These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Histological evaluation of the biocompatibility of a glass-ionomer cement in rat alveolus.  

PubMed

A type III glass-ionomer cement (Vidrion F), currently used as fast-setting lining material and fissure sealant, was implanted into rat dental alveolus immediately after tooth extraction and its biocompatibility was analysed in terms of incorporation into alveolar bone in the wound healing process. Histological and histometric evaluation of trial areas adjacent to the implants showed that by week 1 the glass-ionomer granules were encircled by a conspicuous capsule surrounded by immature connective tissue. By week 3 the implants were surrounded by a less prominent fibrous capsule and most of the tested area was occupied by mature trabecular bone. By week 6 the fibrous capsule was thinner and the tested area was almost totally covered by bone, which was in close contact with the implanted material in several places. Quantitative data confirmed progressive new bone formation in parallel with a decrease in the percentage fraction of connective tissue in the trial areas around the implants. The results revealed that the tested material is biologically compatible, being progressively incorporated into alveolar bone in the wound healing process. The quantitative evaluation of alveolar wound healing around a glass-ionomer implant may provide an experimental model for future comparative studies carried out with other biomaterials. PMID:9022960

Brentegani, L G; Bombonato, K F; Carvalho, T L

1997-01-01

2

Long-term F Release from Glass Ionomer Cements  

Microsoft Academic Search

Fluoride release from three commercial glass ionomer filling cements and three glass ionomer luting cements was measured in the laboratory over a 12-month period. Fluoride release from these glass ionomer cements was compared with that released from a silicate, silicophosphate, and a fluoride-containing polycarboxylate cement. The fluoride released from the glass ionomer cements throughout the one-year period was similar, both

M. L. Swartz; R. W. Phillips; H. E. Clark

1984-01-01

3

Glass-ionomer cements as adhesives  

Microsoft Academic Search

The literature on the clinical use of glass-ionomer cements is reviewed, and this shows that these materials are successful partly because of the good adhesion they exhibit towards a variety of substrates encountered in dentistry. The reasons for this good adhesion are identified as the good initial wetting of the surfaces met in clinical dentistry, the development of strong chemical

A. O. Akinmade; J. W. Nicholson

1993-01-01

4

Glass-ionomer cements in restorative dentistry.  

PubMed

This article reviews the current status and future prospects for glass-ionomer materials. These materials are of two chemical types: the older, self-hardening cements, which set by an acid-base neutralization reaction to give relatively brittle materials; and the newer, resin-modified cements, which set partly by polymerization and partly by neutralization. Compared with the self-hardening cements, the latter materials have improved esthetics, improved resistance to moisture, and greater toughness. Both types of glass-ionomer cement bond well to enamel and dentin and release a clinically useful amount of fluoride. They have been used in a variety of applications: as liners or bases, for luting of stainless steel crowns, for Class V restorations in permanent teeth, and for Class II and Class III restorations in primary teeth. The resin-modified glass-ionomers are particularly promising for these latter uses, although it is too early to be sure whether their long-term durability is sufficient. Self-hardening glass-ionomer materials are likely to retain specific niches of clinical application, including in their metal-reinforced and cermet-containing forms. PMID:9573860

Nicholson, J W; Croll, T P

1997-11-01

5

Germicide effect of several glass ionomer cements.  

PubMed

One the most significant characteristics of glass ionomer cements is their ability to release fluoride compounds. This study was carried out to try establish relationships between this property and the possible effect on the growth of microorganisms that are found in carious lesions, Agar BHI medium containing Petri dishes were flooded with strains of Actinomyces naeslundii, Actinomyces israelii and Actinomyces odontolyticus. Cavities were then prepared in the agar and filled with mixtures of several glass ionomer cements. Some of them were polymerizable resin containing products. A zinc phosphate and a zinc oxide-eugenol cement were used as controls. After a seven day incubation at 37 degrees C under anaerobic conditions the inhibition halos around the specimens were measured in a way similar to that used for antibiograms. The statistical analysis of the results showed no significant differences among Actinomyces strains but a significant difference one among cements. Even when no definitive conclusions could be drawn it is worth taking into consideration the effect of glass ionomer cements on microorganisms such as the Actinomyces and continuing studies to establish more clearly what is required from the material to produce a clinically significant outcome. PMID:11885259

Molgatini, S L; Bertacchini, S M; Abate, P F; Macchi, R L; Negroni, M B

1996-01-01

6

Ion processes in glass ionomer cements.  

PubMed

Ion processes are involved in many aspects of glass-ionomer cements. The ions released from the glass take part in the formation of the cement matrix. Although this process has been investigated, particularly using model cement systems, no study provides a complete matrix composition. Combining results from different studies enables an approximate composition to be derived. The importance of Phosphorous in controlling ion release from the glass surface has been identified in a number of studies. The release of ions from the set cement into water (and other aqueous liquids) has been much reported, particularly for fluoride. Over most of the release periods studied (i.e. from >7 days up to 3 years), release of F ion is related to t1/2 indicating a diffusion-controlled process. Other ions, except possibly Na+ also show this relationship. The amount of cumulative F release whilst maintaining this relationship indicates that more F than is in the matrix is involved. Ion chromatography would probably elucidate the precise form of the ionic species released. Glass-ionomer cements take up ions from solutions in which they are immersed. The levels are much higher than required to produce as internal/external equilibrium. Studies using dynamic SIMS and XPS give some information on ion location and elemental association. It is suggested that ToF SIMS would elucidate these further. Re-release of uptaken ions can vary considerably for different cements and ion species. Surface disruption of glass ionomers is caused by both F ion and monofluorophosphate ion and occurs much more readily in F containing cements than in F free ones. The mechanism of this process has not been elucidated. Analysis of the ions released from the cement as disruption occurs should provide an indication of the site of attack. PMID:16574301

Billington, R W; Williams, J A; Pearson, G J

2006-09-01

7

Evaluation of Adhesive and Compressive Strength of Glass Ionomer Cements  

Microsoft Academic Search

The aim of the study was to assess, compare and evaluate the adhesive strength and compressive strength of different brands\\u000a of glass ionomer cements to a ceramometal alloy. (A) Glass ionomer cements: GC Fuji II (GC Corporation, Tokyo), Chem Flex\\u000a (Dentsply DeTrey, Germany), Glass ionomer FX (Shofu-11, Japan), MR dental (MR dental suppliers Pvt Ltd, England). (B) Ceramometal\\u000a alloy (Ni–Cr:

Ramashanker; Raghuwar D. Singh; Pooran Chand; Sunit Km. Jurel; Shuchi Tripathi

8

Leaching from glass ionomer cements.  

PubMed

This study compared the electrical conductivities, pH and leached ion (F-, Ca, Al, Si) concentrations in supernatant liquids obtained from four glassionomer cements, a buffered ionomer cement, a polycarboxylate cement and a zinc phosphate cement, at three different levels of settings. The result indicated that the measured parameters are highest for the unset condition of cements and decreases as the set condition is approached, except for pH, which shows the opposite trend. Two pulp sensitive glassionomer cements, Chem Bond and Ketac Cem showed high Ca:F ratios as well as high Ca and F concentrations. Further, it is suggested that the cytotoxicity of leached F-, Si, Al and Zn at high concentration and at low pH may induce sensitivity in tooth structure. PMID:7996341

Bapna, M S; Mueller, H J

1994-09-01

9

A Comparative Evaluation of Microleakage of Glass Ionomer Cement and Chitosan-modified Glass Ionomer Cement: An in vitro Study  

PubMed Central

ABSTRACT Objective: To do a comparative study of microleakage of glass ionomer cement (GIC) and chitosan modified glass ionomer cement and evaluate which exhibited lesser microleakage. Materials and methods: Sixty freshly extracted sound primary molar teeth were obtained. Two groups of samples were created for the study which comprised of group I (glass ionomer cement—GIC) and group II (Chitosan modified glass ionomer cement). Class V cavities were prepared on the buccal surfaces. All the tooth surfaces except the restoration and a 1 mm zone adjacent to its margins were covered with two coats of varnish. The specimens were then immersed in 2% basic fuschin dye solution for 24 hours. The teeth were sectioned into two halves buccolingually in an occlusoapical direction. Sections were viewed under stereomicroscope and the degree of microleakage was evaluated using specific scoring criteria. For comparative evaluation of microleakage scores between glass ionomer cement and chitosan modified cement, a nonparametric Mann-Whitney statistical analysis was done. Results: Statistical analysis showed no significant differences between groups I and II with the p-value at >0.05. Conclusion: Chitosan modified GIC holds great promise for general dentistry as a future restorative material with microleakage properties similar to or better than GIC. How to cite this article: Abraham D, Thomas AM, Chopra S, Koshy S. A Comparative Evaluation of Microleakage of Glass Ionomer Cement and Chitosan-modified Glass Ionomer Cement: An in vitro Study. Int J Clin Pediatr Dent 2014;7(1):6-10. PMID:25206230

Thomas, Abi Mathew; Chopra, Saroj; Koshy, Stephen

2014-01-01

10

How mobile are protons in the structure of dental glass ionomer cements?  

NASA Astrophysics Data System (ADS)

The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements.

Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

2015-03-01

11

How mobile are protons in the structure of dental glass ionomer cements?  

PubMed Central

The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements. PMID:25754555

Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

2015-01-01

12

Adhesive properties of modified glass-ionomer cements.  

PubMed

The incorporation of water-soluble polymers and/or vinyl monomers into glass-ionomer cements can yield toughened "hybrid cement-composites". This study compared a commercial water-hardening glass-ionomer cement and seven experimental hybrids in their bonding to both dentin and Silar composite. The cements were sanded and phosphoric-acid-etched or left with an unaltered matrix-formed surface when adhesion to composite was tested. The seven hybrids included: 15% 2-hydroxyethyl methacrylate (HEMA) with appropriate initiators/activators, 29% HEMA, 27% HEMA + 0.5% polyacrylic acid (PAA), 0.5% PAA, 1.5% PAA, 2.5% polyvinyl alcohol, and 2.5% gelatin. Acceptable bond strengths to applied composite and to dentin were observed for most of the modified hybrid cements. There were higher bond strengths with composite when the hybrids were left unetched. Bonding of some unetched, HEMA-containing cements achieved bond strengths (29% HEMA, 10.09 MPa) significantly higher than those of the unmodified cement (4.92 MPa). Resin-modified cements may promote better bonding by improved interaction and compatibility with the resin component of the composite. PMID:1387853

Rusz, J E; Antonucci, J M; Eichmiller, F; Anderson, M H

1992-01-01

13

Histological assessment of pulpal responses to resin modified glass ionomer cements in human teeth  

PubMed Central

Background: The biocompatibility of resin-modified glass ionomers (RMGIs) as a lining material is still under question. The present study evaluated the response of the pulp-dentin complex following application of resin-modified glass-ionomer cement, calcium hydroxide and conventional glass-ionomer in deep cavities prepared in human teeth. Materials and Methods: In this controlled clinical trial, 30 deep class V buccal cavities (3 mm × 2 mm × 2 mm) were prepared in human premolars treatment planned to be extracted for orthodontic reasons and divided into 3 groups. Groups were lined by a RMGI (Vivaglass), conventional glass Ionomer (Ionocid) and calcium hydroxide respectively. The cavities were subsequently filled with amalgam. Each group was then divided into two sub-groups according to time intervals 5 and 30 days. The patients were referred to Kerman Dental School and in accordance with orthodontic treatment plan; premolars were extracted and then prepared for histological assessment. The sections were stained with hematoxylin and eosin and periodic acid Schiff techniques. All of the samples were examined using a number of criteria including odontoblastic changes, inflammatory cells response, reactionary dentin formation and presence of microorganisms. The data were analyzed by Kruskal-Wallis and Mann-Whitney tests. P < 0.05 was considered as significant. Results: There was no significant difference among odontoblastic changes, reactionary dentin, presence of bacteria and inflammatory cells response of the groups (P > 0.05). Conclusion: Ionocid and Vivaglass resin-modified glass ionomers can be used as lining materials in human teeth. PMID:25878679

Eskandarizadeh, Ali; Parizi, Molook Torabi; Goroohi, Hossein; Badrian, Hamid; Asadi, Abbas; Khalighinejad, Navid

2015-01-01

14

Glass ionomer cements: chemistry of erosion.  

PubMed

A three-month study of the chemistry of the water erosion of two forms of ASPA cement has been made. The effect of varying cement consistency and cure time was investigated. The results are discussed in terms of the known chemistry and structure of the cement. The erosion behavior is compared to that of silicate, silicophosphate, and zinc polycarboxylate dental cements. The state of absorbed water and the mechanism of erosion is discussed. PMID:187630

Crisp, S; Lewis, B G; Wilson, A D

1976-01-01

15

Glass-ionomer cements as restorative and preventive materials.  

PubMed

This article focuses on glass-ionomer cement (GIC) and its role in the clinical management of caries. It begins with a brief description of GIC, the mechanism of fluoride release and ion exchange, the interaction between GIC and the external environment, and finally the ion exchange between GIC and the tooth at the internal interface. The importance of GIC, as a tool, in caries management, in minimal intervention dentistry (MI), and Caries Management by Risk Assessment (CAMBRA) also will be highlighted. PMID:20630196

Ngo, Hien

2010-07-01

16

Post cementation sensitivity evaluation of glass Ionomer, zinc phosphate and resin modified glass Ionomer luting cements under class II inlays: An in vivo comparative study  

PubMed Central

Objective: This study aims to compare the patient-perceived post-cementation sensitivity of class II metal restorations preoperatively, immediately after cementation, one week after cementation and one month after cementation with (1) Glass Ionomer luting cement (2) Zinc Phosphate cement and (3) Resin-modified Glass Ionomer luting cement. Materials and Methods: A total of 60 patients, irrespective of sex, in the age group of 15-50 years were selected and the teeth were randomly divided into three groups of 20 each. Twenty inlay cast restorations were cemented with three different luting cements. The criteria adapted to measure tooth sensitivity in the present study were objective examination for sensitivity. (1) Cold water test (2) Compressed air test and (3) Biting pressure test. Results: The patients with restorations cemented with Resin-modified Glass ionomer demonstrated the least postoperative sensitivity when compared with Glass Ionomer and zinc phosphate cement at all different intervals of time evaluated by different tests. Conclusion: The patients with restorations cemented with resin-modified Glass ionomer demonstrated the least postoperative sensitivity. PMID:20582215

Chandrasekhar, V

2010-01-01

17

Adhesion of glass-ionomer cement in the clinical environment.  

PubMed

This paper discusses the literature concerning the development of an ion-enriched layer between the glass-ionomer cement and tooth structure. Two restorations that had been in the oral cavity for considerable periods of time were used to confirm the existence of this layer. It is suggested that development of the layer is dependent on careful adherence to the recommendations for clinical placement, and recognition of the need to clean the surface of the cavity and to maintain the water balance of the cement. Having developed the ion-exchange layer, failure will be cohesive in the cement itself. Thus the strength of the union is dependent on the tensile strength of the cement. PMID:1805183

Mount, G J

1991-01-01

18

Buonocore Memorial Lecture. Glass-ionomer cements: past, present and future.  

PubMed

It was Michael Buonocore who focused the attention of the profession on adhesion in the oral cavity. He expanded the concept of adhesion of resins to enamel and investigated adhesion to dentin. The problem has been solved through the glass-ionomer cements rather than with resins, but sadly, he did not live to see them achieve maturity. The glass-ionomer cements were introduced to the profession in 1976, and they provide adhesion to both enamel and dentin through an ion exchange with the additional benefit of a continuing fluoride release throughout the life of the restoration. Solubility is low, abrasion resistance is high, and biocompatability is excellent. As a water-based material, they have an excellent chance of survival in the hostile environment of the oral cavity. Acceptance of the early versions was slow because of perceived problems with water exchange, a poor color range, and a lack of translucency. Considerable research has been carried out over the last 20 years by members of the profession and the manufacturers; at this point, the glass-ionomer cements make a very valuable contribution to everyday practice. They are now available as both an autocure and a dual-cure cement, and the color range and translucency are excellent. Problems of clinical placement have been overcome, and it is now a simple matter to take advantage of the adhesion and the fluoride release and place a restoration that is esthetic, resistant to microleakage, long lasting, and a deterent to recurrent caries. Their only limitation lies in the fact that they lack the fracture strength to rebuild marginal ridges and incisal corners. In spite of this limitation, they have opened the way for the introduction of a new range of microcavity designs that allow for conservation of remaining tooth structure to an extent never before available. In the near future physical properties will be improved still further, and the use of these cements will expand considerably. PMID:9028245

Mount, G J

1994-01-01

19

In vitro enamel remineralization at orthodontic band margins cemented with glass ionomer cement.  

PubMed

Demineralization adjacent to orthodontic bands remains a clinical concern. The release of fluoride from glass ionomer cement has been shown to inhibit demineralization. The purpose of this study was to examine the remineralization effects of a glass ionomer cement adjacent to orthodontic bands. Forty extracted molars were painted with an acid-protective varnish, excluding a 2 x 6 mm window on the buccal surfaces. Artificial caries-like lesions were created in the exposed enamel with an acidified gel. Half the lesion on each tooth was then painted with an acid-protective varnish. An orthodontic band was cemented with a glass ionomer cement or zinc phosphate cement, the gingival margin of the band located at the level of the artificial carious lesion. The teeth were placed in separate closed environments of a nonfluoridated artificial saliva for 3 months. The teeth were then sectioned and photographed with polarized light microscopy in imbibition medias of water and Thoulet's (R.I.: 1.41, 1.47), representing a minimum of 5%, 10%, and 25% pore volume, respectively. With a sonic digitizer, the area of the body of the lesion was measured in each imbibition media, comparing the maintained varnished out lesions to the lesions exposed to the cement. Results demonstrated a statistically significant reduction in the body of the lesions (p < 0.005) for those exposed to the glass ionomer cement. PMID:7733054

Donly, K J; Istre, S; Istre, T

1995-05-01

20

Caries protection after orthodontic band cementation with glass ionomer.  

PubMed

This study evaluated the resistance of the enamel to an artificial caries challenge after removing orthodontic bands cemented with a glass ionomer cement (GIC). Ten extracted caries-free molars were cleaned with a slurry of pumice and randomly divided into 2 groups of 5 teeth each: Group 1: Cementation with GIC (Fuji) and Group 2: Cementation with a zinc phosphate cement (Mizzy). Both cements were handled according to manufacturer's instructions. Before cementing the bands, an area of S x S mm was masked with adhesive tape on the lingual surfaces of all teeth. The orthodontic bands were cemented over this adhesive tape. After band cementation, the occlusal and gingival margins of the band were delineated with a bur on the tooth surface. The teeth were thermocycled (200 cycles, 5-55 degrees C, 30-second dwell time) and stored in distilled water for 24 hours. Then, the bands and adhesive tape were removed and the teeth again stored in distilled water for a week, changing the water daily. The teeth were then varnished with the exception of a 5 x 5 mm window (including previously exposed and covered areas) on the buccal and lingual surfaces. All teeth were then placed in an acidified gel (pH 4.5) for 5 weeks to produce artificial caries. At least three sections from the exposed and covered areas were made from the buccal and lingual challenged areas. Sections were ground to approximately 100 microns. Polarized microscopy and image analysis were used to analyze the results.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8258573

Marcushamer, M; Garcia-Godoy, F; Chan, D C

1993-01-01

21

In-vitro Comparison of the Antimicrobial Properties of Glass Ionomer Cements with Zinc Phosphate Cements  

PubMed Central

White spot lesions are observed in nearly 50% of patients undergoing orthodontic treatment. Long-lasting antibacterial properties of orthodontic cements can reduce this phenomenon. The aim of this research was to compare antimicrobial activity of three commercial glass ionomer cements with three commercial zinc phosphate cements, over time, against streptococcus mutans and candida albicans. Direct contact test (DCT) was used to evaluate the antibacterial and antifungal activity of products after 48 h and 7 days of incubation. The results demonstrated that all the cements presented antibacterial activity but the antibacterial activity of glass ionomer cements was more than that of zinc phosphate cements. Counts of C. albicans after 48 h were lower and statistically different in the GIC group in relation to the control groups. But no differences were observed between GIC and control groups at 7 days. Based on the results of this study, the antimicrobial and mainly antifungal effects of all the cements were so short. PMID:25317187

Vahid Dastjerdie, Elaheh; Oskoui, Mahvash; Sayanjali, Elham; Tabatabaei, Fahimeh Sadat

2012-01-01

22

Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements  

PubMed Central

Objective The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resin-modified glass ionomer cements (RMGICs). Material and Methods Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Results Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Conclusions Except for Ionoseal, all cements provided satisfactory bond strength values. PMID:25004052

PEREIRA, Jefferson Ricardo; da ROSA, Ricardo Abreu; SÓ, Marcus Vinícius Reis; AFONSO, Daniele; KUGA, Milton Carlos; HONÓRIO, Heitor Marques; do VALLE, Accácio Lins; VIDOTTI, Hugo Alberto

2014-01-01

23

Fluoride uptake in human dentine from glass-ionomer cement in vivo.  

PubMed

The purpose was to examine F uptake and distribution in dentine from a F-containing glass-ionomer cement in vivo. Nine volunteers were selected from dental students who were scheduled for extraction of their third molars. Two cavities were prepared on the same occlusal surface of the third molars for each subject; one was restored with glass-ionomer cement (Virtabond), the other with zinc phosphate cement as a control. After 3 months the teeth were extracted. F profiles in the dentine from the cavity floor to the pulpal surface were determined in tissue immediately adjacent to the restorations. An abrasive micro-sampling technique was used. The F concentration of the dentine was highest immediately beneath glass-ionomer cement filling, decreasing towards the pulpal surface. Overall F concentrations were greater in the dentine beneath the glass-ionomer cement than in that beneath the zinc phosphate cement. It was concluded that the glass-ionomer cement markedly enhanced fluoride uptake by underlying dentine in vivo. PMID:8141671

Mukai, M; Ikeda, M; Yanagihara, T; Hara, G; Kato, K; Nakagaki, H; Robinson, C

1993-12-01

24

A new light-cured glass ionomer cement that bonds brackets to teeth without etching in the presence of saliva  

Microsoft Academic Search

Previous studies stress certain advantages of glass ionomer cements, for use in bonding orthodontic brackets to teeth. Failure rate, however, had been higher than with conventional procedures. A new light-cured glass ionomer cement exhibited all the necessary qualities needed to bond brackets, without any etching and in the presence of saliva. The tensile strength of this cement exhibited enough resistance

Elliott Silverman; Morton Cohen; Richard S. Demke; Mitchell Silverman

1995-01-01

25

Interaction of glass-ionomer cements with moist dentin.  

PubMed

Glass-ionomer cements (GICs) are regarded as aqueous gels made up of polyalkenoic acid salts containing ion-leachable glass fillers. The consequence of water permeation across the GIC-dentin interface is unknown. This study used SEM, field-emission/environmental SEM (FE-ESEM), and TEM to examine the ultrastructure of GIC-bonded moist dentin. Dentin surfaces bonded with 6 auto-cured GICs were examined along the fractured GIC-dentin interfaces. Additional specimens fractured 3 mm away from the interfaces were used as controls. SEM revealed spherical bodies along GIC-dentin interfaces that resembled hollow eggshells. FE-SEM depicted similar bodies with additional solid cores. Energy-dispersive x-ray analysis and TEM showed that the spherical bodies consisted of a silicon-rich GIC phase that was absent from the air-voids in the controls. The GIC inclusions near dentin surfaces result from a continuation of the GI reaction, within air-voids of the original polyalkenoate matrix, that occurred upon water diffusion from moist dentin. PMID:15044500

Yiu, C K Y; Tay, F R; King, N M; Pashley, D H; Sidhu, S K; Neo, J C L; Toledano, M; Wong, S L

2004-04-01

26

Studies on the adhesion of glass-ionomer cements to dentin.  

PubMed

This study investigated the bonding mechanisms of glass-ionomer cement to dentin. The approaches included mechanical determination of bond strengths, analysis of surface morphology by means of scanning electron microscopy (SEM) and confocal microscopy, and measurement of chemical changes of fracture bond sites by means of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The highest bond strengths were obtained with light-cured glass-ionomer cement. SEM and confocal images showed evidence of mechanical interlocking of cement in dentinal tubules. SIMS depth profiles confirmed the ion-exchange process between the light-cured glass-ionomer cement and the dentin surface. From corresponding XPS results, it was clear that the adhesion characteristics were significantly affected by light-curing and the chemical structure of the polymer. PMID:1401448

Lin, A; McIntyre, N S; Davidson, R D

1992-11-01

27

Availability of fluoride from glass-ionomer luting cements in human saliva.  

PubMed

Fluoride availability from two glass-ionomer luting agents, Ketac-Cement and Aqua-Cement, was monitored after a 1-h treatment in distilled water at pH 7. The recorded results were then compared to the ones obtained from those same cements, after 1 h, in saliva, in water pretreated with saliva (pH 7 and 4.5), and in albumen and phosphate buffer solutions (pH 7). The Mann-Whitney two-sample rank test was utilized in order to identify the differences. The presence of proteins and phosphate reduced fluoride availability. A reduction in the pH from 7 to 4.5 resulted in an increased rate of fluoride release, in water, from glass-ionomers pretreated with saliva. The present study indicates that fluoride availability from glass-ionomers, in vivo, is pH controlled. The rate controlling factors appear to be phosphate and proteins. PMID:2047755

Rezk-Lega, F; Ogaard, B; Rölla, G

1991-02-01

28

An in vitro evaluation of bond strength of three glass ionomer cements.  

PubMed

The purpose of this study was to determine the bond strength of three commercially available glass ionomer cements when used to bond mesh-backed medium twin (0.130 inch) brackets to enamel surface. Three different enamel surface conditions, which included use of pumice, pumice and polyacrylic acid, and pumice followed by acidulated phosphate fluoride, were also tested to determine their effect on the bond strength. In addition, bond strength of one composite resin was compared with those of glass ionomer cements. The teeth were bonded with all the materials according to manufacturers' instructions. Each specimen was embedded in Super-Die with the bonded facial surface exposed. A surveyor was used to align the teeth in the stone uniformly for all specimens. A special bracket holder was used to hold the brackets precisely under the wings during debonding. An Instron universal testing machine was used to measure the force required for bond failure. To stimulate oral conditions, the direction of pull was so designed that it included an element of torsional stress along with tensile force. The findings indicate that a large variation existed between the bond strengths of all materials tested. The bond strength of glass ionomer cements was significantly less than that composite resin. However, the bond strength of at least one glass ionomer cement appears to be adequate for clinical use. The different surface preparation before bonding did not significantly affect the bond strengths of glass ionomer cements. Further investigation is required to test the bond strengths of glass ionomer cements clinically. PMID:2181867

Fajen, V B; Duncanson, M G; Nanda, R S; Currier, G F; Angolkar, P V

1990-04-01

29

Enamel fluoride levels after orthodontic band cementation with glass ionomer cement.  

PubMed

The aim of this investigation was to examine the fluoride uptake by enamel after application of glass ionomer cement for orthodontic band cementation compared with zinc phosphate cement. The study was conducted on 21 children whose mean age was 14 years. All the children were reared in the Middle Anatolian cities where the water fluoride concentration was below the level of 0.50 ppm. The subjects were randomly divided into three groups. The first experimental group, had seven subjects whose teeth were topically fluoridated with 2 per cent NaF solution, before orthodontic band cementation with zinc phosphate cement. The second experimental group also had seven subjects whose orthodontic bands were cemented with glass ionomer cement. The third group, consisted of seven control subjects and no dental procedures were performed in this group. All the participants were followed for 3 months and at the end of this period maxillary first premolars, which were in the ninth developmental stage according to Nolla (1960), were extracted for orthodontic purposes. The enamel fluoride concentrations were determined on the left maxillary first premolars at three successive etch depths by means of a fluor ion electrode, whereas the calcium concentrations were determined with an atomic absorption spectrophotometer. The results of this investigation showed that in both cementation groups enamel fluoride concentrations at three successive etch depths were highly increased compared with the control group. However, the difference between the cementation groups was not statistically significant. PMID:8746180

Akkaya, S; Uner, O; Alaçam, A; De?im, T

1996-02-01

30

A novel acrylic copolymer for a poly(alkenoate) glass-ionomer cement.  

PubMed

The interest in the clinical use of polyalkenoate cements stems mainly from their behavior as bioactive adhesive materials with therapeutic action. Glass-ionomer cements set by an acid-base reaction between a degradable glass and a poly(alkenoic acid) and the therapeutic action is related to the release of fluoride ions which are present in the hardened cement that show a sustained release over years, responsible for caries inhibition in teeth. Conventional glass-ionomers, however, suffer from some disadvantages such as short working time, initial moisture sensitivity and prone to desiccation after setting and are generally brittle. In the present study, a poly(alkenoic acid) copolymer was synthesized based on acrylic acid and 2-hydroxyethylmethacrylate (HEMA) using azobisisobutyronitrile as the initiator and characterized. The acid-base reaction was carried out by reacting aqueous solutions of the new copolymer (40 and 60%) with a commercial aluminofluorosilicate glasses as used in conventional glass-ionomer cements. The results showed that the copolymer of HEMA and acrylic acid was a viable poly(alkenoic) acid for formation of glass-ionomer cements. PMID:15348418

Deb, S; Shah, P; Vazquez, B; San Roman, J

2003-07-01

31

Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC).  

PubMed

Hydroxyapatite (HA) has excellent biological behavior, and its composition and crystal structure are similar to the apatite in the human dental structure and skeletal system; a number of researchers have attempted to evaluate the effect of the addition of HA powders to restorative dental materials. In this study, nanohydroxy and fluoroapatite were synthesized using an ethanol based sol-gel technique. The synthesized nanoceramic particles were incorporated into commercial glass ionomer powder (Fuji II GC) and were characterized using Fourier transform infrared and Raman spectroscopy, X-ray diffraction and scanning electron microscopy. Compressive, diametral tensile and biaxial flexural strengths of the modified glass ionomer cements were evaluated. The effect of nanohydroxyapatite and fluoroapatite on the bond strength of glass ionomer cement to dentin was also investigated. Results showed that after 1 and 7 days of setting, the nanohydroxyapatite/fluoroapatite added cements exhibited higher compressive strength (177-179MPa), higher diametral tensile strength (19-20MPa) and higher biaxial flexural strength (26-28MPa) as compared with the control group (160MPa in CS, 14MPa in DTS and 18MPa in biaxial flexural strength). The experimental cements also exhibited higher bond strength to dentin after 7 and 30 days of storage in distilled water. It was concluded that glass ionomer cements containing nanobioceramics are promising restorative dental materials with both improved mechanical properties and improved bond strength to dentin. PMID:17921077

Moshaverinia, Alireza; Ansari, Sahar; Moshaverinia, Maryam; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham

2008-03-01

32

Studies on the Adhesion of Glass-ionomer Cements to Dentin  

Microsoft Academic Search

This study investigated the bonding mechanisms of glass-ionomer cement to dentin. The approaches included mechanical determination of bond strengths, analysis of surface morphology by means of scanning electron microscopy (SEM) and confocal microscopy, and measurement of chemical changes of fracture bond sites by means of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The highest bond strengths were

A. Lin; N. S. McIntyre; R. D. Davidson

1992-01-01

33

Management of a Large Internal Resorption Lesion with Metal Reinforced Glass Ionomer Cement  

PubMed Central

Mineral trioxide aggregate is the mainstay of treatment of large internal resorption defects. But its cost may be a deterrent to its use in some patients. The present case report describes the successful endodontic management of an extensive internal resorptive lesion in a mandibular molar with metal reinforced glass ionomer cement. PMID:25436156

Bhuyan, Atool Chandra; Arora, Suraj; Sethi, Kunal; Kalra, Tarun

2014-01-01

34

Effects of dentin surface treatments on shear bond strength of glass-ionomer cements  

PubMed Central

Summary Aim The aim of this in vitro study was to evaluate the effect of different surface treatments on shear bond strength of a conventional glass-ionomer cement (GIC) and a resin-modified glass-ionomer cement (RMGIC) to dentin. Materials and methods 80 bovine permanent incisors were used. 40 cylindrical specimens of a GIC (Fuji IX GP Extra) and 40 cylindrical specimens of a RMGIC (Fuji II LC) were attached to the dentin. The teeth were then randomly assigned to 8 groups of equal size (n=10), 4 for every type of glass-ionomer cement, corresponding to type of dentin surface treatments. Group 1: GC Cavity Conditioner; Group 2: 37% phosphoric acid gel; Group 3: Clearfil SE Bond; Group 4: no dentin conditioning (control). The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA) and subsequently tested for shear bond strength (MPa). Results ANOVA showed the presence of significant differences among the various groups. Post hoc Tukey test showed different values of shear bond strength for Fuji IX GP Extra and for Fuji II LC. The different conditioners variably influence the adhesion of the glass-ionomer cements tested. Conclusions. RMGIC shear bond to dentin was higher than GIC. The use of a Self-etch adhesive system improved the shear bond strength values of RMGIC and lowered the shear bond strength values of GIC significantly. PMID:24753797

Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Lombardini, Marco

2014-01-01

35

Antimicrobial Effects of Dental Luting Glass Ionomer Cements on Streptococcus mutans  

PubMed Central

Objective. To reduce secondary caries, glass ionomer luting cements are often used for cementing of indirect restorations. This is because of their well-known antimicrobial potential through the release of fluoride ions. The aim of this in vitro study was to investigate the antimicrobial effect of five dental luting cements which were based on glass ionomer cement technology. Methods. Five different glass ionomer based luting cements were tested for their antimicrobial effects on Streptococcus mutans in two different experimental setups: (i) determination of colony-forming units (CFUs) in a plate-counting assay; (ii) live/dead staining (LDS) and fluorescence microscopy. All experiments were conducted with or without prior treatment of the materials using sterilized human saliva. Antimicrobial effects were evaluated for adherent and planktonic bacteria. Bovine enamel slabs (BES) were used as negative control. BES covered with 0.2% chlorhexidine (CHX) served as positive control. Results. Each of the tested materials significantly reduced the number of initially adhered CFUs; this reduction was even more pronounced after prior incubation in saliva. Antimicrobial effects on adherent bacteria were confirmed by live-dead staining. Conclusion. All five luting cements showed an antimicrobial potential which was increased by prior incubation with human saliva, suggesting an enhanced effect in vivo. PMID:24795539

Altenburger, Markus; Spitzmüller, Bettina; Anderson, Annette; Hellwig, Elmar

2014-01-01

36

Inhibitory effect on S. mutans by fluoride-treated conventional and resin-reinforced glass ionomer cements.  

PubMed

The aim of the present study was to study the effect of fluoride gel treatment on fluoride release and inhibition of acid production of Streptococcus mutans by different glass ionomer cements. Test slabs of four glass ionomer materials were fitted into the bottom of a test tube. A layer of S. mutans cells was centrifuged onto the test slabs, and the specimens were incubated for 4 h in 1.7% sucrose solution. Incubations were made using fresh, aged (29 d), aged and F-treated (1.25% F-gel), and aged, F-treated and aged samples (n = 15 per group). After each incubation, pH and F contents of the fluid phase were determined. The freshly mixed glass ionomer samples released large amounts of fluoride, and the pH fall in the fluid phase was significantly inhibited. For aged samples, the fluoride release decreased strongly and no inhibitory effect on acid production by S. mutans was seen. After application of fluoride gel, fluoride release and inhibitory effect were significantly higher than initially for all glass ionomer cements. In conclusion, all glass ionomer cements were able to take up fluoride and subsequently release it, which resulted in reestablishment of their antibacterial effect. The patterns of fluoride release and antibacterial action were virtually the same for conventional and resin-reinforced glass ionomer cements. PMID:7634135

Seppä, L; Korhonen, A; Nuutinen, A

1995-06-01

37

GLASS IONOMER CEMENTS AND THEIR ROLE IN THE RESTORATION OF NON-CARIOUS CERVICAL LESIONS  

PubMed Central

Glass ionomer based materials are clinically popular in several areas of restorative dentistry, but restoration of cervical lesions has proven particularly successful. Various etiologies, conformations, locations and structural characteristics make non-carious cervical lesions more challenging to adhesive restorative procedures and marginal seal in the long run. Due to their characteristics, glass ionomer cements (GICs) have precise indication for these cases. Moreover, the use of a GIC base underneath composite resin, the so-called "sandwich" or mixed technique, allows associating the good characteristics of composite resins and GICs, and has been considered quite useful in the restoration of non-carious cervical defects. The aim of this paper is to critically review the literature and discuss peculiar features of GICs regarding their role in the restoration of non-carious cervical lesions. PMID:19936509

Francisconi, Luciana Fávaro; Scaffa, Polliana Mendes Candia; de Barros, Vivian Rosa dos Santos Paes; Coutinho, Margareth; Francisconi, Paulo Afonso Silveira

2009-01-01

38

Immediate implantation of glass-ionomer cement granules increases osteogenesis during rat alveolar wound healing.  

PubMed

A study was conducted to determine whether granules of type III glass-ionomer cement (currently used as a fast-setting lining material and fissure sealant) implanted immediately after tooth extraction interfere with the time course of alveolar wound healing. Histologic examination of the entire socket showed normal progression of the healing process. Progressive bone neoformation in parallel with a decrease in the volume fraction of connective tissue was quantified by a histometric method up to 6 weeks after tooth extraction. The presence of glass-ionomer granules in the cervical third led to a small delay in bone formation by the first week but not thereafter, as also observed in the remaining regions of the alveolus (middle and apical thirds) which tended, in contrast, to show a larger amount of trabecular bone from the third week onwards. These results show that the material does not hinder the wound healing process, and in fact favors bone neoformation. PMID:9058996

Brentegani, L G; Bombonato, K F; Carvalho, T L

1996-12-01

39

Shear bond strengths of glass-ionomer cements to sound and to prepared carious dentine  

Microsoft Academic Search

Summary  The aim of this study was determine whether bonding of glass-ionomer cements to non-carious dentine differed from that to\\u000a carious dentine. Five commercial cements were used, namely Fuji IX GP, Fuji IX capsulated, Fuji IX Fast capsulated (all GC,\\u000a Japan), Ketac-Molar and Ketac-Molar Aplicap (both 3M-ESPE, Germany). Following conditioning of the substrate with 10% poly\\u000a (acrylic acid) for 10 s, sets

Beata Czarnecka; Patricia Der?gowska-Nosowicz; Honorata Limanowska-Shaw; John W. Nicholson

2007-01-01

40

An in vitro investigation of a poly (vinyl phosphonic acid) based cement with four conventional glass-ionomer cements  

Microsoft Academic Search

Objective: To investigate the surface hardness of four conventional glass-ionomer cements: Ketac-Molar (KM), HiFi (HF), Vivaglass Fil (VF), Ketac-Fil (KF) and a newly developed glass polyphosphonate based cement, Diamond Carve (DC) at different maturation times in water and to investigate the effects of early water exposure on their surface hardness.Method: Disc specimens (10mm diameter, 1mm thick) were prepared and mould

V. H. W Khouw-Liu; H. M Anstice; G. J Pearson

1999-01-01

41

A comparison of the in vitro cytotoxicity of conventional and resin modified glass ionomer cements  

PubMed Central

To evaluate cytotoxicity of experimental conventional and resin modified glass-ionomer cements on UMR-106 osteoblast cell cultures and cell cultures of NIH3T3 mouse fibroblasts specimens were prepared for every experimental material and divided into: group 1. Conventional glass-ionomer cements: GC Fuji IX GP Fast, GC Fuji Triage and Ketac Silver; group 2. Resin modified glass-ionomer cements: GC Fuji II LC, GC Fuji Plus and Vitrebond; group 3. Positive control was presented by specimens of composite Vit-l-ecence® and negative control-group 4. was presented by ?-minimum essential medium for UMR-106 – osteoblast-like cells and Dulbecco’s Modified Eagle’s Medium for NIH3T3 mouse fibroblast cells. Both cell cultures were exposed to 10% of eluate of each single specimen of each experimental material. Experimental dishes were incubated for 24 h. Cell metabolism was evaluated using methyltetrazolium assay. Kruskal-Wallis test and Tukey-Kramer post hoc test for the materials evaluated on NIH3T3 mouse fibroblast cells, as well as UMR-106 osteoblast-like cells showed significantly more cytotoxicity of RMGICs, predominantly Vitrebond to both GICs and composite-Vit-l-ecence®. The lowest influence on cell’s metabolism on UMR-106 osteoblas-like cells was shown by Ketac Silver and the lowest influence on cell’s metabolism on NIH3T3 mouse fibroblast cells was shown by Fuji IX GP Fast. Statistical evaluation of sensitivity of cell lines UMR-106 osteoblast-like cells and NIH3T3 mouse fibroblast cells, using Mann-Whitney test, showed that NIH3T3 mouse fibroblast cells were more sensitive for the evaluation of cytotoxicity of dental materials. PMID:23198945

Selimovi?-Dragaš, Mediha; Huseinbegovi?, Amina; Kobašlija, Sedin; Hatibovi?-Kofman, Šahza

2012-01-01

42

Comparative Evaluation of Voids Present in Conventional and Capsulated Glass Ionomer Cements Using Two Different Conditioners: An In Vitro Study  

PubMed Central

This in vitro study evaluated the presence of voids in powder-liquid and capsulated glass ionomer cement. 40 cavities were prepared on root surfaces of maxillary incisors and divided into four groups. Cavities were conditioned with glass ionomer cement liquid (GC Corporation, Tokyo, Japan) in Groups 1 and 3 and with dentin conditioner (GC Corporation, Tokyo, Japan) in Groups 2 and 4. Conventional powder-liquid glass ionomer cement (GC Fuji II, GC Corporation, Tokyo, Japan) was used as a restorative material in Groups 1 and 2. Capsulated glass ionomer cement (GC Fuji II, GC Corporation, Tokyo, Japan) was used in Groups 3 and 4. Samples were sectioned and viewed under stereomicroscope to check for the presence of voids within the cement and at the cement-tooth junction. Data was analyzed using one-way ANOVA and Tukey's post hoc tests. Group 4 showed statistically significant results (P < 0.05) when compared to Groups 1 and 2 for voids within the cement. However, for voids at the margins, the results were statistically insignificant. PMID:25544842

Sharma, Roshni; Reddy, Pallavi; Udameshi, Pooja; Vallakuruchi Jayabal, Narmatha

2014-01-01

43

Comparative evaluation of voids present in conventional and capsulated glass ionomer cements using two different conditioners: an in vitro study.  

