.8% and R{sub free} = 21.8%. Substrate screening and kinetic analysis showed NagD to have high specificity for nucleotide monophosphates with kcat/Km = 3.12 x 10{sup 4} and 1.28 x 10{sup 4} {micro}M{sup -1} s{sup -1} for UMP and GMP, respectively. This specificity is consistent with the presence of analogues of NagD that exist as fusion proteins with a nucleotide pyrophosphatase from the Nudix family. Docking of the nucleoside substrate in the active site brings it in contact with conserved residues from the cap domain that can act as a substrate specificity loop (NagD residues 144-149) in the type IIA subfamily. NagD and other subfamily IIA and IIB members show the common trait that substrate specificity and catalytic efficiencies (k{sub cat}/K{sub m}) are low (1 x 10{sup 4} M{sup -1} s{sup -1}) and the boundaries defining physiological substrates are somewhat overlapping. The ability to catabolize other related secondary metabolites indicates that there is regulation at the genetic level.

  1. Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical evolution and contemporary solute fluxes and rates

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, D.A.; Harden, J.W.

    2005-01-01

    Although long-term changes in solid-state compositions of soil chronosequences have been extensively investigated, this study presents the first detailed description of the concurrent hydrochemical evolution and contemporary weathering rates in such sequences. The most direct linkage between weathering and hydrology over 3 million years of soil development in the Merced chronosequence in Central California relates decreasing permeability and increasing hydrologic heterogeneity to the development of secondary argillic horizons and silica duripans. In a highly permeable, younger soil (40 kyr old), pore water solutes reflect seasonal to decadal-scale variations in rainfall and evapotranspiration (ET). This climate signal is strongly damped in less permeable older soils (250 to 600 kyr old) where solutes increasingly reflect weathering inputs modified by heterogeneous flow. Elemental balances in the soils are described in terms of solid state, exchange and pore water reservoirs and input/output fluxes from precipitation, ET, biomass, solute discharge and weathering. Solute mineral nutrients are strongly dependent on biomass variations as evidenced by an apparent negative K weathering flux reflecting aggradation by grassland plants. The ratios of solute Na to other base cations progressively increase with soil age. Discharge fluxes of Na and Si, when integrated over geologic time, are comparable to solid-state mass losses in the soils, implying similar past weathering conditions. Similarities in solute and sorbed Ca/Mg ratios reflect short-term equilibrium with the exchange reservoir. Long-term consistency in solute ratios, when contrasted against progressive decreases in solid-state Ca/Mg, requires an additional Ca source, probably from dry deposition. Amorphous silica precipitates from thermodynamically-saturated pore waters during periods of high evapotranspiration and result in the formation of duripans in the oldest soils. The degree of feldspar and secondary

  2. Biochemical, Transcriptomic and Proteomic Analyses of Digestion in the Scorpion Tityus serrulatus: Insights into Function and Evolution of Digestion in an Ancient Arthropod

    PubMed Central

    Fuzita, Felipe J.; Pinkse, Martijn W. H.; Patane, José S. L.; Juliano, Maria A.; Verhaert, Peter D. E. M.; Lopes, Adriana R.

    2015-01-01

    Scorpions are among the oldest terrestrial arthropods and they have passed through small morphological changes during their evolutionary history on land. They are efficient predators capable of capturing and consuming large preys and due to envenomation these animals can become a human health challenge. Understanding the physiology of scorpions can not only lead to evolutionary insights but also is a crucial step in the development of control strategies. However, the digestive process in scorpions has been scarcely studied. In this work, we describe the combinatory use of next generation sequencing, proteomic analysis and biochemical assays in order to investigate the digestive process in the yellow scorpion Tityus serrulatus, mainly focusing in the initial protein digestion. The transcriptome generated database allowed the quantitative identification by mass spectrometry of different enzymes and proteins involved in digestion. All the results suggested that cysteine cathepsins play an important role in protein digestion. Two digestive cysteine cathepsins were isolated and characterized presenting acidic characteristics (pH optima and stability), zymogen conversion to the mature form after acidic activation and a cross-class inhibition by pepstatin. A more elucidative picture of the molecular mechanism of digestion in a scorpion was proposed based on our results from Tityus serrulatus. The midgut and midgut glands (MMG) are composed by secretory and digestive cells. In fasting animals, the secretory granules are ready for the next predation event, containing enzymes needed for alkaline extra-oral digestion which will compose the digestive fluid, such as trypsins, astacins and chitinase. The digestive vacuoles are filled with an acidic proteolytic cocktail to the intracellular digestion composed by cathepsins L, B, F, D and legumain. Other proteins as lipases, carbohydrases, ctenitoxins and a chitolectin with a perithrophin domain were also detected. Evolutionarily

  3. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: insights into function and evolution of digestion in an ancient arthropod.

    PubMed

    Fuzita, Felipe J; Pinkse, Martijn W H; Patane, José S L; Juliano, Maria A; Verhaert, Peter D E M; Lopes, Adriana R

    2015-01-01

    Scorpions are among the oldest terrestrial arthropods and they have passed through small morphological changes during their evolutionary history on land. They are efficient predators capable of capturing and consuming large preys and due to envenomation these animals can become a human health challenge. Understanding the physiology of scorpions can not only lead to evolutionary insights but also is a crucial step in the development of control strategies. However, the digestive process in scorpions has been scarcely studied. In this work, we describe the combinatory use of next generation sequencing, proteomic analysis and biochemical assays in order to investigate the digestive process in the yellow scorpion Tityus serrulatus, mainly focusing in the initial protein digestion. The transcriptome generated database allowed the quantitative identification by mass spectrometry of different enzymes and proteins involved in digestion. All the results suggested that cysteine cathepsins play an important role in protein digestion. Two digestive cysteine cathepsins were isolated and characterized presenting acidic characteristics (pH optima and stability), zymogen conversion to the mature form after acidic activation and a cross-class inhibition by pepstatin. A more elucidative picture of the molecular mechanism of digestion in a scorpion was proposed based on our results from Tityus serrulatus. The midgut and midgut glands (MMG) are composed by secretory and digestive cells. In fasting animals, the secretory granules are ready for the next predation event, containing enzymes needed for alkaline extra-oral digestion which will compose the digestive fluid, such as trypsins, astacins and chitinase. The digestive vacuoles are filled with an acidic proteolytic cocktail to the intracellular digestion composed by cathepsins L, B, F, D and legumain. Other proteins as lipases, carbohydrases, ctenitoxins and a chitolectin with a perithrophin domain were also detected. Evolutionarily

  4. The Tenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment

    NASA Astrophysics Data System (ADS)

    Ahn, Christopher P.; Alexandroff, Rachael; Allende Prieto, Carlos; Anders, Friedrich; Anderson, Scott F.; Anderton, Timothy; Andrews, Brett H.; Aubourg, Éric; Bailey, Stephen; Bastien, Fabienne A.; Bautista, Julian E.; Beers, Timothy C.; Beifiori, Alessandra; Bender, Chad F.; Berlind, Andreas A.; Beutler, Florian; Bhardwaj, Vaishali; Bird, Jonathan C.; Bizyaev, Dmitry; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Bochanski, John J.; Bolton, Adam S.; Borde, Arnaud; Bovy, Jo; Shelden Bradley, Alaina; Brandt, W. N.; Brauer, Dorothée; Brinkmann, J.; Brownstein, Joel R.; Busca, Nicolás G.; Carithers, William; Carlberg, Joleen K.; Carnero, Aurelio R.; Carr, Michael A.; Chiappini, Cristina; Chojnowski, S. Drew; Chuang, Chia-Hsun; Comparat, Johan; Crepp, Justin R.; Cristiani, Stefano; Croft, Rupert A. C.; Cuesta, Antonio J.; Cunha, Katia; da Costa, Luiz N.; Dawson, Kyle S.; De Lee, Nathan; Dean, Janice D. R.; Delubac, Timothée; Deshpande, Rohit; Dhital, Saurav; Ealet, Anne; Ebelke, Garrett L.; Edmondson, Edward M.; Eisenstein, Daniel J.; Epstein, Courtney R.; Escoffier, Stephanie; Esposito, Massimiliano; Evans, Michael L.; Fabbian, D.; Fan, Xiaohui; Favole, Ginevra; Femenía Castellá, Bruno; Fernández Alvar, Emma; Feuillet, Diane; Filiz Ak, Nurten; Finley, Hayley; Fleming, Scott W.; Font-Ribera, Andreu; Frinchaboy, Peter M.; Galbraith-Frew, J. G.; García-Hernández, D. A.; García Pérez, Ana E.; Ge, Jian; Génova-Santos, R.; Gillespie, Bruce A.; Girardi, Léo; González Hernández, Jonay I.; Gott, J. Richard, III; Gunn, James E.; Guo, Hong; Halverson, Samuel; Harding, Paul; Harris, David W.; Hasselquist, Sten; Hawley, Suzanne L.; Hayden, Michael; Hearty, Frederick R.; Herrero Davó, Artemio; Ho, Shirley; Hogg, David W.; Holtzman, Jon A.; Honscheid, Klaus; Huehnerhoff, Joseph; Ivans, Inese I.; Jackson, Kelly M.; Jiang, Peng; Johnson, Jennifer A.; Kinemuchi, K.; Kirkby, David; Klaene, Mark A.; Kneib, Jean-Paul; Koesterke, Lars; Lan, Ting-Wen; Lang, Dustin; Le Goff, Jean-Marc; Leauthaud, Alexie; Lee, Khee-Gan; Lee, Young Sun; Long, Daniel C.; Loomis, Craig P.; Lucatello, Sara; Lupton, Robert H.; Ma, Bo; Mack, Claude E., III; Mahadevan, Suvrath; Maia, Marcio A. G.; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, A.; Manera, Marc; Maraston, Claudia; Margala, Daniel; Martell, Sarah L.; Masters, Karen L.; McBride, Cameron K.; McGreer, Ian D.; McMahon, Richard G.; Ménard, Brice; Mészáros, Sz.; Miralda-Escudé, Jordi; Miyatake, Hironao; Montero-Dorta, Antonio D.; Montesano, Francesco; More, Surhud; Morrison, Heather L.; Muna, Demitri; Munn, Jeffrey A.; Myers, Adam D.; Nguyen, Duy Cuong; Nichol, Robert C.; Nidever, David L.; Noterdaeme, Pasquier; Nuza, Sebastián E.; O'Connell, Julia E.; O'Connell, Robert W.; O'Connell, Ross; Olmstead, Matthew D.; Oravetz, Daniel J.; Owen, Russell; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Parihar, Prachi; Pâris, Isabelle; Pepper, Joshua; Percival, Will J.; Pérez-Ràfols, Ignasi; Dotto Perottoni, Hélio; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, M. H.; Prada, Francisco; Price-Whelan, Adrian M.; Raddick, M. Jordan; Rahman, Mubdi; Rebolo, Rafael; Reid, Beth A.; Richards, Jonathan C.; Riffel, Rogério; Robin, Annie C.; Rocha-Pinto, H. J.; Rockosi, Constance M.; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Roy, Arpita; Rubiño-Martin, J. A.; Sabiu, Cristiano G.; Sánchez, Ariel G.; Santiago, Basílio; Sayres, Conor; Schiavon, Ricardo P.; Schlegel, David J.; Schlesinger, Katharine J.; Schmidt, Sarah J.; Schneider, Donald P.; Schultheis, Mathias; Sellgren, Kris; Seo, Hee-Jong; Shen, Yue; Shetrone, Matthew; Shu, Yiping; Simmons, Audrey E.; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Snedden, Stephanie A.; Sobeck, Jennifer S.; Sobreira, Flavia; Stassun, Keivan G.; Steinmetz, Matthias; Strauss, Michael A.; Streblyanska, Alina; Suzuki, Nao; Swanson, Molly E. C.; Terrien, Ryan C.; Thakar, Aniruddha R.; Thomas, Daniel; Thompson, Benjamin A.; Tinker, Jeremy L.; Tojeiro, Rita; Troup, Nicholas W.; Vandenberg, Jan; Vargas Magaña, Mariana; Viel, Matteo; Vogt, Nicole P.; Wake, David A.; Weaver, Benjamin A.; Weinberg, David H.; Weiner, Benjamin J.; White, Martin; White, Simon D. M.; Wilson, John C.; Wisniewski, John P.; Wood-Vasey, W. M.; Yèche, Christophe; York, Donald G.; Zamora, O.; Zasowski, Gail; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng; Zhu, Guangtun

    2014-04-01

    The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the Tenth Public Data Release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R ~ 22,500 300 fiber spectrograph covering 1.514-1.696 μm. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included. DR10 also roughly doubles the number of BOSS spectra over those included in the Ninth Data Release. DR10 includes a total of 1,507,954 BOSS spectra comprising 927,844 galaxy spectra, 182,009 quasar spectra, and 159,327 stellar spectra selected over 6373.2 deg2.

  5. THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT

    SciTech Connect

    Ahn, Christopher P.; Anderton, Timothy; Alexandroff, Rachael; Allende Prieto, Carlos; Anderson, Scott F.; Bhardwaj, Vaishali; Andrews, Brett H.; Aubourg, Éric; Bautista, Julian E.; Bastien, Fabienne A.; Berlind, Andreas A.; Bird, Jonathan C.; Beers, Timothy C.; Beifiori, Alessandra; Bender, Chad F.; Bizyaev, Dmitry; Blake, Cullen H.; and others

    2014-04-01

    The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the Tenth Public Data Release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R ∼ 22,500 300 fiber spectrograph covering 1.514-1.696 μm. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included. DR10 also roughly doubles the number of BOSS spectra over those included in the Ninth Data Release. DR10 includes a total of 1,507,954 BOSS spectra comprising 927,844 galaxy spectra, 182,009 quasar spectra, and 159,327 stellar spectra selected over 6373.2 deg{sup 2}.

  6. Biochemical adaptation to ocean acidification.

    PubMed

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the

  7. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  8. THE SPECTRAL EVOLUTION OF THE FIRST GALAXIES. I. JAMES WEBB SPACE TELESCOPE DETECTION LIMITS AND COLOR CRITERIA FOR POPULATION III GALAXIES

    SciTech Connect

    Zackrisson, Erik; Rydberg, Claes-Erik; Oestlin, Goeran; Tuli, Manan; Schaerer, Daniel

    2011-10-10

    The James Webb Space Telescope (JWST) is expected to revolutionize our understanding of the high-redshift universe, and may be able to test the prediction that the first, chemically pristine (Population III) stars are formed with very high characteristic masses. Since isolated Population III stars are likely to be beyond the reach of JWST, small Population III galaxies may offer the best prospects of directly probing the properties of metal-free stars. Here, we present Yggdrasil, a new spectral synthesis code geared toward the first galaxies. Using this model, we explore the JWST imaging detection limits for Population III galaxies and investigate to what extent such objects may be identified based on their JWST colors. We predict that JWST should be able to detect Population III galaxies with stellar population masses as low as {approx}10{sup 5} M{sub sun} at z {approx} 10 in ultra deep exposures. Over limited redshift intervals, it may also be possible to use color criteria to select Population III galaxy candidates for follow-up spectroscopy. The colors of young Population III galaxies dominated by direct starlight can be used to probe the stellar initial mass function (IMF), but this requires almost complete leakage of ionizing photons into the intergalactic medium. The colors of objects dominated by nebular emission show no corresponding IMF sensitivity. We also note that a clean selection of Population III galaxies at z {approx} 7-8 can be achieved by adding two JWST/MIRI filters to the JWST/NIRCam filter sets usually discussed in the context of JWST ultra deep fields.

  9. ACRIM III

    Atmospheric Science Data Center

    2015-12-30

    ACRIM III Data and Information Active Cavity Radiometer Irradiance ... the ACRIMSAT spacecraft on December 20, 1999. ACRIM III data are reprocessed every 90 days to utilize instrument recalibration.   ... ACRIM III Instrument Team Page ACRIM II Data Sets SCAR-B Block:  SCAR-B Products ...

  10. Early bioenergetic evolution

    PubMed Central

    Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.

    2013-01-01

    Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution

  11. SAGE III

    Atmospheric Science Data Center

    2016-06-15

    SAGE III Data and Information The Stratospheric Aerosol and Gas ... on the spacecraft. SAGE III produced L1 and L2 scientific data from 5/07/2002 until 12/31/2005. The flight of the second instrument is as ... Guide Documents:  Project Guide Data Products User's Guide  (PDF) Relevant Documents:  ...

  12. Nanoparticles as biochemical sensors

    PubMed Central

    El-Ansary, Afaf; Faddah, Layla M

    2010-01-01

    There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472

  13. Measures of Biochemical Sociology

    ERIC Educational Resources Information Center

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  14. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  15. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  16. Biochemical Education in Brazil.

    ERIC Educational Resources Information Center

    Vella, F.

    1988-01-01

    Described are discussions held concerning the problems of biochemical education in Brazil at a meeting of the Sociedade Brazileira de Bioquimica in April 1988. Also discussed are other visits that were made to universities in Brazil. Three major recommendations to improve the state of biochemistry education in Brazil are presented. (CW)

  17. The evolution of the [O II], H β and [O III] emission line luminosity functions over the last nine billions years

    NASA Astrophysics Data System (ADS)

    Comparat, Johan; Zhu, Guangtun; Gonzalez-Perez, Violeta; Norberg, Peder; Newman, Jeffrey; Tresse, Laurence; Richard, Johan; Yepes, Gustavo; Kneib, Jean-Paul; Raichoor, Anand; Prada, Francisco; Maraston, Claudia; Yèche, Christophe; Delubac, Timothée; Jullo, Eric

    2016-09-01

    Emission line galaxies are one of the main tracers of the large-scale structure to be targeted by the next-generation dark energy surveys. To provide a better understanding of the properties and statistics of these galaxies, we have collected spectroscopic data from the VVDS and DEEP2 deep surveys and estimated the galaxy luminosity functions (LFs) of three distinct emission lines, [O II}] (λ λ 3726,3729) (0.5 < z < 1.3), Hβ (λ4861) (0.3 < z < 0.8) and [O {III}] (λ 5007) (0.3 < z < 0.8). Our measurements are based on 35 639 emission line galaxies and cover a volume of ˜107 Mpc3. We present the first measurement of the Hβ LF at these redshifts. We have also compiled LFs from the literature that were based on independent data or covered different redshift ranges, and we fit the entire set over the whole redshift range with analytic Schechter and Saunders models, assuming a natural redshift dependence of the parameters. We find that the characteristic luminosity (L*) and density (φ*) of all LFs increase with redshift. Using the Schechter model over the redshift ranges considered, we find that, for [O {II}] emitters, the characteristic luminosity L*(z = 0.5) = 3.2 × 1041 erg s-1 increases by a factor of 2.7 ± 0.2 from z = 0.5 to 1.3; for Hβ emitters L*(z = 0.3) = 1.3 × 1041 erg s-1 increases by a factor of 2.0 ± 0.2 from z = 0.3 to 0.8; and for [O {III}] emitters L*(z = 0.3) = 7.3 × 1041 erg s-1 increases by a factor of 3.5 ± 0.4 from z = 0.3 to 0.8.

  18. Migration Type III

    NASA Astrophysics Data System (ADS)

    Artymowicz, Pawel

    2004-03-01

    Migration type IIIMigration of objects embedded in disks (and the accompanying eccentricity evolution) is becoming a major theme in planetary system formation.The underlying physics can be distilled into the notion of disk-planet coupling via Lindblad resonances, which launch waves, sometimes spectacular spiral shock waves in gas disks. The wave pattern exchanges angular momentum with the planet. That causes (i) migration, (ii) eccentricity evolution, and (iii) gap opening by sufficiently massive planets.A competing source of disk-planet interaction, the corotationaltorques, are much less conspicuous (corotation does not produce easilydetectable waves, as galaxy observers can attest) and have often been missed in the analysis of planet migration. If spiral waves are like waves at Goleta beach, then the corotation acts more like a stealthy riptide. Corotationalflows lie at the basis of a new, surprisingly rapid, mode of migration (type III),superseding the standard type II migration (with a gap), and revising the speed of type I migration (without a gap). The talk will contain results obtained at KITP, e.g., an analytical derivation of da/dt in type III motion. It will be illustrated by videos of high-resolution numerical simulations obtained with different implementations of the Piecewise Parabolic Method hydrodynamics.

  19. Biochemical Analyses of Dissimilatory Iron Reduction by Shewanella oneidensis

    NASA Astrophysics Data System (ADS)

    Ruebush, S. S.; Tien, M.; Icopini, G. A.; Brantley, S. L.

    2002-12-01

    Shewanella oneidensis demonstrates respiratory flexibility by the transfer of electrons to Fe (III) and Mn (IV) oxides under anaerobic conditions. Researchers postulate that the bacterium utilizes surface proteins to facilitate the respiratory mechanism for dissimilatory iron(III) reduction. Previous genetic and biochemical studies has shown that iron reduction is associated with the outer membrane of the cell. The identity of the terminal reductase is not yet known. S. oneidensis has been shown to use soluble extra-cellular compounds to facilitate iron(III) reduction as well as expression of novel proteins on the cell surface when interacting with iron(III) oxides. Our results show that the outer membrane fraction possess enzymatic activity for converting Fe(III) to Fe(II) as measured by ferrozine complexation. AQDS, extra-cellular organic extracts, and iron(III) both soluble and solid have been assayed for activity with outer membrane fractions. Zymograms of the membrane fractions separated by isoelectric focusing and native PAGE electrophoresis stained using ferrozine have implicated proteins that are directly involved in the Fe(III) reduction process. A proteomics analysis of outer membrane proteins has also been implemented to identify different expression patterns under Fe(III) reducing conditions. Proteins that are unique to Fe(III) reduction have been isolated and identified using N-terminal sequence analysis. We will also attempt to examine the effect of enzymatic iron(III) reduction on isotopic partitioning from in vitro assays.

  20. Star formation properties in barred galaxies. III. Statistical study of bar-driven secular evolution using a sample of nearby barred spirals

    SciTech Connect

    Zhou, Zhi-Min; Wu, Hong; Cao, Chen E-mail: hwu@bao.ac.cn

    2015-01-01

    Stellar bars are important internal drivers of secular evolution in disk galaxies. Using a sample of nearby spiral galaxies with weak and strong bars, we explore the relationships between the star formation feature and stellar bars in galaxies. We find that galaxies with weak bars tend coincide with low concentrical star formation activity, while those with strong bars show a large scatter in the distribution of star formation activity. We find enhanced star formation activity in bulges toward stronger bars, although not predominantly, consistent with previous studies. Our results suggest that different stages of the secular process and many other factors may contribute to the complexity of the secular evolution. In addition, barred galaxies with intense star formation in bars tend to have active star formation in their bulges and disks, and bulges have higher star formation densities than bars and disks, indicating the evolutionary effects of bars. We then derived a possible criterion to quantify the different stages of the bar-driven physical process, while future work is needed because of the uncertainties.

  1. Multiplexing oscillatory biochemical signals.

    PubMed

    de Ronde, Wiet; ten Wolde, Pieter Rein

    2014-04-01

    In recent years it has been increasingly recognized that biochemical signals are not necessarily constant in time and that the temporal dynamics of a signal can be the information carrier. Moreover, it is now well established that the protein signaling network of living cells has a bow-tie structure and that components are often shared between different signaling pathways. Here we show by mathematical modeling that living cells can multiplex a constant and an oscillatory signal: they can transmit these two signals simultaneously through a common signaling pathway, and yet respond to them specifically and reliably. We find that information transmission is reduced not only by noise arising from the intrinsic stochasticity of biochemical reactions, but also by crosstalk between the different channels. Yet, under biologically relevant conditions more than 2 bits of information can be transmitted per channel, even when the two signals are transmitted simultaneously. These observations suggest that oscillatory signals are ideal for multiplexing signals. PMID:24685537

  2. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    NASA Astrophysics Data System (ADS)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2016-08-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims: We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. Methods: We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H] = -1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13 Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Results: The effect of helium enrichment on the stellar lifetime and evolution reduces the total number of very helium-rich stars that remain in the cluster at 9 and 13 Gyr to only 12% and 10%, respectively, from an initial fraction of 21%. Within this age range, most of the stars still burn their hydrogen in their core, which widens the MS band significantly in effective temperature. The fraction of very helium-rich stars drops in the more advanced evolution phases, where the associated spread in effective temperature strongly decreases. These

  3. Evolution of EF-hand calcium-modulated proteins. III. Exon sequences confirm most dendrograms based on protein sequences: calmodulin dendrograms show significant lack of parallelism

    NASA Technical Reports Server (NTRS)

    Nakayama, S.; Kretsinger, R. H.

    1993-01-01

    In the first report in this series we presented dendrograms based on 152 individual proteins of the EF-hand family. In the second we used sequences from 228 proteins, containing 835 domains, and showed that eight of the 29 subfamilies are congruent and that the EF-hand domains of the remaining 21 subfamilies have diverse evolutionary histories. In this study we have computed dendrograms within and among the EF-hand subfamilies using the encoding DNA sequences. In most instances the dendrograms based on protein and on DNA sequences are very similar. Significant differences between protein and DNA trees for calmodulin remain unexplained. In our fourth report we evaluate the sequences and the distribution of introns within the EF-hand family and conclude that exon shuffling did not play a significant role in its evolution.

  4. A powerful local shear instability in weakly magnetized disks. III - Long-term evolution in a shearing sheet. IV - Nonaxisymmetric perturbations

    NASA Technical Reports Server (NTRS)

    Hawley, John F.; Balbus, Steven A.

    1992-01-01

    The nonlinear evolution of the recently identified accretion disk magnetic shear instability is investigated through a series of numerical simulations. Finite-difference computations of the equations of compressible MHD are carried out on an axisymmetric shearing sheet system with periodic boundary conditions designed to approximate a local region within an accretion disk. Initial field configurations that include some net vertical component evolve into a nonlinear, exponentially growing solution with large poloidal velocities and magnetic fields with energies comparable to the thermal energy density. The stability of a purely azimuthal field configuration is examined, and it is found that nonaxisymmetric instability is present, but with a growth time measured in tens of orbital periods. In general, the most rapid growth occurs for very small radial and azimuthal wavenumbers, leading to coherent magnetic field structure in planes parallel to the disk. It is suggested that this instability is a key ingredient for the generation of magnetic fields in disks.

  5. RADIAL DISTRIBUTION OF STARS, GAS, AND DUST IN SINGS GALAXIES. III. MODELING THE EVOLUTION OF THE STELLAR COMPONENT IN GALAXY DISKS

    SciTech Connect

    Munoz-Mateos, J. C.; Boissier, S.; Gil de Paz, A.; Zamorano, J.; Gallego, J.; Moustakas, J.; Prantzos, N. E-mail: gildepaz@gmail.com E-mail: j.gallego@fis.ucm.es E-mail: robk@ast.cam.ac.uk E-mail: prantzos@iap.fr

    2011-04-10

    We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey. We make use of ultraviolet (UV), optical, and near-infrared radial profiles, corrected for internal extinction using the total-infrared to UV ratio, to probe the emission of stellar populations of different ages as a function of galactocentric distance. We fit these radial profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward evolutionary models successfully reproduce the multi-wavelength profiles of our galaxies, except for the UV profiles of some early-type disks for which the models seem to retain too much gas. From the model fitting we infer the maximum circular velocity of the rotation curve V{sub C} and the dimensionless spin parameter {lambda}. The values of V{sub C} are in good agreement with the velocities measured in H I rotation curves. Even though our sample is not volume limited, the resulting distribution of {lambda} is close to the lognormal function obtained in cosmological N-body simulations, peaking at {lambda} {approx} 0.03 regardless of the total halo mass. We do not find any evident trend between {lambda} and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale lengths as they become more massive. The radial scale length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc Gyr{sup -1}, although the same cannot be said of a volume-limited sample. In relative terms, the scale length has grown by 20%-25% since z = 1 and, unlike the former figure, we argue that this relative growth rate can be indeed representative of a complete galaxy sample.

  6. Welding III.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding III, an advanced course in arc welding offered at the Community College of Allegheny County to provide students with the proficiency necessary for industrial certification. The course objectives, which are outlined first, specify that students will…

  7. LANDVIEW III

    EPA Science Inventory

    LandView III is a desktop mapping system that includes database extracts from the Environmental Protection Agency, the Bureau of the Census, The U.S. Geological Survey, the Nuclear Regulatory Commission, the Department of Transportation, and the Federal Emergency Management Agenc...

  8. Tidal evolution of the Uranian satellites. III - Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities

    NASA Technical Reports Server (NTRS)

    Tittemore, William C.; Wisdom, Jack

    1990-01-01

    Numerical experiments have been conducted which indicate that the orbital eccentricity of Miranda may have reached a value sufficiently large to have affected its thermal evolution. There is a large chaotic zone associated with the Miranda-Ariel 5:3 mean-motion commensurability, even in the planar approximation; the orbital eccentricities of both satellites may vary chaotically for a considerable period. Since the anomalously high orbital inclination of Miranda is a consequence of passage through the 3:1 commensurability with Umbriel, the requirement that the satellites encountered this resonance places a lower limit on the Uranian specific dissipation function of 39,000.

  9. Tidal evolution of the Uranian satellites. III - Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities

    NASA Astrophysics Data System (ADS)

    Tittemore, W. C.; Wisdom, J.

    1990-06-01

    Numerical experiments have been conducted which indicate that the orbital eccentricity of Miranda may have reached a value sufficiently large to have affected its thermal evolution. There is a large chaotic zone associated with the Miranda-Ariel 5:3 mean-motion commensurability, even in the planar approximation; the orbital eccentricities of both satellites may vary chaotically for a considerable period. Since the anomalously high orbital inclination of Miranda is a consequence of passage through the 3:1 commensurability with Umbriel, the requirement that the satellites encountered this resonance places a lower limit on the Uranian specific dissipation function of 39,000.

  10. Formation and evolution of early-type galaxies - III. Dependence of the star formation history on the total mass and initial overdensity

    NASA Astrophysics Data System (ADS)

    Merlin, E.; Chiosi, C.; Piovan, L.; Grassi, T.; Buonomo, U.; Barbera, F. La

    2012-12-01

    We investigate the influence of the initial overdensities and masses of proto-galaxies on their subsequent evolution (the star formation history in particular) to understand whether these key parameters are sufficient to account for the varied properties of the galactic populations. By means of fully hydrodynamical N-body simulations performed with the code EVOL, we produce 12 self-similar models of early-type galaxies of different initial masses and overdensities, and follow their evolution from the early epochs (detachment from the linear regime and Hubble flow at z ≥ 20) down to the stage when mass assembly is complete, i.e. z ≤ 1 (in some cases the models are calculated up to z = 0). The simulations include radiative cooling, star formation, stellar energy feedback, re-ionizing photo-heating background and chemical enrichment of the interstellar medium; we do not consider the possible presence of active nuclei. We find a strong correlation between the initial properties of the proto-haloes and their subsequent star formation histories. Massive (Mtot ≃ 1013 M⊙) haloes experience a single, intense burst of star formation (with rates ≥103 M⊙ yr-1) at early epochs, consistently with observations, with less pronounced dependence on the initial overdensity; intermediate-mass (Mtot ≃ 1011 M⊙) haloes have histories that strongly depend on their initial overdensity, whereas low-mass haloes (Mtot ≃ 109 M⊙) always have erratic, bursting like star-forming histories, due to the 'galactic breathing' phenomenon. The model galaxies have morphological, structural and chemical properties resembling those of real galaxies, even though some disagreement still occurs, likely a consequence of some numerical choices. We conclude that total mass and initial overdensity drive the star formation histories of early-type galaxies. The model galaxies belong to the so-called quasi-monolithic (or early hierarchical) scenario in the sense that the aggregation of lumps of

  11. Variations on a theme - the evolution of hydrocarbon solids. III. Size-dependent properties - the optEC(s)(a) model

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2012-06-01

    Context. The properties of hydrogenated amorphous carbon (a-C:H) dust evolve in response to the local radiation field in the interstellar medium (ISM) and the evolution of these properties is particularly dependent upon the particle size. Aims: A model for finite-sized, low-temperature amorphous hydrocarbon particles, based on the microphysical properties of random and defected networks of carbon and hydrogen atoms, with surfaces passivated by hydrogen atoms, has been developed. Methods: The eRCN/DG and the optEC(s) models have been combined, adapted and extended into a new optEC(s)(a) model that is used to calculate the optical properties of hydrocarbon grain materials down into the sub-nanometre size regime, where the particles contain only a few tens of carbon atoms. Results: The optEC(s)(a) model predicts a continuity in properties from large to small (sub-nm) carbonaceous grains. Tabulated data of the size-dependent optical constants (from EUV to cm wavelengths) for a-C:H (nano-)particles as a function of the bulk material band gap [Eg(bulk)], or equivalently the hydrogen content, are provided. The effective band gap [Eg(eff.)] is found to be significantly larger than Eg(bulk) for hydrogen-poor a-C(:H) nano-particles and their predicted long-wavelength (λ > 30 μm) optical properties differ from those derived for interstellar polycyclic aromatic hydrocarbons (PAHs). Conclusions: The optEC(s)(a) model is used to investigate the size-dependent structural and spectral evolution of a-C(:H) materials under ISM conditions, including: the IR-FUV extinction, the 217 nm bump and the infrared emission bands. The model makes several predictions that can be tested against observations. Appendices A-E are available in electronic from at http://www.aanda.orgData files are only available form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/542/A98

  12. Electrocatalytic H2 Evolution by Supramolecular Ru(II)-Rh(III)-Ru(II) Complexes: Importance of Ligands as Electron Reservoirs and Speciation upon Reduction.

    PubMed

    Manbeck, Gerald F; Canterbury, Theodore; Zhou, Rongwei; King, Skye; Nam, Geewoo; Brewer, Karen J

    2015-08-17

    The supramolecular water reduction photocatalysts [{(Ph2phen)2Ru(dpp)}2RhX2](PF6)5 (Ph2phen = 4,7-diphenyl-1,10-phenanthroline, dpp =2,3-bis(2-pyridyl)pyrazine X = Cl, Br) are efficient electrocatalysts for the reduction of CF3SO3H, CF3CO2H, and CH3CO2H to H2 in DMF or DMF/H2O mixtures. The onset of catalytic current occurs at -0.82 V versus Ag/AgCl for CF3SO3H, -0.90 V for CF3CO2H, and -1.1 V for CH3CO2H with overpotentials of 0.61, 0.45, and 0.10 V, respectively. In each case, catalysis is triggered by the first dpp ligand reduction implicating the dpp as an electron reservoir in catalysis. A new species with Epc ∼ -0.75 V was observed in the presence of stoichiometric amounts of strong acid, and its identity is proposed as the Rh(H)(III/II) redox couple. H2 was produced in 72-85% Faradaic yields and 95-116 turnovers after 2 h and 435 turnovers after 10 h of bulk electrolysis. The identities of Rh(I) species upon reduction have been studied. In contrast to the expected dissociation of halides in the Rh(I) state, the halide loss depends on solvent and water content. In dry CH3CN, in which Cl(-) is poorly solvated, a [Ru] complex dissociates and [(Ph2phen)2Ru(dpp)Rh(I)Cl2](+) and [(Ph2phen)2Ru(dpp)](2+) are formed. In contrast, for X = Br(-), the major product of reduction is the intact trimetallic Rh(I) complex [{(Ph2phen)2Ru(dpp)}2Rh(I)](5+). Chloride loss in CH3CN is facilitated by addition of 3 M H2O. In DMF, the reduced species is [{(Ph2phen)2Ru(dpp)}2Rh(I)](5+) regardless of X = Cl(-) or Br(-). PMID:26247428

  13. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-01

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M⊙) at different metallicities (-2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M⊙ ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the 22Ne(α,n)25Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY).

  14. ON THE CLUSTER PHYSICS OF SUNYAEV-ZEL'DOVICH AND X-RAY SURVEYS. III. MEASUREMENT BIASES AND COSMOLOGICAL EVOLUTION OF GAS AND STELLAR MASS FRACTIONS

    SciTech Connect

    Battaglia, N.; Bond, J. R.; Pfrommer, C.; Sievers, J. L.

    2013-11-10

    Gas masses tightly correlate with the virial masses of galaxy clusters, allowing for a precise determination of cosmological parameters by means of X-ray surveys. However, the gas mass fractions (f{sub gas}) at the virial radius (R{sub 200}) derived from recent Suzaku observations are considerably larger than the cosmic mean, calling into question the accuracy of cosmological parameters. Here, we use a large suite of cosmological hydrodynamical simulations to study measurement biases of f{sub gas}. We employ different variants of simulated physics, including radiative gas physics, star formation, and thermal feedback by active galactic nuclei, which we show is able to arrest overcooling and to result in constant stellar mass fractions for redshifts z < 1. Computing the mass profiles in 48 angular cones, we find anisotropic gas and total mass distributions that imply an angular variance of f{sub gas} at the level of 30%. This anisotropy originates from the recent formation epoch of clusters and from the strong internal baryon-to-dark-matter density bias. In the most extreme cones, f{sub gas} can be biased high by a factor of two at R{sub 200} in massive clusters (M{sub 200} ∼ 10{sup 15} M{sub ☉}), thereby providing an explanation for high f{sub gas} measurements by Suzaku. While projection lowers this factor, there are other measurement biases that may (partially) compensate. At R{sub 200}, f{sub gas} is biased high by 20% when assuming hydrostatic equilibrium masses, i.e., neglecting the kinetic pressure, and by another ∼10%-20% due to the presence of density clumping. At larger radii, both measurement biases increase dramatically. While the cluster sample variance of the true f{sub gas} decreases to a level of 5% at R{sub 200}, the sample variance that includes both measurement biases remains fairly constant at the level of 10%-20%. The constant redshift evolution of f{sub gas} within R{sub 500} for massive clusters is encouraging for using gas masses to

  15. Keck Deep Fields. III. Luminosity-dependent Evolution of the Ultraviolet Luminosity and Star Formation Rate Densities at z~4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Sawicki, Marcin; Thompson, David

    2006-09-01

    We use our very deep UnGRI catalog of z~4, 3, and 2 UV-selected star-forming galaxies to study the cosmological evolution of the rest-frame 1700 Å luminosity density. The ability to reliably constrain the contribution of faint galaxies is critical here, and our data do so by reaching deep into the galaxy population, to M*LBG+2 at z~4 and deeper still at lower redshifts (M*LBG=-21.0 and L*LBG is the corresponding luminosity). We find that the luminosity density at z>~2 is dominated by the hitherto poorly studied galaxies fainter than L*LBG, and, indeed, the bulk of the UV light at these epochs comes from galaxies in the rather narrow luminosity range L=(0.1-1)L*LBG. Overall, there is a gradual rise in total luminosity density starting at >~4 (we find twice as much UV light at z~3 as at z~4), followed by a shallow peak or plateau within z~3-1, finally followed by the well-known plunge to z~0. Within this total picture, luminosity density in sub-L*LBG galaxies at z>~2 evolves more rapidly than that in more luminous objects; this trend is reversed at lower redshifts, z<~1-a reversal that is reminiscent of galaxy downsizing. We find that within the context of commonly used models there seemingly are not enough faint or bright LBGs to maintain ionization of intergalactic gas even as recently as z~4, and the problem becomes worse at higher redshifts: apparently the universe must be easier to reionize than some recent studies have assumed. Nevertheless, sub-L*LBG galaxies do dominate the total UV luminosity density at z>~2, and this dominance highlights the need for follow-up studies that will teach us more about these very numerous but thus far largely unexplored systems. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  16. Misleading biochemical laboratory test results

    PubMed Central

    Nanji, Amin A.

    1984-01-01

    This article reviews the general and specific factors that interfere with the performance of common biochemical laboratory tests and the interpretation of their results. The clinical status of the patient, drug interactions, and in-vivo and in-vitro biochemical interactions and changes may alter the results obtained from biochemical analysis of blood constituents. Failure to recognize invalid laboratory test results may lead to injudicious and dangerous management of patients. PMID:6375845

  17. Biochemical Reversal of Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2006-03-01

    We cite our progress on biochemical reversal of aging. However, it may be circa 2 years before we have necessary substances at low cost. Meanwhile, without them, a number of measures can be adopted providing marked improvement for the problems of aging in modern societies. For example, enzymes are needed to excrete toxins that accelerate aging; Hg is the ultimate toxin that disables all enzymes (including those needed to excrete Hg itself). Low Hg level in the urine, due to loss of excretory ability, causes the diagnosis of Hg toxicity to almost always be missed. Hg sources must be removed from the body! Another example is excess sugar; hyperglycemia decreases intracellular ascorbic acid (AA) by competitively inhibiting the insulin- mediated active transport of AA into cells. Thus, immunity is impaired by low leucocyte AA. AA is needed for new proteins in aging tissues. Humans must supplement AA; their need same as in AA-synthesizing mammals.

  18. Biochemical mechanisms of nephrotoxicity: application for metabolomics.

    PubMed

    Niemann, Claus U; Serkova, Natalie J

    2007-08-01

    This review describes biochemical pathways of nephrotoxicity and the application of metabolic biomarkers as they relate to nephrotoxicity. Specific and sensitive biomarkers constitute the missing link in the continuum of exposure to toxins and susceptibility, disease development and possible therapeutic intervention. Important requirements for biomarker development are a detailed understanding of biochemical pathways involved in nephrotoxicity, minimal invasiveness and capacity to screen large at-risk populations. Lastly, possible biomarker candidates should be organ specific and equally applicable in preclinical drug testing as well as in clinical care of patients. This review discusses four major metabolic pathways associated with disturbed renal homeostasis: i) direct metabolic evidence of abnormal excretion of endogenous metabolites; ii) disturbances in kidney osmolarity and renal osmolyte homeostasis; iii) impaired energy state followed by dysregulation of glucose, fatty acid and ketone body metabolism; and iv) oxidative stress in renal tissues. Each of these pathways can be monitored by specific surrogate markers in urine and blood using modern metabolomics technologies. PMID:17696804

  19. [The procollagen-III peptide in the clinical surveillance of alcoholic hepatopathy and other chronic hepatopathies].

    PubMed

    Pagani, A; Pranzo, A; Sala, N; Galante, T

    1994-09-01

    Liver fibrosis determines the course and prognosis of alcoholic liver disease. Evaluation of serum concentration of procollagen-III peptides (sPIIIP) is considered a biochemical test useful for evaluating a fibrotic process. We have investigated 30 healthy subjects and 53 patients with alcoholic liver disease, histologically diagnosed by percutaneous liver biopsy in four clusters: steatosis (11), fibrosteatosis (11), chronic active hepatitis (11) and cirrhosis (20). SPIIIP levels were increased in patients with cirrhosis and chronic active hepatitis; while they were regular in patients with steatosis and fibrosteatosis. Evaluation of serum concentration of sPIIIP by radioimmunoassay seems to be an useful test for identifying patients with alcoholic liver disease with a good prognosis and patients in progress to cirrhosis and it is an useful test for control the course and evolution of chronic liver disease. PMID:7938873

  20. Columnar modelling of nucleation burst evolution in the convective boundary layer - first results from a feasibility study Part III: Preliminary results on physicochemical model performance using two "clean air mass" reference scenarios

    NASA Astrophysics Data System (ADS)

    Hellmuth, O.

    2006-09-01

    In Paper I of four papers, a revised columnar high-order model to investigate gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was proposed. In Paper II, the model capability to predict first-, second- and third-order moments of meteorological variables in the CBL was demonstrated using available observational data. In the present Paper III, the high-order modelling concept is extended to sulphur and ammonia chemistry as well as to aerosol dynamics. Based on the previous CBL simulation, a feasibility study is performed using two "clean air mass" scenarios with an emission source at the ground but low aerosol background concentration. Such scenarios synoptically correspond to the advection of fresh post-frontal air in an anthropogenically influenced region. The aim is to evaluate the time-height evolution of ultrafine condensation nuclei (UCNs) and to elucidate the interactions between meteorological and physicochemical variables in a CBL column. The scenarios differ in the treatment of new particle formation (NPF), whereas homogeneous nucleation according to the classical nucleation theory (CNT) is considered. The first scenario considers nucleation of a binary system consisting of water vapour and sulphuric acid (H2SO4) vapour, the second one nucleation of a ternary system additionally involving ammonia (NH3). Here, the two synthetic scenarios are discussed in detail, whereas special attention is payed to the role of turbulence in the formation of the typical UCN burst behaviour, that can often be observed in the surface layer. The intercomparison of the two scenarios reveals large differences in the evolution of the UCN number concentration in the surface layer as well as in the time-height cross-sections of first-order moments and double correlation terms. Although in both cases the occurrence of NPF bursts could be simulated, the burst characteristics and genesis of the bursts are completely different. It is demonstrated, that

  1. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  2. The role of thermodynamics in biochemical engineering

    NASA Astrophysics Data System (ADS)

    von Stockar, Urs

    2013-09-01

    This article is an adapted version of the introductory chapter of a book whose publication is imminent. It bears the title "Biothermodynamics - The role of thermodynamics in biochemical engineering." The aim of the paper is to give a very short overview of the state of biothermodynamics in an engineering context as reflected in this book. Seen from this perspective, biothermodynamics may be subdivided according to the scale used to formalize the description of the biological system into three large areas: (i) biomolecular thermodynamics (most fundamental scale), (ii) thermodynamics of metabolism (intermediary scale), and (iii) whole-cell thermodynamics ("black-box" description of living entities). In each of these subareas, the main available theoretical approaches and the current and the potential applications are discussed. Biomolecular thermodynamics (i) is especially well developed and is obviously highly pertinent for the development of downstream processing. Its use ought to be encouraged as much as possible. The subarea of thermodynamics of live cells (iii), although scarcely applied in practice, is also expected to enhance bioprocess research and development, particularly in predicting culture performances, for understanding the driving forces for cellular growth, and in developing, monitoring, and controlling cellular cultures. Finally, there is no question that thermodynamic analysis of cellular metabolism (ii) is a promising tool for systems biology and for many other applications, but quite a large research effort is still needed before it may be put to practical use.