PubMed

This in vitro study evaluated the presence of voids in powder-liquid and capsulated glass ionomer cement. 40 cavities were prepared on root surfaces of maxillary incisors and divided into four groups. Cavities were conditioned with glass ionomer cement liquid (GC Corporation, Tokyo, Japan) in Groups 1 and 3 and with dentin conditioner (GC Corporation, Tokyo, Japan) in Groups 2 and 4. Conventional powder-liquid glass ionomer cement (GC Fuji II, GC Corporation, Tokyo, Japan) was used as a restorative material in Groups 1 and 2. Capsulated glass ionomer cement (GC Fuji II, GC Corporation, Tokyo, Japan) was used in Groups 3 and 4. Samples were sectioned and viewed under stereomicroscope to check for the presence of voids within the cement and at the cement-tooth junction. Data was analyzed using one-way ANOVA and Tukey's post hoc tests. Group 4 showed statistically significant results (P < 0.05) when compared to Groups 1 and 2 for voids within the cement. However, for voids at the margins, the results were statistically insignificant. PMID:25544842

Kaushik, Mamta; Sharma, Roshni; Reddy, Pallavi; Pathak, Pallavi; Udameshi, Pooja; Vallakuruchi Jayabal, Narmatha

2014-01-01

44

Effect of Self-etching Adhesives on the Bond Strength of Glass-Ionomer Cements  

PubMed Central

Objective: Statement of Problem: Adequate bond strength between glass ionomer cements and composite resin is necessary for the success of the sandwich technique. Purpose of Study: This study assessed the micro-shear bond strength of composite resin to glass-ionomer cements (GIC) using self-etch adhesives with different pH values. Materials and Methods: One hundred specimens (6×4×2 mm) were made using Fuji II and Fuji II LC GICs and treated with different adhesives as follows: Group 1:Fuji II+ Adper Prompt L-Pop, Group-2: Fuji II+SE bond, Group-3: Fuji II + AdheSE, Group-4:Fuji II+ Protect bond, Group-5: Fuji II + Single bond, Group-6:Fuji II LC+ Adper Prompt LPop, Group-7: Fuji II LC+SE bond, Group-8:Fuji II LC+ AdheSE, Group-9: Fuji II LC+ Protect bond, and Group-10: Fuji II LC+ Single bond. Each group consisted of 10 specimens. A cylinder of Z100 composite resin was placed on each sample and light cured. After 24 hours of water storage (37°C), the specimens were subjected to micro-shear bond strength tests (0.5 mm/min). Data were analyzed using two-way ANOVA and Tukey’s test. Results: The mean micro-shear bond strength of groups 1–10 was 11.66±1.79, 16.50±1.85, 18.47±1.77, 13.95±1.77, 15.27±1.49, 15.14±0.90, 20.03±1.19, 17.48±3.00, 16.24±1.98 and 16.03±1.49 MPa, respectively. There were significant differences between groups 1 and 7 (P<0.05). No significant difference was observed between other groups (P>0.05). Fuji II LC showed higher bond strength than Fuji II (P<0.05). Conclusion: Type of self-etch adhesive had no significant effect on micro-shear bond strength of glass-ionomer to composite resin. Resin modified glass ionomer cement (RMGIC) exhibited higher bond strength than the conventional GIC. PMID:25628698

Jaberi Ansari, Zahra; Panahandeh, Narges; Tabatabaei Shafiei, Zahra Sadat; Akbarzadeh Baghban, Alireza

2014-01-01

45

Effect of Ultrasonic Excitation on the Microtensile Bond Strength of Glass Ionomer Cements to Dentin after Different Water Storage Times  

Microsoft Academic Search

The application of ultrasound waves on glass ionomer cement (GIC) surface can accelerate the early setting reaction and improve the mechanical properties of the material, resulting in higher resistance to masticatory forces within a short period of time and thus increasing the clinical longevity of the GIC restoration. In this study, the microtensile bond strength (?TBS) of two high-viscosity GICs (Fuji

Elcilaine Rizzato Azevedo; Cármen Regina Coldebella; Ângela Cristina Cilense Zuanon

46

A Comparative Study of Color Stability and Fluoride Release from Glass Ionomer Cements Combined with Chlorhexidine  

PubMed Central

ABSTRACT Background: Restoring carious teeth is one of the major treatment needs of young children. Glass ionomer cement (GIC) systems had become the most important dental restorative and luting materials for use in preschoolers, children and teenagers. Several attempts in developing GIC with antibacterial effects by addition of bactericides, such as chlorhexidine, have been reported. Aim: Aim of the study was to evaluate and compare the color and fluoride ion release of conventional and resin-modified GICs in combination with 1.25 and 2.5% chlorhexidine diacetate. Materials and methods: The control groups consisted of conventional GIC and resin-modified GIC. The experimental groups consisted of conventional and resin-modified GIC groups, consisting of 1.25 and 2.5% chlorhexidine. A total of six groups were included with each group being allotted 20 specimens for the evaluation of color stability and 10 specimens each were allotted for the evaluation of fluoride release. Color and fluoride release were recorded using spectrophoto-meter and fluoride selective electrode respectively at 24 hours 7 days and 1 month. Results: Resin-modified GIC groups showed less color stability and better fluoride release at the end of the study compared to conventional GIC groups. Conclusion: There was no significant change in color and fluoride release between 1.25 and 2.5% conventional GIC and also between 1.25 and 2.5% resin-modified GIC combined with chlorhexidine diacetate at the end of the study. Conventional GIC showed better color stability and less fluoride release compared to resin-modified GIC. How to cite this article: Prabhakar AR, Pattanshetti K, Sugandhan S. A Comparative Study of Color Stability and Fluoride Release from Glass Ionomer Cements Combined with Chlorhexidine. Int J Clin Pediatr Dent 2013;6(1):26-29. PMID:25206183

Pattanshetti, Kirti; Sugandhan, S

2013-01-01

47

Effect of Nanoclay Dispersion on the Properties of a Commercial Glass Ionomer Cement  

PubMed Central

Objective. The reinforcement effect of polymer-grade montmorillonite (PGV and PGN nanoclay) on Fuji-IX glass ionomer cement was investigated. Materials and Method. PGV and PGV nanoclays (2.0?wt%) were dispersed in the liquid portion of Fuji-IX. Fourier-transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) were used to quantify acid-base reaction and the liquid portion of GIC. The mechanical properties (CS, DTS, FS, and Ef) of cements (n = 20) were measured at 1 hour, 1 day, and 1 month. The microstructure was examined by cryo-SEM and TEM. Results. FTIR shows that the setting reaction involves the neutralisation of PAA by the glass powder which was linked with the formation of calcium and aluminium salt-complexes. The experimental GICs (C-V and C-N) exhibited mechanical properties in compliance to ISO standard requirement have higher values than Fuji-IX cement. There was no significant correlation of mechanical properties was found between C-V and C-N. The average Mw of Fuji-IX was 15,700 and the refractive index chromatogram peak area was 33,800. TEM observation confirmed that nanoclays were mostly exfoliated and dispersed in the matrix of GIC. Conclusion. The reinforcement of nanoclays in GICs may potentially produce cements with better mechanical properties without compromising the nature of polyacid neutralisation. PMID:25210518

Fareed, Muhammad A.; Stamboulis, Artemis

2014-01-01

48

Wear and superficial roughness of glass ionomer cements used as sealants, after simulated toothbrushing.  

PubMed

The purpose of this study was to evaluate, in vitro, the properties (wear and roughness) of glass ionomer cements that could influence their indication as pit and fissure sealants. The utilized materials were Fuji Plus, Ketac-Molar and Vitremer (in two different proportions: 1:1 and :1). The resin-based sealant Delton was used as control. By means of an electronic balance (precision of 10-4 g), wear was measured in function of weight loss after simulated toothbrushing. Superficial roughness was determined by means of a surface roughness-measuring apparatus. The results revealed that diluted Vitremer and Fuji Plus were less resistant to toothbrushing abrasion and had the greatest increase in superficial roughness. Although in clinical situations luting or diluted ionomer cements are often utilized as alternatives to resin-based sealants, the resultsof this study revealed that the properties of those cements are worse than those of restorative ionomers, whichpresented results similar to those of the evaluated resin sealant. PMID:12612774

Rios, Daniela; Honôrio, Heitor Marques; de Araújo, Paulo Amarante; Machado, Maria Aparecida de Andrade Moreira

2002-01-01

49

Nanoclay addition to a conventional glass ionomer cements: Influence on physical properties  

PubMed Central

Objective: The objective of the present study is to investigate the reinforcement effect of polymer-grade montmorillonite (PGN nanoclay) on physical properties of glass ionomer cement (GIC). Materials and Methods: The PGN nanoclay was dispersed in the liquid portion of GIC (HiFi, Advanced Healthcare, Kent, UK) at 1%, 2% and 4% (w/w). Fourier-transform infrared (FTIR) spectroscopy was used to quantify the polymer liquid of GICs after dispersion of nanoclay. The molecular weight (Mw) of HiFi liquid was determined by gel permeation chromatography. The compressive strength (CS), diametral-tensile strength, flexural strength (FS) and flexural modulus (Ef) of cements (n = 20) were measured after storage for 1 day, 1 week and 1 month. Fractured surface was analyzed by scanning electron microscopy. The working and setting time (WT and ST) of cements was measured by a modified Wilson's rheometer. Results: The FTIR results showed a new peak at 1041 cm?1 which increased in intensity with an increase in the nanoclay content and was related to the Si-O stretching mode in PGN nanoclay. The Mw of poly (acrylic acid) used to form cement was in the range of 53,000 g/mol. The nanoclay reinforced GICs containing <2% nanoclays exhibited higher CS and FS. The Ef cement with 1% nanoclays was significantly higher. The WT and ST of 1% nanoclay reinforced cement were similar to the control cement but were reduced with 2% and 4% nanoclay addition. Conclusion: The dispersion of nanoclays in GICs was achieved, and GIC containing 2 wt% nanoclay is a promising restorative materials with improved physical properties. PMID:25512724

Fareed, Muhammad A.; Stamboulis, Artemis

2014-01-01

50

Use of Raman spectroscopy in the characterisation of the acid–base reaction in glass-ionomer cements  

Microsoft Academic Search

Raman spectra of various combinations of glass-ionomer cement components have been compared with those of the reactants and the salts of polyacrylic and tartaric acids. The components consisted of a fast-setting acid-degradable dental glass (containing, inter alia, oxides of Si, Al, Ca, Ba and Na), polyacrylic acid (PAA) and\\/or tartaric acid (TA). On the addition of water to the glass

A. M Young; A Sherpa; G Pearson; B Schottlander; D. N Waters

2000-01-01

51

Surface roughness of glass ionomer cements indicated for uncooperative patients according to surface protection treatment  

PubMed Central

Summary Background Even today, use of Glass Ionomer Cements (GIC) as restorative material is indicated for uncooperative patients. Aim The study aimed at estimating the surface roughness of different GICs using or not their proprietary surface coatings and at observing the interfaces between cement and coating through SEM. Materials and methods Forty specimens have been obtained and divided into 4 groups: Fuji IX (IX), Fuji IX/G-Coat Plus (IXC), Vitremer (V), Vitremer/Finishing Gloss (VFG). Samples were obtained using silicone moulds to simulate class I restorations. All specimens were processed for profilometric evaluation. The statistical differences of surface roughness between groups were assessed using One-Way Analysis of Variance (One-Way ANOVA) (p<0.05). The Two-Way Analysis of Variance (Two-Way ANOVA) was used to evaluate the influence of two factors: restoration material and presence of coating. Coated restoration specimens (IXC and VFG) were sectioned perpendicular to the restoration surface and processed for SEM evaluation. Results No statistical differences in roughness could be noticed between groups or factors. Following microscopic observation, interfaces between restoration material and coating were better for group IXC than for group VFG. Conclusions When specimens are obtained simulating normal clinical procedures, the presence of surface protection does not significantly improve the surface roughness of GICs. PMID:24611090

Pacifici, Edoardo; Bossù, Maurizio; Giovannetti, Agostino; La Torre, Giuseppe; Guerra, Fabrizio; Polimeni, Antonella

2013-01-01

52

A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer  

PubMed Central

Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the “smart” materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI) cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA). Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications. PMID:24130573

Khoroushi, Maryam; Keshani, Fateme

2013-01-01

53

Effect of green propolis addition to physical-mechanical properties of glass ionomer cements  

PubMed Central

Objective This study investigated the mechanical properties of glass ionomer cements (GICs) combined with propolis as a natural antimicrobial substance Material and Methods Typified green propolis, as an ethanolic extract (EEP) or in the lyophilized form (powder), was incorporated to specimens of Ketac Fil Plus, ChemFlex and Ketac Molar Easymix GICs. For each test, 8 specimens of each material were prepared. For water sorption and solubility tests, specimens were subjected to dehydration, hydration and re-dehydration cycles until a constant mass was obtained for each step. Measurements were recorded using a digital balance of 10-4 g precision. For the diametral tensile strength test, specimens were tested in a universal test machine at 0.5 mm/min crosshead speed after 24 h storage in deionized water. Data were evaluated by one-way ANOVA and Tukey’s tests (p<0.05). Results The addition of propolis to GIC clearly increased water sorption compared to pure material. Solubility was material-dependent and was not clearly evident. For the diametral tensile strength test, association with propolis altered negatively only Chemflex. Conclusion It may be concluded that incorporation of propolis to GICs alters some properties in a material-dependent condition. PMID:21552709

TROCA, Valéria Barros Pereira Barbosa; FERNANDES, Karen Barros Parron; TERRILE, Amélia Elena; MARCUCCI, Maria Cristina; de ANDRADE, Flaviana Bombarda; WANG, Linda

2011-01-01

54

Evaluation on Shear Bond Strength of Different Glass Ionomer and Hydroxy Apatite Cements Used in Ossiculoplasty  

PubMed Central

Background: Glass ionomer cements (GIC) have been widely used in dentistry for many years. In recent years, GIC have also been used for ossiculoplasty. The bond strength of GIC used in ossiculoplasty and the way they may change over the years in the cementation area are being questioned. The bonding strength of the substance may be of importance for long-term outcomes. Aims: The aim of this study was to investigate the bond strength of different GIC on ossicles. Study Design: In vitro study. Methods: Twenty ossicles were obtained from patients who had undergone ear surgery. All specimens were randomly divided into four subgroups. All specimens were inserted into a specially designed apparatus for shear bond strength (SBS) testing. The tested materials [Aqua Meron (AM), Aqua Cem (AC), Ketac Cem (KC), and Otomimix CPB (OH)] were prepared and applied according to the manufacturer’s instructions. The SBS was tested using a universal testing machine at a crosshead speed of 0.5 mm/min. Results: The mean SBSs were found to be 13.28 MPa, 23.43 MPa, 8.51MPa, and 1.78 MPa for AM, AC, KC, and OH, respectively. AC had the highest SBS, which was statistically significantly different from that of KC and OH (p<0.05). Both AM and KC had higher SBS than OH (p<0.05). Conclusion: The results obtained in this study by investigating the bone-bonding strength of cements widely used in ossiculoplasty demonstrate that some of these substances have a greater ability to bond to ossicles compared to others. Further clinical investigations are needed to test different parameters.

Kalc?o?lu, M. Tayyar; Uzun, ?smail Hakk?; Yalç?n, Muhammet; Malkoç, Meral Arslan; Ö?reten, Ay?e Tuba; Hanege, Fatih Mehmet

2015-01-01

55

Effect of hygroscopic expansion on the push-out resistance of glass ionomer-based cements used for the luting of glass fiber posts.  

PubMed

This study examined the contribution of hygroscopic expansion of glass-ionomer (GIC) and resin modified glass-ionomer (RMGIC) luting cements to the push-out resistance of fiber posts. Glass fiber posts were luted to post spaces using different cements. Experimental specimens were stored in water, while control specimens were desiccated and stored in mineral oil to eliminate water from intraradicular dentinal tubules and/or the external environment that could have contributed to hygroscopic expansion of the cements. Thin slice push-out tests revealed no difference in retention strengths of resin composite cements that were stored in water or oil. Conversely, GIC and RMGIC cements exhibited increased retention strengths after water sorption. As unfavorable cavity geometry is taxing to dentin bond integrity in root canals, a strategy that relies on increasing the frictional resistance to post dislodgement via delayed hygroscopic expansion of glass-ionomer based materials may be a more pragmatic approach to fiber post retention. PMID:16728245

Cury, Alvaro H; Goracci, Cecilia; de Lima Navarro, Maria Fidela; Carvalho, Ricardo M; Sadek, Fernanda T; Tay, Franklin R; Ferrari, Marco

2006-06-01

56

A novel high-wear-resistant glass-ionomer cement for class I and class II restorations.  

PubMed

This study reports the results of an evaluation on the in vitro wear of a newly developed experimental light-cured glass-ionomer cement composed of the synthesized six-arm star-shape poly(acrylic acid) and Fuji II LC glass fillers. The resin composite P-60, as well as glass-ionomer cements Fuji II and Fuji II LC, were used for comparison. All specimens were conditioned in distilled water at 37 degrees C for 1 d prior to testing. The experimental cement exhibited statistically the same wear-resistance to abrasion as P-60, but the wear-resistance was 14 times higher for the experimental cement than for Fuji II and Fuji II LC. Furthermore, the experimental cement showed a degree of wear-resistance to attrition that was 1.4 times higher than both Fuji II and Fuji II LC but six times lower than that of P-60. Impressively, after 1 month of aging the experimental cement was able to compete with P-60 in wear-resistance to attrition, showing a degree of wear depth that was only 1.3 times more than that of P-60. It appears that this novel cement is a clinically attractive dental restorative that can be potentially used for high-wear sites such as class I and class II restorations. PMID:19196323

Zhao, Jun; Weng, Yiming; Xie, Dong

2009-02-01

57

Biaxial flexural strength of high-viscosity glass-ionomer cements heat-cured with an LED lamp during setting.  

PubMed

Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS) between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n = 30): without heating (Group 1), heated with LED lamp of 1400?mW/cm(2) for 30?s while setting (Group 2), and heated with LED lamp of 1400?mW/cm(2) for 60?s while setting (Group 3). Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1?mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (? = 0.05). Heating the glass-ionomer cements with an LED curing light of 1400?mW/cm(2) during setting for 30?s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30?s and 60?s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times. PMID:23841095

Fabián Molina, Gustavo; Cabral, Ricardo Juan; Mazzola, Ignacio; Brain Lascano, Laura; Frencken, Jo E

2013-01-01

58

Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART)  

PubMed Central

The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. Objective: To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Material and Methods: Specimens for testing flexural (n=240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. Results: The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (?=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (?=0.05). Conclusion: The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers. PMID:23857657

MOLINA, Gustavo Fabián; CABRAL, Ricardo Juan; MAZZOLA, Ignacio; BRAIN LASCANO, Laura; FRENCKEN, Jo. E.

2013-01-01

59

Development of a novel antimicrobial-releasing glass ionomer cement functionalized with chlorhexidine hexametaphosphate nanoparticles  

PubMed Central

Background Glass ionomer cements (GICs) are a class of dental biomaterials. They have a wide range of uses including permanent restorations (fillings), cavity linings, fissure sealants and adhesives. One of the most common reasons for replacing a dental restoration is recurrent bacterial tooth decay around the margins of the biomaterial. Therefore, a dental biomaterial which creates a sustained antimicrobial environment around the restoration would be of considerable clinical benefit. In this manuscript, the formulation of a GIC containing novel antimicrobial nanoparticles composed of chlorhexidine hexametaphosphate at 1, 2, 5, 10 and 20% powder substitution by mass is reported. The aim is to create GICs which contain chlorhexidine-hexametaphosphate nanoparticles and characterize the nanoparticle size, morphology and charge and the release of chlorhexidine and fluoride, tensile strength and morphology of the GICs. Results The GICs released chlorhexidine, which is a broad spectrum antimicrobial agent effective against a wide range of oral bacteria, over the duration of the experiment in a dose-dependent manner. This was not at the expense of other properties; fluoride release was not significantly affected by the substitution of antimicrobial nanoparticles in most formulations and internal structure appeared unaffected up to and including 10% substitution. Diametral tensile strength decreased numerically with substitutions of 10 and 20% nanoparticles but this difference was not statistically significant. Conclusion A series of GICs functionalized with chlorhexidine-hexametaphosphate nanoparticles were created for the first time. These released chlorhexidine in a dose-dependent manner. These materials may find application in the development of a new generation of antimicrobial dental nanomaterials. PMID:24456793

2014-01-01

60

Tensile and shear bond strength of resin-reinforced glass ionomer cement to glazed porcelain.  

PubMed

The purpose of this study was to measure the tensile and shear bond strength of resin-reinforced glass ionomer cement (RGIC) to glazed porcelain, to evaluate the durability of RGIC by thermal cycling, and to examine the RGIC remaining on the surface of the porcelain after the bond strength test to evaluate bonding conditions. Three adhesives were used in this study: Concise (CO) as a chemically cured composite resin, Fuji ORTHO (FO) as a chemically cured RGIC, and Fuji ORTHO LC (FOLC) as a light-cured RGIC. Tensile and shear bond strengths were measured 24 hours after bonding orthodontic brackets and also after thermal cycling. Tensile bond strength after 24 hours was 6.6 +/- 3.2 MPa in CO, 7.3 +/- 1.4 MPa in FO, and 8.6 +/- 1.9 MPa in FOLC, and the strength significantly decreased after the thermal cycling test. Shear bond strength after 24 hours was 32.5 +/- 8.9 MPa in CO, 23.3 +/- 6.8 MPa in FO, and 24.7 +/- 6.5 MPa in FOLC, and in contrast to tensile bond strength, no decreases in the strength were detected after the thermal cycling test. CO showed significantly higher shear bond strength than did FO and FOLC. When using the shear bond strength test and CO, destruction of porcelain surfaces frequently occurred after 24 hours and was observed in every specimen after the thermal cycling. RGIC was found to be an advantageous alternative to resin adhesive for bracket bonding to porcelain and to enamel. PMID:12940567

Kitayama, Yoshitaka; Komori, Akira; Nakahara, Rizako

2003-08-01

61

EFFECT OF LIGHT CURING UNIT ON RESIN-MODIFIED GLASS-IONOMER CEMENTS: A MICROHARDNESS ASSESSMENT  

PubMed Central

Objective: To evaluate the microhardness of resin-modified glass-ionomer cements (RMGICs) photoactivated with a blue light-emitting diode (LED) curing light. Material and Methods: Thirty specimens were distributed in 3 groups: Fuji II LC Improved/GC (RM1), Vitremer/3M ESPE (RM2) and Filtek Z250/ 3M ESPE (RM3). Two commercial light-curing units were used to polymerize the materials: LED/Ultrablue IS and a halogen light/XL3000 (QTH). After 24 h, Knoop microhardness test was performed. Data were submitted to three-way ANOVA and Tukey's test at a pre-set alpha of 0.05. Results: At the top surface, no statistically significant difference (p>0.05) in the microhardness was seen when the LED and QTH lights were used for all materials. At the bottom surface, microhardness mean value of RM2 was significantly higher when the QTH light was used (p<0.05). For RM1, statistically significant higher values (p<0.05) were seen when the LED light was used. No statistically significant difference (p>0.05) was seen at the bottom surface for RM3, irrespective of the light used. Top-to-bottom surface comparison showed no statistically significant difference (p>0.05) for both RMGICs, regardless of the light used. For RM3, microhardness mean value at the top was significantly higher (p<0.05) than bottom microhardness when both curing units were used. Conclusion: The microhardness values seen when a LED light was used varied depending on the restorative material tested. PMID:19466242

Cefaly, Daniela Francisca Gigo; de Mello, Liliam Lucia Carrara Paes; Wang, Linda; Lauris, José Roberto Pereira; D'Alpino, Paulo Henrique Perlatti

2009-01-01

62

Marginal gap, cement thickness, and microleakage of 2 zirconia crown systems luted with glass ionomer and MDP-based cements.  

PubMed

This in vitro study evaluated the marginal gap, cement thickness, and microleakage of glass-ionomer cement (GIC) and phosphate monomer-containing resin cement (MDP-RC) under 2 zirconia crown systems (Cercon and DC-Zirkon). Forty human premolars were prepared for all-ceramic zirconia crowns with a 1 mm circumferential finish line and a 1.5 mm occlusal reduction. The crowns (n = 10 per group) from each zirconia system were randomly divided into 2 groups and cemented either with GIC (Vivaglass CEM) or MDP-RC (Panavia F 2.0) cement. The cemented crowns were thermocycled 5000 times (5°-55°C). The crowns were immersed in 0.5% basic fuchsine dye solution for 24 hours and sectioned buccolingually and mesiodistally. Specimens were examined under optical microscope (100X). Data were analyzed using Student t-test and chi-square tests (? = 0.05). Mean marginal gap values for Cercon (85 ± 11.4 ?m) were significantly higher than for DC-Zircon (75.3 ± 13.2 ?m) (P = 0.018). The mean cement thickness values of GIC (81.7 ± 13.9 ?m) and MDP-RC (78.5 ± 12.5 ?m) were not significantly different (P = 0.447). Microleakage scores did not demonstrate significant difference between GIC (P = 0.385) and MDP-RC (P = 0.631) under Cercon or DC-Zircon. Considering the cement thickness values and microleakage scores obtained, both zirconia crown systems could be cemented in combination with either GIC or MDP-RC. PMID:24598500

Sener, Isil; Turker, Begum; Valandro, Luiz Felipe; Ozcan, Mutlu

2014-01-01

63

Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement  

PubMed Central

Objective: To evaluate the antibacterial and antifungal properties of calcium-based cement, Biodentine (Ca3SiO2), compared to commercial glass ionomer cements (GICs) and mineral trioxide aggregate (MTA). Materials and Methods: Pellets of GICs, ProRoot MTA, and Biodentine were prepared to test the influence of these cements on the growth of four oral microbial strains: Streptococcus mutans, Enterococcus faecalis, Escherichia coli, and Candida albicans; using agar diffusion method. Wells were formed by removing the agar and the manipulated materials were immediately placed in the wells. The pellets were lodged in seeded plates and the growth inhibition diameter around the material was measured after 24-72 h incubation at 37°C. The data were analyzed using analysis of variance (ANOVA) test to compare the differences among the three cements at different concentrations. Results: Test indicates that the antimicrobial activity of Biodentine, on all the microorganisms tested, was very strong, showing a mean inhibition zone of 3.2 mm, which extends over time towards all the strains. For Biodentine, GIC, and MTA, the diameters of the inhibition zones for S. mutans were significantly larger than for E. faecalis, Candida, and E. coli (P < 0.05). Conclusion: All materials showed antimicrobial activity against the tested strains except for GIC on Candida. Largest inhibition zone was observed for Streptococcus group. Biodentine created larger inhibition zones than MTA and GIC. PMID:25657526

Bhavana, Vankayala; Chaitanya, Krishna Popuri; Gandi, Padma; Patil, Jayaprakash; Dola, Binoy; Reddy, Rahul B.

2015-01-01

64

Effect of Marginal Sealant on Shear Bond Strength of Glass Ionomer Cement: Used as A Luting Agent  

PubMed Central

Background: Moisture sensitivity and dissolution has been a known drawback of glass ionomer cement (GIC). When used as a luting agent for cementation of casted indirect restoration, the exposed cement at the margins is often a primary factor for marginal leakage and consequent failure of the restoration. The following in vitro study was planned to evaluate the effect of a marginal sealant on GIC used as luting agent. Materials and Methods: Sixty healthy extracted premolars were selected and prepared to receive metal-ceramic prosthesis. The prepared restorations were cemented using GIC and were divided randomly into two groups. The specimens in Group A were directly immersed in artificial saliva solution without any protection at the margins, while the exposed cement for Group B specimens was protected using a marginal sealant before immersing it in the artificial saliva solution. The specimens were tested after 24 h using a crown pull test on the universal testing machine to measure the shear bond strength of the cement. Result: The specimens in Group B showed statistically significant difference from the specimens in Group A with the mean shear bond strength of 6.60 Mpa and 5.32 respectively. Conclusion: Protection of GIC exposed at the margins of indirect cast restorations with a marginal sealant can significantly increase the longevity of the prosthesis by reducing the marginal leakage and perlocation of fluids. How to cite the article: Nazirkar G, Singh S, Badgujar M, Gaikwad B, Bhanushali S, Nalawade S. Effect of marginal sealant on shear bond strength of glass ionomer cement: Used as a luting agent. J Int Oral Health 2014;6(3):65-9 PMID:25083035

Nazirkar, Girish; Singh, Shailendra; Badgujar, Mayura; Gaikwad, Bhushan; Bhanushali, Shilpa; Nalawade, Sumit

2014-01-01

65

Removal of amalgam, glass-ionomer cement and compomer restorations: changes in cavity dimensions and duration of the procedure.  

PubMed

This study investigated changes in the dimensions of Class II cavities following the removal of amalgam, glass ionomer and compomer restorations. In 30 extracted caries-free human molars, preparation for 60 mesio-occlusal and occluso-distal cavities (two cavities per tooth) occurred. With a CEREC 3 laser triangulation sensor and software-based construction analysis, the dimensions of the cavities at seven defined sites were measured. The cavities were randomized into four groups. Group 1 was restored with Ketac-Fil glass-ionomer cement, Group 2 with amalgam and Group 3 with Compoglass F compomer. In Group 4, Compoglass F was used in combination with photochromic Tetric Flow Chroma as a cavity liner. The completed restorations were then removed using 2x magnification and the cavities were once again controlled using the laser system. The duration of the removal procedure was also recorded. Changes in cavity dimensions (depth, height and width) following removal of the restorations were significantly smaller in Groups 1 and 2. Groups 3 and 4 were characterized by a significant overextension of the cavities compared to Groups 1 and 2 in all three dimensions. Group 4, with Tetric Flow Chroma as a cavity liner, showed better results than Group 3, but this improvement was not statistically significant. The duration of the removal procedure was significantly shorter in Group 2 than in the other groups. PMID:12413228

Szep, Susanne; Baum, C; Alamouti, C; Schmidt, D; Gerhardt, T; Heidemann, D

2002-01-01

66

Glass ionomer cement: evidence pointing to fluorine release in the form of monofluorophosphate in addition to fluoride ion.  

PubMed

The fluoride ion released from glass ionomer cements into water is reportedly, in part, complexed with other elements present in the cement. When measured using ion selective electrode potentiometry (ISE) a decomplexant TISAB IV (T) is used to convert all fluoride to F- ion which the ISE can detect. In this study, an additional decomplexing procedure (H) designed to hydrolyse fluorine covalently bonded to phosphorus in the monofluorophosphate (MFP) ion into F- was also used. The soluble products from three glass ionomers were analysed by both techniques (H & T). Five 1 x 10 mm discs were each immersed in 10 ml of de-ionised water. This was changed and 4 ml analysed by T and 4 ml by H at 1, 2, 3, 6, 10, 13, 17, 21, 24, 28, and 31 days. H was greater than T for 161 of the 165 pairs ( chi2=74.7, p=<0.001 ). The total cumulative F release H (in micromol/g cement) at 31 days for AH2 was 122.3, s.d. 30.8; LG26 44.0, s.d. 1.55; LG30 10.0, s.d. 3.15 as compared T results of 100.1, s.d. 31.1; 30.3, s.d. 1.92; 3.7, s.d. 1.36, respectively. In all three cases the H was significantly greater than T (matched pair 't' test with p=0.01 or less). H-T was show to have a very strong associative relationship with t1/2 (R2=0.98 or greater p<0.001 ). Evaluating the ratio of P:F in the cements in comparison with the ratio of additional F measured by H to that measured by T produced a relationship log[(H-T)/T]=0.28 x log[P/F]-0.45 with R2=0.999. It is concluded that glass ionomers release more fluorine than is detected by ISE using TISAB IV. If this F is in the form of MFP this may be released more completely into saliva than F as F-, release of which is substantially reduced by Ca2+, since calcium monofluorophosphate is more soluble than CaF2. PMID:15020112

Billington, R W; Williams, J A; Dorban, A; Pearson, G J

2004-08-01

67

A preliminary study of the effect of glass-ionomer and related dental cements on the pH of lactic acid storage solutions.  

PubMed

Glass-ionomer cements, both self-hardening and resin-modified, have been shown to increase the pH of lactic acid solutions in which they are stored. Similar results have been obtained for a zinc phosphate and a zinc polycarboxylate cement. The pH was increased over a period of 7 days by between 1.54 and 2.65 pH units from an initial value of pH of 2.60, depending on the cement. It is concluded that, as a result of this ability to neutralize surrounding aqueous solutions, these materials may have the beneficial effect in vivo of inhibiting caries development. In the case of glass-ionomers, this mechanism might complement that of fluoride release. PMID:10022784

Nicholson, J W; Czarnecka, B; Limanowska-Shaw, H

1999-01-01

68

Effect of different light curing systems on the shear bond strength of resin-modified glass ionomer cement and polyacid-modified composite resin  

Microsoft Academic Search

The aim of this study was to determine in vitro shear bond strength of resin-modified glass ionomer cement (RMGIC) and polyacid-modified composite resin (PMCR) polymerized with conventional halogen light curing unit (LCU) or light emitting diode (LED). Twenty-four mandibular molar teeth were used. Enamel was removed from buccal and lingual surfaces of the teeth to expose superficial dentin. Teeth were

Oya Bala; Hacer Deniz Arisu; Bagdagul Helvacioglu Kivanc; Sara Samur

69

Comparative evaluation of microleakage of three restorative glass ionomer cements: An in vitro study  

PubMed Central

Purpose: The aim of this study was to compare the microleakage of glass ionomers (conventional and resin modified) with that of recently introduced nanoionomers. Materials and Methods: Standardized class I and class V cavities were prepared on 120 young permanent teeth. Samples were equally divided into group I (class I restorations) and group II (class V restorations), and further divided into subgroups. The subgroups were restored with Fuji IX, Fuji II LC, and newly introduced Ketac™ N 100 (KN 100). Samples were thermocycled and submerged in Acridine dye for 24 h. Samples were sectioned to view under fluorescent microscope and marginal leakage was evaluated by Chi-square and Kruskal — Wallis test. Results: Fuji IX showed the maximum leakage, followed by LC II and the least was observed in KN 100. In class I restorations, there was significant difference while comparing Fuji IX with Fuji LC II and KN 100 and nonsignificant difference between LC II and KN100. In class V restorations, Fuji IX and KN100, KN 100 and LC II showed significant difference. Fuji IX and LC II showed nonsignificant difference. Conclusion: Within the limitations of this study, Fuji IX showed the maximum microleakage. KN 100 showed minimum leakage, better sealing ability, and was more consistent. PMID:25097418

Diwanji, Amish; Dhar, Vineet; Arora, Ruchi; Madhusudan, A.; Rathore, Ambika Singh

2014-01-01

70

Predicting composition-property relationships for glass ionomer cements: A multifactor central composite approach to material optimization.  

PubMed

Adjusting powder-liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation-property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs. PMID:25828159

Kiri, Lauren; Boyd, Daniel

2015-06-01

71

Effect of dietary solvents on the strength of nanocomposite, compomer, glass ionomer cement: An in-vitro study  

PubMed Central

Background: Intraoral degradation of resin restorative materials involves both mechanical and chemical factors. Thus, an in vitro study was conducted to compare the strength of nanocomposite to commonly used esthetic restorative materials in simulated in vivo conditions. Aim: The aim of this study was to determine the influence of dietary solvents on the strength of nanocomposite and other esthetic restorative materials. Materials and Methods: Three test groups (nanocomposite, compomer and glass ionomer cement) each containing 60 pre-conditioned samples, divided into four subgroups of 15 samples each and conditioned in different dietary solvents, were subjected to shear punch test in custom designed shear punch apparatus in Instron Universal Testing Machine. Statistical Analysis: Descriptive statistics, one way analysis of variance (ANOVA), paired t-test were implied. Results: One-way ANOVA revealed nanocomposite to bear most shear punch strength post-conditioning, as compared with the other two test materials. Conclusion: Nanocomposite yielded better strength than the other two test materials, indicating its universal application as a restorative material. PMID:24347887

Kaur, Harsimran; Nandlal, B

2013-01-01

72

In-vitro study of resin-modified glass ionomer cements for cementation of orthodontic bands. Isolation, surplus removal and humidity as factors influencing the bond strength between enamel, cement and metal.  

PubMed

The aim of this in vitro study was to investigate different light-cured and chemically cured resin-modified glass ionomer cements used for the cementation of orthodontic bands and to analyze various factors influencing the adhesive strength between enamel, cement and stainless steel. Four resin-modified glass ionomers (Fuji Ortho LC/GC, Fuji Duet/GC, Unitek Multi-Cure Glass Ionomer Orthodontic Band Cement/3M Unitek, Vitremer/3M) and 1 compomer (Band-Lok/Reliance) were examined. Flattened and polished bovine teeth embedded in polyurethane resin were used as enamel specimens. Before cementation, 50% of the specimens were moistened with the aerosol of an inhalation device, while the rest were dried with compressed air. Stainless steel cylinders (CrNi 18 10) were perpendicularly bonded onto the polished enamel using a custom-made cementation device and immediately topped with a pressure of 0.25 MPa. The cement was isolated with either Ketac Glaze/ESPE, Fuji Coat/GC, Cacao Butter/GC, Dryfoil/Jalenko or Final Varnish/VOCO, or was left uncoated. Eight minutes after the beginning of mixing, either the surplus cement was removed with a scalpel or surplus removal was simulated with ultrasound. After 24 hours storage in a water bath at 37 degrees C and 1,000 thermocycles the shear bond strength was determined. Significant differences with respect to the shear bond strength were found among the following cements, ranking from highest to lowest: Fuji Duet, Unitek cement > Fuji Ortho LC > Vitremer > Band-Lok. The application of a barrier coating significantly increased the shear bond strength of all cements except Fuji Ortho LC. The light-cured resin Ketac Glaze proved to be the most effective barrier coating. A dry enamel surface increased the bond strength of all investigated cements except Unitek cement. The use of ultrasound led to no significant reduction in shear bond strength in comparison with surplus removal with a scalpel. PMID:10546417

Liebmann, S M; Jost-Brinkmann, P G

1999-01-01

73

Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (PG) montmorillonite with poly(acrylic acid).  