  3. BEST: Biochemical Engineering Simulation Technology

    SciTech Connect

    Not Available

    1996-01-01

    The idea of developing a process simulator that can describe biochemical engineering (a relatively new technology area) was formulated at the National Renewable Energy Laboratory (NREL) during the late 1980s. The initial plan was to build a consortium of industrial and U.S. Department of Energy (DOE) partners to enhance a commercial simulator with biochemical unit operations. DOE supported this effort; however, before the consortium was established, the process simulator industry changed considerably. Work on the first phase of implementing various fermentation reactors into the chemical process simulator, ASPEN/SP-BEST, is complete. This report will focus on those developments. Simulation Sciences, Inc. (SimSci) no longer supports ASPEN/SP, and Aspen Technology, Inc. (AspenTech) has developed an add-on to its ASPEN PLUS (also called BioProcess Simulator [BPS]). This report will also explain the similarities and differences between BEST and BPS. ASPEN, developed by the Massachusetts Institute of Technology for DOE in the late 1970s, is still the state-of-the-art chemical process simulator. It was selected as the only simulator with the potential to be easily expanded into the biochemical area. ASPEN/SP, commercially sold by SimSci, was selected for the BEST work. SimSci completed work on batch, fed-batch, and continuous fermentation reactors in 1993, just as it announced it would no longer commercially support the complete ASPEN/SP product. BEST was left without a basic support program. Luckily, during this same time frame, AspenTech was developing a biochemical simulator with its version of ASPEN (ASPEN PLUS), which incorporates most BEST concepts. The future of BEST will involve developing physical property data and models appropriate to biochemical systems that are necessary for good biochemical process design.

  4. A novel in vivo method for quantifying the interfacial biochemical bond strength of bone implants

    PubMed Central

    Sul, Young-Taeg; Johansson, Carina; Albrektsson, Tomas

    2010-01-01

    Quantifying the in vivo interfacial biochemical bond strength of bone implants is a biological challenge. We have developed a new and novel in vivo method to identify an interfacial biochemical bond in bone implants and to measure its bonding strength. This method, named biochemical bond measurement (BBM), involves a combination of the implant devices to measure true interfacial bond strength and surface property controls, and thus enables the contributions of mechanical interlocking and biochemical bonding to be distinguished from the measured strength values. We applied the BBM method to a rabbit model, and observed great differences in bone integration between the oxygen (control group) and magnesium (test group) plasma immersion ion-implanted titanium implants (0.046 versus 0.086 MPa, n=10, p=0.005). The biochemical bond in the test implants resulted in superior interfacial behaviour of the implants to bone: (i) close contact to approximately 2 μm thin amorphous interfacial tissue, (ii) pronounced mineralization of the interfacial tissue, (iii) rapid bone healing in contact, and (iv) strong integration to bone. The BBM method can be applied to in vivo experimental models not only to validate the presence of a biochemical bond at the bone–implant interface but also to measure the relative quantity of biochemical bond strength. The present study may provide new avenues for better understanding the role of a biochemical bond involved in the integration of bone implants. PMID:19369221

  5. Divergent Evolution of the repFII Replicon of IncF Plasmids Carrying Cytotoxic Necrotizing Factor cnf2, Cytolethal Distending Toxin cdtIII, and f17Ae Fimbrial Variant Genes in Type 2 Necrotoxigenic Escherichia coli Isolates from Calves.

    PubMed

    Bihannic, Morgan; Haenni, Marisa; Oswald, Eric; Madec, Jean-Yves

    2016-01-01

    Among the pathovars of Escherichia coli in cattle, necrotoxigenic E. coli (NTEC) is defined by the production of cytotoxic necrotizing factors (CNFs). In particular, type 2 NTEC (NTEC2) strains are frequent in diarrheic and septicemic calves and usually coproduce CNF type 2 (CNF2), cytolethal distending toxin type III (CDTIII), and fimbrial adhesins of the F17 family, whose genetic determinants have frequently been reported on the same Vir-like plasmid. In this study, we investigated the genetic environment of the cnf2, f17Ae, and cdtIII genes in a collection of fecal E. coli isolates recovered from 484 French and 58 Iranian calves. In particular, we highlighted the spread of cnf2, f17Ae, and cdtIII on similar 150-kb IncF plasmids harboring the newly assigned repFII replicon allele F74 in NTEC2 isolates. Interestingly, this 150-kb IncF plasmid differed from the 140-kb IncF plasmid harboring the newly assigned repFII replicon allele F75 and carrying cnf2 alone. These results suggest two divergent lineages of cnf2-carrying IncF plasmids depending on the presence of the f17Ae and cdtIII genes. This partition was observed in E. coli strains of unrelated backgrounds, suggesting two different evolutionary paths of cnf2-carrying IncF plasmids rather than divergent evolutions of NTEC2 clones. The driving forces for such divergent evolutions are not known, and further studies are required to clarify the selection of plasmid subtypes spreading virulence determinants in E. coli, in particular, plasmids of the IncF family. PMID:26546422

  6. Divergent Evolution of the repFII Replicon of IncF Plasmids Carrying Cytotoxic Necrotizing Factor cnf2, Cytolethal Distending Toxin cdtIII, and f17Ae Fimbrial Variant Genes in Type 2 Necrotoxigenic Escherichia coli Isolates from Calves

    PubMed Central

    Bihannic, Morgan; Haenni, Marisa; Oswald, Eric

    2015-01-01

    Among the pathovars of Escherichia coli in cattle, necrotoxigenic E. coli (NTEC) is defined by the production of cytotoxic necrotizing factors (CNFs). In particular, type 2 NTEC (NTEC2) strains are frequent in diarrheic and septicemic calves and usually coproduce CNF type 2 (CNF2), cytolethal distending toxin type III (CDTIII), and fimbrial adhesins of the F17 family, whose genetic determinants have frequently been reported on the same Vir-like plasmid. In this study, we investigated the genetic environment of the cnf2, f17Ae, and cdtIII genes in a collection of fecal E. coli isolates recovered from 484 French and 58 Iranian calves. In particular, we highlighted the spread of cnf2, f17Ae, and cdtIII on similar 150-kb IncF plasmids harboring the newly assigned repFII replicon allele F74 in NTEC2 isolates. Interestingly, this 150-kb IncF plasmid differed from the 140-kb IncF plasmid harboring the newly assigned repFII replicon allele F75 and carrying cnf2 alone. These results suggest two divergent lineages of cnf2-carrying IncF plasmids depending on the presence of the f17Ae and cdtIII genes. This partition was observed in E. coli strains of unrelated backgrounds, suggesting two different evolutionary paths of cnf2-carrying IncF plasmids rather than divergent evolutions of NTEC2 clones. The driving forces for such divergent evolutions are not known, and further studies are required to clarify the selection of plasmid subtypes spreading virulence determinants in E. coli, in particular, plasmids of the IncF family. PMID:26546422

  7. Biochemical Engineering. Part II: Process Design

    ERIC Educational Resources Information Center

    Atkinson, B.

    1972-01-01

    Describes types of industrial techniques involving biochemical products, specifying the advantages and disadvantages of batch and continuous processes, and contrasting biochemical and chemical engineering. See SE 506 318 for Part I. (AL)

  8. Stoichiometries of arsenazo III-Ca complexes.

    PubMed Central

    Palade, P; Vergara, J

    1983-01-01

    The equilibrium interactions of the metallochromic indicator arsenazo III with calcium at physiological ionic strength and pH were investigated spectrophotometrically and with the aid of a calcium electrode. Evidence suggests the formation of more than one dye-calcium complex. The analysis of data obtained over a 10,000-fold range of dye concentrations concludes that at the concentrations used for in vitro biochemical studies (10--100 microM), arsenazo III absorbance changes in response to calcium binding primarily involve the formation of a complex involving two dye molecules and two calcium ions. At millimolar dye concentrations, typical of physiological calcium transient determinations in situ, a second complex involving two arsenazo III molecules and one calcium ion is additionally formed. A third complex, involving one arsenazo III molecule and one calcium ion, is formed at very low dye concentrations. The results reported here suggest that equilibrium calibration of the dye with calcium cannot be used directly to satisfactorily relate transient absorbance changes in physiological preparations to calcium concentration changes since several stoichiometrically distinct complexes with different absorbances could be formed at different rates. The results of this study do not permit the elucidation of a unique kinetic scheme of arsenazo III complexation with calcium; for this, in vitro kinetic analysis is required. Results of similar analysis of the dye interaction with magnesium are also reported, and these appear compatible with a much simpler model of complexation. PMID:6626673

  9. Inactivation of food-borne viruses using natural biochemical substances.

    PubMed

    Li, Dan; Baert, Leen; Uyttendaele, Mieke

    2013-08-01

    Food-borne viruses such as human Noroviruses (NoVs), hepatitis A virus (HAV), Rotaviruses (RoVs) are a public health concern worldwide. Biochemical substances, which occur naturally in plants, animals or microorganisms, might possess considerable antimicrobial properties. In this study, the reported effects of biochemical substances on food-borne viruses are reviewed. The biochemical substances are grouped into several categories including (i) polyphenols and proanthocyanins, (ii) saponin, (iii) polysaccharides, (iv) organic acids, (v) proteins and polypeptides, (vi) essential oils. Although not fully understood, the mechanism of action for the antiviral activity of the natural compounds is presented. Generally, it is thought to be the prevention of the viral attachment to host cells, either by causing damage on the viral capsids or change of the receptors on the cell membranes. It is recommended that further studies are undertaken not only on the wide-range screening for novel antiviral substances, but also on the mechanism in-depth as well as the exploration for their potential application in controlling virus contamination in foods or food processing. PMID:23628607

  10. Induced biochemical interactions in crude oils

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.

    1996-08-01

    In the evolution of oil from sedimentary to reservoir conditions, the hydrogen to carbon ratios decrease while the oxygen, nitrogen, and sulfur to carbon ratios increase. During this process, the oils become heavier and richer in asphaltenes. In terms of chemical composition, the oils become enriched in resins, asphaltenes, and polar compounds containing the heteroatoms and metals. Over the geological periods of time, the chemical and physical changes have been brought about by chemical, biological (biochemical) and physical (temperature and pressure) means as well as by the catalytic effects of the sedimentary matrices, migration, flooding, and other physical processes. Therefore, different types of oils are the end products of a given set of such interactions which were brought about by multiple and simultaneous physicochemical processes involving electron transfer, free radical, and chemical reactions. A biocatalyst introduced into a reaction mixture of the type produced by such reactions will seek available chemical reaction sites and react at the most favorable ones. The rates and the chemical pathways by which the biocatalytic reactions will proceed will depend on the oil type and the biocatalyst(s). Some of the possible reaction pathways that may occur in such complex mixtures are discussed.

  11. Metabolism. Part III: Lipids.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Describes the metabolic processes of complex lipids, including saponification, activation and transport, and the beta-oxidation spiral. Discusses fatty acid degradation in regard to biochemical energy and ketone bodies. (TW)

  12. Biochemical abnormalities in Pearson syndrome.

    PubMed

    Crippa, Beatrice Letizia; Leon, Eyby; Calhoun, Amy; Lowichik, Amy; Pasquali, Marzia; Longo, Nicola

    2015-03-01

    Pearson marrow-pancreas syndrome is a multisystem mitochondrial disorder characterized by bone marrow failure and pancreatic insufficiency. Children who survive the severe bone marrow dysfunction in childhood develop Kearns-Sayre syndrome later in life. Here we report on four new cases with this condition and define their biochemical abnormalities. Three out of four patients presented with failure to thrive, with most of them having normal development and head size. All patients had evidence of bone marrow involvement that spontaneously improved in three out of four patients. Unique findings in our patients were acute pancreatitis (one out of four), renal Fanconi syndrome (present in all patients, but symptomatic only in one), and an unusual organic aciduria with 3-hydroxyisobutyric aciduria in one patient. Biochemical analysis indicated low levels of plasma citrulline and arginine, despite low-normal ammonia levels. Regression analysis indicated a significant correlation between each intermediate of the urea cycle and the next, except between ornithine and citrulline. This suggested that the reaction catalyzed by ornithine transcarbamylase (that converts ornithine to citrulline) might not be very efficient in patients with Pearson syndrome. In view of low-normal ammonia levels, we hypothesize that ammonia and carbamylphosphate could be diverted from the urea cycle to the synthesis of nucleotides in patients with Pearson syndrome and possibly other mitochondrial disorders. PMID:25691415

  13. Vector Encoding in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    Encoding of environmental cues via biochemical signaling pathways is of vital importance in the transmission of information for cells in a network. The current literature assumes a single cell state is used to encode information, however, recent research suggests the optimal strategy utilizes a vector of cell states sampled at various time points. To elucidate the optimal sampling strategy for vector encoding, we take an information theoretic approach and determine the mutual information of the calcium signaling dynamics obtained from fibroblast cells perturbed with different concentrations of ATP. Specifically, we analyze the sampling strategies under the cases of fixed and non-fixed vector dimension as well as the efficiency of these strategies. Our results show that sampling with greater frequency is optimal in the case of non-fixed vector dimension but that, in general, a lower sampling frequency is best from both a fixed vector dimension and efficiency standpoint. Further, we find the use of a simple modified Ornstein-Uhlenbeck process as a model qualitatively captures many of our experimental results suggesting that sampling in biochemical networks is based on a few basic components.

  14. How special is the biochemical function of native proteins?

    PubMed Central

    Skolnick, Jeffrey; Gao, Mu; Zhou, Hongyi

    2016-01-01

    Native proteins perform an amazing variety of biochemical functions, including enzymatic catalysis, and can engage in protein-protein and protein-DNA interactions that are essential for life. A key question is how special are these functional properties of proteins. Are they extremely rare, or are they an intrinsic feature? Comparison to the properties of compact conformations of artificially generated compact protein structures selected for thermodynamic stability but not any type of function, the artificial (ART) protein library, demonstrates that a remarkable number of the properties of native-like proteins are recapitulated. These include the complete set of small molecule ligand-binding pockets and most protein-protein interfaces. ART structures are predicted to be capable of weakly binding metabolites and cover a significant fraction of metabolic pathways, with the most enriched pathways including ancient ones such as glycolysis. Native-like active sites are also found in ART proteins. A small fraction of ART proteins are predicted to have strong protein-protein and protein-DNA interactions. Overall, it appears that biochemical function is an intrinsic feature of proteins which nature has significantly optimized during evolution. These studies raise questions as to the relative roles of specificity and promiscuity in the biochemical function and control of cells that need investigation. PMID:26962440

  15. Biochemical Analysis of Microbial Rhodopsins.

    PubMed

    Maresca, Julia A; Keffer, Jessica L; Miller, Kelsey J

    2016-01-01

    Ion-pumping rhodopsins transfer ions across the microbial cell membrane in a light-dependent fashion. As the rate of biochemical characterization of microbial rhodopsins begins to catch up to the rate of microbial rhodopsin identification in environmental and genomic sequence data sets, in vitro analysis of their light-absorbing properties and in vivo analysis of ion pumping will remain critical to characterizing these proteins. As we learn more about the variety of physiological roles performed by microbial rhodopsins in different cell types and environments, observing the localization patterns of the rhodopsins and/or quantifying the number of rhodopsin-bearing cells in natural environments will become more important. Here, we provide protocols for purification of rhodopsin-containing membranes, detection of ion pumping, and observation of functional rhodopsins in laboratory and environmental samples using total internal reflection fluorescence microscopy. © 2016 by John Wiley & Sons, Inc. PMID:27153387

  16. Diagnosis of hyperandrogenism: biochemical criteria.

    PubMed

    Stanczyk, Frank Z

    2006-06-01

    Biochemical derangements in ovarian, adrenal, and peripheral androgen production and metabolism play an important role in underlying causes of hyperandrogenism. Specific diagnostic serum markers such as testosterone (total) and dehydroepiandrosterone sulfate (DHEAS), respectively, may be helpful in the diagnosis of ovarian and adrenal hyperandrogenism, respectively. Validated immunoassays or mass spectrometry assays should be used to quantify testosterone, DHEAS and other principal androgens. Free testosterone measurements, determined by equilibrium dialysis or the calculated method, are advocated for routine evaluation of more subtle forms of hyperandrogenism. The skin, with its pilosebaceous units (PSUs), is an important site of active androgen production. A key regulator in PSUs is 5alpha-reductase, which transforms testosterone or androstenedione to dihydrotestosterone (DHT). DHT in blood is not effective in indicating the presence of hyperandrogenism. However, distal metabolites of DHT have been shown to be good markers of clinical manifestations of hirsutism, acne and alopecia. Assays for these peripheral markers need improvement for routine clinical testing. PMID:16772150

  17. Biochemical nature of Russell Bodies

    PubMed Central

    Francesca Mossuto, Maria; Ami, Diletta; Anelli, Tiziana; Fagioli, Claudio; Maria Doglia, Silvia; Sitia, Roberto

    2015-01-01

    Professional secretory cells produce and release abundant proteins. Particularly in case of mutations and/or insufficient chaperoning, these can aggregate and become toxic within or amongst cells. Immunoglobulins (Ig) are no exception. In the extracellular space, certain Ig-L chains form fibrils causing systemic amyloidosis. On the other hand, Ig variants lacking the first constant domain condense in dilated cisternae of the early secretory compartment, called Russell Bodies (RB), frequently observed in plasma cell dyscrasias, autoimmune diseases and chronic infections. RB biogenesis can be recapitulated in lymphoid and non-lymphoid cells by expressing mutant Ig-μ, providing powerful models to investigate the pathophysiology of endoplasmic reticulum storage disorders. Here we analyze the aggregation propensity and the biochemical features of the intra- and extra-cellular Ig deposits in human cells, revealing β-aggregated features for RB. PMID:26223695

  18. Population III Stars Around the Milky Way

    NASA Astrophysics Data System (ADS)

    Komiya, Yutaka; Suda, Takuma; Fujimoto, Masayuki Y.

    2016-03-01

    We explore the possibility of observing Population III (Pop III) stars, born of primordial gas. Pop III stars with masses below 0.8 M⊙ should survive to date though are not yet observed, but the existence of stars with low metallicity as [{{Fe}}/{{H}}]\\lt -5 in the Milky Way halo suggests the surface pollution of Pop III stars with accreted metals from the interstellar gas after birth. In this paper, we investigate the runaway of Pop III stars from their host mini-halos, considering the ejection of secondary members from binary systems when their massive primaries explode as supernovae. These stars save them from surface pollution. By computing the star formation and chemical evolution along with the hierarchical structure formation based on the extended Press-Schechter merger trees, we demonstrate that several hundreds to tens of thousands of low-mass Pop III stars escape from the building blocks of the Milky Way. The second and later generations of extremely metal-poor stars also escaped from the mini-halos. We discuss the spatial distributions of these escaped stars by evaluating the distances between the mini-halos in the branches of merger trees under the spherical collapse model of dark matter halos. It is demonstrated that the escaped stars distribute beyond the stellar halo with a density profile close to the dark matter halo, while Pop III stars are slightly more centrally concentrated. 6%-30% of the escaped stars leave the Milky Way and go out into the intergalactic space. Based on the results, we discuss the feasibility of observing the Pop III stars with the pristine surface abundance.

  19. SUPERSTARS III: K-2.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Education, Raleigh.

    SUPERSTARS III is a K-8 program designed as an enrichment opportunity for self-directed learners in mathematics. The basic purpose of SUPERSTARS III is to provide the extra challenge that self-motivated students need in mathematics and to do so in a structured, long-term program that does not impinge on the normal classroom routine or the…

  20. CITY III Player's Manual.

    ERIC Educational Resources Information Center

    Envirometrics, Inc., Washington, DC.

    CITY III is a computer-assisted simulation game in which participants make decisions affecting the economic, governmental, and social conditions of a simulated urban area. In CITY III, the computer stores all the relevant statistics for the area, updates data when changes are made, and prints out yearly reports. The computer also simulates…

  1. CITY III Operator's Manual.

    ERIC Educational Resources Information Center

    Envirometrics, Inc., Washington, DC.

    CITY III is a computer-assisted simulation game of an urban system involving player operation of and interaction with economic, social, and government components. The role of operator in the game is to take the handwritten inputs (decisions) from the CITY III participants, process them, and return output which initiates the next round of…

  2. Co(II)1-xCo(0)x/3Mn(III)2x/3S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries.

    PubMed

    Wang, Zilong; Xiao, Shuang; An, Yiming; Long, Xia; Zheng, Xiaoli; Lu, Xihong; Tong, Yexiang; Yang, Shihe

    2016-06-01

    Rechargeable Zn-air battery is an ideal type of energy storage device due to its high energy and power density, high safety, and economic viability. Its large-scale application rests upon the availability of active, durable, low-cost electrocatalysts for the oxygen reduction reaction (ORR) in the discharge process and oxygen evolution reaction (OER) in the charge process. Herein we developed a novel ORR/OER bifunctional electrocatalyst for rechargeable Zn-air batteries based on the codoping and hybridization strategies. The B/N-codoped mesoporous nanocarbon supported Co(II)1-xCo(0)x/3Mn(III)2x/3S nanoparticles exhibit a superior OER performance compared to that of IrO2 catalyst and comparable Zn-air battery performance to that of the Pt-based battery. The rechargeable Zn-air battery shows high discharge peak power density (over 250 mW cm(-2)) and current density (180 mA cm(-2) at 1 V), specific capacity (∼550 mAh g(-1)), small charge-discharge voltage gap of ∼0.72 V at 20 mA cm(-2) and even higher stability than the Pt-based battery. The advanced performance of the bifunctional catalysts highlights the beneficial role of the simultaneous formation of Mn(III) and Co(0) as well as the dispersed hybridization with the codoped nanocarbon support. PMID:27163673

  3. Constraining the Statistics of Population III Binaries

    NASA Technical Reports Server (NTRS)

    Stacy, Athena; Bromm, Volker

    2012-01-01

    We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the ten minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 AU. We find a binary fraction of approx. 36, with semi-major axes as large as 3000 AU. The distribution of orbital periods is slightly peaked at approx. < 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the ten minihaloes, approx. 50 are lost to mergers with larger sinks, and 50 of the remaining sinks are ejected from their star-forming disks. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.

  4. Constraining the statistics of Population III binaries

    NASA Astrophysics Data System (ADS)

    Stacy, Athena; Bromm, Volker

    2013-08-01

    We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the 10 minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 au. We find a binary fraction of ˜35 per cent, with semi-major axes as large as 3000 au. The distribution of orbital periods is slightly peaked at ≲ 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the 10 minihaloes, ˜50 per cent are lost to mergers with larger sinks, and ˜50 per cent of the remaining sinks are ejected from their star-forming discs. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.

  5. Influence of low-frequency vibration on changes of biochemical parameters of living rats

    NASA Astrophysics Data System (ADS)

    Kasprzak, Cezary; Damijan, Zbigniew; Panuszka, Ryszard

    2001-05-01

    The aim of the research was to investigate how some selected biochemical parameters of living rats depend on exposure of low-frequency vibrations. Experiments were run on 30 Wistar rats randomly segregated into three groups: (I) 20 days old (before puberty), (II) 70th day after; (III) control group. The exposure was repeated seven times, for 3 h, at the same time of day. Vibrations applied during the first tests of the experiment had acceleration 1.22 m/s2 and frequency 20 Hz. At the 135th day the rats' bones were a subject of morphometric/biochemical examination. The results of biochemical tests proved decrease in LDL and HDL cholesterol levels for exposed rats as well as the Ca contents in blood plasma. There was evident increasing of Ca in blood plasma in exposed rats for frequency of exposition.

  6. Serum Biochemical Phenotypes in the Domestic Dog

    PubMed Central

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A.

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479

  7. Serum Biochemical Phenotypes in the Domestic Dog.

    PubMed

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479

  8. Biochemical and physiological processes associated with the differential ozone response in ozone-tolerant and sensitive soybean genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochemical and physiological traits of two soybean [Glycine max (L.) Merr.] genotypes that differ in sensitivity to ozone (O3) were investigated to determine the possible basis for the differential response. Fiskeby III (O3-tolerant) and Mandarin (Ottawa) (O3-sensitive) were grown in a greenhouse ...

  9. The Chemical Master Equation Approach to Nonequilibrium Steady-State of Open Biochemical Systems: Linear Single-Molecule Enzyme Kinetics and Nonlinear Biochemical Reaction Networks

    PubMed Central

    Qian, Hong; Bishop, Lisa M.

    2010-01-01

    We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC) with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a) individual biochemical reactions, (b) nonlinear network dynamics approaching to attractors, and (c) cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a) and (c) are stochastic while that with (b) is dominantly deterministic. Both (b) and (c) are emergent properties of a dynamic biochemical network; We suggest that the (c) is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b) in a “punctuated equilibrium” manner. PMID:20957107

  10. The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks.

    PubMed

    Qian, Hong; Bishop, Lisa M

    2010-01-01

    We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC) with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a) individual biochemical reactions, (b) nonlinear network dynamics approaching to attractors, and (c) cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a) and (c) are stochastic while that with (b) is dominantly deterministic. Both (b) and (c) are emergent properties of a dynamic biochemical network; We suggest that the (c) is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b) in a "punctuated equilibrium" manner. PMID:20957107

  11. Biochemical mechanisms of quinidine cardiotoxicity.

    PubMed

    Bachmann, E; Weber, E; Zbinden, G

    1986-01-01

    "Quinidine-like action" and the synonym "membrane-stabilizing activity" are often encountered descriptions for adverse cardiac effects of drugs. Quinidine, 50 mg/kg/day, 5 days/week for 4 weeks, was found to cause disturbance of intracardiac conduction in rats. It was the purpose of this study to investigate the effect of the same dose of quinidine on biochemical activities involved in the energy metabolism of the heart. Electron transfer activities in heart mitochondria were progressively slowed down. At the same time, uncoupling of oxidative phosphorylation was observed and mitochondrial creatinephosphate kinase activity decreased. Concomitantly, mitochondria showed a progressive loss in semipermeability, manifested by an increasing creatine content. Total adenine nucleotides (especially ATP) content declined to 65% of control values to return to normal levels at the end of the 4 week treatment period. Calcium-binding activity and various ATPases (Na/K, Mg, Ca) of myocyte membranes (sarcolemma + sarcoplasmatic reticulum fraction) were also impaired by quinidine. Protein synthesis in total heart tissue and heart mitochondria, an energy-requiring process, was also moderately inhibited by quinidine. Maximal quinidine concentration in heart tissue was 0.123 microgram/g fresh weight 24 h after the last of 19 medications. PMID:2427825

  12. Impact of volcanism on the evolution of Lake Van (eastern Anatolia) III: Periodic (Nemrut) vs. episodic (Süphan) explosive eruptions and climate forcing reflected in a tephra gap between ca. 14 ka and ca. 30 ka

    NASA Astrophysics Data System (ADS)

    Schmincke, Hans-Ulrich; Sumita, Mari

    2014-09-01

    Fifteen Lateglacial to Holocene rhyolitic, dominantly primary tephra layers piston-cored and drilled (ICDP Paleovan drilling project) in western Lake Van (eastern Anatolia, Turkey) were precisely correlated to either of the two adjacent and active large volcanoes Nemrut and Süphan based on shard textures, mineralogy and mineral and glass compositions. The young peralkaline (comenditic to pantelleritic) primary rhyolitic Nemrut tephras are characterized by anorthoclase, hedenbergitic to augitic clinopyroxene, fayalitic olivine, minor quartz, and rare accessory chevkinite and zircon. Phenocrysts in subalkaline primary rhyolitic Süphan tephras are chiefly oligoclase-labradorite, with minor K-rich sanidine in some, biotite, amphibole, hypersthene, rare augitic clinopyroxene, relatively common allanite and rare zircon. Two contrasting explosive eruptive modes are distinguished from each other: episodic (Süphan) and periodic (Nemrut). The Lateglacial Süphan tephra swarm covers a short time interval of ca. 338 years between ca. 13,078 vy BP and 12,740 vy BP, eruptions having occurred statistically every ca. 42 years with especially short intervals between V-11 (reworked) and V-14. Causes for the strongly episodic Süphan explosive behavior might include seismic triggering of a volcano-magma system unable to erupt explosively without the benefit of external triggering, as reflected in pervasive faulting preceding the Süphan tephra swarm. Seismic triggering may have caused the rise of more mafic ("trachyandesitic") parent magma, heating near-surface pockets of highly evolved magma - that might have formed silicic domes during this stage of volcano evolution - resulting in ascent and finally explosive fragmentation of magma essentially by external factors, probably significantly enhanced by magma-water/ice interaction. Explosive eruptions of the Nemrut volcano system, interpreted to be underlain by a large fractionating magma reservoir, follow a more periodic mode of (a

  13. Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes.

    PubMed

    Brandel, Jérémy; Humbert, Nicolas; Elhabiri, Mourad; Schalk, Isabelle J; Mislin, Gaëtan L A; Albrecht-Gary, Anne-Marie

    2012-03-01

    Pseudomonas aeruginosa is an opportunistic pathogen, synthesizing two major siderophores, pyoverdine (Pvd) and pyochelin (Pch), to cover its needs in iron(III). If the high affinity and specificity of Pvd toward iron(III) (pFe = 27.0) was well described in the literature, the physicochemical and coordination properties of Pch toward biologically relevant metals (Fe(III), Cu(II) or Zn(II)) have been only scarcely investigated. We report a thorough physico-chemical investigation of Pch (potentiometry, spectrophotometries, ESI/MS) that highlighted its moderate but significantly higher affinity for Fe(3+) (pFe = 16.0 at p[H] 7.4) than reported previously. We also demonstrated that Pch strongly chelates divalent metals such as Zn(II) (pZn = 11.8 at p[H] 7.4) and Cu(II) (pCu = 14.9 at p[H] 7.4) and forms predominantly 1 : 2 (M(2+)/Pch) complexes. Kinetic studies revealed that the formation of the ferric Pch complexes proceeds through a Eigen-Wilkins dissociative ligand interchange mechanism involving two protonated species of Pch and the Fe(OH)(2+) species of Fe(III). Our physico-chemical parameters supports the previous biochemical studies which proposed that siderophores are not only devoted to iron(III) shuttling but most likely display other specific biological role in the subtle metals homeostasis in microorganisms. This work also represents a step toward deciphering the role of siderophores throughout evolution. PMID:22261733

  14. Antithrombin III blood test

    MedlinePlus

    ... AT III) is a protein that helps control blood clotting. A blood test can determine the amount of ... may mean you have an increased risk of blood clotting. This can occur when there is not enough ...

  15. Antithrombin III blood test

    MedlinePlus

    ... be due to: Bone marrow transplant Disseminated intravascular coagulation (DIC) AT III deficiency, an inherited condition Liver ... Schmaier AH, Miller JL. Coagulation and fibrinolysis. In: McPherson ... Management by Laboratory Methods . 22nd ed. Philadelphia, PA: ...

  16. EGFRvIII and c-Met pathway inhibitors synergize against PTEN-null/EGFRvIII+ glioblastoma xenografts

    PubMed Central

    Lal, Bachchu; Goodwin, Courtney R.; Sang, Yingying; Foss, Catherine A.; Cornet, Kathrine; Muzamil, Sameena; Pomper, Martin G.; Kim, Jin; Laterra, John

    2010-01-01

    Receptor tyrosine kinase (RTK) systems, such as hepatocyte growth factor (HGF) and its receptor c-Met, and EGFR, are responsible for the malignant progression of multiple solid tumors. Recent research shows that these RTK systems co-modulate overlapping and dynamically adaptable oncogenic downstream signaling pathways. This paper investigates how EGFRvIII, a constitutively active EGFR deletion mutant, alters tumor growth and signaling responses to RTK inhibition in PTEN-null/HGF+/c-Met+ glioma xenografts. We show that a neutralizing anti-HGF mAb (L2G7) potently inhibits tumor growth and the activation of Akt and MAPK in PTEN-null/HGF+/c-Met+/EGFRvIII−U87 glioma xenografts (U87wt). Isogenic EGFRvIII+ U87 xenografts (U87-EGFRvIII), which grew 5-times more rapidly than U87-wt xenografts, were unresponsive to EGFRvIII inhibition by erlotinib and were only minimally responsive to anti-HGF mAb. EGFRvIII-expression diminished the magnitude of Akt inhibition and completely prevented MAPK inhibition by L2G7. Despite the lack of response to L2G7 or erlotinib as single agents, their combination synergized to produce substantial anti-tumor effects (inhibited tumor cell proliferation, enhanced apoptosis, arrested tumor growth, prolonged animal survival), against subcutaneous and orthotopic U87-EGFRvIII xenografts. The dramatic response to combining HGF:c-Met and EGFRvIII pathway inhibitors in U87-EGFRvIII xenografts occurred in the absence of Akt and MAPK inhibition. These findings show that combining c-Met and EGFRvIII pathway inhibitors can generate potent anti-tumor effects in PTEN-null tumors. They also provide insights into how EGFRvIII and c-Met may alter signaling networks and reveal the potential limitations of certain biochemical biomarkers to predict the efficacy of RTK inhibition in genetically diverse cancers. PMID:19584231

  17. Biochemical Characterization of Indole Prenyltransferases

    PubMed Central

    Yu, Xia; Liu, Yan; Xie, Xiulan; Zheng, Xiao-Dong; Li, Shu-Ming

    2012-01-01

    The putative prenyltransferase gene ACLA_031240 belonging to the dimethylallyltryptophan synthase superfamily was identified in the genome sequence of Aspergillus clavatus and overexpressed in Escherichia coli. The soluble His-tagged protein EAW08391 was purified to near homogeneity and used for biochemical investigation with diverse aromatic substrates in the presence of different prenyl diphosphates. It has shown that in the presence of dimethylallyl diphosphate (DMAPP), the recombinant enzyme accepted very well simple indole derivatives with l-tryptophan as the best substrate. Product formation was also observed for tryptophan-containing cyclic dipeptides but with much lower conversion yields. In contrast, no product formation was detected in the reaction mixtures of l-tryptophan with geranyl or farnesyl diphosphate. Structure elucidation of the enzyme products by NMR and MS analyses proved unequivocally the highly regiospecific regular prenylation at C-5 of the indole nucleus of the simple indole derivatives. EAW08391 was therefore termed 5-dimethylallyltryptophan synthase, and it filled the last gap in the toolbox of indole prenyltransferases regarding their prenylation positions. Km values of 5-dimethylallyltryptophan synthase were determined for l-tryptophan and DMAPP at 34 and 76 μm, respectively. Average turnover number (kcat) at 1.1 s−1 was calculated from kinetic data of l-tryptophan and DMAPP. Catalytic efficiencies of 5-dimethylallyltryptophan synthase for l-tryptophan at 25,588 s−1·m−1 and for other 11 simple indole derivatives up to 1538 s−1·m−1 provided evidence for its potential usage as a catalyst for chemoenzymatic synthesis. PMID:22123822

  18. Simulation of Biochemical Pathway Adaptability Using Evolutionary Algorithms

    SciTech Connect

    Bosl, W J

    2005-01-26

    The systems approach to genomics seeks quantitative and predictive descriptions of cells and organisms. However, both the theoretical and experimental methods necessary for such studies still need to be developed. We are far from understanding even the simplest collective behavior of biomolecules, cells or organisms. A key aspect to all biological problems, including environmental microbiology, evolution of infectious diseases, and the adaptation of cancer cells is the evolvability of genomes. This is particularly important for Genomes to Life missions, which tend to focus on the prospect of engineering microorganisms to achieve desired goals in environmental remediation and climate change mitigation, and energy production. All of these will require quantitative tools for understanding the evolvability of organisms. Laboratory biodefense goals will need quantitative tools for predicting complicated host-pathogen interactions and finding counter-measures. In this project, we seek to develop methods to simulate how external and internal signals cause the genetic apparatus to adapt and organize to produce complex biochemical systems to achieve survival. This project is specifically directed toward building a computational methodology for simulating the adaptability of genomes. This project investigated the feasibility of using a novel quantitative approach to studying the adaptability of genomes and biochemical pathways. This effort was intended to be the preliminary part of a larger, long-term effort between key leaders in computational and systems biology at Harvard University and LLNL, with Dr. Bosl as the lead PI. Scientific goals for the long-term project include the development and testing of new hypotheses to explain the observed adaptability of yeast biochemical pathways when the myosin-II gene is deleted and the development of a novel data-driven evolutionary computation as a way to connect exploratory computational simulation with hypothesis

  19. Numerical Simulation of the Mesa- Scale Structure and Evolution of the 1977 Johnstown Flood. Part III. Internal Gravity Waves and the Squall Line.

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Lin; Fritsch, J. Michael

    1988-04-01

    The interaction between internal gravity waves and a squall line that developed early in the evolution of the 1977 Johnston flood event is studied based on available surface observations and a three-dimensional model simulation of the flood-related mesoscale convective systems (MCSs). Several experimental simulators are carried out to investigate the mechanisms whereby gravity waves form and obtain energy. Both observations and model simulators of the wave/convection interaction fit certain theories of gravity wave propagation. Following the formation of the squall line, subsequent deep convection typically initiates behind a pressure trough associated with the lint and ahead of or along the axis of the trailing ridge. The zero contours of vertical motion correspond closely to the axis of the surface pressure trough. Positive potential temperature perturbations correspond with descending motion occurring ahead of the trough while negative perturbations occur with increasing ascending motion towards the approaching ridge axis. Model airflow trajectories show that the simulated gravity wave surface pressure perturbations (with amplitudes of about 1 mb) correspond to vertical parcel displacements of more than 30 mb.The model simulations indicate that the gravity waves am initiated by a super-geostrophic low-level jet with strong horizontal wind shear over an area where an explosive convective development occurs, and then are enhanced by intense convection. The waves propagate at a speed significantly faster than a meso- scale quasi-geostrophic wave that is partly responsible for the initial explosive development and that later plays a key role in controlling the evolution of a mesoscale convective complex (MCC). The fag moving gravity waves help the squall line accelerate eastward and separate from a trailing area of convection that later develops into the MCC. It appears that the waves and the squall line interact with each other constructively prior to the squall

  20. Silencing, Positive Selection and Parallel Evolution: Busy History of Primate Cytochromes c

    PubMed Central

    Pierron, Denis; Opazo, Juan C.; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E.; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I.

    2011-01-01

    Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades. PMID:22028846

  1. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. III. Detection of lithium in the metal-poor bulge dwarf MOA-2010-BLG-285S

    NASA Astrophysics Data System (ADS)

    Bensby, T.; Asplund, M.; Johnson, J. A.; Feltzing, S.; Meléndez, J.; Dong, S.; Gould, A.; Han, C.; Adén, D.; Lucatello, S.; Gal-Yam, A.

    2010-10-01

    Context. To study the evolution of Li in the Galaxy it is necessary to observe dwarf or subgiant stars. These are the only long-lived stars whose present-day atmospheric chemical composition reflects their natal Li abundances according to standard models of stellar evolution. Although Li has been extensively studied in the Galactic disk and halo, to date there has only been one uncertain detection of Li in an unevolved bulge star. Aims: Our aim with this study is to provide the first clear detection of Li in the Galactic bulge, based on an analysis of a dwarf star that has largely retained its initial Li abundance. Methods: We performed a detailed elemental abundance analysis of the bulge dwarf star MOA-2010-BLG-285S using a high-resolution and high signal-to-noise spectrum obtained with the UVES spectrograph at the VLT when the object was optically magnified during a gravitational microlensing event (visual magnification A~550 during observation). The Li abundance was determined through synthetic line profile fitting of the 7Li resonance doublet line at 670.8 nm. The results have been corrected for departures from LTE. Results: MOA-2010-BLG-285S is, at [Fe/H] = -1.23, the most metal-poor dwarf star detected so far in the Galactic bulge. Its old age (12.5 Gyr) and enhanced [α/Fe] ratios agree well with stars in the thick disk at similar metallicities. This star represents the first unambiguous detection of Li in a metal-poor dwarf star in the Galactic bulge. We find an NLTE corrected Li abundance of logɛ(Li) = 2.16, which is consistent with values derived for Galactic disk and halo dwarf stars at similar metallicities and temperatures. Conclusions: Our results show that there are no signs of Li enrichment or production in the Galactic bulge during its earliest phases. Observations of Li in other galaxies (ω Cen) and other components of the Galaxy suggest further that the Spite plateau is universal. Based on observations carried out at the European Southern

  2. Subcellular Relocalization and Positive Selection Play Key Roles in the Retention of Duplicate Genes of Populus Class III Peroxidase Family.

    PubMed

    Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin

    2014-06-16

    Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172

  3. I. Thermal evolution of Ganymede and implications for surface features. II. Magnetohydrodynamic constraints on deep zonal flow in the giant planets. III. A fast finite-element algorithm for two-dimensional photoclinometry

    SciTech Connect

    Kirk, R.L.

    1987-01-01

    Thermal evolution of Ganymede from a hot start is modeled. On cooling ice I forms above the liquid H/sub 2/O and dense ices at higher entropy below it. A novel diapiric instability is proposed to occur if the ocean thins enough, mixing these layers and perhaps leading to resurfacing and groove formation. Rising warm-ice diapirs may cause a dramatic heat pulse and fracturing at the surface, and provide material for surface flows. Timing of the pulse depends on ice rheology but could agree with crater-density dates for resurfacing. Origins of the Ganymede-Callisto dichotomy in light of the model are discussed. Based on estimates of the conductivity of H/sub 2/ (Jupiter, Saturn) and H/sub 2/O (Uranus, Neptune), the zonal winds of the giant planets will, if they penetrate below the visible atmosphere, interact with the magnetic field well outside the metallic core. The scaling argument is supported by a model with zonal velocity constant on concentric cylinders, the Lorentz torque on each balanced by viscous stresses. The problem of two-dimensional photoclinometry, i.e. reconstruction of a surface from its image, is formulated in terms of finite elements and a fast algorithm using Newton-SOR iteration accelerated by multigridding is presented.

  4. Evolution of chromospheres and coronae in solar mass stars - A far-ultraviolet and soft X-ray comparison of Arcturus /K2 III/ and Alpha Centauri A /G2 V/

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Simon, T.; Linsky, J. L.

    1982-01-01

    IUE far-UV and Einstein Observatory soft X-ray observations for the red giant Arcturus and the nearby yellow dwarf Alpha-Centauri A, which are archetypes of solar mass stars in different stages of evolution, are compared. Evidence is found for neither coronal soft X-ray emission from the red giant, at surface flux levels of only 0.0006 that detected previously for the yellow dwarf, nor C II and IV resonance line emission at surface flux levels of only 0.02 those of the yellow dwarf. The resonance line upper limits and previous detections of the C II intersystem UV multiplet 0.01 near 2325 A provide evidence for an Arcturus outer atmosphere that is geometrically extended, tenuous and cool. The red giant has, in addition, a prominent cool stellar wind. An extensive tabulation of line identifications, widths and fluxes for the IUE far-UV echelle spectra of the two stars is given, and two competing explanations for the Wilson-Bappu effect are discussed.

  5. A Program on Biochemical and Biomedical Engineering.

    ERIC Educational Resources Information Center

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  6. Biochemical Oscillations and Cellular Rhythms

    NASA Astrophysics Data System (ADS)

    Goldbeter, Albert; Berridge, Foreword by M. J.

    1997-04-01

    1. Introduction; Part I. Glycolytic Oscillations: 2. Oscillatory enzymes: simple periodic behaviour in an allosteric model for glycolytic oscillations; Part II. From Simple to Complex Oscillatory Behaviour; 3. Birhythmicity: coexistence between two stable rhythms; 4. From simple periodic behaviour to complex oscillations, including bursting and chaos; Part III. Oscillations Of Cyclic Amo In Dictyostelium Cells: 5. Models for the periodic synthesis and relay of camp signals in Dictyostelium discoideum amoebae; 6. Complex oscillations and chaos in the camp signalling system of Dictyostelium; 7. The onset of camp oscillations in Dictyostelium as a model for the ontogenesis of biological rhythms; Part IV. Pulsatile Signalling In Intercellular Communication: 8. Function of the rhythm of intercellular communication in Dictyostelium. Link with pulsatile hormone secretion; Part V. Calcium Oscillations: 9. Oscillations and waves of intracellular calcium; Part VI. The Mitotic Oscillator: 10. Modelling the mitotic oscillator driving the cell division cycle; Part VII. Circadian Rhythms: 11. Towards a model for circadian oscillations in the Drosophila period protein (PER); 12. Conclusions and perspectives; References.

  7. Lower glycolysis carries a higher flux than any biochemically possible alternative

    PubMed Central

    Court, Steven J.; Waclaw, Bartlomiej; Allen, Rosalind J.

    2015-01-01

    The universality of many pathways of core metabolism suggests a strong role for evolutionary selection, but it remains unclear whether existing pathways have been selected from a large or small set of biochemical possibilities. To address this question, we construct in silico all possible biochemically feasible alternatives to the trunk pathway of glycolysis and gluconeogenesis, one of the most highly conserved pathways in metabolism. We show that, even though a large number of alternative pathways exist, the alternatives carry lower flux than the real pathway under typical physiological conditions. We also find that if physiological conditions were different, different pathways could outperform those found in nature. Together, our results demonstrate how thermodynamic and biophysical constraints restrict the biochemical alternatives that are open to evolution, and suggest that the existing trunk pathway of glycolysis and gluconeogenesis may represent a maximal flux solution. PMID:26416228

  8. Lower glycolysis carries a higher flux than any biochemically possible alternative.

    PubMed

    Court, Steven J; Waclaw, Bartlomiej; Allen, Rosalind J

    2015-01-01

    The universality of many pathways of core metabolism suggests a strong role for evolutionary selection, but it remains unclear whether existing pathways have been selected from a large or small set of biochemical possibilities. To address this question, we construct in silico all possible biochemically feasible alternatives to the trunk pathway of glycolysis and gluconeogenesis, one of the most highly conserved pathways in metabolism. We show that, even though a large number of alternative pathways exist, the alternatives carry lower flux than the real pathway under typical physiological conditions. We also find that if physiological conditions were different, different pathways could outperform those found in nature. Together, our results demonstrate how thermodynamic and biophysical constraints restrict the biochemical alternatives that are open to evolution, and suggest that the existing trunk pathway of glycolysis and gluconeogenesis may represent a maximal flux solution. PMID:26416228

  9. Multivariate approach to the morphological and biochemical differentiation of Antarctic krill ( Euphausia superba and Thysanoessa macrura)

    NASA Astrophysics Data System (ADS)

    Farber-Lorda, Jaime

    1991-07-01

    The results of morphometric and biochemical measurements of samples of Euphausia superba and Thysanoessa macrura were used to study krill longevity. On each individual, different measurements were taken, a differentiation index was calculated, and lipids and carotenoids analysed; the data were processed by principal component analysis (PCA). in Euphausia superba the analysis of six morphometric characteristics shows a separation into two groups for the males, but not for females. The analysis of a larger sample, using only four variables, shows an analogous, though less marked separation, suggesting a morphological evolution linked with age. When biochemical data were added, PCA shows a good separation into two groups for both males and females, and the same result was obtained using only the biochemical data and the differentiation index. No possible age groups, other than juveniles and adult males and females, could be identified by PCA for Thysanoessa macrura.

  10. Chemical Properties And Toxicity of Chromium(III) Nutritional Supplements

    SciTech Connect

    Levina, A.; Lay, P.A.

    2009-05-19

    The status of Cr(III) as an essential micronutrient for humans is currently under question. No functional Cr(III)-containing biomolecules have been definitively described as yet, and accumulated experience in the use of Cr(III) nutritional supplements (such as [Cr(pic){sub 3}], where pic = 2-pyridinecarboxylato) has shown no measurable benefits for nondiabetic people. Although the use of large doses of Cr(III) supplements may lead to improvements in glucose metabolism for type 2 diabetics, there is a growing concern over the possible genotoxicity of these compounds, particularly of [Cr(pic){sub 3}]. The current perspective discusses chemical transformations of Cr(III) nutritional supplements in biological media, with implications for both beneficial and toxic actions of Cr(III) complexes, which are likely to arise from the same biochemical mechanisms, dependent on concentrations of the reactive species. These species include: (1) partial hydrolysis products of Cr(III) nutritional supplements, which are capable of binding to biological macromolecules and altering their functions; and (2) highly reactive Cr(VI/V/IV) species and organic radicals, formed in reactions of Cr(III) with biological oxidants. Low concentrations of these species are likely to cause alterations in cell signaling (including enhancement of insulin signaling) through interactions with the active centers of regulatory enzymes in the cell membrane or in the cytoplasm, while higher concentrations are likely to produce genotoxic DNA lesions in the cell nucleus. These data suggest that the potential for genotoxic side-effects of Cr(III) complexes may outweigh their possible benefits as insulin enhancers, and that recommendations for their use as either nutritional supplements or antidiabetic drugs need to be reconsidered in light of these recent findings.

  11. Apolipophorin III: a lipid-triggered molecular switch.

    PubMed

    Weers, Paul M M; Ryan, Robert O

    2003-12-01

    Apolipophorin III (apoLp-III) is a low molecular weight exchangeable apolipoprotein that plays an important role in the enhanced neutral lipid transport during insect flight. The protein exists in lipid-free and lipid-bound states. The lipid-bound state is the active form of the protein and occurs when apoLp-III associates with lipid-enriched lipophorins. ApoLp-III is well characterized in two evolutionally divergent species: Locusta migratoria and Manduca sexta. The two apolipoproteins interact in a similar manner with model phospholipid vesicles, and transform them into discoidal particles. Their low intrinsic stability in the lipid-free state likely facilitates interaction with lipid surfaces. Low solution pH also favors lipid binding interaction through increased exposure of hydrophobic surfaces on apoLp-III. While secondary structure is maintained under acidic conditions, apoLp-III tertiary structure is altered, adopting molten globule-like characteristics. In studies of apoLp-III interaction with natural lipoproteins, we found that apoLp-III is readily displaced from the surface of L. migratoria low-density lipophorin by recombinant apoLp-III proteins from either L. migratoria or M. sexta. Thus, despite important differences between these two apoLp-IIIs (amino acid sequence, presence of carbohydrate), their functional similarity is striking. This similarity is also illustrated by the recently published NMR solution structure of M. sexta apoLp-III wherein its molecular architecture closely parallels that of L. migratoria apoLp-III. PMID:14599497

  12. Fusion Power Demonstration III

    SciTech Connect

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  13. Chromium speciation and biochemical changes vary in relation to plant ploidy.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Babula, Petr; Soares, Maria Elisa; Hedbavny, Josef; de Lourdes Bastos, Maria

    2015-04-01

    Uptake of trivalent chromium (Cr(III)-chloride), Cr speciation and consequences for the metabolism in chamomile plants with two ploidy levels have been studied. Depletion of fresh biomass, tissue water content and soluble proteins in response to high (120 μM) Cr(III) was ploidy-independent. Cr mainly accumulated in the roots (only negligibly in the shoots) and total root Cr amount was higher in tetraploid ones including the proof with specific fluorescent indicator (naphthalimide-rhodamine) of Cr(III). Quantification of Cr(VI) detected its higher content in tetraploid roots (up to 4.2% from total Cr), indicating partial oxidation of applied Cr(III). Higher H2O2 presence but lower activities of peroxidases were observed in tetraploid roots while nitric oxide, superoxide dismutase and glutathione reductase activities did not differ extensively. Soluble phenols, lignin, non-protein thiols, individual thiols (glutathione and phytochelatin 2) and ascorbic acid responded to high Cr(III) similarly in both cultivars while decrease of minerals was more pronounced in tetraploid ones. It seems that Cr(III)-induced oxidative stress arises from high root Cr uptake and Cr(VI) presence and is related to depletion of thiols. Assay of Krebs cycle acids confirmed rather depletion under 120 μM Cr(III) in both cultivars but increase in citric acid may indicate its involvement in root Cr chelation. Subsequent comparison of Cr(III)-chloride and Cr(III)-nitrate showed similar influence on Cr accumulation and majority of biochemical responses while different impact on phytochelatin 2 amount was the most distinct feature. PMID:25637829

  14. Pioneer III Probe

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Looking more like surgeons, these technicians wearing 'cleanroom' attire inspect the Pioneer III probe before shipping it to Cape Canaveral, Florida. Pioneer III was launched on December 6, 1958 aboard a Juno II rocket at the Atlantic Missile Range, Cape Canaveral, Florida. The mission objectives were to measure the radiation intensity of the Van Allen radiation belt, test long range communication systems, the launch vehicle and other subsystems. The Juno II failed to reach proper orbital escape velocity. The probe re-entered the Earth's atmosphere on December 7th ending its brief mission.

  15. Novel Therapeutic Role for Dipeptidyl Peptidase III in the Treatment of Hypertension.

    PubMed

    Pang, Xiaoling; Shimizu, Akio; Kurita, Souichi; Zankov, Dimitar P; Takeuchi, Keisuke; Yasuda-Yamahara, Mako; Kume, Shinji; Ishida, Tetsuo; Ogita, Hisakazu

    2016-09-01

    Dipeptidyl peptidase III (DPP III) cleaves dipeptide residues from the N terminus of polypeptides ranging from 3 to 10 amino acids in length and is implicated in pathophysiological processes through the breakdown of certain oligopeptides or their fragments. In this study, we newly identified the biochemical properties of DPP III for angiotensin II (Ang II), which consists of 8 amino acids. DPP III quickly and effectively digested Ang II with Km = 3.7×10(-6) mol/L. In the in vivo experiments, DPP III remarkably reduced blood pressure in Ang II-infused hypertensive mice without alteration of heart rate. DPP III did not affect hemodynamics in noradrenalin-induced hypertensive mice or normotensive mice, suggesting specificity for Ang II. When DPP III was intravenously injected every other day for 4 weeks after Ang II osmotic minipump implantation in mice, Ang II-induced cardiac fibrosis and hypertrophy were significantly attenuated. This DPP III effect was at least similar to that caused by an angiotensin receptor blocker candesartan. Furthermore, administration of DPP III dramatically reduced the increase in urine albumin excretion and kidney injury and inflammation markers caused by Ang II infusion. Both DPP III and candesartan administration showed slight additive inhibition in the albumin excretion. These results reveal a novel potential use of DPP III in the treatment of hypertension and its protective effects on hypertension-sensitive organs, such as the heart and kidneys. PMID:27456521

  16. Glucosinolate biochemical diversity and innovation in the Brassicales.

    PubMed

    Mithen, Richard; Bennett, Richard; Marquez, Julietta

    2010-12-01

    Glucosinolates were analysed from herbarium specimens and living tissues from representative of all families of the Brassicales, following the phylogenetic schemes of Rodman et al. (1998) and Hall et al. (2002, 2004), including specimens of Akania, Setchellanthus, Emblingia, Stixis, Forchhammeria and members of the Capparaceae for which glucosinolate content had not previously been reported. The results are reviewed along with additional published data on glucosinolate content of members of the Brassicales. In addition to providing an overview of the evolution of glucosinolate biochemical diversity within the core Brassicales, there were three main findings. Firstly, the glucosinolate content of some 'orphan' taxa of the Brassicales, such as Setchellanthus and Emblingia were consistent with recent phylogentic analyses based upon DNA sequence comparisons, while further analyses of Tirania and Stixis is required. Secondly, methyl glucosinolate is found within the Capparaceae and Cleomaceae, but also, unexpectedly, within Forchhammeria, with implications for the biochemical and evolutionary origin of methyl glucosinolate and the phylogenetic relationships of Forchhammeria. Thirdly, whereas Old World Capparaceae contain methyl glucosinolate, New World Capparaceae, including New World Capparis, either contain methyl glucosinolates or glucosinolates of complex and unresolved structures, indicative of continued innovation in glucosinolate biosynthesis. These taxa may be productive sources of glucosinolate biosynthetic genes and alleles that are not found in the model plant Arabidopsis thaliana. PMID:20971483

  17. A general method for modeling biochemical and biomedical response

    NASA Astrophysics Data System (ADS)

    Ortiz, Roberto; Lerd Ng, Jia; Hughes, Tyler; Abou Ghantous, Michel; Bouhali, Othmane; Arredouani, Abdelilah; Allen, Roland

    2012-10-01

    The impressive achievements of biomedical science have come mostly from experimental research with human subjects, animal models, and sophisticated laboratory techniques. Additionally, theoretical chemistry has been a major aid in designing new drugs. Here we introduce a method which is similar to others already well known in theoretical systems biology, but which specifically addresses biochemical changes as the human body responds to medical interventions. It is common in systems biology to use first-order differential equations to model the time evolution of various chemical concentrations, and we as physicists can make a significant impact through designing realistic models and then solving the resulting equations. Biomedical research is rapidly advancing, and the technique presented in this talk can be applied in arbitrarily large models containing tens, hundreds, or even thousands of interacting species, to determine what beneficial effects and side effects may result from pharmaceuticals or other medical interventions.

  18. Hydrogen evolution catalyzed by cobaloximes.

    PubMed

    Dempsey, Jillian L; Brunschwig, Bruce S; Winkler, Jay R; Gray, Harry B

    2009-12-21

    Natural photosynthesis uses sunlight to drive the conversion of energy-poor molecules (H(2)O, CO(2)) to energy-rich ones (O(2), (CH(2)O)(n)). Scientists are working hard to develop efficient artificial photosynthetic systems toward the "Holy Grail" of solar-driven water splitting. High on the list of challenges is the discovery of molecules that efficiently catalyze the reduction of protons to H(2). In this Account, we report on one promising class of molecules: cobalt complexes with diglyoxime ligands (cobaloximes). Chemical, electrochemical, and photochemical methods all have been utilized to explore proton reduction catalysis by cobaloxime complexes. Reduction of a Co(II)-diglyoxime generates a Co(I) species that reacts with a proton source to produce a Co(III)-hydride. Then, in a homolytic pathway, two Co(III)-hydrides react in a bimolecular step to eliminate H(2). Alternatively, in a heterolytic pathway, protonation of the Co(III)-hydride produces H(2) and Co(III). A thermodynamic analysis of H(2) evolution pathways sheds new light on the barriers and driving forces of the elementary reaction steps involved in proton reduction by Co(I)-diglyoximes. In combination with experimental results, this analysis shows that the barriers to H(2) evolution along the heterolytic pathway are, in most cases, substantially greater than those of the homolytic route. In particular, a formidable barrier is associated with Co(III)-diglyoxime formation along the heterolytic pathway. Our investigations of cobaloxime-catalyzed H(2) evolution, coupled with the thermodynamic preference for a homolytic route, suggest that the rate-limiting step is associated with formation of the hydride. An efficient water splitting device may require the tethering of catalysts to an electrode surface in a fashion that does not inhibit association of Co(III)-hydrides. PMID:19928840

  19. Summary of Session III

    SciTech Connect

    Furman, M.A.

    2002-06-19

    This is a summary of the talks presented in Session III ''Simulations of Electron-Cloud Build Up'' of the Mini-Workshop on Electron-Cloud Simulations for Proton and Positron Beams ECLOUD-02, held at CERN, 15-18 April 2002.

  20. The Apple III.

    ERIC Educational Resources Information Center

    Ditlea, Steve

    1982-01-01

    Describes and evaluates the features, performance, peripheral devices, available software, and capabilities of the Apple III microcomputer. The computer's operating system, its hardware, and the commercially produced software it accepts are discussed. Specific applications programs for financial planning, accounting, and word processing are…

  1. CITY III Director's Guide.

    ERIC Educational Resources Information Center

    Envirometrics, Inc., Washington, DC.

    CITY III is a computer-assisted simulation game which allows the participants to make decisions affecting various aspects of the economic, governmental, and social sectors of a simulated urban area. The game director selects one of five possible starting city configurations, may set a number of conditions in the city before the start of play, and…

  2. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides... required to support registration of biochemical pesticides. Sections 158.2080 through 158.2084 identify...

  3. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides... required to support registration of biochemical pesticides. Sections 158.2080 through 158.2084 identify...

  4. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides... required to support registration of biochemical pesticides. Sections 158.2080 through 158.2084 identify...

  5. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides... required to support registration of biochemical pesticides. Sections 158.2080 through 158.2084 identify...

  6. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides... required to support registration of biochemical pesticides. Sections 158.2080 through 158.2084 identify...

  7. Effect of Population III Multiplicity on Dark Star Formation

    NASA Technical Reports Server (NTRS)

    Stacy, Athena; Pawlik, Andreas H.; Bromm, Volker; Loeb, Abraham

    2012-01-01

    We numerically study the mutual interaction between dark matter (DM) and Population III (Pop III) stellar systems in order to explore the possibility of Pop III dark stars within this physical scenario. We perform a cosmological simulation, initialized at z approx. 100, which follows the evolution of gas and DM. We analyze the formation of the first mini halo at z approx. 20 and the subsequent collapse of the gas to densities of 10(exp 12)/cu cm. We then use this simulation to initialize a set of smaller-scale 'cut-out' simulations in which we further refine the DM to have spatial resolution similar to that of the gas. We test multiple DM density profiles, and we employ the sink particle method to represent the accreting star-forming region. We find that, for a range of DM configurations, the motion of the Pop III star-disk system serves to separate the positions of the protostars with respect to the DM density peak, such that there is insufficient DM to influence the formation and evolution of the protostars for more than approx. 5000 years. In addition, the star-disk system causes gravitational scattering of the central DM to lower densities, further decreasing the influence of DM over time. Any DM-powered phase of Pop III stars will thus be very short-lived for the typical multiple system, and DM will not serve to significantly prolong the life of Pop III stars.

  8. Hyper III on ramp

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Hyper III was a full-scale lifting-body remotely piloted research vehicle (RPRV) built at what was then the NASA Flight Research Center located at Edwards Air Force Base in Southern California. The Flight Research Center (FRC--as Dryden was named from 1959 until 1976) already had experience with testing small-scale aircraft using model-airplane techniques, but the first true remotely piloted research vehicle was the Hyper III, which flew only once in December 1969. At that time, the Center was engaged in flight research with a variety of reentry shapes called lifting bodies, and there was a desire both to expand the flight research experience with maneuverable reentry vehicles, including a high-performance, variable-geometry craft, and to investigate a remotely piloted flight research technique that made maximum use of a research pilot's skill and experience by placing him 'in the loop' as if he were in the cockpit. (There have been, as yet, no female research pilots assigned to Dryden.) The Hyper III as originally conceived was a stiletto-shaped lifting body that had resulted from a study at NASA's Langley Research Center in Hampton, Virginia. It was one of a number of hypersonic, cross-range reentry vehicles studied at Langley. (Hypersonic means Mach 5--five times the speed of sound--or faster; cross-range means able to fly a considerable distance to the left or right of the initial reentry path.) The FRC added a small, deployable, skewed wing to compensate for the shape's extremely low glide ratio. Shop personnel built the 32-foot-long Hyper III and covered its tubular frame with dacron, aluminum, and fiberglass, for about $6,500. Hyper III employed the same '8-ball' attitude indicator developed for control-room use when flying the X-15, two model-airplane receivers to command the vehicle's hydraulic controls, and a telemetry system (surplus from the X-15 program) to transmit 12 channels of data to the ground not only for display and control but for data

  9. Biochemical Removal of HAP Precursors From Coal

    SciTech Connect

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  10. Reconfigurable neuromorphic computation in biochemical systems.

    PubMed

    Chiang, Hui-Ju Katherine; Jiang, Jie-Hong R; Fages, Francois

    2015-08-01

    Implementing application-specific computation and control tasks within a biochemical system has been an important pursuit in synthetic biology. Most synthetic designs to date have focused on realizing systems of fixed functions using specifically engineered components, thus lacking flexibility to adapt to uncertain and dynamically-changing environments. To remedy this limitation, an analog and modularized approach to realize reconfigurable neuromorphic computation with biochemical reactions is presented. We propose a biochemical neural network consisting of neuronal modules and interconnects that are both reconfigurable through external or internal control over the concentrations of certain molecular species. Case studies on classification and machine learning applications using the DNA strain displacement technology demonstrate the effectiveness of our design in both reconfiguration and autonomous adaptation. PMID:26736417

  11. Nucleosynthesis and Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    Preface I. Nuclear Astrophysics Nuclear cross sections Nuclear reaction rates Approximations to reaction rates for heavy nuclei Nuclear reaction networks II. Nuclear Reactions During Advanced Burning Stages of Massive Stars Carbon burning Neon burning Oxygen burning Silicon burning Nuclear statistical equilibrium (NSE) NSE network calculations Equilibrium at high densities III. Approximate Thermodynamic Conditions for Advanced Burning Stages in Massive Stars Burning in hydrostatic equilibrium Explosive burning conditions IV. Parametrized Network Calculations of Nucleosynthesis Helium Burning Carbon burning Neon burning Oxygen burning Silicon burning Summary V. Classical Novae and X-ray Bursts Classical novae Parametrized nucleosynthesis calculations Numerical calculations of a model nova Type I X-ray bursts VI. The Evolution of Massive Stars; M >= 8 Msun Stars that become type II supernovae Computer results Nucleosynthesis in pre-supernova stars The evolution to instability of more massive stars VII. Type II Supernovae Light curves and spectra of type II supernovae The type II explosion mechanism: core collapse and bounce "Delayed" explosions The role of rotation Nucleosynthesis in type II supernovae Unusual type II supernovae and "type III" supernovae VIII. Type I Supernovae General thermonuclear models The current standard model Nucleosynthesis in the standard model Spectral synthesis in type I supernovae Peculiar Type I's More on the physics of carbon ignition: flame propagation the conductive velocity the "turbulent" flame velocity Carbon detonation: The phase velocity and "spontaneous combustion" Initial conditions References

  12. Alterations in phenotypic biochemical markers in bladder epithelium during tumorigenesis.

    PubMed

    Rao, J Y; Hemstreet, G P; Hurst, R E; Bonner, R B; Jones, P L; Min, K W; Fradet, Y

    1993-09-01

    Phenotypic biochemical markers of oncogenesis and differentiation were mapped in bladder biopsies to investigate changes that occur in bladder tumorigenesis and to identify markers for increased bladder cancer risk. Touch preparations from biopsy specimens from 30 patients were obtained from tumors, the adjacent bladder epithelium, and random distant bladder epithelium. Markers, including DNA ploidy, epidermal growth factor receptor (EGFR), and oncoproteins, were quantified in individual cells by using quantitative fluorescence image analysis. Cluster analysis revealed the markers fell into three independent groups: (i) G-actin and EGFR; (ii) ploidy, cytology, and p185 (HER-2/neu oncoprotein) (ERBB2); and (iii) p300, a low-grade tumor antigen. Each marker displayed a gradient of abnormality from distant field to adjacent field to tumor. Different patterns for each marker suggested a developmental sequence of bladder cancer oncogenesis; G-actin was altered in 58% of distant biopsies (vs. 0/6 normals, P < 0.001), ploidy and cytology were altered in < 20% of distant fields and approximately 80% of tumors, and the other markers were intermediate. Patterns of EGFR and p185 suggest low-and high-grade tracks diverge early (P < 0.05 by Mann-Whitney U test for EGFR and ANOVA for p185). In conclusion, this study shows that a sequence of phenotypic changes accompanies development and progression of bladder cancers. Biochemical alterations in cells of the bladder field are often detectable before abnormal pathology, and markers previously thought to be limited to tumors were found in the field. The hierarchy of expression may be useful in identifying high-risk patients, assessing completeness of response to therapy, and monitoring and predicting recurrence. PMID:8367495

  13. Biochemical computation for spine structural plasticity

    PubMed Central

    Nishiyama, Jun; Yasuda, Ryohei

    2015-01-01

    The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plasticity, learning and memory. The process is mediated by a complex signaling network consisting of numerous species of molecules. Furthermore, the spatiotemporal dynamics of the biochemical signaling is regulated in a complicated manner due to geometrical restrictions from the unique morphology of the dendritic branches and spines. Recent advances in optical techniques have enabled the exploration of the spatiotemporal aspects of the signal regulations in spines and dendrites and have provided many insights into the principle of the biochemical computation that underlies spine structural plasticity. PMID:26139370

  14. Fueling type III secretion

    PubMed Central

    Lee, Pei-Chung

    2015-01-01

    Type III secretion systems are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism, by which the proton motive force is converted to protein export, remains enigmatic. PMID:25701111

  15. Cranial mononeuropathy III - diabetic type

    MedlinePlus

    ... gov/ency/article/000692.htm Cranial mononeuropathy III - diabetic type To use the sharing features on this page, please enable JavaScript. Cranial mononeuropathy III -- diabetic type -- is usually a complication of diabetes that causes ...

  16. Epistasis in protein evolution.

    PubMed

    Starr, Tyler N; Thornton, Joseph W

    2016-07-01

    The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions-called epistasis-within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage-specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis-in which one mutation influences the phenotypic effect of few other mutations-is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low-probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families. PMID:26833806

  17. Behind the scene with the fathead team: Part III. Molecular, biochemical, and in vitro analyses

    EPA Science Inventory

    As part of a research team focused on aquatic toxicity testing using fathead minnows as a model species, this presentation is the third in the three-part series, giving an overview of the types of field and laboratory studies as well as sample processing our team conducts at the ...

  18. Chemical evolution and the origin of life

    NASA Technical Reports Server (NTRS)

    Oro, J.

    1983-01-01

    A review is presented of recent advances made in the understanding of the formation of carbon compounds in the universe and the occurrence of processes of chemical evolution. Topics discussed include the principle of evolutionary continuity, evolution as a fundamental principle of the physical universe, the nuclear synthesis of biogenic elements, organic cosmochemistry and interstellar molecules, the solar nebula and the solar system in chemical evolution, the giant planets and Titan in chemical evolution, and comets and their interaction with the earth. Also examined are carbonaceous chondrites, environment of the primitive earth, energy sources available on the primitive earth, the synthesis of biochemical monomers and oligomers, the abiotic transcription of nucleotides, unified prebiotic and enzymatic mechanisms, phospholipids and membranes, and protobiological evolution.

  19. Biochemical characterization of predicted Precambrian RuBisCO

    PubMed Central

    Shih, Patrick M.; Occhialini, Alessandro; Cameron, Jeffrey C.; Andralojc, P John; Parry, Martin A. J.; Kerfeld, Cheryl A.

    2016-01-01

    The antiquity and global abundance of the enzyme, RuBisCO, attests to the crucial and longstanding role it has played in the biogeochemical cycles of Earth over billions of years. The counterproductive oxygenase activity of RuBisCO has persisted over billions of years of evolution, despite its competition with the carboxylase activity necessary for carbon fixation, yet hypotheses regarding the selective pressures governing RuBisCO evolution have been limited to speculation. Here we report the resurrection and biochemical characterization of ancestral RuBisCOs, dating back to over one billion years ago (Gyr ago). Our findings provide an ancient point of reference revealing divergent evolutionary paths taken by eukaryotic homologues towards improved specificity for CO2, versus the evolutionary emphasis on increased rates of carboxylation observed in bacterial homologues. Consistent with these distinctions, in vivo analysis reveals the propensity of ancestral RuBisCO to be encapsulated into modern-day carboxysomes, bacterial organelles central to the cyanobacterial CO2 concentrating mechanism. PMID:26790750

  20. Biochemical characterization of predicted Precambrian RuBisCO.

    PubMed

    Shih, Patrick M; Occhialini, Alessandro; Cameron, Jeffrey C; Andralojc, P John; Parry, Martin A J; Kerfeld, Cheryl A

    2016-01-01

    The antiquity and global abundance of the enzyme, RuBisCO, attests to the crucial and longstanding role it has played in the biogeochemical cycles of Earth over billions of years. The counterproductive oxygenase activity of RuBisCO has persisted over billions of years of evolution, despite its competition with the carboxylase activity necessary for carbon fixation, yet hypotheses regarding the selective pressures governing RuBisCO evolution have been limited to speculation. Here we report the resurrection and biochemical characterization of ancestral RuBisCOs, dating back to over one billion years ago (Gyr ago). Our findings provide an ancient point of reference revealing divergent evolutionary paths taken by eukaryotic homologues towards improved specificity for CO2, versus the evolutionary emphasis on increased rates of carboxylation observed in bacterial homologues. Consistent with these distinctions, in vivo analysis reveals the propensity of ancestral RuBisCO to be encapsulated into modern-day carboxysomes, bacterial organelles central to the cyanobacterial CO2 concentrating mechanism. PMID:26790750

  1. FTS evolution

    NASA Technical Reports Server (NTRS)

    Provost, David E.

    1990-01-01

    Viewgraphs on flight telerobotic servicer evolution are presented. Topics covered include: paths for FTS evolution; frequently performed actions; primary task states; EPS radiator panel installation; generic task definitions; path planning; non-contact alignment; contact planning and control; and human operator interface.

  2. Teaching Evolution

    ERIC Educational Resources Information Center

    Bryner, Jeanna

    2005-01-01

    Eighty years after the famous 1925 Scopes "monkey trial," which tested a teacher's right to discuss the theory of evolution in the classroom, evolution--and its most recent counterview, called "intelligent design"--are in the headlines again, and just about everyone seems to have an opinion. This past July, President Bush weighed in, telling…

  3. Survey of Biochemical Education in Japanese Universities.

    ERIC Educational Resources Information Center

    Kagawa, Yasuo

    1995-01-01

    Reports findings of questionnaires sent to faculty in charge of biochemical education in medical schools and other programs from dentistry to agriculture. Total class hours have declined since 1984. New trends include bioethics and computer-assisted learning. Tables show trends in lecture hours, lecture content, laboratory hours, core subject…

  4. Biochemical Applications in the Analytical Chemistry Lab

    ERIC Educational Resources Information Center

    Strong, Cynthia; Ruttencutter, Jeffrey

    2004-01-01

    An HPLC and a UV-visible spectrophotometer are identified as instruments that helps to incorporate more biologically-relevant experiments into the course, in order to increase the students understanding of selected biochemistry topics and enhances their ability to apply an analytical approach to biochemical problems. The experiment teaches…

  5. Biochemical Approaches to Improved Nitrogen Fixation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving symbiotic nitrogen fixation by legumes has emerged again as an important topic on the world scene due to the energy crisis and lack of access to nitrogen fertilizer in developing countries. We have taken a biochemical genomics approach to improving symbiotic nitrogen fixation in legumes. L...

  6. Biochemical Thermodynamics under near Physiological Conditions

    ERIC Educational Resources Information Center

    Mendez, Eduardo

    2008-01-01

    The recommendations for nomenclature and tables in Biochemical Thermodynamics approved by IUBMB and IUPAC in 1994 can be easily introduced after the chemical thermodynamic formalism. Substitution of the usual standard thermodynamic properties by the transformed ones in the thermodynamic equations, and the use of appropriate thermodynamic tables…

  7. A Course in Biochemical Engineering Fundamentals (Revisited).

    ERIC Educational Resources Information Center

    Bailey, J. E.; Ollis, D. F.

    1985-01-01

    Provides: (1) a glossary of terms used in biochemical engineering; (2) a list of key developments in the field; and (3) emphases placed in 15 topic areas in a course restructured on the basis of these developments. Topic areas include enzyme kinetics/applications, genetics and microbial control, transport phenomena, and others. (JN)

  8. Predictive biochemical assays for late radiation effects

    SciTech Connect

    Rubin, P.; Finkelstein, J.N.; Siemann, D.W.; Shapiro, D.L.; Van Houtte, P.; Penney, D.P.

    1986-04-01

    Surfactant precursors or other products of Type II pneumocytes have the potential to be the first biochemical marker for late radiation effects. This is particularly clinically important in the combined modality era because of the frequent occurrence of pneumonitis and pulmonary fibrosis secondary to radiation or chemotherapy. Accordingly, correlative studies have been pursued with the Type II pneumocyte as a beginning point to understand the complex pathophysiology of radiation pneumonitis and fibrosis. From our ultrastructural and biochemical studies, it is evident that Type II pneumocytes are an early target of radiation and the release of surfactant into the alveolus shortly after exposure persists for days and weeks. Through the use of lavaging techniques, alveolar surfactant has been elevated after pulmonary irradiation. In three murine strains and in the rabbit, there is a strong correlation with surfactant release at 7 and/or 28 days in vivo with later lethality in months. In vitro studies using cultures of type II pneumocytes also demonstrate dose response and tolerance factors that are comparable to the in vivo small and large animal diagnostic models. New markers are being developed to serve as a predictive index for later lethal pneumonopathies. With the development of these techniques, the search for early biochemical markers in man has been undertaken. Through the use of biochemical, histological, and ultrastructural techniques, a causal relationship between radiation effects on type II pneumocytes, pulmonary cells, endothelial cells of blood vessels, and their roles in the production of pneumonitis and fibrosis will evolve.

  9. 2009 Biochemical Conversion Platform Review Report

    SciTech Connect

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  10. Effective Identification of Bacterial Type III Secretion Signals Using Joint Element Features

    PubMed Central

    Wang, Yejun; Sun, Ming’an; Bao, Hongxia; Zhang, Qing; Guo, Dianjing

    2013-01-01

    Type III secretion system (T3SS) plays important roles in bacteria and host cell interactions by specifically translocating type III effectors into the cytoplasm of the host cells. The N-terminal amino acid sequences of the bacterial type III effectors determine their specific secretion via type III secretion conduits. It is still unclear as to how the N-terminal sequences guide this specificity. In this work, the amino acid composition, secondary structure, and solvent accessibility in the N-termini of type III and non-type III secreted proteins were compared and contrasted. A high-efficacy mathematical model based on these joint features was developed to distinguish the type III proteins from the non-type III ones. The results indicate that secondary structure and solvent accessibility may make important contribution to the specific recognition of type III secretion signals. Analysis also showed that the joint feature of the N-terminal 6th–10th amino acids are especially important for guiding specific type III secretion. Furthermore, a genome-wide screening was performed to predict Salmonella type III secreted proteins, and 8 new candidates were experimentally validated. Interestingly, type III secretion signals were also predicted in gram-positive bacteria and yeasts. Experimental validation showed that two candidates from yeast can indeed be secreted through Salmonella type III secretion conduit. This research provides the first line of direct evidence that secondary structure and solvent accessibility contain important features for guiding specific type III secretion. The new software based on these joint features ensures a high accuracy (general cross-validation sensitivity of ∼96% at a specificity of ∼98%) in silico identification of new type III secreted proteins, which may facilitate our understanding about the specificity of type III secretion and the evolution of type III secreted proteins. PMID:23593149

  11. Geometry Genetics and Evolution

    NASA Astrophysics Data System (ADS)

    Siggia, Eric

    2011-03-01

    Darwin argued that highly perfected organs such as the vertebrate eye could evolve by a series of small changes, each of which conferred a selective advantage. In the context of gene networks, this idea can be recast into a predictive algorithm, namely find networks that can be built by incremental adaptation (gradient search) to perform some task. It embodies a ``kinetic'' view of evolution where a solution that is quick to evolve is preferred over a global optimum. Examples of biochemical kinetic networks were evolved for temporal adaptation, temperature compensated entrainable clocks, explore-exploit trade off in signal discrimination, will be presented as well as networks that model the spatially periodic somites (vertebrae) and HOX gene expression in the vertebrate embryo. These models appear complex by the criterion of 19th century applied mathematics since there is no separation of time or spatial scales, yet they are all derivable by gradient optimization of simple functions (several in the Pareto evolution) often based on the Shannon entropy of the time or spatial response. Joint work with P. Francois, Physics Dept. McGill University. With P. Francois, Physics Dept. McGill University

  12. Stellar evolution.

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y. (Editor); Muriel, A.

    1972-01-01

    Aspects of normal stellar evolution are discussed together with evolution near the main sequence, stellar evolution from main sequence to white dwarf or carbon ignition, the structure of massive main-sequence stars, and problems of stellar stability and stellar pulsation. Other subjects considered include variable stars, white dwarfs, close binaries, novae, early supernova luminosity, neutron stars, the photometry of field horizontal-branch stars, and stellar opacity. Transport mechanisms in stars are examined together with thermonuclear reactions and nucleosynthesis, the instability problem in nuclear burning shells, stellar coalescence, and intense magnetic fields in astrophysics. Individual items are announced in this issue.

  13. Biochemical and genetic characterization of four cases of hereditary coproporphyria in Spain.

    PubMed

    To-Figueras, Jordi; Badenas, Celia; Enríquez, Maria T; Segura, Sonia; Alvarez, Concepción; Milà, Montserrat; Lecha, Marius; Herrero, Carmen

    2005-06-01

    We report a biochemical and genetic characterization of four cases of hereditary coproporphyria (HCP) in Spain. All patients showed a typical HCP porphyrin excretion pattern with a high concentration of coproporphyrins in feces and inverted I:III isomer ratio. The porphyrin precursors in urine were found elevated in two patients who showed acute symptoms. The analysis of the CPO gene showed that three cases harboured novel mutations: V135A (404T>C; exon 1); L214R (641T>G; exon 2); and P249R (746C>G; exon 3) and in the fourth, a previously described R426X mutation in exon 6. PMID:15896662

  14. Sloan Digital Sky Survey III (SDSS-III), Data Release 8

    DOE Data Explorer

    Building on the legacy of the Sloan Digital Sky Survey (SDSS) and SDSS-II, the SDSS-III Collaboration is working to map the Milky Way, search for extrasolar planets, and solve the mystery of dark energy. SDSS-III's first release, Data Release 8 (DR8), became available in the first half of 2012. DR8 contains all the images ever taken by the SDSS telescope. Together, these images make up the largest color image of the sky ever made. A version of the DR8 image is shown to the right. DR8 also includes measurements for nearly 500 million stars, galaxies, and quasars, and spectra for nearly two million. All of DR8's images, spectra, and measurements are available to anyone online. You can browse through sky images, look up data for individual objects, or search for objects anywhere using any criteria. SDSS-III will collect data from 2008 to 2014, using the 2.5-meter telescope at Apache Point Observatory. SDSS-III consists of four surveys, each focused on a different scientific theme. These four surveys are: 1) Baryon Oscillation Spectroscopic Survey (BOSS); 2) SEGUE-2 (Sloan Extension for Galactic Understanding and Exploration); 3) The APO Galactic Evolution Experiment (APOGEE); and 4) The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). [Copied with edits from http://www.sdss3.org/index.php

  15. Molecular Evolution of the Escherichia Coli Chromosome. III. Clonal Frames

    PubMed Central

    Milkman, R.; Bridges, M. M.

    1990-01-01

    PCR fragments, 1500-bp, from 15 previously sequenced regions in the Escherichia coli chromosome have been compared by restriction analysis in a large set of wild (ECOR) strains. Prior published observations of segmental clonality are confirmed: each of several sequence types is shared by a number of strains. The rate of recombinational replacement and the average size of the replacements are estimated in a set of closely related strains in which a clonal frame is dotted with occasional stretches of DNA belonging to other clones. A clonal hierarchy is described. Some new comparative sequencing data are presented. PMID:1979037

  16. Subcellular Relocalization and Positive Selection Play Key Roles in the Retention of Duplicate Genes of Populus Class III Peroxidase Family[W][OPEN

    PubMed Central

    Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin

    2014-01-01

    Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172

  17. POPULATION III HYPERNOVAE

    SciTech Connect

    Smidt, Joseph; Whalen, Daniel J.; Wiggins, Brandon K.; Even, Wesley; Fryer, Chris L.; Johnson, Jarrett L.

    2014-12-20

    Population III supernovae have been of growing interest of late for their potential to directly probe the properties of the first stars, particularly the most energetic events that are visible near the edge of the observable universe. Until now, hypernovae, the unusually energetic Type Ib/c supernovae that are sometimes associated with gamma-ray bursts, have been overlooked as cosmic beacons at the highest redshifts. In this, the latest of a series of studies on Population III supernovae, we present numerical simulations of 25-50 M {sub ☉} hypernovae and their light curves done with the Los Alamos RAGE and SPECTRUM codes. We find that they will be visible at z = 10-15 to the James Webb Space Telescope and z = 4-5 to the Wide-Field Infrared Survey Telescope, tracing star formation rates in the first galaxies and at the end of cosmological reionization. If, however, the hypernova crashes into a dense shell ejected by its progenitor, it is expected that a superluminous event will occur that may be seen at z ∼ 20 in the first generation of stars.

  18. Kombucha tea fermentation: Microbial and biochemical dynamics.

    PubMed

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-01

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  19. Reconstructing biochemical pathways from time course data.

    PubMed

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data. PMID:17370261

  20. Application of biochemical interactions in fossil fuels

    SciTech Connect

    Lin, M.S.; Premuzic, E.T.

    1994-12-31

    Certain extreme environments tolerant microorganisms interact with heavy crude oils by means of multiple biochemical reactions, asphaltenes, and bituminous materials. These reactions proceed via pathways which involve characteristic components of oils and coals such as asphaltenes, and in the chemically related constituents found in bituminous coals. These chemical components serve as markers of the interactions between microorganisms and fossil fuels. Studies in which temperature, pressure, and salinity tolerant microorganisms have been allowed to interact with different crude oils and bituminous coals, have shown that biochemically induced changes occur in the distribution of hydrocarbons and in the chemical nature of organometallic and heterocyclic compounds. Such structural chemical rearrangements have direct applications in monitoring the efficiency, the extent, and the chemical nature of the fossil fuels bioconversion. Recent developments of chemical marker applications in the monitoring of fossil fuels bioconversion will be discussed.

  1. Construction and analysis of biochemical networks

    NASA Astrophysics Data System (ADS)

    Binns, Michael; Theodoropoulos, Constantinos

    2012-09-01

    Bioprocesses are being implemented for a range of different applications including the production of fuels, chemicals and drugs. Hence, it is becoming increasingly important to understand and model how they function and how they can be modified or designed to give the optimal performance. Here we discuss the construction and analysis of biochemical networks which are the first logical steps towards this goal. The construction of a reaction network is possible through reconstruction: extracting information from literature and from databases. This can be supplemented by reaction prediction methods which can identify steps which are missing from the current knowledge base. Analysis of biochemical systems generally requires some experimental input but can be used to identify important reactions and targets for enhancing the performance of the organism involved. Metabolic flux, pathway and metabolic control analysis can be used to determine the limits, capabilities and potential targets for enhancement respectively.

  2. Biochemical correlates of neurosensory changes in weightlessness

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Reschke, Millard F.

    1989-01-01

    The possible existence of a relationship between space motion sickness and chemical and biochemical variables measured in body fluids is studied. Clinical chemistry and endocrine measurements from blood and urine samples taken before and after Space Shuttle flights were analyzed along with the occurrence of SMS during flight and provocative testing before flight. Significant positive correlations were observed with serum chloride and significant negative correlations with serum phosphate, serum uric acid, and plasma thyroid stimulating hormone.

  3. [The use of antimicrobial stabilizers in biochemical research].

    PubMed

    Pishak, V P; Iarmol'chuk, G M

    2000-01-01

    The ability of highly active antimicrobial biochemical stabilizers to sustain samples (T = 4 degrees C to 8 degrees C) till biochemical analysis in 20-50 days was tested. A new generation of delayed biochemical assays with the use of these stabilizers can be invoked in metabolic studies of cosmonauts and aviators, personnel of atomic submarines, pole explorers and other occupational groups. PMID:10826068

  4. Stoichiometric network theory for nonequilibrium biochemical systems.

    PubMed

    Qian, Hong; Beard, Daniel A; Liang, Shou-dan

    2003-02-01

    We introduce the basic concepts and develop a theory for nonequilibrium steady-state biochemical systems applicable to analyzing large-scale complex isothermal reaction networks. In terms of the stoichiometric matrix, we demonstrate both Kirchhoff's flux law sigma(l)J(l)=0 over a biochemical species, and potential law sigma(l) mu(l)=0 over a reaction loop. They reflect mass and energy conservation, respectively. For each reaction, its steady-state flux J can be decomposed into forward and backward one-way fluxes J = J+ - J-, with chemical potential difference deltamu = RT ln(J-/J+). The product -Jdeltamu gives the isothermal heat dissipation rate, which is necessarily non-negative according to the second law of thermodynamics. The stoichiometric network theory (SNT) embodies all of the relevant fundamental physics. Knowing J and deltamu of a biochemical reaction, a conductance can be computed which directly reflects the level of gene expression for the particular enzyme. For sufficiently small flux a linear relationship between J and deltamu can be established as the linear flux-force relation in irreversible thermodynamics, analogous to Ohm's law in electrical circuits. PMID:12542691

  5. [Biochemical antenatal screening for fetal anomalies.].