PubMed

Montmorillonite nanoclays (PGV and PGN) were dispersed in poly(acrylic acid) (PAA) for utilization as reinforcing filler in glass ionomer cements (GICs). Chemical and physical interaction of PAA and nanoclay (PGV and PGN) was studied. PAA–PGV and PAA–PGN solutions were prepared in different weight percent loadings of PGV and PGN nanoclay (0.5-8.0 wt%) via exfoliation-adsorption method. Characterization was carried out by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR) spectroscopy. XRD results of PAA–PGN demonstrated that the interlayer space expanded from 12.83 to 16.03 Å indicating intercalation whereas the absence of the peak at d(001) in PAA–PGV indicated exfoliation. XPS scans of PGV and PGN nanoclays depicted the main peak of O 1s photoelectron due to Si–O–M (M = Mg, Al, Fe) whereas, Si–O–Al linkages were identified by Si 2p or Si 2s and Al 2p or Al 2s peaks. The disappearance of the Na peak confirmed that PAA molecules exchanged sodium ions present on surface of silicate layers and significantly reduced the electrostatic van-der-Waals forces between silicate plates resulting in intercalation or exfoliation. FTIR spectra of PAA–nanoclay suspensions demonstrated the presence of a new peak at 1,019 cm(-1) associated with Si–O– stretching vibrations which increased with increasing nanoclays concentration. Information concerning the dispersion of nanoclay in PAA aqueous solutions, chemical reaction and increase interlayer space in montmorillonite nanoclay is particularly useful regarding dispersion and reinforcement of nanoclay in PAA. PMID:24077996

Fareed, Muhammad A; Stamboulis, Artemis

2014-01-01

74

Calcium silicate cement-induced remineralisation of totally demineralised dentine in comparison with glass ionomer cement: tetracycline labelling and two-photon fluorescence microscopy.  

PubMed

Two-photon fluorescence microscopy, in combination with tetracycline labelling, was used to observe the remineralising potentials of a calcium silicate-based restorative material (Biodentine(TM) ) and a glass ionomer cement (GIC:?Fuji?IX) on totally demineralised dentine. Forty demineralised dentine discs were stored with either cement in three different solutions: phosphate buffered saline (PBS) with tetracycline, phosphate-free tetracycline, and tetracycline-free PBS. Additional samples of demineralised dentine were stored alone in the first solution. After 8-week storage at 37 °C, dentine samples were imaged using two-photon fluorescence microscopy and Raman spectroscopy. Samples were later embedded in PMMA and polished block surfaces studied by 20 kV BSE imaging in an SEM to study variations in mineral concentration. The highest fluorescence intensity was exhibited by the dentine stored with Biodentine(TM) in the PBS/tetracycline solution. These samples also showed microscopic features of matrix remineralisation including a mineralisation front and intra- and intertubular mineralisation. In the other solutions, dentine exhibited much weaker fluorescence with none of these features detectable. Raman spectra confirmed the formation of calcium phosphate mineral with Raman peaks similar to apatite, while no mineral formation was detected in the dentine stored in cement-free or PBS-free media, or with GIC. It could therefore be concluded that Biodentine(TM) induced calcium phosphate mineral formation within the dentine matrix when stored in phosphate-rich media, which was selectively detectable using the tetracycline labelling. PMID:25421432

Atmeh, A R; Chong, E Z; Richard, G; Boyde, A; Festy, F; Watson, T F

2015-02-01

75

An in vitro study on the maturation of conventional glass ionomer cements and their interface to dentin.  

PubMed

The objective of the study was to investigate the influence of long-term storage (up to 1 year) and coating on the variation of micro-mechanical properties of four conventional restorative glass ionomer cements (GICs) within 3.5 mm deep class I cavities. Four commercially available GICs (Riva Self Cure (SDI), ChemFil Rock (Dentsply), Fuji IX Fast and Fuji IX GP Extra/Equia (GC)) were applied to 100 teeth. In each tooth, two similar 3.5 mm deep class I cavities were prepared and filled with the GICs, with and without resin coating. The samples were stored in artificial saliva at 37 °C for 1 week, 1 month, 3 months, 6 months and 1 year. The variation in mechanical properties (indentation modulus (E) and Vickers hardness (HV)) were determined in 100 ?m steps starting from the filling surface, through the intermediate layer in between dentine and GIC, and ending 100 ?m in dentin. HV and E were strongly influenced by the material (P<0.05, partial eta-squared ?P(2) = 0.31 and 0.23) but less by aging duration (P<0.05, ?P(2) = 0.02 and 0.12) and resin coating (P<0.05, ?P(2) = 0.02 and 0.03). The depth of measurement (0-2 mm) has no influence on HV (P = 0.789). HV shows a gentle increase over the 1 year storage period (P = 0.002). A ?300 ?m GIC zone at the areas close to dentin with weaker properties as those measured in dentin or GIC was identified in all fillings, irrespective of the presence of coating, and at all storage periods. The thickness of this zone is more strongly influenced by storage (P<0.05, ?P(2) = 0.081) than by material type (P<0.05, ?P(2) = 0.056), while coating showed no influence (P = 0.869). Filler morphology and dimension were similar to upper parts of the GIC filling; however, the amount of low cations was higher. We concluded that the development of an intermediate layer in between dentine and GIC with lower mechanical properties might be responsible for the bond quality of GIC to dentine. Moreover, class I GIC restorations are unlikely to feature constant mechanical properties throughout the cavity, regardless of conditions such as aging and coating. PMID:23954325

Zoergiebel, Julius; Ilie, Nicoleta

2013-12-01

76

The effect of adding hydroxyapatite on the flexural strength of glass ionomer cement.  

PubMed

This present study investigated the effects of the addition of hydroxyapatite (HA) on the flexural strength and microstructure of conventional GIC, and its effect on the cement's initial flexural strength at different storage conditions. Specimens were fabricated by mixing HA in whisker or granule form into commercially prepared GIC, and these were subjected to a three-point bending test and SEM observations. Some specimens were stored in different conditions from dry to wet for 15 minutes to an hour prior to testing. When compared to the control, specimens with 16-25% HA whiskers added at P/L 1.75 showed a significant increase in the flexural strength (p < 0.05), and as well with 19% HA whiskers at P/L 1.75 (p < 0.001) and 2.33 (p < 0.05). A significant increase was also noted for those with 8-25% HA granules added at P/L's 1.75 (p < 0.05), 2.5 (p < 0.05) and 3.60 (p < 0.01). The addition of HA hastens the development of early (15 min, 1 hour) flexural strength of GIC in moist or wet conditions. These results indicate that the addition of HA, regardless of form, improve the flexural and microstructural properties of GIC. PMID:12873116

Arita, Kenji; Lucas, Milanita E; Nishino, Mizuho

2003-06-01

77

Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up  

Microsoft Academic Search

The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified\\u000a resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term\\u000a follow-up. Eighty-five class IV RC (43: Pekafil), PMRC (24: Dyract (D), Hytac (H)), and RMGIC (18: Fuji II LC (F), Photac\\u000a Fil (P)) restorations

Jan W. V. van Dijken; Ulla Pallesen

2010-01-01

78

Residual HEMA and TEGDMA Release and Cytotoxicity Evaluation of Resin-Modified Glass Ionomer Cement and Compomers Cured with Different Light Sources  

PubMed Central

The purpose of this study was first to evaluate the elution of 2-hydroxyethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) monomers from resin-modified glass ionomer cement (RMGIC) and compomers cured with halogen and light-emitting diode (LED) light-curing units (LCUs). The effect of cured materials on the viability of L929 fibroblast cells was also evaluated. One RMGIC (Ketac N100) and two compomers (Dyract Extra and Twinkystar) were tested. Materials were prepared in teflon disks and light-cured with LED or halogen LCUs. The residual monomers of resin materials in solution were identified using high-performance liquid chromatography. The fibroblast cells' viability was analyzed using MTT assay. The type of LCU did not have a significant effect on the elution of HEMA and TEGDMA. A greater amount of HEMA than TEGMDA was eluted. The amount of TEGDMA eluted from Twinkystar was greater than Dyract Extra (P < 0.05) when cured with a halogen LCU. All material-LCU combinations decreased the fibroblast cells' viability more than the control group (P < 0.01), except for Dyract Extra cured with a halogen LCU (P > 0.05). Curing with the LED LCU decreased the cells' viability more than curing with the halogen LCU for compomers. For Ketac N100, the halogen LCU decreased the cells' viability more than the LED LCU. PMID:24592149

Botsali, Murat Selim; Ku?göz, Adem; Altinta?, Subutay Han; Ülker, Hayriye Esra; Kiliç, Serdar; Ba?ak, Feridun; Ülker, Mustafa

2014-01-01

79

Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cement.  

PubMed

The aim of this study was to test the microtensile bond strength (?TBS), after 6 months of storage in PBS, of a resin-modified glass ionomer cement (RMGIC) bonded to dentine pretreated with Bioglass 45S5 (BAG) using various etching and air-abrasion techniques. The RMGIC (GC Fuji II LC) was applied onto differently treated dentine surfaces followed by light curing for 30 s. The specimens were cut into matchsticks with cross-sectional areas of 0.9 mm(2). The ?TBS of the specimens was measured after 24 h or 6 months of storage in PBS and the results were statistically analysed using two-way anova and the Student-Newman-Keuls test (? = 0.05). Further RMCGIC-bonded dentine specimens were used for interfacial characterization, micropermeability, and nanoleakage analyses by confocal microscopy. The RMGIC-dentine interface layer showed no water absorption after 6 months of storage in PBS except for the interdiffusion layer of the silicon carbide (SiC)-abraded/polyacrylic acid (PAA)-etched bonded dentine. The RMGIC applied onto dentine air-abraded with BAG/H(2)O only or with BAG/PAA-fluid followed by etching procedures (10% PAA gel) showed no statistically significant reduction in ?TBS after 6 months of storage in PBS. The abrasion procedures performed using BAG in combination with PAA might be a suitable strategy to enhance the bonding durability and the healing ability of RMGIC bonded to dentine. PMID:22409224

Sauro, Salvatore; Watson, Timothy F; Thompson, Ian; Toledano, Manuel; Nucci, Cesare; Banerjee, Avijit

2012-04-01

80

Effect of Ascorbic Acid on Shear Bond Strength of Orthodontic Brackets Bonded with Resin-modified Glass-ionomer Cement to Bleached Teeth  

PubMed Central

Background and aims Bleaching can considerably reduce shear bond strength (SBS) of orthodontic brackets bonded with composite adhesives. Application of antioxidants is a method to reverse the negative effect of bleaching on composite-to-enamel bond. However, the efficacy of antioxidants in increasing the SBS of brackets bonded using resin-modified glass-ionomer cement (RMGIC) has not been studied, which was the aim of this study. Materials and methods Fifty freshly extracted human maxillary first premolars were bleached with 35% hydrogen peroxide (Pola Office Bleaching, SDI). Sodium ascorbate 10% was applied to the experimental specimens (n=25). All the specimens were etched with 37% phosphoric acid (Ivoclar/Vivadent) and bonded using RMGIC (Fuji Ortho LC, GC). The specimens were subjected to incubation (37°C, 24h) and thermocycling (1000 cycles, 5-55°C, dwell time = 1 min). The SBS was measured at 0.5 mm/min debonding crosshead speed. The adhesive remnant index (ARI) was scored under ×10 magni-fication. Data were analyzed using Mann-Whitney U test, one- and independent-samples t-test, and Fisher’sexact test (?=0.05). Results The mean SBS of experimental and control groups were 11.97 ± 4.49 and 7.7 ± 3.19 MPa, respectively. The dif-ference was statistically significant (P=0.000 by t-test). SBS of both control (P=0.014) and experimental (P=0.000) groups were significantly higher than the minimum acceptable SBS of 6 MPa, according to one-sample t-test. Conclusion Application of ascorbic acid can guarantee a strong bond when RMGIC is to be used. However, RMGIC might tolerate the negative effect of bleaching with minimum SA treatments (or perhaps without treatments), which de-serves further studies. PMID:22991638

Khosravanifard, Behnam; Rakhshan, Vahid; Araghi, Solmaz; Parhiz, Hadi

2012-01-01

81

The effects of ambient temperature and mixing time of glass ionomer cement material on the survival rate of proximal ART restorations in primary molars  

PubMed Central

Objective: Temperature fluctuations and material mixing times are likely to affect the consistency and integrity of the material mixture, and hence the restoration made out of it. The purpose of the present study was to determine the influence of the ambient temperature and the mixing time of glass ionomer cement (GIC) restorative material on the survival rate of proximal atraumatic restorative treatment (ART) restorations placed in primary molars. Materials and Methods: A total of 804 restorations were placed in the primary molars of 6-8-year-olds using the ART approach. The restorations were then followed for a period of 2 years and evaluated at given intervals. The data collected were analyzed using SPSS computer statistical program, and the results tested and compared using the Chi-square, Kaplan Meier survival analysis and Cox Proportional hazard statistical tests. Results: The cumulative survival rate of the restorations dropped from the initial 94.4% to 30.8% at the end of 2 years. The higher survival rate of the restorations was associated with the experienced operators and assistants when using the rubber dam isolation method. However, there was no statistically significant difference in the survival rate of the restorations when related to the room temperature and the mixing time of the GIC materials used in spite of the variations in the temperature recoded and the methods used in mixing the materials. Conclusion: The ambient temperature and mixing time of GIC did not have a significant effect on the survival of the proximal ART restorations. PMID:24808692

Kemoli, Arthur M

2014-01-01

82

Influence of enamel conditioning on bond strength of resin-modified glass ionomer restorative materials and polyacid-modified composites  

Microsoft Academic Search

This study evaluated enamel bond strength of restorative materials containing both glass ionomer and composite components. Three resin-modified glass ionomer restorative materials (Fuji II LC, Vitremer, Photac-Fil), three polyacid-modified composites (VariGlass VLC, Dyract, Ionosit Fil), a hybrid composite (blend-a-lux) and a chemical-cured glass-ionomer cement (ChemFil Superior) were tested for enamel tensile bond strength with and without conditioning of the tooth

Thomas Attin; Wolfgang Buchalla; Elmar Hellwig

1996-01-01

83

An in vitro study of fluoride release from a resin-modified glass ionomer cement after exposure to toothpaste slurries of different pH  

Microsoft Academic Search

. The aim of the study was to evaluate the fluoride release from an aged resin-modified glass ionomer (Vitremer) after exposure\\u000a to five toothpaste slurries with different pH values. Cylindrical specimens of the material were leached in de-ionized water\\u000a for 3 months and then exposed for 30 min daily for 10 days to three dentifrice slurries (20 specimens\\/group) containing 0.05%

C. Olsson; C. G. Emilson; D. Birkhed

2000-01-01

84

An evaluation of accelerated Portland cement as a restorative material  

Microsoft Academic Search

Biocompatibility of two variants of accelerated Portland cement (APC) were investigated in vitro by observing the cytomorphology of SaOS-2 osteosarcoma cells in the presence of test materials and the effect of these materials on the expression of markers of bone remodelling. Glass ionomer cement (GIC), mineral trioxide aggregate (MTA) and unmodified Portland cement (RC) were used for comparison. A direct

D. Abdullah; T. R. Pitt Ford; S. Papaioannou; J. Nicholson; F. McDonald

2002-01-01

85

Clinical performance of glass-ionomers.  

PubMed

Glass-ionomers were introduced to the profession 20 years ago and have been shown to be a very useful adjunct to restorative dentistry. Their major advantages include the ion exchange adhesion to both enamel and dentine and a continuing fluoride release throughout the life of the restoration. The chemistry of the setting reaction is essentially an acid/base reaction but recent research has introduced variations in an effort to improve clinical handling. Small additions of resin increase the physical properties to a degree and allow for a light-initiated setting mechanism. However, it is essential that the acid/base reaction remains dominant if the full advantages of the glass-ionomer are to be retained. The material has multiple uses in dentistry and it shows a high degree of biocompatibility to the pulp and surrounding soft tissues. The main limitation at this time is a relatively low fracture resistance but it is possible to protect it through lamination with stronger materials if the need arises. This paper examines the essential parameters for successful clinical placement and comments on its longevity. PMID:9645565

Mount, G J

1998-03-01

86

Comparison of marginal adaptation of mineral trioxide aggregate, glass ionomer cement and intermediate restorative material as root-end filling materials, using scanning electron microscope: An in vitro study  

PubMed Central

Aim: The present study compares the marginal adaption of Mineral Trioxide Aggregate (MTA), Glass Ionomer Cement (GIC) and Intermediate Restorative Material (IRM) as root-end filling materials in extracted human teeth using Scanning Electron Microscope (SEM). Materials and Methods: Thirty single rooted human teeth were obturated with Gutta-percha after cleaning and shaping. Apical 3 mm of roots were resected and retrofilled with MTA, GIC and IRM. One millimeter transverse section of the retrofilled area was used to study the marginal adaptation of the restorative material with the dentin. Mounted specimens were examined using SEM at approximately 15 Kv and 10-6 Torr under high vacuum condition. At 2000 X magnification, the gap size at the material-tooth interface was recorded at 2 points in microns. Statistical Analysis: One way ANOVA Analysis of the data from the experimental group was carried out with gap size as the dependent variable, and material as independent variable. Results: The lowest mean value of gap size was recorded in MTA group (0.722 ± 0.438 ?m) and the largest mean gap in GIC group (1.778 ± 0.697 ?m). Conclusion: MTA showed least gap size when compared to IRM and GIC suggesting a better marginal adaptation. PMID:25506146

Gundam, Sirisha; Patil, Jayaprakash; Venigalla, Bhuvan Shome; Yadanaparti, Sravanthi; Maddu, Radhika; Gurram, Sindhura Reddy

2014-01-01

87

Evaluation and Comparison of the Effect of Different Surface Preparations on Bond Strength of Glass Ionomer Cement with Nickel–Chrome Metal–Ceramic Alloy: A Laboratory Study  

Microsoft Academic Search

Retention of fixed partial dentures is mostly dependent upon the bond between metal and cement as well as cement and tooth\\u000a structure. However, most of the time clinical failure of bond has been observed at metal and cement interface. The treatment\\u000a of metal surface, prior to luting, plays a crucial role in bonding cement with the metal. This study is

Kalpana Hasti; H. G. Jagadeesh; Narendra P. Patil

2011-01-01

88

Tensile bond strength of gold and porcelain inlays to extracted teeth using three cements.  

PubMed

This in vitro study compared the tensile bond strength of gold and porcelain inlays to extracted molars in standardized cavities. Three cements were used: zinc phosphate, glass-ionomer, and a resin composite cement. The gold inlays were cemented using zinc phosphate or glass-ionomer cement, and the porcelain inlays were luted using resin composite or glass-ionomer cement. Surface treatments included, for gold inlays, either no treatment (zinc phosphate cement) or airborne particle abraded and tinplated (glass-ionomer cement); and for porcelain inlays, either no treatment (glass-ionomer cement) or etched and silane-treated (resin composite cement). Statistical analysis was performed using the Weibull distribution. Results showed no significant differences between gold inlays cemented using zinc phosphate or glass-ionomer cements and porcelain inlays luted using glass-ionomer cements. The bonded porcelain inlays (resin composite cement) showed tensile bond strengths two to three times higher than those obtained for cemented gold inlays. PMID:7575974

Michelini, F S; Belser, U C; Scherrer, S S; De Rijk, W G

1995-01-01

89

Fluoride release and bioactivity evaluation of glass ionomer: Forsterite nanocomposite  

PubMed Central

Background: The most important limitation of glass ionomer cements (GICs) is the weak mechanical properties. Our previous research showed that higher mechanical properties could be achieved by addition of forsterite (Mg2SiO4) nanoparticles to ceramic part of GIC. The objective of the present study was to fabricate a glass ionomer- Mg2SiO4 nanocomposite and to evaluate the effect of addition of Mg2SiO4 nanoparticles on bioactivity and fluoride release behavior of prepared nanocomposite. Materials and Methods: Forsterite nanoparticles were made by sol-gel process. X-ray diffraction (XRD) technique was used in order to phase structure characterization and determination of grain size of Mg2SiO4 nanopowder. Nanocomposite was fabricated via adding 3wt.% of Mg2SiO4 nanoparticles to ceramic part of commercial GIC (Fuji II GC). Fluoride ion release and bioactivity of nanocomposite were measured using the artificial saliva and simulated body fluid (SBF), respectively. Bioactivity of specimens was investigated by Fourier transitioned-infrared spectroscopy (FTIR), scanning electronmicroscopy (SEM), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and registration of the changes in pH of soaking solution at the soaking period. Statistical analysis was carried out by one Way analysis of variance and differences were considered significant if P < 0.05. Results: The results of XRD analysis confirmed that nanocrystalline and pure Mg2SiO4 powder was obtained. Fluoride ion release evaluation showed that the values of released fluoride ions from nanocomposite are somewhat less than Fuji II GC. SEM images, pH changes of the SBF and results of the ICP-OES and FTIR tests confirmed the bioactivity of the nanocomposite. Statistical analysis showed that the differences between the results of all groups were significant (P < 0.05). Conclusion: Glass ionomer- Mg2SiO4 nanocomposite could be a good candidate for dentistry and orthopedic applications, through of desirable fluoride ion release and bioactivity. PMID:24130579

Sayyedan, Fatemeh Sadat; Fathi, Mohammadhossein; Edris, Hossein; Doostmohammadi, Ali; Mortazavi, Vajihesadat; Shirani, Farzaneh

2013-01-01

90

Comparative evaluation of microleakage in conventional glass ionomer cements and triclosan incorporated glass ionomer cements  

PubMed Central

Aim and Objective: The aim of the following study is to comparatively evaluate the microleakage of triclosan incorporated GIC with conventional restorative GIC. Materials and Methods: Triclosan in powder form was added to conventional GIC to formulate a concentration of 2.5%. Class five cavities were prepared in non-carious extracted molars and were respectively restored with conventional restorative GIC and triclosan incorporated GIC. Samples were kept in 10% methylene blue dye. Ground sections were obtained and were observed under a binocular microscope for dye penetration. Result: No significant difference was found in the microleakage of two groups. Conclusion: Triclosan incorporated GIC can be considered as an alternative to GIC with enhanced antibacterial property. PMID:24808702

Somani, Rani; Jaidka, Shipra; Jawa, Deepti; Mishra, Shreya

2014-01-01

91

Microleakage and marginal gap formation of glass ionomer resin restorations.  

PubMed

The purpose of this in vitro study was to compare microleakage and marginal gap formation of three light-cured glass ionomer cements (LCGI). Thirty non-carious human premolar teeth were used in this study. A Class V cavity was prepared in the buccal surface of each tooth. The teeth were randomly divided into three experimental groups of 10 teeth each and restored with three LCGI materials. The teeth in each group were processed for microleakage study using 5% methylene blue. Subsequently, each tooth was embedded in acrylic resin and sectioned longitudinally in a buccolingual direction. Examination of the specimens for dye penetration was done. Later, evaluation of marginal gap formation and analysis of adhesion mechanism were done using SEM. The results indicated that LCGI restorations placed in vitro without thermocycling did not consistently prevent microleakage. Vari Glass VLC showed the least leakage. There was no significant difference in the microleakage between the occlusal and gingival margins. Marginal gap formation was found only in one LCGI material. Generally, the presence of a clearly identified ion-exchange layer was not found. PMID:8634192

Salama, F S; Riad, M I; Abdel Megid, F Y

1995-01-01

92

An ex vivo study to evaluate the remineralizing and antimicrobial efficacy of silver diamine fluoride and glass ionomer cement type VII for their proposed use as indirect pulp capping materials – Part I  

PubMed Central

Aim: Indirect pulp capping (IPC) preserves the pulp vitality by disinfecting and remineralizing remaining carious dentin. In the present study, glass ionomer (GC, FUJI VII) and silver diamine fluoride (SDF) were tested and compared to calcium hydroxide for their antimicrobial efficacy and remineralizing potential. Materials and Methods: Dentin disks prepared from 45 freshly extracted first premolars were divided into three groups (n = 15). Each disk was cut into two equal parts, in which one half formed the control. Thirty dentin samples were used for ion estimation and the other 15 for microhardness testing. Atomic absorption spectrophotometry, colorimetric and potentiometric titration analyses were performed for calcium, phosphate and fluoride ion detection, respectively. The antimicrobial efficacy was analyzed using pure culture of Streptococcus mutans and mixed flora. Results: Increase in the levels of calcium and phosphate ions was the highest in calcium hydroxide group. Both SDF and GC VII groups showed significant increase in fluoride ion levels. Samples treated with GC VII showed maximum increase in micro hardness. The highest zone of bacterial inhibition was found with SDF group. Conclusions: This in vitro study documented the remineralizing, re-hardening and antimicrobial efficacy of both SDF and GC VII and hence can act as effective IPC materials. PMID:21814348

Gupta, A; Sinha, N; Logani, A; Shah, N

2011-01-01

93

A comparative study of three glass ionomer base materials.  

PubMed

This study compared the compressive and diametral tensile strength, compressive modulus, shear bond strength to dentin and resin composite, marginal gap between the base and tooth in Class V cavity preparation, and fluoride release of three glass ionomer base materials. In general, visible light-cured (VLC) base materials outperform the autopolymerizing glass ionomer base Ketac-Bond. The compressive modulus is significantly less for the VLC glass ionomer materials Vitrebond and Fuji LC compared to Ketac-Bond. The Fuji LC had greater diametral tensile strength, compressive strength, bond to dentin and bond to resin composite than Vitrebond or Ketac-Bond. The fluoride release of Vitrebond was greater than Ketac-Bond or Fuji LC. The marginal gap at the tooth/base interface was significantly less with the Fuji LC compared to the other two materials. PMID:8240775

Burgess, J O; Barghi, N; Chan, D C; Hummert, T

1993-06-01

94

Physicomechanical properties of a zinc-reinforced glass ionomer restorative material.  

PubMed

We compared a zinc-reinforced glass ionomer restorative material (ChemFil Rock) with three commercially available glass ionomer cements (GICs), namely, Fuji IX GP Extra, Ketac Molar Quick Aplicap, and EQUIA Fil, with respect to fracture toughness, microhardness, roughness, and abrasive wear. Fracture toughness (KIC) was tested according to ISO 13586 (n = 10). Hardness, roughness, and abrasive wear were also tested (n = 9). Data were analyzed using the Wilcoxon rank-sum test with adjustment for multiple comparisons (? = 0.05). As compared with the other GICs ChemFil Rock exhibited a greater increase in surface roughness (P < 0.05) and lower microhardness (P < 0.01). The wear resistance of ChemFil Rock was comparable to that of the other GICs (P > 0.05). ChemFil Rock had significantly lower fracture toughness as compared with EQUIA Fil (P = 0.01) and significantly higher fracture toughness as compared with the other GICs (P < 0.02). In conclusion, as compared with the three other commercially available GICs, ChemFil Rock had intermediate fracture toughness, the lowest microhardness, and the greatest change in surface roughness. PMID:24739702

Al-Angari, Sarah S; Hara, Anderson T; Chu, Tien-Min; Platt, Jeffrey; Eckert, George; Cook, N Blaine

2014-01-01

95

Longevity in glass-ionomer restorations: review of a successful technique.  

PubMed

It is just 20 years since glass-ionomer cements were introduced to the profession as a restorative material capable of an ion exchange adhesion to tooth structure as well as a continuing fluoride release. At the time of presentation there was considerable publicity, but, in retrospect, it is likely that the materials were marketed prematurely, before there had been a great deal of clinical investigation. The clinical short-term results were rather disappointing, particularly in relation to esthetics, because the original version lacked translucency. In the next few years, some manufacturers worked to refine the product and improve the properties and achieved reasonable results. In the early 1980s, it was shown that the main problem with both esthetics and physical properties was the need to maintain a proper water balance in the material during the early setting phase. Once this problem was identified and overcome, it became possible to achieve excellent results, but these have not been reported frequently. This article discusses a method of placement that will lead to acceptable glass-ionomer restorations and shows a series of restorations that are up to 15 years old. PMID:9477884

Mount, G J

1997-10-01

96

Retention of a resin-based sealant and a glass ionomer used as a fissure sealant in children with special needs  

PubMed Central

Objectives: The aim of this research is to evaluate the retention of sealants of resin and resin-modified ionomeric glass pits and fissures, on first permanent molars of special patients. Material and Methods: The sample was comprised by 32 children. The ages were between 7 and 18 years. The sealing procedure was made with the relative isolation of the molars to be sealed, through the use of cotton rolls. Two molars were sealed with Clinpro Sealant 3M Dental and the others with Vitremer. Checking of the sealants was made after 3 and 6 months of their placement, evaluating with 3 values: TR: Totally Restrained; PR: Partially Restrained; and CL: Completely Lost. Results: 67.18% of the resinous sealants, and 70.31% of the glass ionomer sealants were successful after three months. After six months, 57.81% of the resin-based sealants and 51.56% of the glass ionomer sealants were successful. When performing the Chi-square statistical analysis (P<0.05) no statistical significance was observed after 6 months. Conclusions: The retention of the resin sealant was similar to that of the glass ionomer cement at the end of six months and the retention of sealants on maxillary teeth was higher than on mandibular teeth. Key words:Sealant, glass ionomer, retention, caries, special needs. PMID:25674325

Nualart-Grollmus, Zacy-Carola

2014-01-01

97

Histological analysis of biocompatibility of ionomer cements with an acid-base reaction.  

PubMed

The purpose of this study was to evaluate the inflammatory and cure events of acid-based reactions using glass ionomer cement used for cementation of crowns, bridges, onlays and orthodontic bands implanted in subcutaneous tissue, at different time intervals. A total of 48 male Wistar rats were used, distributed into 4 groups (n = 12), as follows: Group C (control, polyethylene), Group ME (Meron), Group KC (Ketac Cem) and Group PR (Precedent). The animals were sacrificed after time intervals of 7, 15 and 30 days, and their tissues were analyzed under an optical microscope for such events as inflammatory infiltrate, edema, necrosis, granulation tissue, multinucleated giant cells, young fibroblasts and collagen. The results was assessed using Kruskal-Wallis and Dunn's tests (p < 0.05). In the initial period, intense inflammatory infiltrate was observed for all the materials with no significant difference among them (p = 0.104). Groups PR and KC showed significant difference in relation to Group C, at 7 days (p = 0.025) and 15 days (p = 0.006). Edema and giant cells were more expressive in Group ME, differing significantly from Groups C (p = 0.023) and KC (p = 0.039), respectively, at 7 days. Group ME showed a statistically significant difference in relation to Groups PR and KC for the presence of young fibroblasts (p = 0.009) and for collagen (p = 0.002), at 7 days. Within the limits of this in vivo study, Precedent and Ketac Cem glass ionomer cements showed better tissue healing with a greater number of fibroblasts and collagen, as compared to Meron. PMID:25006620

Santos, Rogério Lacerda dos; Moura, Mirella de Fátima Liberato de; Carvalho, Fabiola Galbiatti de; Guênes, Gymenna Maria Tenório; Alves, Polliana Muniz; Pithon, Matheus Melo

2014-01-01

98

Biocompatibility of Portland cement combined with different radiopacifying agents.  

PubMed

The aim of this study was to evaluate the response of rat subcutaneous tissue to Portland cement combined with two different radiopacifying agents, iodoform (CHI3) and zirconium oxide (ZrO2). These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were then stained with hematoxylin and eosin, and inflammatory reaction parameters were evaluated by light microscopy. The intensity of the inflammatory response to the sealants was analyzed by two blind calibrated observers throughout the experimental period. Histological analysis showed that all the materials caused a moderated inflammatory reaction at 7 days, which then diminished with time. At 15 days, the inflammatory reaction was almost absent, and fibroblasts and collagen fibers were observed indicating normal tissue healing. The degrees of the inflammatory reaction on different days throughout the experimental period were compared using the non-parametric Kruskal-Wallis test. Statistical analysis demonstrated no significant differences amongst the groups, and Portland cement associated with radiopacifying agents gave satisfactory results. Therefore, Portland cement used in combination with radiopacifying agents can be considered a biocompatible material. Although our results are very encouraging, further studies are needed in order to establish safe clinical indications for Portland cement combined with radiopacifying agents. PMID:24739705

Lourenço Neto, Natalino; Marques, Nádia C T; Fernandes, Ana Paula; Rodini, Camila O; Duarte, Marco A H; Lima, Marta C; Machado, Maria A A M; Abdo, Ruy C C; Oliveira, Thais M

2014-01-01

99

Effects of porous-hydroxyapatite incorporated into glass-ionomer sealants.  

PubMed

The purpose of the present study was to evaluate the mechanical and chemical properties of a novel glass ionomer cement for use as a pit and fissure sealant containing a porous hydroxyapatite, namely, apatite ionomer cement (AIC). Control sealant samples were used Fuji III (GIC-S). The experiment sealant samples (AIC-S) consisted of porous spherical hydroxyapatite (HApS) particles added at 28 wt% to GIC-S powder. The GIC-S and AIC-S samples were evaluated through mechanical strength measurements, scanning electron microscopy observations, energy dispersive X-ray spectroscopy analysis, fluoride ion release tests, and antibacterial tests. The flexural strength of the AIC-S was significantly higher than that of GIC-S for each period, 1 h, 24 h and 1 year. The fluoride release dose for AIC-S was consistently higher than that for GIC-S. In addition, the antibacterial properties of AIC-S were superior to those of GIC-S. The novel AIC-S may be a more suitable sealant material for pits and fissures with intact and/or infected enamel. PMID:25740161

Shinonaga, Yukari; Arita, Kenji; Nishimura, Takako; Chiu, Szu-Yu; Chiu, Hsiu-Hui; Abe, Yoko; Sonomoto, Mie; Harada, Kyoko; Nagaoka, Noriyuki

2015-04-01

100

Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*  

PubMed Central

Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (?TBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for ?TBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel ?TBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel ?TBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel ?TBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel ?TBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

2013-01-01

101

In vitro toothbrush-dentifrice abrasion of resin-modified glass ionomers  

Microsoft Academic Search

Objectives. This study was conducted to compare the rate of abrasive wear and change in surface roughness of resin-modified and conventional acid-base glass ionomers when subjected to toothbrush-dentifrice abrasion.Methods. Two resin-modified and two conventional glass ionomers were used. Samples of a high-copper amalgam and a hybrid resin composite were used as reference materials. Specimens of each material were prepared and

Yasuko Momoi; Kunitsugu Hirosaki; Atsushi Kohno; John F. McCabe

1997-01-01

102

Selection of materials for post cementation.  

PubMed

Many types of cement are available for post cementation, each with advantages and disadvantages. For posts with adequate mechanical retention, zinc phosphate is a good choice for patients for whom fluoride release is not considered essential. Posts with compromised mechanical retention benefit from use of a resin-modified glass-ionomer cement, which also releases fluoride. Composite resin cements should be reserved for rare cases where mechanical retention is so compromised that use of a resin-modified glass-ionomer cement provides inadequate retention. Great care is required when using composite resin cements to ensure optimum performance and avoid the creation of difficult-to-remove excess cement. Clinicians should be aware that posts cemented with resin-modified glass ionomer or composite resin cements may be difficult or impossible to remove if access to the root canal system is subsequently required. PMID:11218525

Mitchell, C A

2000-09-01

103

Identification of organic extractables from commercial resin-modified glass-ionomers using HPLC-MS.  

PubMed

Elution of organic compounds from resin-based dental fillings during their application in the human mouth environment may have a potential impact on the human health. Ethanol, water and other solvents very often present in the human mouth have the ability to penetrate dental fillings placed in the human tooth. Penetration of liquids into the tooth may lead to the liberation of unreacted dental filling ingredients or their degradation products. Determination of these compounds is necessary for better knowledge from possible harmful effects caused by dental fillings. The aim of this study was the isolation and identification of compounds released from resin-modified glass-ionomer cements (RMGICs), resin-based dental materials applied in dentistry. Compounds were extracted from fillings by using four solvents (40% ethanol, water, 1% acetic acid and artificial saliva). Liquid samples containing eluted compounds were then extracted, evaporated and analyzed by using of HPLC-MS (high-performance liquid chromatography-mass spectrometry) and HPLC-DAD (high-performance liquid chromatography-diode array detection) techniques. Almost thirty components (monomers and additives) of RMGICs were identified. The main identified extractables were: Bis-GMA (bisphenol A glycidyl dimethacrylate), Bis-EMA (ethoxylated bisphenol A dimethacrylate), UDMA (urethane dimethacrylate), TEGDMA (triethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate) as monomers and diphenyliodonium chloride, camphorquinone (initiators), BHA (inhibitor), 4-(dimethylamino) ethyl benzoate (co-initiator) as additives. PMID:16826288

Rogalewicz, Rafal; Batko, Kalina; Voelkel, Adam

2006-07-01

104

A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.  

PubMed

We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343?MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC. PMID:24865692

Weng, Y; Howard, L; Xie, D

2014-07-01

105

Effect of Vital Bleaching on Disintegration Tendency of Glass Ionomer Restorations  

PubMed Central

Introduction: This study was designed to assess the effect of two bleaching agents on the disintegration tendency of three types of glass ionomers. Materials and Methods: A total of 90 specimens were prepared by using a split Teflon ring with an internal diameter of 5 mm and a thickness of 2 mm. The tested materials were applied and bleached according to manufacturer’s instructions. Dissolution measurements were made by calculating weight loss through different periods of the test; (one week, one month and three months) and they were analyzed by using one-way analysis of variance (ANOVA), followed by Tukey’s post-hoc test. Results: All glass ionomer materials exhibited a degree of dissolution. Opalescence Xtra increased the dissolution of Photac Fil and F2000 significantly, while Opalescence Quick had no effect on dissolution of glass ionomer restoratives. Conclusion: Bleaching effect on dissolution of glass ionomers is material and time dependant. Care should be taken by clinicians When bleaching teeth that are restored by glass ionomer, because this dissolution may affect the physical properties of these restorations. PMID:24701538

Baroudi, Kusai; Mahmoud, Rasha Said; Tarakji, Bassel; Altamimi, Mohammed Alsakran

2014-01-01

106

The Biocompatibility of Porous vs Non-Porous Bone Cements: A New Methodological Approach  

PubMed Central

Composite cements have been shown to be biocompatible, bioactive, with good mechanical properties and capability to bind to the bone. Despite these interesting characteristic, in vivo studies on animal models are still incomplete and ultrastructural data are lacking. The acquisition of new ultrastructural data is hampered by uncertainties in the methods of preparation of histological samples due to the use of resins that melt methacrylate present in bone cement composition. A new porous acrylic cement composed of polymethyl-metacrylate (PMMA) and ?-tricalcium-phosphate (p-TCP) was developed and tested on an animal model. The cement was implanted in femurs of 8 New Zealand White rabbits, which were observed for 8 weeks before their sacrifice. Histological samples were prepared with an infiltration process of LR white resin and then the specimens were studied by X-rays, histology and scanning electron microscopy (SEM). As a control, an acrylic standard cement, commonly used in clinical procedures, was chosen. Radiographic ultrastructural and histological exams have allowed finding an excellent biocompatibility of the new porous cement. The high degree of osteointegration was demonstrated by growth of neo-created bone tissue inside the cement sample. Local or systemic toxicity signs were not detected. The present work shows that the proposed procedure for the evaluation of biocompatibility, based on the use of LR white resin allows to make a thorough and objective assessment of the biocompatibility of porous and non-porous bone cements. PMID:24998920

Dall’Oca, C.; Maluta, T.; Cavani, F.; Morbioli, G.P.; Bernardi, P.; Sbarbati, A.; Degl’Innocenti, D.; Magnan, B.

2014-01-01

107

Glass ionomer as an expander of allograft in revision arthroplasty of the hip.  