    PubMed

    Torfadóttir, G; Jónsson, J J

    2001-05-01

    Biochemical antenatal screening started 30 years ago. Initially, the goal was to detect neural tube defects by measuring a-fetoprotein in maternal serum (MS-AFP) and amniotic fluid (AF-AFP). The serendipitous discovery of an association between low AFP maternal serum concentration and chromosomal anomalies resulted in increased research interest in biochemical screening in pregnancy. Subsequently double, triple or quadruple tests in 2nd trimester of pregnancy became widely used in combination with fetal chromosome determination in at risk individuals. In Iceland, antenatal screening for chromosomal anomalies has essentially been based on fetal chromosome studies offered to pregnant women 35 years or older. This strategy needs to be revised. Recently first trimester biochemical screening based on maternal serum pregnancy associated plasma protein A (MS-PAPP-A) and free b-human chorionic gonadotropin (MS-free b-hCG) and multivariate risk assessment has been developed. This screening test can be improved if done in conjunction with nuchal translucency measurements in an early sonography scan. PMID:17018982

  6. Hydrogel-based piezoresistive biochemical microsensors

    NASA Astrophysics Data System (ADS)

    Guenther, Margarita; Schulz, Volker; Gerlach, Gerald; Wallmersperger, Thomas; Solzbacher, Florian; Magda, Jules J.; Tathireddy, Prashant; Lin, Genyao; Orthner, Michael P.

    2010-04-01

    This work is motivated by a demand for inexpensive, robust and reliable biochemical sensors with high signal reproducibility and long-term-stable sensitivity, especially for medical applications. Micro-fabricated sensors can provide continuous monitoring and on-line control of analyte concentrations in ambient aqueous solutions. The piezoresistive biochemical sensor containing a special biocompatible polymer (hydrogel) with a sharp volume phase transition in the neutral physiological pH range near 7.4 can detect a specific analyte, for example glucose. Thereby the hydrogel-based biochemical sensors are useful for the diagnosis and monitoring of diabetes. The response of the glucosesensitive hydrogel was studied at different regimes of the glucose concentration change and of the solution supply. Sensor response time and accuracy with which a sensor can track gradual changes in glucose was estimated. Additionally, the influence of various recommended sterilization methods on the gel swelling properties and on the mechano-electrical transducer of the pH-sensors has been evaluated in order to choose the most optimal sterilization method for the implantable sensors. It has been shown that there is no negative effect of gamma irradiation with a dose of 25.7 kGy on the hydrogel sensitivity. In order to achieve an optimum between sensor signal amplitude and sensor response time, corresponding calibration and measurement procedures have been proposed and evaluated for the chemical sensors.

  7. Electronic modulation of biochemical signal generation

    NASA Astrophysics Data System (ADS)

    Gordonov, Tanya; Kim, Eunkyoung; Cheng, Yi; Ben-Yoav, Hadar; Ghodssi, Reza; Rubloff, Gary; Yin, Jun-Jie; Payne, Gregory F.; Bentley, William E.

    2014-08-01

    Microelectronic devices that contain biological components are typically used to interrogate biology rather than control biological function. Patterned assemblies of proteins and cells have, however, been used for in vitro metabolic engineering, where coordinated biochemical pathways allow cell metabolism to be characterized and potentially controlled on a chip. Such devices form part of technologies that attempt to recreate animal and human physiological functions on a chip and could be used to revolutionize drug development. These ambitious goals will, however, require new biofabrication methodologies that help connect microelectronics and biological systems and yield new approaches to device assembly and communication. Here, we report the electrically mediated assembly, interrogation and control of a multi-domain fusion protein that produces a bacterial signalling molecule. The biological system can be electrically tuned using a natural redox molecule, and its biochemical response is shown to provide the signalling cues to drive bacterial population behaviour. We show that the biochemical output of the system correlates with the electrical input charge, which suggests that electrical inputs could be used to control complex on-chip biological processes.

  8. Electronic modulation of biochemical signal generation.

    PubMed

    Gordonov, Tanya; Kim, Eunkyoung; Cheng, Yi; Ben-Yoav, Hadar; Ghodssi, Reza; Rubloff, Gary; Yin, Jun-Jie; Payne, Gregory F; Bentley, William E

    2014-08-01

    Microelectronic devices that contain biological components are typically used to interrogate biology rather than control biological function. Patterned assemblies of proteins and cells have, however, been used for in vitro metabolic engineering, where coordinated biochemical pathways allow cell metabolism to be characterized and potentially controlled on a chip. Such devices form part of technologies that attempt to recreate animal and human physiological functions on a chip and could be used to revolutionize drug development. These ambitious goals will, however, require new biofabrication methodologies that help connect microelectronics and biological systems and yield new approaches to device assembly and communication. Here, we report the electrically mediated assembly, interrogation and control of a multi-domain fusion protein that produces a bacterial signalling molecule. The biological system can be electrically tuned using a natural redox molecule, and its biochemical response is shown to provide the signalling cues to drive bacterial population behaviour. We show that the biochemical output of the system correlates with the electrical input charge, which suggests that electrical inputs could be used to control complex on-chip biological processes. PMID:25064394

  9. The luminosity of Population III star clusters

    NASA Astrophysics Data System (ADS)

    DeSouza, Alexander L.; Basu, Shantanu

    2015-06-01

    We analyse the time evolution of the luminosity of a cluster of Population III protostars formed in the early Universe. We argue from the Jeans criterion that primordial gas can collapse to form a cluster of first stars that evolve relatively independently of one another (i.e. with negligible gravitational interaction). We model the collapse of individual protostellar clumps using non-axisymmetric numerical hydrodynamics simulations. Each collapse produces a protostar surrounded by a massive disc (i.e. Mdisc /M* ≳ 0.1), whose evolution we follow for a further 30-40 kyr. Gravitational instabilities result in the fragmentation and the formation of gravitationally bound clumps within the disc. The accretion of these fragments by the host protostar produces accretion and luminosity bursts on the order of 106 L⊙. Within the cluster, we show that a simultaneity of such events across several protostellar cluster members can elevate the cluster luminosity to 5-10 times greater than expected, and that the cluster spends ˜15 per cent of its star-forming history at these levels. This enhanced luminosity effect is particularly enabled in clusters of modest size with ≃10-20 members. In one such instance, we identify a confluence of burst events that raise the luminosity to nearly 1000 times greater than the cluster mean luminosity, resulting in L > 108 L⊙. This phenomenon arises solely through the gravitational-instability-driven episodic fragmentation and accretion that characterizes this early stage of protostellar evolution.

  10. Type III restriction-modification enzymes: a historical perspective

    PubMed Central

    Rao, Desirazu N.; Dryden, David T. F.; Bheemanaik, Shivakumara

    2014-01-01

    Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction–modification (R–M) systems are classified into four groups. Type III R–M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25–27 bp downstream of one of the recognition sites). Like the Type I R–M enzymes, Type III R–M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R–M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R–M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis. PMID:23863841

  11. Ammonium diphosphitoindate(III)

    PubMed Central

    Hamchaoui, Farida; Rebbah, Houria; Le Fur, Eric

    2013-01-01

    The crystal structure of the title compound, NH4[In(HPO3)2], is built up from InIII cations (site symmetry 3m.) adopting an octa­hedral environment and two different phosphite anions (each with site symmetry 3m.) exhibiting a triangular–pyramidal geometry. Each InO6 octa­hedron shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 group shares all its O atoms with three different metal cations, leading to [In(HPO3)2]− layers which propagate in the ab plane. The ammonium cation likewise has site symmetry 3m.. In the structure, the cations are located between the [In(HPO3)2]− layers of the host framework. The sheets are held together by hydrogen bonds formed between the NH4 + cations and the O atoms of the framework. PMID:23633983

  12. Ammonium diphosphitoindate(III).

    PubMed

    Hamchaoui, Farida; Rebbah, Houria; Le Fur, Eric

    2013-04-01

    The crystal structure of the title compound, NH4[In(HPO3)2], is built up from In(III) cations (site symmetry 3m.) adopting an octa-hedral environment and two different phosphite anions (each with site symmetry 3m.) exhibiting a triangular-pyramidal geometry. Each InO6 octa-hedron shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 group shares all its O atoms with three different metal cations, leading to [In(HPO3)2](-) layers which propagate in the ab plane. The ammonium cation likewise has site symmetry 3m.. In the structure, the cations are located between the [In(HPO3)2](-) layers of the host framework. The sheets are held together by hydrogen bonds formed between the NH4 (+) cations and the O atoms of the framework. PMID:23633983

  13. Pseudo Class III malocclusion

    PubMed Central

    Al-Hummayani, Fadia M.

    2016-01-01

    The treatment of deep anterior crossbite is technically challenging due to the difficulty of placing traditional brackets with fixed appliances. This case report represents a none traditional treatment modality to treat deep anterior crossbite in an adult pseudo class III malocclusion complicated by severely retruded, supraerupted upper and lower incisors. Treatment was carried out in 2 phases. Phase I treatment was performed by removable appliance “modified Hawley appliance with inverted labial bow,” some modifications were carried out to it to suit the presented case. Positive overbite and overjet was accomplished in one month, in this phase with minimal forces exerted on the lower incisors. Whereas, phase II treatment was performed with fixed appliances (braces) to align teeth and have proper over bite and overjet and to close posterior open bite, this phase was accomplished within 11 month. PMID:27052290

  14. The fine details of evolution.

    PubMed

    Laskowski, Roman A; Thornton, Janet M; Sternberg, Michael J E

    2009-08-01

    Charles Darwin's theory of evolution was based on studies of biology at the species level. In the time since his death, studies at the molecular level have confirmed his ideas about the kinship of all life on Earth and have provided a wealth of detail about the evolutionary relationships between different species and a deeper understanding of the finer workings of natural selection. We now have a wealth of data, including the genome sequences of a wide range of organisms, an even larger number of protein sequences, a significant knowledge of the three-dimensional structures of proteins, DNA and other biological molecules, and a huge body of information about the operation of these molecules as systems in the molecular machinery of all living things. This issue of Biochemical Society Transactions contains papers from oral presentations given at a Biochemical Society Focused Meeting to commemorate the 200th Anniversary of Charles Darwin's birth, held on 26-27 January 2009 at the Wellcome Trust Conference Centre, Cambridge. The talks reported on some of the insights into evolution which have been obtained from the study of protein sequences, structures and systems. PMID:19614583

  15. The evolution of transcriptional regulation in eukaryotes

    NASA Technical Reports Server (NTRS)

    Wray, Gregory A.; Hahn, Matthew W.; Abouheif, Ehab; Balhoff, James P.; Pizer, Margaret; Rockman, Matthew V.; Romano, Laura A.

    2003-01-01

    Gene expression is central to the genotype-phenotype relationship in all organisms, and it is an important component of the genetic basis for evolutionary change in diverse aspects of phenotype. However, the evolution of transcriptional regulation remains understudied and poorly understood. Here we review the evolutionary dynamics of promoter, or cis-regulatory, sequences and the evolutionary mechanisms that shape them. Existing evidence indicates that populations harbor extensive genetic variation in promoter sequences, that a substantial fraction of this variation has consequences for both biochemical and organismal phenotype, and that some of this functional variation is sorted by selection. As with protein-coding sequences, rates and patterns of promoter sequence evolution differ considerably among loci and among clades for reasons that are not well understood. Studying the evolution of transcriptional regulation poses empirical and conceptual challenges beyond those typically encountered in analyses of coding sequence evolution: promoter organization is much less regular than that of coding sequences, and sequences required for the transcription of each locus reside at multiple other loci in the genome. Because of the strong context-dependence of transcriptional regulation, sequence inspection alone provides limited information about promoter function. Understanding the functional consequences of sequence differences among promoters generally requires biochemical and in vivo functional assays. Despite these challenges, important insights have already been gained into the evolution of transcriptional regulation, and the pace of discovery is accelerating.

  16. FORMATION CRITERIA AND THE MASS OF SECONDARY POPULATION III STARS

    SciTech Connect

    Susa, Hajime; Umemura, Masayuki; Hasegawa, Kenji E-mail: umemura@ccs.tsukuba.ac.jp

    2009-09-01

    We explore the formation of secondary Population III (Pop III) stars under radiation hydrodynamic (RHD) feedback by a preformed massive star. To properly treat RHD feedback, we perform three-dimensional RHD simulations incorporating the radiative transfer of ionizing photons as well as H{sub 2} dissociating photons from a preformed star. A collapsing gas cloud is settled at a given distance from a 120 M{sub sun} Pop III star, and the evolution of the cloud is pursued including RHD feedback. We derive the threshold density depending on the distance, above which the cloud can keep collapsing owing to the shielding of H{sub 2} dissociating radiation. We find that an H{sub 2} shell formed ahead of an ionizing front works effectively to shield the H{sub 2} dissociating radiation, leading to the positive feedback for the secondary Pop III star formation. Also, near the threshold density, the envelope of gas cloud is stripped significantly by a shock associated with an ionizing front. By comparing the mass accretion timescale with the Kelvin-Helmholtz timescale, we estimate the mass of secondary Pop III stars. It turns out that the stripping by a shock can reduce the mass of secondary Pop III stars down to {approx}20 M{sub sun}.

  17. Force constants of phosphorus (III) cyanide and arsenic (III) cyanide

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Fawcett, V.

    The force constants of phosphorus (III) cyanide and arsenic (III) cyanide have been calculated using a simple valence force-field approximation with interaction constants. Several revisions are proposed to the existing vibrational assignments for the As(CN) 3 species and the vibrational assignments for P(CN) 3 are confirmed.

  18. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.

    PubMed

    Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S; Flick, Robert; Wolf, Yuri I; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M; Koonin, Eugene V; Yakunin, Alexander F

    2015-07-24

    The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. PMID:26071590

  19. Cherenkov imaging and biochemical sensing in vivo during radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao

    While Cherenkov emission was discovered more than eighty years ago, the potential applications of imaging this during radiation therapy have just recently been explored. With approximately half of all cancer patients being treated by radiation at some point during their cancer management, there is a constant challenge to ensure optimal treatment efficiency is achieved with maximal tumor to normal tissue therapeutic ratio. To achieve this, the treatment process as well as biological information affecting the treatment should ideally be effective and directly derived from the delivery of radiation to the patient. The value of Cherenkov emission imaging was examined here, primarily for visualization of treatment monitoring and then secondarily for Cherenkov-excited luminescence for tissue biochemical sensing within tissue. Through synchronized gating to the short radiation pulses of a linear accelerator (200Hz & 3 micros pulses), and applying a gated intensified camera for imaging, the Cherenkov radiation can be captured near video frame rates (30 frame per sec) with dim ambient room lighting. This procedure, sometimes termed Cherenkoscopy, is readily visualized without affecting the normal process of external beam radiation therapy. With simulation, phantoms and clinical trial data, each application of Cherenkoscopy was examined: i) for treatment monitoring, ii) for patient position monitoring and motion tracking, and iii) for superficial dose imaging. The temporal dynamics of delivered radiation fields can easily be directly imaged on the patient's surface. Image registration and edge detection of Cherenkov images were used to verify patient positioning during treatment. Inter-fraction setup accuracy and intra-fraction patient motion was detectable to better than 1 mm accuracy. Cherenkov emission in tissue opens up a new field of biochemical sensing within the tissue environment, using luminescent agents which can be activated by this light. In the first study of

  20. Title III in Special Education.

    ERIC Educational Resources Information Center

    The Title III Quarterly, 1972

    1972-01-01

    The journal on special education programs funded under Title III of the Elementary and Secondary Education Act contains articles on three projects, abstracts of other projects, a picture story on San Diego Schools' outdoor classroom for special education, and a state by state listing of all Title III special education projects. The programs…

  1. SUPERSTARS III: 3-5.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Education, Raleigh.

    SUPERSTARS III is a K-8 program designed as an enrichment opportunity for self-directed learners in mathematics. The basic purpose of SUPERSTARS III is to provide the extra challenge that self-motivated students need in mathematics and to do so in a structured, long-term program that does not impinge on the normal classroom routine or the…

  2. SUPERSTARS III: 6-8.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Education, Raleigh.

    SUPERSTARS III is a K-8 program designed as an enrichment opportunity for self-directed learners in mathematics. The basic purpose of SUPERSTARS III is to provide the extra challenge that self-motivated students need in mathematics and to do so in a structured, long-term program that does not impinge on the normal classroom routine or the…

  3. Stellar Evolution Physics 2 Volume Hardback Set

    NASA Astrophysics Data System (ADS)

    Iben, Icko

    2012-12-01

    Volume 1: Part I. Introduction and Overview: 1. Qualitative description of single and binary star evolution; 2. Quantitative foundations of stellar evolution theory; Part II. Basic Physical Processes in Stellar Interiors: 3. Properties of and physical processes in the interiors of main sequence stars - order of magnitude estimates; 4. Statistical physics, thermodynamics, and equations of state; 5. Polytropes and single zone models: elementary tools for understanding some aspects of stellar structure and evolution; 6. Hydrogen-burning nuclear reactions and energy-generation rates; 7. Photon-matter interactions and opacity; 8. Equations of stellar evolution and methods of solution; Part III. Pre-Main Sequence, Main Sequence, and Shell Hydrogen Burning Evolution of Single Stars: 9. Star formation and evolution to the main-sequence; 10. Solar structure and neutrino physics; 11. Evolution during core hydrogen-burning phases up to the onset of helium burning; Volume 2: Part IV. Transport Processes, Weak Interaction Processes and Helium-Burning Reactions: 12. Diffusion and gravitational settling; 13. Heat conduction by electrons; 14. Beta decay and electron capture at high densities in stars; 15. The current-current weak interaction and the production of neutrino-antineutrino pairs; 16. Helium-burning nuclear reactions and energy-generation rates; Part V. Evolution during Helium-Burning Phases: 17. Evolution of a low mass model burning helium and hydrogen; 18. Evolution of an intermediate mass model burning helium and hydrogen; 19. Neutron production and neutron capture in a thermally pulsing asymptotic giant branch star of intermediate mass; 20. Evolution of a massive population I model during helium- and carbon-burning stages; Part VI. Terminal Evolution of Low and Intermediate Mass Stars: 21. Wind mass loss on the AGB and formation of a circumstellar envelope, evolution of the remnant as the central star of a planetary nebula, and white dwarf evolution; Index.

  4. Art & Evolution

    ERIC Educational Resources Information Center

    Terry, Mark

    2005-01-01

    In this article, the author presents a two-week evolution unit for his biology class. He uses Maria Sybilla Merian (1647-1717) as an example of an Enlightenment mind at work--in this case a woman recognized as one of the great artists and natural scientists of her time. Her representations of butterflies, caterpillars and their pupae, and the…

  5. Security Evolution.

    ERIC Educational Resources Information Center

    De Patta, Joe

    2003-01-01

    Examines how to evaluate school security, begin making schools safe, secure schools without turning them into fortresses, and secure schools easily and affordably; the evolution of security systems into information technology systems; using schools' high-speed network lines; how one specific security system was developed; pros and cons of the…

  6. Why Reproduce? A Demonstration of Evolution and the Origin of Life.

    ERIC Educational Resources Information Center

    Journet, Alan R. P.

    1982-01-01

    Describes a simple model to illustrate several aspects of the biochemical origin of life and the process of evolution through natural selection. The model has students predict the outcome of evolution in populations of beads. Instructional strategies using the model are also discussed. (Author/JN)

  7. Automatic analysis of computation in biochemical reactions.

    PubMed

    Egri-Nagy, Attila; Nehaniv, Chrystopher L; Rhodes, John L; Schilstra, Maria J

    2008-01-01

    We propose a modeling and analysis method for biochemical reactions based on finite state automata. This is a completely different approach compared to traditional modeling of reactions by differential equations. Our method aims to explore the algebraic structure behind chemical reactions using automatically generated coordinate systems. In this paper we briefly summarize the underlying mathematical theory (the algebraic hierarchical decomposition theory of finite state automata) and describe how such automata can be derived from the description of chemical reaction networks. We also outline techniques for the flexible manipulation of existing models. As a real-world example we use the Krebs citric acid cycle. PMID:18606208

  8. [Morphological and biochemical criteria for cell death].

    PubMed

    Chernikov, V P; Belousova, T A; Kakturskiĭ, L V

    2010-01-01

    The state-of-the-art of classifications of and criteria for cell death in the light of the 2009 recommendations of the Nomenclature Committee on Cell Death is presented as a lecture. Motivation is given for the necessity of using the unified criteria in the description of cell death and more than one study in its verification. The major structural and biochemical signs of four typical types of cell death--apoptosis, autophagia, keratinization, and necrosis are compared. Data are given on the major atypical forms of cell death--mitotic catastrophe, anoikis, exitotoxicity, Wallerian degeneration, paraptosis, pyroptosis, pyronecrosis, and entosis. PMID:20734836

  9. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  10. Biochemical processing of heavy oils and residuum

    SciTech Connect

    Lin, M.S.; Premuzic, T.; Yablon, J.H.; Zhou, Wei-Min

    1995-05-01

    During the past several decades, the petroleum industry has adjusted gradually to accommodate the changes in market product demands, government regulations, and the quality and cost of feedstock crude oils. For example, the trends show that the demand for distillate fuels, such as diesel, as compared to gasoline are increasing. Air-quality standards have put additional demand on the processing of heavier and higher sulfur feed stocks. Thus, the 1990 Clean Air Act amendments require the industry to produce greater quantities of oxygenated gasoline, and lower sulfur diesel and reformulated gasoline. Biochemical technology may play an important role in responding to these demands on the petroleum industry.

  11. Experimental evolution in biofilm populations

    PubMed Central

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  12. Experimental evolution in biofilm populations.

    PubMed

    Steenackers, Hans P; Parijs, Ilse; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  13. Sources of type III solar microwave bursts

    NASA Astrophysics Data System (ADS)

    Zhdanov, Dmitriy; Lesovoi, Sergey; Tokhchukova, Susanna

    2016-06-01

    Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT) is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4-8 GHz spectropolarimeter, and SSRT, simultaneously with extreme UV data, made it possible to localize sources of III type microwave drift bursts in August 10, 2011 event within the entire frequency band of burst occurrences, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5 and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to source sizes at other frequencies.

  14. Evaluation of Nutritional Biochemical Parameters in Haemodialysis Patients over a Ten-year Period

    PubMed Central

    Alfonso, AIQ; Castillo, RF; Jimenez, FJ Gomez; Negrillo, AM Nuñez

    2015-01-01

    ABSTRACT Aim: Protein-energy malnutrition as well as systemic inflammation and metabolic disorders are common in patients with chronic kidney failure who require renal replacement therapy (haemodialysis). Such malnutrition is a factor that significantly contributes to their morbidity and mortality. This study evaluated the nutritional status of haemodialysis patients by assessing biochemical and anthropometric parameters in order to determine whether these patients suffered disorders reflecting nutritional deterioration directly related to time on haemodialysis. Subjects and Method: This research comprised 90 patients of both genders with chronic kidney failure, who regularly received haemodialysis at our unit over a period of ten years. The patients' blood was tested quarterly for plasma albumin, total cholesterol and total proteins, and tested monthly for transferrin. The patients' weight, height and body mass index (BMI) were monitored. Body mass index was calculated using the formula: weight (kg)/height (m2) and classified in one of the following categories defined in the World Health Organization (WHO) Global Database on Body Mass Index: (i) underweight [BMI < 18.50], (ii) normal [BMI 18.50 – 24.99], (iii) overweight [BMI 25 – 29.99], (iv) obese [BMI ≥ 30]. Results: In the ten-year period of the study, the patients experienced a substantial decline in their biochemical parameters. Nevertheless, their BMI did not show any significant changes despite the patients' state of malnutrition. Conclusions: The prevalence of malnutrition in haemodialysis patients was evident. Nevertheless, the BMI of the subjects did not correspond to the biochemical parameters measured. Consequently, the results showed that the nutritional deterioration of these patients was mainly reflected in their biochemical parameters rather than in their anthropometric measurements. PMID:26426172

  15. PREFACE: Quantum Optics III

    NASA Astrophysics Data System (ADS)

    Orszag, M.; Retamal, J. C.; Saavedra, C.; Wallentowitz, S.

    2007-06-01

    All the 50 years of conscious pondering did not bring me nearer to an answer to the question `what is light quanta?'. Nowadays, every rascal believes, he knows it, however, he is mistaken. (A Einstein, 1951 in a letter to M Besso) Quantum optics has played a key role in physics in the last several decades. On the other hand, in these early decades of the information age, the flow of information is becoming more and more central to our daily life. Thus, the related fields of quantum information theory as well as Bose-Einstein condensation have acquired tremendous importance in the last couple of decades. In Quantum Optics III, a fusion of these fields appears in a natural way. Quantum Optics III was held in Pucón, Chile, in 27-30 of November, 2006. This beautiful location in the south of Chile is near the lake Villarrica and below the snow covered volcano of the same name. This fantastic environment contributed to a relaxed atmosphere, suitable for informal discussion and for the students to have a chance to meet the key figures in the field. The previous Quantum Optics conferences took place in Santiago, Chile (Quantum Optics I, 2000) and Cozumel, Mexico (Quantum Optics II, 2004). About 115 participants from 19 countries attended and participated in the meeting to discuss a wide variety of topics such as quantum-information processing, experiments related to non-linear optics and squeezing, various aspects of entanglement including its sudden death, correlated twin-photon experiments, light storage, decoherence-free subspaces, Bose-Einstein condensation, discrete Wigner functions and many more. There was a strong Latin-American participation from Argentina, Brazil, Chile, Colombia, Peru, Uruguay, Venezuela and Mexico, as well as from Europe, USA, China, and Australia. New experimental and theoretical results were presented at the conference. In Latin-America a quiet revolution has taken place in the last twenty years. Several groups working in quantum optics and

  16. Biochemical mechanisms of laser vascular tissue fusion.

    PubMed

    Guthrie, C R; Murray, L W; Kopchok, G E; Rosenbaum, D; White, R A

    1991-01-01

    This study examines the biochemical changes that occur in argon laser-fused canine veins compared with control segments of vein. Laser fusions were formed using 0.5 W argon laser energy (1100-1500 J/cm2). Immediately following tissue fusion, blood flow was reestablished to test the integrity of the welds. 1-mm3 sections of the anastomoses and control sections were minced and protein extraction was performed by solubilizing the tissue in hot SDS Laemmli gel sample buffer. The proteins were separated electrophoretically on 5 and 10% polyacylamide SDS gels and silver stained. The analysis demonstrated significant biochemical differences between control and lased veins. We noted increases in several proteins after laser welding: the putative beta chain of type V collagen (5/5 gels), the putative gamma chain of type I collagen (4/5 gels), a 156-kDa protein (based on collagen molecular weight standards) 7/7 gels), an 82-kDa protein (8/9 gels), and several proteins of lower molecular weight (3/8 gels). The increases may be due to crosslinking of lower molecular weight proteins, degradation of higher molecular weight proteins, or increased solubility of certain proteins. These findings suggest that laser welding may occur by formation of crosslinks or by denaturation and reannealment of structural proteins. PMID:1863584

  17. Biochemical Manifestation of HIV Lipodystrophy Syndrome

    PubMed Central

    Ihenetu, Kenneth; Mason, Darius

    2012-01-01

    Objectives Highly active anti-retroviral therapy (HAART), including protease inhibitors (PI) have led to dramatic improvements in the quality and quantity of life in patients with acquired immunodeficiency syndrome (AIDS). However, a significant number of AIDS patients on HAART develop characteristic changes in body fat redistribution referred to as lipodystrophy syndrome (LDS). Features of LDS include hypertrophy in the neck fat pad (buffalo hump), increased fat in the abdominal region (protease paunch), gynecomastia and loss of fat in the mid-face and extremities. Methods The aim of this paper is to review the current knowledge regarding this syndrome. This article reviews the published investigations on biochemical manifestation of HIV lipodystrophy syndrome. Results It is estimated that approximately 64% of patients treated with PI will experience this syndrome. Biochemically, these patients have increased triglycerides (Trig), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and extremely low high-density lipoprotein-cholesterol (HDL-C). Conclusions and Public Health Implications It is hoped that awareness of this syndrome would aid in early diagnosis and better patient management, possibly leading to a lower incidence of cardiovascular complications among these patients.

  18. Biochemical responses of the Skylab crewman

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Rambaut, P. C.

    1974-01-01

    The biochemical investigations of the Skylab crewmen were designed to study the physiological changes that were observed on flight crews returning from previous space flight missions as well as to study those changes expected to result from prolonged weightless exposure. These studies can be divided into two broad categories. One category included routine blood studies similar to those used in clinical medical practice. The second included research-type endocrine analyses used to investigate more thoroughly the metabolic/endocrine responses to the space flight environment. The premission control values indicated that all Skylab crewmen were healthy and were free from biochemical abnormalities. The routine results during and after flight showed slight but significant changes in electrolytes, glucose, total protein, osmolality, uric acid, cholesterol, and creatinine. Plasma hormal changes included adrenocorticotrophic hormone, cortisol, angiotensin I, aldosterone, insulin, and thyroxine. The 24-hour urine analyses results revealed increased excretion of cortisol, catecholamines, antidiuretic hormone, and aldosterone as well as excretion of significant electrolyte and uric acid during the Skylab flights.

  19. BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT

    SciTech Connect

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

    1998-09-20

    As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  20. Biochemical processes for geothermal brine treatment

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

    1998-08-01

    As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  1. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  2. Biochemical basis for the biological clock

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Chueh, Pin-Ju; Pletcher, Jake; Tang, Xiaoyu; Wu, Lian-Ying; Morre, Dorothy M.

    2002-01-01

    NADH oxidases at the external surface of plant and animal cells (ECTO-NOX proteins) exhibit stable and recurring patterns of oscillations with potentially clock-related, entrainable, and temperature-compensated period lengths of 24 min. To determine if ECTO-NOX proteins might represent the ultradian time keepers (pacemakers) of the biological clock, COS cells were transfected with cDNAs encoding tNOX proteins having a period length of 22 min or with C575A or C558A cysteine to alanine replacements having period lengths of 36 or 42 min. Here we demonstrate that such transfectants exhibited 22, 36, or 40 to 42 h circadian patterns in the activity of glyceraldehyde-3-phosphate dehydrogenase, a common clock-regulated protein, in addition to the endogenous 24 h circadian period length. The fact that the expression of a single oscillatory ECTO-NOX protein determines the period length of a circadian biochemical marker (60 X the ECTO-NOX period length) provides compelling evidence that ECTO-NOX proteins are the biochemical ultradian drivers of the cellular biological clock.

  3. Cellular localization and biochemical characterization of a novel calcium-dependent protein kinase from tobacco.

    PubMed

    Wang, Yun; Zhang, Mei; Ke, Ke; Lu, Ying Tang

    2005-08-01

    By screening tobacco cDNA library with MCK1 as a probe, we isolated a cDNA clone NtCPK5 (accession number AY971376), which encodes a typical calcium-dependent protein kinase. Sequence analyses indicated that NtCPK5 is related to both CPKs and CRKs superfamilies and has all of the three conserved domains of CPKs. The biochemical activity of NtCPK5 was calcium-dependent. NtCPK5 had Vmax and Km of 526 nmol/min/mg and 210 microg/ml respectively with calf thymus histone (fraction III, abbreviated to histone IIIs) as substrate. For substrate syntide-2, NtCPK5 showed a higher Vmax of 2008 nmol/min/mg and a lower Km of 30 microM. The K0.5 of calcium activation was 0.04 microM or 0.06 microM for histone IIIs or syntide-2 respectively. The putative myristoylation and palmitoylation consensus sequence of NtCPK5 suggests that it could be a membrane-anchoring protein. Indeed, our transient expression experiments with wild type and mutant forms of NtCPK5/GFP fusion proteins showed that NtCPK5 was localized to the plasma membrane of onion epidermal cells and that the localization required the N-terminal acylation sites of NtCPK5/GFP. Taking together, our data have demonstrated the biochemical characteristics of a novel protein NtCPK5 and its subcellular localization as a membrane-anchoring protein. PMID:16117850

  4. Mitochondrial Evolution

    PubMed Central

    Gray, Michael W.

    2012-01-01

    Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis—the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell—has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it. PMID:22952398

  5. Leica Dmc III Calibration and Geometric Sensor Accuracy

    NASA Astrophysics Data System (ADS)

    Mueller, C.; Neumann, K.

    2016-03-01

    As an evolution of the successful DMC II digital camera series, Leica Geosystems has introduced the Leica DMC III digital aerial camera using, for the first time in the industry, a large-format CMOS sensor as a panchromatic high-resolution camera head. This paper describes the Leica DMC III calibration and its quality assurance and quality control (QA/QC) procedures. It will explain how calibration was implemented within the production process for the Leica DMC III camera. Based on many years of experience with the DMC and DMC II camera series, it is know that the sensor flatness has a huge influence on the final achievable results. The Leica DMC III panchromatic CMOS sensor with its 100.3mm x 56.9mm size shows remaining errors in a range of 0.1 to 0.2μm for the root mean square and shows maximum values not higher that 1.0μm. The Leica DMC III is calibrated based on a 5cm Ground Sample Distance (GSD) grid pattern flight and evaluated with three different flying heights at 5cm, 8cm and 11cm GSD. The geometric QA/QC has been performed using the calibration field area, as well as using an independent test field. The geometric performance and accuracy is unique and gives ground accuracies far better than the flown GSD.

  6. Evolutions of Magnetized Neutron Stars

    NASA Astrophysics Data System (ADS)

    Liebling, Steven; Anderson, Matthew; Hirschmann, Eric; Lehner, Luis; Motl, Patrick; Neilsen, David; Palenzuela, Carlos; Tohline, Joel

    2009-05-01

    Magnetized neutron stars, whether considered individually or within compact binary systems, demonstrate a number of interesting dynamical effects and may represent an important source of observable gravitational waves. In addition, isolated, rotating, magnetized stars serve as a good testbed for a necessarily complex, distributed adaptive mesh refinement (AMR) code. As initial data, we use fully consistent, magnetized, rotating stellar configurations generated with the Lorene toolkit. Here results are presented which (i) demonstrate convergence and stability of the code, (ii) show the evolution of stable and unstable magnetized stars, and (iii) study the effects of a scheme to track the leakage of neutrinos.

  7. Cranial mononeuropathy III - diabetic type

    MedlinePlus

    Diabetic third nerve palsy; Pupil-sparing third cranial nerve palsy ... Cranial mononeuropathy III - diabetic type -- is a mononeuropathy . This means that only one nerve is damaged. The condition affects the third cranial (oculomotor) ...

  8. The MAX III storage ring

    NASA Astrophysics Data System (ADS)

    Sjöström, M.; Wallén, E.; Eriksson, M.; Lindgren, L.-J.

    2009-04-01

    One of the primary goals of the 700 MeV MAX III synchrotron radiation source is to test and gain experience with new magnet and accelerator technology. Each magnet cell is machined out of two solid iron blocks that are then sandwiched together after coil and quadrupole installation. The MAX III ring makes extensive use of combined function magnets to obtain a compact lattice. In order to obtain flexibility in machine tuning pole face current strips are used in the main dipoles, which also contain the horizontally defocusing gradients. Commissioning finished in 2007 and MAX III is now going into user operation. Over the last year, MAX III has been characterized in order to both obtain calibrated models for operation purposes as well as evaluating the magnet technology. The characterization results will be described in this paper.

  9. Evolution and the complexity of bacteriophages

    PubMed Central

    Serwer, Philip

    2007-01-01

    Background The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Hypothesis Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. Testing the hypothesis I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the

  10. The growing need for biochemical bioherbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The volume of herbicide use outpaces that of other pesticides. Evolution of resistance to the currently used herbicides has greatly increased the need for new modes of action (MOAs). More than 20 years have passed since the last new herbicide MOA was introduced. Natural products offer a source of...

  11. Thin membrane sensor with biochemical switch

    NASA Technical Reports Server (NTRS)

    Case, George D. (Inventor); Worley, III, Jennings F. (Inventor)

    1994-01-01

    A modular biosensor system for chemical or biological agent detection utilizes electrochemical measurement of an ion current across a gate membrane triggered by the reaction of the target agent with a recognition protein conjugated to a channel blocker. The sensor system includes a bioresponse simulator or biochemical switch module which contains the recognition protein-channel blocker conjugate, and in which the detection reactions occur, and a transducer module which contains a gate membrane and a measuring electrode, and in which the presence of agent is sensed electrically. In the poised state, ion channels in the gate membrane are blocked by the recognition protein-channel blocker conjugate. Detection reactions remove the recognition protein-channel blocker conjugate from the ion channels, thus eliciting an ion current surge in the gate membrane which subsequently triggers an output alarm. Sufficiently large currents are generated that simple direct current electronics are adequate for the measurements. The biosensor has applications for environmental, medical, and industrial use.

  12. Biochemical characterization of human Upf1 helicase.

    PubMed

    Cheng, Zhihong; Morisawa, Gaku; Song, Haiwei

    2010-01-01

    We present here the biochemical characterization of human Upf1 helicase core (hUpf1c). hUpf1c is overexpressed as a GST fusion protein in Escherichia coli and purified using chromatographic methods. In vitro ATP binding and single-stranded RNA (ssRNA) binding activities are measured using dot-blot technique. Measurement of RNA-dependent ATPase activity is performed by thin layer chromatography (TLC). The ATP-modulated ssRNA binding activity is examined by surface plasma resonance (SPR). The binding of double-stranded DNA (dsDNA) to hUpf1c is checked by electrophoretic mobility shift assay (EMSA, gel shift assay). PMID:20225160

  13. Identifying biochemical phenotypic differences between cryptic species

    PubMed Central

    Liebeke, Manuel; Bruford, Michael W.; Donnelly, Robert K.; Ebbels, Timothy M. D.; Hao, Jie; Kille, Peter; Lahive, Elma; Madison, Rachael M.; Morgan, A. John; Pinto-Juma, Gabriela A.; Spurgeon, David J.; Svendsen, Claus; Bundy, Jacob G.

    2014-01-01

    Molecular genetic methods can distinguish divergent evolutionary lineages in what previously appeared to be single species, but it is not always clear what functional differences exist between such cryptic species. We used a metabolomic approach to profile biochemical phenotype (metabotype) differences between two putative cryptic species of the earthworm Lumbricus rubellus. There were no straightforward metabolite biomarkers of lineage, i.e. no metabolites that were always at higher concentration in one lineage. Multivariate methods, however, identified a small number of metabolites that together helped distinguish the lineages, including uncommon metabolites such as Nε-trimethyllysine, which is not usually found at high concentrations. This approach could be useful for characterizing functional trait differences, especially as it is applicable to essentially any species group, irrespective of its genome sequencing status. PMID:25252836

  14. The biochemical anatomy of cortical inhibitory synapses.

    PubMed

    Heller, Elizabeth A; Zhang, Wenzhu; Selimi, Fekrije; Earnheart, John C; Ślimak, Marta A; Santos-Torres, Julio; Ibañez-Tallon, Ines; Aoki, Chiye; Chait, Brian T; Heintz, Nathaniel

    2012-01-01

    Classical electron microscopic studies of the mammalian brain revealed two major classes of synapses, distinguished by the presence of a large postsynaptic density (PSD) exclusively at type 1, excitatory synapses. Biochemical studies of the PSD have established the paradigm of the synapse as a complex signal-processing machine that controls synaptic plasticity. We report here the results of a proteomic analysis of type 2, inhibitory synaptic complexes isolated by affinity purification from the cerebral cortex. We show that these synaptic complexes contain a variety of neurotransmitter receptors, neural cell-scaffolding and adhesion molecules, but that they are entirely lacking in cell signaling proteins. This fundamental distinction between the functions of type 1 and type 2 synapses in the nervous system has far reaching implications for models of synaptic plasticity, rapid adaptations in neural circuits, and homeostatic mechanisms controlling the balance of excitation and inhibition in the mature brain. PMID:22768092

  15. The Biochemical Anatomy of Cortical Inhibitory Synapses

    PubMed Central

    Heller, Elizabeth A.; Zhang, Wenzhu; Selimi, Fekrije; Earnheart, John C.; Ślimak, Marta A.; Santos-Torres, Julio; Ibañez-Tallon, Ines; Aoki, Chiye; Chait, Brian T.; Heintz, Nathaniel

    2012-01-01

    Classical electron microscopic studies of the mammalian brain revealed two major classes of synapses, distinguished by the presence of a large postsynaptic density (PSD) exclusively at type 1, excitatory synapses. Biochemical studies of the PSD have established the paradigm of the synapse as a complex signal-processing machine that controls synaptic plasticity. We report here the results of a proteomic analysis of type 2, inhibitory synaptic complexes isolated by affinity purification from the cerebral cortex. We show that these synaptic complexes contain a variety of neurotransmitter receptors, neural cell-scaffolding and adhesion molecules, but that they are entirely lacking in cell signaling proteins. This fundamental distinction between the functions of type 1 and type 2 synapses in the nervous system has far reaching implications for models of synaptic plasticity, rapid adaptations in neural circuits, and homeostatic mechanisms controlling the balance of excitation and inhibition in the mature brain. PMID:22768092

  16. [Biochemical and immunological markers of autoimmune thyroiditis].

    PubMed

    Biktagirova, E M; Sattarova, L I; Vagapova, G R; Skibo, Y V; Chuhlovina, E N; Kravtsova, O A; Abramova, Z I

    2016-05-01

    Correlations between biochemical and immunological markers of programmed cell death (apoptosis), and the functional state of the thyroid gland (hyperthyroidism, euthyroidism, hypothyroidism) have been investigated in autoimmune thyroiditis (AT) (also known as chronic autoimmune thyroiditis). Annexin V, TRAIL and TNF-a, as well as DNA-hydrolyzing antibodies were used as the main markers. Increased levels of TRAIL were found in the serum of AT patients (hyperthyroidism>hypothyroidism>euthyroidism) compared with healthy individuals. The highest frequency of antibodies to denatured DNA (Abs-dDNA) had the highest frequency in AT patients (97%) compared with healthy controls. Among these patients, 75% had hyperthyroidism, 85% had hypothyroidism, and 84.7% had euthyroidism. Abs hydrolyzing activity demonstrated correlation dependence with symptoms of the thyroid dysfunction. PMID:27563001

  17. Biochemical pathways in seed oil synthesis.

    PubMed

    Bates, Philip D; Stymne, Sten; Ohlrogge, John

    2013-06-01

    Oil produced in plant seeds is utilized as a major source of calories for human nutrition, as feedstocks for non-food uses such as soaps and polymers, and can serve as a high-energy biofuel. The biochemical pathways leading to oil (triacylglycerol) synthesis in seeds involve multiple subcellular organelles, requiring extensive lipid trafficking. Phosphatidylcholine plays a central role in these pathways as a substrate for acyl modifications and likely as a carrier for the trafficking of acyl groups between organelles and membrane subdomains. Although much has been clarified regarding the enzymes and pathways responsible for acyl-group flux, there are still major gaps in our understanding. These include the identity of several key enzymes, how flux between alternative pathways is controlled and the specialized cell biology leading to biogenesis of oil bodies that store up to 80% of carbon in seeds. PMID:23529069

  18. Biochemical pathology of otitis media with effusion.

    PubMed

    Juhn, S K; Sipilä, P; Jung, T T; Edlin, J

    1984-01-01

    The sequential cytologic and biochemical events of middle ear effusion (MEE) were studied in experimental models of serous otitis media (SOM) and purulent otitis media (POM) in chinchilla. In the SOM model, the initial appearance of neutrophils was followed by macrophages. In the POM model, neutrophils were the predominant cells in MEE and the number of neutrophils was about 100-fold higher than in the SOM model. The activity of lysozyme in MEE was higher in POM than in SOM and correlated with the number of neutrophils and mononuclear phagocytes. The results of the present study suggest that neutrophils and mononuclear phagocytes are one of the main sources for lysozyme levels in MEE during otitis media. PMID:6598270

  19. Biochemically enhanced methane production from coal

    NASA Astrophysics Data System (ADS)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  20. Pattern Selection by Dynamical Biochemical Signals

    PubMed Central

    Palau-Ortin, David; Formosa-Jordan, Pau; Sancho, José M.; Ibañes, Marta

    2015-01-01

    The development of multicellular organisms involves cells to decide their fate upon the action of biochemical signals. This decision is often spatiotemporally coordinated such that a spatial pattern arises. The dynamics that drive pattern formation usually involve genetic nonlinear interactions and positive feedback loops. These complex dynamics may enable multiple stable patterns for the same conditions. Under these circumstances, pattern formation in a developing tissue involves a selection process: why is a certain pattern formed and not another stable one? Herein we computationally address this issue in the context of the Notch signaling pathway. We characterize a dynamical mechanism for developmental selection of a specific pattern through spatiotemporal changes of the control parameters of the dynamics, in contrast to commonly studied situations in which initial conditions and noise determine which pattern is selected among multiple stable ones. This mechanism can be understood as a path along the parameter space driven by a sequence of biochemical signals. We characterize the selection process for three different scenarios of this dynamical mechanism that can take place during development: the signal either 1) acts in all the cells at the same time, 2) acts only within a cluster of cells, or 3) propagates along the tissue. We found that key elements for pattern selection are the destabilization of the initial pattern, the subsequent exploration of other patterns determined by the spatiotemporal symmetry of the parameter changes, and the speeds of the path compared to the timescales of the pattern formation process itself. Each scenario enables the selection of different types of patterns and creates these elements in distinct ways, resulting in different features. Our approach extends the concept of selection involved in cellular decision-making, usually applied to cell-autonomous decisions, to systems that collectively make decisions through cell

  1. Biochemical diagnosis of neuroendocrine GEP tumor.

    PubMed Central

    Oberg, K.

    1997-01-01

    Neuroendocrine gut and pancreatic tumors are known to contain and secret different peptide hormones and amines. During the last two decades, many radioimmunoassays and Elizas have been developed to analyze these substances in blood and urine, which has enabled clinicians to improve the diagnosis and monitoring of patients with various neuroendocrine tumors. Due to cost constraints in medical care, it is important to try to define the most useful biochemical markers from the clinical point of view. The glycoprotein chromogranin A has been shown to be a useful marker for diagnosing various neuroendocrine tumors, both by histopathology and circulating tumor markers. In patients with demonstrable endocrine tumors, about 90 percent of the patients present high circulating levels of chromogranin A. A hundred-fold increase of plasma chromogranin is seen in patients with midgut carcinoid tumors and liver metastases. The plasma levels of chromogranin A reflect the tumor mass and can be used for monitoring the patient during treatment and follow-up, although the day-to-day variation might be 30-40 percent. High circulating levels of the chromogranin A might be an indicator of bad prognosis in patients with malignant carcinoid tumors. Besides analyzing plasma chromogranin A, specific analyses such as urinary 5-HIAA in midgut carcinoid patients, serum gastrin in patients with Zollinger-Ellison syndrome and insulin/proinsulin in patients with hypoglycemia should be performed. In patients with small tumor masses or intermittent symptoms, provocative tests such as a meal stimulation test, secretin test or pentagastrin stimulation of tachykinin release can supplement the basal measurements of peptides and amines. To fully evaluate the growth potential in neuroendocrine tumors, traditional biochemical markers should be supplemented with indicators of growth proliferation (Ki-67, PCNA) and immunohistochemical staining for the adhesion molecule CD44 and the PDGF-alpha receptor

  2. Robust simplifications of multiscale biochemical networks

    PubMed Central

    Radulescu, Ovidiu; Gorban, Alexander N; Zinovyev, Andrei; Lilienbaum, Alain

    2008-01-01

    Background Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled as large networks of biochemical reactions. In order to understand the functioning of these systems, there is a strong need for general model reduction techniques allowing to simplify models without loosing their main properties. In systems biology we also need to compare models or to couple them as parts of larger models. In these situations reduction to a common level of complexity is needed. Results We propose a systematic treatment of model reduction of multiscale biochemical networks. First, we consider linear kinetic models, which appear as "pseudo-monomolecular" subsystems of multiscale nonlinear reaction networks. For such linear models, we propose a reduction algorithm which is based on a generalized theory of the limiting step that we have developed in [1]. Second, for non-linear systems we develop an algorithm based on dominant solutions of quasi-stationarity equations. For oscillating systems, quasi-stationarity and averaging are combined to eliminate time scales much faster and much slower than the period of the oscillations. In all cases, we obtain robust simplifications and also identify the critical parameters of the model. The methods are demonstrated for simple examples and for a more complex model of NF-κB pathway. Conclusion Our approach allows critical parameter identification and produces hierarchies of models. Hierarchical modeling is important in "middle-out" approaches when there is need to zoom in and out several levels of complexity. Critical parameter identification is an important issue in systems biology with potential applications to biological control and therapeutics. Our approach also deals naturally with the presence of multiple time scales, which is a general property of systems biology models. PMID:18854041

  3. Supernova Nucleosynthesis and Galactic Evolution

    NASA Astrophysics Data System (ADS)

    Thielemann, F.-K.; Argast, D.; Brachwitz, F.; Hix, W. R.; Höflich, P.; Liebendörfer, M.; Martinez-Pinedo, G.; Mezzacappa, A.; Nomoto, K.; Panov, I.

    The understanding of the abundance evolution in the interstellar medium, and especially the enrichment of heavy elements, as a function of space and time reflects the history of star formation and the lifetimes of the diverse contributing stellar objects. Therefore, the understanding of the endpoints of stellar evolution is essential. These are mainly planetary nebulae and type II/Ib/Ic supernovae as evolutionary endpoints of single stars, but also events in binary systems can contribute, like e.g. supernovae of type Ia, novae and possibly X-ray bursts and neutron star or neutron star - black hole mergers. Despite many efforts, a full and self-consistent understanding of supernovae (the main contributors to nucleosynthesis in galaxies) is not existing, yet. However, observed spectra, light curves, radioactivities/decay gamma-rays and galactic evolution witness the composition of their ejecta and constrain model uncertainties. We focus on (i) neutrino-induced explosions for type II supernovae and the innermost ejected layers, (ii) electron captures in type Ia supernovae and neutron-rich Fe-group nuclei and finally (iii) galactic chemical evolution and possible r-process sites.

  4. Life style and biochemical adaptation in Antarctic fishes

    NASA Astrophysics Data System (ADS)

    di Prisco, Guido

    2000-12-01

    Respiration and metabolism are under investigation in Antarctic fish, in an effort to understand the interplay between ecology and biochemical and physiological processes. Fish of the dominant suborder Notothenioidei are red-blooded, except Channichthyidae (the most phyletically derived family), whose genomes retain transcriptionally inactive DNA sequences closely related to the α-globin gene of red-blooded notothenioids and have lost the β-globin locus. Our structure/function studies on 38 of the 80 red-blooded species are aimed at correlating sequence, multiplicity and oxygen binding with ecological constraints and at obtaining phylogenetic information on evolution. For comparative purposes, this work has been extended to non-Antarctic notothenioids. All sluggish bottom dwellers have a single major hemoglobin (Hb) and often a minor, functionally similar one. Three species of the family Nototheniidae have different life styles. They have uniquely specialised oxygen-transport systems, adjusted to the mode of life of each species. Artedidraconidae have a single Hb, lacking oxygen-binding cooperativity, similar to the ancestral hemoproteins of primitive organisms. The amino acid sequences are currently used in the molecular modelling approach. The study of several enzymes with key roles in metabolism (e.g. glucose-6-phosphate dehydrogenase, L-glutamate dehydrogenase, phosphorylase b, carbonic anhydrase) indicate that some aspects of the molecular structure (e.g. molecular mass, number of subunits, amino acid sequence, temperature of irreversible heat inactivation) have been conserved during development of cold adaptation. However, high catalytic efficiency, possibly due to subtle molecular changes, is observed at low temperature.

  5. A Biochemical Approach to the Problem of Dyslexia.

    ERIC Educational Resources Information Center

    Baker, Sidney McDonald

    1985-01-01

    The paper presents the case of a sixth-grade boy, labeled dyslexic, who responded positively to a biochemical approach. Remedy of iron, zinc, and Vitamin B-6 deficiencies as well as an imbalance of fatty acids resulted in improvements in hair and skin and also in reading. A biochemical approach to behavior problems is proposed. (Author/CL)

  6. Physiological control - A physical view: Life and the biochemical oscillator.

    NASA Technical Reports Server (NTRS)

    Iberall, A. S.

    1971-01-01

    The history and progress of physical interpretations of physiological control, viewing life as a biochemical oscillator, are surveyed. Special attention is given to the author's studies (1964, 1965, 1968 and 1969) and to studies of Katchalsky (1969) who demonstrated a 1,000-A scale which may provide a basis for a biochemical oscillator.

  7. Simulation studies in biochemical signaling and enzyme reactions

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Vagula, Mary C.

    2014-06-01

    Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.

  8. The START III bargaining space

    SciTech Connect

    Karas, T.H.

    1998-08-01

    The declining state of the Russian military and precarious Russian economic condition will give the US considerable advantages at the START III bargaining table. Taking the US-RF asymmetries into account, this paper discusses a menu of START III measures the US could ask for, and measures it could offer in return, in attempting to negotiate an equitable treaty. Measures the US might seek in a START III treaty include: further reductions in deployed strategic nuclear warheads, irreversibility of reductions through warhead dismantlement; beginning to bring theater nuclear weapons under mutual control, and increased transparency into the Russian nuclear weapons complex. The US may, however, wish to apply its bargaining advantages to attempting to achieve the first steps toward two long-range goals that would enhance US security: bringing theater nuclear weapons into the US-RF arms control arena, and increasing transparency into the Russian nuclear weapons complex. In exchange for measures relating to these objectives, the US might consider offering to Russia: Further strategic weapons reductions approaching levels at which the Russians believe they could maintain a degree of parity with the US; Measures to decrease the large disparities in potential deliver-system uploading capabilities that appear likely under current START II/START III scenarios; and Financial assistance in achieving START II/START III reductions as rapidly as is technically possible.

  9. Thermal and optical properties of Tb(III), Eu(III) and Tb(III)/Eu(III) co-complexed silicone fluorinated acrylate copolymer

    NASA Astrophysics Data System (ADS)

    Zhai, Yinfeng; Xie, Hongde; Cai, Haijun; Cai, Peiqing; Seo, Hyo Jin

    2015-07-01

    Tb(III), Eu(III) and Tb(III)/Eu(III) activated silicone fluorinated acrylate (SFA) have been successfully synthesized using the method of semi-continuous emulsion polymerization. The copolymers are characterized by flourier transform infrared (FT-IR), thermal gravity analysis (TGA), photoluminescence excitation (PLE) and emission (PL) spectroscopy. The copolymer containing Tb(III) and Eu(III) ions display green and red luminescent colors under UV light excitation, respectively. The TGA curves show the thermal decomposition temperatures of the copolymers are up to about 300 °C. The PL spectra show a strong green emission at 546 nm (5D4 → 7F5) of Tb(III) complexed copolymers, and show a prominent red emission at 615 nm (5D0 → 7F2) of Eu(III) complexed copolymers. Different concentrations of Eu(III) and Tb(III) ions are introduced into the copolymer and the energy transfer from Tb(III) to Eu(III) ions in the copolymer was found. Thus, based on the results it can be suggested that SFA:Eu(III), SFA:Tb(III) and SFA:Tb(III)/Eu(III) can be used potentially as luminescent materials.

  10. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins.

    PubMed

    Caballe, Anna; Wenzel, Dawn M; Agromayor, Monica; Alam, Steven L; Skalicky, Jack J; Kloc, Magdalena; Carlton, Jeremy G; Labrador, Leticia; Sundquist, Wesley I; Martin-Serrano, Juan

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome missegregation. In this study, we show that Unc-51-like kinase 3 (ULK3) phosphorylates and binds ESCRT-III subunits via tandem MIT domains, and thereby, delays abscission in response to lagging chromosomes, nuclear pore defects, and tension forces at the midbody. Our structural and biochemical studies reveal an unusually tight interaction between ULK3 and IST1, an ESCRT-III subunit required for abscission. We also demonstrate that IST1 phosphorylation by ULK3 is an essential signal required to sustain the abscission checkpoint and that ULK3 and CHMP4C are functionally linked components of the timer that controls abscission in multiple physiological situations. PMID:26011858

  11. Case A Binary Evolution

    SciTech Connect

    Nelson, C A; Eggleton, P P

    2001-03-28

    We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass M{sub 10}, mass ratio q{sub 0}, and period P{sub 0}, designed to sample the phase-space of Case A binaries in the range -0.10 {le} log M{sub 10} {le} 1.7. Each binary is evolved using a standard code with the assumption that both total mass and orbital angular momentum are conserved. This code follows the evolution of both stars until the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich variety of behavior which we sort into several subclasses of Case A and Case B. We present the results of this classification, the final mass ratio and the fraction of time spent in Roche Lobe overflow for each binary system. The conservative assumption under which we created this library is expected to hold for a broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity class III - V. We gather a list of relatively well-determined observed hot Algol-type binaries meeting this criterion, as well as a list of cooler Algol-type binaries where we expect significant dynamo-driven mass loss and angular momentum loss. We fit each observed binary to our library of tracks using a {chi}{sup 2}-minimizing procedure. We find that the hot Algols display overall acceptable {chi}{sup 2}, confirming the conservative assumption, while the cool Algols show much less acceptable {chi}{sup 2} suggesting the need for more free parameters, such as mass and angular momentum loss.

  12. Gd(III)-Gd(III) distance measurements with chirp pump pulses

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Qi, Mian; Wili, Nino; Pribitzer, Stephan; Godt, Adelheid; Jeschke, Gunnar

    2015-10-01

    The broad EPR spectrum of Gd(III) spin labels restricts the dipolar modulation depth in distance measurements between Gd(III) pairs to a few percent. To overcome this limitation, frequency-swept chirp pulses are utilized as pump pulses in the DEER experiment. Using a model system with 3.4 nm Gd-Gd distance, application of one single chirp pump pulse at Q-band frequencies leads to modulation depths beyond 10%. However, the larger modulation depth is counteracted by a reduction of the absolute echo intensity due to the pump pulse. As supported by spin dynamics simulations, this effect is primarily driven by signal loss to double-quantum coherence and specific to the Gd(III) high spin state of S = 7/2. In order to balance modulation depth and echo intensity for optimum sensitivity, a simple experimental procedure is proposed. An additional improvement by 25% in DEER sensitivity is achieved with two consecutive chirp pump pulses. These pulses pump the Gd(III) spectrum symmetrically around the observation position, therefore mutually compensating for dynamical Bloch-Siegert phase shifts at the observer spins. The improved sensitivity of the DEER data with modulation depths on the order of 20% is due to mitigation of the echo reduction effects by the consecutive pump pulses. In particular, the second pump pulse does not lead to additional signal loss if perfect inversion is assumed. Moreover, the compensation of the dynamical Bloch-Siegert phase prevents signal loss due to spatial dependence of the dynamical phase, which is caused by inhomogeneities in the driving field. The new methodology is combined with pre-polarization techniques to measure long distances up to 8.6 nm, where signal intensity and modulation depth become attenuated by long dipolar evolution windows. In addition, the influence of the zero-field splitting parameters on the echo intensity is studied with simulations. Herein, larger sensitivity is anticipated for Gd(III) complexes with zero

  13. Biochemical and physiological processes associated with the differential ozone response in ozone-tolerant and sensitive soybean genotypes.

    PubMed

    Chutteang, C; Booker, F L; Na-Ngern, P; Burton, A; Aoki, M; Burkey, K O

    2016-01-01

    Biochemical and physiological traits of two soybean [Glycine max (L.) Merr.] genotypes differing in sensitivity to ozone (O3 ) were investigated to determine the possible basis for the differential response. Fiskeby III (O3 -tolerant) and Mandarin (Ottawa) (O3 -sensitive) were grown in a greenhouse with charcoal-filtered air for 4 weeks, then treated with O3 for 7 h·day(-1) in greenhouse chambers. Mandarin (Ottawa) showed significantly more leaf injury and hydrogen peroxide (H2 O2 ) and superoxide (O2 (-) ) production compared with Fiskeby III. Peroxidase activity in Mandarin (Ottawa) was 31% higher with O3 but was not significantly different in Fiskeby III. Ozone did not affect superoxide dismutase or glutathione reductase activities, or leaf concentrations of glutathione or ascorbic acid. Thus, variation in O3 response between Fiskeby III and Mandarin (Ottawa) was not explained by differences in antioxidant enzymes and metabolites tested. Ethylene emission from leaves declined in Fiskeby III following O3 exposure but not in Mandarin (Ottawa). Ozone exposure reduced quantum yield (ΦPSII ), electron transport rate (ETR) and photochemical quenching (qp ) in Mandarin (Ottawa) more than in Fiskeby III, indicating that efficiency of energy conversion of PSII and photosynthetic electron transport was altered differently in the two genotypes. Short-term exposure to O3 had minimal effects on net carbon exchange rates of both soybean cultivars. A trend toward higher stomatal conductance in Mandarin (Ottawa) suggested stomatal exclusion might contribute to differential O3 sensitivity of the two genotypes. Increased sensitivity of Mandarin (Ottawa) to O3 was associated with higher H2 O2 and O2 (-) production compared with Fiskeby III, possibly associated with genotype differences in stomatal function or regulation of ethylene during the initial phases of O3 response. PMID:25959717

  14. Regulation of the innate immune response by fibronectin: synergism between the III-1 and EDA domains.

    PubMed

    Kelsh, Rhiannon; You, Ran; Horzempa, Carol; Zheng, Mingzhe; McKeown-Longo, Paula J

    2014-01-01

    Fibronectin is a critical component of the extracellular matrix and alterations to its structure will influence cellular behavior. Matrix fibronectin is subjected to both mechanical and biochemical regulation. The Type III domains of fibronectin can be unfolded in response to increased cellular contractility, included or excluded from the molecule by alternative splicing mechanisms, or released from the matrix by proteolysis. Using Inflammatory Cytokine microarrays we found that the alternatively spliced fibronectin Type III domain, FnEDA, and the partially unfolded III-1 domain, FnIII-1c, induced the expression of a multitude of pro-inflammatory cytokines in human dermal fibroblasts, most notably CXCL1-3, IL-8 and TNF-α. FnIII-1c, a peptide representing an unfolded intermediate structure of the first Type III domain has been shown to initiate the toll-like receptor-4 (TLR4)-NFκB-dependent release of cytokines from human dermal fibroblasts (You, et al., J. Biol. Chem., 2010). Here we demonstrate that FnIII-1c and the alternatively spliced FnEDA domain induce a TLR4 dependent activation of p38 MAP kinase and its downstream effector, MAPKAP Kinase-2 (MK-2), to regulate cytokine expression in fibroblasts. RT-qPCR analysis indicated that the p38-MK-2 pathway regulates IL-8 mRNA stability. Interestingly, addition of FnIII-1c and FnEDA synergistically enhanced TLR4-dependent IL-8 release. These data indicate that Fn contains two Type III domains which can activate TLR signaling to induce an inflammatory response in fibroblasts. Furthermore, our data identifies the NF-κB and p38/MK2 signaling pathways as transducers of signals initiated in response to structural changes in fibronectin. PMID:25051083

  15. Regulation of the Innate Immune Response by Fibronectin: Synergism between the III-1 and EDA Domains

    PubMed Central

    Kelsh, Rhiannon; You, Ran; Horzempa, Carol; Zheng, Mingzhe; McKeown-Longo, Paula J.

    2014-01-01

    Fibronectin is a critical component of the extracellular matrix and alterations to its structure will influence cellular behavior. Matrix fibronectin is subjected to both mechanical and biochemical regulation. The Type III domains of fibronectin can be unfolded in response to increased cellular contractility, included or excluded from the molecule by alternative splicing mechanisms, or released from the matrix by proteolysis. Using Inflammatory Cytokine microarrays we found that the alternatively spliced fibronectin Type III domain, FnEDA, and the partially unfolded III-1 domain, FnIII-1c, induced the expression of a multitude of pro-inflammatory cytokines in human dermal fibroblasts, most notably CXCL1-3, IL-8 and TNF-α. FnIII-1c, a peptide representing an unfolded intermediate structure of the first Type III domain has been shown to initiate the toll-like receptor-4 (TLR4)-NFκB-dependent release of cytokines from human dermal fibroblasts (You, et al., J. Biol. Chem., 2010). Here we demonstrate that FnIII-1c and the alternatively spliced FnEDA domain induce a TLR4 dependent activation of p38 MAP kinase and its downstream effector, MAPKAP Kinase-2 (MK-2), to regulate cytokine expression in fibroblasts. RT-qPCR analysis indicated that the p38-MK-2 pathway regulates IL-8 mRNA stability. Interestingly, addition of FnIII-1c and FnEDA synergistically enhanced TLR4-dependent IL-8 release. These data indicate that Fn contains two Type III domains which can activate TLR signaling to induce an inflammatory response in fibroblasts. Furthermore, our data identifies the NF-κB and p38/MK2 signaling pathways as transducers of signals initiated in response to structural changes in fibronectin. PMID:25051083

  16. Model-Based Design of Biochemical Microreactors

    PubMed Central

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M.; Voll, Lars M.; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P

  17. Model-Based Design of Biochemical Microreactors.

    PubMed

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M; Voll, Lars M; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P

  18. The core helium flash revisited. III. From Population I to Population III stars

    NASA Astrophysics Data System (ADS)

    Mocák, M.; Campbell, S. W.; Müller, E.; Kifonidis, K.

    2010-09-01

    Context. Degenerate ignition of helium in low-mass stars at the end of the red giant branch phase leads to dynamic convection in their helium cores. One-dimensional (1D) stellar modeling of this intrinsically multi-dimensional dynamic event is likely to be inadequate. Previous hydrodynamic simulations imply that the single convection zone in the helium core of metal-rich Pop I stars grows during the flash on a dynamic timescale. This may lead to hydrogen injection into the core and to a double convection zone structure as known from one-dimensional core helium flash simulations of low-mass Pop III stars. Aims: We perform hydrodynamic simulations of the core helium flash in two and three dimensions to better constrain the nature of these events. To this end we study the hydrodynamics of convection within the helium cores of a 1.25 M_⊙ metal-rich Pop I star (Z = 0.02), and, for the first time, a 0.85 M_⊙ metal-free Pop III star (Z = 0) near the peak of the flash. These models possess single and double convection zones, respectively. Methods: We use 1D stellar models of the core helium flash computed with state-of-the-art stellar evolution codes as initial models for our multidimensional hydrodynamic study, and simulate the evolution of these models with the Riemann solver based hydrodynamics code Herakles, which integrates the Euler equations coupled with source terms corresponding to gravity and nuclear burning. Results: The hydrodynamic simulation of the Pop I model involving a single convection zone covers 27 h of stellar evolution, while the hydrodynamic simulations of a double convection zone, in the Pop III model, span 1.8 h of stellar life. We find differences between the predictions of mixing length theory and our hydrodynamic simulations. The simulation of the single convection zone in the Pop I model shows a strong growth of the size of the convection zone due to turbulent entrainment. We therefore predict that for the Pop I model a hydrogen injection

  19. Diverse functions and reactions of class III peroxidases.

    PubMed

    Shigeto, Jun; Tsutsumi, Yuji

    2016-03-01

    Higher plants contain plant-specific peroxidases (class III peroxidase; Prxs) that exist as large multigene families. Reverse genetic studies to characterize the function of each Prx have revealed that Prxs are involved in lignification, cell elongation, stress defense and seed germination. However, the underlying mechanisms associated with plant phenotypes following genetic engineering of Prx genes are not fully understood. This is because Prxs can function as catalytic enzymes that oxidize phenolic compounds while consuming hydrogen peroxide and/or as generators of reactive oxygen species. Moreover, biochemical efforts to characterize Prxs responsible for lignin polymerization have revealed specialized activities of Prxs. In conclusion, not only spatiotemporal regulation of gene expression and protein distribution, but also differentiated oxidation properties of each Prx define the function of this class of peroxidases. PMID:26542837

  20. III-Nitride nanowire optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  1. Analysis of arsenic induced physiological and biochemical responses in a medicinal plant, Withania somnifera.

    PubMed

    Siddiqui, Fauzia; Tandon, P K; Srivastava, Sudhakar

    2015-01-01

    Withania somnifera has been an important herb in the Ayurvedic and indigenous medical systems for centuries in India. However, these grow as weeds mostly in the wastelands, which receive contaminated water from municipal and industrial sources. In the present investigation, plants of Withania somnifera were exposed to various concentrations of arsenate (AsV) and arsenite (AsIII) (0, 10, 25, 50, 100 μM) for 10 days and analysed for accumulation of arsenic (As) and physiological and biochemical changes. Plants showed more As accumulation upon exposure to AsIII (320 μg g(-1) DW in roots and 161 μg g(-1) DW in leaves) than to AsV (173 μg g(-1) DW in roots and 100 μg g(-1) DW in leaves) after 10 days of treatment. Consequently, AsIII exposure caused more toxicity to plants as compared to that AsV, as evaluated in terms of the level of photosynthetic pigments and oxidative stress parameters (superoxide, hydrogen peroxide and lipid peroxidation), particularly at higher concentrations and on longer durations. Plants could tolerate low concentrations (variable for AsIII and AsV) until longer durations (10 days) and high concentrations for shorter durations (1-5 days) through increase in antioxidant enzymes and by augmented synthesis of thiols. In conclusion, As tolerance potential of Withania plants on one hand advocates its prospective use for remediation under proper supervision and on the other demonstrates possible threat of As entry into humans due to medicinal uses. PMID:25648550

  2. Formation of the first galaxies under Population III stellar feedback

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon

    2015-01-01

    The first galaxies, which formed a few hundred million years after the big bang, are related to important cosmological questions. Given thatthey are thought to be the basic building blocks of large galaxies seen today, understanding their formation and properties is essentialto studying galaxy formation as a whole. In this dissertation talk, I will present the results of our highly-resolved cosmological ab-initio simulations to understand the assembly process of first galaxies under the feedback from the preceding generations of first stars, the so-called Population III (Pop III). The first stars formed at z≲30 in dark matter (DM) minihalos with M_{vir}=10^5-10^6Msun, predominately via molecular hydrogen (H_2) cooling. Radiation from Pop III stars dramatically altered the gas within their host minihalos, through photoionization, photoheating, and photoevaporation. Once a Pop III star explodes as a supernova (SN), heavy elements are dispersed, enriching the interstellar (ISM) and intergalactic medium (IGM), thus initiating the process of chemical evolution. I will begin by presenting how the SN explosion of the first stars influences early cosmic history, specifically assessing the time delay in further star formation and tracing the evolution of metal-enriched gas until the second episode star formation happens. These results will show the role of Pop III supernovae on the star formation transition from Pop III to Population II. Additionally, the more distant, diffuse IGM was heated by X-rays emitted by accreting black holes (BHs), or high-mass X-ray binaries (HMXBs), both remnants of Pop III stars. I will present results of a series of simulations where we study the impact of X-ray feedback from BHs and HMXBs on the star formation history in the early universe, and discuss the resulting implications on reionization. I will also present the role of X-rays on the early BH growth, providing constraints on models for supermassive black hole formation. Finally, I

  3. Study of interfacial phenomena for bio/chemical sensing applications

    NASA Astrophysics Data System (ADS)

    Min, Hwall

    This work presents the fundamental study of biological and chemical interfacial phenomena and (bio)chemical sensing applications using high frequency resonator arrays. To realize a versatile (bio)chemical sensing system for the fundamental study as well as their practical applications, the following three distinct components were studied and developed: i) detection platforms with high sensitivity, ii) novel innovative sensing materials with high selectivity, iii) analytical model for data interpretation. 8-pixel micromachined quartz crystal resonator (muQCR) arrays with a fundamental resonance frequency of 60 ¡V 90 MHz have been used to provide a reliable detection platform with high sensitivity. Room temperature ionic liquid (RTIL) has been explored and integrated into the sensing system as a smart chemical sensing material. The use of nanoporous gold (np-Au) enables the combination of the resonator and surface-enhanced Raman spectroscopy for both quantitative and qualitative measurement. A statistical model for the characterization of resonator behavior to study the protein adsorption kinetics is developed by random sequential adsorption (RSA) approach with the integration of an effective surface depletion theory. The investigation of the adsorption kinetics of blood proteins is reported as the fundamental study of biological phenomena using the proposed sensing system. The aim of this work is to study different aspects of protein adsorption and kinetics of adsorption process with blood proteins on different surfaces. We specifically focus on surface depletion effect in conjunction with the RSA model to explain the observed adsorption isotherm characteristics. A number of case studies on protein adsorption conducted using the proposed sensing system has been discussed. Effort is specifically made to understand adsorption kinetics, and the effect of surface on the adsorption process as well as the properties of the adsorbed protein layer. The second half of the

  4. Temperature-sensitive mutants of frog virus 3: biochemical and genetic characterization.

    PubMed Central

    Chinchar, V G; Granoff, A

    1986-01-01

    Nineteen frog virus 3 temperature-sensitive mutants were isolated after mutagenesis with nitrosoguanidine and assayed for viral DNA, RNA, and protein synthesis, as well as assembly site formation at permissive (25 degrees C) and nonpermissive (30 degrees C) temperatures. In addition, mutants were characterized for complementation by both quantitative and qualitative assays. Based on the genetic and biochemical data, the 19 mutants, along with 9 mutants isolated earlier, were ordered into four phenotypic classes which define defects in virion morphogenesis (class I), late mRNA synthesis (class II), viral assembly site formation (class III), and viral DNA synthesis (class IV). In addition, we used two-factor crosses to order 11 mutants, comprising 7 complementation groups, onto a linkage map spanning 77 recombination units. Images PMID:3951023

  5. Applied spectrophotometry: analysis of a biochemical mixture.

    PubMed

    Trumbo, Toni A; Schultz, Emeric; Borland, Michael G; Pugh, Michael Eugene

    2013-01-01

    Spectrophotometric analysis is essential for determining biomolecule concentration of a solution and is employed ubiquitously in biochemistry and molecular biology. The application of the Beer-Lambert-Bouguer Lawis routinely used to determine the concentration of DNA, RNA or protein. There is however a significant difference in determining the concentration of a given species (RNA, DNA, protein) in isolation (a contrived circumstance) as opposed to determining that concentration in the presence of other species (a more realistic situation). To present the student with a more realistic laboratory experience and also to fill a hole that we believe exists in student experience prior to reaching a biochemistry course, we have devised a three week laboratory experience designed so that students learn to: connect laboratory practice with theory, apply the Beer-Lambert-Bougert Law to biochemical analyses, demonstrate the utility and limitations of example quantitative colorimetric assays, demonstrate the utility and limitations of UV analyses for biomolecules, develop strategies for analysis of a solution of unknown biomolecular composition, use digital micropipettors to make accurate and precise measurements, and apply graphing software. PMID:23625877

  6. Multiple capillary biochemical analyzer with barrier member

    DOEpatents

    Dovichi, N.J.; Zhang, J.Z.

    1996-10-22

    A multiple capillary biochemical analyzer is disclosed for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal-to-noise ratio. 12 figs.

  7. Multiple capillary biochemical analyzer with barrier member

    DOEpatents

    Dovichi, Norman J.; Zhang, Jian Z.

    1996-01-01

    A multiple capillary biochemical analyzer for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal to noise ratio.

  8. Biochemical markers in butadiene-exposed workers

    SciTech Connect

    Bechtold, W.E.; Hayes, R.B.; Thornton-Manning, J.R.; Henderson, R.F.

    1994-11-01

    1,3-Butadiene (BD) is used to manufacture a wide range of polymers and copolymers including styrene-butadiene rubber, polybutadiene, and acrylonitrile-butadiene-syrene resins. The carcinogenicity of BD has been determined in life-span inhalation studies in both Sprague-Dawley rats and B6C3F{sub 1} mice. Results suggest a marked species difference in the carcinogenic effects of BD. For example, female mice exposed to as low as 6.25 ppm BD exhibited increased alveolar/bronchiolar neoplasms. In contrast, BD was only a weak carcinogen in Sprague-Dawley rats. Rats were observed to have an increase only in mammary tumors after exposure to 1000 ppm. A biochemical study of highly exposed BD workers and unexposed controls is providing valuable information on BD metabolism in humans, and how this relates to the development of intermediate biologic effects. A group of heavily exposed workers were identified in a BD production facility in China. The purpose of this paper is to report the initial results from the sampling trip in the first quarter of 1994.

  9. BALL - biochemical algorithms library 1.3

    PubMed Central

    2010-01-01

    Background The Biochemical Algorithms Library (BALL) is a comprehensive rapid application development framework for structural bioinformatics. It provides an extensive C++ class library of data structures and algorithms for molecular modeling and structural bioinformatics. Using BALL as a programming toolbox does not only allow to greatly reduce application development times but also helps in ensuring stability and correctness by avoiding the error-prone reimplementation of complex algorithms and replacing them with calls into the library that has been well-tested by a large number of developers. In the ten years since its original publication, BALL has seen a substantial increase in functionality and numerous other improvements. Results Here, we discuss BALL's current functionality and highlight the key additions and improvements: support for additional file formats, molecular edit-functionality, new molecular mechanics force fields, novel energy minimization techniques, docking algorithms, and support for cheminformatics. Conclusions BALL is available for all major operating systems, including Linux, Windows, and MacOS X. It is available free of charge under the Lesser GNU Public License (LPGL). Parts of the code are distributed under the GNU Public License (GPL). BALL is available as source code and binary packages from the project web site at http://www.ball-project.org. Recently, it has been accepted into the debian project; integration into further distributions is currently pursued. PMID:20973958

  10. PHA bioplastics, biochemicals, and energy from crops.

    PubMed

    Somleva, Maria N; Peoples, Oliver P; Snell, Kristi D

    2013-02-01

    Large scale production of polyhydroxyalkanoates (PHAs) in plants can provide a sustainable supply of bioplastics, biochemicals, and energy from sunlight and atmospheric CO(2). PHAs are a class of polymers with various chain lengths that are naturally produced by some microorganisms as storage materials. The properties of these polyesters make them functionally equivalent to many of the petroleum-based plastics that are currently in the market place. However, unlike most petroleum-derived plastics, PHAs can be produced from renewable feedstocks and easily degrade in most biologically active environments. This review highlights research efforts over the last 20 years to engineer the production of PHAs in plants with a focus on polyhydroxybutryrate (PHB) production in bioenergy crops with C(4) photosynthesis. PHB has the potential to be a high volume commercial product with uses not only in the plastics and materials markets, but also in renewable chemicals and feed. The major challenges of improving product yield and plant fitness in high biomass yielding C(4) crops are discussed in detail. PMID:23294864

  11. Biochemical studies of the tracheobronchial epithelium

    SciTech Connect

    Mass, M.J.; Kaufman, D.G.

    1984-06-01

    Tracheobronchial epithelium has been a focus of intense investigation in the field of chemical carcinogenesis. We have reviewed some biochemical investigations that have evolved through linkage with carcinogenesis research. These areas of investigation have included kinetics of carcinogen metabolism, identification of carcinogen metabolites, levels of carcinogen binding to DNA, and analysis of carcinogen-DNA adducts. Such studies appear to have provided a reasonable explanation for the susceptibilities of the respiratory tracts of rats and hamsters to carcinogenesis by benzo(a)pyrene. Coinciding with the attempts to understand the initiation of carcinogenesis in the respiratory tract has also been a major thrust aimed at effecting its prevention both in humans and in animal models for human bronchogenic carcinoma. These studies have concerned the effects of derivatives of vitamin A (retinoids) and their influence on normal cell biology and biochemistry of this tissue. Recent investigations have included the effects of retinoid deficiency on the synthesis of RNA and the identification of RNA species associated with this biological state, and also have included the effects of retinoids on the synthesis of mucus-related glycoproteins. Tracheal organ cultures from retinoid-deficient hamsters have been used successfully to indicate the potency of synthetic retinoids by monitoring the reversal of squamous metaplasia. Techniques applied to this tissue have also served to elucidate features of the metabolism of retinoic acid using high pressure liquid chromatography. 94 references, 9 figures, 2 tables.

  12. Control analysis for autonomously oscillating biochemical networks.

    PubMed

    Reijenga, Karin A; Westerhoff, Hans V; Kholodenko, Boris N; Snoep, Jacky L

    2002-01-01

    It has hitherto not been possible to analyze the control of oscillatory dynamic cellular processes in other than qualitative ways. The control coefficients, used in metabolic control analyses of steady states, cannot be applied directly to dynamic systems. We here illustrate a way out of this limitation that uses Fourier transforms to convert the time domain into the stationary frequency domain, and then analyses the control of limit cycle oscillations. In addition to the already known summation theorems for frequency and amplitude, we reveal summation theorems that apply to the control of average value, waveform, and phase differences of the oscillations. The approach is made fully operational in an analysis of yeast glycolytic oscillations. It follows an experimental approach, sampling from the model output and using discrete Fourier transforms of this data set. It quantifies the control of various aspects of the oscillations by the external glucose concentration and by various internal molecular processes. We show that the control of various oscillatory properties is distributed over the system enzymes in ways that differ among those properties. The models that are described in this paper can be accessed on http://jjj.biochem.sun.ac.za. PMID:11751299

  13. Biochemical and proteomic characterization of alkaptonuric chondrocytes.

    PubMed

    Braconi, Daniela; Bernardini, Giulia; Bianchini, Claretta; Laschi, Marcella; Millucci, Lia; Amato, Loredana; Tinti, Laura; Serchi, Tommaso; Chellini, Federico; Spreafico, Adriano; Santucci, Annalisa

    2012-09-01

    Alkaptonuria (AKU) is a rare genetic disease associated with the accumulation of homogentisic acid (HGA) and its oxidized/polymerized products which leads to the deposition of melanin-like pigments (ochronosis) in connective tissues. Although numerous case reports have described ochronosis in joints, little is known on the molecular mechanisms leading to such a phenomenon. For this reason, we characterized biochemically chondrocytes isolated from the ochronotic cartilage of AKU patients. Based on the macroscopic appearance of the ochronotic cartilage, two sub-populations were identified: cells coming from the black portion of the cartilage were referred to as "black" AKU chondrocytes, while those coming from the white portion were referred to as "white" AKU chondrocytes. Notably, both AKU chondrocytic types were characterized by increased apoptosis, NO release, and levels of pro-inflammatory cytokines. Transmission electron microscopy also revealed that intracellular ochronotic pigment deposition was common to both "white" and "black" AKU cells. We then undertook a proteomic and redox-proteomic analysis of AKU chondrocytes which revealed profound alterations in the levels of proteins involved in cell defence, protein folding, and cell organization. An increased post-translational oxidation of proteins, which also involved high molecular weight protein aggregates, was found to be particularly relevant in "black" AKU chondrocytes. PMID:22213341

  14. Biochemical and Proteomic Characterization of Alkaptonuric Chondrocytes

    PubMed Central

    Braconi, Daniela; Bernardini, Giulia; Bianchini, Claretta; Laschi, Marcella; Millucci, Lia; Amato, Loredana; Tinti, Laura; Serchi, Tommaso; Chellini, Federico; Spreafico, Adriano; Santucci, Annalisa

    2012-01-01

    Alkaptonuria (AKU) is a rare genetic disease associated with the accumulation of homogentisic acid (HGA) and its oxidized/polymerized products which leads to the deposition of melanin-like pigments (ochronosis) in connective tissues. Although numerous case reports have described ochronosis in joints, little is known on the molecular mechanisms leading to such a phenomenon. For this reason, we characterized biochemically chondrocytes isolated from the ochronotic cartilage of AKU patients. Based on the macroscopic appearance of the ochronotic cartilage, two sub-populations were identified: cells coming from the black portion of the cartilage were referred to as “black” AKU chondrocytes, while those coming from the white portion were referred to as “white” AKU chondrocytes. Notably, both AKU chondrocytic types were characterized by increased apoptosis, NO release, and levels of pro-inflammatory cytokines. Transmission electron microscopy also revealed that intracellular ochronotic pigment deposition was common to both “white” and “black” AKU cells. We then undertook a proteomic and redox-proteomic analysis of AKU chondrocytes which revealed profound alterations in the levels of proteins involved in cell defence, protein folding, and cell organization. An increased post-translational oxidation of proteins, which also involved high molecular weight protein aggregates, was found to be particularly relevant in “black” AKU chondrocytes. J. Cell. Physiol. 227: 3333–3343, 2012. © 2011 Wiley Periodicals, Inc. PMID:22213341

  15. Molecular evolution of SRP cycle components: functional implications.

    PubMed Central

    Althoff, S; Selinger, D; Wise, J A

    1994-01-01

    Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein that targets a subset of nascent presecretory proteins to the endoplasmic reticulum membrane. We have considered the SRP cycle from the perspective of molecular evolution, using recently determined sequences of genes or cDNAs encoding homologs of SRP (7SL) RNA, the Srp54 protein (Srp54p), and the alpha subunit of the SRP receptor (SR alpha) from a broad spectrum of organisms, together with the remaining five polypeptides of mammalian SRP. Our analysis provides insight into the significance of structural variation in SRP RNA and identifies novel conserved motifs in protein components of this pathway. The lack of congruence between an established phylogenetic tree and size variation in 7SL homologs implies the occurrence of several independent events that eliminated more than half the sequence content of this RNA during bacterial evolution. The apparently non-essential structures are domain I, a tRNA-like element that is constant in archaea, varies in size among eucaryotes, and is generally missing in bacteria, and domain III, a tightly base-paired hairpin that is present in all eucaryotic and archeal SRP RNAs but is invariably absent in bacteria. Based on both structural and functional considerations, we propose that the conserved core of SRP consists minimally of the 54 kDa signal sequence-binding protein complexed with the loosely base-paired domain IV helix of SRP RNA, and is also likely to contain a homolog of the Srp68 protein. Comparative sequence analysis of the methionine-rich M domains from a diverse array of Srp54p homologs reveals an extended region of amino acid identity that resembles a recently identified RNA recognition motif. Multiple sequence alignment of the G domains of Srp54p and SR alpha homologs indicates that these two polypeptides exhibit significant similarity even outside the four GTPase consensus motifs, including a block of nine contiguous amino acids in a location

  16. Interplanetary density models as inferred from solar Type III bursts

    NASA Astrophysics Data System (ADS)

    Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert

    2016-04-01

    We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.

  17. A Three Generation Study with Effect of Imidacloprid in Rats: Biochemical and Histopathological Investigation

    PubMed Central

    Vohra, Prerna; Khera, Kuldeep Singh

    2015-01-01

    Objectives: This study was designed to evaluate the dose-dependent toxic effects of imidacloprid on the female ratsthat were treated through three generations (F0, F1, and F2). F2 female rats were sacrificed at the end of the experiment to see the long-term effect of imidacloprid. Materials and Methods: Rats were divided into three groups of 6 each. Group I served as control. Group II served as treated I and given 1/45th LD50 (10 mg/kg/day) of imidacloprid. Group III served as treated II and given 1/22th LD50 (20 mg/kg/day) of imidacloprid. After 60 days, oral administration of imidacloprid females were mated with normal males to get F1 and F2 generation. F2 generation female rats were sacrificed at the end of the experiment. Biochemical and a histopathological investigation was done for three groups of F2 generation and statistically analyzed by ANOVA. Results: Average feed intake of F2 female rats was significantly reduced (P < 0.01) at 20 mg/kg/day dose of imidacloprid. There was a significant increase in the activity of alanine aminotransferase, AKP, and glucose 6-phosphate dehydrogenase in Group III rats of F2 generation. There was a significant decrease in acetylcholine esterase activity in plasma and brain of both the imidacloprid treated groups. Tissue samples of liver, kidney, and brain of females of F2 generation showed histopathological condition. Conclusion: The results indicated that imidacloprid at a dose of 20 mg/kg bw/day exerts significant toxicological effects on biochemical and histological studies of F2 generation females as compare to 10 mg/kg bw/day. PMID:26862272

  18. Hemato-biochemical and hormonal profiles in post-partum water buffaloes (Bubalus bubalis)

    PubMed Central

    Kumar, Sunil; Balhara, A. K.; Kumar, Rajesh; Kumar, Naresh; Buragohain, Lukumoni; Baro, Daoharu; Sharma, R. K.; Phulia, S. K.; Singh, Inderjeet

    2015-01-01

    Aim: The objective of the present study was to compare serum as well as follicular fluid (FF) biochemical and hormonal profiles along with hematological parameters in postpartum estrus, anestrus, and cystic buffaloes. Materials and Methods: Postpartum buffaloes were selected in three different groups (within 40-60 days of parturition at estrus-Group-I, postpartum >90 days at anestrum-Group-II, and postpartum cystic buffaloes in Group III). The animals selected were examined for follicular wave dynamics by routine trans-rectal ultrasonography and FF was collected by transvaginal ultrasound-guided ovum pick up technique. All hematological and biochemical parameters were analyzed by automatic analyzers while hormonal profiles analyzed by commercially available ELISA kits. Results: In the present investigation, estrum and anestrum animal differ significantly in hemoglobin levels. Serum estradiol differs significantly in estrus and anestrus while no significant difference in progesterone concentration was noted among all three stages. The results of our study suggest that significant higher increase in total protein (TP), calcium and glucose values in estrum while urea, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase significantly higher in anestrum animals. Conclusion: The conclusion of the present study is that TP and albumin, calcium, urea, glucose affects oocyte development and quality. PMID:27047125

  19. Effect of Training on Physiological and Biochemical Variables of Soccer Players of Different Age Groups

    PubMed Central

    Manna, Indranil; Khanna, Gulshan Lal; Chandra Dhara, Prakash

    2010-01-01

    Purpose To find out the effect of training on selected physiological and biochemical variables of Indian soccer players of different age groups. Methods A total of 120 soccer players volunteered for the study, were divided (n = 30) into 4 groups: (i) under 16 years (U16), (ii) under 19 years (U19), (iii) under 23 years (U23), (iv) senior (SR). The training sessions were divided into 2 phases (a) Preparatory Phase (PP, 8 weeks) and (b) Competitive Phase (CP, 4 weeks). The training program consisted of aerobic, anaerobic and skill development, and were completed 4 hrs/day; 5 days/week. Selected physiological and biochemical variables were measured at zero level (baseline data, BD) and at the end of PP and CP. Results A significant increase (P < 0.05) in lean body mass (LBM), VO2max, anaerobic power, grip and back strength, urea, uric acid and high density lipoprotein cholesterol (HDL-C); and a significant decrease (P < 0.05) in body fat, hemoglobin (Hb), total cholesterol (TC), triglyceride (TG) and low density lipoprotein cholesterol (LDL-C) were detected in some groups in PP and CP phases of the training when compare to BD. However, no significant change was found in body mass and maximal heart rate of the players after the training program. Conclusion This study would provide useful information for training and selection of soccer players of different age groups. PMID:22375187

  20. Biochemical and serological characterization of Bacteroides intermedius strains isolated from the deep periodontal pocket.