PubMed

The use of glass ionomer as a bone graft expander was investigated in an in vivo model of revision hip arthroplasty. Bone grafts of pure allograft and allograft + glass ionomer particles in a 50:50 by weight mixture were implanted in an ovine hemi-arthroplasty model. Post-operative assessments of locomotor function, radiographic appearance and quantitative changes in mineralisation around the graft were made at 2, 4 and 6 months. Post-mortem assessments of radiographic and histologic appearance of the grafts were made at 6 months. No significant differences were noted in any of the measured or assessed parameters between the two graft types. The glass ionomer particles seemed to be well tolerated within the matrix of new bone, smaller sized particles appearing to be better incorporated than larger ones. The use of particles of glass ionomer as a bone graft expander, in this in vivo model of revision hip arthroplasty, would therefore appear to offer no detriment in performance over pure allograft in the short to medium term. PMID:12423605

Eldridge, J D J; Cunningham, J L; Samuels, A; Blunn, G W; Lawes, T J; Learmonth, I D; Goodship, A E

2003-02-01

108

Biocompatibility of mineral trioxide aggregate and three new endodontic cements: An animal study  

PubMed Central

Background: Introducing new endodontic cements should await comprehensive investigations and new formulations have to be tested in vivo before applying in human beings. So, the purpose of this study was to compare the biocompatibility of new endodontic cements, calcium aluminate ?-aluminate cement (CAAC), calcium aluminate ?-aluminate plus cement (CAAC plus), and a mixture of wollastonite and CAAC cement (WOLCA) and mineral trioxide aggregate (MTA), in subcutaneous connective tissue of rats. Materials and Methods: Twenty-seven Wistar rats were divided into three groups of 7, 14, and 30 experimental days. Sterile polyethylene tubes were filled with MTA, CAAC, CAAC Plus, and WOLCA cement and implanted subcutaneously. Empty tubes were implanted as negative control. After the experimental periods, animals were sacrificed by anesthetic overdosing. The occurrence of inflammatory responses was scored according to the previously established scores. Data were statistically analyzed using Friedman, Wilcoxon, Kruskal-Wallis, and Mann-Whitney tests. The level of significance was 5% (P<0.05). Results: There was a statistically significant difference between experimental and negative control sites in each group (P<0.05). CAAC Plus showed the highest mean scores of inflammation, compared with MTA, CAAC, and WOLCA cement sits at the end of all periods (P<0.05). There were no statistically significant differences between inflammatory scores of each site in different experimental groups, except CAAC plus sites, in which inflammation increased significantly with time (P<0.05). Conclusion: According to the results of the current study, biocompatibility of CAAC and WOLCA cement were comparable with that of MTA, but CAAC Plus induced an inflammatory response higher than MTA, therefore is not biocompatible. PMID:22363364

Aminozarbian, Mohammad-Ghasem; Barati, Masoud; Salehi, Iman; Mousavi, Seyed Behrouz

2012-01-01

109

No evidence to support use of glass ionomer as a fissure sealant in primary molars  

Microsoft Academic Search

DesignRandomised controlled trial in primary care setting.Intervention508 children aged 18–30 months from high caries areas of South Wales with caries-free first primary molars were recruited to the trial after informed consent. All children (n=508) received a standard package of dental health education. Children in the test group (n=241) had their first primary molars sealed with glass ionomer. All the children

Sergio Uribe

2005-01-01

110

Interfacial characteristics of resin-modified glass-ionomer materials: a study on fluid permeability using confocal fluorescence microscopy.  

PubMed

The tooth interface with resin-modified glass-ionomer cements (RM GICs) is poorly understood. This study examined the interface, especially with dentin. Cervical cavities in extracted teeth were restored with Fuji II LC, Vitremer, Photac-Fil, or a conventional GIC, Fuji Cap II. Fluorescent dye was placed in the pulp chambers for 3 hrs before the specimens were sectioned. Examination of the tooth/material interface with a confocal microscope showed that dye uptake by the restoration varied among materials. A "structureless", non-particulate, highly-stained layer of GIC was observed next to dentin in Fuji II LC. This layer varied in width, was prominent where the dentin tubules were cut "end-on" and in areas closer to the pulp, and was not seen adjacent to enamel. Vitremer showed minimal dye uptake, and the "structureless" layer was barely discernible. Photac-Fil showed more uniform uptake and absence of this layer. Cracking of enamel was also noted with these materials. The conventional GIC did not show any dye uptake, presence of a "structureless" layer, or enamel cracking. We elucidated the potential mechanisms involved in the formation of a "structureless" interfacial layer in Fuji II LC by studying the variables of cavity design, surface pre-treatment, water content of the tooth, time for it to develop, early finishing, and coating of the restoration. This layer, the "absorption layer", is probably related to water flux within the maturing cement, depending on environmental moisture changes and communication with the pulp in a wet tooth. The "micropermeability model" was useful in this study of the interfacial characteristics of RM GICs. PMID:9759672

Sidhu, S K; Watson, T F

1998-09-01

111

(?'(H))-Dicalcium silicate bone cement doped with tricalcium phosphate: characterization, bioactivity and biocompatibility.  

PubMed

The influence of phosphorus doping on the properties of (?'(H))-dicalcium silicate (C(2)S) bone cement was analyzed, in addition to bioactivity and biocompatibility. All the cements were composed of a solid solution of TCP in C(2)S ([Formula: see text]-C(2)S(ss)) as the only phase present. The compressive strength ranged from 3.8-16.3 MPa. Final setting times ranged from 10 to 50 min and were lower for cements with lower L/P content. Calcium silicate hydrate was the principal phase formed during the hydration process of the cements. The cement exhibited a moderate degradation and could induce carbonated hydroxyapatite formation on its surface and into the pores. The cell attachment test showed that the (?'(H))-C(2)SiO(4) solid solution supported human adipose stem cells adhesion and spreading, and the cells established close contacts with the cement after 24 h of culture. The novel (?'(H))-C(2)S(ss) cements might be suitable for potential applications in the biomedical field, preferentially as materials for bone/dental repair. PMID:24218299

de Aza, Piedad N; Zuleta, Fausto; Velasquez, Pablo; Vicente-Salar, Nestor; Reig, Juan A

2014-02-01

112

?-Dicalcium silicate-based cement: synthesis, characterization and in vitro bioactivity and biocompatibility studies.  

PubMed

?-dicalcium silicate (?-Ca? SiO?, ?-C? S) is one of the main constituents in Portland cement clinker and many refractory materials, itself is a hydraulic cement that reacts with water or aqueous solution at room/body temperature to form a hydrated phase (C-S-H), which provides mechanical strength to the end product. In the present investigation, ?-C? S was synthesized by sol-gel process and it was used as powder to cement preparation, named CSiC. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid solutions and human osteoblast cell cultures for various time periods, respectively. The results showed that the sol-gel process is an available synthesis method in order to obtain a pure powder of ?-C? S at relatively low temperatures without chemical stabilizers. A bone-like apatite layer covered the material surface after soaking in SBF and its compressive strength (CSiC cement) was comparable with that of the human trabecular bone. The extracts of this cement were not cytotoxic and the cell growth and relative cell viability were comparable to negative control. PMID:24277585

Correa, Daniel; Almirall, Amisel; García-Carrodeguas, Raúl; dos Santos, Luis Alberto; De Aza, Antonio H; Parra, Juan; Delgado, José Ángel

2014-10-01

113

Comparative evaluation of microleakage of nano-filled resin-modified glass ionomer: An in vitro study  

PubMed Central

Objective: This in vitro study evaluated the microleakage of a nano-filled resin-modified glass ionomer and a high viscosity glass-ionomer restorations in class V cavities. Materials and Methods: Thirty-two class V cavities prepared on the buccal and lingual surfaces of 16 sound, third molar teeth were randomly assigned into two groups and restored by one of the glass ionomer material; Group A: A high viscosity (Ketac Molar, 3M ESPE) Group B: A nano-filled resin-modified (Ketac N100, 3M ESPE) glass ionomer. One clinician prepared all the cavities. The materials were used according to the manufacturers’ recommendations. The restored teeth were then stored in distilled water at 37°C for 24 h, thermocycled at 5-55°C for 1000 cycles. The specimens were immersed in aqueous solution of Indian ink dye for 48 h at room temperature. They were embedded in resin polyester and sectioned longitudinally in a buccolingual direction. Microleakage was assessed according to the depth of dye penetration along the restoration. The extent of dye penetration at the occlusal and gingival margins was assessed using a stereo microscope. Randomly selected samples from each group were prepared for scanning electron microscope evaluation. The data were statistically analyzed with Friedman and Wilcoxon signed ranks tests. Results: There were statistically significant differences between the microleakage scores of the two groups for both occlusal and gingival scores (P = 0.001). Occlusal and gingival scores for high viscosity glass ionomer (P = 0.024) and nanoionomer (P = 0.021) using Wilcoxon signed ranks tests showed statistically significant differences. High viscosity glass ionomer showed significantly less microleakage compared to the nano-filled resin-modified glass-ionomer (RMGIs) at occlusal margin (P = 0.001). No significant differences were found between the groups at gingival margin (P = 0.0317). Conclusion: Within the limitations of this in vitro study, nano-filled RMGIs restorations did not perform better than high viscosity glass ionomer in class V cavities in terms of microleakage assessment. PMID:25512723

Eronat, Nesrin; Yilmaz, Emir; Kara, Nazan; Topaloglu, Ak Asli

2014-01-01

114

Radiopacity Evaluation of Contemporary Luting Cements by Digitization of Images  

PubMed Central

Objective. The aim of this study was to evaluate the radiopacity of two conventional cements (Zinc Cement and Ketac Cem Easymix), one resin-modified glass ionomer cement (RelyX Luting 2) and six resin cements (Multilink, Bistite II DC, RelyX ARC, Fill Magic Dual Cement, Enforce and Panavia F) by digitization of images. Methods. Five disc-shaped specimens (10 × 1.0?mm) were made for each material, according to ISO 4049. After setting of the cements, radiographs were made using occlusal films and a graduated aluminum stepwedge varying from 1.0 to 16?mm in thickness. The radiographs were digitized, and the radiopacity of the cements was compared with the aluminum stepwedge using the software VIXWIN-2000. Data (mmAl) were submitted to one-way ANOVA and Tukey's test (? = 0.05). Results. The Zinc Cement was the most radiopaque material tested (P < 0.05). The resin cements presented higher radiopacity (P < 0.05) than the conventional (Ketac Cem Easymix) or resin-modified glass ionomer (RelyX Luting 2) cements, except for the Fill Magic Dual Cement and Enforce. The Multilink presented the highest radiopacity (P < 0.05) among the resin cements. Conclusion. The glass ionomer-based cements (Ketac Cem Easymix and RelyX Luting 2) and the resin cements (Fill Magic Dual Cement and Enforce) showed lower radiopacity values than the minimum recommended by the ISO standard. PMID:23008777

Reis, José Maurício dos Santos Nunes; Jorge, Érica Gouveia; Ribeiro, João Gustavo Rabelo; Pinelli, Ligia Antunes Pereira; Abi-Rached, Filipe de Oliveira; Tanomaru-Filho, Mário

2012-01-01

115

Retention of orthodontic bands with three different cements.  

PubMed

In 1878, zinc phosphate cement was introduced as a dental material and used to cement orthodontic bands. The prevalence of enamel decalcification beneath orthodontic bands has indicated the need for a fluoride-releasing orthodontic luting cement. The purpose of this study was to compare the retentive bond strengths of orthodontic bands cemented individually with zinc polycarboxylate, glass ionomer and zinc phosphate cement adhesives. Forty-eight extracted human molar teeth were embedded in resin blocks and each was randomly assigned to one of the three cement groups. Adapted bands were cemented by using hand pressure and a band seater. The cemented teeth were then put in synthetic saliva at 37 degrees C for twenty-four hours. The force required to fracture the cement bond was used as a measure of cement retention. Using an Instron universal testing machine, a tensile load was applied to each cemented band. The Kruskal-Wallis one-way analysis of variance test revealed no significant differences (p > 0.05) among the retentive strengths of the three cements. Both the zinc polycarboxylate and the glass ionomer cements tested were found to be suitable as orthodontic luting agents. In addition, the ability to bond to enamel and stainless steel and to leach fluoride make the glass ionomer cement an ideal orthodontic cement. PMID:7577731

Kocadereli, I; Ciger, S

1995-01-01

116

The retention of gold crowns on human dentine preparations--a comparison of eight cements.  

PubMed

Experiments were carried out to compare the retentive properties of eight dental luting cements, using gold crowns cemented onto human dentine. The order of retention of the cements was: 1 Composite (Panavia-Ex, J & S Davis); 2 Glass-ionomer. (AquaCem, DeTrey); Glass-ionomer (Ketac-Bond, Cottrell); and Polycarboxylate (Bondalcap, Vivadent); 3 Polycarboxylate (Poly F Plus, DeTrey); Zinc phosphate (DeTrey); and Zinc phosphate (Phosphacap, Vivadent); and 4 Zinc oxide/eugenol, alumina, EBA (Opotow, Teledyne Getz). PMID:2697038

Black, S M; Charlton, G

1989-05-01

117

Evaluation of the biocompatibility of experimentally manufactured portland cement: An animal study  

PubMed Central

Objectives: The purpose of this study was to evaluate the biocompatibility of MTA and the experimentally manufactured portland cement (EMPC). Study design: Twenty one Sprague Dawley (SD) rats were allocated to testing of three groups. Group I and Group II included ProRoot MTA and the EMPC. The materials were mixed with distilled water and placed in polyethylene tubes. The tubes were implanted subcutaneously in the dorsal region of the animals. Group III served as control; the implanted polyethylene tubes remained empty. At 7, 14, and 28 days after the implantation, the animals were sacrificed and the implants were removed with the surrounding tissues. The specimens were prepared for histological examination to evaluate the inflammatory response. Results: No significant difference was found between tissue reactions against the tested materials (p>0.05). Also, control group showed similar results (p>0.05). Conclusions: Results suggest that the EMPC has the potential to be used in clinical conditions in which ProRoot MTA is indicated. MTA and the EMPC show comparable biocompatibility when evaluated in vivo. Although the results are supportive for the EMPC, more studies are required before the safe clinical use of the EMPC. Key words:Mineral trioxide aggregate, portland cement, subcutanous implantation. PMID:24596630

Erten, Hülya; Baris, Emre; Türk, Serkan; Alaçam, Tayfun

2014-01-01

118

Effect of Tricalcium Aluminate on the Physicochemical Properties, Bioactivity, and Biocompatibility of Partially Stabilized Cements  

PubMed Central

Background/Purpose Mineral Trioxide Aggregate (MTA) was widely used as a root-end filling material and for vital pulp therapy. A significant disadvantage to MTA is the prolonged setting time has limited the application in endodontic treatments. This study examined the physicochemical properties and biological performance of novel partially stabilized cements (PSCs) prepared to address some of the drawbacks of MTA, without causing any change in biological properties. PSC has a great potential as the vital pulp therapy material in dentistry. Methods This study examined three experimental groups consisting of samples that were fabricated using sol-gel processes in C3S/C3A molar ratios of 9/1, 7/3, and 5/5 (denoted as PSC-91, PSC-73, and PSC-55, respectively). The comparison group consisted of MTA samples. The setting times, pH variation, compressive strength, morphology, and phase composition of hydration products and ex vivo bioactivity were evaluated. Moreover, biocompatibility was assessed by using lactate dehydrogenase to determine the cytotoxicity and a cell proliferation (WST-1) assay kit to determine cell viability. Mineralization was evaluated using Alizarin Red S staining. Results Crystalline phases, which were determined using X-ray diffraction analysis, confirmed that the C3A contents of the material powder differed. The initial setting times of PSC-73 and PSC-55 ranged between 15 and 25 min; these values are significantly (p<0.05, ANOVA and post-hoc test) lower than those obtained for MTA (165 min) and PSC-91 (80.5 min). All of the PSCs exhibited ex vivo bioactivity when immersed in simulated body fluid. The biocompatibility results for all of the tested cements were as favorable as those of the negative control, except for PSC-55, which exhibited mild cytotoxicity. Conclusion PSC-91 is a favorable material for vital pulp therapy because it exhibits optimal compressive strength, a short setting time, and high biocompatibility and bioactivity. PMID:25247808

Chang, Kai-Chun; Chang, Chia-Chieh; Huang, Ying-Chieh; Chen, Min-Hua; Lin, Feng-Huei; Lin, Chun-Pin

2014-01-01

119

Comparison of effect of desensitizing agents on the retention of crowns cemented with luting agents: an in vitro study  

PubMed Central

PURPOSE Many dentists use desensitizing agents to prevent hypersensitivity. This study compared and evaluated the effect of two desensitizing agents on the retention of cast crowns when cemented with various luting agents. MATERIALS AND METHODS Ninety freshly extracted human molars were prepared with flat occlusal surface, 6 degree taper and approximately 4 mm axial length. The prepared specimens were divided into 3 groups and each group is further divided into 3 subgroups. Desensitizing agents used were GC Tooth Mousse and GLUMA® desensitizer. Cementing agents used were zinc phosphate, glass ionomer and resin modified glass ionomer cement. Individual crowns with loop were made from base metal alloy. Desensitizing agents were applied before cementation of crowns except for control group. Under tensional force the crowns were removed using an automated universal testing machine. Statistical analysis included one-way ANOVA followed by Turkey-Kramer post hoc test at a preset alpha of 0.05. RESULTS Resin modified glass ionomer cement exhibited the highest retentive strength and all dentin treatments resulted in significantly different retentive values (In Kg.): GLUMA (49.02 ± 3.32) > Control (48.61 ± 3.54) > Tooth mousse (48.34 ± 2.94). Retentive strength for glass ionomer cement were GLUMA (41.14 ± 2.42) > Tooth mousse (40.32 ± 3.89) > Control (39.09 ± 2.80). For zinc phosphate cement the retentive strength were lowest GLUMA (27.92 ± 3.20) > Control (27.69 ± 3.39) > Tooth mousse (25.27 ± 4.60). CONCLUSION The use of GLUMA® desensitizer has no effect on crown retention. GC Tooth Mousse does not affect the retentive ability of glass ionomer and resin modified glass ionomer cement, but it decreases the retentive ability of zinc phosphate cement. PMID:22977719

Pandharinath, Dange Shankar; Arun, Khalikar; Smita, Vaidya

2012-01-01

120

The impact of zirconium oxide nanoparticles on the hydration chemistry and biocompatibility of white Portland cement.  

PubMed

Zirconium oxide (ZrO2) has been nominated as a radiopacifying agent for use in MTA-like Portland cement-based root-filling materials. This research examines the impact of 20 wt% ZrO2 nanoparticles in the size range 50 to 75 nm on the early hydration chemistry of white Portland cement. Nano-ZrO2 was found to accelerate the degree of hydration by 26% within the first 24 h by presenting efficient nucleation sites for the precipitation and growth of the early C-S-H gel products. The presence of nano-ZrO2 was also found to divert the fate of the aluminium-bearing reaction products by lowering the ettringite to monosulphate ratio, reducing the size of the ettringite crystals and by increasing the Al:Si ratio of the C-S-H gel phase. The chemical and microstructural changes conferred upon the cement matrix by the nano-ZrO2 particles had a positive impact on in vitro biocompatibility with respect to MG63 osteosarcoma cells (via MTT assay). PMID:24088838

Li, Qiu; Deacon, Andrew D; Coleman, Nichola J

2013-01-01

121

In vitro bioactivity and biocompatibility of calcium phosphate cements using Hydroxy-propyl-methyl-Cellulose (HPMC)  

NASA Astrophysics Data System (ADS)

In this study, the bioactivity and biocompatibility of new calcium phosphate bone cements (CPC) using Hydroxy-propyl-methyl-Cellulose (HPMC) was evaluated to understand the effect of HPMC on bone-bonding apatite formation and biocompatibility. In vitro bioactivity was investigated by incubating the CPC samples containing different ratios of HPMC (0%, 2% and 4% HPMC) in simulated body fluid (SBF) for 2, 7, 14 and 28 days. The formation of bone like apatite was confirmed on CPC surfaces by SEM and XRD analysis. Higher HPMC content of CPC showed faster apatite deposition in SBF. A high Ca ion dissolution profile was also reported with an increase of pH in all samples in SBF. The apatite formation ability of these CPC samples was found to be dependent on both surface chemistry and immersion time in SBF. The In vitro cytotoxicity test showed that the CPC samples with 4% HPMC were fairly cytocompatible for fibroblast L-929 cells. SEM images showed that MG-63 cells were successfully attached to the CPC samples and well proliferated.

Jyoti, M. Anirban; Thai, Van Viet; Min, Young Ki; Lee, Byong-Taek; Song, Ho-Yeon

2010-12-01

122

Highly sensitive amperometric biosensor based on a biocompatible calcium phosphate cement.  

PubMed

Brushite is a biocompatible calcium phosphate mineral with properties of solid electrolyte. In this study we take advantage of this characteristic to develop an enzymatic amperometric biosensor based on brushite cement. The biosensor was prepared by immobilizing tyrosinase (PPO) on a brushite cement layer which was subsequently cross-linked with glutaraldehyde (GA) on the surface of a glassy carbon electrode. The system was optimized for the detection of phenolic compounds in both aqueous and non-aqueous solutions. Several variables involved in the enzyme immobilization method such as glutaraldehyde cross-linking time, PPO/brushite ratio and thickness of the brushite film were investigated. Furthermore, the effects of the pH, temperature and applied potential on the biosensor performance were also optimized. On the other hand, the biosensor analytical properties were studied in presence of different organic solvents: dioxane, acetonitrile and ethanol. In both, phosphate buffer solution (PBS) and acetonitrile/PBS solution, the biosensor exhibits a rapid response (12 s); a wide linear range (0.001-3 microM and 0.007-2 microM respectively); low detection limit (1 and 2 nM respectively); and high sensitivity (46.6 and 28.6 A M(-1) cm(-2) respectively). The performance of the biosensor in the analysis of phenols in real samples was successful. PMID:19211238

Sánchez-Paniagua López, M; Tamimi, F; López-Cabarcos, E; López-Ruiz, B

2009-04-15

123

Microleakage of newly developed glass carbomer cement in primary teeth  

PubMed Central

Objective: Glass carbomer cement represents a new generation of dental material, which mineralizes gradually into fluorapatite. The aim of this study was to evaluate the microleakage and marginal integrity of newly developed glass carbomer cement with and without protective surface coating (SC) in primary molars. Methods: Standardized cavities were prepared on extracted human primary molars, and the teeth were randomly assigned into the following groups (n = 10/each): (1) conventional glass ionomer cement (GIC) without SC; (2) GIC with SC; (3) glass carbomer cement without SC; (4) glass carbomer cement with SC; and (5) compomer without SC. Following thermocycling (5 ± 2°C–55 ± 2°C, dwell time 15 s, 2000×), the specimens were immersed in 0.5% basic fuchsin solution, sectioned, and digitally photographed. Microleakage was evaluated quantitatively by using open-source image analysis toolkit (ImageJ), and the data were analyzed statistically by using Kruskal-Wallis and Conover’s Multiple Comparison tests (P=.05). Results: The greatest amount of dye leakage was observed in the uncoated glass carbomer specimens, followed by the uncoated glass ionomer group (P<.05). There was no significant difference between the microleakage values of coated glass ionomer, coated glass carbomer, and the compomer (P>.05). The following statistical ranking was observed among microleakage of the test materials: uncoated glass carbomer > uncoated glass ionomer > coated glass ionomer ? coated glass carbomer ? compomer. Uncoated glass carbomer exhibited severe internal ice crack-like lines. Conclusion: The use of the new glass carbomer cement without SC results in severe microleakage and catastrophic internal cracks. PMID:23408469

Cehreli, Sevi Burcak; Tirali, R. Ebru; Yalcinkaya, Zeynep; Cehreli, Zafer C.

2013-01-01

124

Fluoride release from three glass ionomers after exposure to sodium fluoride and acidulated phosphate fluoride gels  

PubMed Central

Background: Glass ionomer (GI) restorations exposed to fluoride have the ability to slowly release fluoride. Therefore, the aim of this study was to investigate fluoride release from three GIs before and after exposure to sodium fluoride (NaF) and acidulated phosphate fluoride (APF). Materials and Methods: Fifteen disc-shaped samples (6 mm in diameter and 2 mm in thickness) from three GIs (Fuji II, Fuji IX, Chem Flex) were made and suspended in a polypropylene recipient containing 10 mL distilled water and stored at 37°C. At the 13th day, the samples of each GI were randomly divided into 3 groups. Groups 1 and 2 were exposed to NaF and APF gels for 4 min and group 3 served as control in distilled water. The fluoride released was measured at day 1, 4, 10, 13, 14, 17, 20 and 23 by potentiometer. Data were analyzed by one-way ANOVA and Tukey test. P < 0.05 was considered as significant. Results: Fluoride release was highest after 24 h for the tested GIs, but Fuji II demonstrated the least amount. Fuji IX showed the highest fluoride release followed by Chem Flex. Exposure to fluoride gels significantly increased fluoride release for all materials (P < 0.05). The amount of fluoride release for the three GIs was significantly higher in APF groups during the test period. Conclusion: Highly viscous conventional GIs (Fuji IX and Chem Flex) released higher quantity of fluoride. PMID:25426154

Ghajari, Masoud Fallahinejad; Torabzadeh, Hassan; Safavi, Nassim; Sohrabi, Azin; Ardakani, Faezeh Fotouhi

2014-01-01

125

Tensile bond strength of glass fiber posts luted with different cements.  

PubMed

Proper selection of the luting agent is fundamental to avoid failure due to lack of retention in post-retained crowns. The objective of this study was to investigate the tensile bond strength and failure mode of glass fiber posts luted with different cements. Glass fiber posts were luted in 40 mandibular premolars, divided into 4 groups (n = 10): Group 1--resin-modified glass ionomer RelyX Luting; Group 2--resin-modified glass ionomer Fuji Plus; Group 3--resin cement RelyX ARC; Group 4--resin cement Enforce. Specimens were assessed by tensile strength testing and light microscopy analysis for observation of failure mode. The tensile bond strength values of each group were compared by ANOVA and Tukey test. The significance level was set at 5%. The failure modes were described as percentages. The following tensile strength values were obtained: Group 1--247.6 N; Group 2--256.7 N; Group 3--502.1 N; Group 4--477.3 N. There was no statistically significant difference between Groups 1 and 2 or between Groups 3 and 4, yet the resin cements presented significantly higher tensile bond strength values than those presented by the glass ionomer cements. Group 1 displayed 70% of cohesive failures, whereas Groups 2, 3 and 4 exhibited 70% to 80% of adhesive failures at the dentin-cement interface. We concluded that resin cements and glass ionomer cements are able to provide clinically sufficient retention of glass fiber posts, and that glass ionomer cements may be especially indicated when the application of adhesive techniques is difficult. PMID:17589652

Bonfante, Gerson; Kaizer, Osvaldo Bazzan; Pegoraro, Luiz Fernando; do Valle, Accácio Lins

2007-01-01

126

Retention of orthodontic bands with new fluoride-releasing cements.  

PubMed

The prevalence of enamel decalcification beneath orthodontic bands has indicated the need for a fluoride-releasing, enamel-adhesive orthodontic luting cement. The purpose of this study was to compare the retentive bond strengths of orthodontic bands cemented with two new fluoride-releasing cements, a zinc polycarboxylate and a glass ionomer, with the retentive bond strength of bands cemented with the standard orthodontic cement zinc phosphate. The site of cement failure was also evaluated. One hundred eighty extracted human molar teeth were embedded in resin blocks and randomly assigned to three cement groups. Adapted bands were cemented by a clinically acceptable technique. The cemented teeth were then assigned to one of three time intervals--24 hours, 7 days, and 60 days--and thermocycled in synthetic saliva. The force required to initially fracture the cement bond was used as a measure of cement retention. By means of the Instron, a tensile load was applied to each cemented band. The maximum retentive strength (cement failure) was interpreted from the stress-strain curve at the point where linearity deviated. The failure site was judged subjectively: between cement and enamel, within the cement, or between cement and the band. Using stress at failure, an analysis of variance showed no significant differences among the retentive strengths of the three cements. The chi-square test revealed a significant difference (P less than 0.01) between failure sites of the zinc phosphate and glass ionomer cements. Significantly more bands cemented with the glass ionomer failed at the cement/band interface, leaving the cement adhered to the tooth.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3513596

Norris, D S; McInnes-Ledoux, P; Schwaninger, B; Weinberg, R

1986-03-01

127

Effectiveness of a resin-modified glass ionomer liner in reducing hypersensitivity in posterior restorations  

PubMed Central

Background The objectives of this randomized comparative effectiveness study conducted by members of the Practitioners Engaged in Applied Research and Learning (PEARL) Network were to determine whether using a resin-modified glass ionomer (RMGI) liner reduces postoperative hypersensitivity (POH) in dentin-bonded Class I and Class II resin-based composite (RBC) restorations, as well as to identify other factors (putative risk factors) associated with increased POH. Methods PEARL Network practitioner-investigators (P-Is) (n = 28) were trained to assess sensitivity determination, enamel and dentin caries activity rankings, evaluation for sleep bruxism, and materials and techniques used. The P-Is enrolled 341 participants who had hypersensitive posterior lesions. Participants were randomly assigned to receive an RBC restoration with or without an RMGI liner before P-Is applied a one-step, self-etching bonding agent. P-Is conducted sensitivity evaluations at baseline, at one and four weeks after treatment, and at all visits according to patient-reported outcomes. Results P-Is collected complete data regarding 347 restorations (339 participants) at baseline, with 341 (98 percent) (333 participants) recalled at four weeks. Treatment groups were balanced across baseline characteristics and measures. RBC restorations with or without an RMGI liner had the same one-week and four-week POH outcomes, as measured clinically (by means of cold or air stimulation) and according to patient-reported outcomes. Conclusions Use of an RMGI liner did not reduce clinically measured or patient-reported POH in moderate-depth Class I and Class II restorations. Cold and air clinical stimulation findings were similar between groups. Practical Implications The time, effort and expense involved in placing an RMGI liner in these moderate-depth RBC restorations may be unnecessary, as the representative liner used did not improve hypersensitivity outcomes. PMID:23904575

Strober, Brad; Veitz-Keenan, Analia; Barna, Julie Ann; Matthews, Abigail G.; Vena, Donald; Craig, Ronald G.; Curro, Frederick A.; Thompson, Van P.

2014-01-01

128

Methods and preliminary findings of a cost-effectiveness study of glass-ionomer-based and composite resin sealant materials after 2 yr.  

PubMed

The cost-effectiveness of glass-carbomer, conventional high-viscosity glass-ionomer cement (HVGIC) [without or with heat (light-emitting diode (LED) thermocuring) application], and composite resin sealants were compared after 2 yr in function. Estimated net costs per sealant were obtained from data on personnel time (measured with activity sampling), transportation, materials, instruments and equipment, and restoration costs for replacing failed sealants from a community trial involving 7- to 9-yr-old Chinese children. Cost data were standardized to reflect the placement of 1,000 sealants per group. Outcomes were the differences in the number of dentine caries lesions that developed between groups. The average sealant application time ranged from 5.40 min (for composite resin) to 8.09 min (for LED thermocured HVGIC), and the average cost per sealant for 1,000 performed per group (simulation sample) ranged from $US3.73 (for composite resin) to $US7.50 (for glass-carbomer). The incremental cost-effectiveness of LED thermocured HVGIC to prevent one additional caries lesion per 1,000 sealants performed was $US1,106 compared with composite resin. Sensitivity analyses showed that differences in the cost of materials across groups had minimal impact on the overall cost. Cost and effectiveness data enhance policymakers' ability to address issues of availability, access, and compliance associated with poor oral-health outcomes, particularly when large numbers of children are excluded from care, in economies where oral health services are still developing. PMID:24799118

Goldman, Ann S; Chen, Xi; Fan, Mingwen; Frencken, Jo E

2014-06-01

129

Biocompatibility and degradation of poly(DL-lactic-co-glycolic acid)\\/calcium phosphate cement composites  

Microsoft Academic Search

Injectable calcium phosphate (Ca-P) cement materials exhibit favorable osteocompatible behavior but are resorbed slowly because of a lack of a bone ingrowth-enabling macroporosity. In this study, poly(DL-lactic-co-glycolic acid) (PLGA) microparticles (average size 66 +\\/- 25 microm) were incorporated into Ca-P cement to obtain a macroporous Ca-P cement scaffold after PLGA hydrolysis in vivo. Preset PLGA\\/Ca-P cement composite discs of various

P. Quinten Ruhé; Elizabeth L. Hedberg; Nestor Torio Padron; Paul H. M. Spauwen; John A. Jansen; Antonios G. Mikos

2005-01-01

130

In Vitro Comparison of Coronal Microleakage between Resilon Alone and Gutta-Percha with a Glass-ionomer Intraorifice Barrier Using a Fluid Filtration Model  

Microsoft Academic Search

The prevention and control of coronal microleakage is critical for successful endodontic outcomes. The purpose of this study was to compare coronal microleakage between Resilon alone and gutta-percha with a glass ionomer intraorifice barrier using a fluid filtration model. Thirty-four extracted human teeth were decoronated, prepared to a standardized length of 16 mm, and instrumented to a .06 taper ISO

Ryan M. Jack; Gary G. Goodell

2008-01-01

131

Influence of bismuth oxide concentration on the pH level and biocompatibility of white Portland cement  

PubMed Central

Objectives To investigate if there is a relation between the increase of bismuth oxide and the decrease of pH levels and an intensification of toxicity in the Portland cement. Material and Methods White Portland cement (WPC) was mixed with 0, 15, 20, 30 and 50% bismuth oxide, in weight. For the pH level test, polyethylene tubes were filled with the cements and immersed in Milli-Q water for 15, 30 and 60 days. After each period, the increase of the pH level was assessed. For the biocompatibility, two polyethylene tubes filled with the cements were implanted in ninety albino rats (n=6). The analysis of the intensity of the inflammatory infiltrate was performed after 15, 30 and 60 days. The statistical analysis was performed using the Kruskal-Wallis, Dunn and Friedman tests for the pH level and the Kruskal-Wallis and Dunn tests for the biological analysis (p<0.05). Results The results showed an increase of the pH level after 15 days, followed by a slight increase after 30 days and a decrease after 60 days. There were no significant statistical differences among the groups (p>0.05). For the inflammatory infiltrates, no significant statistical differences were found among the groups in each period (p>0.05). The 15% WPC showed a significant decrease of the inflammatory infiltrate from 15 to 30 and 60 days (p<0.05). Conclusions The addition of bismuth oxide into Portland cement did not affect the pH level and the biological response. The concentration of 15% of bismuth oxide resulted in significant reduction in inflammatory response in comparison with the other concentrations evaluated. PMID:25141197

MARCIANO, Marina Angélica; GARCIA, Roberto Brandão; CAVENAGO, Bruno Cavalini; MINOTTI, Paloma Gagliardi; MIDENA, Raquel Zanin; GUIMARÃES, Bruno Martini; ORDINOLA-ZAPATA, Ronald; DUARTE, Marco Antonio Hungaro

2014-01-01

132

Effects of conventional and high-intensity light-curing on enamel shear bond strength of composite resin and resin-modified glass-ionomer  

Microsoft Academic Search

The purpose of this study was to evaluate the shear bond strengths of a composite resin (Transbond XT; 3M\\/Unitek, Monrovia, Calif) and a resin-modified glass ionomer (Fuji Ortho LC; GC America Inc, Alsip, Ill) cured with 2 different light-curing units: a conventional visible light unit (Ortholux XT; 3M Dental Products, St Paul, Minn) and a xenon arc light unit (Plasma

Maria Francesca Sfondrini; Vittorio Cacciafesta; Angela Pistorio; Giuseppe Sfondrini

2001-01-01

133

Three-Year Survival of One-Surface ART Restorations and Glass-Ionomer Sealants in a School Oral Health Programme in Zimbabwe  

Microsoft Academic Search

An oral health care programme in secondary schools using the atraumatic restorative treatment (ART) approach for dental caries was started in 1993. Glass ionomer (restorative type II, 1) was used as the restorative and sealant material. Sealants were placed using the ‘press-finger’ technique. Results after 3 years revealed a survival percentage for one-surface ART restorations of 85.3 (95% CL: 89.7–80.9%),

J. E. Frencken; F. Makoni; W. D. Sithole; E. Hackenitz

1998-01-01

134

Comparative Assessment of ActiV GP\\/Glass Ionomer Sealer, Resilon\\/Epiphany, and Gutta-Percha\\/AH Plus Obturation: A Bacterial Leakage Study  

Microsoft Academic Search

The objective of this study was to compare the sealing ability of ActiV GP\\/glass ionomer (GI) sealer (Brasseler USA, Savannah, GA), Resilon\\/Epiphany (Pentron Clinical Technologies, Wallingford, CT), and gutta-percha (GP)\\/AH Plus (Dentsply Maillefer, Tulsa, OK). Seventy-three human single-rooted teeth were randomly divided into three test groups (20 canals each) and two control groups (5 positive and 8 negative). Using Enterococcus

Joel N. Fransen; Jianing He; Gerald N. Glickman; Alejandro Rios; Jay D. Shulman; Allen Honeyman

2008-01-01

135

Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates  

NASA Astrophysics Data System (ADS)

This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

2009-09-01

136

Inferior alveolar nerve damage because of overextended endodontic material: a problem of sealer cement biocompatibility?  

PubMed

Damage to the inferior alveolar nerve is a relatively infrequent complication in dental practice. When root canal treatment of a lower molar or premolar surpasses and/or overextends beyond the apical foramen and invades the periapical zone, the foreign material introduced within such a sensitive anatomical space may mechanically or even chemically affect the inferior alveolar nerve. We describe a case of endodontic treatment of a permanent right lower first molar in which the sealer cement overextended in large amounts and damaged the right inferior alveolar nerve. The condition reverted a few months after the surgical removal of the material. Evaluation of the removed material, using powder x-ray diffraction and scanning electron microscopy with coupled dispersive energy spectroscopy, showed it to consist of calcium tungstate (scheelite [CaWO4]) and zirconium oxide (baddeleyite [ZrO2]), which were chemical components of the sealer cement. PMID:18037065

Escoda-Francoli, Jaume; Canalda-Sahli, Carles; Soler, Albert; Figueiredo, Rui; Gay-Escoda, Cosme

2007-12-01

137

In-vitro Biocompatibility and Oxidative Stress Profiles of Different Hydraulic Calcium Silicate Cements  

PubMed Central

Introduction MTA Plus (MTAP; Avalon Biomed Inc., Bradenton, FL) is a new calcium silicate cement with unknown cytotoxicity characteristics. The objectives of this study were to examine the effect of MTA Plus on the viability, apoptosis/necrosis profile and oxidative stress levels of rat odontoblast-like cells. Methods MDPC-23 cells were exposed to gray and white MTA Plus (GMTAP, WMTAP), gray and white ProRoot® MTA (GMTA, WMTA; Dentsply Tulsa Dental Specialties, Tulsa, OK) cements or their eluents. The cells were evaluated for: i) cell viability using XTT assay, ii) apoptosis/necrosis using flow cytometry and confocal laser scanning microscopy, and iii) oxidative stress by measuring reactive oxygen species. Results XTT assay showed that all test cements exhibited marked initial cytotoxicity that decreased with time. By the end of the third week, GMTAP and GMTA were comparable to untreated cells (negative control) in terms of cell viability, while WMTAP and WMTP were significantly lower than the untreated cells. Apoptosis/necrosis profiles of cells exposed to WMTAP and GMTAP were not significantly different from untreated cells, while cells exposed to WMTA and GMTA showed significantly less viable cells. All experimental groups exhibited reduction of intracellular ROS formation compared to untreated cells, although cells exposed to WMTA was not significantly different from untreated cells. Conclusions Both the gray and white versions of MTA Plus possess negligible in-vitro cytotoxic risks that are time and dilution dependent. They enrich the spectrum of hydraulic calcium silicate cements currently available to clinicians for endodontic applications. PMID:24461414

Eid, Ashraf A.; Gosier, Johnny; Primus, Carolyn M.; Hammond, Barry D.; Susin, Lisiane F.; Pashley, David H.; Tay, Franklin R.

2013-01-01

138

Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems  

PubMed Central

Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI) by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4). Four cylinders of composite resin (z250) were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001). Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used. PMID:24347892

Kasraie, Shahin; Shokripour, Mohadese; Safari, Mahin

2013-01-01

139

Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly(lactide-co-glycolide) microspheres.  