    PubMed Central

    Dahlén, G; Wikström, M; Renvert, S; Gmür, R; Guggenheim, B

    1990-01-01

    Fifty-one fluorescence-positive black-pigmented Bacteroides strains obtained from 51 patients with deep periodontal pockets (greater than 6 mm) were identified and characterized. Fifty of these strains were presumptively identified as Bacteroides intermedius according to the indole reaction. This was confirmed by further biochemical characterization. The 50 strains from diseased sites were then compared with 16 B. intermedius strains isolated from periodontally healthy individuals with no signs of destructive periodontal disease. Tests for antimicrobial susceptibility showed similar patterns for all 50 pocket-derived strains, except for one beta-lactamase-positive strain that was resistant to penicillin G and ampicillin. Forty-seven strains were tested for binding of three monoclonal antibodies defining three distinct serogroups of B. intermedius. Thirty-one strains belonged to serogroup I, three to serogroup II and thirteen to serogroup III. In comparison to the strains from the shallow periodontal pockets, serogroup I was significantly overrepresented in the patient group with periodontal disease. We conclude that saccharolytic black-pigmented Bacteroides species from deep periodontal pockets constituted, with very rare exceptions, a biochemically homogeneous but antigenically heterogeneous group of B. intermedius and that serogroup I is predominantly found in deep periodontal lesions. PMID:2229351

  1. Origins and Evolution of Life

    NASA Astrophysics Data System (ADS)

    Gargaud, Muriel; López-García, Purificación; Martin, Hervé

    2011-01-01

    Part I. What Is Life?: 1. Problems raised by a definition of life M. Morange; 2. Some remarks about uses of cosmological anthropic 'principles' D. Lambert; 3. Minimal cell: the biologist point of view C. Brochier-Armanet; 4. Minimal cell: the computer scientist point of view H. Bersini; 5. Origins of life: computing and simulation approaches B. Billoud; Part II. Astronomical and Geophysical Context of the Emergence of Life: 6. Organic molecules in interstellar medium C. Ceccarelli and C. Cernicharo; 7. Cosmochemical evolution and the origin of life: insights from meteorites S. Pizzarello; 8. Astronomical constraints on the emergence of life M. Gounelle and T. Montmerle; 9. Formation of habitable planets J. Chambers; 10. The concept of galactic habitable zone N. Prantzos; 11. The young Sun and its influence on planetary atmospheres M. Güdel and J. Kasting; 12. Climates of the Earth G. Ramstein; Part III. Role of Water in the Emergence of Life: 13. Liquid water: a necessary condition to all forms of life K. Bartik, G. Bruylants, E. Locci and J. Reisse; 14. The role of water in the formation and evolution of planets T. Encrenaz; 15. Water on Mars J. P. Bibring; Part IV. From Non-Living Systems to Life: 16. Energetic constraints on prebiotic pathways: application to the emergence of translation R. Pascal and L. Boiteau; 17. Comparative genomics and early cell evolution A. Lazcano; 18. Origin and evolution of metabolisms J. Peretó; Part V. Mechanisms for Life Evolution: 19. Molecular phylogeny: inferring the patterns of evolution E. Douzery; 20. Horizontal gene transfer: mechanisms and evolutionary consequences D. Moreira; 21. The role of symbiosis in eukaryotic evolution A. Latorre, A. Durbán, A. Moya and J. Peretó; Part VI. Life in Extreme Conditions: 22. Life in extreme conditions: Deinococcus radiodurans, an organism able to survive prolonged desiccation and high doses of ionising radiation S. Sommer and M. Toueille; 23. Molecular effects of UV and ionizing

  2. Antibiotics and evolution: food for thought.

    PubMed

    Strachan, C R; Davies, J

    2016-03-01

    The role of secondary metabolites in effecting and modulating reactions during early biochemical evolution has been largely unappreciated. It is possible that low molecular weight effectors were gradually replaced by polypeptides as polymerizing reactions became more complex, but retained some ability to interact with original receptor sites. Indeed, by reviewing the era of antibiotics in this light we can begin to reconcile the ancient and contemporary activities of these molecules. The corollary being that secondary metabolites participate in a vast array of interactions in nature and investigating their intended receptors will be revealing in both pharmacological and evolutionary terms. PMID:26527578

  3. Organometallic neptunium(III) complexes.

    PubMed

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements. PMID:27442286

  4. Terrain Perception for DEMO III

    NASA Technical Reports Server (NTRS)

    Manduchi, R.; Bellutta, P.; Matthies, L.; Owens, K.; Rankin, A.

    2000-01-01

    The Demo III program has as its primary focus the development of autonomous mobility for a small rugged cross country vehicle. In this paper we report recent progress on both stereo-based obstacle detection and terrain cover color-based classification.

  5. Title III hazardous air pollutants

    SciTech Connect

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  6. Chromium(III), insoluble salts

    Integrated Risk Information System (IRIS)

    Chromium ( III ) , insoluble salts ; CASRN 16065 - 83 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments

  7. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections...

  8. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections...

  9. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections...

  10. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections...

  11. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections...

  12. Viral evolution

    PubMed Central

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2012-01-01

    Explaining the origin of viruses remains an important challenge for evolutionary biology. Previous explanatory frameworks described viruses as founders of cellular life, as parasitic reductive products of ancient cellular organisms or as escapees of modern genomes. Each of these frameworks endow viruses with distinct molecular, cellular, dynamic and emergent properties that carry broad and important implications for many disciplines, including biology, ecology and epidemiology. In a recent genome-wide structural phylogenomic analysis, we have shown that large-to-medium-sized viruses coevolved with cellular ancestors and have chosen the evolutionary reductive route. Here we interpret these results and provide a parsimonious hypothesis for the origin of viruses that is supported by molecular data and objective evolutionary bioinformatic approaches. Results suggest two important phases in the evolution of viruses: (1) origin from primordial cells and coexistence with cellular ancestors, and (2) prolonged pressure of genome reduction and relatively late adaptation to the parasitic lifestyle once virions and diversified cellular life took over the planet. Under this evolutionary model, new viral lineages can evolve from existing cellular parasites and enhance the diversity of the world’s virosphere. PMID:23550145

  13. Insect evolution.

    PubMed

    Engel, Michael S

    2015-10-01

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology. PMID:26439349

  14. [INVESTIGATION OF BLOOD BIOCHEMICAL INDICES DURING BICYCLE ERGOMETRY].

    PubMed

    Davydov, B V; Stepanova, G P; Krivitsyna, Z A; Vorontsov, A L; Voronkov, Yu I

    2015-01-01

    Our investigations showed that physical work (bicycle ergometry) alters the biochemical status of male volunteers. On the 5th minute of bicycle endometry capillary blood looses significantly glucose and increases magnesium, phosphorus and particularly lactic acid. Creatine phosphokinase activity and trygliceride levels did not deviate much from baseline values. All the changes had a similar trend equally in the supine and sitting position. Therefore, biochemical investigations may complement essentially the physiological and neurophysiological tests of human adaptability to physical loads. The investigation utilized the dry chemistry technology of rapid biochemical diagnostics. PMID:26738302

  15. Pumped biochemical reactions, nonequilibrium circulation, and stochastic resonance.

    PubMed

    Qian, H; Qian, M

    2000-03-01

    Based on a master equation formalism for mesoscopic, unimolecular biochemical reactions, we show the periodic oscillation arising from severe nonequilibrium pumping is intimately related to the periodic motion in recently studied stochastic resonance (SR). The white noise in SR is naturally identified with the temperature in the biochemical reactions; the drift in the SR is associated with the circular flux in nonequilibrium steady state (NESS). As in SR, an optimal temperature for biochemical oscillation is shown to exist. A unifying framework for Hill's theory of NESS and the SR without periodic forcing is presented. The new formalism provides an analytically solvable model for SR. PMID:11017261

  16. The Biochemical Prognostic Factors of Subclinical Hypothyroidism

    PubMed Central

    Lee, Myung Won; Shin, Dong Yeob; Kim, Kwang Joon; Hwang, Sena

    2014-01-01

    Background Patients with subclinical hypothyroidism (SHT) are common in clinical practice. However, the clinical significance of SHT, including prognosis, has not been established. Further clarifying SHT will be critical in devising a management plan and treatment guidelines for SHT patients. Thus, the aim of this study was to investigate the prognostic factors of SHT. Methods We reviewed the medical records of Korean patients who visited the endocrinology outpatient clinic of Severance Hospital from January 2008 to September 2012. Newly-diagnosed patients with SHT were selected and reviewed retrospectively. We compared two groups: the SHT maintenance group and the spontaneous improvement group. Results The SHT maintenance group and the spontaneous improvement group had initial thyroid-stimulating hormone (TSH) levels that were significantly different (P=0.035). In subanalysis for subjects with TSH levels between 5 to 10 µIU/mL, the spontaneous improvement group showed significantly lower antithyroid peroxidase antibody (anti-TPO-Ab) titer than the SHT maintenance group (P=0.039). Regarding lipid profiles, only triglyceride level, unlike total cholesterol and low density lipoprotein cholesterol, was related to TSH level, which is correlated with the severity of SHT. Diffuse thyroiditis on ultrasonography only contributed to the severity of SHT, not to the prognosis. High sensitivity C-reactive protein and urine iodine excretion, generally regarded as possible prognostic factors, did not show any significant relation with the prognosis and severity of SHT. Conclusion Only initial TSH level was a definite prognostic factor of SHT. TPO-Ab titer was also a helpful prognostic factor for SHT in cases with mildly elevated TSH. Other than TSH and TPO-Ab, we were unable to validate biochemical prognostic factors in this retrospective study for Korean SHT patients. PMID:25031888

  17. Low Power Laser Stimulation Of Biochemical Processes

    NASA Astrophysics Data System (ADS)

    Labbe, Robert F.; Rettmer, Rebecca L.; Davis, Holly

    1988-06-01

    Scattered clinical reports suggest that low power (LP) laser irradiation may induce a biostimulation of cell growth and/or metabolism, especially relating to healing processes. On the other hand, few basic science, in-depth reports relating to such effects have appeared. Hence, a mechanism of action of LP laser irradiation on cells is unknown. A systematic evaluation has been undertaken in order to define more clearly the experimental conditions for producing biostimulation and to provide some basis for action of LP laser irradiation. A Ga-Al-As diode laser emitting in the near infrared (904 nm) was used to effectively penetrate cells at energy levels that are in the mW range. The LP laser was pulsed at 50 ns and 200 hz. Human fibroblasts growing in culture served as the experimental model. Since LP laser irradiation has been reported to stimulate collagen synthesis, we first investigated the induction of hydroxyproline formation, a collagen precursor. This biosynthetic process could be increased two-fold at a twice daily energy input of 4.5 mJ. With proline supplementation, hydroxylation increased eight-fold. At approximately the same energy level and irradiation conditions, cells also had a three-fold increased uptake of ascorbic acid, a required cofactor for hydroxylation of proline. These findings considered together with published biochemical studies of collagen suggest that higher levels of intracellular ascorbate catalyze hydroxylation of proline and, concomitantly, induce collagen formation. Other data relevant to cell morphology and viability suggest that the LP laser irradiation had no effect on cell proliferation but rather was a transient effect on intermediary metabolism manifested as changes that may be unique to collagen.

  18. Chemical constraints on the contribution of population III stars to cosmic reionization

    SciTech Connect

    Kulkarni, Girish; Hennawi, Joseph F.; Rollinde, Emmanuel; Vangioni, Elisabeth

    2014-05-20

    Recent studies have highlighted that galaxies at z = 6-8 fall short of producing enough ionizing photons to reionize the intergalactic medium, and suggest that Population III stars could resolve this tension, because their harder spectra can produce ∼10 × more ionizing photons than Population II. We use a semi-analytic model of galaxy formation, which tracks galactic chemical evolution, to gauge the impact of Population III stars on reionization. Population III supernovae produce distinct metal abundances, and we argue that the duration of the Population III era can be constrained by precise relative abundance measurements in high-z damped Lyα absorbers (DLAs), which provide a chemical record of past star formation. We find that a single generation of Population III stars can self-enrich galaxies above the critical metallicity Z {sub crit} = 10{sup –4} Z {sub ☉} for the Population III-to-II transition, on a very short timescale t {sub self-enrich} ∼ 10{sup 6} yr, owing to the large metal yields and short lifetimes of Population III stars. This subsequently terminates the Population III era, so they contribute ≳ 50% of the ionizing photons only for z ≳ 30, and at z = 10 contribute <1%. The Population III contribution can be increased by delaying metal mixing into the interstellar medium. However, comparing the resulting metal abundance pattern to existing measurements in z ≲ 6 DLAs, we show that the observed [O/Si] ratios of absorbers rule out Population III stars being a major contributor to reionization. Future abundance measurements of z ∼ 7-8 QSOs and gamma-ray bursts should probe the era when the chemical vestiges of Population III star formation become detectable.

  19. Gamma-Ray Bursts and Population III Stars

    NASA Astrophysics Data System (ADS)

    Toma, Kenji; Yoon, Sung-Chul; Bromm, Volker

    2016-04-01

    Gamma-ray bursts (GRBs) are ideal probes of the epoch of the first stars and galaxies. We review the recent theoretical understanding of the formation and evolution of the first (so-called Population III) stars, in light of their viability of providing GRB progenitors. We proceed to discuss possible unique observational signatures of such bursts, based on the current formation scenario of long GRBs. These include signatures related to the prompt emission mechanism, as well as to the afterglow radiation, where the surrounding intergalactic medium might imprint a telltale absorption spectrum. We emphasize important remaining uncertainties in our emerging theoretical framework.

  20. Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls

    NASA Astrophysics Data System (ADS)

    Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.

    2011-12-01

    Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.

  1. EMU evolution

    NASA Technical Reports Server (NTRS)

    Rouen, M.

    1991-01-01

    Evolution of Extravehicular Mobility Unit (EMU) technology is necessary to support the Extravehicular Activity (EVA) requirements of the Space Station Freedom Program and those of the Space Exploration Initiative (SEI). Key qualities supporting long-duration missions include technologies that are highly reliable, durable, minimize logistics requirements, and are in-flight maintainable and serviceable. While these qualities are common to SSF and SEI EVA, development paths will differ where specific mission requirements impose different constraints. Development of reusable, regenerative technologies is necessary to minimize the logistics penalties. Increased battery discharge/recharge cycle life and usable wet life, compact high current density fuel cells, reusable CO2 absorbing media, and thermal radiation coupled with venting heat rejection technologies are just some methods of reducing consumables. Development must strive for durable, reliable systems that are in-flight serviceable and maintainable, which are vital for missions where logistics capabilities are extremely constrained. Key areas include suit components (e.g., gloves, boots, and cooling garments), and life support hardware such as fans, pumps, instrumentation, and emergency O2 systems. Higher pressure suits will reduce EVA prebreathe requirements and pre-EVA operations overall. Many challenges of higher pressure suits have been addressed by on-going development. Emphasis on glove development is necessary to provide low fatigue, dexterous glove mobility at higher suit pressures. Minimum impact hooks and scars which support an advanced SSF EMU have been identified. These accommodations permit upgrades that support servicing of low volume, high pressure oxygen systems, and hydrogen technologies such as fuel cell, and venting hydrogen heat rejection systems.

  2. Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars

    PubMed Central

    Smith, Joseph V.

    1998-01-01

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars. PMID:9520372

  3. Identification, Biochemical Characterization, and Evolution of the Rhizopus oryzae 99-880 Polygalacturonase Gene Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A search of the recently sequenced Rhizopus oryzae strain 99-880 genome database uncovered 18 putative polygalacturonase genes with 2 genes being identical and only 1 with similarity to a previously reported R. oryzae polygalacturonase gene. The 17 different genes share 50% to greater than 90% iden...

  4. Approaches to Chemical and Biochemical Information and Signal Processing

    NASA Astrophysics Data System (ADS)

    Privman, Vladimir

    2012-02-01

    We outline models and approaches for error control required to prevent buildup of noise when ``gates'' and other ``network elements'' based on (bio)chemical reaction processes are utilized to realize stable, scalable networks for information and signal processing. We also survey challenges and possible future research. [4pt] [1] Control of Noise in Chemical and Biochemical Information Processing, V. Privman, Israel J. Chem. 51, 118-131 (2010).[0pt] [2] Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic, V. Privman, J. Halamek, M. A. Arugula, D. Melnikov, V. Bocharova and E. Katz, J. Phys. Chem. B 114, 14103-14109 (2010).[0pt] [3] Towards Biosensing Strategies Based on Biochemical Logic Systems, E. Katz, V. Privman and J. Wang, in: Proc. Conf. ICQNM 2010 (IEEE Comp. Soc. Conf. Publ. Serv., Los Alamitos, California, 2010), pages 1-9.

  5. NERVOUS-SYSTEM SPECIFIC PROTEINS AS BIOCHEMICAL INDICATORS OF NEUROTOXICITY

    EPA Science Inventory

    Recent advances in neuroimmunology and protein purification methodology have led to the identification of nervous-system specific proteins. Their intimate relationship to the cellular and functional heterogeneity of the nervous system, makes these proteins ideal biochemical marke...

  6. 2011 Biomass Program Platform Peer Review: Biochemical Conversion

    SciTech Connect

    Pezzullo, Leslie

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Biochemical Conversion Platform Review meeting.

  7. Resonance electron attachment to plant hormones and its likely connection with biochemical processes

    NASA Astrophysics Data System (ADS)

    Pshenichnyuk, Stanislav A.; Modelli, Alberto

    2014-01-01

    Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0-6 eV) electrons into vacant molecular orbitals of salicylic acid (I) and its derivatives 3-hydroxy- (II) and 4-hydroxybenzoic acid (III), 5-cloro salicylic acid (IV) and methyl salicylate (V) was investigated for the first time by electron transmission spectroscopy. The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I-V, detected with a mass filter as a function of the incident electron energy in the 0-14 eV energy range. The most intense negative fragment produced by DEA to isomers I-III is the dehydrogenated molecular anion [M-H]-, mainly formed at incident electron energies around 1 eV. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method was also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo.

  8. Resonance electron attachment to plant hormones and its likely connection with biochemical processes

    SciTech Connect

    Pshenichnyuk, Stanislav A.; Modelli, Alberto

    2014-01-21

    Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0–6 eV) electrons into vacant molecular orbitals of salicylic acid (I) and its derivatives 3-hydroxy- (II) and 4-hydroxybenzoic acid (III), 5-cloro salicylic acid (IV) and methyl salicylate (V) was investigated for the first time by electron transmission spectroscopy. The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I–V, detected with a mass filter as a function of the incident electron energy in the 0–14 eV energy range. The most intense negative fragment produced by DEA to isomers I–III is the dehydrogenated molecular anion [M–H]{sup −}, mainly formed at incident electron energies around 1 eV. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method was also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo.

  9. Hereditary coproporphyria: comparison of molecular and biochemical investigations in a large family.

    PubMed

    Allen, K R; Whatley, S D; Degg, T J; Barth, J H

    2005-01-01

    Hereditary coproporphyria (HCP) is the least common of the three autosomal dominant acute porphyrias. To compare the sensitivity of metabolite measurements for the identification of asymptomatic HCP, we carried out a molecular and biochemical investigation of a large family in which HCP is caused by a previously unreported frameshift mutation (c.119delA). Thirteen of 19 asymptomatic family members, aged 10-72 years, were shown by mutational analysis to have HCP. The faecal coproporphyrin isomer III:I ratio was increased in all of these 13 family members; faecal total porphyrin concentration and urinary porphyrin excretion were increased in 11 and 8 of them, respectively. Plasma porphyrin concentrations were marginally increased in three individuals and plasma fluorescence emission scanning showed a porphyrin peak at 618 nm in two of these. Our results add to the evidence that an increased faecal porphyrin coproporphyrin III:I ratio is a highly sensitive test for the detection of clinically latent HCP in individuals over the age of 10 years; its sensitivity below this age remains uncertain. They also show that plasma fluorescence emission scanning is not useful for the investigation of families with HCP. PMID:16151909

  10. Precipitates of Al(III), Sc(III), and La(III) at the muscovite-water interface.

    PubMed

    Saslow Gomez, Sarah A; Geiger, Franz M

    2014-11-20

    The interaction of Al(III), Sc(III), and La(III) with muscovite-water interfaces was studied at pH 4 and 10 mM NaCl using second harmonic generation (SHG) and X-ray photoelectron spectroscopy (XPS). SHG data for Sc(III) and La(III) suggest complete and/or partial irreversible adsorption that is attributed by XPS to the growth of Sc(III) and La(III) hydroxides/oxides on the muscovite surface. Al(III) adsorption appears to coincide with the growth of gibbsite (Al(OH)3) deposits on the muscovite surface, as indicated by the magnitude of the interfacial potential computed from the SHG data. This interpretation of the data is consistent with previous studies reporting the epitaxial growth of gibbsite on the muscovite surface under similar conditions. The implication of our findings is that the surface charge density of mica may change (and in the case of Al(III), even flip sign from negative (mica) to positive (gibbsite)) when Al(III), Sc(III), or La(III) is present in aqueous phases in contact with heterogeneous geochemical media rich in mica-class minerals, even at subsaturation conditions. PMID:25380548

  11. Evolution of feline immunodeficiency virus Gag proteins.

    PubMed

    Burkala, Evan; Poss, Mary

    2007-10-01

    We evaluated the predicted biochemical properties of Gag proteins from a diverse group of feline immunodeficiency viruses (FIV) to determine how different evolutionary histories of virus and host have changed or constrained these important structural proteins. Our data are based on FIV sequences derived from domestic cat (FIVfca), cougar (FIVpco), and lions (FIVple). Analyses consisted of determining the selective forces acting at each position in the protein and the comparing predictions for secondary structure, charge, hydrophobicity and flexibility for matrix, capsid and nucleocapsid, and the C-terminal peptide, which comprise the Gag proteins. We demonstrate that differences among the FIV Gag proteins have largely arisen by neutral evolution, although many neutrally evolving regions have maintained biochemical features. Regions with predicted differences in biochemical features appear to involve intramolecular interactions and structural elements that undergo conformational changes during particle maturation. In contrast, the majority of sites involved in intermolecular contacts on the protein surface are constrained by purifying selection. There is also conservation of sites that interact with host proteins associated with cellular trafficking and particle budding. NC is the only protein with evidence of positive selection, two of which occur in the N-terminal region responsible for RNA binding and interaction with host proteins. PMID:17265140

  12. NIF Title III engineering plan

    SciTech Connect

    Deis, G

    1998-06-01

    The purpose of this document is to define the work that must be accomplished by the NIF Project during Title III Engineering. This definition is intended to be sufficiently detailed to provide a framework for yearly planning, to clearly identify the specific deliverables so that the Project teams can focus on them, and to provide a common set of objectives and processes across the Project. This plan has been preceded by similar documents for Title I and Title II design and complements the Site Management Plan, the Project Control Manual, the Quality Assurance Program Plan, the RM Parsons NIF Title III Configuration Control Plan, the Integrated Project Schedule, the Preliminary Safety Analysis Report, the Configuration Management Plan, and the Transition Plan.

  13. DSN tracking system: Mark III-77

    NASA Technical Reports Server (NTRS)

    Chaney, W. D.

    1977-01-01

    The Deep Space Network tracking system is described. Revisions of subsystem Mark III-75 are briefly outlined, and the currently used multimission support subsystem Mark III-77 is described. Tracking functions performed are given as well.

  14. Energy-based analysis of biochemical cycles using bond graphs

    PubMed Central

    Gawthrop, Peter J.; Crampin, Edmund J.

    2014-01-01

    Thermodynamic aspects of chemical reactions have a long history in the physical chemistry literature. In particular, biochemical cycles require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems, where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on the early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks. PMID:25383030

  15. Energy-based analysis of biochemical cycles using bond graphs.

    PubMed

    Gawthrop, Peter J; Crampin, Edmund J

    2014-11-01

    Thermodynamic aspects of chemical reactions have a long history in the physical chemistry literature. In particular, biochemical cycles require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems, where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on the early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks. PMID:25383030

  16. Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals

    NASA Astrophysics Data System (ADS)

    Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T.

    2012-07-01

    Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.

  17. Chemical evolution models of Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Tosi, Monica

    Status quo and perspectives of standard chemical evolution models of Local Group galaxies are summarized, and what we have learned from them is discussed, as well as what we have not learned yet, and what I think will be learned in the near future. Galactic chemical evolution models have shown that: I) stringent constraints on primordial nucleosynthesis can be derived from the observed Galactic abundances of the light elements; II) the Milky Way has been accreting external gas from early epochs to the present time; and III) the vast majority of Galactic halo stars have formed quite rapidly at early epochs. Chemical evolution models for the closest dwarf galaxies, although still uncertain, are expected to become extremely reliable in the immediate future, thanks to the quality of new generation photometric and spectroscopic data which are currently being acquired.

  18. Silver europium(III) polyphosphate

    PubMed Central

    Ayadi, Mounir; Férid, Mokhtar; Moine, Bernard

    2009-01-01

    Europium(III) silver polyphosphate, AgEu(PO3)4, was prepared by the flux method. The atomic arrangement is built up by infinite (PO3)n chains (periodicity of 4) extending along the c axis. These chains are joined to each other by EuO8 dodeca­hedra. The Ag+ cations are located in the voids of this arrangement and are surrounded by five oxygen atoms in a distorted [4+1] coordination. PMID:21582031

  19. Hereditary sensory and autonomic neuropathies: types II, III, and IV.

    PubMed

    Axelrod, Felicia B; Gold-von Simson, Gabrielle

    2007-01-01

    The hereditary sensory and autonomic neuropathies (HSAN) encompass a number of inherited disorders that are associated with sensory dysfunction (depressed reflexes, altered pain and temperature perception) and varying degrees of autonomic dysfunction (gastroesophageal reflux, postural hypotention, excessive sweating). Subsequent to the numerical classification of four distinct forms of HSAN that was proposed by Dyck and Ohta, additional entities continue to be described, so that identification and classification are ongoing. As a group, the HSAN are rare diseases that affect both sexes. HSAN III is almost exclusive to individuals of Eastern European Jewish extraction, with incidence of 1 per 3600 live births. Several hundred cases with HSAN IV have been reported. The worldwide prevalence of HSAN type II is very low. This review focuses on the description of three of the disorders, HSAN II through IV, that are characterized by autosomal recessive inheritance and onset at birth. These three forms of HSAN have been the most intensively studied, especially familial dysautonomia (Riley-Day syndrome or HSAN III), which is often used as a prototype for comparison to the other HSAN. Each HSAN disorder is likely caused by different genetic errors that affect specific aspects of small fiber neurodevelopment, which result in variable phenotypic expression. As genetic tests are routinely used for diagnostic confirmation of HSAN III only, other means of differentiating between the disorders is necessary. Diagnosis is based on the clinical features, the degree of both sensory and autonomic dysfunction, and biochemical evaluations, with pathologic examinations serving to further confirm differences. Treatments for all these disorders are supportive. PMID:17915006

  20. Hereditary sensory and autonomic neuropathies: types II, III, and IV

    PubMed Central

    Axelrod, Felicia B; Gold-von Simson, Gabrielle

    2007-01-01

    The hereditary sensory and autonomic neuropathies (HSAN) encompass a number of inherited disorders that are associated with sensory dysfunction (depressed reflexes, altered pain and temperature perception) and varying degrees of autonomic dysfunction (gastroesophageal reflux, postural hypotention, excessive sweating). Subsequent to the numerical classification of four distinct forms of HSAN that was proposed by Dyck and Ohta, additional entities continue to be described, so that identification and classification are ongoing. As a group, the HSAN are rare diseases that affect both sexes. HSAN III is almost exclusive to individuals of Eastern European Jewish extraction, with incidence of 1 per 3600 live births. Several hundred cases with HSAN IV have been reported. The worldwide prevalence of HSAN type II is very low. This review focuses on the description of three of the disorders, HSAN II through IV, that are characterized by autosomal recessive inheritance and onset at birth. These three forms of HSAN have been the most intensively studied, especially familial dysautonomia (Riley-Day syndrome or HSAN III), which is often used as a prototype for comparison to the other HSAN. Each HSAN disorder is likely caused by different genetic errors that affect specific aspects of small fiber neurodevelopment, which result in variable phenotypic expression. As genetic tests are routinely used for diagnostic confirmation of HSAN III only, other means of differentiating between the disorders is necessary. Diagnosis is based on the clinical features, the degree of both sensory and autonomic dysfunction, and biochemical evaluations, with pathologic examinations serving to further confirm differences. Treatments for all these disorders are supportive. PMID:17915006

  1. Organometallic neptunium(III) complexes

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal–ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  2. Glycosaminoglycans and mucopolysaccharidosis type III.

    PubMed

    Jakobkiewicz-Banecka, Joanna; Gabig-Ciminska, Magdalena; Kloska, Anna; Malinowska, Marcelina; Piotrowska, Ewa; Banecka-Majkutewicz, Zyta; Banecki, Bogdan; Wegrzyn, Alicja; Wegrzyn, Grzegorz

    2016-01-01

    Mucopolysaccharidosis type III (MPS III), or Sanfilippo syndrome, is a lysosomal storage disease in which heparan sulfate is accumulated in lysosomes, as well as outside of cells, as the primary storage material. This disease is a complex of four conditions caused by dysfunctions of one of genes coding for lysosomal enzymes involved in degradation of heparan sulfate: SGSH (coding for heparan N-sulfatase) - causing MPS IIIA, NAGLU (coding for alpha-N-acetylglucosaminidase) - causing MPS IIIB, HGSNAT (coding for acetyl CoA alpha-glucosaminide acetyltransferase) - causing MPS IIIC), and GNS (coding for N-acetylglucosamine-6-sulfatase) - causing MPS IIID. The primary storage is responsible for some disease symptoms, but other arise as a result of secondary storage, including glycosphingolipids, and subsequent processes, like oxidative stress and neuroinflammation. Central nervous system is predominantly affected in all subtypes of MPS III. Heparan sulfate and its derivatives are the most commonly used biomarkers for diagnosis and prediction procedures. Currently, there is no therapy for Sanfilippo syndrome, however, clinical trials are ongoing for enzyme replacement therapy, gene therapy and substrate reduction therapy (particularly gene expression-targeted isoflavone therapy). PMID:27100513

  3. SIM Configuration Evolution

    NASA Technical Reports Server (NTRS)

    Aaron, Kim M.

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10 m baseline Michelson interferometer. Planned for launch in 2005 aboard a Delta III launch vehicle, or equivalent, its primary objective is to measure the positions of stars and other celestial objects with an unprecedented accuracy of 4 micro arc seconds. With such an instrument, tremendous advancement can be expected in our understanding of stellar and galactic dynamics. Using triangulation from opposite sides of the orbit around the sun (i.e. by using parallax) one can measure the distance to any observable object in our galaxy. By directly measuring the orbital wobble of nearby stars, the mass and orbit of planets can be determined over a wide range of parameters. The distribution of velocity within nearby galaxies will be measurable. Observations of these and other objects will improve the calibration of distance estimators by more than an order of magnitude. This will permit a much better determination of the Hubble Constant as well as improving our overall understanding of the evolution of the universe. SIM has undergone several transformations, especially over the past year and a half since the start of Phase A. During this phase of a project, it is desirable to perform system-level trade studies, so the substantial evolution of the design that has occurred is quite appropriate. Part of the trade-off process has addressed two major underlying architectures: SIM Classic; and Son of SIM. The difference between these two architectures is related to the overall arrangement of the optical elements and the associated metrology system. Several different configurations have been developed for each architecture. Each configuration is the result of design choices that are influenced by many competing considerations. Some of the more important aspects will be discussed. The Space Interferometry Mission has some extremely challenging goals: millikelvin thermal stability, nanometer stabilization of optics

  4. Cryptic activity within the Type III1 domain of fibronectin regulates tissue inflammation and angiogenesis

    PubMed Central

    Cho, Christina; Kelsh-Lasher, Rhiannon; Ambesi, Anthony; McKeown-Longo, Paula J.

    2016-01-01

    The fibronectin matrix provides mechanical and biochemical information to regulate homeostatic and pathological processes within tissues. Fibronectin consists of independently-folded modules termed Types I, II and III. In response to cellular contractile force, Type III domains unfold to initiate a series of homophilic binding events which result in the assembly of a complex network of intertwining fibrils. The unfolding of Type III modules provides elasticity to the assembled fibronectin matrix allowing it to function as a dynamic scaffold which provides binding sites for cellular receptors, growth factors and other matrix molecules. Access to bioactive sites within the fibronectin matrix is under complex regulation and controlled through a combination of mechanical and proteolytic activity. Mechanical unfolding of Type III modules and limited proteolysis can alter the topographical display of bioactive sites within the fibronectin fibrils by exposing previously cryptic sites and disrupting functional sites. In this review we will discuss cryptic activity found within the first Type III module of fibronectin and its impact on tissue angiogenesis and inflammation.

  5. Design of a triangular platform piezoresistive affinity microcantilever sensor for biochemical sensing applications

    NASA Astrophysics Data System (ADS)

    Mathew, Ribu; Sankar, A. Ravi

    2015-05-01

    Microcantilever platforms with integrated piezoresistors have found versatile applications in the field of clinical analysis and diagnostics. Even though treatise encompasses numerous design details of the cantilever based biochemical sensors, a majority of them focus on the generic slender rectangular cantilever platform mainly due to its evolution from the atomic force microscope (AFM). The reported designs revolve around the aspects of dimensional optimization and variations with respect to the combination of materials for the composite structure. In this paper, a triangular cantilever platform is shown to have better performance metrics than the reported generic slender rectangular and the square cantilever platforms with integrated piezoresistors for biochemical sensing applications. The selection and optimization of the triangular cantilever platform is carried out in two stages. In the first stage, the preliminary selection of the cantilever shape is performed based on the initial design obtained by analytical formulae and numerical simulations. The second stage includes the geometrical optimization of the triangular cantilever platform and the integrated piezoresistor. The triangular cantilever platform shows a better performance in terms of the figure of merit (FoM), \\psi = ≤ft(Δ R/R\\right)f02 and the measurement bandwidth. The simulation results show that the magnitude of ψ of the triangular platform is 77.21% and 65.64% higher than that of the slender rectangular and the square cantilever platforms respectively. Moreover, the triangular platform exhibits a measurement bandwidth that is 70.91% and 2.04 times higher than that of the slender rectangular and square cantilever structures respectively. For a better understanding of the 2D nature of the stress generated on the cantilever platform due to the surface stress, its spatial profile has been extracted and depicted graphically. Finally, a set of design rules are provided for optimizing the

  6. Effects of Khaya senegalensis leaves on performance, carcass traits, hemtological and biochemical parameters in rabbits

    PubMed Central

    Abdel-Wareth, A. A. A.; Hammad, Seddik; Ahmed, Hassan

    2014-01-01

    One of the challenges facing farmers today is to ensure adequate integration of natural resources into animal feeds. The aim of the present study is to evaluate the effects of Khaya senegalensis (KS) leaves on the performance of growing male rabbits, carcass traits and biochemical as well as hematological parameters. Thirty New Zealand White male growing rabbits were randomly divided into 3 groups (10 rabbits per group). Group I (control) received standard rabbit diet. Rabbits in group II and group III were fed standard rabbit diet supplemented with 35 % and 65 % KS leaves, respectively. All rabbits were fed daily for 25 days. The performance parameters and carcass criteria, including daily body weight gain, final body weight, and the percentage of dressing, were increased in rabbits fed 35 % KS when compared to the control group. Kidney and liver weight ratios increased significantly in group II but dropped in group III. Furthermore, liver enzymes - alanine aminotransferase and aspartate transaminase and kidney function parameters - urea, and creatinine - increased in both group II (significant P<0.05) and in group III (significant P<0.01) when compared to the control group. Moreover, KS leaves induced a significant increase (P<0.05) in the total white blood cell count, the percentage of granulocytes and the platelet count; whereas, the percentage of lymphocytes, red blood cell count, hemoglobin content, mean corpuscular hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin concentration were not statistically significantly changed. This study demonstrates that the performance parameters and carcass traits are improved by the replacement of rabbit's diet with KS leaves. However, KS leaves may adversely affect liver and kidney function in a dose-dependent manner. Therefore, further studies are required to elucidate the maximum tolerable and toxic, as well as lethal doses, and to isolate the pharmacologically active components from KS leaves. PMID

  7. Implications of bimodal star formation on the chemical evolution of the Galaxy - The evolution of deuterium

    NASA Astrophysics Data System (ADS)

    Vangioni-Flam, E.; Audouze, J.

    1988-03-01

    In order to reconcile the predictions of the classical models of early nucleosynthesis regarding D and 4He primordial abundances, D has to be destroyed by factors ˜10 over the galactic history. This study develops different models of galactic evolution: In Model III, the rate of star formation (SFR) is bimodal; in Model II, the SFR is governed by two different regimes, one applying to very early phases, and the second to the rest of the galactic evolution. Model I is standard. Current models with bimodal SER (Models III and IV) are not able to account for a large D destruction, especially because of metallicity overproduction. By contrast, time varying SFR models (Model II) could explain a large D destruction (by factors 5-10) avoiding an overabundance of metals at the present time. However this model might have to face constraints related to the stellar luminosity function.

  8. Genetic and Biochemical Diversity among Valeriana jatamansi Populations from Himachal Pradesh

    PubMed Central

    Singh, Sunil Kumar; Katoch, Rajan; Kapila, Rakesh Kumar

    2015-01-01

    Valeriana jatamansi Jones is an important medicinal plant that grows wild in Himachal Pradesh, India. Molecular and biochemical diversity among 13 natural populations from Himachal Pradesh was assessed using RAPD and GC-MS to know the extent of existing variation. A total of seven genetically diverse groups have been identified based on RAPD analysis which corroborated well with the analysis based on chemical constituents. The essential oil yield ranged from 0.6% to 1.66% (v/w). A negative correlation between patchouli alcohol and viridiflorol, the two major valued constituents, limits the scope of their simultaneous improvement. However, other few populations like Chamba-II and Kandi-I were found promising for viridiflorol and patchouli alcohol, respectively. The analysis of chemical constitution of oil of the populations from a specific region revealed predominance of specific constituents indicating possibility of their collection/selection for specific end uses like phytomedicines. The prevalence of genetically diverse groups along with sufficient chemical diversity in a defined region clearly indicates the role of ecology in the maintenance of evolution of this species. Sufficient molecular and biochemical diversity detected among natural populations of this species will form basis for the future improvement. PMID:25741533

  9. Nonprevalence of biochemical fossils in kerogen from pre-Phanerozoic sediments

    PubMed Central

    Leventhal, Joel; Suess, Stephen E.; Cloud, Preston

    1975-01-01

    Evidence of biochemical and geochemical evolution was sought in insoluble carbonaceous matter from 30 selected pre-Phanerozoic sediments ranging in age from about 3.8 to about 0.7 × 109 years. The carbon isotope ratios observed were in the range of -20 to -32 per mil with reference to the Peedee belemnite standard, similar to those previously reported. No systematic trends are obvious to us. Stepwise pyrolysis-gas-chromatography showed only molecules with fewer than 8 carbon atoms at the level of sensitivity of 10-9 g of organics in a 10 mg rock sample. Carbon, hydrogen, and nitrogen analyses showed noncarbonate carbon from less than 0.1% to more than 3%, with very small amounts of N. The H/C (atomic) ratios on HCl-leached and HF-treated samples were generally less than 0.3. Evidence of low pyrolysis yields (micro-analysis) and low H/C atomic ratios (macro-analysis) implies that the carbonaceous solids in even the least metamorphosed of these ancient sediments have evolved far toward amorphous carbon or graphite and do not yield useful “biochemical fossils.” PMID:16592291

  10. Genetic and biochemical diversity among Valeriana jatamansi populations from Himachal Pradesh.

    PubMed

    Singh, Sunil Kumar; Katoch, Rajan; Kapila, Rakesh Kumar

    2015-01-01

    Valeriana jatamansi Jones is an important medicinal plant that grows wild in Himachal Pradesh, India. Molecular and biochemical diversity among 13 natural populations from Himachal Pradesh was assessed using RAPD and GC-MS to know the extent of existing variation. A total of seven genetically diverse groups have been identified based on RAPD analysis which corroborated well with the analysis based on chemical constituents. The essential oil yield ranged from 0.6% to 1.66% (v/w). A negative correlation between patchouli alcohol and viridiflorol, the two major valued constituents, limits the scope of their simultaneous improvement. However, other few populations like Chamba-II and Kandi-I were found promising for viridiflorol and patchouli alcohol, respectively. The analysis of chemical constitution of oil of the populations from a specific region revealed predominance of specific constituents indicating possibility of their collection/selection for specific end uses like phytomedicines. The prevalence of genetically diverse groups along with sufficient chemical diversity in a defined region clearly indicates the role of ecology in the maintenance of evolution of this species. Sufficient molecular and biochemical diversity detected among natural populations of this species will form basis for the future improvement. PMID:25741533

  11. Chemical evolution and the origin of life

    NASA Astrophysics Data System (ADS)

    Oró, J.

    During the last three decades major advances have been made in our understanding of the formation of carbon compounds in the universe and of the occurence of processes of chemical evolution. 1) Carbon and other biogenic elements (C,H,N,O,S and P) are some of the most abundant in the universe. 2) The interstellar medium has been found to contain a diversity of molecules of these elements. 3) Some of these molecules have also been found in comets which are considered the most primordial bodies of the solar system. 4) The atmospheres of the outer planets and their satellites, for example, Titan, are actively involved in the formation of organic compounds which are the precursors of biochemical molecules. 5) Some of these biochemical molecules, such as amino acids, purines and pyrimidines, have been found in carbonaceous chondrites. 6) Laboratory experiments have shown that most of the monomers and oligomers necessary for life can be synthesized under hypothesized but plausible primitive Earth conditions from compounds found in the above cosmic bodies. 7) It appears that the primitive Earth had the necessary and sufficient conditions to allow the chemical synthesis of biomacromolecules and to permit the processes required for the emergence of life on our planet. 8) It is unlikely that the emergence of life occurred in any other body of the solar system, although the examination of the Jovian satellite Europa may provide important clues about the constraints of this evolutionary process. Some of the fundamental principles of chemical evolution are briefly discussed.

  12. Biochemical Preparation of Cell Extract for Cell-Free Protein Synthesis without Physical Disruption

    PubMed Central

    Fujiwara, Kei; Doi, Nobuhide

    2016-01-01

    Cell-free protein synthesis (CFPS) is a powerful tool for the preparation of toxic proteins, directed protein evolution, and bottom-up synthetic biology. The transcription-translation machinery for CFPS is provided by cell extracts, which usually contain 20–30 mg/mL of proteins. In general, these cell extracts are prepared by physical disruption; however, this requires technical experience and special machinery. Here, we report a method to prepare cell extracts for CFPS using a biochemical method, which disrupts cells through the combination of lysozyme treatment, osmotic shock, and freeze-thaw cycles. The resulting cell extracts showed similar features to those obtained by physical disruption, and was able to synthesize active green fluorescent proteins in the presence of appropriate chemicals to a concentration of 20 μM (0.5 mg/mL). PMID:27128597

  13. Parsing a multifunctional biosynthetic gene cluster from rice: Biochemical characterization of CYP71Z6 & 7.

    PubMed

    Wu, Yisheng; Hillwig, Matthew L; Wang, Qiang; Peters, Reuben J

    2011-11-01

    Rice (Oryza sativa) contains a biosynthetic gene cluster associated with production of at least two groups of diterpenoid phytoalexins, the antifungal phytocassanes and antibacterial oryzalides. While cytochromes P450 (CYP) from this cluster are known to be involved in phytocassane production, such mono-oxygenase activity relevant to oryzalide biosynthesis was unknown. Here we report biochemical characterization demonstrating that CYP71Z6 from this cluster acts as an ent-isokaurene C2-hydroxylase that is presumably involved in the biosynthesis of oryzalides. Our results further suggest that the closely related and co-clustered CYP71Z7 likely acts as a C2-hydroxylase involved in a latter step of phytocassane biosynthesis. Thus, CYP71Z6 & 7 appear to have evolved distinct roles in rice diterpenoid metabolism, offering insight into plant biosynthetic gene cluster evolution. PMID:21985968

  14. Parsing a multifunctional biosynthetic gene cluster from rice: Biochemical characterization of CYP71Z6 & 7

    PubMed Central

    Wu, Yisheng; Hillwig, Matthew L.; Wang, Qiang; Peters, Reuben J.

    2011-01-01

    Rice (Oryza sativa) contains a biosynthetic gene cluster associated with production of at least two groups of diterpenoid phytoalexins, the antifungal phytocassanes and antibacterial oryzalides. While cytochromes P450 (CYP) from this cluster are known to be involved in phytocassane production, such mono-oxygenase activity relevant to oryzalide biosynthesis was unknown. Here we report biochemical characterization demonstrating that CYP71Z6 from this cluster acts as an ent-isokaurene C2-hydroxylase that is presumably involved in the biosynthesis of oryzalides. Our results further suggest that the closely related and co-clustered CYP71Z7 likely acts as a C2-hydroxylase involved in a latter step of phytocassane biosynthesis. Thus, CYP71Z6 & 7 appear to have evolved distinct roles in rice diterpenoid metabolism, offering insight into plant biosynthetic gene cluster evolution. PMID:21985968

  15. Dengue: profile of hematological and biochemical dynamics

    PubMed Central

    Azin, Francisca Raimunda F. Guerreiro; Gonçalves, Romelia Pinheiro; Pitombeira, Maria Helena da Silva; Lima, Danielle Malta; Branco, Ivo Castelo

    2012-01-01

    Aim The objective of this study was to correlate laboratory tests during the evolution of dengue fever, comparing frequencies between the different clinical forms in order to use test results to predict the severity of the disease. Methods This is an observational, descriptive and retrospective study of 154 patients with clinical and serological diagnoses of dengue fever who, in the period from January to May 2008, were admitted in a tertiary state hospital in the city of Fortaleza that is a referral center for infectious diseases. The patients were allocated to two groups according to age: under 15 years old (n = 66) and 15 years or older (n = 88). The tests analyzed were blood count, platelet count, and serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations. Results Thrombocytopenia and elevated transaminases were observed in patients with classic dengue fever. The main laboratory abnormalities found in dengue hemorrhagic fever were thrombocytopenia, hemoconcentration and elevated transaminases, similar to severe dengue with the exception of hemoconcentration. Most laboratory abnormalities started on the 3rd day but were more evident on the 5th day with restoration of values by the 11th day; this was more prominent in under 15-year-olds and with the more severe clinical forms. Conclusion These results are relevant in assessing the disease because they can be used as markers for more severe forms and can help by enabling the adaptation of the therapeutic conduct to the needs of individual patients. PMID:23049382

  16. Evolution: Help for the Confused.

    ERIC Educational Resources Information Center

    Scheer, Bradley T.

    1979-01-01

    Written in response to an earlier article questioning certain aspects of evolution theory. Discusses ontogeny and phylogeny, the basis of evolution, chance or purpose in evolution, micro and macro-evolution, reversibility, and the evolution processes today. (MA)

  17. Evolution of genetic switch complexity

    PubMed Central

    Broussard, Gregory W.; Hatfull, Graham F.

    2013-01-01

    The circuitry of the phage λ genetic switch determining the outcome of lytic or lysogenic growth is well-integrated and complex, raising the question as to how it evolved. It is plausible that it arose from a simpler ancestral switch with fewer components that underwent various additions and refinements, as it adapted to vast numbers of different hosts and conditions. We have recently identified a new class of genetic switches found in mycobacteriophages and other prophages, in which immunity is dependent on integration. These switches contain only three genes (integrase, repressor and cro) and represent a major departure from the λ-like circuitry, lacking many features such as xis, cII and cIII. These small self-contained switches represent an unrealized, elegant circuitry for controlling infection outcome. In this addendum, we propose a model of possible events in the evolution of a complex λ-like switch from a simpler integration-dependent switch. PMID:23819104

  18. Alternative end joining, clonal evolution, and escape from a telomere-driven crisis

    PubMed Central

    Hendrickson, Eric A; Baird, Duncan M

    2015-01-01

    Telomere dysfunction and fusion play key roles in driving genomic instability and clonal evolution in many tumor types. We have recently described a role for DNA ligase III (LIG3) in facilitating the escape of cells from crisis induced by telomere dysfunction. Our data indicate that LIG3-mediated telomere fusion is important in facilitating clonal evolution. PMID:27308409

  19. Evolution of plant senescence

    PubMed Central

    Thomas, Howard; Huang, Lin; Young, Mike; Ougham, Helen

    2009-01-01

    -related genes allow a framework to be constructed of decisive events in the evolution of the senescence syndrome of modern land-plants. Combining phylogenetic, comparative sequence, gene expression and morphogenetic information leads to the conclusion that biochemical, cellular, integrative and adaptive systems were progressively added to the ancient primary core process of senescence as the evolving plant encountered new environmental and developmental contexts. PMID:19602260

  20. A method for zooming of nonlinear models of biochemical systems

    PubMed Central

    2011-01-01

    Background Models of biochemical systems are typically complex, which may complicate the discovery of cardinal biochemical principles. It is therefore important to single out the parts of a model that are essential for the function of the system, so that the remaining non-essential parts can be eliminated. However, each component of a mechanistic model has a clear biochemical interpretation, and it is desirable to conserve as much of this interpretability as possible in the reduction process. Furthermore, it is of great advantage if we can translate predictions from the reduced model to the original model. Results In this paper we present a novel method for model reduction that generates reduced models with a clear biochemical interpretation. Unlike conventional methods for model reduction our method enables the mapping of predictions by the reduced model to the corresponding detailed predictions by the original model. The method is based on proper lumping of state variables interacting on short time scales and on the computation of fraction parameters, which serve as the link between the reduced model and the original model. We illustrate the advantages of the proposed method by applying it to two biochemical models. The first model is of modest size and is commonly occurring as a part of larger models. The second model describes glucose transport across the cell membrane in baker's yeast. Both models can be significantly reduced with the proposed method, at the same time as the interpretability is conserved. Conclusions We introduce a novel method for reduction of biochemical models that is compatible with the concept of zooming. Zooming allows the modeler to work on different levels of model granularity, and enables a direct interpretation of how modifications to the model on one level affect the model on other levels in the hierarchy. The method extends the applicability of the method that was previously developed for zooming of linear biochemical models to

  1. SAGE III on ISS Lessons Learned on Thermal Interface Design

    NASA Technical Reports Server (NTRS)

    Davis, Warren

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument - the fifth in a series of instruments developed for monitoring vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere - is currently scheduled for delivery to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2016. The Instrument Adapter Module (IAM), one of many SAGE III subsystems, continuously dissipates a considerable amount of thermal energy during mission operations. Although a portion of this energy is transferred via its large radiator surface area, the majority must be conductively transferred to the ExPRESS Payload Adapter (ExPA) to satisfy thermal mitigation requirements. The baseline IAM-ExPA mechanical interface did not afford the thermal conductance necessary to prevent the IAM from overheating in hot on-orbit cases, and high interfacial conductance was difficult to achieve given the large span between mechanical fasteners, less than stringent flatness specifications, and material usage constraints due to strict contamination requirements. This paper will examine the evolution of the IAM-ExPA thermal interface over the course of three design iterations and will include discussion on design challenges, material selection, testing successes and failures, and lessons learned.

  2. A molecular description of the evolution of resistance

    NASA Technical Reports Server (NTRS)

    Ordoukhanian, P.; Joyce, G. F.

    1999-01-01

    BACKGROUND: In vitro evolution has been used to obtain nucleic acid molecules with interesting functional properties. The evolution process usually is carried out in a stepwise manner, involving successive rounds of selection, amplification and mutation. Recently, a continuous in vitro evolution system was devised for RNAs that catalyze the ligation of oligonucleotide substrates, allowing the evolution of catalytic function to be studied in real time. RESULTS: Continuous in vitro evolution of an RNA ligase ribozyme was carried out in the presence of a DNA enzyme that was capable of cleaving, and thereby inactivating, the ribozyme. The DNA concentration was increased steadily over 33.5 hours of evolution, reaching a final concentration that would have been sufficient to inactivate the starting population in one second. The evolved population of ribozymes developed resistance to the DNA enzyme, reducing their vulnerability to cleavage by 2000-fold but retaining their own catalytic function. Based on sequencing and kinetic analysis of the ribozymes, two mechanisms are proposed for this resistance. One involves three nucleotide substitutions, together with two compensatory mutations, that alter the site at which the DNA enzyme binds the ribozyme. The other involves enhancement of the ribozyme's ability to bind its own substrate in a way that protects it from cleavage by the DNA enzyme. CONCLUSIONS: The ability to direct the evolution of an enzyme's biochemical properties in response to the behavior of another macromolecule provides insight into the evolution of resistance and may be useful in developing enzymes with novel or enhanced function.

  3. The gelation mechanism of chromium(III)

    SciTech Connect

    Shu, P.

    1988-05-01

    Chromium(III) is commonly used crosslinker for preparing profile control gels with polymers having carboxylate and amide functionalities. Cr(III) is applied in many forms. For example, it can be used in the form of simple chromic salts of chloride and sulfate, or as complexed Cr(III) used in leather tanning, or as in-situ generated Cr(III) from the redox reaction of dichromate and bisulfite or thiourea. The gelation rate, and gel quality, doped on which form of Cr(III) is used. The author has found that the Cr olates, produced by hydrolysis of Cr(III) ions, are the reactive crosslinking species. The different gelation rates are due to the different degrees of olation. Furthermore, by controlling the degree of hydrolysis Cr(III) derived from various sources mentioned above can exhibit the same gelation rate.

  4. [Biochemical selenocysteine synthesis and the phylogenic study].

    PubMed

    Mizutani, Takaharu; Osaka, Takashi; Fujiwara, Toshinobu; Shahidzzman, M

    2008-07-01

    Selenium (Se) is an essential trace element. Se is found as selenocysteine (Sec) in Se-proteins. Sec is the 21(st) amino acid, because Sec has its tRNA, the codon UGA and those components in its translational machinery. Sec UGA codon shares with major stop codon UGA. We purified Sec synthesizing enzymes, such as seryl-tRNA synthetase (SerRS), Sec synthetase (SecS) and selenophosphate synthetase (SePS). I described the procedures to prepare Sec tRNA, SerRS, SecS, SePS and [(75)Se]H(2)Se in detail. We clarified that SecS composed of two proteins, SecSalpha and SecSbeta. Sec synthesizing and incorporating systems present in Monela, Animalia and Protoctista but not in Plantae and Fungi. We showed that protozoa had Sec tRNA on which Sec was synthesized from Ser-tRNA by bovine and protozoa SecS. Some worms, such as Caenorhabditis elegans and Fasiola gigantica, also had Sec tRNA on which Sec was synthesized by bovine liver SecS or C. elegans enzymes. We showed recognition sites of mammalian Sec tRNA by SecS. The identity units of Sec tRNA are 9 bp aminoacyl- and 6 bp D-stems. This recognition is not the base-specific manner but the length-specific manner. From comparison of the phylogeny trees of Sec synthesizing system and translation system, we concluded that the evolution of Sec synthesizing system is older than that of the translation system. PMID:18591866

  5. PopIII signatures in the spectra of PopII/I GRBs

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Maio, U.; Ciardi, B.; Salvaterra, R.

    2015-05-01

    We investigate signatures of Population III (PopIII) stars in the metal-enriched environment of gamma-ray bursts (GRBs) originating from Population II-I (PopII/I) stars by using abundance ratios derived from numerical simulations that follow stellar evolution and chemical enrichment. We find that at z > 10 more than 10 per cent of PopII/I GRBs explode in a medium previously enriched by PopIII stars (we refer to them as GRBII→III). Although the formation of GRBII→III is more frequent than that of pristine PopIII GRBs (GRBIIIs), we find that the expected GRBII→III observed rate is comparable to that of GRBIIIs, due to the usually larger luminosities of the latter. GRBII→III events take place preferentially in small protogalaxies with stellar masses M⋆ ˜ 104.5-107 M⊙, star formation rates SFR ˜ 10^{-3}-10^{-1} M_{⊙} yr^{-1} and metallicities Z ˜ 10- 4-10- 2 Z⊙. On the other hand, galaxies with Z < 10- 2.8 Z⊙ are dominated by metal enrichment from PopIII stars and should preferentially host GRBII→III. Hence, measured GRB metal content below this limit could represent a strong evidence of enrichment by pristine stellar populations. We discuss how to discriminate PopIII metal enrichment on the basis of various abundance ratios observable in the spectra of GRBs' afterglows. By employing such analysis, we conclude that the currently known candidates at redshift z ≃ 6 - i.e. GRB 050904 and GRB 130606A - are likely not originated in environments pre-enriched by PopIII stars. Abundance measurements for GRBs at z ≃ 5 - such as GRB 100219A and GRB 111008A - are still poor to draw definitive conclusions, although their hosts seem to be dominated by PopII/I pollution and do not show evident signatures of massive PopIII pre-enrichment.

  6. Determining the gross biochemical composition of cells and tissue with Raman spectrosocpy

    NASA Astrophysics Data System (ADS)

    Mourant, Judith R.; Dominguez, Jorge; Carpenter, Susan; Powers, Tamara M.; Guerra, Anabel; Short, Kurt W.; Kunapareddy, Nagapratima; Freyer, James P.

    2006-02-01

    The biochemical composition of mammalian cells has been estimated by Raman spectroscopy and the results compared with other biochemical methods. The Raman spectroscopy estimates were performed by fitting measured Raman and infrared spectra of dense cell suspensions to a linear combination of basis components (RNA, DNA, protein, lipid, glycoen). The Raman spectroscopy results are compared to biochemical analyses performed by extraction and quantfication of the biochemical components. Both absolute and relative measurements of biochemical composition are compared. Both the Raman and biochemical results indicate that there are signficant differences in gross biochemical composition dependent on growth stage and tumorigneicity.

  7. Titan III-C Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph shows a Titan III-C launch vehicle. Titan vehicles are designed to carry payloads equal to the size and weight of those on the space shuttle. The Titan IV Centaur can put 10,000 pound payloads into geosynchronous orbit, 22,300 miles above Earth. For more information about Titan and Centaur, please see chapters 4 and 8, respectively, in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  8. The Mark III vertex chamber

    SciTech Connect

    Adler, J.; Bolton, T.; Bunnell, K.; Cassell, R.; Cheu, E.; Freese, T.; Grab, C.; Mazaheri, G.; Mir, R.; Odian, A.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 ..mu..m at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 ..mu..m using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin.

  9. Implementing Title III -- Air toxics

    SciTech Connect

    Shaw, B.W.

    1995-12-31

    The South Coast Air Quality Management District (AQMD) is taking three basic approaches to implementing the new National Emissions Standards for Hazardous Air Pollutants (NESHAPs) from the Title III program: accept and implement, as written, the NESHAPs where few sources are located in the South Coast Air Basin; incorporate with simplification of the NESHAP requirements into AQMD rules when many sources are involved; then seek equivalency by the US EPA; and incorporate with a market-based rule (VOC RECLAIM), part of many NESHAPs which control volatile organic compound as HAPs. Whatever the approach, emphasis will be placed on: streamlining and simplification; helping sources understand requirements and comply; and common sense.

  10. Identification of Biochemical Network Modules Based on Shortest Retroactive Distances

    PubMed Central

    Sridharan, Gautham Vivek; Hassoun, Soha; Lee, Kyongbum

    2011-01-01

    Modularity analysis offers a route to better understand the organization of cellular biochemical networks as well as to derive practically useful, simplified models of these complex systems. While there is general agreement regarding the qualitative properties of a biochemical module, there is no clear consensus on the quantitative criteria that may be used to systematically derive these modules. In this work, we investigate cyclical interactions as the defining characteristic of a biochemical module. We utilize a round trip distance metric, termed Shortest Retroactive Distance (ShReD), to characterize the retroactive connectivity between any two reactions in a biochemical network and to group together network components that mutually influence each other. We evaluate the metric on two types of networks that feature feedback interactions: (i) epidermal growth factor receptor (EGFR) signaling and (ii) liver metabolism supporting drug transformation. For both networks, the ShReD partitions found hierarchically arranged modules that confirm biological intuition. In addition, the partitions also revealed modules that are less intuitive. In particular, ShReD-based partition of the metabolic network identified a ‘redox’ module that couples reactions of glucose, pyruvate, lipid and drug metabolism through shared production and consumption of NADPH. Our results suggest that retroactive interactions arising from feedback loops and metabolic cycles significantly contribute to the modularity of biochemical networks. For metabolic networks, cofactors play an important role as allosteric effectors that mediate the retroactive interactions. PMID:22102800

  11. Maximizing the biochemical resolving power of fluorescence microscopy.

    PubMed

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  12. Perspective of biochemical research in the neuronal ceroid-lipofuscinosis.

    PubMed

    Rider, J A; Dawson, G; Siakotos, A N

    1992-02-15

    The search for biochemical abnormalities in the neuronal ceroid-lipofuscinoses (NCL) or Batten disease was initiated with the discovery of normal levels of gangliosides in juvenile amaurotic idiocy. The primary goal of most biochemical studies has been to discover the unique biochemical marker for carriers and at-risk individual. Ceroid, the singular pathomorphologic trait of NCL, was isolated and shown to differ from a similar but normal product of aged cells, lipofuscin. In spite of the availability of stored product, the chemical analysis of ceroid has not elucidated the unique biochemical defect in the NCL, as has been the case for other lysosomal storage disorders. The NCL were thought to be a result of lipid peroxidation because ceroid is also found in disorders of impaired vitamin E metabolism or results from a diet deficient in the antioxidant, vitamin E. In addition, tissue analysis indicated losses of polyunsaturated fatty acids in affecteds and carriers, as well as the presence of a secondary product of lipid peroxidation, 4-hydroxynonenal, in affected and carrier NCL dogs. With the exception of a fluorescent compound isolated from retinal ceroid, studies aimed at discovering the disease-specific fluorophores of ceroid have been largely inconclusive. The discovery of elevated dolichols in urine and brain tissue of NCL patients led to another hypothesis, that the basic biochemical defect in NCL involved the metabolism of dolichols and retinoids. However, the more recent view is that dolichol metabolism is secondary to the unknown NCL lesion.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1609832

  13. Microstereolithography and its application to biochemical IC chip

    NASA Astrophysics Data System (ADS)

    Ikuta, Koji; Maruo, Shoji; Hasegawa, Tadahiro; Adachi, Takao

    2001-06-01

    The world's first micro stereo lithography, named IH process, was proposed and developed by the speaker in 1992. By now, several types of micro stereo lithography systems have been developed. Three-dimensional resolution of solidification has reached to 0.2 micron at present. These 3D micro fabrication processes using UV curable polymer gave a big impact on not only MEMS but also optics. The latest version of IH process enables us to make a movable micro mechanism without assemble process or sacrificial layer technique often used in silicon process. It is well known that the IH process is the mother of two-photon micro stereo lithography and its applications. Recently new micro chemical device named Biochemical IC Chip was proposed and developed by the speaker. This chip is based on the module IC chip-set like today's TTL family. IH process enable to make the biochemical IC including real three-dimensional micro fluid channels. Various kinds of Biochemical IC chips such as micro pump, switching valve, reactor, concentrator and detector have already been fabricated successfully. Basic performance of micro chemical devices constructed by the biochemical IC chips were demonstrated. The biochemical IC chips will open new bioscience and medicine based on innovative technology.

  14. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  15. Zinc in +III oxidation state

    NASA Astrophysics Data System (ADS)

    Samanta, Devleena; Jena, Puru

    2012-02-01

    The possibility of Group 12 elements, such as Zn, Cd, and Hg existing in an oxidation state of +III or higher has fascinated chemists for decades. Significant efforts have been made in the past to achieve higher oxidation states for the heavier congener mercury (since the 3^rd ionization potential of the elements decrease as we go down the periodic table). It took nearly 20 years before experiment could confirm the theoretical prediction that Hg indeed can exist in an oxidation state of +IV. While this unusual property of Hg is attributed to the relativistic effects, Zn being much lighter than Hg has not been expected to have an oxidation state higher than +II. Using density functional theory we show that an oxidation state of +III for Zn can be realized by choosing specific ligands with large electron affinities i.e. superhalogens. We demonstrate this by a systematic study of the interaction of Zn with F, BO2, and AuF6 ligands whose electron affinities are progressively higher, namely, 3.4 eV, 4.4 eV, and 8.4 eV, respectively. Discovery of higher oxidation states of elements can help in the formulation of new reactions and hence in the development of new chemistry.

  16. Understanding Evolution: An Evolution Website for Teachers

    ERIC Educational Resources Information Center

    Scotchmoor, Judy; Janulaw, Al

    2005-01-01

    While many states are facing challenges to the teaching of evolution in their science classrooms, the University of California Museum of Paleontology, working with the National Center for Science Education, has developed a useful web-based resource for science teachers of all grade- and experience-levels. Understanding Evolution (UE) was developed…

  17. Click Chemistry-Mediated Nanosensors for Biochemical Assays

    PubMed Central

    Chen, Yiping; Xianyu, Yunlei; Wu, Jing; Yin, Binfeng; Jiang, Xingyu

    2016-01-01

    Click chemistry combined with functional nanoparticles have drawn increasing attention in biochemical assays because they are promising in developing biosensors with effective signal transformation/amplification and straightforward signal readout for clinical diagnostic assays. In this review, we focus on the latest advances of biochemical assays based on Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides and alkynes (CuAAC)-mediated nanosensors, as well as the functionalization of nanoprobes based on click chemistry. Nanoprobes including gold nanoparticles, quantum dots, magnetic nanoparticles and carbon nanomaterials are covered. We discuss the advantages of click chemistry-mediated nanosensors for biochemical assays, and give perspectives on the development of click chemistry-mediated approaches for clinical diagnosis and other biomedical applications. PMID:27217831

  18. Hematologic and plasma biochemical values of hyacinth macaws (Anodorhynchus hyacinthinus).

    PubMed

    Kolesnikovas, Cristiane K M; Niemeyer, Claudia; Teixeira, Rodrigo H F; Nunes, Adauto L V; Rameh-de-Albuquerque, Luciana C; Sant'Anna, Sávio S; Catão-Dias, José L

    2012-09-01

    The hyacinth macaw (Anodorhyncus hyacinthinus), considered the largest psittacine bird species in the world, is an endangered species, with a remaining population of approximately 6500 birds in the wild. To establish hematologic and plasma biochemical reference ranges and to verify differences related to sex, samples from 29 hyacinth macaws (14 males, 15 females) were obtained from birds apprehended from illegal wildlife trade and subsequently housed at the Sorocaba Zoo, Brazil. No significant differences in hematologic or plasma biochemical values were found between females and males. Compared with published reference values, differences were found in mean concentrations of total red blood cell count, corpuscular volume, corpuscular hemoglobin level, total white blood cell count, aspartate aminotransferase level, creatine kinase concentration, alkaline phosphatase concentration, and phosphorus level. Baseline hematologic and plasma biochemical ranges were established, which may be useful as reference values for clinicians working with this endangered species in captivity or rehabilitation centers. PMID:23156973

  19. Hematologic and plasma biochemical values of Spix's macaws (Cyanopsitta spixii).

    PubMed

    Foldenauer, Ulrike; Borjal, Raffy Jim; Deb, Amrita; Arif, Abdi; Taha, Abid Sharif; Watson, Ryan William; Steinmetz, Hanspeter; Bürkle, Marcellus; Hammer, Sven

    2007-12-01

    The Spix's macaw (Cyanopsitta spixii) is considered the world's most endangered parrot, with the last wild bird disappearing in 2001 and only 74 birds in captivity. To establish hematologic and plasma biochemical reference ranges and to look for differences relative to sex, age, and season, we obtained blood samples from 46 captive Spix's macaws (23 male, 23 female) housed in aviaries at the Al Wabra Wildlife Preservation in the State of Qatar. No significant differences in hematologic or plasma biochemical values were found between females and males. Adult and juvenile birds differed in mean concentrations of glucose, total protein, amylase, cholesterol, and phosphorus; in percentages of heterophils and lymphocytes; and in the absolute lymphocyte count. Total protein, cholesterol, and phosphorus concentrations; hematocrit; and heterophil and lymphocyte counts differed significantly by season. Baseline hematologic and plasma biochemical ranges were established, which may be useful as reference values for clinicians working with this highly endangered species. PMID:18351006

  20. Click Chemistry-Mediated Nanosensors for Biochemical Assays.

    PubMed

    Chen, Yiping; Xianyu, Yunlei; Wu, Jing; Yin, Binfeng; Jiang, Xingyu

    2016-01-01

    Click chemistry combined with functional nanoparticles have drawn increasing attention in biochemical assays because they are promising in developing biosensors with effective signal transformation/amplification and straightforward signal readout for clinical diagnostic assays. In this review, we focus on the latest advances of biochemical assays based on Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides and alkynes (CuAAC)-mediated nanosensors, as well as the functionalization of nanoprobes based on click chemistry. Nanoprobes including gold nanoparticles, quantum dots, magnetic nanoparticles and carbon nanomaterials are covered. We discuss the advantages of click chemistry-mediated nanosensors for biochemical assays, and give perspectives on the development of click chemistry-mediated approaches for clinical diagnosis and other biomedical applications. PMID:27217831

  1. Biochemical markers in oral submucous fibrosis: A review and update

    PubMed Central

    Kamath, V V; Satelur, K; Komali, Y

    2013-01-01

    Oral submucous fibrosis (OSMF) is a potentially malignant oral condition effectively linked to the causative habit of chewing areca nut. Since its first description in the 1950s, numerous epidemiological, biochemical, histological, and genetic studies have been reported. While most studies point out to the cause and effect of areca nut, co-additive factors are also implicated in the progression and malignant transformation of this condition. Biochemical investigations have concentrated on outlining such changes in the blood, serum or tissues of these patients and have given insights on the possible pathogenesis of OSMF. This article attempts to compile details of biochemical investigations in OSMF and summarize and infer on the findings. PMID:24348612

  2. Occurrence of bacteria and biochemical markers on public surfaces.

    PubMed

    Reynolds, Kelly A; Watt, Pamela M; Boone, Stephanie A; Gerba, Charles P

    2005-06-01

    From 1999-2003, the hygiene of 1061 environmental surfaces from shopping, daycare, and office environments, personal items, and miscellaneous activities (i.e., gymnasiums, airports, movie theaters, restaurants, etc.), in four US cities, was monitored. Samples were analyzed for fecal and total coliform bacteria, protein, and biochemical markers. Biochemical markers, i.e., hemoglobin (blood marker), amylase (mucus, saliva, sweat, and urine marker), and urea (urine and sweat marker) were detected on 3% (26/801); 15% (120/801), and 6% (48/801) of the surfaces, respectively. Protein (general hygiene marker) levels > or = 200 microg/10 cm2 were present on 26% (200/801) of the surfaces tested. Surfaces from children's playground equipment and daycare centers were the most frequently contaminated (biochemical markers on 36%; 15/42 and 46%; 25/54, respectively). Surfaces from the shopping, miscellaneous activities, and office environments were positive for biochemical markers with a frequency of 21% (69/333), 21% (66/308), and 11% (12/105), respectively). Sixty samples were analyzed for biochemical markers and bacteria. Total and fecal coliforms were detected on 20% (12/60) and 7% (4/ 60) of the surfaces, respectively. Half and one-third of the sites positive for biochemical markers were also positive for total and fecal coliforms, respectively. Artificial contamination of public surfaces with an invisible fluorescent tracer showed that contamination from outside surfaces was transferred to 86% (30/ 35) of exposed individual's hands and 82% (29/35) tracked the tracer to their home or personal belongings hours later. Results provide information on the relative hygiene of commonly encountered public surfaces and aid in the identification of priority environments where contaminant occurrence and risk of exposure may be greatest. Children's playground equipment is identified as a priority surface for additional research on the occurrence of and potential exposure to infectious

  3. Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants

    PubMed Central

    Hueck, Christoph J.

    1998-01-01

    Various gram-negative animal and plant pathogens use a novel, sec-independent protein secretion system as a basic virulence mechanism. It is becoming increasingly clear that these so-called type III secretion systems inject (translocate) proteins into the cytosol of eukaryotic cells, where the translocated proteins facilitate bacterial pathogenesis by specifically interfering with host cell signal transduction and other cellular processes. Accordingly, some type III secretion systems are activated by bacterial contact with host cell surfaces. Individual type III secretion systems direct the secretion and translocation of a variety of unrelated proteins, which account for species-specific pathogenesis phenotypes. In contrast to the secreted virulence factors, most of the 15 to 20 membrane-associated proteins which constitute the type III secretion apparatus are conserved among different pathogens. Most of the inner membrane components of the type III secretion apparatus show additional homologies to flagellar biosynthetic proteins, while a conserved outer membrane factor is similar to secretins from type II and other secretion pathways. Structurally conserved chaperones which specifically bind to individual secreted proteins play an important role in type III protein secretion, apparently by preventing premature interactions of the secreted factors with other proteins. The genes encoding type III secretion systems are clustered, and various pieces of evidence suggest that these systems have been acquired by horizontal genetic transfer during evolution. Expression of type III secretion systems is coordinately regulated in response to host environmental stimuli by networks of transcription factors. This review comprises a comparison of the structure, function, regulation, and impact on host cells of the type III secretion systems in the animal pathogens Yersinia spp., Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhimurium, enteropathogenic Escherichia coli

  4. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: part II. Soil biological and biochemical properties in relation to trace element speciation.

    PubMed

    D'Ascoli, R; Rao, M A; Adamo, P; Renella, G; Landi, L; Rutigliano, F A; Terribile, F; Gianfreda, L

    2006-11-01

    The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, beta-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community. PMID:16406624

  5. Clinical and Biochemical Markers of Cardiovascular Structure and Function in Women With the Metabolic Syndrome.

    PubMed

    Velarde, Gladys P; Sherazi, Saadia; Kraemer, Dale F; Bravo-Jaimes, Katia; Butterfield, Ryan; Amico, Tonja; Steinmetz, Sherry D; Guzman, Maricela; Martin, Dale; Dodani, Sunita; Smith, Brian H

    2015-12-01

    The pathobiological impact of individual components of the metabolic syndrome (MS) on cardiac structural and functional parameters in women with isolated MS is not known. The objectives of this study were (1) to compare biochemical (prothrombotic, lipogenic, and inflammatory) and imaging (carotid intima-media thickening and basic cardiac structural measurements) markers in women with and without MS and (2) to examine if any of these markers associated or predicted cardiac structural differences between the 2 groups. This cross-sectional pilot study included 88 women with MS and 35 women without it. MS was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Patients with diagnosis of diabetes were excluded. Compared with healthy subjects, women with MS had higher levels of intercellular adhesion molecule, myeloperoxidase, C-reactive protein, plasminogen activator inhibitor-1, leptin, apolipoprotein-B, and lower levels of apolipoprotein-A1 (p <0.001 for all). They also had higher mean ventricular septum, posterior wall thickness, left ventricular (LV) mass, carotid intima-media thickness (p <0.001 for all), and left atrial diameter (p = 0.015). In multivariable regression models, waist circumference and systolic blood pressure (BP) were significant predictors of: ventricular septum (p = 0.005 and p = 0.001, respectively), posterior wall thickness (p = 0.008 and p = 0.040, respectively), and LV mass (p <0.001 and p = 0.013, respectively). Significant predictors for carotid intima-media thickness were systolic BP, glucose, and leptin (p <0.0001, p = 0.034, and p = 0.002, respectively). In conclusion, there are significant clinical, biochemical, and cardiovascular structural differences in women with isolated MS compared with those without. Waist circumference and systolic BP had the strongest association with cardiac structural differences in this group of women. PMID:26482181

  6. [Biochemical markers of bone metabolism and their importance].

    PubMed

    Obermayer-Pietsch, B; Schwetz, V

    2016-06-01

    Laboratory analyses of biochemical markers for bone and mineral metabolism can play a key role in the assessment of patients with osteoporosis. They may help to assess bone turnover in the diagnostic work-up and aid decision-making as well as selection of pharmaceutical therapy options. Recent publications on therapy response have shown that biochemical markers of bone turnover are valuable tools for the evaluation of therapy success in individual osteoporosis patients and the assessment of bone mineral density gain during therapy. PMID:27146404

  7. Physiological and molecular biochemical mechanisms of bile formation

    PubMed Central

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  8. Susceptibility to antibiotics and biochemical properties of Desulfovibrio desulfuricans strains.

    PubMed

    Dzierzewicz, Z; Cwalina, B; Jaworska-Kik, M; Weglarz, L; Wilczok, T

    2001-01-01

    Susceptibility to several antibiotics and biochemical properties of intestinal and soil strains of Desulfovibrio desulfuricans bacteria were investigated using the tests: ATB ANA, Sceptor Anaerobic MIC/ID and API ZYM. It was demonstrated that the D. desulfuricans strains were resistant to penicillin, cefoxitin, clindamycin, metronidazole, erythromycin, rifampicin and teicoplanin. The strains initially susceptible to imipenem became resistant to this drug following 72 h incubation with it. Of 25 analyzed antibiotics there was none that after 72 h action on the bacteria was effective in relation to all of the investigated strains. The differences in susceptibility of D. desulfuricans strains to antibiotics were not associated with the strains' biochemical properties. PMID:12197616

  9. Overview of the DOE/SERI Biochemical Conversion Program

    SciTech Connect

    Wright, J D

    1986-09-01

    The Solar Energy Research Institute manages a program of research and development on the biochemical conversion of renewable lignocellulosic materials to liquid fuels for the Department of Energy's Biofuels and Municipal Waste Technology Division. The Biochemical Conversion Program is mission oriented so effort is concentrated on technologies which appear to have the greatest potential for being adopted by the private sector to economically convert lignocellulosic materials into high value liquid transportation fuels such as ethanol. The program is structured to supply the technology for such fuels to compete economically first as an octane booster or fuel additive, and, with additional improvements, as a neat fuel. 18 refs., 3 figs., 1 tab.

  10. Biochemical parameters of plants as indicators of air pollution.

    PubMed

    Tripathi, A K; Gautam, Mukesh

    2007-01-01

    In the present study species like Mangifera indica, Linn., Cassia fistula, Linn., and Eucalyptus hybrid were exposed to different air pollution load for short duration (active biomonitoring). Variation in biochemical parameters like chlorophyll, protein, soluble sugar free amino acid, ascorbic acid, nitrate reductase, superoxide dismutase and peroxidase in the leaves were found to be pollution load dependent. These variations can be used as indicators of air pollution for early diagnosis of stress or as a marker for physiological damage to trees prior to the onset of visible injury symptoms. Just by analyzing these biochemical indicators air quality can also be assessed. PMID:17717999

  11. [Genetic analysis of biochemical differences of Yersinia pestis strains].

    PubMed

    Eroshenko, G A; Odinokov, G N; Kukleva, L M; Kutyrev, V V

    2012-01-01

    Literature data and results of our experimental studies on genetic base of biochemical differentiation of Yersinia pestis strains of various subspecies and biovars are summarized in the review. Data on variability of genes coding biochemical features (sugar and alcohol fermentation, nitrate reduction), the differential development of which are the base of existing phenotypic schemes of Y. pestis strains classification, are presented. Variability of these genes was shown to have possible use for the development of genetic classification of Y. pestis strains of various subspecies and biovars. PMID:22830282

  12. Rapid methods for biochemical testing of anaerobic bacteria.

    PubMed

    Schreckenberger, P C; Blazevic, D J

    1974-11-01

    Rapid biochemical tests for nitrate, indole, gelatin, starch, esculin, and o-nitrophenyl-beta-D-galactopyranoside were performed on 112 strains of anaerobic bacteria. All tests were incubated under aerobic conditions, and results were recorded within 4 h. The tests for nitrate, indole, and starch showed a 95% or greater correlation when compared to the standard biochemical tests. Tests for esculin and gelatin showed an agreement of 86 and 77%, respectively. PathoTec test strips for nitrate, indole, esculin, o-nitrophenyl-beta-D-galactopyranoside, Voges-Proskauer, and urease were also tested and showed encouraging results. PMID:4613268

  13. Evolution and Probability.

    ERIC Educational Resources Information Center

    Bailey, David H.

    2000-01-01

    Some of the most impressive-sounding criticisms of the conventional theory of biological evolution involve probability. Presents a few examples of how probability should and should not be used in discussing evolution. (ASK)

  14. Oxygen and Biological Evolution.

    ERIC Educational Resources Information Center

    Baugh, Mark A.

    1990-01-01

    Discussed is the evolution of aerobic organisms from anaerobic organisms and the accompanying biochemistry that developed to motivate and enable this evolution. Uses of oxygen by aerobic organisms are described. (CW)

  15. Mistakes and Molecular Evolution.

    ERIC Educational Resources Information Center

    Trevors, J. T.

    1998-01-01

    Examines the role mistakes play in the molecular evolution of bacteria. Discusses the interacting physical, chemical, and biological factors that cause changes in DNA and play a role in prokaryotic evolution. (DDR)

  16. The Evolution of Design

    ERIC Educational Resources Information Center

    Stebbins, G. Ledyard

    1973-01-01

    Describes the basic logic behind the modern view of evolution theory. Despite gaps in fossil records, evidence is indicative of the origin of life from nonliving molecules and evolution of higher forms of life from simpler forms. (PS)

  17. Action of Brazilian propolis on hematological and serum biochemical parameters of Blue-fronted Amazons (Amazona aestiva, Linnaeus, 1758) in captivity.

    PubMed

    Silva, Cínthia R B; Putarov, Thaila C; Fruhvald, Erika; Destro, Flavia C; Marques Filho, Wolff C; Thomazini, Camila M; Barbosa, Tatiana S; Orsi, Ricardo O; Siqueira, Edson R

    2014-07-01

    The present study aimed to evaluate the effect of propolis use on hematological and serum biochemical parameters in Blue-fronted Amazons (Amazona aestiva). For this, 12 adult birds were distributed randomly into individual cages, divided into treatments with different propolis levels (A = 0.0%; B = 0.5%; and C = 1.0%), in 3 distinct phases (I, II, and III), with 15-d duration for phases I and III and 30 d for phase II, totaling 60 d. In phases I and III, all birds received treatment A ration, and in phase II received A, B, or C (4 birds per treatment). At the end of each phase, blood was collected for biochemical and hematological evaluations. The variables were analyzed by ANOVA (P < 0.05). Results suggest that 0.5% propolis reduced lactate dehydrogenase levels, whereas treatment B augmented hemoglobin concentrations and eosinophil count. It is concluded that 0.5% propolis improves levels of lactate dehydrogenase, hemoglobin, and eosinophils. PMID:24864289

  18. DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond

    SciTech Connect

    Pan, Paul Y

    2010-12-10

    An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

  19. HIV Evolution and Escape.

    PubMed Central

    Richman, Douglas D.; Little, Susan J.; Smith, Davey M.; Wrin, Terri; Petropoulos, Christos; Wong, Joseph K.

    2004-01-01

    Human immunodeficiency virus (HIV) exemplifies the principles of Darwinian evolution with a telescoped chronology. Because of its high mutation rate and remarkably high rates of replication, evolution can be appreciated over periods of days in contrast to the durations conceived of by Darwin. Certain selective pressures that drive the evolution of HIV include chemotherapy, anatomic compartmentalization and the immune response. Examples of these selective forces on HIV evolution are described. Images Fig. 5 PMID:17060974

  20. Early Umbilical Cord Blood-Derived Stem Cell Transplantation Does Not Prevent Neurological Deterioration in Mucopolysaccharidosis Type III.

    PubMed

    Welling, Lindsey; Marchal, Jan Pieter; van Hasselt, Peter; van der Ploeg, Ans T; Wijburg, Frits A; Boelens, Jaap Jan

    2015-01-01

    Mucopolysaccharidosis type III (MPS III), or Sanfilippo disease, is a neurodegenerative lysosomal storage disease (LSD) caused by defective lysosomal degradation of heparan sulfate (HS). No effective disease-modifying therapy is yet available. In contrast to some other neuronopathic LSDs, bone marrow-derived hematopoietic stem cell transplantation (HSCT) fails to prevent neurological deterioration in MPS III patients. We report on the 5-year outcome of early transplantation, i.e., before onset of clinical neurological disease, in combination with the use of umbilical cord blood-derived hematopoietic stem cells (UCBT), in two MPS III patients. Both patients had a normal developmental quotient at the time of UCBT. One patient had a combination of mutations predicting a classical severe phenotype (MPS IIIA), and one patient (MPS IIIB) had mutations predicting a very attenuated phenotype. Transplantation was uncomplicated with full engraftment of donor cells in both.Both patients showed progressive neurological deterioration with regression of cognitive skills and behavioral disturbances during 5 years after successful UCBT, comparable to the natural history of patients with the same combination of mutations. The concentration of HS in CSF in the patient with the attenuated phenotype of MPS IIIB 2 years after UCBT was very high and in the range of untreated MPS III patients.We conclude that the course of cognitive development, behavioral problems, and absence of biochemical correction in CSF demonstrate the absence of relevant effect of UCBT in MPS III patients, even when performed before clinical onset of CNS disease. PMID:25256447

  1. Old Perspectives on Evolution

    ERIC Educational Resources Information Center

    De Blacquiere-Clarkson, John

    1976-01-01

    Presents a perspective on evolution which includes an explanation of the textbook theory of evolution, a review of evolutionary theory before Darwin, and an outline of Darwin's early theories. Describes a rethinking of evolutionary theory to include natural selection, conservative selection, discontinous evolution, catastrophism, and the…

  2. A Shuttle evolution strategy

    NASA Technical Reports Server (NTRS)

    Teixeira, Charles; Mallini, Charles

    1989-01-01

    An overview of a potential Space Shuttle evolution strategy is presented. A Shuttle development study which reviews past and ongoing studies, implements a Shuttle Enhancement Data Base, and develops a methodology and a strawman evolution strategy is discussed. The long-term goals of a Shuttle evolution strategy, including increased reliability, lower cost, robustness, resiliency, increased capability, and assured access are addressed.

  3. Evolution & Diversity in Plants.

    ERIC Educational Resources Information Center

    Pearson, Lorentz C.

    1988-01-01

    Summarizes recent findings that help in understanding how evolution has brought about the diversity of plant life that presently exists. Discusses basic concepts of evolution, diversity and classification, the three-line hypothesis of plant evolution, the origin of fungi, and the geologic time table. Included are 31 references. (CW)

  4. Evolution for Young Victorians

    NASA Astrophysics Data System (ADS)

    Lightman, Bernard

    2012-07-01

    Evolution was a difficult topic to tackle when writing books for the young in the wake of the controversies over Darwin's Origin of Species. Authors who wrote about evolution for the young experimented with different ways of making the complex concepts of evolutionary theory accessible and less controversial. Many authors depicted presented evolution in a non-Darwinian form amenable to religious interpretation.

  5. Arguing for Evolution.

    ERIC Educational Resources Information Center

    Ayala, Francisco J.