PubMed

We have assessed the biocompatibility of a new composite bone graft consisting of calcium phosphate cement (CPC) and poly(lactide-co-glycolide) (PLGA) microspheres (approximate diameter of 0.18-0.36 mm) using cell culture techniques. CPC powder is mixed with PLGA microspheres and water to yield a workable paste that could be sculpted to fit the contours of a wound. The cement then hardens into a matrix of hydroxyapatite microcrystals containing PLGA microspheres. The rationale for this design is that the microspheres will initially stabilize the graft but can then degrade to leave behind macropores for colonization by osteoblasts. The CPC matrix could then be resorbed and replaced with new bone. In the present study, osteoblast-like cells (MC3T3-E1 cells) were seeded onto graft specimens and evaluated with fluorescence microscopy, environmental scanning electron microscopy and the Wst-1 assay (an enzymatic assay for mitochondrial dehydrogenase activity). Cells were able to adhere, attain a normal morphology, proliferate and remain viable when cultured on the new composite graft (CPC-PLGA) or on a control graft (CPC alone). These results suggest that our new cement consisting of CPC and PLGA microspheres is biocompatible. This is the first time that a 'polymer-in-mineral' (PLGA microspheres dispersed in a CPC matrix) cement has been formulated that is moldable, resorbable and that can form macropores after the cement has set. PMID:12038620

Simon, Carl G; Khatri, Chetan A; Wight, Scott A; Wang, Francis W

2002-05-01

140

Pulp response after application of two resin modified glass ionomer cements (RMGICs) in deep cavities of prepared human teeth  

Microsoft Academic Search

Objectives: This study evaluated the human pulp response to the application of two RMGICs in deep cavities in vivo. Methods: The cavity floor prepared on the buccal surface of 34 premolars was lined with VBP (VBP), Vitrebond (VB) or Dycal® (DY), and restored with composite resin. Additional teeth were used as an intact control group. After 7 or 30–60 days,

Carlos A. de Souza Costa; Ana Paula D. Ribeiro; Elisa M. Aparecida Giro; Ros C. Randall; Josimeri Hebling

2011-01-01

141

Practical clinical considerations of luting cements: A review  

PubMed Central

The longevity of fixed partial denture depends on the type of luting cement used with tooth preparation. The clinician’s understating of various cements, their advantages and disadvantages is of utmost importance. In recent years, many luting agents cements have been introduced claiming clinically better performance than existing materials due to improved characteristics. Both conventional and contemporary dental luting cements are discussed here. The various agents discussed are: Zinc phosphate, Zinc polycarboxylate, Zinc oxide-eugenol, Glass-ionomer, Resin modified GIC, Compomers and Resin cement. The purpose of this article is to provide a discussion that provides a clinical perspective of luting cements currently available to help the general practitioner make smarter and appropriate choices. How to cite the article: Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: A review. J Int Oral Health 2014;6(1):116-20. PMID:24653615

Lad, Pritam P; Kamath, Maya; Tarale, Kavita; Kusugal, Preethi B

2014-01-01

142

A Comparative Evaluation of the Effect of Resin based Sealers on Retention of Crown Cemented with Three Types of Cement – An In Vitro Study  

PubMed Central

Aim: In an effort to control postoperative sensitivity, dentin sealers are being applied following crown preparations, with little knowledge of how crown retention might be affected. A previous study demonstrated no adverse effect when using a gluteraldehyde-based sealer, and existing studies have shown conflicting results for resin-based products. This study determined the retention of the casting cemented with three types of cement, with and without use of resin sealers and it determined the mode of failure. Materials and Methods: Extracted human molars (n=60) were prepared with a flat occlusal, 20-degree taper, and 4-mm axial length. The axial surface area of each preparation was determined and specimens were distributed equally among groups (n=10). A single-bottle adhesive system (one step single bottle adhesive system) was used to seal dentin, following tooth preparation. Sealers were not used on the control specimens. The test castings were prepared by using Ni-Cr alloy for each specimen and they were cemented with a seating force of 20 Kg by using either Zinc Phosphate (Harvard Cement), Glass Ionomer (GC luting and lining cement,GC America Inc.) and modified-resin cement (RelyXTMLuting2). Specimens were thermocycled for one month and were then removed along the path of insertion by using a Universal Testing Machine at 0.5 mm/min. A single-factor ANOVA was used with a p value of .05. The nature of failure was recorded and the data was analyzed by using Chi-square test. Results: Mean dislodgement stress for Zinc phosphate (Group A) was 24.55±1.0 KgF and that for zinc phosphate with sealer (Group D) was 14.65±0.8 KgF. For glass ionomer (Group B) without sealer, the mean value was 32.0±1.0 KgF and mean value for glass ionomer with sealer (Group E) was 37.90±1.0 KgF. The mean value for modified resin cement (Group C) was 44.3±1.0KgF and that for modified resins with sealer (Group F) was 57.2±1.2 KgF. The tooth failed before casting dislodgement in 8 to 10 specimens cemented with modified-resin cement. Conclusion: Resin sealer decreased casting retentive stress by 46% when it was used with Zinc phosphate. However, sealer use resulted in 60% increased retention when it was used with Glass ionomer cement. The modified-resin cement produced the highest mean dislodgement stress, which nearly always exceeded the strength of the tooth. PMID:24783150

Sharma, Sumeet; Patel, J.R.; Sethuraman, Rajesh; Singh, Sarbjeet; Wazir, Nikhil Dev; Singh, Harvinder

2014-01-01

143

The Effect of Temperature on Compressive and Tensile Strengths of Commonly Used Luting Cements: An In Vitro Study  

PubMed Central

Background: The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. Materials and Methods: In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. Results: All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. Conclusion: An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.

Patil, Suneel G; Sajjan, MC Suresh; Patil, Rekha

2015-01-01

144

Effects of curing mode of resin cements on the bond strength of a titanium post: An intraradicular study  

PubMed Central

Aim: To compare push-out bond strength between self-cured and dual-cured resin cement using a titanium post. Background: Dual-cured resin cements have been found to be less polymerized in the absence of light; thus the bond strength of cements would be compromised due to the absence of light with a metallic post. Materials and Methods: Ten extracted teeth were prepared for cement titanium PARAPOST, of five specimens each, with Panavia F [dual-cured (PF)] and Rely×Luting 2 [self-cured resin-modified glass ionomer luting cement (RL)]; the push-out bond strength (PBS) at three different levels of the sectioned roots was measured. The failure modes were observed and the significance of the differences in bond strength of the two types of cement at each level and at different levels of the same type was analyzed with non-parametric tests. Results: The push-out bond strength of the RL group was greater at all the three levels; with significant differences at the coronal and middle levels (P<0.05). No significant differences in PBS at different levels of the same group were observed. Cement material around the post was obvious in the PF group. The failure mode was mostly adhesive between the post and resin cement in the RL group. Conclusion: Bond strength was greater with self-cured, resin-modified glass ionomer luting cement, using titanium post. PMID:22557808

Reza, Fazal; Lim, Siau Peng

2012-01-01

145

Microleakage and marginal gap of adhesive cements for noble alloy full cast crowns.  

PubMed

Very limited comparative information about the microleakage in noble alloy full cast crowns luted with different types of adhesive resin cements is available. The purpose of this study was to evaluate the microleakage and marginal gap of two self-adhesive resin cements with that of other types of adhesive luting cements for noble alloy full cast crowns. Fifty noncarious human premolars and molars were prepared in a standardized manner for full cast crown restorations. Crowns were made from a noble alloy using a standardized technique and randomly cemented with five cementing agents as follows: 1) GC Fuji Plus resin-modified glass ionomer cement, 2) Panavia F 2.0 resin cement, 3) Multilink Sprint self-adhesive resin cement, 4), Rely X Unicem self-adhesive resin cement with pretreatment, and 5) Rely X Unicem with no pretreatment. The specimens were stored in distilled water at 37°C for two weeks and then subjected to thermocycling. They were then placed in a silver nitrate solution, vertically cut in a mesiodistal direction and evaluated for microleakage and marginal gap using a stereomicroscope. Data were analyzed using a nonparametric Kruskal-Wallis test followed by Dunn multiple range test at a p<0.05 level of significance. The Rely X Unicem (with or with no pretreatment) exhibited the smallest degree of microleakage at both tooth-cement and cement-crown interfaces. The greatest amount of microleakage was found for Panavia F 2.0 resin cement followed by GC Fuji Plus at both interfaces. No statistically significant difference in the marginal gap values was found between the cementing agents evaluated (p>0.05). The self-adhesive resin cements provided a much better marginal seal for the noble alloy full cast crowns compared with the resin-modified glass ionomer or dual-cured resin-based cements. PMID:21740242

Hooshmand, T; Mohajerfar, M; Keshvad, A; Motahhary, P

2011-01-01

146

Evaluation of tensile retention of Y-TZP crowns cemented on resin composite cores: effect of the cement and Y-TZP surface conditioning.  

PubMed

This study evaluated the effect of the cement type (adhesive resin, self-adhesive, glass ionomer, and zinc phosphate) on the retention of crowns made of yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP). Therefore, 108 freshly extracted molars were embedded in acrylic resin, perpendicular to their long axis, and prepared for full crowns: the crown preparations were removed and reconstructed using composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and Y-TZP copings were produced, which presented a special setup for the tensile testing. Cementation was performed with two adhesive resin cements (Multilink Automix, Ivoclar-Vivadent; RelyX ARC, 3M ESPE, St Paul, MN, USA), one self-adhesive resin cement (RelyX U100, 3M ESPE), one glass ionomer based cement (RelyX Luting, 3M ESPE), and one zinc phosphate cement (Cimento de Zinco, SS White, Rio de Janeiro, Brazil). For the resin cement groups, the inner surfaces of the crowns were subjected to three surface treatments: cleaning with isopropyl alcohol, tribochemical silica coating, or application of a thin low-fusing glass porcelain layer plus silanization. After 24 hours, all groups were subjected to thermocycling (6000 cycles) and included in a special device for tensile testing in a universal testing machine to test the retention of the infrastructure. After testing, the failure modes of all samples were analyzed under a stereomicroscope. The Kruskal-Wallis test showed that the surface treatment and cement type (?=0.05) affected the tensile retention results. The Multilink cement presented the highest tensile retention values, but that result was not statistically different from RelyX ARC. The surface treatment was statistically relevant only for the Multilink cement. The cement choice was shown to be more important than the crown surface treatment for cementation of a Y-TZP crown to a composite resin substrate. PMID:25162722

Rippe, M P; Amaral, R; Oliveira, F S; Cesar, P F; Scotti, R; Valandro, L F; Bottino, M A

2015-01-01

147

EFFECT OF FLUORIDE-CONTAINING DESENSITIZING AGENTS ON THE BOND STRENGTH OF RESIN-BASED CEMENTS TO DENTIN  

PubMed Central

Objective: The objective of this study was to evaluate the effect of desensitizing agents containing different amounts of fluoride on the shear bond strength of a dual polymerized resin cement and a resin-modified glass ionomer cement (RMGIC) to dentin. Material and Methods: One hundred human molars were mounted in acrylic resin blocks and prepared until the dentin surface was exposed. The specimens were treated with one of four desensitizing agents: Bifluorid 12, Fluoridin, Thermoline and PrepEze. The remaining 20 specimens served as untreated controls. All groups were further divided into 2 subgroups in which a dual polymerized resin cement (Bifix QM) or a resin-modified glass ionomer cement (AVANTO) was used. The shear bond strength (MPa) was measured using a universal testing machine at a 0.5 mm/min crosshead speed. The data were analyzed statistically with a 2-way ANOVA, Tukey HSD test and regression analysis (?=0.05). The effect of the desensitizing agents on the dentin surface was examined by scanning electron microscopy. Results: The fluoride-containing desensitizing agents affected the bond strength of the resin-based cements to dentin (p<0.001). PrepEze showed the highest bond strength values in all groups (p<0.001). Conclusion: Regression analysis showed a reverse relation between bond strength values of resin cements to dentin and the amount of fluoride in the desensitizing agent (p<0.05). PMID:19936532

Saraç, Duygu; Külünk, Safak; Saraç, Y. Sinasi; Karakas, Özlem

2009-01-01

148

Composition-structure-property relationships for non-classical ionomer cements formulated with zinc-boron germanium-based glasses.  

PubMed

Non-classical ionomer glasses like those based on zinc-boron-germanium glasses are of special interest in a variety of medical applications owning to their unique combination of properties and potential therapeutic efficacy. These features may be of particular benefit with respect to the utilization of glass ionomer cements for minimally invasive dental applications such as the atruamatic restorative treatment, but also for expanded clinical applications in orthopedics and oral-maxillofacial surgery. A unique system of zinc-boron-germanium-based glasses (10 compositions in total) has been designed using a Design of Mixtures methodology. In the first instance, ionomer glasses were examined via differential thermal analysis, X-ray diffraction, and (11)B MAS NMR spectroscopy to establish fundamental composition - structure-property relationships for the unique system. Secondly, cements were synthesized based on each glass and handling characteristics (working time, Wt, and setting time, St) and compression strength were quantified to facilitate the development of both experimental and mathematical composition-structure-property relationships for the new ionomer cements. The novel glass ionomer cements were found to provide Wt, St, and compression strength in the range of 48-132?s, 206-602?s, and 16-36?MPa, respectively, depending on the ZnO/GeO2 mol fraction of the glass phase. A lower ZnO mol fraction in the glass phase provides higher glass transition temperature, higher N4 rate, and in combination with careful modulation of GeO2 mol fraction in the glass phase provides a unique approach to extending the Wt and St of glass ionomer cement without compromising (in fact enhancing) compression strength. The data presented in this work provide valuable information for the formulation of alternative glass ionomer cements for applications within and beyond the dental clinic, especially where conventional approaches to modulating working time and strength exhibit co-dependencies (i.e. the enhancement of one property comes at the expense of the other) and therefore limit development strategies. PMID:25391445

Zhang, Xiaofang; Werner-Zwanziger, Ulrike; Boyd, Daniel

2015-04-01

149

Effect of acid pre-conditioning and/or delayed light irradiation on enamel bond strength of three resin-modified glass ionomers  

PubMed Central

Background: Polymerization of resin-modified glass-ionomers (RMGIs) is mediated through two competing mechanisms: An acid-base reaction and a light-dependent resin polymerization. Furthermore, pre-conditioning with acid has resulted in an increase in enamel bond strength of some RMGIs. This in vitro study evaluated the effect of pre-conditioning and/or delayed irradiation on bond strength of three RMGIs to enamel. Materials and Methods: In this in vitro study, 144 flat enamel surfaces of human molars were ground using consecutively finer abrasives up to 600-grit silicon carbide paper. Each surface was rinsed and gently air-dried (n =12). The RMGIs (Fuji II LC Improved; Ionolux and Vitremer) were bonded to enamel surfaces using the following protocols: Groups 1: Based on manufacturers’ instructions; Groups 2: Pre-conditioning with phosphoric acid for 30 s; groups 3: A 2-min delay in irradiation; groups 4: Pre-conditioning with acid for 30 s plus a 2-min delay in light activation. After 24-h storage at 37°C and 500 rounds of thermocycling, the samples underwent shear bond strength (SBS) test. Data was analyzed with 3-way ANOVA and Tukey HSD test (? =0.05). Results: There were significant differences between the study groups (P < 0.001). Acid-pre-conditioning increased Fuji II LC SBS values; it significantly decreased SBS values of Vitremer but had no effect on SBS values of Ionolux. Ionolux and Vitremer exhibited decreased enamel bond strength after a delay in light activation (P < 0.05). A 2-min delay in light activation combined with acid pre-conditioning increased RMGI SBS values only for Fuji II LC. Conclusion: Within the limitations of the present study, the effect of acid pre-conditioning, delaying irradiation and both on enamel bond strength of RMGIs was material-dependent. Further investigations are recommended. PMID:24019800

Khoroushi, Maryam; Hosseini-Shirazi, Moeen; Soleimani, Hojatolah

2013-01-01

150

Remineralizing efficacy of silver diamine fluoride and glass ionomer type VII for their proposed use as indirect pulp capping materials – Part II (A clinical study)  

PubMed Central

Aim: To evaluate in vivo the remineralizing efficacy of silver diamine fluoride (SDF), glass ionomer Type VII (GC VII) and calcium hydroxide (Dycal). Materials and Methods: 60 subjects in the age group of 18-35 years, matching the inclusion criteria and having deep carious lesions in the permanent first and second molars were selected. The teeth were aseptically opened under rubber dam and after gross caries removal, approximately 0.4mg of soft discolored dentin was removed with a sharp spoon excavator from the mesial or distal aspect of the cavity. The test material was randomly selected and applied in a thickness of 1.5-2mm and the cavity sealed with cavit. The patients were followed up at regular intervals with radiographic evaluation at 12 weeks. At 3 months the temporary restoration was removed and dentin samples were collected from the other half of the cavity which was left in the first appointment. Atomic absorption spectrophotometry, Colorimetric test using UV-vis spectrometer and potentiometric titration were used for determining calcium, phosphorous and fluoride respectively. Results: Almost equivalent rise in the percentage of calcium level was seen in GC VII and Ca(OH)2 groups, followed by SDF group. Highest percentage rise in phosphate ions was seen in GC VII group followed by SDF group and Ca(OH)2 group. Highest percentage of fluoride rise was seen in GC VII group followed by SDF group and Ca(OH)2 group. Conclusions: The results indicated that both GC VII and SDF can be potential indirect pulp capping materials. PMID:22025824

Sinha, N; Gupta, A; Logani, A; Shah, N

2011-01-01

151

Comparison of Marginal Microleakage of Glass Ionomer Restorations in Primary Molars Prepared by Chemo-mechanical Caries Removal (CMCR), Erbium: Yttrium Aluminum-Garnet (Er:YAG) Laser and Atraumatic Restorative Technique (ART)  

PubMed Central

ABSTRACT Background: It is important to emphasize that the aspects of pretreatment techniques, as well as the composition and mechanism of adhesion, may decisively influence the effectiveness of the restorative materials in sealing cavity margins and preventing marginal leakage. Aims: This study assessed the in vitro influence of surface preparation techniques on the microleakage of glass ionomer restorations in primary teeth. Materials and methods: The study groups were divided into three different techniques: (1) The chemomechanical caries removal (CMCR) method using the Apacaries gel, (2) the erbium:yttrium aluminum-garnet (Er:YAG) laser method and (3) the atraumatic restorative technique (ART). The teeth restored with a glass ionomer restorative material (Fuji IX GP capsule, GC Corporation, Tokyo, Japan). The dye penetration was measured in micrometers using a polarized light microscope and specific computer software. Results: The results showed that the mean microleakage level after was lowest with the CMCR method using Apacaries gel and highest with the Er:YAG laser. There was a statistically significant difference regarding the mean microleakage level between the group with the CMCR method using Apacaries gel and the Er:YAG laser. Conclusion: Marginal leakage was significantly higher with preparations made using the Er:YAG laser than with the CMCR method using Apacaries gel and spoon excavator (p < 0.05). How to cite this article: Juntavee A, Juntavee N, Peerapattana J, Nualkaew N, Sutthisawat S. Comparison of Marginal Microleakage of Glass Ionomer Restorations in Primary Molars Prepared by Chemomechanical Caries Removal (CMCR), Erbium: Yttrium Aluminum-Garnet (Er:YAG) Laser and Atraumatic Restorative Technique (ART). Int J Clin Pediatr Dent 2013;6(2):75-79. PMID:25206196

Juntavee, Niwut; Peerapattana, Jomjai; Nualkaew, Nartsajee; Sutthisawat, Sitikorn

2013-01-01

152

Clinical evaluation of giomer- and resin-modified glass ionomer cement in class V noncarious cervical lesions: An in vivo study  

PubMed Central

Objectives: To evaluate and compare the clinical performance of Giomer (Beautifil II) and RMGIC (Fuji II LC) in noncarious cervical lesions. Materials and Methods: Thirty-two subjects with one or two pairs of noncarious cervical lesions were included in the study. Each pair of lesion was restored with either giomer or RMGIC assigned randomly. Clinical evaluation of restorations was done using USPHS criteria. Data was formulated in a predesigned format and subjected to statistical analysis using the chi square test. Results: Statistically significant difference was found between RMGIC and Giomer with respect to surface roughness with P value <0.001. Conclusion: Giomer showed superior surface finish compared to RMGIC. Both Giomer and RMGIC showed equal retention ability. PMID:22144814

Jyothi, KN; Annapurna, S; Kumar, Anil S; Venugopal, P; Jayashankara, CM

2011-01-01

153

Orthodontic cements induce genotoxicity and cytotoxicity in mammalian cells in vitro  

PubMed Central

Background: This study assessed the genotoxic and cytotoxic potential of three different glass ionomer cements used in Orthodontics (Vidrion C, OptiBand, and Band-Lok). Materials and Methods: The tested cements were exposed in vitro to mouse fibroblast cells for 1 h at 37°C. The genotoxicity and cytotoxicity were evaluated by means of the single cell gel (Comet Assay) and the trypan blue exclusion test, respectively. All data were assessed by the Kruskal–Wallis non-parametric test, followed by Dunn's test. P < 0.05 was considered for statistical significance. Results: Significant statistically differences (P < 0.05) in cytotoxicity were observed for both Vidrion C powder and liquid at the tested concentrations, with exception to the group presenting the lowest powder concentration. OptiBand similarly presented induced cellular death at the highest tested concentration for paste A (P < 0.05). Band-Lok paste B was also able to induce cytotoxicity at the highest tested concentration. Regarding the comet assay, Band-Lok paste B and OptiBand paste A resulted in increased DNA injury (P < 0.05). Conclusion: The obtained results support the thought that some glass ionomer cement components present both genotoxic and cytotoxic effects when in high concentrations. Since DNA damage and cellular death are important events during oncogenesis, this study represents relevant contribution to estimate the real risks induced by these materials upon cellular systems. PMID:23162578

Angelieri, Fernanda; Joias, Renata P.; Bresciani, Eduardo; Noguti, Juliana; Ribeiro, Daniel A.

2012-01-01

154

Comparison of the Effect of Three Cements on Prevention of Enamel Demineralization Adjacent to Orthodontic Bands  

PubMed Central

Background and aims This in vitro study was designed to compare enamel demineralization depths adjacent to bands cemented with zinc polycarboxylate, glass ionomer (GI) and resin-modified glass ionomer (RMGI), in order to achieve minimal enamel demineralization during orthodontic treatment. Materials and methods Sixty fully developed extracted third molars were randomly divided into three testgroups each containing 20 samples, used to cement orthodontic bands with zinc polycarboxylate, GI and RMGI. All samples were demineralized using White method using hydroxyapatite, latic acid and Carbapol for in vitro caries simulation, and then, immersed in 10% solution of methylene blue. The mean depth of dye penetration was assessed up to 0.1 millimeter, reflect-ing the depth of enamel demineralization. One way ANOVA and LSD statistical tests were employed to evaluate significant differences among groups. Results The highest dye penetration depth was seen in zinc polycarboxylate group, followed by GI, and RMGI groups, respectively, with significant differences among each two groups (P < 0.05). Conclusion The use of RMGI cement seems to present significantly better prevention of enamel demineralization adja-cent to orthodontics bands. PMID:22991644

Kashani, Mehdi; Farhadi, Sareh; Rastegarfard, Neda

2012-01-01

155

A comparison of in vitro enamel demineralization potential of 3 orthodontic cements.  

PubMed

The objective of this in vitro study was to compare resistance to enamel demineralization after banding with 3 orthodontic cements. The 3 orthodontic cement groups and the nonbanded control group were evaluated for cariopreventive potential. One hundred twenty extracted human molars were selected for banding, embedded in resin blocks, and randomly assigned to the following 4 groups: zinc phosphate cement, zinc polycarboxylate cement, resin-modified glass ionomer (RMGI), and nonbanded control. Orthodontic bands were placed and cemented; specimens were stored in artificial saliva at 37 degrees C for 30 days, thermocycled for 24 hours, and then debanded with a customized band-removal device attached to a universal testing machine. The cement was hand removed, and 2 coats of nail varnish were applied to the teeth, leaving a 2 x 2-mm window exposed on the buccal surface of the mesiobuccal cusp. The teeth were stored in lactic acid-gelatin solution for 4 weeks at 37 degrees C to develop simulated white spot decalcification in the window. The teeth were subjected to dye (10% methylene blue) for 24 hours and then sectioned through the window. The depth of dye penetration was determined and used as a measure of the cariopreventive effect of the banding cement. Data were analyzed with a 1-way ANOVA and a Tukey test for the multiple comparisons. Dye penetration occurred as follows: the zinc phosphate and control groups were about the same; there was less dye penetration with the zinc polycarboxylate, and the least with the resin-modified glass ionomer. The 2 fluoride-releasing cements (zinc polycarboxylate and RMGI) demonstrated less demineralization than the zinc phosphate in vitro and might provide greater protection from demineralization around a band periphery in clinical settings. PMID:12045772

Foley, Timothy; Aggarwal, Manish; Hatibovic-Kofman, Sahza

2002-05-01

156

Effect of cement type and water storage time on the push-out bond strength of a glass fiber post.  

PubMed

This study investigated the effects of the cement type and the water storage time on the push-out bond strength of a glass fiber post. Glass fiber posts (Fibrekor, Jeneric Pentron) were luted to post spaces using a self-cured resin cement (C&B Cement [CB]), a glass ionomer cement (Ketac Cem [KC]) or a resin-modified glass ionomer cement (GC FujiCEM [FC]) according to the manufacturers' instructions. For each luting agent, the specimens were exposed to one of the following water storage times (n=5): 1 day (T1), 7 days (T7), 90 days (T90) and 180 days (T180). Push-out tests were performed after the storage times. Control specimens were not exposed to water storage, but subjected to the push-out test 10 min after post cementation. Data (in MPa) were analyzed by Kruskal-Wallis and Dunn`s test (?=0.05). Cement type and water storage time had a significant effect (p<0.05) on the push-out bond strength. CB showed significantly higher values of retention (p<0.05) than KC and FC, irrespective of the water storage time. Water storage increased significantly the push-out bond strength in T7 and T90, regardless of the cement type (p<0.05). The results showed that fiber posts luted to post spaces with the self-cured resin cement exhibited the best bonding performance throughout the 180-day water storage period. All cements exhibited a tendency to increase the bond strength after 7 and 90 days of water storage, decreasing thereafter. PMID:22011889

Reis, Kátia Rodrigues; Spyrides, George Miguel; Oliveira, Jonas Alves de; Jnoub, Alexandre Abrão; Dias, Kátia Regina Hostilio Cervantes; Bonfantes, Gerson

2011-01-01

157

Evaluation of pH at the Bacteria–Dental Cement Interface  

PubMed Central

Physiochemical assessment of the parasite-biomaterial interface is essential in the development of new biomaterials. The purpose of this study was to develop a method to evaluate pH at the bacteria-dental cement interface and to demonstrate physiochemical interaction at the interface. The experimental apparatus with a well (4.0 mm in diameter and 2.0 mm deep) was made of polymethyl methacrylate with dental cement or polymethyl methacrylate (control) at the bottom. Three representative dental cements (glass-ionomer, zinc phosphate, and zinc oxide-eugenol cements) were used. Each specimen was immersed in 2 mM potassium phosphate buffer for 10 min, 24 hrs, 1 wk, or 4 wks. The well was packed with Streptococcus mutans NCTC 10449, and a miniature pH electrode was placed at the interface between bacterial cells and dental cement. The pH was monitored after the addition of 1% glucose, and the fluoride contained in the cells was quantified. Glass-ionomer cement inhibited the bacteria-induced pH fall significantly compared with polymethyl methacrylate (control) at the interface (10 min, 5.16 ± 0.19 vs. 4.50 ± 0.07; 24 hrs, 5.20 ± 0.07 vs. 4.59 ± 0.11; 1 wk, 5.34 ± 0.14 vs. 4.57 ± 0.11; and 4 wks, 4.95 ± 0.27 vs. 4.40 ± 0.14), probably due to the fluoride released from the cement. This method could be useful for the assessment of pH at the parasite-biomaterial interface. PMID:21933936

Mayanagi, G.; Igarashi, K.; Washio, J.; Nakajo, K.; Domon-Tawaraya, H.; Takahashi, N.

2011-01-01

158

Evaluation of pH at the bacteria-dental cement interface.  

PubMed

Physiochemical assessment of the parasite-biomaterial interface is essential in the development of new biomaterials. The purpose of this study was to develop a method to evaluate pH at the bacteria-dental cement interface and to demonstrate physiochemical interaction at the interface. The experimental apparatus with a well (4.0 mm in diameter and 2.0 mm deep) was made of polymethyl methacrylate with dental cement or polymethyl methacrylate (control) at the bottom. Three representative dental cements (glass-ionomer, zinc phosphate, and zinc oxide-eugenol cements) were used. Each specimen was immersed in 2 mM potassium phosphate buffer for 10 min, 24 hrs, 1 wk, or 4 wks. The well was packed with Streptococcus mutans NCTC 10449, and a miniature pH electrode was placed at the interface between bacterial cells and dental cement. The pH was monitored after the addition of 1% glucose, and the fluoride contained in the cells was quantified. Glass-ionomer cement inhibited the bacteria-induced pH fall significantly compared with polymethyl methacrylate (control) at the interface (10 min, 5.16 ± 0.19 vs. 4.50 ± 0.07; 24 hrs, 5.20 ± 0.07 vs. 4.59 ± 0.11; 1 wk, 5.34 ± 0.14 vs. 4.57 ± 0.11; and 4 wks, 4.95 ± 0.27 vs. 4.40 ± 0.14), probably due to the fluoride released from the cement. This method could be useful for the assessment of pH at the parasite-biomaterial interface. PMID:21933936

Mayanagi, G; Igarashi, K; Washio, J; Nakajo, K; Domon-Tawaraya, H; Takahashi, N

2011-12-01

159

Evaluation of mechanical properties of five cements for orthodontic band cementation.  

PubMed

The aim of this in vitro study was to compare the flexural, compressive and diametral tensile strengths of five cements used in orthodontics for band cementation. Twelve specimens of each cement were tested: 1 - GC Fuji Ortho Band (FJ), GC America Inc.; 2 - Meron (MR), Voco; 3 - Multi-Cure Glass Ionomer Band Cement (MC), 3M Unitek; 4 - Band-Lok (BL), Reliance Orthodontic Products; and 5 - Ketac Cem (KC), 3M ESPE. The results (mean) for diametral tensile strength were: 10.51 MPa (FJ), 9.60 MPa (MR), 20.04 MPa (MC), 42.80 MPa (BL), and 4.08 MPa (KC). The results for compressive strength were (in the same order): 64.50 MPa, 77.71 MPa, 94.21 MPa, 193.88 MPa, and 81.93 MPa. The results for flexural strength were (in the same order): 20.72 MPa, 25.84 MPa, 53.41 MPa, 137.41 MPa, and 20.50 MPa. The statistical analysis was performed by two-way ANOVA and Tukey tests with p-value £ 0.05. In terms of diametral tensile strength, BL showed the highest strength statistically, and MC, the second highest. In terms of compressive tensile strength, BL showed the highest strength statistically, and FJ did not attain the minimum recommended strength. In terms of flexural tensile strength, BL cement was superior to MC, and MR, FJ and KC were equivalent and inferior to BL and MC. PMID:23459769

Aguiar, Diego Andrei; Ritter, Daltro Enéas; Rocha, Roberto; Locks, Arno; Borgatto, Adriano Ferreti

2013-01-01

160

Biocompatibility of resin-modified filling materials.  

PubMed

Increasing numbers of resin-based dental restorations have been placed over the past decade. During this same period, the public interest in the local and especially systemic adverse effects caused by dental materials has increased significantly. It has been found that each resin-based material releases several components into the oral environment. In particular, the comonomer, triethyleneglycol di-methacrylate (TEGDMA), and the 'hydrophilic' monomer, 2-hydroxy-ethyl-methacrylate (HEMA), are leached out from various composite resins and 'adhesive' materials (e.g., resin-modified glass-ionomer cements [GICs] and dentin adhesives) in considerable amounts during the first 24 hours after polymerization. Numerous unbound resin components may leach into saliva during the initial phase after polymerization, and later, due to degradation or erosion of the resinous restoration. Those substances may be systemically distributed and could potentially cause adverse systemic effects in patients. In addition, absorption of organic substances from unpolymerized material, through unprotected skin, due to manual contact may pose a special risk for dental personnel. This is borne out by the increasing numbers of dental nurses, technicians, and dentists who present with allergic reactions to one or more resin components, like HEMA, glutaraldehyde, ethyleneglycol di-methacrylate (EGDMA), and dibenzoyl peroxide (DPO). However, it must be emphasized that, except for conventional composite resins, data reported on the release of substances from resin-based materials are scarce. There is very little reliable information with respect to the biological interactions between resin components and various tissues. Those interactions may be either protective, like absorption to dentin, or detrimental, e.g., inflammatory reactions of soft tissues. Microbial effects have also been observed which may contribute indirectly to caries and irritation of the pulp. Therefore, it is critical, both for our patients and for the profession, that the biological effects of resin-based filling materials be clarified in the near future. PMID:11021634

Geurtsen, W

2000-01-01

161

Surface roughness of orthodontic band cements with different compositions  

PubMed Central

Objectives The present study evaluated comparatively the surface roughness of four orthodontic band cements after storage in various solutions. Material and Methods eight standardized cylinders were made from 4 materials: zinc phosphate cement (ZP), compomer (C), resin-modified glass ionomer cement (RMGIC) and resin cement (RC). Specimens were stored for 24 h in deionized water and immersed in saline (pH 7.0) or 0.1 M lactic acid solution (pH 4.0) for 15 days. Surface roughness readings were taken with a profilometer (Surfcorder SE1200) before and after the storage period. Data were analyzed by two-way ANOVA and Tukey's test (comparison among cements and storage solutions) or paired t-test (comparison before and after the storage period) at 5% significance level. Results The values for average surface roughness were statistically different (p<0.001) among cements at both baseline and after storage. The roughness values of cements in a decreasing order were ZP>RMGIC>C>R (p<0.001). After 15 days, immersion in lactic acid solution resulted in the highest surface roughness for all cements (p<0.05), except for the RC group (p>0.05). Compared to the current threshold (0.2 µm) related to biofilm accumulation, both RC and C remained below the threshold, even after acidic challenge by immersion in lactic acid solution. Conclusions Storage time and immersion in lactic acid solution increased the surface roughness of the majority of the tested cements. RC presented the smoothest surface and it was not influenced by storage conditions. PMID:21625737

van de SANDE, Françoise Hélène; da SILVA, Adriana Fernandes; MICHELON, Douver; PIVA, Evandro; CENCI, Maximiliano Sérgio; DEMARCO, Flávio Fernando

2011-01-01

162

Finite element analysis of stresses in fixed prosthesis and cement layer using a three-dimensional model  

PubMed Central

Context: To understand the effect of masticatory and parafunctional forces on the integrity of the prosthesis and the underlying cement layer. Aims: The purpose of this study was to evaluate the stress pattern in the cement layer and the fixed prosthesis, on subjecting a three-dimensional finite element model to simulated occlusal loading. Materials and Methods: Three-dimensional finite element model was simulated to replace missing mandibular first molar with second premolar and second molar as abutments. The model was subjected to a range of occlusal loads (20, 30, 40 MPa) in two different directions – vertical and 30° to the vertical. The cements (zinc phosphate, polycarboxylate, glass ionomer, and composite) were modeled with two cement thicknesses – 25 and 100 ?m. Stresses were determined in certain reference points in fixed prosthesis and the cement layer. Statistical Analysis Used: The stress values are mathematic calculations without variance; hence, statistical analysis is not routinely required. Results: Stress levels were calculated according to Von Mises criteria for each node. Maximum stresses were recorded at the occlusal surface, axio-gingival corners, followed by axial wall. The stresses were greater with lateral load and with 100-?m cement thickness. Results revealed higher stresses for zinc phosphate cement, followed by composites. Conclusions: The thinner cement interfaces favor the success of the prosthesis. The stresses in the prosthesis suggest rounding of axio-gingival corners and a well-established finish line as important factors in maintaining the integrity of the prosthesis. PMID:23066295

Sangeetha, Arunachalam; Padmanabhan, Thallam Veeravalli; Subramaniam, R.; Ramkumar, Vivekanandan

2012-01-01

163

Why the carioprotective potential of luting cements crucial?  

PubMed

Space maintainers make good oral hygiene difficult, modify the oral environment, and increase the chances of enamel demineralization. Demineralization can be prevented or reduced by improving patient oral hygiene or by using topical fluorides. However these methods depend on patient compliance and, therefore, are not very reliable. Thus, caries prevention in banding might be enhanced by using fluoride-releasing cements. The aim of the study was to comparatively evaluate the carioprotective potential of various luting media used for band cementation in permanent as well as deciduous molars. In this study, 100 molars were taken, which were banded and stored in artificial saliva for 1 month after which the teeth were debanded. An area of 2 x 2 mm was spared and the teeth were coated with nail varnish. The coated teeth were dipped in artificial caries solution in one month followed by 1-day immersion in methylene blue dye, after which the samples were sectioned through the window. The depth of dye penetration was measured and the results were statistically analyzed. Minimum dye penetration was observed with glass ionomer, which could be due to the fluoride release from the cement, whereas the control group showed the maximum, probably due to direct contact with the artificial caries solution. PMID:19915272

Rohilla, M; Pandit, I K; Srivastava, N

2009-01-01

164

Orthodontic Cements and Demineralization: An In Vitro Comparative Scanning Electron Microscope Study  

PubMed Central

Background: Comparison of the demineralization potential of four luting cements, i.e. zinc phosphate, conventional glass ionomer cement (GIC), resin-modified GIC and acid modified composite resin. Materials and Methods: This study was conducted on 75 extracted premolar teeth, which were grouped into five, each group containing 15 teeth. Groups were non-banded control, teeth cemented with the above-mentioned cements. These were incubated at 37°C for 30 days in sealable plastic containers, after which the teeth were debanded, cleaned and placed in acid gelatin solution at 37°C for 4 weeks to simulate the cariogenic solution. Then, the teeth were sectioned and examined under scanning electron microscope. The depth of the carious lesions was measured using image analysis with Digimizer software. Results: The depth of the carious lesions was maximum with non-banded group, followed by zinc phosphate, acid modified composite resin, resin-modified GIC and conventional GIC. Conclusions: Among the four orthodontic banding cements compared, the enamel demineralization potential is least with conventional GIC, followed by resin-modified GIC, acid modified composite resin and zinc phosphate.

Prabhavathi, V; Jacob, Josy; Kiran, M Shashi; Ramakrishnan, Murugesan; Sethi, Esha; Krishnan, C S

2015-01-01

165

Zinc polycarboxylate dental cement for the controlled release of an active organic substance: proof of concept.  

PubMed

The potential of employing zinc polycarboxylate dental cement as a controlled release material has been studied. Benzalkonium chloride was used as the active ingredient, and incorporated at concentrations of 1, 2 and 3% by mass within the cement. At these levels, there was no observable effect on the speed of setting. Release was followed using an ion-selective electrode to determine changes in chloride ion concentration with time. This technique showed that the additive was released when the cured cement was placed in water, with release occurring by a diffusion mechanism for the first 3 h, but continuing beyond that for up to 1 week. Diffusion coefficients were in the range 5.62 x 10(-6) cm(2) s(-1) (for 1% concentration) to 10.90 x 10(-6) cm(2) s(-1) (for 3% concentration). Up to 3% of the total loading of benzalkonium chloride was released from the zinc polycarboxylate after a week, which is similar to that found in previous studies with glass-ionomer cement. It is concluded that zinc polycarboxylate cement is capable of acting as a useful material for the controlled release of active organic compounds. PMID:19967407

Ali, Mohammad Naseem; Edwards, Mark; Nicholson, John W

2010-04-01

166

Effect of luting cement on dental biofilm composition and secondary caries around metallic restorations in situ.  

PubMed

Since the importance of luting cement on secondary caries in enamel and dentin is unknown, an in situ crossover study was conducted in three phases over 21 days using a fluoride-containing toothpaste. One hundred and twenty-six metallic restorations were cemented into the dentinoenamel junction of slabs of human teeth with zinc phosphate (ZP), resin-modified glass ionomer (GI) or resinous cement (RC). The slabs were inserted onto flanges of the removable partial acrylic dentures of 14 volunteers and covered with gauze to enhance dental plaque accumulation. The volunteers used fluoride toothpaste (1.100 microg F/g, w/w). After 21 days, the biofilm that formed on the slabs was collected for biochemical and microbiological analyses, and the demineralization in enamel-dentin around the restorations was evaluated. The fluoride concentration of biofilm in the GI group was higher (p<0.05) than the ZP and RC groups. Also, the concentration of Zinc in biofilm formed on the slabs cemented with ZP was higher (p<0.05) than the other groups. However, the effect of the luting material on enamel or dentin demineralization was not statistically significant (p>0.05). The data suggest that when fluoride toothpaste is used, the anticariogenic property of the luting cement may not be relevant to the reduction of secondary caries. PMID:15470872

Moura, J S; Lima, E M C X; Paes Leme, A F; Del Bel Cury, Altair A; Tabchoury, C P M; Cury, J A

2004-01-01

167

Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements.  