    2000-01-01

    Discusses the Kansas State Board of Education's decision to remove references to evolution and cosmology from the state's education standards and assessment. Advocates the need to teach evolution in high schools for a meaningful biology education. Addresses the question whether the teaching of evolution poses a threat to Christianity or other…

  6. Propolis Modifies Collagen Types I and III Accumulation in the Matrix of Burnt Tissue.

    PubMed

    Olczyk, Pawel; Wisowski, Grzegorz; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Olczyk, Monika; Kozma, Ewa M

    2013-01-01

    Wound healing represents an interactive process which requires highly organized activity of various cells, synthesizing cytokines, growth factors, and collagen. Collagen types I and III, serving as structural and regulatory molecules, play pivotal roles during wound healing. The aim of this study was to compare the propolis and silver sulfadiazine therapeutic efficacy throughout the quantitative and qualitative assessment of collagen types I and III accumulation in the matrix of burnt tissues. Burn wounds were inflicted on pigs, chosen for the evaluation of wound repair because of many similarities between pig and human skin. Isolated collagen types I and III were estimated by the surface plasmon resonance method with a subsequent collagenous quantification using electrophoretic and densitometric analyses. Propolis burn treatment led to enhanced collagens and its components expression, especially during the initial stage of the study. Less expressed changes were observed after silver sulfadiazine (AgSD) application. AgSD and, with a smaller intensity, propolis stimulated accumulation of collagenous degradation products. The assessed propolis therapeutic efficacy, throughout quantitatively and qualitatively analyses of collagen types I and III expression and degradation in wounds matrix, may indicate that apitherapeutic agent can generate favorable biochemical environment supporting reepithelization. PMID:23781260

  7. Identification of HDAC Inhibitors Using a Cell-Based HDAC I/II Assay.

    PubMed

    Hsu, Chia-Wen; Shou, David; Huang, Ruili; Khuc, Thai; Dai, Sheng; Zheng, Wei; Klumpp-Thomas, Carleen; Xia, Menghang

    2016-07-01

    Histone deacetylases (HDACs) are a class of epigenetic enzymes that regulate gene expression by histone deacetylation. Altered HDAC function has been linked to cancer and neurodegenerative diseases, making HDACs popular therapeutic targets. In this study, we describe a screening approach for identification of compounds that inhibit endogenous class I and II HDACs. A homogeneous, luminogenic HDAC I/II assay was optimized in a 1536-well plate format in several human cancer cell lines, including HCT116 and human neural stem cells. The assay confirmed 37 known HDAC inhibitors from two libraries of known epigenetics-active compounds. Using the assay, we identified a group of potential HDAC inhibitors by screening the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection of 2527 small-molecule drugs. The selected compounds showed similar HDAC I/II inhibitory potency and efficacy values in both HCT116 and neural stem cells. Several previously unidentified HDAC inhibitors were further evaluated and profiled for their selectivity against a panel of 10 HDAC I/II isoforms using fluorogenic HDAC biochemical assays. In summary, our results show that several novel HDAC inhibitors, including nafamostat and piceatannol, have been identified using the HDAC I/II cell-based assay, and multiple cell types have been validated for high-throughput screening of large chemical libraries. PMID:26858181

  8. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments

    PubMed Central

    Tang, Shaogeng; Henne, W Mike; Borbat, Peter P; Buchkovich, Nicholas J; Freed, Jack H; Mao, Yuxin; Fromme, J Christopher; Emr, Scott D

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling. DOI: http://dx.doi.org/10.7554/eLife.12548.001 PMID:26670543

  9. Dens invaginatus (Type III B)

    PubMed Central

    Kallianpur, Shreenivas; Sudheendra, US; Kasetty, Sowmya; Joshi, Prathamesh

    2012-01-01

    Dens invaginatus or ‘dens in dente’ is a developmental malformation of the tooth resulting from infolding of the dental papilla before calcification. This article presents a case of dens invaginatus occurring in maxillary right lateral incisor of a 45-year-old male patient. The patient presented with pain and clinically missing maxillary right canine. The tooth was found to be non-vital. Radiographic examination revealed the tooth-in-tooth appearance of lateral incisor with a dilated pulp chamber. The crown of impacted canine was found within the pulp chamber of lateral incisor. Owing to this unique clinical presentation, both the lateral incisor and the impacted canine were extracted. Histopathologic examination confirmed the diagnosis of Dens invaginatus Type III B. A brief review on etiopathogenesis, radiographic features and treatment of dens invaginatus has also been included. PMID:22923901

  10. Comparative adsorption of Eu(III) and Am(III) on TPD.

    PubMed

    Fan, Q H; Zhao, X L; Ma, X X; Yang, Y B; Wu, W S; Zheng, G D; Wang, D L

    2015-09-01

    Comparative adsorption behaviors of Eu(III) and Am(III) on thorium phosphate diphosphate (TPD), i.e., Th4(PO4)4P2O7, have been studied using a batch approach and surface complexation model (SCM) in this study. The results showed that Eu(III) and Am(III) adsorption increased to a large extent with the increase in TPD dose. Strong pH-dependence was observed in both Eu(III) and Am(III) adsorption processes, suggesting that inner-sphere complexes (ISCs) were possibly responsible for the adsorption of Eu(III) and Am(III). Meanwhile, the adsorption of Eu(III) and Am(III) decreased to a different extent with the increase in ion strength, which was possibly related to outer-sphere complexes and/or ion exchange. In the presence of fulvic acid (FA), the adsorption of Eu(III) and Am(III) showed high enhancement mainly due to the ternary surface complexes of TPD-FA-Eu(3+) and TPD-FA-Am(3+). The SCM showed that one ion exchange (≡S3Am/Eu) and two ISCs (≡(XO)2Am/EuNO3 and ≡(YO)2Am/EuNO3) seemed more reasonable to quantitatively describe the adsorption edges of both Eu(III) and Am(III). Our findings obviously showed that Eu(III) could be a good analogue to study actinide behaviors in practical terms. However, it should be kept in mind that there are still obvious differences between the characteristics of Eu(III) and Am(III) in some special cases, for instance, the complex ability with organic matter and adsorption affinity to a solid surface. PMID:26198355

  11. [Ribosomal RNA Evolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modern organisms came to exist by the time of the last common ancestor (as detected by 16S rRNA sequence studies). Third, the ribosomal RNAs themselves likely had a very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.During the past year we have ave conducted a comparative study of four completely sequenced bacterial genoames. We have focused initially on conservation of gene order. The second component of the project continues to build on the model system for studying the validity of variant 5S rRNA sequences in the vicinity of the modern Vibrio proteolyticus 5S rRNA that we established earlier. This system has made it possible to conduct a detailed and extensive analysis of a local portion of the sequence space. These core methods have been used to construct numerous mutants during the last several years. Although it has been a secondary focus, this work has continued over the last year such that we now have in excess of 125 V. proteolyticus derived constructs which have been made and characterized. We have also continued high resolution NMR work on RNA oligomers originally initiated by G. Kenneth Smith who was funded by a NASA Graduate Student Researcher's Fellowship Award until May of 1996. Mr. Smith

  12. Characterization of ribonuclease III from Brucella.

    PubMed

    Wu, Chang-Xian; Xu, Xian-Jin; Zheng, Ke; Liu, Fang; Yang, Xu-Dong; Chen, Chuang-Fu; Chen, Huan-Chun; Liu, Zheng-Fei

    2016-04-01

    Bacterial ribonuclease III (RNase III) is a highly conserved endonuclease, which plays pivotal roles in RNA maturation and decay pathways by cleaving double-stranded structure of RNAs. Here we cloned rncS gene from the genomic DNA of Brucella melitensis, and analyzed the cleavage properties of RNase III from Brucella. We identified Brucella-encoding small RNA (sRNA) by high-throughput sequencing and northern blot, and found that sRNA of Brucella and Homo miRNA precursor (pre-miRNA) can be bound and cleaved by B.melitensis ribonuclease III (Bm-RNase III). Cleavage activity of Bm-RNase III is bivalent metal cations- and alkaline buffer-dependent. We constructed several point mutations in Bm-RNase III, whose cleavage activity indicated that the 133th Glutamic acid residue was required for catalytic activity. Western blot revealed that Bm-RNase III was differently expressed in Brucella virulence strain 027 and vaccine strain M5-90. Collectively, our data suggest that Brucella RNase III can efficiently bind and cleave stem-loop structure of small RNA, and might participate in regulation of virulence in Brucella. PMID:26778206

  13. Influence of organic matters on AsIII oxidation by the microflora of polluted soils.

    PubMed

    Lescure, T; Moreau, J; Charles, C; Ben Ali Saanda, T; Thouin, H; Pillas, N; Bauda, P; Lamy, I; Battaglia-Brunet, F

    2016-06-01

    The global AsIII-oxidizing activity of microorganisms in eight surface soils from polluted sites was quantified with and without addition of organic substrates. The organic substances provided differed by their nature: either yeast extract, commonly used in microbiological culture media, or a synthetic mixture of defined organic matters (SMOM) presenting some common features with natural soil organic matter. Correlations were sought between soil characteristics and both the AsIII-oxidizing rate constants and their evolution in accordance with inputs of organic substrates. In the absence of added substrate, the global AsIII oxidation rate constant correlated positively with the concentration of intrinsic organic matter in the soil, suggesting that AsIII-oxidizing activity was limited by organic substrate availability in nutrient-poor soils. This limitation was, however, removed by 0.08 g/L of added organic carbon. In most conditions, the AsIII oxidation rate constant decreased as organic carbon input increased from 0.08 to 0.4 g/L. Incubations of polluted soils in aerobic conditions, amended or not with SMOM, resulted in short-term As mobilization in the presence of SMOM and active microorganisms. In contrast, microbial AsIII oxidation seemed to stabilize As when no organic substrate was added. Results suggest that microbial speciation of arsenic driven by nature and concentration of organic matter exerts a major influence on the fate of this toxic element in surface soils. PMID:26427654

  14. Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates.

    PubMed

    Matsuzawa, Tomohiko; Kaneko, Satoshi; Yaoi, Katsuro

    2016-09-01

    Trichoderma reesei Xyn III, an endo-β-1,4-xylanase belonging to glycoside hydrolase family 10 (GH10), is vital for the saccharification of xylans in plant biomass. However, its enzymatic thermostability and hydrolytic activity on insoluble substrates are low. To overcome these difficulties, the thermostability of Xyn III was improved using random mutagenesis and directed evolution, and its hydrolytic activity on insoluble substrates was improved by creating a chimeric protein. In the screening of thermostable Xyn III mutants from a random mutagenesis library, we identified two amino acid residues, Gln286 and Asn340, which are important for the thermostability of Xyn III. The Xyn III Gln286Ala/Asn340Tyr mutant showed xylanase activity even after heat treatment at 60 °C for 30 min or 50 °C for 96 h, indicating a dramatic enhancement in thermostability. In addition, we found that the addition of a xylan-binding domain (XBD) to the C-terminal of Xyn III improved its hydrolytic activity on insoluble xylan. PMID:27138202

  15. Biochemical Parameters of Orienteers Competing in a Long Distance Race.

    ERIC Educational Resources Information Center

    Mikan, Vladimir; And Others

    1992-01-01

    Measured important biochemical parameters in a group of orienteers two hours before beginning and immediately after an orienteering marathon. Found levels of dehydration. Suggests a drinking regimen which is designed for orienteering races. Concludes that no runner having kidney or liver abnormalities or changes in the urine should be allowed to…

  16. BIOCHEMICAL EFFECTS OF TWO PROMOTERS OF HEPATOCARCINOGENESIS IN RATS

    EPA Science Inventory

    The effects of administration of two promoters of hepatocarcinogenesis on five hepatic biochemical parameters were examined in adult female rats. Two treatments of phenobarbital (100 mg/kg) 21 and 4 hours before sacrifice caused large increases in hepatic ODC activity and cytochr...

  17. [Interpopulation differeces biochemical adaptation at population of Gorny Altai].

    PubMed

    Chanchaeva, E A; Aĭzman, R I

    2014-01-01

    The factual nutrition of aborigines Russian, altay and kazah nationalities of Gorny Altai were studied. As a result, interpopulating differences of population's nutrition witch quantitative consumption macronutrients have been influence and dependence on the nationality has been determined. Biochemical parameters of blood with quantitative composition of ration's macronutrients are correlated. PMID:25272709

  18. Dialogues as Teaching Tools in the Biochemical Sciences.

    ERIC Educational Resources Information Center

    Roberts-Kirchhoff, Elizabeth S.; Caspers, Mary Lou

    2001-01-01

    Reports on the implementation of a group project whose goal was to write a dialogue that explores one area in which advances in biochemical research give rise to ethical and societal considerations. Reports that the project was regarded highly by students. (Author/MM)

  19. Salvage Brachytherapy for Biochemically Recurrent Prostate Cancer following Primary Brachytherapy

    PubMed Central

    Lacy, John M.; Wilson, William A.; Bole, Raevti; Chen, Li; Meigooni, Ali S.; Rowland, Randall G.; Clair, William H. St.

    2016-01-01

    Purpose. In this study, we evaluated our experience with salvage brachytherapy after discovery of biochemical recurrence after a prior brachytherapy procedure. Methods and Materials. From 2001 through 2012 twenty-one patients treated by brachytherapy within University of Kentucky or from outside centers developed biochemical failure and had no evidence of metastases. Computed tomography (CT) scans were evaluated; patients who had an underseeded portion of their prostate were considered for reimplantation. Results. The majority of the patients in this study (61.9%) were low risk and median presalvage PSA was 3.49 (range 17.41–1.68). Mean follow-up was 61 months. At last follow-up after reseeding, 11/21 (52.4%) were free of biochemical recurrence. There was a trend towards decreased freedom from biochemical recurrence in low risk patients (p = 0.12). International Prostate Symptom Scores (IPSS) increased at 3-month follow-up visits but decreased and were equivalent to baseline scores at 18 months. Conclusions. Salvage brachytherapy after primary brachytherapy is possible; however, in our experience the side-effect profile after the second brachytherapy procedure was higher than after the first brachytherapy procedure. In this cohort of patients we demonstrate that approximately 50% oncologic control, low risk patients appear to have better outcomes than others. PMID:27092279

  20. ANALYSIS OF FETOTOXICITY USING BIOCHEMICAL ENDPOINTS OF ORGAN DIFFERENTIATION

    EPA Science Inventory

    The biochemical differentiation of the brain, lungs, liver, and kidneys of the late gestation rat fetus was examined to characterize the immediate implications of retarded growth on fetal development. Initially, the normative profile of development of the brain (weight, DNA conte...

  1. Process review of lignocellulose biochemical conversion to fuel ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review is meant to give a general technical review of the state-of-the-art in process technology for the biochemical conversion of lignocellulose to fuel ethanol. The proceeding details the chemical structure of biomass and basic process steps needed for extracting carbohydrates as sugars and ...

  2. Biochemical and physiological consequences of the Apollo flight diet.

    NASA Technical Reports Server (NTRS)

    Hander, E. W.; Leach, C. S.; Fischer, C. L.; Rummel, J.; Rambaut, P.; Johnson, P. C.

    1971-01-01

    Six male subjects subsisting on a typical Apollo flight diet for five consecutive days were evaluated for changes in biochemical and physiological status. Laboratory examinations failed to demonstrate any significant changes of the kind previously attributed to weightlessness, such as in serum electrolytes, endocrine values, body fluid, or hematologic parameters.

  3. Variation of biochemical gene markers in the population of Tomsk

    SciTech Connect

    Kucher, A.N.; Ivanova, O.F.; Puzyrev, V.P.; Tsymbalyuk, I.V.; Trotsenko, B.A.

    1994-11-01

    Variation of seven biochemical gene markers (Tf, Gc, Hp, ACP1, PGM1, PGD, and EsD) in the population of Tomsk was examined. The genetic structure of this population is compared to that of other urban populations from different regions of Russia. 13 refs., 4 tabs.

  4. Biochemical basis of the effects of modified and controlled atmospheres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review provides updated information on the biochemical and physiological effects of modified and controlled atmospheres (MA & CA) on fruits and vegetables. In addition to conventional MA and CA storage which uses low oxygen and high carbon dioxide, there has been some interest recently in usin...

  5. Biochemical profile of gin women laborers in Tirupur

    PubMed Central

    Jannet, J. V.; Jeyanthi, G. P.

    2007-01-01

    Ginning factories discharge large amounts of cotton dusts that lead to decreased pulmonary function in the exposed subjects. An attempt was made to study the biochemical profile of women laborers employed in ginning factory located in Tirupur, a textile based city in Coimbatore district of Tamilnadu, India. The blood parameters that were analyzed were hemoglobin, total and differential count of leucocytes, erythrocyte sedimentation rate (ESR), total proteins, immunoglobulins, total and isozymic content of lactate dehydrogenase (LDH) and histamine. Student's ‘t’ test was carried out to compare the results with the control women. Correlation analysis was done between/within the biochemical parameters and also between the pulmonary function parameters results reported earlier by Jannet and Jeyanthi. Significant changes in the levels of hemoglobin, ESR, immunoglobins and histamine were reported in this study. Correlation studies between the pulmonary function parameters and biochemical parameters revealed significant negative correlation of FVC, FEV1 and PEF with ESR (P <0.05). There was also positive correlation between immunoglobin G and histamine. A significant negative correlation was observed between LDH1 and LDH3 and between albumin and γ globulin. The study suggested that the ginning factory women laborers exhibited significant changes in the levels of certain biochemical parameters apart from the pulmonary functional changes. PMID:21938218

  6. Annelid Aminotransferase Activity--An Exercise in Basic Biochemical Skills.

    ERIC Educational Resources Information Center

    Teal, A. R.; Alcock, R. S.

    1978-01-01

    A practical exercise is described that allows students to investigate a specific problem using a variety of biochemical techniques. The need for a thorough understanding of the theoretical principles underlying these processes is emphasized. A program of private study and assessment is suggested to enable the progress of students to be followed.…

  7. BIOCHEMICAL INDICES OF EXPOSURE TO ENVIRONMENTAL ESTROGENS: A SPECIES COMPARISON

    EPA Science Inventory

    Existence of endocrine active substances in the aquatic environment has been clearly established in several studies. Exposure of organisms to both natural and synthetic xenoestrogens have been found to alter biochemical homeostatis and, in some cases, result in reproductive and d...

  8. [Experiments using rats on Kosmos biosatellites: morphologic and biochemical studies].

    PubMed

    Il'in, E A; Kaplanskiĭ, A S; Savina, E A

    1989-01-01

    Results of morphological and biochemical investigations of rats flown on Cosmos biosatellites are discussed. It is emphasized that most changes occurring during exposure to microgravity are directly or indirectly related to lower musculoskeletal loads which in turn produce deconditioning of different physiological systems and organism as a whole. It is concluded that this deconditioning is associated with both metabolic and structural changes. PMID:2685464

  9. Biosensors and bioelectronics on smartphone for portable biochemical detection.

    PubMed

    Zhang, Diming; Liu, Qingjun

    2016-01-15

    Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future. PMID:26319170

  10. Biochemical and Structural Studies of RNA Modification and Repair

    ERIC Educational Resources Information Center

    Chan, Chio Mui

    2009-01-01

    RNA modification, RNA interference, and RNA repair are important events in the cell. This thesis presents three projects related to these three fields. By using both biochemical and structural methods, we characterized enzymatic activities of pseudouridine synthase TruD, solved the structure of "A. aeolicus" GidA, and reconstituted a novel…

  11. Physiologic and biochemical aspects of skeletal muscle denervation and reinnervation

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Mayer, R. F.

    1984-01-01

    Some of the physiologic and biochemical changes that occur in mammalian skeletal muscle following denervation and reinnervation are considered and some comparisons are made with changes observed following altered motor function. The nature of the trophic influence by which nerves control muscle properties are discussed, including the effects of choline acetyltransferase and acetylcholinesterase and the role of the acetylcholine receptor.

  12. MATLAB-Based Teaching Modules in Biochemical Engineering

    ERIC Educational Resources Information Center

    Lee, Kilho; Comolli, Noelle K.; Kelly, William J.; Huang, Zuyi

    2015-01-01

    Mathematical models play an important role in biochemical engineering. For example, the models developed in the field of systems biology have been used to identify drug targets to treat pathogens such as Pseudomonas aeruginosa in biofilms. In addition, competitive binding models for chromatography processes have been developed to predict expanded…

  13. Classic and contemporary approaches to modeling biochemical reactions

    PubMed Central

    Chen, William W.; Niepel, Mario; Sorger, Peter K.

    2010-01-01

    Recent interest in modeling biochemical networks raises questions about the relationship between often complex mathematical models and familiar arithmetic concepts from classical enzymology, and also about connections between modeling and experimental data. This review addresses both topics by familiarizing readers with key concepts (and terminology) in the construction, validation, and application of deterministic biochemical models, with particular emphasis on a simple enzyme-catalyzed reaction. Networks of coupled ordinary differential equations (ODEs) are the natural language for describing enzyme kinetics in a mass action approximation. We illustrate this point by showing how the familiar Briggs-Haldane formulation of Michaelis-Menten kinetics derives from the outer (or quasi-steady-state) solution of a dynamical system of ODEs describing a simple reaction under special conditions. We discuss how parameters in the Michaelis-Menten approximation and in the underlying ODE network can be estimated from experimental data, with a special emphasis on the origins of uncertainty. Finally, we extrapolate from a simple reaction to complex models of multiprotein biochemical networks. The concepts described in this review, hitherto of interest primarily to practitioners, are likely to become important for a much broader community of cellular and molecular biologists attempting to understand the promise and challenges of “systems biology” as applied to biochemical mechanisms. PMID:20810646

  14. USE OF MUNICIPAL SOLID WASTE LANDFILLS AS BIOCHEMICAL REACTORS

    EPA Science Inventory

    Municipal solid waste (MSW) from the nation is managed predominantly in anitary landfills. ue to the physical, chemical and biological makeup f he aste he landfill acts as a biochemical reactor and degrades the organic matter. urrent practices are to use covers and liners as engi...

  15. Biochemical basis of heterogeneity in acute presentations of propionic acidemia.

    PubMed

    Sindgikar, Seema Pavaman; Rao, Suchetha; Shenoy, Rathika D; Kamath, Nutan

    2013-01-01

    Propionic acidemia (PA), an uncommon organic acidemia has varied clinical and metabolic presentation causing difficulty and delay in the diagnosis. We report a case of PA in an infant who presented with failure to thrive, acute encephalopathy due to severe hyperammonemia without acidosis and fungal sepsis. The biochemical basis of severe hyperammonemia is discussed. PMID:24381430

  16. [About the biochemical criteria of heroin (narcotic) intoxication].

    PubMed

    Korshunov, G V; BYchkov, E N; Borodulin, V B; Arsent'eva, L A; Serkova, S A; Bel'skaia, N A

    2013-06-01

    The article deals with the data of study of biochemical indicators and activity of particular proteolytic enzymes in blood serum of patients with heroin drug addiction. The results can be applied to detect the typical laboratory changes intrinsic to this kind of intoxication. PMID:24340942

  17. Metstoich--Teaching Quantitative Metabolism and Energetics in Biochemical Engineering

    ERIC Educational Resources Information Center

    Wong, Kelvin W. W.; Barford, John P.

    2010-01-01

    Metstoich, a metabolic calculator developed for teaching, can provide a novel way to teach quantitative metabolism to biochemical engineering students. It can also introduce biochemistry/life science students to the quantitative aspects of life science subjects they have studied. Metstoich links traditional biochemistry-based metabolic approaches…

  18. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    EPA Science Inventory

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  19. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 2. MODEL EVALUATION

    EPA Science Inventory

    The multilayer biochemical dry deposition model (MLBC) described in the accompanying paper was tested against half-hourly eddy correlation data from six field sites under a wide range of climate conditions with various plant types. Modeled CO2, O3, SO2<...

  20. Predictive factors for biochemical recurrence in radical prostatectomy patients

    PubMed Central

    Celik, Orcun; Un, Sitki; Yoldas, Mehmet; İsoglu, Cemal Selcuk; Karabicak, Mustafa; Ergani, Batuhan; Koc, Gokhan; Zorlu, Ferruh; Ilbey, Yusuf Ozlem

    2015-01-01

    Introduction Radical prostatectomy (RP) is considered the best treatment for the management of localized prostate cancer in patients with life expectancy over 10 years. However, a complete recovery is not guaranteed for all patients who received/underwent RP treatment. Biochemical recurrence is frequently observed during the post-operative follow-up period. The main objective in this study is to evaluate the predictive factors of biochemical recurrence in localized prostate cancer patients who underwent RP surgery Material and methods The study included 352 patients with prostate cancer treated by RP at a single institution between February 2004 and June 2014. Detailed pathological and follow-up data of all patients were obtained and analyzed to determine the results. Results Mean follow-up duration was 39.7 months. 83 patients (23%) experienced biochemical recurrence (BCR) during the follow-up period. Mean BCR duration range was 6.56 (1–41) months. In multivariate logistic regression analysis, Gleason score (GS), PSA and extra-capsular tumour spread (ECS) variables were found to be statistically significant as BCR predictive factors. Conclusions According to our study results, it is thought that PSA, GS and ECS can all be used for guidance in choosing a treatment modality for post-RP biochemical recurrence and metastatic disease as predictive factors. However, there is no consensus in this matter and it is still debated. PMID:26855791

  1. BIOCHEMICAL AND NEUROPATHOLOGICAL ASSESSMENT OF TRIPHENYL PHOSPHITE IN RATS

    EPA Science Inventory

    The putative neurotoxicity of the organophosphorus compound triphenyl phosphite (TPP) was examined in Long Evans, adult male rats. Animals were exposed to two 1.0 ml/kg (1184 mg/kg) injections (sc) of TPP spaced 1 week apart and sampled for biochemical and neuropathological exami...

  2. Study on color difference estimation method of medicine biochemical analysis

    NASA Astrophysics Data System (ADS)

    Wang, Chunhong; Zhou, Yue; Zhao, Hongxia; Sun, Jiashi; Zhou, Fengkun

    2006-01-01

    The biochemical analysis in medicine is an important inspection and diagnosis method in hospital clinic. The biochemical analysis of urine is one important item. The Urine test paper shows corresponding color with different detection project or different illness degree. The color difference between the standard threshold and the test paper color of urine can be used to judge the illness degree, so that further analysis and diagnosis to urine is gotten. The color is a three-dimensional physical variable concerning psychology, while reflectance is one-dimensional variable; therefore, the estimation method of color difference in urine test can have better precision and facility than the conventional test method with one-dimensional reflectance, it can make an accurate diagnose. The digital camera is easy to take an image of urine test paper and is used to carry out the urine biochemical analysis conveniently. On the experiment, the color image of urine test paper is taken by popular color digital camera and saved in the computer which installs a simple color space conversion (RGB -> XYZ -> L *a *b *)and the calculation software. Test sample is graded according to intelligent detection of quantitative color. The images taken every time were saved in computer, and the whole illness process will be monitored. This method can also use in other medicine biochemical analyses that have relation with color. Experiment result shows that this test method is quick and accurate; it can be used in hospital, calibrating organization and family, so its application prospect is extensive.

  3. Laser correlation spectroscopy for determining biochemical parameters of whole blood

    NASA Astrophysics Data System (ADS)

    Korolevich, Alexander N.; Prigun, Natali P.

    1999-02-01

    Correlation spectroscopy methods are widely used to study dynamical, morphological and optical parameters of biological objects. This work makes an attempt to explore these methods (in particular, due to their expressively) for diagnosing whole blood under normal and pathological states (cardiovascular diseases). Not only morphological characteristics of blood elements are known to change under diseases, but also its biochemical composition does. However, the biochemical analysis of blood is rather time and labor consuming. The paper is directed to investigate the correlation between optical characteristics of light scattering by blood and its biochemical parameters. Samples of whole blood were in vitro investigated for ills with different diagnoses and extend of cardio-vascular diseases as well as for essentially healthy donors. Simultaneous with the above characteristics we have monitored volumetric concentration of lipoproteides, erythrocytes and hemoglobin. The analysis of obtained results has show that the width of spectrum is greater for samples from healthy persons then from ills. Comparison of measured data on frequency spectrum, diffuse reflectivity's, biochemical and morphological blood parameters of the studied samples has shown the high correlation between the spectrum halfwidth and concentration of lipoproteides, erythrocyte setting rate. Some poorer correlation with spectrum occurs for concentration of hemoglobin and cholesterol. Thus, these are revealed an opportunity to design on express non-invasive method for determining the possibility of atherosclerotic disease.

  4. The Stereochemistry of Biochemical Molecules: A Subject to Revisit

    ERIC Educational Resources Information Center

    Centelles, Josep J.; Imperial, Santiago

    2005-01-01

    Although Fischer's convention for stereoisomers is useful for simple molecules, the stereochemistry of complex biochemical molecules is often poorly indicated in textbooks. This article reports on errors in stereochemistry of complex hydrosoluble vitamin B12 molecule. Twenty-five popular biochemistry textbooks were examined for their treatment of…

  5. Determination of antifungal, biochemical and physiological features of Trichoderma koningiopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichoderma koningiopsis is a species that has been recently identified and has not yet been published, but is in press. Due to the absence of reported data on this species, antifungal, biochemical and physiological features were analyzed for the Trichoderma koningiopsis strain isolated from root se...

  6. Biochemical characteristics of various strains of Mycobacterium paratuberculosis.

    PubMed

    Chiodini, R J

    1986-07-01

    Biochemical activities of 20 wild-type strains and of 2 laboratory strains of Mycobacterium paratuberculosis were evaluated. Biochemical activities evaluated were growth at 30 C, 37 C, and 42 C; production of urease, niacin, pyrazinamidase, arylsulfatase, and catalase; hydrolyzation of Tween 80; reduction of nitrate and tellurite; and growth in 5% NaCl. Antimicrobial susceptibility to thiophene-2-carboxylic acid hydrazide (10 micrograms/ml), neotetrazolium chloride (1:40,000), streptomycin (2 micrograms/ml), rifampin (0.25 micrograms/ml), and isoniazid (10 micrograms/ml) also was determined. Generally, M paratuberculosis was biochemically inactive, with only a few strains producing pyrazinamidase and maintaining catalase activity after heating. All strains grew optimally at 37 C, grew slightly at 30 C, and did not grow at 42 C. Wild-type strains did not grow in the presence of neotetrazolium chloride, streptomycin, and rifampin, and grew in the presence of thiophene-2-carboxylic acid hydrazide and isoniazid. Although biochemical evaluation can be used as an aid in the identification of M paratuberculosis, growth rate, and mycobactin dependency remain major criteria for positive identification. PMID:3740613

  7. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  8. Drp1 Mediates Caspase-Independent Type III Cell Death in Normal and Leukemic Cells▿ †

    PubMed Central

    Bras, Marlène; Yuste, Victor J.; Roué, Gaël; Barbier, Sandrine; Sancho, Patricia; Virely, Clémence; Rubio, Manuel; Baudet, Sylvie; Esquerda, Josep E.; Merle-Béral, Hélène; Sarfati, Marika; Susin, Santos A.

    2007-01-01

    Ligation of CD47 triggers caspase-independent programmed cell death (PCD) in normal and leukemic cells. Here, we characterize the morphological and biochemical features of this type of death and show that it displays the hallmarks of type III PCD. A molecular and biochemical approach has led us to identify a key mediator of this type of death, dynamin-related protein 1 (Drp1). CD47 ligation induces Drp1 translocation from cytosol to mitochondria, a process controlled by chymotrypsin-like serine proteases. Once in mitochondria, Drp1 provokes an impairment of the mitochondrial electron transport chain, which results in dissipation of mitochondrial transmembrane potential, reactive oxygen species generation, and a drop in ATP levels. Surprisingly, neither the activation of the most representative proapoptotic members of the Bcl-2 family, such as Bax or Bak, nor the release of apoptogenic proteins AIF (apoptosis-inducing factor), cytochrome c, endonuclease G (EndoG), Omi/HtrA2, or Smac/DIABLO from mitochondria to cytosol is observed. Responsiveness of cells to CD47 ligation increases following Drp1 overexpression, while Drp1 downregulation confers resistance to CD47-mediated death. Importantly, in B-cell chronic lymphocytic leukemia cells, mRNA levels of Drp1 strongly correlate with death sensitivity. Thus, this previously unknown mechanism controlling caspase-independent type III PCD may provide the basis for novel therapeutic approaches to overcome apoptotic avoidance in malignant cells. PMID:17682056

  9. Physiological, biochemical and transcriptional analysis of onion bulbs during storage

    PubMed Central

    Chope, Gemma A.; Cools, Katherine; Hammond, John P.; Thompson, Andrew J.; Terry, Leon A.

    2012-01-01

    Background and Aims During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. Methods Biochemical and physiological analyses were conducted on different cultivars (‘Wellington’, ‘Sherpa’ and ‘Red Baron’) grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 °C) and stored under different regimes (1, 3, 6 and 6 → 1 °C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. Key Results There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. Conclusions These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout

  10. Electron spin resonance scanning probe spectroscopy for ultrasensitive biochemical studies.

    PubMed

    Campbell, Jason P; Ryan, Jason T; Shrestha, Pragya R; Liu, Zhanglong; Vaz, Canute; Kim, Ji-Hong; Georgiou, Vasileia; Cheung, Kin P

    2015-01-01

    Electron spin resonance (ESR) spectroscopy's affinity for detecting paramagnetic free radicals, or spins, has been increasingly employed to examine a large variety of biochemical interactions. Such paramagnetic species are broadly found in nature and can be intrinsic (defects in solid-state materials systems, electron/hole pairs, stable radicals in proteins) or, more often, purposefully introduced into the material of interest (doping/attachment of paramagnetic spin labels to biomolecules of interest). Using ESR to trace the reactionary path of paramagnetic spins or spin-active proxy molecules provides detailed information about the reaction's transient species and the label's local environment. For many biochemical systems, like those involving membrane proteins, synthesizing the necessary quantity of spin-labeled biomolecules (typically 50 pmol to 100 pmol) is quite challenging and often limits the possible biochemical reactions available for investigation. Quite simply, ESR is too insensitive. Here, we demonstrate an innovative approach that greatly enhances ESR's sensitivity (>20000× improvement) by developing a near-field, nonresonant, X-band ESR spectrometric method. Sensitivity improvement is confirmed via measurement of 140 amol of the most common nitroxide spin label in a ≈593 fL liquid cell at ambient temperature and pressure. This experimental approach eliminates many of the typical ESR sample restrictions imposed by conventional resonator-based ESR detection and renders the technique feasible for spatially resolved measurements on a wider variety of biochemical samples. Thus, our approach broadens the pool of possible biochemical and structural biology studies, as well as greatly enhances the analytical power of existing ESR applications. PMID:25867553

  11. Sublethal Microcystin Exposure and Biochemical Outcomes among Hemodialysis Patients

    PubMed Central

    Hilborn, Elizabeth D.; Soares, Raquel M.; Servaites, Jerome C.; Delgado, Alvima G.; Magalhães, Valéria F.; Carmichael, Wayne W.; Azevedo, Sandra M. F. O.

    2013-01-01

    Cyanobacteria are commonly-occurring contaminants of surface waters worldwide. Microcystins, potent hepatotoxins, are among the best characterized cyanotoxins. During November, 2001, a group of 44 hemodialysis patients were exposed to microcystins via contaminated dialysate. Serum microcystin concentrations were quantified with enzyme-linked immunosorbent assay which measures free serum microcystin LR equivalents (ME). We describe serum ME concentrations and biochemical outcomes among a subset of patients during 8 weeks following exposure. Thirteen patients were included; 6 were males, patients’ median age was 45 years (range 16–80), one was seropositive for hepatitis B surface antigen. The median serum ME concentration was 0.33 ng/mL (range: <0.16–0.96). One hundred thirty nine blood samples were collected following exposure. Patients’ biochemical outcomes varied, but overall indicated a mixed liver injury. Linear regression evaluated each patient’s weekly mean biochemical outcome with their maximum serum ME concentration; a measure of the extrinsic pathway of clotting function, prothrombin time, was negatively and significantly associated with serum ME concentrations. This group of exposed patients’ biochemical outcomes display evidence of a mixed liver injury temporally associated with microcystin exposure. Interpretation of biochemical outcomes are complicated by the study population’s underlying chronic disease status. It is clear that dialysis patients are a distinct ‘at risk’ group for cyanotoxin exposures due to direct intravenous exposure to dialysate prepared from surface drinking water supplies. Careful monitoring and treatment of water supplies used to prepare dialysate is required to prevent future cyanotoxin exposure events. PMID:23894497

  12. Mechanisms of Sb(III) Photooxidation by the Excitation of Organic Fe(III) Complexes.

    PubMed

    Kong, Linghao; He, Mengchang

    2016-07-01

    Organic Fe(III) complexes are widely distributed in the aqueous environment, which can efficiently generate free radicals under light illumination, playing a significant role in heavy metal speciation. However, the potential importance of the photooxidation of Sb(III) by organic Fe(III) complexes remains unclear. Therefore, the photooxidation mechanisms of Sb(III) were comprehensively investigated in Fe(III)-oxalate, Fe(III)-citrate and Fe(III)-fulvic acid (FA) solutions by kinetic measurements and modeling. Rapid photooxidation of Sb(III) was observed in an Fe(III)-oxalate solution over the pH range of 3 to 7. The addition of tert-butyl alcohol (TBA) as an ·OH scavenger quenched the Sb(III) oxidation, suggesting that ·OH is an important oxidant for Sb(III). However, the incomplete quenching of Sb(III) oxidation indicated the existence of other oxidants, presumably an Fe(IV) species in irradiated Fe(III)-oxalate solution. In acidic solutions, ·OH may be formed by the reaction of Fe(II)(C2O4) with H2O2, but a hypothetical Fe(IV) species may be generated by the reaction of Fe(II)(C2O4)2(2-) with H2O2 at higher pH. Kinetic modeling provides a quantitative explanation of the results. Evidence for the existence of ·OH and hypothetical Fe(IV) was also observed in an irradiated Fe(III)-citrate and Fe(III)-FA system. This study demonstrated an important pathway of Sb(III) oxidation in surface waters. PMID:27267512

  13. Organoantimony(III)-Containing Tungstoarsenates(III): From Controlled Assembly to Biological Activity.

    PubMed

    Yang, Peng; Bassil, Bassem S; Lin, Zhengguo; Haider, Ali; Alfaro-Espinoza, Gabriela; Ullrich, Matthias S; Silvestru, Cristian; Kortz, Ulrich

    2015-10-26

    A family of three sandwich-type, phenylantimony(III)-containing tungstoarsenates(III), [(PhSb(III) ){Na(H2 O)}As(III) 2 W19 O67 (H2 O)](11-) (1), [(PhSb(III) )2 As(III) 2 W19 O67 (H2 O)](10-) (2), and [(PhSb(III) )3 (B-α-As(III) W9 O33 )2 ](12-) (3), have been synthesized by one-pot procedures and isolated as hydrated alkali metal salts, Cs3 K3.5 Na4.5 [(PhSb(III) ){Na(H2 O)}As(III) 2 W19 O67 (H2 O)]⋅41H2 O (CsKNa-1), Cs4.5 K5.5 [(PhSb(III) )2 As(III) 2 W19 O67 (H2 O)]⋅35H2 O (CsK-2), and Cs4.5 Na7.5 [(PhSb(III) )3 (B-α-As(III) W9 O33 )2 ]⋅42H2 O (CsNa-3). The number of incorporated {PhSb(III) } units could be selectively tuned from one to three by careful control of the reaction parameters. The three compounds were characterized in the solid state by single-crystal XRD, IR spectroscopy, and thermogravimetric analysis. The aqueous solution stability of sandwich polyanions 1-3 was also studied by multinuclear ((1) H, (13) C, (183) W) NMR spectroscopy. Effective inhibitory activity against six different kinds of bacteria was identified for all three polyanions, for which the activity increased with the number of incorporated {PhSb(III) } groups. PMID:26368119

  14. Effect of Pulse Duration on Polytetrafluoroethylene Shocked above the Crystalline Phase II-Iii Transition

    NASA Astrophysics Data System (ADS)

    Brown, E. N.; Gray, G. T.; Rae, P. J.; Trujillo, C. P.; Bourne, N. K.

    2007-12-01

    We present an experimental study of crystalline structure evolution of polytetrafluoroethylene (PTFE) due to pressure-induced phase transitions in a semi-crystalline polymer using soft-recovery, shock-loading techniques coupled with mechanical and chemical post-shock analysis. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition. Below the phase transition only subtle changes were observed in the crystallinity, microstructure, and mechanical response of PTFE. Shock loading of PTFE 7C above the phase II-III transition was seen to cause both an increase in crystallinity from 38% to ˜53% and a finer crystalline microstructure, and changed the yield and flow stress behavior. We particularly focus on the effect of pulse duration on the microstructure evolution.

  15. Shock Pulse Effects in PTFE Shocked Through the Crystalline Phase II--III Transition

    NASA Astrophysics Data System (ADS)

    Brown, Eric N.; Gray, George T., III; Rae, Philip J.; Bourne, Neil K.

    2008-03-01

    We present an experimental study of crystalline structure evolution of polytetrafluoroethylene (PTFE) due to pressure-induced phase transitions in a semi-crystalline polymer using soft-recovery, shock-loading techniques coupled with mechanical and chemical post-shock analysis. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition. Below the phase transition only subtle changes were observed in the crystallinity, microstructure, and mechanical response of PTFE. Shock loading of PTFE 7C above the phase II--III transition was seen to cause both an increase in crystallinity from 38% to ˜53% (by Differential Scanning Calorimetry, DSC) and a finer crystalline microstructure, and changed the yield and flow stress behavior. We particularly focus on the effect of pulse duration on the microstructure evolution.

  16. Effect of Pulse Duration on Polytetrafluoroethylene Shocked Above the Crystalline Phase II--III Transition

    NASA Astrophysics Data System (ADS)

    Brown, Eric N.; Gray, George T., III; Rae, Philip J.; Trujillo, Carl P.; Bourne, Neil K.

    2007-06-01

    We present an experimental study of crystalline structure evolution of polytetrafluoroethylene (PTFE) due to pressure-induced phase transitions in a semi-crystalline polymer using soft-recovery, shock-loading techniques coupled with mechanical and chemical post-shock analysis. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition. Below the phase transition only subtle changes were observed in the crystallinity, microstructure, and mechanical response of PTFE. Shock loading of PTFE 7C above the phase II--III transition was seen to cause both an increase in crystallinity from 38% to ˜53% (by Differential Scanning Calorimetry, DSC) and a finer crystalline microstructure, and changed the yield and flow stress behavior. We particularly focus on the effect of pulse duration on the microstructure evolution.

  17. Uroncor consensus statement: Management of biochemical recurrence after radical radiotherapy for prostate cancer: From biochemical failure to castration resistance.

    PubMed

    López Torrecilla, José; Hervás, Asunción; Zapatero, Almudena; Gómez Caamaño, Antonio; Macías, Victor; Herruzo, Ismael; Maldonado, Xavier; Gómez Iturriaga, Alfonso; Casas, Francesc; González San Segundo, Carmen

    2015-01-01

    Management of patients who experience biochemical failure after radical radiotherapy with or without hormonal therapy is highly challenging. The clinician must not only choose the type of treatment, but also the timing and optimal sequence of treatment administration. When biochemical failure occurs, numerous treatment scenarios are possible, thus making it more difficult to select the optimal approach. Moreover, rapid and ongoing advances in treatment options require that physicians make decisions that could impact both survival and quality of life. The aim of the present consensus statement, developed by the Urological Tumour Working Group (URONCOR) of the Spanish Society of Radiation Oncology (SEOR), is to provide cancer specialists with the latest, evidence-based information needed to make the best decisions for the patient under all possible treatment scenarios. The structure of this consensus statement follows the typical development of disease progression after biochemical failure, with the most appropriate treatment recommendations given for each stage. The consensus statement is organized into three separate chapters, as follows: biochemical failure with or without local recurrence and/or metastasis; progression after salvage therapy; and treatment of castration-resistant patients. PMID:26109913

  18. Students' Ability to Organize Biochemical and Biochemistry-Related Terms Correlates with Their Performance in a Biochemical Examination

    ERIC Educational Resources Information Center

    Nagata, Ryoichi

    2007-01-01

    Organization is believed to be related to understanding and memory. Whether this belief was applicable in biochemical education was examined about two years after students had experienced biochemistry classes in their first year. The ability of organizing information in biochemistry was judged from the number of correct links of 886 biochemical…

  19. Grant Administration Manual for Title III Coordinators.

    ERIC Educational Resources Information Center

    Mathis, Emily Duncan; Ashmore, Frances W.

    Guidelines for coordinators of programs under Title III of the Higher Education Act of 1965 are presented, based on a national survey of Title III program coordinators. The responsibilities of the coordinator and information on administering the Strengthening Developing Institutions Program (SDIP) grant are covered. The program can either be a…

  20. Preparation of III-V semiconductor nanocrystals

    DOEpatents

    Alivisatos, A.P.; Olshavsky, M.A.

    1996-04-09

    Nanometer-scale crystals of III-V semiconductors are disclosed. They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline. 4 figs.