PubMed

Ulvan, extracted from the green algae Ulva lactuca, and chitosan, extracted from Loligo forbesis squid-pen, were carboxymethylated, yielding polysaccharides with an average degree of substitution of ?98% (carboxymethyl ulvan, CMU) and ?87% (carboxymethyl chitosan, N,O-CMC). The carboxymethylation was confirmed by Fourier transform infrared spectroscopy and quantified by conductimetric titration and 1H nuclear magnetic resonance. The average molecular weight increased with the carboxymethylation (chitosan, Mn 145?296 kDa and Mw 227?416 kDa; ulvan, Mn 139?261 kDa and Mw 368?640 kDa), indicating successful chemical modifications. Mixtures of the modified polysaccharides were tested in the formulation of polyacrylic acid-free glass-ionomer bone cements. Mechanical and in vitro bioactivity tests indicate that the inclusion of CMU in the cement formulation, i.e. 0.50:0.50 N,O-CMC:CMU, enhances its mechanical performance (compressive strength 52.4±8.0 MPa and modulus 2.3±0.3 GPa), generates non-cytotoxic cements and induces the diffusion of Ca and/or P-based moieties from the surface to the bulk of the cements. PMID:23816652

Barros, A A A; Alves, A; Nunes, C; Coimbra, M A; Pires, R A; Reis, R L

2013-11-01

168

Kinetics of fluoride release from zinc oxide-based cements.  

PubMed

Considerable attention has been given to the release of the cariostatic fluoride ion from glass-based dental cements (dental silicate and glass ionomer). In these, the total available fluoride content is not precisely known since fluorine is distributed between the cross-linked aqueous salt matrix, partially dissolved glass, and undissolved glass. In analogous cements based on zinc oxide the fluoride is added as highly soluble SnF2. The object of this study is to compare the F- ion release profiles of commercial zinc polycarboxylate and zinc phosphate containing 4.4 and 3.6% SnF2, respectively. Mixed cements were clamped in split ring moulds to produce discs of 10 mm x 1 mm after storage at 37 degrees C for 1 h. Each was weighed and immersed in 10 ml of deionised water. When this changed, at 13 time intervals up to 98 days, the fluoride content was measured using an ion selective electrode. The mean (N = 3) values obtained were expressed cumulatively [F] in micromol F ion/g cement. The total [F] released was 111 for the zinc polycarboxylate and 286 for zinc phosphate compared with total F in the cements of 561 and 464, respectively. When the cumulative [F] was plotted versus t(1/2) close associations were found for both cements. For the polycarboxylate the regression line [F] = 10.6t(1/2) + 9.9 fitted well over the whole 98 days (R = 0.997). For the phosphate a better fit regression line was obtained using results up to 32 days only; [F] = 36.8t(1/2) - 8.4 (R = 0.999). For t > 32 days results increasingly deviated from this line. These results fitted a regression line of the form [F] = 81.7log(e) t - 87.3 (R = 0.9997). Comparisons are made with data from previous authors both for zinc phosphate cement and glass-based cements and with diffusion theory of F ion release. It is concluded that zinc-based cements provide some indications of how glass-based cements may behave over long periods of release and that zinc phosphate is the material of clinical choice for orthodontic cementation if maximal fluoride release is the prime criterion. PMID:11516083

Billington, R W; Hadley, P C; Williams, J A; Pearson, G J

2001-09-01

169

Novel experimental cements for use on the dentin-pulp complex.  

PubMed

This aim of this study was to evaluate the physicochemical and biological properties of novel experimental cements (Hybrid, Paste and Resin) based on synergistic combinations of existing materials, including pH, diametral tensile strength (DTS) and cytotoxicity comparing them with mineral trioxide aggregate (MTA - Angelus®) and a glass ionomer cement (GIC) developed at our laboratory. For the physicochemical and biological tests, specimens with standard dimensions were produced. pH measurements were performed with digital pH meter at the following time intervals: 3, 24, 48 and 72 h. For the DTS test, cylindrical specimens were subjected to compressive load until fracture. The MTT assay was performed for cytotoxicity evaluation. Data were analyzed by ANOVA and Tukey's test (?=0.05). Paste group showed pH values similar to MTA, and Hybrid group presented pH values similar to GIC (p>0.05). The tested materials showed pH values ranging from alkaline to near neutrality at the evaluated times. MTA and GIC showed similar DTS values. The lowest and highest DTS values were seen in the Paste and Resin groups, respectively (p<0.05). Cell viability for MTA and experimental Hybrid, Paste and Resin groups was 49%, 93%, 90% and 86%, respectively, when compared with the control group. The photo-cured experimental resin cement showed similar or superior performance compared with the current commercial or other tested experimental materials. PMID:23207847

Dantas, Raquel Venâncio Fernandes; Conde, Marcus Cristian Muniz; Sarmento, Hugo Ramalho; Zanchi, Cesar Henrique; Tarquinio, Sandra Beatriz Chaves; Ogliari, Fabrício Aulo; Demarco, Flávio Fernando

2012-01-01

170

Mineral content of ionomer cements and preventive effect of these cements against white spot lesions around restorations.  

PubMed

This study evaluated the ion exchange at the material/enamel interface and the preventive effect of restorative materials submitted to cariogenic challenge against white spot. Restorations in enamel/dentin of bovine teeth were performed with composite resin (Filtek™ Z250 - control group) and glass-ionomers cements - GICs (Ionomaster R™ and Fuji IX™ - experimental groups). Samples were grouped and submitted to neutral saliva (n = 15) or pH-cycling regimen (n = 15). After eight days of pH cycling, material/enamel interfaces were analyzed by EDX in order to determine the differences (p < 0.05) in ionic exchange (Ca, P, F, Al, Sr, and Si) between restorative materials and teeth. In addition, enamel white spot lesion formation was evaluated macroscopically (p < 0.05). Sr content was higher in the enamel of the control group (p > 0.05) versus the experimental groups. Ca and P content were higher in enamel than in restorative materials. After pH cycling, the GIC enamel bulk showed a significantly higher Sr content compared with the composite resin (p < 0.05). Filtek™ Z250 was not able to prevent white spot formation around restorations in comparison with Ionomaster R™ (p < 0.001) and Fuji IX™ (p = 0.004). GICs reduced white spot formation and presented a preventive effect (p = 0.051). GICs presented a greater percentage of fluoride, aluminum, and strontium, and proved effective in white spot lesion prevention around restorations. PMID:25184496

Paiva, Lilian Fernanda Santos; Fidalgo, Tatiana Kelly da Silva; Maia, Lucianne Cople

2014-01-01

171

Addition of mechanically processed cellulosic fibers to ionomer cement: mechanical properties.  

PubMed

In this study, conventional restorative glass ionomer cement (GIC) was modified by embedding it with mechanically processed cellulose fibers. Two concentrations of fibers were weighed and agglutinated into the GIC during manipulation, yielding Experimental Groups 2 (G2; 3.62 wt% of fibers) and 3 (G3; 7.24 wt% of fibers), which were compared against a control group containing no fibers (G1). The compressive strengths and elastic modulus of the three groups, and their diametral tensile strengths and stiffness, were evaluated on a universal test machine. The compressive and diametral tensile strengths were significantly higher in G3 than in G1. Statistically significant differences in elastic modulus were also found between G2 and G1 and between G2 and G3, whereas the stiffness significantly differed between G1 and G2. The materials were then characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Heterogeneously shaped particles were found on the G2 and G3 surfaces, and the cement matrices were randomly interspersed with long intermingled fibers. The EDS spectra of the composites revealed the elemental compositions of the precursor materials. The physically processed cellulosic fibers (especially at the higher concentration) increased the compressive and diametral tensile strengths of the GIC, and demonstrated acceptable elastic modulus and stiffness. PMID:25627882

Silva, Rafael Menezes; Carvalho, Vinícius Xavier Mattar de; Dumont, Vitor César; Santos, Maria Helena; Carvalho, Ana Márcia Macedo Ladeira

2015-01-01

172

Laser treatment of dental ceramic/cement layers: transmitted energy, temperature effects and surface characterisation.  

PubMed

In the present paper, we investigate the behaviour of different dental materials under laser irradiation. We have used e.max Ceram, e.max ZirCAD, and e.max Press dental ceramics and glass ionomer cement Ketac Cem in the present study. The dental ceramics were prepared in the form of samples with thickness of 0.5-2 mm. We used two lasers [solid-state laser (Er:YAG, Fidelis III+, Fotona) and an 810-?nm diode laser (FOX, A.R.C)] for the transillumination of ceramic samples. It has been shown that the laser energy transmitted through the ceramic material decreases to 30-40 % of the original values along with an increase in the thickness of the irradiated sample. Pigmented ceramic samples show more laser energy loss compared to the samples containing no pigment. We investigated the temperature evolution in composite sandwiched ceramic/cement samples under laser treatment. The increase in the irradiation time and laser power led to a temperature increase of up to 80 °C. The surfaces of irradiated ceramic samples were examined with X-ray photoelectron spectroscopy to evaluate changes in chemical composition, such as a decrease in the C signal, accompanied by a strong increase in the Zr peak for the Er:YAG laser, while the 810-nm diode laser showed no change in the ratio of elements on the surface. PMID:23793369

Pich, Olena; Franzen, René; Gutknecht, Norbert; Wolfart, Stefan

2015-02-01

173

Ion release from copper phosphate cement and influence on Streptococcus mutans growth in vitro: a comparative study.  

PubMed

The aim of this study was to compare the effects of a black copper cement (BCC), an established restorative material (a conventional glass ionomer cement) and two temporary restorative materials (a zinc phosphate and a zinc polycarboxylate cement) on the growth of Streptococcus mutans in vitro, and to correlate bacterial growth with ion release from each material. Test specimens were eluted in either 0.1 M lactic acid, pH 4, or 0.1 M sodium chloride, pH 7. At 2 days, 7 days, 28 days and 6 months, eluates were inoculated with S. mutans and bacterial growth was recorded. Metal ion (Cu(2+), Zn(2+ )and Mg(2+)) and fluoride release were measured. At most immersion times, the different materials had a statistically significant inhibitory effect on bacterial growth compared to the respective control, at both pH levels. The inhibitory effect decreased with time and in most cases was associated with high levels of ion release at the beginning of the experimental period, followed by significantly lower levels. For BCC, there were statistically significant relationships between the median rates of growth of S. mutans in the presence of BCC eluates and the median values for release of copper and zinc, although not magnesium. Of the different materials, BCC demonstrated greatest antibacterial activity. PMID:14571119

Foley, Jennifer; Blackwell, Alison

2003-01-01

174

Effects of surface treatments and storage times on the tensile bond strength of adhesive cements to noble and base metal alloys.  

PubMed

This work evaluated two resin cements and a glass-ionomer cement and their bond strength to gold-palladium (Au-Pd), silver-palladium (Ag-Pd), and nickel-chromium-beryllium (Ni-Cr-Be) alloys, utilizing three surface treatments over a period of six months. Eight hundred ten pieces were cast (in a button shape flat surfaces) in one of three alloys. Each alloy group was assigned to three other groups, based on the surface treatment utilized. Specimens were fabricated by bonding similar buttons in using one of three adhesive cements. The 405 pairs were thermocycled and stored in saline solution (0.9% NaCl) at 37 degrees C. The tensile bond strengths were measured in a universal testing machine after storage times of 2, 90, or 180 days. The highest mean bond strength value was obtained with the base metal alloy (10.9 +/- 8.6 MPa). In terms of surface treatment, oxidation resulted in the highest mean bond strength (13.7 +/- 7.3 MPa), followed by sandblasting (10.3 +/- 5.5 MPa) and polishing (3.0 +/- 6.4 MPa). Panavia Ex (13.2 +/- 9.3 MPa) showed significantly higher bond strengths than the other two cements, although the storage time reduced all bond strengths significantly. PMID:18348374

Burmann, Paulo Afonso; Santos, Jose Fortunato Ferreira; May, Liliana Gressler; Pereira, Joao Eduardo da Silva; Cardoso, Paulo Eduardo Capel

2008-01-01

175

Criteria of biocompatibility of materials for bone defect repair.  

PubMed

We analyzed and systematized the criteria of biocompatibility of materials intended for reconstruction of bone defects on the basis of previously studied synthetic, natural, and composite biomaterials (carbonate hydroxyapatite, calcium phosphate cement, silica, natural corals, freshwater pearls, chitosan/carbonate hydroxyapatite) in the model of subcutaneous implantation to small laboratory animals. PMID:25257441

Sergeeva, N S; Sviridova, I K; Frank, G A; Kirsanova, V A; Akhmedova, S A; Popov, A A

2014-09-01

176

Asphalt cement  

MedlinePLUS

... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. This is ... Road paving materials Roofing materials Tile cements Note: This list may not include all uses of asphalt.

177

Microdrilling of Biocompatible Materials  

E-print Network

This research studies microdrilling of biocompatible materials including commercially pure titanium, 316L stainless steel, polyether ether ketone (PEEK) and aluminum 6061-T6. A microdrilling technique that uses progressive pecking and micromist...

Mohanty, Sankalp

2012-02-14

178

Shear Bond Strength of Calcium Enriched Mixture Cement and Mineral Trioxide Aggregate to Composite Resin with Two Different Adhesive Systems  

PubMed Central

Objective: Immediate restoration after vital pulp therapy is essential in order to create and maintain effective coronal seal. Purpose of Study: The aim of this study was to evaluate the shear bond strength of recently used pulp capping materials: white mineral trioxide aggregate (MTA), and calcium enriched mixture cement (CEM) to composite resin with the use of etch-and-rinse and self-etch adhesive systems and compare them with the bond strength of commonly used resin modified glass ionomer (RMGI) cement. Materials and Methods: Forty specimens from each test material were fabricated, measuring 4 mm in diameter and 2 mm in depth. The specimens of each material were divided into 2 groups of 20 specimens according to the adhesive system (Single Bond vs. Clearfil SE Bond) used for bonding of resin composite. The shear bond strength values were measured at a crosshead speed of 1.0 mm/min and fractured surfaces were examined. Data were analyzed using two-way ANOVA and a post hoc Tukey’s test (P<0.05). Results: Analysis of data showed a significantly higher bond strength for RMGI compared to MTA and CEM (P<0.001); however, no significant differences were observed in the bond strength values of MTA and CEM (P=0.9). Furthermore, there were no significant differences in relation to the type of the adhesive system irrespective of the type of the material used (P=0.95) All the failures were of cohesive type in RMGI, MTA and CEM. Conclusion: Bond strength of RMGI cement to composite resin was higher than that of MTA or CEM cement irrespective of the type of the adhesive system. PMID:25628696

Savadi Oskoee, Siavash; Bahari, Mahmoud; Kimyai, Soodabeh; Motahhari, Paria; Eghbal, Mohammad Jafar; Asgary, Saeed

2014-01-01

179

Biocompatibility of Titanium  

NASA Astrophysics Data System (ADS)

Titanium is the material of choice for orthopaedic applications because of its known biocompatibility. In order to enhance osteogenic properties of the Ti implants, it is necessary to understand the origin of its biocompatibility. We addresses the origin of Ti biocompatibility through (1) theoretical modeling, (2) the precise determination of Ti surface chemistry by X-ray photoelectron spectroscopy (XPS), (3) and the study of fibronectin adsorption as a function of Ti (near) surface chemistry by Enzyme-linked immunosorbent assay (ELISA). We compare the protein adsorption on Ti with the native oxide layer and the one coated by TiO2 in anatase phase using ion beam assisted deposition (IBAD). We show that the thin native sub-stoichiometric titanium oxide layer is crucial for biocompatibility of Ti surface. This is due to the enhancement of the non-specific adsorption of proteins which mediate cell adhesion. Improving the surface oxide quality, i.e. fabricating stoichiometric TiO2 (using IBAD) as well as nanoengineering the surface topology that matches its dimensions to that of adhesive proteins, is crucial for increased protein adsorption and, as a result, further increases biocompatibility of Ti implant materials.

Namavar, Fereydoon; Sabirianov, Renat; Marton, Denes; Rubinstein, Alexander; Garvin, Kevin

2012-02-01

180

Rigidity and retention of ceramic root canal posts.  

PubMed

Ceramic root-canal posts offer potential advantages over other types with respect to aesthetics and biocompatibility. Any post must be sufficiently rigid and retentive to withstand functional forces. Ceraposts (1.2 mm coronal diameter, ceramic, tapering, smooth posts) and Paraposts (1.25 mm, stainless-steel, parallel, serrated posts) were tested for rigidity by means of a three-point bending test. To test retention in roots, ceramic posts were cemented using one of three protocols: (1) glass-ionomer cement, (2) silane coupling agent and resin cement, or (3) sandblasted post surface, silane coupling agent, and resin cement. Stainless-steel posts were cemented with resin. The tensile force required to dislodge the posts, following four weeks of storage in water, was recorded. Data were compared using Student's t-test and Mann-Whitney U analysis. Ceraposts were significantly more rigid than Paraposts (p < 0.001). Paraposts cemented with resin were significantly more strongly retained than Ceraposts following any cementation protocol (p < 0.001). Retention of the ceramic posts was significantly greater with a silane coupling agent and resin cement than with glass-ionomer cement (p < 0.001). Sandblasting the ceramic posts produced variable results and needs further investigation before it could be recommended. PMID:11203820

Purton, D G; Love, R M; Chandler, N P

2000-01-01

181

Setting Reaction and Hardening of an Apatitic Calcium Phosphate Cement  

Microsoft Academic Search

The combination of self-setting and biocompatibility makes calcium phosphate cements potentially useful materials for a variety of dental applications. The objective of this study was to investigate the setting and hardening mechanisms of a cement-type reaction leading to the formation of calcium-deficient hydroxyapatite at low temperature. Reactants used were a-tricalcium phosphate containing 17 wt% ?-tricalcium phosphate, and 2 wt% of

M. P. Ginebra; E. Fernández; E. A. P. De Maeyer; R. M. H. Verbeeck; M. G. Boltong; J. Ginebra; F. C. M. Driessens; J. A. Planell

1997-01-01

182

In vitro studies of calcium phosphate silicate bone cements.  

PubMed

A novel calcium phosphate silicate bone cement (CPSC) was synthesized in a process, in which nanocomposite forms in situ between calcium silicate hydrate (C-S-H) gel and hydroxyapatite (HAP). The cement powder consists of tricalcium silicate (C(3)S) and calcium phosphate monobasic (CPM). During cement setting, C(3)S hydrates to produce C-S-H and calcium hydroxide (CH); CPM reacts with the CH to precipitate HAP in situ within C-S-H. This process, largely removing CH from the set cement, enhances its biocompatibility and bioactivity. The testing results of cell culture confirmed that the biocompatibility of CPSC was improved as compared to pure C(3)S. The results of XRD and SEM characterizations showed that CPSC paste induced formation of HAP layer after immersion in simulated body fluid for 7 days, suggesting that CPSC was bioactive in vitro. CPSC cement, which has good biocompatibility and low/no cytotoxicity, could be a promising candidate as biomedical cement. PMID:23114635

Zhou, Shuxin; Ma, Jingzhi; Shen, Ya; Haapasalo, Markus; Ruse, N Dorin; Yang, Quanzu; Troczynski, Tom

2013-02-01

183

Biocompatibility of composite resins  

PubMed Central

Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

Mousavinasab, Sayed Mostafa

2011-01-01

184

BoneSource? hydroxyapatite cement: A novel biomaterial for craniofacial skeletal tissue engineering and reconstruction  

Microsoft Academic Search

BoneSource TM-hydroxyapatite cement is a new self-setting calcium phosphate cement biomaterial. Its unique and innovative physical chemistry coupled with enhanced biocompatibility make it useful for craniofacial skeletal reconstruction. The general prop- erties and clinical use guidelines are reviewed. The biomaterial and surgical applications offer insight into improved outcomes and potential new uses for hydroxyapatite cement systems. q 1998 John Wiley

Craig D. Friedman; Peter D. Costantino; Shozo Takagi; Lawrence C. Chow

1998-01-01

185

Tooth Abfraction Lesions  

MedlinePLUS

... Choices include a composite material or glass ionomer cement . A tooth with abfraction lesions may be more ... need treatment. For others, filling the areas with cement or composite solves the problem. Additional Info American ...

186

Types of Fillings  

MedlinePLUS

... the mold. During a second visit, your dentist cements this filling into place. Used for: Small and ... for: Glass ionomer is used most commonly as cement for inlay fillings. It also is used for ...

187

The following document is the Dental Board of California's Dental Materials Fact Sheet. The Department of Consumer Affairs has no position with respect to the language of this Dental  

E-print Network

are amalgam, composite resin, glass ionomer cement, resin-ionomer cement, porcelain (ceramic), porcelain are compared in the attached matrix titled "Comparisons of Restorative Dental Materials." A Glossary of Terms

Klein, Ophir

188

The influence of fatigue loading on the quality of the cement layer and retention strength of carbon fiber post-resin composite core restorations.  

PubMed

Clinical studies have shown that endodontically treated teeth restored with short posts or deficient ferrules show a high failure risk. This study. evaluated the influence of fatigue loading on the quality of the cement layer between prefabricated quartz coated carbon fiber posts with restricted length and the root canal wall in maxillary pre-molars. Two adhesive resin composite cements, chemical-cured Panavia 21 (Group 1) and dual-cured RelyX-ARC (Group 2), and one resin-modified glass-ionomer cement, chemical-cured RelyX (Group 3), delta were selected for this study. Post- and-core restorations were made on single-rooted human maxillary premolars from which the coronal sections were removed at the level of the proximal cemento-enamel junction (CEJ). Following endodontic treatment, a post-and-core restoration with 6-mm post length was prepared for each tooth. The posts were directly cemented into the root canal and, after applying an adhesive (Clearfil Photo Bond), they were built up with a core build-up composite (Clearfil Photo Core). For each group (n=8), half of the specimens were exposed to fatigue loading (10(6) load cycles) almost perpendicular to the axial axis (85 degrees), while the other half were used as the control. Three parallel, transverse root sections, 1.5-mm thick, were cut from each specimen at the apical, medial and coronal location. These sections were examined by Scanning Electron Microscopy (SEM) to evaluate the integrity of the cement layer, while the retention strength of the cemented post sections was determined with the push-out test. The multivariate results of MANOVA showed that the condition main effect (fatigue or control) was not significant (p=0.059); the two other main effects, type of cement and section location, were significant (p=0.001 and p=0.008). For both the push-out strength and SEM evaluation of the cement layer integrity, the results significantly improved from RelyX to RelyX-ARC to Panavia 21 and also from apical to coronal. PMID:15853108

Bolhuis, Peter; de Gee, Anton; Feilzer, Albert

2005-01-01

189

Biocompatibility of Graphene Oxide  

NASA Astrophysics Data System (ADS)

Herein, we report the effects of graphene oxides on human fibroblast cells and mice with the aim of investigating graphene oxides' biocompatibility. The graphene oxides were prepared by the modified Hummers method and characterized by high-resolution transmission electron microscope and atomic force microscopy. The human fibroblast cells were cultured with different doses of graphene oxides for day 1 to day 5. Thirty mice divided into three test groups (low, middle, high dose) and one control group were injected with 0.1, 0.25, and 0.4 mg graphene oxides, respectively, and were raised for 1 day, 7 days, and 30 days, respectively. Results showed that the water-soluble graphene oxides were successfully prepared; graphene oxides with dose less than 20 ?g/mL did not exhibit toxicity to human fibroblast cells, and the dose of more than 50 ?g/mL exhibits obvious cytotoxicity such as decreasing cell adhesion, inducing cell apoptosis, entering into lysosomes, mitochondrion, endoplasm, and cell nucleus. Graphene oxides under low dose (0.1 mg) and middle dose (0.25 mg) did not exhibit obvious toxicity to mice and under high dose (0.4 mg) exhibited chronic toxicity, such as 4/9 mice death and lung granuloma formation, mainly located in lung, liver, spleen, and kidney, almost could not be cleaned by kidney. In conclusion, graphene oxides exhibit dose-dependent toxicity to cells and animals, such as inducing cell apoptosis and lung granuloma formation, and cannot be cleaned by kidney. When graphene oxides are explored for in vivo applications in animal or human body, its biocompatibility must be considered.

Wang, Kan; Ruan, Jing; Song, Hua; Zhang, Jiali; Wo, Yan; Guo, Shouwu; Cui, Daxiang

2010-12-01

190

Biocompatibility of Graphene Oxide  

NASA Astrophysics Data System (ADS)

Herein, we report the effects of graphene oxides on human fibroblast cells and mice with the aim of investigating graphene oxides' biocompatibility. The graphene oxides were prepared by the modified Hummers method and characterized by high-resolution transmission electron microscope and atomic force microscopy. The human fibroblast cells were cultured with different doses of graphene oxides for day 1 to day 5. Thirty mice divided into three test groups (low, middle, high dose) and one control group were injected with 0.1, 0.25, and 0.4 mg graphene oxides, respectively, and were raised for 1 day, 7 days, and 30 days, respectively. Results showed that the water-soluble graphene oxides were successfully prepared; graphene oxides with dose less than 20 ?g/mL did not exhibit toxicity to human fibroblast cells, and the dose of more than 50 ?g/mL exhibits obvious cytotoxicity such as decreasing cell adhesion, inducing cell apoptosis, entering into lysosomes, mitochondrion, endoplasm, and cell nucleus. Graphene oxides under low dose (0.1 mg) and middle dose (0.25 mg) did not exhibit obvious toxicity to mice and under high dose (0.4 mg) exhibited chronic toxicity, such as 4/9 mice death and lung granuloma formation, mainly located in lung, liver, spleen, and kidney, almost could not be cleaned by kidney. In conclusion, graphene oxides exhibit dose-dependent toxicity to cells and animals, such as inducing cell apoptosis and lung granuloma formation, and cannot be cleaned by kidney. When graphene oxides are explored for in vivo applications in animal or human body, its biocompatibility must be considered.

Wang, Kan; Ruan, Jing; Song, Hua; Zhang, Jiali; Wo, Yan; Guo, Shouwu; Cui, Daxiang

2011-12-01

191

Fully injectable calcium phosphate cement--a promise to dentistry.  

PubMed

Calcium phosphate cements (CPC) are self setting and biocompatible bone substitute materials with potential applications in dentistry. However, its clinical use has been challenged by poor rheological properties. A novel formulation of CPC has been developed, which gives a fully injectable and cohesive paste. This work investigates the suitability of the new "fully injectable calcium phosphate cement" (FI-CPC) for dental applications. The cementing properties, material characteristics, and the rheological properties were tested using a battery of material characteristics methods. The biocompatibility was also evaluated as per ISO 7405. The setting time (20 min) and compressive strength (>11 Mpa) of FI-CPC satisfy the clinical requirements. It underwent setting without any exothermic reaction, keeping good dimensional stability. The cement paste could be extruded through a 18-gauge needle, easily and fully. It showed excellent cohesion when immersed in water. FI-CPC was seen to set into a micro-porous mass of hydroxyapatite, the mineral part of human dentin. It showed good attachment to dentin walls, when filled in tooth perforations. FI-CPC was found non-toxic, non-allergic, non-pyrogenic, and soft-tissue compatible. The study shows that FI-CPC provides a self setting bio-compatible paste with excellent rheological properties for surgical applications. The set cement provides good and stable sealing. The osteoconductive property is an added advantage. FI-CPC proves to be an ideal material for endodontic sealing/filling and periodontic repair. PMID:15915629

Komath, Manoj; Varma, H K

2004-01-01

192

Lunar cement  

NASA Technical Reports Server (NTRS)

With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

Agosto, William N.

1992-01-01

193

Electrospinning of Biocompatible Nanofibers  

NASA Astrophysics Data System (ADS)

Artificial scaffolds for growing cells can have a wide range of applications including wound coverings, supports in tissue cultures, drug delivery, and organ and tissue transplantation. Tissue engineering is a promising field which may resolve current problems with transplantation, such as rejection by the immune system and scarcity of donors. One approach to tissue engineering utilizes a biodegradable scaffold onto which cells are seeded and cultured, and ideally develop into functional tissue. The scaffold acts as an artificial extracellular matrix (ECM). Because a typical ECM contains collagen fibers with diameters of 50-500 nm, electrostatic spinning (electrospinning) was used to mimic the size and structure of these fibers. Electrospinning is a novel way of spinning a nonwoven web of fibers on the order of 100 nm, much like the web of collagen in an ECM. We are investigating the ability of several biocompatible polymers (e.g., chitosan and polyvinyl alcohol) to form defect-free nanofiber webs and are studying the influence of the zero shear rate viscosity, molecular weight, entanglement concentration, relaxation time, and solvent on the resulting fiber size and morphology.

Coughlin, Andrew J.; Queen, Hailey A.; McCullen, Seth D.; Krause, Wendy E.

2006-03-01

194

Biocompatibility of Dental Amalgams  

PubMed Central

Objective. The purpose of this review paper is to review the literature regarding the toxicology of mercury from dental amalgam and evaluate current statements on dental amalgam. Materials and Methods. Two key-words “dental amalgam” and “toxicity” were used to search publications on dental amalgam biocompatibility published in peer-reviewed journals written in English. Manual search was also conducted. The most recent declarations and statements were evaluated using information available on the internet. Case reports were excluded from the study. Results. The literature show that mercury released from dental amalgam restorations does not contribute to systemic disease or systemic toxicological effects. No significant effects on the immune system have been demonstrated with the amounts of mercury released from dental amalgam restorations. Only very rarely have there been reported allergic reactions to mercury from amalgam restorations. No evidence supports a relationship between mercury released from dental amalgam and neurological diseases. Almost all of the declarations accessed by the internet stated by official organizations concluded that current data are not sufficient to relate various complaints and mercury release from dental amalgam. Conclusions. Available scientific data do not justify the discontinuation of amalgam use from dental practice or replacement with alternative restorative dental materials. PMID:22145006

Uçar, Yurdanur; Brantley, William A.

2011-01-01

195

Soft-tissue response to injectable calcium phosphate cements.  

PubMed

In this study, the soft tissue reaction to two newly developed injectable calcium phosphate bone cements (cement D and W) was evaluated after implantation in the back of goats. For one of the cements (cement D) the tissue reaction was also investigated after varying the concentration of accelerator Na(2)HPO(4) in the cement liquid (resulting in cement D1 and D2). Eight healthy mature female Saanen goats were used. The cement was applied 10min after mixing while it was still moldable and plastic. The material was given a standardized cylindrical shape. Thirty-two implants of each cement formulation were inserted and left in place for 1, 2, 4, and 8weeks. At the end of the study, eight specimens of each material and healing period were available for further analysis. Two specimens were used for X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) and six specimens were used for light microscopical evaluation. XRD and FTIR showed that the cements did set as microcrystalline carbonate apatite with the disappearance of monetite from the cements during implantation. Histological analysis showed that after 8weeks of implantation around all materials a thin soft-tissue capsule was formed (thickness ranging from 5 to 15 cell layers) with almost complete absence of inflammatory cells. Only in some specimens a slightly higher inflammatory reaction was observed. This was due to cement surface defects and a zone of dispersed particles near the cement-soft tissue interface. There was almost no resorption of the material after 8 weeks of implantation. In a few 4 and 8weeks samples, small areas of calcification were found in the fibrous capsule surrounding the implants. On the basis of our observations, we conclude that the tested cements were biocompatible and can be used next to soft tissue. PMID:12485793

Ooms, E M; Egglezos, E A; Wolke, J G C; Jansen, J A

2003-02-01

196

Rubber cement poisoning  

MedlinePLUS

Rubber cement is a common household glue. Breathing in large amounts of rubber cement fumes or swallowing any amount can be ... Various brands of rubber cements (often used for arts and crafts projects).

197

Sculpting with Cement.  

ERIC Educational Resources Information Center

Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

Olson, Lynn

1983-01-01

198

Method of making biocompatible electrodes  

DOEpatents

A process of improving the sensing function of biocompatible electrodes and the product so made are disclosed. The process is designed to alter the surfaces of the electrodes at their tips to provide increased surface area and therefore decreased contact resistance at the electrode-tissue interface for increased sensitivity and essentially includes rendering the tips atomically clean by exposing them to bombardment by ions of an inert gas, depositing an adhesion layer on the cleaned tips, forming a hillocked layer on the adhesion layer by increasing the temperature of the tips, and applying a biocompatible coating on the hillocked layer. The resultant biocompatible electrode is characterized by improved sensitivity, minimum voltage requirement for organ stimulation and a longer battery life for the device in which it is employed.

Wollam, John S. (Acton, MA)

1992-01-01

199

ULTRA-LIGHTWEIGHT CEMENT  

SciTech Connect

The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

Fred Sabins

2002-07-30

200

Liquid-Solid Phase Transition Alloy as Reversible and Rapid Molding Bone Cement  

E-print Network

Bone cement has been demonstrated as an essential restorative material in the orthopedic surgery. However current materials often imply unavoidable drawbacks, such as tissue-cement reaction induced thermal injuries and troublesome revision procedure. Here we proposed an injectable alloy cement to address such problems through its liquid-solid phase transition mechanism. The cement is made of a unique alloy BiInSnZn with a specifically designed low melting point 57.5{\\deg}C. This property enables its rapid molding into various shapes with high plasticity. Some fundamental characteristics including mechanical strength behaviors and phase transition-induced thermal features have been measured to demonstrate the competence of alloy as unconventional cement with favorable merits. Further biocompatible tests showed that this material could be safely employed in vivo. In addition, experiments also found the alloy cement capability as an excellent contrast agent for radiation imaging. Particularly, the proposed alloy...

Yi, Liting; Liu, Jing

2013-01-01

201

Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements  

Microsoft Academic Search

Biocompatibility of two calcium phosphate cements (CPCs), reinforced with phosphorylated chitosan (P-chitosan), was investigated in rabbits in present study. The two CPCs are monocalcium phosphate monohydrate (MPCM) with calcium oxide (CaO) in 1m phosphate buffer (i.e. MCPM\\/CaO\\/1m phosphate buffer cement, CPC-I) and dicalcium phosphate dihydrate (DCPD) with calcium hydroxide [Ca(OH)2] in 1m Na2HPO4 solution (i.e. DCPD\\/Ca(OH)2\\/1m Na2HPO4 cement, CPC-II). Different

Xiaohong Wang; Jianbiao Ma; Yinong Wang; Binglin He

2002-01-01

202

Application of HS-SPME in the determination of potentially toxic organic compounds emitted from resin-based dental materials.  

PubMed

Leaching of volatile substances from resin-based dental materials may have a potential impact on the biocompatibility as well as safety of these materials. Information from manufacturers on ingredients in the materials is very often incomplete. Patients and dentists may be in contact with components emitted from cured dental fillings or from substrates applied in their preparation. Therefore, determination of the components of these materials is necessary for better prevention from possible harmful effects caused by dental fillings. The aim of this work was the isolation and identification of organic compounds evolved from four commercial resin-modified glass-ionomer cements (resin-based dental materials applied in dentistry) by using an alternative method of volatile compounds analysis-HS-SPME (headspace-solid phase microextraction). Dental materials were heated in closed vial at various temperatures and volatile substances released into the headspace phase above the sample were isolated on a thin polymeric fibre placed in SPME syringe. Identification was performed by using the GC-MS (gas chromatography-mass spectrometry) technique. Almost 50 RMGIC (resin-modified glass-ionomer cement) components (monomers and additives) were identified. The main identified leachables were: iodobenzene (DPICls-diphenyliodonium chloride degradation product), camphorquinone (photo-initiator), tert-butyl-p-hydroxyanisole (inhibitor), 4-(dimethylamino)ethyl benzoate (co-initiator), ethylene glycol dimethacrylate (monomer). PMID:16528422

Rogalewicz, Rafal; Voelkel, Adam; Kownacki, Ireneusz

2006-03-01

203

ULTRA-LIGHTWEIGHT CEMENT  

SciTech Connect

The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

Fred Sabins

2001-04-15

204

ULTRA-LIGHTWEIGHT CEMENT  

SciTech Connect

The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, and shear bond. Testing to determine the effect of temperature cycling on the shear bond properties of the cement systems was also conducted. In addition, the stress-strain behavior of the cement types was studied. This report discusses a software program that is being developed to help design ULHS cements and foamed cements.

Fred Sabins

2002-04-29

205

ULTRA-LIGHTWEIGHT CEMENT  

SciTech Connect

The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that will be performed for analyzing the alkali-silica reactivity of ULHS in cement slurries, as well as the results of Field Tests 1 and 2.

Fred Sabins

2002-10-31

206

ULTRA-LIGHTWEIGHT CEMENT  

SciTech Connect

The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.

Fred Sabins

2001-07-18

207

Mineral of the month: cement  

USGS Publications Warehouse

Hydraulic cement is a virtually ubiquitous construction material that, when mixed with water, serves as the binder in concrete and most mortars. Only about 13 percent of concrete by weight is cement (the rest being water and aggregates), but the cement contributes all of the concrete’s compressional strength. The term “hydraulic” refers to the cement’s ability to set and harden underwater through the hydration of the cement’s components.

van Oss, Hendrik G.

2006-01-01

208

ULTRA-LIGHTWEIGHT CEMENT  

SciTech Connect

The objective of this project is to develop an improved ultra-lightweigh cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems, Task 2: Review Russian Ultra-Lightweight Cement Literature, and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary surface pipe and intermediate casing cementing conditions historically encountered in the US and establishment of average design conditions for ULHS cements. Russian literature concerning development and use of ultra-lightweight cements employing either nitrogen or ULHS was reviewed, and a summary is presented. Quality control testing of materials used to formulate ULHS cements in the laboratory was conducted to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS. This protocol is presented and discussed. finally, results of initial testing of ULHS cements is presented along with analysis to establish cement performance design criteria to be used during the remainder of the project.

Fred Sabins

2001-01-15

209

A Novel Injectable Borate Bioactive Glass Cement as an Antibiotic Delivery Vehicle for Treating Osteomyelitis  

PubMed Central

Background A novel injectable cement composed of chitosan-bonded borate bioactive glass (BG) particles was evaluated as a carrier for local delivery of vancomycin in the treatment of osteomyelitis in a rabbit tibial model. Materials and Methods The setting time, injectability, and compressive strength of the borate BG cement, and the release profile of vancomycin from the cement were measured in vitro. The capacity of the vancomycin-loaded BG cement to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in rabbit tibiae in vivo was evaluated and compared with that for a vancomycin-loaded calcium sulfate (CS) cement and for intravenous injection of vancomycin. Results The BG cement had an injectability of >90% during the first 3 minutes after mixing, hardened within 30 minutes and, after hardening, had a compressive strength of 18±2 MPa. Vancomycin was released from the BG cement into phosphate-buffered saline for up to 36 days, and the cumulative amount of vancomycin released was 86% of the amount initially loaded into the cement. In comparison, vancomycin was released from the CS cement for up 28 days and the cumulative amount released was 89%. Two months post-surgery, radiography and microbiological tests showed that the BG and CS cements had a better ability to eradicate osteomyelitis when compared to intravenous injection of vancomycin, but there was no significant difference between the BG and CS cements in eradicating the infection. Histological examination showed that the BG cement was biocompatible and had a good capacity for regenerating bone in the tibial defects. Conclusions These results indicate that borate BG cement is a promising material both as an injectable carrier for vancomycin in the eradication of osteomyelitis and as an osteoconductive matrix to regenerate bone after the infection is cured. PMID:24427311

Cui, Xu; Gu, Yi-Fei; Jia, Wei-Tao; Rahaman, Mohamed N.; Wang, Yang; Huang, Wen-Hai; Zhang, Chang-Qing

2014-01-01

210

ULTRA-LIGHTWEIGHT CEMENT  

SciTech Connect

The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

Fred Sabins

2003-01-31

211

Polycrystalline Silicon: a Biocompatibility Assay  

SciTech Connect

Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Laquerriere, P.; Bouthors, Sylvie [NSERM, ERM 0203 (labo des biomateriaux), IFR53, Reims (France); Dimova-Malinovska, D. [Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, Sofia (Bulgaria); Montgomery, P. [1 Institut d'Electronique du Solide et des Systemes (InESS), UDS-CNRS, UMR 7163, 23 rue du Loess, 67037 Strasbourg (France)

2010-01-21

212

Enhanced Biocompatibility of Porous Nitinol  

PubMed Central

Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08. PMID:19956797

Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem

2009-01-01

213

Bone cement implantation syndrome  

Microsoft Academic Search

Bone cement implantation syndrome (BCIS) is characterised by hypotension, hypoxaemia, cardiac arrhythmias, cardiac arrest or any combination of these, leading to death in 0.6–1% of patients. One of the mechanisms suggested to explain these complications is diffuse microembolisation of the lungs as a consequence of extrusion of the bone marrow content by the pressurised bone cement. By reducing intramedullary pressure

W. R. Lamadé; W. Friedl; B. Schmid; P. J. Meeder

1995-01-01

214

Nanostructures with Biocompatible and Biodegradable Characteristics  

NASA Astrophysics Data System (ADS)

The developments of nanoscience and medicine have created the opportunities for the nanomaterials' medicial applications. More and more materials were used in the medical field in recent years. For nanostructures, biocompatibility and biodegradability are the two most important characters when used in biological and medical fields, such as wound healing, tissue reconstruction and controlled drug delivery etc. In this chapter, we focused on studies of several biocompatible and biodegradable nanostructures used in medical and biological fields. We also reviewed degradable biomaterials, including natural and synthetic materials. The potential applications of these biocompatible and biodegradable nanostructures in the medical field were also analyzed.

Meng, Jie

2013-09-01

215

ULTRA-LIGHTWEIGHT CEMENT  

SciTech Connect

The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

Fred Sabins

2002-01-23

216

In vivo behavior of a novel injectable calcium phosphate cement compared with two other commercially available calcium phosphate cements.  

PubMed

The aim of this study was to investigate the physicochemical and biological properties of a newly developed calcium phosphate cement (CPC). The novel cement was compared with two other commercially available CPCs. After mixing the powder and liquid phase, the CPCs were injected as a paste into a rabbit distal femoral defect model. The CPCs were evaluated after 24 h, 6 weeks, 26 weeks, and 52 weeks. The novel CPC was easy to handle and was fast setting. X-ray diffraction (XRD) and Fourier Transform Infrared Spectrometry (FTIR) at the different implantation periods showed that the cement had converted to carbonated hydroxyapatite and remained stable over time. Histological evaluation showed bone apposition on the cement surface without any inflammatory response or fibrous encapsulation. At later time points, all CPCs were completely covered by a thin layer of bone. Osteoclast-like cells present at the interface resorbed parts of the cement mass. Histological and histomorphometrical analyses did not show any significant differences between the three implanted CPCs. The results indicate that the investigated CPC is biocompatible, osteoconductive, as well as osteotransductive and seems to be both biologically safe and effective as a bone void filler. PMID:18098203

Hannink, Gerjon; Wolke, Joop G C; Schreurs, B Willem; Buma, Pieter

2008-05-01

217

Cement Evaluation Tool: A New Approach to Cement Evaluation  

Microsoft Academic Search

Cement bond logging achieves its greatest utility when it provides the production engineer with precise indications of cement strength and distribution around the casing. Zone isolation is of critical importance in production. Previous logging systems have yielded measures of cement bond that were circumferential averages of cement quality. These were difficult to interpret. Additionally, they were sensitive to the degree

Benoit Froelich; A. Dumont; Dennis Pittman; Bruno Seeman

1982-01-01

218

How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility?  

Microsoft Academic Search

Polysulfone (PS) dialysis membranes hydrophilized by blending polyvinylpyrrolidone (PVP) are well known to have excellent biocompatibility in clinical use. The objective of the present study is thus to clarify how PVP improves biocompatibility of PS membranes and furthermore to develop a patient-friendly PS dialysis membrane with higher biocompatibility. Biocompatibility based on both lactate dehydrogenase (LDH) activity and amount of protein

Masayo Hayama; Ken-ichiro Yamamoto; Fukashi Kohori; Kiyotaka Sakai

2004-01-01

219

Physicochemical properties of newly developed bioactive glass cement and its effects on various cells.  

PubMed

Biomaterials used in dental treatments are expected to have favorable properties such as biocompatibility and an ability to induce tissue formation in dental pulp and periapical tissue, as well as sealing to block external stimuli. Bioactive glasses have been applied in bone engineering, but rarely applied in the field of dentistry. In the present study, bioactive glass cement for dental treatment was developed, and then its physicochemical properties and effects on cell responses were analyzed. To clarify the physicochemical attributes of the cement, field emission scanning electron microscopy, X-ray diffraction, and pH measurement were carried out. Cell attachment, morphology, and viability to the cement were also examined to clarify the effects of the cement on odontoblast-like cells (KN-3 cells), osteoblastic cells (MC3T3-E1 cells), human periodontal ligament stem/progenitor cells and neuro-differentiative cells (PC-12 cells). Hydroxyapatite-like precipitation was formed on the surface of the hardened cement and the pH level changed from pH10 to pH9, then stabilized in simulate body fluid. The cement had no cytotxic effects on these cells, and particulary induced process elongation of PC-12 cells. Our results suggest that the newly developed bioactive glass cement have capability of the application in dental procedures as bioactive cement. PMID:24895094

Washio, Ayako; Nakagawa, Aika; Nishihara, Tatsuji; Maeda, Hidefumi; Kitamura, Chiaki

2015-02-01

220

Laser microjoining of dissimilar and biocompatible materials  

Microsoft Academic Search

Micro-joining and hermetic sealing of dissimilar and biocompatible materials is a critical issue for a broad spectrum of products such as micro-electronics, micro-optical and biomedical products and devices. Today, biocompatible titanium is widely applied as a material for orthopedic implants as well as for the encapsulation of implantable devices such as pacemakers, defibrillators, and neural stimulator devices. Laser joining is

Ingo Bauer; Ulrich A. Russek; Hans J. Herfurth; Reiner Witte; Stefan Heinemann; Golam Newaz; A. Mian; D. Georgiev; Gregory W. Auner

2004-01-01

221

Biocompatibility of crystalline opal nanoparticles  

PubMed Central

Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2?-deoxyuridine (BrdU). Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells. PMID:23088559

2012-01-01

222

Timing of syntaxial cement  

SciTech Connect

Echinodermal fragments are commonly overgrown in ancient limestones, with large single crystals growing in optical continuity over their skeletal hosts (i.e., syntaxial overgrowths). Such syntaxial cements are usually considered to have precipitated from meteoric pore waters associated with a later stage of subaerial exposure. Although several examples have been reported from ancient carbonates where petrographic relationships may indicate an early submarine formation of syntaxial cement, no occurrences have been noted in Holocene submarine-cemented rocks. Syntaxial cements of submarine origin have been found in Bermuda beachrock where isopachous high-magnesian calcite cements merge with large optically continuous crystals growing on echinodermal debris. Examination of other Holocene sediments cemented by magnesian calcite indicates that echinodermal fragments are not always overgrown syntaxially, but may be rimmed by microcrystalline calcite. The reason for this difference is not clear, although it may be a function of the spacing of nucleation sites and rates of crystal growth. A review of syntaxial cements from several localities in ancient carbonate sequences reveals that many are best interpreted as having formed in the submarine setting, whereas it is more clear that others formed from meteoric precipitation. These occurrences suggest that care should be exercised in inferring meteoric diagenesis from syntaxial overgrowths and that the possibility of submarine formation should be considered.

Perkins, R.D.

1985-02-01

223

Preparation, Physical-Chemical Characterization, and Cytocompatibility of Polymeric Calcium Phosphate Cements  

PubMed Central

Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs) were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control). Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12?min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications. PMID:21941551

Khashaba, Rania M.; Moussa, Mervet; Koch, Christopher; Jurgensen, Arthur R.; Missimer, David M.; Rutherford, Ronny L.; Chutkan, Norman B.; Borke, James L.

2011-01-01

224

In Vitro and in Vivo Characteristics of Fluorapatite-Forming Calcium Phosphate Cements  

PubMed Central

This study reports for the first time in vitro and in vivo properties of fluorapatite (FA)-forming calcium phosphate cements (CPCs). The experimental cements contained from (0 to 3.1) mass % of F, corresponding to presence of FA at levels of approximately (0 to 87) mass %. The crystallinity of the apatitic cement product increased greatly with the FA content. When implanted subcutaneously in rats, the in vivo resorption rate decreased significantly with increasing FA content. The cement with the highest FA content was not resorbed in soft tissue, making it the first known biocompatible and bioinert CPC. These bioinert CPCs might be useful for applications where slow or no resorption of the implant is required to achieve the desired clinical outcome. PMID:21479080

Takagi, Shozo; Frukhtbeyn, Stan; Chow, Laurence C.; Sugawara, Akiyoshi; Fujikawa, Kenji; Ogata, Hidehiro; Hayashi, Makoto; Ogiso, Binnai

2010-01-01

225

Bone cement implantation syndrome.  

PubMed

Bone cement implantation syndrome (BCIS) is characterized by hypoxia, hypotension, cardiac arrhythmias, increased pulmonary vascular resistance and cardiac arrest. It is a known cause of morbidity and mortality in patients undergoing cemented orthopaedic surgeries. The rarity of the condition as well as absence of a proper definition has contributed to under-reporting of cases. We report a 59-year-old woman who sustained fracture of the neck of her left femur and underwent an elective hybrid total hip replacement surgery. She collapsed during surgery and was revived only to succumb to death twelve hours later. Post mortem findings showed multiorgan disseminated microembolization of bone marrow and amorphous cement material. PMID:23817399

Razuin, R; Effat, O; Shahidan, M N; Shama, D V; Miswan, M F M

2013-06-01

226

Cement and concrete  

NASA Technical Reports Server (NTRS)

To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

Corley, Gene; Haskin, Larry A.

1992-01-01

227

Cytotoxicity Comparison of Harvard Zinc Phosphate Cement Versus Panavia F2 and Rely X Plus Resin Cements on Rat L929-fibroblasts  

PubMed Central

Objective: Resin cements, regardless of their biocompatibility, have been widely used in restorative dentistry during the recent years. These cements contain hydroxy ethyl methacrylate (HEMA) molecules which are claimed to penetrate into dentinal tubules and may affect dental pulp. Since tooth preparation for metal ceramic restorations involves a large surface of the tooth, cytotoxicity of these cements would be more important in fixed prosthodontic treatments. The purpose of this study was to compare the cytotoxicity of two resin cements (Panavia F2 and Rely X Plus) versus zinc phosphate cement (Harvard) using rat L929-fibroblasts in vitro. Materials and Methods: In this experimental study, ninety hollow glass cylinders (internal diameter 5-mm, height 2-mm) were made and divided into three groups. Each group was filled with one of three experimental cements; Harvard Zinc Phosphate cement, Panavia F2 resin cement and Rely X Plus resin cement. L929- Fibroblast were passaged and subsequently cultured in 6-well plates of 5×105 cells each. The culture medium was RPMI_ 1640. All samples were incubated in CO2. Using enzyme-linked immune-sorbent assay (ELISA) and (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) (MTT) assay, the cytotoxicity of the cements was investigated at 1 hour, 24 hours and one week post exposure. Statistical analyses were performed via two-way ANOVA and honestly significant difference (HSD) Tukey tests. Results: This study revealed significant differences between the three cements at the different time intervals. Harvard cement displayed the greatest cytotoxicity at all three intervals. After 1 hour Panavia F2 showed the next greatest cytotoxicity, but after 24-hours and oneweek intervals Rely X Plus showed the next greatest cytotoxicity. The results further showed that cytotoxicity decreased significantly in the Panavia F2 group with time (p<0.005), cytotoxicity increased significantly in the Rely X Plus group with time (p<0.001), and the Harvard cement group failed to showed no noticeable change in cytotoxicity with time. Conclusion: Although this study has limitations, it provides evidence that Harvard zinc phosphate cement is the most cytotoxic product and Panavia F2 appears to be the least cytotoxic cement over time. PMID:23508355

Mahasti, Sahabi; Sattari, Mandana; Romoozi, Elham; Akbar-zadeh Baghban, Alireza

2011-01-01

228

?-Tricalcium phosphate cements modified with ?-dicalcium silicate and tricalcium aluminate: physicochemical characterization, in vitro bioactivity and cytotoxicity.  

PubMed

Biocompatibility, injectability and in situ self-setting are characteristics of calcium phosphate cements which make them promising materials for a wide range of clinical applications in traumatology and maxillo-facial surgery. One of the main disadvantages is their relatively low strength which restricts their use to nonload-bearing applications. ?-Tricalcium phosphate (?-C3P) cement sets into calcium-deficient hydroxyapatite (CDHA), which is biocompatible and plays an essential role in the formation, growth and maintenance of tissue-biomaterial interface. ?-Dicalcium silicate (?-C2S) and tricalcium aluminate (C3A) are Portland cement components, these compounds react with water to form hydrated phases that enhance mechanical strength of the end products. In this study, setting time, compressive strength (CS) and in vitro bioactivity and biocompatibility were evaluated to determine the influence of addition of ?-C2S and C3A to ?-C3P-based cement. X-ray diffraction and scanning electron microscopy were used to investigate phase composition and morphological changes in cement samples. Addition of C3A resulted in cements having suitable setting times, but low CS, only partial conversion into CDHA and cytotoxicity. However, addition of ?-C2S delayed the setting times but promoted total conversion into CDHA by soaking in simulated body fluid and strengthened the set cement over the limit strength of cancellous bone. The best properties were obtained for cement added with 10 wt % of ?-C2S, which showed in vitro bioactivity and cytocompatibility, making it a suitable candidate as bone substitute. PMID:24764271

Correa, Daniel; Almirall, Amisel; Carrodeguas, Raúl García; dos Santos, Luis Alberto; De Aza, Antonio H; Parra, Juan; Morejón, Lizette; Delgado, José Angel

2015-01-01

229

Thermodynamics and cement science  

SciTech Connect

Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

Damidot, D., E-mail: damidot@ensm-douai.fr [Universite Lille Nord de France (France); EM Douai, LGCgE-MPE-GCE, Douai (France); Lothenbach, B. [Empa, Lab. Concrete and Construction Chemistry, Duebendorf (Switzerland); Herfort, D. [Cementir Holding (Denmark); Glasser, F.P. [Chemistry Department, University of Aberdeen, Aberdeen (United Kingdom)

2011-07-15

230

Effect of nanostructure on biodegradation behaviors of self-setting apatite/collagen composite cements containing vitamin K2 in rats.  

PubMed

Apatite cement and collagen were combined by a mechanochemical method to create a new self-setting apatite/collagen composite cement, and menatetrenone (VK2) was loaded into a drug-delivery system to test biocompatibility in rats. Powder X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron probe microanalyzer (EPMA) were performed to characterize the physicochemical properties of apatite/collagen composite cements. The XRD results suggested that ground apatite/collagen cement was completely transformed into bone-like hydroxyapatite, but that without grinding was incomplete. The SEM and EPMA results suggested that ground apatite/collagen cement was homogeneously dispersed of nanoapatite crystals in collagen matrices, similar to that in natural bone. In contrast, the cement without grinding was heterogeneously distributed. To evaluate in-vivo cement density (CMM), microradiograms were measured for 72 days after implanting apatite/collagen composite cements in intramuscular tissue on the backs of rats, and cross sections of the cements and surrounding soft tissues were observed by microscope. The CMM results of the apatite/collagen composite cements suggested that the biodegradation rate was dependent on the cement quality and nanogeometrical structure. The CMM result of VK2-loaded apatite/collagen cements suggested that the biodegradation rates of the cements were significantly dependent on their formulation. The CMM of ground apatite/collagen cement increased until 7 days and then decreased, and bone-like cells penetrated deeply in the center. The microphotograph and CMM results of apatite/collagen without grinding indicated that a lot of bone-like cells penetrated into the cement and the cement shape was totally deformed. PMID:16680714

Otsuka, Makoto; Kuninaga, Tomoaki; Otsuka, Kuniko; Higuchi, William I

2006-10-01

231

Characterization of modified calcium-silicate cements exposed to acidic environment  

SciTech Connect

Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: {yields} An acidic environment affects modified fast setting calcium silicate-based cements. {yields} No surface changes are observed in acidic environment. {yields} An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. {yields} A combination of techniques is necessary in order to evaluate the chemical changes occurring.

Camilleri, Josette, E-mail: josette.camilleri@um.edu.mt

2011-01-15

232

Titaniumcarboxonitride layer increased biocompatibility of medical polyetherurethanes.  

PubMed

Polyetherurethane (PEU) is in use for blood-contacted devices because of its excellent mechanical properties. However, poor hemocompatibility of the hydrophobic material required surface modification or endothelialization. To increase the biocompatibility of PEU, the polymer was coated with a titaniumcarboxonitride [Ti(C,N,O)] layer by a plasma-activated chemical vapor deposition (PACVD) process. Biocompatibility of titaniferously coated PEU was verified using static and dynamic cell culture techniques. Titaniferous coating significantly improved proliferation and mitochondrial activity of human endothelial cells on PEU. These cells captured significantly less mononuclear cells and platelets. Under shear stress for up to 72 hours, titaniferous coating increased endothelial cell adhesion, spreading, and cell density to form an organized monolayer covering the whole luminal surface of vascular PEU grafts. In summary, coating of PEU surfaces with Ti(C,N,O) might be a promising strategy to improve the biocompatibility of biomedical biomaterials. PMID:23853113

Riescher, Sebastian; Wehner, Daniel; Schmid, Thomas; Zimmermann, Hanngoerg; Hartmann, Björn; Schmid, Christof; Lehle, Karla

2014-01-01

233

ULTRA-LIGHTWEIGHT CEMENT  

SciTech Connect

The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

Fred Sabins

2001-10-23

234

High temperature lightweight foamed cements  

DOEpatents

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

Sugama, Toshifumi.

1989-10-03

235

Cement-Lock for Decontaminating  

E-print Network

Cement-Lock® Technology for Decontaminating Dredged Estuarine Sediments Topical Report N O L O G Y I N S T I T U T E Cement-Lock Demo Plant Prepared by: Michael C. Mensinger GAS conducted as part of the overall program "Cement-Lock®1 Technology for Decontaminating Dredged Estuarine

Brookhaven National Laboratory

236

Cement Mason's Curriculum. Instructional Units.  

ERIC Educational Resources Information Center

To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

Hendirx, Laborn J.; Patton, Bob

237

High temperature lightweight foamed cements  

DOEpatents

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

Sugama, Toshifumi (Mastic Beach, NY)

1989-01-01

238

Reducing cement's CO2 footprint  

USGS Publications Warehouse

The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

van Oss, Hendrik G.

2011-01-01

239

Preparation of small bio-compatible microspheres  

NASA Technical Reports Server (NTRS)

Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such a hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

1979-01-01

240

Carbon nanotube biocompatibility with cardiac muscle cells  

Microsoft Academic Search

Purified carbon nanotubes are new carbon allotropes, sharing similarities with graphite, that have recently been proposed for their potential use with biological systems as probes for in vitro research and for diagnostic and clinical purposes. However the biocompatibility of carbon nanotubes with cells represents an important problem that, so far, remains largely uninvestigated. The objective of this in vitro study

Silvano Garibaldi; Claudio Brunelli; Valter Bavastrello; Giorgio Ghigliotti; Claudio Nicolini

2006-01-01

241

Bacterial Cellulose: Long-Term Biocompatibility Studies  

Microsoft Academic Search

The bacterial cellulose (BC) secreted by Gluconacetobacter xylinus is a network of pure cellulose nanofibres which has high crystallinity, wettability and mechanical strength. These characteristics make BC an excellent material for tissue-engineering constructs, noteworthy for artificial vascular grafts. In this work, the in vivo biocompatibility of BC membranes produced by two G. xylinus strains was analyzed through histological analysis of

Renata A. N. Pértile; Susana Moreira; Rui M. Gil da Costa; Alexandra Correia; Luisa Guãrdao; Fátima Gartner; Manuel Vilanova; Miguel Gama

2012-01-01

242

Cement composition and sulfate attack  

SciTech Connect

Four cements were used to address the effect of tricalcium silicate content of cement on external sulfate attack in sodium sulfate solution. The selected cements had similar fineness and Bogue-calculated tricalcium aluminate content but variable tricalcium silicates. Durability was assessed using linear expansion and compressive strength. Phases associated with deterioration were examined using scanning electron microscopy and X-ray diffraction. Mineralogical phase content of the as-received cements was studied by X-ray diffraction using two methods: internal standard and Rietveld analysis. The results indicate that phase content of cements determined by X-ray mineralogical analysis correlates better with the mortar performance in sulfate environment than Bogue content. Additionally, it was found that in cements containing triclacium aluminate only in the cubic form, the observed deterioration is affected by tricalcium silicate content. Morphological similarities between hydration products of high tricalcium aluminate and high tricalcium silicate cements exposed to sodium sulfate environment were also observed.

Shanahan, Natalya [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Zayed, Abla [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States)]. E-mail: zayed@eng.usf.edu

2007-04-15

243

Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer/calcium sulfate hemihydrate for bone repair  

PubMed Central

A novel injectable bone cement was developed by integration of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer (n-CDHA/MAC) and calcium sulfate hemihydrate (CSH; CaSO4 · 1/2H2O). The structure, setting time, and compressive strength of the cement were investigated. The results showed that the cement with a liquid to powder ratio of 0.8 mL/g exhibited good injectability and appropriate setting time and mechanical properties. In vitro cell studies indicated that MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite spread well and showed a good proliferation state. The alkaline phosphatase activity of the MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite was significantly higher than that of the cells on pure CSH at 4 and 7 days of culture. The n-CDHA/MAC/CSH cement was implanted into critical size defects of the femoral condyle in rabbits to evaluate its biocompatibility and osteogenesis in vivo. Radiological and histological results indicated that introduction of the n-CDHA/MAC into CSH enhanced new bone formation, and the n-CDHA/MAC/CSH cement exhibited good biocompatibility and degradability. In conclusion, the injectable n-CDHA/MAC/CSH composite cement has a significant clinical advantage over pure CSH cement, and may be a promising bone graft substitute for the treatment of bone defects. PMID:24293996

Qi, Xiaotong; Li, Hong; Qiao, Bo; Li, Weichao; Hao, Xinyan; Wu, Jun; Su, Bao; Jiang, Dianming

2013-01-01

244

76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan  

Federal Register 2010, 2011, 2012, 2013, 2014

...No. 731-TA-461 (Third Review)] Gray Portland Cement and Cement Clinker From Japan Determination On the basis of the...revocation of the antidumping duty order on gray Portland cement and cement clinker from Japan would be likely to...

2011-12-08

245

Biofilm formation of salivary microbiota on dental restorative materials analyzed by denaturing gradient gel electrophoresis and sequencing.  

PubMed

The microbial diversity of biofilms formed on the surfaces of amalgam, glass-ionomer cement, and resin composite was analyzed by denaturing gradient gel electrophoresis (DGGE). The V2-V3 region of salivary microbial 16S rDNA gene sequences of planktonic and biofilm bacteria, after 1 day and 1 week of incubation, was amplified by polymerase chain reaction (PCR) and analyzed by DGGE. The amounts of strongly adherent phylotypes after 1 day and 1 week on the three dental restorative materials were more than those on hydroxyapatite. Streptococcus salivarius was detected in both loosely adherent and strong adherent groups of all 1-day samples. At 1 week, the amounts of loosely adherent and strongly adherent phylotypes present on the three restorative materials ranked in this ascending order: glass-ionomer cement < resin composite < amalgam. Results of DGGE analysis suggested that glass-ionomer cement was the best material of choice in terms of suppressing bacterial phylotypes in biofilms. PMID:24598237

Wang, Shuai; Guo, Lihong; Seneviratne, Chaminda Jayampath; Huang, Bo; Han, Jianmin; Peng, Lei; Liu, Xiaodi; Zhang, Chengfei

2014-01-01

246

A biocompatible magnetic film: synthesis and characterization  

PubMed Central

Background Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. Methods A biocompatible magnetic gel film has been synthesized using polyvinyl alcohol. The magnetic gel was dried to generate a biocompatible magnetic film. Nanosized iron oxide particles (?-Fe2O3, ~7 nm) have been used to produce the magnetic gel. Results The surface morphology and magnetic properties of the gel films were studied. The iron oxide particles are superparamagnetic and the gel film also showed superparamagnetic behavior. Conclusion Magnetic gel made out of crosslinked magnetic nanoparticles in the polymer network was found to be stable and possess the magnetic properties of the nanoparticles. PMID:14761251

Chatterjee, Jhunu; Haik, Yousef; Chen, Ching Jen

2004-01-01

247

Mineral resource of the month: hydraulic cement  

USGS Publications Warehouse

Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

van Oss, Hendrik G.

2012-01-01

248

Thermal Shock-resistant Cement  

SciTech Connect

We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

Sugama T.; Pyatina, T.; Gill, S.

2012-02-01

249

Laser microjoining of dissimilar and biocompatible materials  

NASA Astrophysics Data System (ADS)

Micro-joining and hermetic sealing of dissimilar and biocompatible materials is a critical issue for a broad spectrum of products such as micro-electronics, micro-optical and biomedical products and devices. Today, biocompatible titanium is widely applied as a material for orthopedic implants as well as for the encapsulation of implantable devices such as pacemakers, defibrillators, and neural stimulator devices. Laser joining is the process of choice to hermetically seal such devices. Laser joining is a contact-free process, therefore minimizing mechanical load on the parts to be joined and the controlled heat input decreases the potential for thermal damage to the highly sensitive components. Laser joining also offers flexibility, shorter processing time and higher quality. However, novel biomedical products, in particular implantable microsystems currently under development, pose new challenges to the assembly and packaging process based on the higher level of integration, the small size of the device's features, and the type of materials and material combinations. In addition to metals, devices will also include glass, ceramic and polymers as biocompatible building materials that must be reliably joined in similar and dissimilar combinations. Since adhesives often lack long-term stability or do not meet biocompatibility requirements, new joining techniques are needed to address these joining challenges. Localized laser joining provides promising developments in this area. This paper describes the latest achievements in micro-joining of metallic and non-metallic materials with laser radiation. The focus is on material combinations of metal-polymer, polymer-glass, metal-glass and metal-ceramic using CO2, Nd:YAG and diode laser radiation. The potential for applications in the biomedical sector will be demonstrated.

Bauer, Ingo; Russek, Ulrich A.; Herfurth, Hans J.; Witte, Reiner; Heinemann, Stefan; Newaz, Golam; Mian, A.; Georgiev, D.; Auner, Gregory W.

2004-07-01

250

In vitro Biocompatibility of Electrospinning Polyaniline Fibers  

Microsoft Academic Search

\\u000a Conducing polymers simultaneously display the physical and chemical properties of organic polymers and the electrical characteristics\\u000a of metals. The purpose of the study was to explore the biocompatibility of electrospun polyaniline fibers. It is found that\\u000a diffused cytotoxicity leached from polyaniline fibers was acceptable under the regulation of ISO10993-5. The results from\\u000a the viability staining assay revealed that polyaniline fibers

Mu-Feng Shie; Wen-Tyng Li; Chung-Feng Dai; Jui-Ming Yeh

251

Development of a novel fluorapatite-forming calcium phosphate cement with calcium silicate: In vitro and in vivo characteristics.  

PubMed

Aim of this study was to develop a novel fluorapatite-forming calcium phosphate cement (FA-CPC) with tricalcium silicate (TCS) for endodontic applications and to examine its in vitro and in vivo characteristics. The FA-CPC powder consisted of 62.8% CaHPO4, 30.8% CaCO3, and 6.4% NaF. One part of TCS was combined with 9 parts of FA-CPC powder (FA-CPC with TCS). A 1.5 M phosphate solution was used as cement liquid. Setting time (ST), diametral tensile strength (DTS), phase composition by X-ray diffraction (XRD), and cement alkalinity were analyzed. Cement biocompatibility was assessed using rat subcutaneous model. Cement ST was 10.3±0.6 min and DTS was 3.89±0.76 MPa. XRD patterns showed that highly crystalline apatitic material was the only significant phase present and pH value was approximate 11.0. FA-CPC with TCS demonstrated similar biocompatibility as that of mineral trioxide aggregate control. These results suggest that FA-CPC with TCS may be useful for endodontic applications. PMID:25740309

Suzuki, Yusuke; Hayashi, Makoto; Yasukawa, Takuya; Kobayashi, Hiroshi; Makino, Kosuke; Hirano, Yoriyuki; Takagi, Shozo; C Chow, Laurence; Ogiso, Bunnai

2015-04-01

252

Comparison of rotary cement kiln identified models  

Microsoft Academic Search

Rotary cement kiln is the main part of a cement plant that clinker is produced in it. Clinker is the main ingredient of cement. Continual and prolonged operation of rotary cement kiln is vital in cement factories. However, prolonged operation of the kiln is not possible and periodic repairs of the refractory lining would become necessary, due to non-linear phenomena

G. Noshirvani; A. Fatehi; B. Araabi; M. Shirvani; M. Azizi

2009-01-01

253

Cemented femoral revision: lest we forget.  

PubMed

Cemented femoral revisions can provide durable fixation when used for specific indications. These indications include elderly patients with minimal bone loss or large femoral canals and the cement-within-cement technique where a new femoral component is cemented into an intact cement mantle. PMID:15991136

Lieberman, Jay R

2005-06-01

254

Advanced Cement Based Nanocomposites  

Microsoft Academic Search

\\u000a Considerable research and development efforts have been directed towards high strength\\/high performance concrete with engineered\\u000a properties, using three main concepts: a low water to binder ratio (w\\/b), and the partial replacement of cement by fine supplementary\\u000a cementitious or pozzolanic materials and\\/or fibers. To better understand how material composition and microstructural modifications\\u000a determine the concrete structural performance, and to develop new

S. P. Shah; M. S. Konsta-Gdoutos; Z. S. Metaxa

255

Well cementing in permafrost  

SciTech Connect

A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious material which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.

Wilson, W.N.

1980-01-01

256

Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin  

Microsoft Academic Search

In the initial stages of dental plaque formation, early colonizing bacteria bind to receptor structures in the pellicle, a proteinaceous film formed instantly after cleaning of the tooth surface. Dental restorative materials with surface characteristics different from the tooth might affect pellicle formation and the ability of bacteria to colonize the oral cavity. In this study (i) roughness and chemical

A. Carlén; K. Nikdel; A. Wennerberg; K. Holmberg; J. Olsson

2001-01-01

257

Set retarded cement compositions and methods for well cementing  

Microsoft Academic Search

This patent describes a retarded cement composition consisting essentially of hydraulic cement, water, a set retarder and a borate compound. It comprises the set retarder, a copolymer consisting of acrylic acid and 2-acrylamido, 2-methylpropane sulfonic acid (AMPS) present in the copolymer in the range of from about 40 to about 60 mole percent, the copolymer having an average molecular weight

L. E. Brothers; D. W. Lindsey; D. T. Terry

1991-01-01

258

Phosphate based oil well cements  

NASA Astrophysics Data System (ADS)

The main application of the cement in an oil well is to stabilize the steel casing in the borehole and protect it from corrosion. The cement is pumped through the borehole and is pushed upwards through the annulus between the casing and the formation. The cement will be exposed to temperature and pressure gradients of the borehole. Modified Portland cement that is being used presently has several shortcomings for borehole sealant. The setting of the Portland cement in permafrost regions is poor because the water in it will freeze even before the cement sets and because of high porosity and calcium oxide, a major ingredient it gets easily affected by the down hole gases such as carbon dioxide. The concept of phosphate bonded cements was born out of considerable work at Argonne National Laboratory (ANL) on their use in stabilization of radioactive and hazardous wastes. Novel cements were synthesized by an acid base reaction between a metal oxide and acid phosphate solution. The major objective of this research is to develop phosphate based oil well cements. We have used thermodynamics along with solution chemistry principles to select calcined magnesium oxide as candidate metal oxide for temperatures up to 200°F (93.3°C) and alumina for temperatures greater than 200°F (93.3°C). Solution chemistry helped us in selecting mono potassium phosphate as the acid component for temperatures less than 200°F (93.3°C) and phosphoric acid solution greater than 200°F (93.3°C). These phosphate cements have performance superior to common Portland well cements in providing suitable thickening time, better mechanical and physical properties.

Natarajan, Ramkumar

259

Study of two MTA cements  

PubMed Central

Introduction: To determine and compare the pH, conductivity and calcium release of an experimental Portland cement (PE) consisting of trioxid mineral aggregate and a comercially available modified Portland cement (C.P.M.) after 1, 2, 3, 4, 8, 10, 15 and 30 days. Material and Methods: Cements were mixed following the manufacturer’s instructions, with a powder: liquid ratio of 3:1. Each cement was placed in 12 PVC tubes 1 mm in diameter and 10 mm in length and allowed to set. Four empty tubes were used as negative controls. Tubes were submerged in plastic flasks containing 10 ml deionized water and stored at 37ºC and 100% humidity. After 1, 2, 3, 4, 8, 10, 15 and 30 days tubes were removed from the flasks and these were refilled with deionized water. We measured pH, conductivity and calcium content of the recovered solution. Data were analyzed using repeated measures ANOVA. Results: pH was 0.3 units more alkaline with PE cement (p=0.023). pH experienced a slight decrease with time (p<0.001), independently of the cement type (p>0.05). Conductivity of PE and CPM cements diminished at 4 days and almost recovered at 30 days (p<0.001). PE cement had a higher conductivity (p<0.001). Calcium release diminished from the first day and recovered at 30 days (p<0.001) similarly for both cements (p>0.05). Conclusions: PE cement raised pH slightly more and had higher conductivity than CPM. Calcium release diminished after the first day and recovered at 30 days, similarly for both cements. Key words:Mineral trioxide aggregate, pH, electrical conductivity, periapical surgery. PMID:25350596

Valmaseda-Castellón, Eduard; Faus, Vicente; Ballester, María-Luisa; Berini-Aytés, Leonardo

2014-01-01

260

Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility.  

PubMed

In this study, a calcium phosphate cement was developed using tetracalcium phosphate and surface-modified dicalcium phosphate anhydrous (DCPA). This developed injectable bone graft substitute can be molded to the shape of the bone cavity and set in situ through the piping system that has an adequate mechanical strength, non-dispersibility, and biocompatibility. The materials were based on the modified DCPA compositions of calcium phosphate cement (CPC), where the phase ratio of the surface-modified DCPA is higher than that of the conventional CPC for forming dicalcium phosphate (DCP)-rich cement. The composition and morphology of several calcium phosphate cement specimens during setting were analyzed via X-ray diffractometry and transmission electron microscopy coupled with an energy dispersive spectroscopy system. The compressive strength of DCP-rich CPCs was greater than 30MPa after 24h of immersion in vitro. The reaction of the CPCs produced steady final biphasic products of DCPs with apatite. The composites of calcium phosphate cements derived from tetracalcium phosphate mixed with surface-modified DCPA exhibited excellent mechanical properties, injectability, and interlocking forces between particles, and they also featured nondispersive behavior when immersed in a physiological solution. PMID:24863195

Ko, Chia-Ling; Chen, Jian-Chih; Hung, Chun-Cheng; Wang, Jen-Chyan; Tien, Yin-Chun; Chen, Wen-Cheng

2014-06-01

261

[Osseous biocompatibility of Endomethasone(R)].  

PubMed

The root canal filling paste "Endométhasone" was tested, following the F.D.I. criterions by bone implants on rabbits. The tissue reaction after four weeks can be appreciated as moderate and as mild after twelve weeks. Taking in count the criterions selected and the experimental conditions of this study, the "Endométhasone" can be considered as a root canal cement with acceptable in vivo tolerance. PMID:2217984

Salomon, J P; Remusat, M; Franquin, J C

1990-06-01

262

Cement brand and preparation effects cement-in-cement mantle shear strength.  

PubMed

Creating bi-laminar cement mantles as part of revision hip arthroplasty is well-documented but there is a lack of data concerning the effect of cement brand on the procedure. The aim of this study was to compare the shear strength of bi-laminar cement mantles using various combinations of two leading bone cement brands.Bi-laminar cement mantles were created using Simplex P with Tobramycin, and Palacos R+G: Simplex-Simplex (SS); Simplex-Palacos (SP); Palacos-Simplex (PS); and Palacos-Palacos (PP). Additionally, specimens were produced by rasping (R) the surface of the original mantle, or leaving it unrasped (U), leading to a total of eight groups (n = 10). Specimens were loaded in shear, at 0.1 mm/min, until failure, and the maximum shear strength calculated.The highest mean shear strength was found in the PSU and PSR groups (23.69 and 23.89 MPa respectively), and the lowest in the PPU group (14.70 MPa), which was significantly lower than all but two groups. Unrasped groups generally demonstrated greater standard error than rasped groups.In a further comparison to assess the effect of the new cement mantle brand, irrespective of the brand of the original mantle, Simplex significantly increased the shear strength compared to Palacos with equivalent preparation.It is recommended that the original mantle is rasped prior to injection of new cement, and that Simplex P with Tobramycin be used in preference to Palacos R+G irrespective of the existing cement type. Further research is needed to investigate more cement brands, and understand the underlying mechanisms relating to cement-in-cement procedures. PMID:25044271

Holsgrove, Timothy P; Pentlow, Alanna; Spencer, Robert F; Miles, Anthony W

2015-01-01

263

The preparation of bone cement.  

PubMed

The hip joint is subjected to large, repetitive loads. It is therefore clear that the bone cement, which allows the transfer of load across the new joint, must be able to withstand the everyday loads that it will be subjected to. Improving the mechanical properties of the cement to withstand high stresses, fatigue and creep loading will reduce the chances of failure, ultimately increasing the longevity of the joint replacement. To date, work in this area has concentrated on improving the mechanical properties of bone cement through improved bone cement mixing techniques. In the next issue we will be covering the effect that the design of the mixer and vacuum mixing has on improving the mechanical properties, such as the strength, fatigue and creep resistance, of the bone cement. PMID:11892336

Eveleigh, R

2001-02-01

264

Biocompatibility of Bacterial Cellulose Based Biomaterials  

PubMed Central

Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications. BC nanocomposites can be processed either in a static or an agitated medium. The fabrication of BC nanocomposites in static media can be carried out while keeping the original mat structure obtained after the synthesis to form the final nanocomposite or by altering the culture media with other components. The present article reviews the issue of biocompatibility of BC and BC nanocomposites. Biomedical aspects, such as surface modification for improving cell adhesion, in vitro and in vivo studies are given along with details concerning the physics of network formation and the changes that occur in the cellulose networks due to the presence of a second phase. The relevance of biocompatibility studies for the development of BC-based materials in bone, skin and cardiovascular tissue engineering is also discussed. PMID:24955750

Torres, Fernando G.; Commeaux, Solene; Troncoso, Omar P.

2012-01-01

265

Biocompatibility and osteogenic properties of porous tantalum  

PubMed Central

Porous tantalum has been reported to be a promising material for use in bone tissue engineering. In the present study, the biocompatibility and osteogenic properties of porous tantalum were studied in vitro and in vivo. The morphology of porous tantalum was observed using scanning electron microscopy (SEM). Osteoblasts were cultured with porous tantalum, and cell morphology, adhesion and proliferation were investigated using optical microscopy and SEM. In addition, porous tantalum rods were implanted in rabbits, and osteogenesis was observed using laser scanning confocal microscopy and hard tissue slice examination. The osteoblasts were observed to proliferate over time and adhere to the tantalum surface and pore walls, exhibiting a variety of shapes and intercellular connections. The porous tantalum rod connected tightly with the host bone. At weeks 2 and 4 following implantation, new bone and small blood vessels were observed at the tantalum-host bone interface and pores. At week 10 after the porous tantalum implantation, new bone tissue was observed at the tantalum-host bone interface and pores. By week 12, the tantalum-host bone interface and pores were covered with new bone tissue and the bone trabeculae had matured and connected directly with the materials. Therefore, the results of the present study indicate that porous tantalum is non-toxic, biocompatible and a promising material for use in bone tissue engineering applications. PMID:25667628

WANG, QIAN; ZHANG, HUI; LI, QIJIA; YE, LEI; GAN, HONGQUAN; LIU, YINGJIE; WANG, HUI; WANG, ZHIQIANG

2015-01-01

266

Development of an injectable bioactive bone filler cement with hydrogen orthophosphate incorporated calcium sulfate.  

PubMed

Calcium sulfate cement (CSC) has emerged as a potential bone filler material mainly because of the possibility of incorporating therapeutic agents. Delivery of the cement through a needle or cannula will make it more useful in clinical applications. However, it was not possible to make CSC injectable because of the inherent lack of viscosity. The present work demonstrates the design development of a viscous and fully-injectable CSC by incorporating hydrogen orthophosphate ions, which does not hamper the biocompatibility of the material. The effect of addition of hydrogen orthophosphate on the rheological properties of the CSC paste was studied using a custom made capillary rheometer. The physicochemical changes associated with cement setting process were examined using X-ray diffraction and Fourier transform infrared spectroscopy and the thermal changes were measured through isothermal differential scanning calorimetry. Micromorphological features of different compositions were observed in environmental scanning electron microscopy and the presence of phosphate ions was identified with energy dispersive X-ray spectroscopic analysis and inductively coupled plasma-optical emission spectroscopy. The results indicated that HPO4 (2-) ions have profound effects on the rheological properties and setting of the CSC paste. Significant finding is that the HPO4 (2-) ions are getting substituted in the calcium sulfate dihydrate crystals during setting. The variations of setting time and compressive strength of the cement with the additive concentration were investigated. An optimum concentration of 2.5 % w/w gave a fully-injectable cement with clinically relevant setting time (below 20 min) and compressive strength (12 MPa). It was possible to inject the optimised cement paste from a syringe through an 18-gauge needle with thumb pressure. This cement will be useful both as bone filler and as a local drug delivery medium and it allows minimally invasive bone defect management. PMID:25578708

Sony, Sandhya; Suresh Babu, S; Nishad, K V; Varma, Harikrishna; Komath, Manoj

2015-01-01

267

Biodegradation and biocompatibility of PLA and PLGA microspheres  

Microsoft Academic Search

A fundamental understanding of the in vivo biodegradation phenomenon as well as an appreciation of cellular and tissue responses which determine the biocompatibility of biodegradable PLA and PLGA microspheres are important components in the design and development of biodegradable microspheres containing bioactive agents for therapeutic application. This chapter is a critical review of biodegradation, biocompatibility and tissue\\/material interactions, and selected

James M Anderson; Matthew S Shive

1997-01-01

268

Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model.  

PubMed

The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 ± 1.2 min) and a compressive strength of 19 ± 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery. PMID:25591177

Zhang, Yadong; Cui, Xu; Zhao, Shichang; Wang, Hui; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

2015-02-01

269

Transport in Cement:Transport in Cement: Relating Permeability and PoreRelating Permeability and Pore  

E-print Network

Calcinated in rotaryin rotary kiln at 1500 C for 30kiln at 1500 C for 30-- 40 minutes40 minutes Produces CementTransport in Cement:Transport in Cement: Relating Permeability and PoreRelating Permeability, 2004 #12;OutlineOutline Cement Manufacturing and StructureCement Manufacturing and Structure ofof

Petta, Jason

270

Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications.  

PubMed

Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage. PMID:25671207

Utneja, Shivani; Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

2015-02-01

271

Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications  

PubMed Central

Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage. PMID:25671207

Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

2015-01-01

272

Demineralization resistance and tensile bond strength of four luting agents after acid attack.  

PubMed

Resistance to acid demineralization provided by luting agents adjacent to enamel was evaluated for four different luting agents: composite resin, glass ionomer, polycarboxylate, and zinc phosphate cement. Cement solubility and enamel demineralization after acid attack at pH 3.0 were measured radiographically and calculated using computer-aided design. Tensile bond strength of a miniature crown seated on an accurately prepared preparation was evaluated after acid attack using an Instron instrument. Crown retention after 12 days was greater for the polycarboxylate (2,000 kg/m2) than the zinc phosphate cement (500 kg/m2). Crown retention for the glass ionomer (1,100 kg/m2) and composite resin luting agent (1,400 kg/m2) were similar statistically after 21 days of acid exposure. Cement washouts for zinc phosphate and polycarboxylate were similar, and were greater than either glass ionomer or composite resin luting agent. The amount of demineralization related to cements was, from greatest to least: zinc phosphate, polycarboxylate, composite resin, glass ionomer. Fluoride release was concluded to be initially effective in reducing enamel solubility in spite of cement solubility. PMID:2640123

Stannard, J G; Sornkul, E

1989-01-01

273

The effect of pressure changes during simulated diving on the pull out strength of glass fiber posts  

PubMed Central

Background: Scuba diving is one of the fastest growing sports in the world. The objective of this study was to evaluate the effect of pressure variations to which divers are exposed on the pull out strength of glass fiber post luted with different cements. Materials and Methods: In this in vitro study, 120 extracted, single-rooted lower premolars were endodontically treated. They were randomly divided into six groups and restored using the glass fiber post (Ivoclar Vivadent AG) and the following luting agents: Zinc phosphate, conventional glass ionomer, resin reinforced glass ionomer, resin cement with etch-and-rinse adhesive, resin cement with self-etching adhesive, and self-adhesive resin cement. Each group was randomly divided into two equal subgroups, one as a control, and the other to be used experimentally. After 7 days of storage, experimental groups were pressure cycled. The force required to dislodge each post was recorded in Newton (N) on Universal testing machine (Star Testing System) at a crosshead speed of 1 mm/min. Data were statistically analyzed using the ANOVA and Student's t-test (P < 0.001). Results: The pull out strength of posts cemented with zinc phosphate and conventional glass ionomer in pressure cycle group was significantly less than their control group. Although, no significant difference was found between pressure cycle and control group using resin reinforced glass ionomer cement and resin cements. Conclusion: Dentist should consider using resin reinforced glass ionomer or resin cement, for the cementation of glass fiber post, for the patients such as divers, who are likely to be exposed to pressure cycling. PMID:24379861

Gulve, Meenal Nitin; Gulve, Nitin Dilip

2013-01-01

274

Calcium phosphate cement - gelatin powder composite testing in canine models: Clinical implications for treatment of bone defects.  

PubMed

Previous studies have reported the excellent biocompatibility of calcium phosphate cement. However, calcium phosphate cement needs further improvement in order for it to promote bone replacement and eventual bone substitution, as it exhibits slow biodegradability and thus remains in the body over an extended period of time. In this study, we mixed calcium phosphate cement with gelatin powder in order to create a composite containing macropores with interconnectivity, and we then implanted it into canine femurs from the diaphysis to the distal metaphysis. Eight dogs were divided into the sham group, the control (C0) group with 100 wt% calcium phosphate cement, the C10 group with 90 wt% calcium phosphate cement and 10 wt% gelatin powder, and the C15 group with 85 wt% calcium phosphate cement and 15 wt% gelatin powder. Bone replaceability in C10 and C15 at 3 and 6 months was evaluated by radiography, micro-CT, histomorphometry, and mineral apposition rate. New bone formation was seen in C10 and C15 although that was not seen in C0 at six months. The mineral apposition rate was significantly higher in C15 than in C10 in both the diaphysis and metaphysis, and the composite was found to have excellent biodegradability and bone replaceability in canine subjects. As the composite is easily and rapidly prepared, it is likely to become a new bone substitute for use in clinical settings. PMID:25550332

Yomoda, Mitsuhiro; Sobajima, Satoshi; Kasuya, Akihiro; Neo, Masashi

2015-05-01

275

Biocompatibility of immobilized aligned carbon nanotubes.  

PubMed

In vivo host responses to an electrode-like array of aligned carbon nanotubes (ACNTs) embedded within a biopolymer sheet are reported. This biocompatibility study assesses the suitability of immobilized carbon nanotubes for bionic devices. Inflammatory responses and foreign-body histiocytic reactions are not substantially elevated when compared to negative controls following 12 weeks implantation. A fibrous capsule isolates the implanted ACNTs from the surrounding muscle tissue. Filamentous nanotube fragments are engulfed by macrophages, and globular debris is incorporated into the fibrous capsule with no further reaction. Scattered leukocytes are observed, adherent to the ACNT surface. These data indicate that there is a minimal local foreign-body response to immobilized ACNTs, that detached fragments are phagocytosed into an inert material, and that ACNTs do not attract high levels of surface fouling. Collectively, these results suggest that immobilized nanotube structures should be considered for further investigation as bionic components. PMID:21374804

Nayagam, David A X; Williams, Richard A; Chen, Jun; Magee, Kylie A; Irwin, Jennifer; Tan, Justin; Innis, Peter; Leung, Ronald T; Finch, Sue; Williams, Chris E; Clark, Graeme M; Wallace, Gordon G

2011-04-18

276

Titanium nanostructural surface processing for improved biocompatibility  

SciTech Connect

X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO{sub 2} on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO{sub 2} by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration.

Cheng, H.-C.; Lee, S.-Y.; Chen, C.-C.; Shyng, Y.-C.; Ou, K.-L. [School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China)and Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China) and Department of Emergency Medicine, Mackay Memorial Hospital, Taipei 110, Taiwan (China); Division of Oral and Maxillofacial Surgery, Kaohsiung Military General Hospital, Kaohsiung 807, Taiwan (China); Graduate Institute of Oral Sciences, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China)

2006-10-23

277

Electrospun fullerenol-cellulose biocompatible actuators.  

PubMed

Though there are many stimuli-responsive polymer actuators based on synthetic polymers, electroactive natural biopolymer actuators are very rare. We developed an electrospun fullernol-cellulose biocompatible actuator with much lower power consumption and larger electromechanical displacement in comparison with a pure cellulose acetate actuator. Morphology of the electrospun membranes resembles the nanoporous structure of extracellular matrix in natural muscles. Presence of minute concentrations of fullerenol leads to sharp increase in the degree of crystallinity and substantial increase in tensile strength of membranes. Chemical interactions between cellulose acetate and fullerenols are confirmed by three shifts in carboxylate, carboxy, and carbonyl linkages from the Fourier-transform infrared spectrometry. Much larger tip displacement, nearly 3-fold even at 0.5 wt % fullerenol content, was observed with much lower power consumption under both alternating and direct current conditions. PMID:21517072

Li, Jia; Vadahanambi, Sridhar; Kee, Chang-Doo; Oh, Il-Kwon

2011-06-13

278

Si-based Nanoparticles: a biocompatibility study  

NASA Astrophysics Data System (ADS)

Exposure to silicon nanoparticles (Si-NPs) may occur in professional working conditions or for people undergoing a diagnostic screening test. Despite the fact that silicon is known as a non-toxic material, in the first case the risk is mostly related to the inhalation of nanoparticles, thus the most likely route of entry is across the lung alveolar epithelium. In the case of diagnostic imaging, nanoparticles are usually injected intravenously and Si-NPs could impact on the endothelial wall. In our study we investigated the interaction between selected Si-based NPs and an epithelial lung cell line. Our data showed that, despite the overall silicon biocompatibility, however accurate studies of the potential toxicity induced by the nanostructure and engineered surface characteristics need to be accurately investigated before Si nanoparticles can be safely used for in vivo applications as bio-imaging, cell staining and drug delivery.

Rivolta, I.; Lettiero, B.; Panariti, A.; D'Amato, R.; Maurice, V.; Falconieri, M.; Herlein, N.; Borsella, E.; Miserocchi, G.

2010-10-01

279

21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.  

Code of Federal Regulations, 2012 CFR

... Polymethylmethacrylate (PMMA) bone cement. 888.3027 Section 888.3027... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device intended to be...

2012-04-01

280

21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.  

Code of Federal Regulations, 2010 CFR

... Polymethylmethacrylate (PMMA) bone cement. 888.3027 Section 888.3027... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device intended to be...

2010-04-01

281

21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.  

Code of Federal Regulations, 2013 CFR

... Polymethylmethacrylate (PMMA) bone cement. 888.3027 Section 888.3027... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device intended to be...

2013-04-01

282

21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.  

Code of Federal Regulations, 2011 CFR

... Polymethylmethacrylate (PMMA) bone cement. 888.3027 Section 888.3027... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device intended to be...

2011-04-01

283

Molecular mechanisms of crystallization impacting calcium phosphate cements  

PubMed Central

The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. PMID:20308110

Giocondi, Jennifer L.; El-Dasher, Bassem S.; Nancollas, George H.; Orme, Christine A.

2010-01-01

284

Graphite-reinforced bone cement  

NASA Technical Reports Server (NTRS)

Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.

Knoell, A. C.

1976-01-01

285

Performance Cements Focus on Sustainability  

E-print Network

- Portland-limestone CEM II - Portland-fly ash CEM II - Portland-pozzolana CEM II - Portland-slag CEM I - Composite Cement CEM IV - Pozzolanic CEM III - Blast furnace slag CEM II - Portland-composite CEM II

286

Conditioning hazardous wastes with cement  

SciTech Connect

Cementitious materials, including Ca(OH)2 and Portland cement, are widely used to condition wastes for disposal. Physical confinement is easily demonstrated, but additionally, cements have a unique chemical conditioning action. A cost-benefit analysis depends on being able to quantify this chemical conditioning action. A case study approach is used to show how this can be done, using selected inorganics (Ni, Cr, U) as examples. Laboratory data should preferably be obtained in a form suitable for thermodynamic modelling; not only does this impose rigor, but it also ensures that data are of general applicability, i.e. not site-specific. The interaction of cement with some simple, water-soluble organics are described. The future performance of cemented wastes in burial sites is site dependent; scale, local geochemistry and the kinetics and mechanisms of waste degradation are important factors which cannot be determined entirely in the laboratory. Some principles are described whereby laboratory and field studies can be related.

Glasser, F.P. [Univ. of Aberdeen, Old Aberdeen (United Kingdom)

1996-10-01

287

ADVANCED CEMENTS FOR GEOTHERMAL WELLS  

Microsoft Academic Search

Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiOâ-HâO system) and calcium aluminum silicate hydrates (CaO-AlâOâ-SiOâ-HâO system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly

Toshifumi Sugama

2007-01-01

288

Ultralow-Density Cementing Operations  

Microsoft Academic Search

Attempts to improve ultralow-density cement slurries (9 to 12 lbm\\/gal (1078 to 1438 kg\\/cm³)) suitable for oil and gas well cementing have accomplished little except to define a disappointingly low strength\\/density ratio and to confirm the low-density limit for useful compressive strengths. The use of high-strength hollow spheres as a lightweight additive has been under investigation for a number of

Weldon Harms; David Sutton

1983-01-01

289

Cement pulmonary embolism after vertebroplasty.  

PubMed

In recent years, the use of vertebral cementing techniques for vertebroplasty and kyphoplasty has spread for the treatment of pain associated with osteoporotic vertebral compression fractures. This is also associated with the increased incidence of complications related with these procedures, the most frequent being originated by leakage of cementation material. Cement can escape into the vertebral venous system and reach the pulmonary circulation through the azygous system and cava vein, producing a cement embolism. This is a frequent complication, occurring in up to 26% of patients undergoing vertebroplasty but, since most patients have no clinical or hemodynamical repercussion, this event usually goes unnoticed. However, some serious, and even fatal cases, have been reported. We report the case of a 74-year-old male patient who underwent vertebroplasty for persistent pain associated with osteoporotic L3 vertebral fracture and who developed a cement leak into the cava vein and right pulmonary artery during the procedure. Although he developed a pulmonary cement embolism, the patient remained asymptomatic and did not present complications during follow-up. PMID:23481509

Sifuentes Giraldo, Walter Alberto; Lamúa Riazuelo, José Ramón; Gallego Rivera, José Ignacio; Vázquez Díaz, Mónica

2013-01-01

290

Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals  

PubMed Central

Luminescent colloidal quantum dots (QDs) possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands. PMID:22247651

Zhang, Yanjie; Clapp, Aaron

2011-01-01

291

The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.  

PubMed

The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect the mechanical response of the cement-bone interface at various load levels in terms of plastic displacement and crack formation. Two FEA models were created, which were based on micro-computed tomography data of two physical cement-bone interface specimens. These models were subjected to tensile fatigue loads with four different magnitudes. Three deformation modes of the cement were considered: 'only creep', 'only damage' or 'creep and damage'. The interfacial plastic deformation, the crack reduction as a result of creep and the interfacial stresses in the bone were monitored. The results demonstrate that, although some models failed early, the majority of plastic displacement was caused by fatigue damage, rather than cement creep. However, cement creep does decrease the crack formation in the cement up to 20%. Finally, while cement creep hardly influences the stress levels in the bone, fatigue damage of the cement considerably increases the stress levels in the bone. We conclude that at low load levels the plastic displacement is mainly caused by creep. At moderate to high load levels, however, the plastic displacement is dominated by fatigue damage and is hardly affected by creep, although creep reduced the number of cracks in moderate to high load region. PMID:20692663

Waanders, Daan; Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico

2010-11-16

292

The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface  

PubMed Central

The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage, or micro cracks, and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect the mechanical response of the cement-bone interface at various load levels in terms of plastic displacement and crack formation. Two FEA models were created, which were based on micro-computed tomography data of two physical cement-bone interface specimens. These models were subjected to tensile fatigue loads with four different magnitudes. Three deformation modes of the cement were considered; ‘only creep’, ‘only damage’ or ‘creep and damage’. The interfacial plastic deformation, the crack reduction as a result of creep and the interfacial stresses in the bone were monitored. The results demonstrate that, although some models failed early, the majority of plastic displacement was caused by fatigue damage, rather than cement creep. However, cement creep does decrease the crack formation in the cement up to 20%. Finally, while cement creep hardly influences the stress levels in the bone, fatigue damage of the cement considerably increases the stress levels in the bone. We conclude that at low load levels the plastic displacement is mainly caused by creep. At moderate to high load levels, however, the plastic displacement is dominated by fatigue damage and is hardly affected by creep, although creep reduced the number of cracks in moderate to high load region. PMID:20692663

Waanders, Daan; Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nico

2010-01-01

293

A Novel Controlled-Release System for Antibacterial Enzyme Lysostaphin Delivery Using Hydroxyapatite/Chitosan Composite Bone Cement  

PubMed Central

In this work, a lysostaphin-loaded, control-released, self-setting and injectable porous bone cement with efficient protein delivery was prepared by a novel setting method using hydroxyapatite/chitosan (HA/CS) composite scaffold. The cement samples were made through cementitious reactions by mixing solid powder, a mixture of HA/CS composite particles, lysostaphin, Ca(OH)2, CaCO3 and NaHCO3, with setting liquid containing citric acid, acetic acid, NaH2PO4, CaCl2 and poloxamer. The setting parameters of the cement samples were determined. The results showed that the final setting time was 96.6±5.2 min and the pH value increased from approximately 6.2 to nearly 10 during the setting process and the porosity was 34% at the end. And the microstructure and composition were detected by scanning electron microscopy (SEM), x-ray diffraction and Fourier transform-infrared spectroscopy. For the release behavior of lysostaphin loaded in the cement sample, the in vitro cement extract experiment indicated that about 94.2±10.9% of the loaded protein was released before day 8 and the in vivo Qdot 625 fluorescence tracking experiment showed that the loaded protein released slower than the free one. Then the biocompatibility of the cement samples was evaluated using the methylthiazol tetrazolium assay, SEM and hematoxylin-eosin staining, which suggested good biocompatibility of cement samples with MC 3T3-E1 cells and subcutaneous tissues of mice. Finally the antibacterial activity assay indicated that the loaded lysostaphin had good release ability and strong antibacterial enzymatic activity against methicillin-resistant Staphylococcus aureus. Collectively, all the results suggested that the lysostaphin-loaded self-setting injectable porous bone cement released the protein in a controlled and effective way and the protein activity was well retained during the setting and releasing process. Thus this bone cement can be potentially applied as a combination of artificial bone substitute and controlled-release system for delivery of lysostaphin to treat bone defects and infections. PMID:25464506

Wang, Yihan; Wang, Jincheng; Zhang, Jien; Lu, Min; Li, Guodong; Cao, Zhizhong; Huang, Qingshan

2014-01-01

294

A novel controlled-release system for antibacterial enzyme lysostaphin delivery using hydroxyapatite/chitosan composite bone cement.  

PubMed

In this work, a lysostaphin-loaded, control-released, self-setting and injectable porous bone cement with efficient protein delivery was prepared by a novel setting method using hydroxyapatite/chitosan (HA/CS) composite scaffold. The cement samples were made through cementitious reactions by mixing solid powder, a mixture of HA/CS composite particles, lysostaphin, Ca(OH)2, CaCO3 and NaHCO3, with setting liquid containing citric acid, acetic acid, NaH2PO4, CaCl2 and poloxamer. The setting parameters of the cement samples were determined. The results showed that the final setting time was 96.6±5.2 min and the pH value increased from approximately 6.2 to nearly 10 during the setting process and the porosity was 34% at the end. And the microstructure and composition were detected by scanning electron microscopy (SEM), x-ray diffraction and Fourier transform-infrared spectroscopy. For the release behavior of lysostaphin loaded in the cement sample, the in vitro cement extract experiment indicated that about 94.2±10.9% of the loaded protein was released before day 8 and the in vivo Qdot 625 fluorescence tracking experiment showed that the loaded protein released slower than the free one. Then the biocompatibility of the cement samples was evaluated using the methylthiazol tetrazolium assay, SEM and hematoxylin-eosin staining, which suggested good biocompatibility of cement samples with MC 3T3-E1 cells and subcutaneous tissues of mice. Finally the antibacterial activity assay indicated that the loaded lysostaphin had good release ability and strong antibacterial enzymatic activity against methicillin-resistant Staphylococcus aureus. Collectively, all the results suggested that the lysostaphin-loaded self-setting injectable porous bone cement released the protein in a controlled and effective way and the protein activity was well retained during the setting and releasing process. Thus this bone cement can be potentially applied as a combination of artificial bone substitute and controlled-release system for delivery of lysostaphin to treat bone defects and infections. PMID:25464506

Xue, Bai; Zhang, Cheng; Wang, Yihan; Wang, Jincheng; Zhang, Jien; Lu, Min; Li, Guodong; Cao, Zhizhong; Huang, Qingshan

2014-01-01

295

Carbon nanotube biocompatibility with cardiac muscle cells  

NASA Astrophysics Data System (ADS)

Purified carbon nanotubes are new carbon allotropes, sharing similarities with graphite, that have recently been proposed for their potential use with biological systems as probes for in vitro research and for diagnostic and clinical purposes. However the biocompatibility of carbon nanotubes with cells represents an important problem that, so far, remains largely uninvestigated. The objective of this in vitro study is to explore the cytocompatibility properties of purified carbon nanofibres with cardiomyocytes. Cardiac muscle cells from a rat heart cell line H9c2 (2-1) have been used. Highly purified single-walled nanotubes (SWNTs) were suspended at the concentration of 0.2 mg ml-1 by ultrasound in complete Dulbecco's modified Eagle's medium, and administered to cells to evaluate cell proliferation and shape changes by light microscopy, cell viability by trypan blue exclusion, and apoptosis, determined flow cytometrically by annexin/PI staining. Microscopic observation evidenced that carbon nanotubes bind to the cell membrane, causing a slight modification in cell shape and in cell count only after three days of treatment. Cell viability was not affected by carbon nanotubes in the first three days of culture, while after this time, cell death was slightly higher in nanotube-treated cells (p = ns). Accordingly, nanotube treatment induced little and non-significant change in the apoptotic cell number at day 1 and 3. The effect of nanotubes bound to cells was tested by reseeding treated cardiomyocytes. Cells from a trypsinized nanotube-treated sample showed a limited ability to proliferate, and a definite difference in shape, with a high degree of cell death: compared to reseeded untreated ones, in SWNT-treated samples the annexin-positive/PI-negative cells increased from 2.9% to 9.3% in SWNT (p<0.05, where p<0.05 defines a statistically significant difference with a probability above 95%), and the annexin-positive/PI-positive cells increased from 5.2% to 18.7% (p<0.05). However, overtime cells from a trypsinized nanotube-treated sample continued to grow, and partially recovered the original shape. In conclusion our results demonstrate that highly purified carbon nanotubes possess no evident short-term toxicity and can be considered biocompatible with cardiomyocytes in culture, while the long-term negative effects, that are evidenced after reseeding, are probably due to physical rather than chemical interactions.

Garibaldi, Silvano; Brunelli, Claudio; Bavastrello, Valter; Ghigliotti, Giorgio; Nicolini, Claudio

2006-01-01

296

Stage cementing valve  

SciTech Connect

This patent describes a method for stage cementing a string of pipe in a well bore. The string of pipe includes a stage valve having a tubular valve collar intermediate of its length and has a tubular sleeve valve member slidably received in the stage collar for movement between first and second longitudinal positions relative to the stage collar and where the sleeve valve member has a flange in engagement with an engagement surface on the valve collar in the first longitudinal position. The sleeve valve member has a piston portion located in an annular chamber between the sleeve valve member and the valve collar and where the sleeve valve member has a sleeve valve port with access to one surface of the piston portion in the annular chamber for placing the one surface in fluid communication with the bore of the sleeve valve member. The valve collar has a valve collar port with access to the other surface of the of the piston portion in the annular chamber for placing the other surface in fluid communication with the exterior of the valve collar. The piston portion separates the sleeve valve port from the valve collar in a the first longitudinal position and permits the ports to be in fluid communication with one another in an the second longitudinal position.

Lindsey, H.E.; Adams, R.W.

1989-11-14

297

The water jet as a new tool for endoprosthesis revision surgery--an in vitro study on human bone and bone cement.  

PubMed

In revision surgeries of endoprostheses, the interface between implant and bone cement or bone must be loosened. Conventional tools have many disadvantages because of their size and limited range. Taking advantage of the selective and athermic cutting process, a plain water jet is already used in order to cut soft tissues. This study investigates the possibilities of both a plain and an abrasive water jet as cutting tools for revision surgery. Samples of the mid-diaphysis of human femora and bone cement (CMW3) were cut with a plain water jet (PWJ) and an abrasive water jet (AWJ) at two different jet-to-surface angles (30 degrees,90 degrees ) and at five different pressure levels (30, 40, 50, 60, 70 MPa). For a PWJ a selective pressure range was identified, where only bone cement was cut. Injecting a bio-compatible abrasive (lactose) to the jet stream resulted in significantly higher cut depths in both materials. Material removal in bone was significantly less at the smaller jet-to-surface angle for both techniques. No clear selectivity between bone and bone cement was observed for application of the AWJ. However, the material removal rate was significantly higher for bone cement than for bone at all pressure levels. The results indicate that an AWJ might be an alternative tool for cement removal. The possibility for localised cutting at interfaces could be an advantage for revision of a non-cemented prosthesis. PMID:14646047

Honl, Matthias; Rentzsch, Reemt; Schwieger, Karsten; Carrero, Volker; Dierk, Oliver; Dries, Sebastian; Louis, Hartmut; Pude, Frank; Bishop, Nick; Hille, Ekkehard; Morlock, Michael

2003-01-01

298

Biocompatible polymer microarrays for cellular high-content screening   

E-print Network

The global aim of this thesis was to study the use of microarray technology for the screening and identification of biocompatible polymers, to understand physiological phenomena, and the design of biomaterials, implant ...

Pernagallo, Salvatore

2010-11-25

299

Injectable PLGA microsphere/calcium phosphate cements: physical properties and degradation characteristics.  

PubMed

Calcium phosphate (CaP) cements show an excellent biocompatibility and often have a high mechanical strength, but in general degrade relatively slow. To increase degradation rates, macropores can be introduced into the cement, e.g., by the inclusion of biodegradable microspheres into the cement. The aim of this research is to develop an injectable PLGA microsphere/CaP cement with sufficient setting/cohesive properties and good mechanical and physical properties. PLGA microspheres were prepared using a water-in-oil-in-water double-emulsion technique. The CaP-cement used was Calcibon, a commercially available hydroxyapatite-based cement. 10:90 and 20:80 dry wt% PLGA microsphere/CaP cylindrical scaffolds were prepared as well as microporous cement (reference material). Injectability, setting time, cohesive properties and porosity were determined. Also, a 12-week degradation study in PBS (37 degree C) was performed. Results showed that injectability decreased with an increase in PLGA microsphere content. Initial and final setting time of the PLGA/CaP samples was higher than the microporous sample. Porosity of the different formulations was 40.8% (microporous), 60.2% (10:90) and 69.3% (20:80). The degradation study showed distinct mass loss and a pH decrease of the surrounding medium starting from week 6 with the 10:90 and 20:80 formulations, indicating PLGA erosion. Compression strength of the PLGA microsphere/CaP samples decreased siginificantly in time, the microporous sample remained constant. After 12 weeks both PLGA/CaP samples showed a structure of spherical micropores and had a compressive strength of 12.2 MPa (10:90) and 4.3 MPa (20:80). Signs of cement degradation were also found with the 20:80 formulation. In conclusion, all physical parameters were well within workable ranges with both 10:90 and 20:80 PLGA microsphere/CaP cements. After 12 weeks the PLGA was totally degraded and a highly porous, but strong scaffold remained. PMID:17094642

Habraken, W J E M; Wolke, J G C; Mikos, A G; Jansen, J A

2006-01-01

300

76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...  

Federal Register 2010, 2011, 2012, 2013, 2014

...No. 731-TA-461 (Third Review)] Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year...Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United...

2011-08-12

301

76 FR 24519 - Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning...  

Federal Register 2010, 2011, 2012, 2013, 2014

...No. 731-TA-461 (Third Review)] Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United...

2011-05-02

302

Fabrication and Biocompatibility of Electrospun Silk Biocomposites  

PubMed Central

Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS) hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM). The water contact angle of silk/tetramethoxysilane (TMOS) composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposites is prepared by means of an effective calcium and phosphate (Ca–P) alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering. PMID:24957869

Wei, Kai; Kim, Byoung-Suhk; Kim, Ick-Soo

2011-01-01

303

Microbubbles as Biocompatible Porogens for Hydrogel Scaffolds  

PubMed Central

In this study, we explored the application of lipid-shelled, gas-filled microbubbles as a method for creating on-demand microporous hydrogels for cartilage tissue engineering. The technique allowed for homogenous distribution of cells and micropores within the scaffold, increasing the absorption coefficient of large solutes (70 kDa dextran) over controls in a concentration-dependent manner. The stability of the gas-phase of the microbubbles depended on several factors, including the initial size distribution of the microbubble suspension, as well as the temperature and pressure during culture. Application of pressure cycles provided controlled release of the gas phase to generate fluid-filled micropores with remnant lipid. The resulting microporous agarose scaffolds were biocompatible, leading to a 2-fold increase in engineered cartilage properties (EY=492 ± 42 kPa for bubble group vs. 249 ± 49 kPa for bubble-free control group) over a 42-day culture period. Our results suggest that microbubbles offer a simple and robust method of modulating mass transfer in cell-seeded hydrogels through mild pressurization, and the methodology may be expanded in the future to include focused ultrasound for improved spatio-temporal control. PMID:22868194

Lima, Eric G.; Durney, Krista M.; Sirsi, Shashank R.; Nover, Adam B.; Ateshian, Gerard A.; Borden, Mark A.; Hung, Clark T

2013-01-01

304

Tribological study of lubricious DLC biocompatible coatings.  

PubMed

DLC (diamond-like carbon) coatings have remarkable tribological properties due mainly to their good frictional behavior. These coatings can be applied in many industrial and biomedical applications, where sliding can generate wear and frictional forces on the components, such as orthopaedic metal implants. This work reports on the development and tribological characterization of functionally gradient titanium alloyed DLC coatings. A PVD-magnetron sputtering technique has been used as the deposition method. The aim of this work was to study the tribological performance of the DLC coating when metal to metal contact (cobalt chromium or titanium alloys) takes place under dry and lubricated test conditions. Prior work by the authors demonstrates that the DLC coating reduced considerably the wear of the ultra-high-molecular-weight polyethylene (UHMWPE). The DLC coating during mechanical testing exhibited a high elastic recovery (65%) compared to the values obtained from Co-Cr-Mo (15%) and Ti-6Al-4V (23%). The coating exhibited an excellent tribo-performance against the Ti-6Al-4V and Co-Cr-Mo alloys, especially under dry conditions presenting a friction value of 0.12 and almost negligible wear. This coating has passed biocompatibility tests for implant devices on tissue/bone contact according to international standards (ISO 10993). PMID:15348654

Brizuela, M; Garcia-Luis, A; Viviente, J L; Braceras, I; Oñate, J I

2002-12-01

305

Bacterial Cellulose: Long-Term Biocompatibility Studies.  

PubMed

The bacterial cellulose (BC) secreted by Gluconacetobacter xylinus is a network of pure cellulose nanofibres which has high crystallinity, wettability and mechanical strength. These characteristics make BC an excellent material for tissue-engineering constructs, noteworthy for artificial vascular grafts. In this work, the in vivo biocompatibility of BC membranes produced by two G. xylinus strains was analyzed through histological analysis of long-term subcutaneous implants in the mice. The BC implants caused a mild and benign inflammatory reaction that decreased along time and did not elicit a foreign body reaction. A tendency to calcify over time, which may be related to the porosity of the BC implants, was observed, especially among the less porous BC-1 implants. In addition, the potential toxicity of BC nanofibres - obtained by chemical-mechanical treatment of BC membranes - subcutaneously implanted in mice was analysed through bone marrow flow cytometryand histological analyses. At 2 and 4 months post-implantation, the nanofibres implants were found to accumulate intracellularly, in subcutaneous foamy macrophages aggregates. Moreover, no differences were observed between the controls and implanted animals in thymocyte populations and in B lymphocyte precursors and myeloid cells in the bone marrow. PMID:21722421

Pértile, Renata A N; Moreira, Susana; Costa, Rui M Gil da; Correia, Alexandra; Guardão, Luisa; Gartner, Fátima; Vilanova, Manuel; Gama, Miguel

2011-06-28

306

Ocular Biocompatibility of Nitinol Intraocular Clips  

PubMed Central

Purpose. To evaluate the tolerance and biocompatibility of a preformed nitinol intraocular clip in an animal model after anterior segment surgery. Methods. Yucatan mini-pigs were used. A 30-gauge prototype injector was used to attach a shape memory nitinol clip to the iris of five pigs. Another five eyes received conventional polypropylene suture with a modified Seipser slip knot. The authors compared the surgical time of each technique. All eyes underwent standard full-field electroretinogram at baseline and 8 weeks after surgery. The animals were euthanized and eyes collected for histologic analysis after 70 days (10 weeks) postsurgery. The corneal thickness, corneal endothelial cell counts, specular microscopy parameters, retina cell counts, and electroretinogram parameters were compared between the groups. A two sample t-test for means and a P value of 0.05 were use for assessing statistical differences between measurements. Results. The injection of the nitinol clip was 15 times faster than conventional suturing. There were no statistical differences between the groups for corneal thickness, endothelial cell counts, specular microscopy parameters, retina cell counts, and electroretinogram measurements. Conclusions. The nitinol clip prototype is well tolerated and showed no evidence of toxicity in the short-term. The injectable delivery system was faster and technically less challenging than conventional suture techniques. PMID:22064995

Velez-Montoya, Raul; Erlanger, Michael

2012-01-01

307

Evaluation of iron oxide nanoparticle biocompatibility  

PubMed Central

Nanotechnology is an exciting field of investigation for the development of new treatments for many human diseases. However, it is necessary to assess the biocompatibility of nanoparticles in vitro and in vivo before considering clinical applications. Our characterization of polyol-produced maghemite ?-Fe2O3 nanoparticles showed high structural quality. The particles showed a homogeneous spherical size around 10 nm and could form aggregates depending on the dispersion conditions. Such nanoparticles were efficiently taken up in vitro by human endothelial cells, which represent the first biological barrier to nanoparticles in vivo. However, ?-Fe2O3 can cause cell death within 24 hours of exposure, most likely through oxidative stress. Further in vivo exploration suggests that although ?-Fe2O3 nanoparticles are rapidly cleared through the urine, they can lead to toxicity in the liver, kidneys and lungs, while the brain and heart remain unaffected. In conclusion, ?-Fe2O3 could exhibit harmful properties and therefore surface coating, cellular targeting, and local exposure should be considered before developing clinical applications. PMID:21589646

Hanini, Amel; Schmitt, Alain; Kacem, Kamel; Chau, François; Ammar, Souad; Gavard, Julie

2011-01-01

308

There is no such thing as a biocompatible material.  

PubMed

This Leading Opinion Paper discusses a very important matter concerning the use of a single word in biomaterials science. This might be considered as being solely concerned with semantics, but it has implications for the scientific rationale for biomaterials selection and the understanding of their performance. That word is the adjective 'biocompatible', which is often used to characterize a material property. It is argued here that biocompatibility is a perfectly acceptable term, but that it subsumes a variety of mechanisms of interaction between biomaterials and tissues or tissue components and can only be considered in the context of the characteristics of both the material and the biological host within which it placed. De facto it is a property of a system and not of a material. It follows that there can be no such thing as a biocompatible material. It is further argued that in those situations where it is considered important, or necessary, to use a descriptor of biocompatibility, as in a scientific paper, a regulatory submission or in a legal argument, the phrase 'intrinsically biocompatible system' would be the most appropriate. The rationale for this linguistic restraint is that far too often it has been assumed that some materials are 'universally biocompatible' on the basis of acceptable clinical performance in one situation, only for entirely unacceptable performance to ensue in quite different clinical circumstances. PMID:25263686

Williams, David F

2014-12-01

309

Communication Damage monitoring of cement paste by electrical resistance measurement  

E-print Network

.D.L. Chung* Composite Materials Research Laboratory, State University of New York at Buffalo, Buffalo, NY cement paste (consisting of just cement and water), (ii) silica-fume cement paste (consisting of cement, water, and silica fume), and (iii) latex cement paste (consisting of cement, water, latex, and antifoam

Chung, Deborah D.L.

310

Effect of Different Intraorifice Barriers on the Fracture Resistance of Roots Obturated with Resilon or Gutta-Percha  

Microsoft Academic Search

IntroductionThis study investigated and compared the root reinforcement potential of 3 different intraorifice barriers (mineral trioxide aggregate [MTA], resin-modified glass ionomer cement [Vitremer], and fiber-reinforced composite [FRC]) placed over root canals obturated with gutta-percha or Resilon.

Emre Nagas; Ozgur Uyanik; Emre Altundasar; Veli Durmaz; Zafer C. Cehreli; Pekka K. Vallittu; Lippo V. J. Lassila

2010-01-01

311

A MODIFIED PMMA CEMENT (SUB-CEMENT) FOR ACCELERATED FATIGUE TESTING OF CEMENTED IMPLANT CONSTRUCTS USING CADAVERIC BONE  

PubMed Central

Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress intensity factor, fatigue crack propagation rates for sub-cement were higher by a factor of 25 ± 19. When tested in a simplified 2 1/2D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models. PMID:18774136

Race, Amos; Miller, Mark A.; Mann, Kenneth A.

2008-01-01

312

Influence of cement and admixture on autogenous shrinkage of cement paste  

Microsoft Academic Search

It has recently been proved that autogenous shrinkage is considerably large for highstrength concrete. In this study influences of cement, chemical admixture, mineral admixture and water-cement ratio on autogenous shrinkage of cement paste were experimentally studied. It was proved that autogenous shrinkage could be estimated form mineral composition of cement. Some admixtures which were able to reduce autogenous shrinkage were

Ei-ichi Tazawa; Shingo Miyazawa

1995-01-01

313

Neutron Scattering Studies of Cement  

NASA Astrophysics Data System (ADS)

Despite more than a century of research, basic questions remain regarding both the internal structure and the role of water in Ordinary Portland cement (OPC) concrete, the world's most widely used manufactured material. Most such questions concern the primary hydration product and strength-building phase of OPC paste, the calcium silicate hydrate (C-S-H) gel. When cement and water are mixed, this phase precipitates as clusters of nanoscale (nearly amorphous) colloidal particles with an associated water-filled inter-particle pore system. Most attempts to characterize the C-S-H gel and the behavior of the associated water involve drying or other processes that, themselves, change the bound water content within and around the gel. Neutron scattering methods do not suffer from this disadvantage. Furthermore, the neutron isotope effect and the neutron's sensitivity to molecular motion have enabled considerable progress to be made in recent years by: (i) determining the C-S-H composition, density and gel structure in small-angle neutron scattering (SANS) H/D contrast variation studies; (ii) elucidating the changing state of water within cement as hydration progresses using quasielastic neutron scattering (QENS); and (iii) measuring the production and consumption of nanoscale calcium hydroxide (CH), a by-product of cement hydration that co-exists with the C-S-H gel, using inelastic neutron scattering (INS). These experiments have provided new insights into the physics and chemistry of cement hydration, and have implications for the design of new concretes with pozzolanic cement additions that are intended to address environmental concerns and sustainability issues.

Allen, Andrew

2010-03-01

314

Caustic Burns From Contact With Wet Cement  

Microsoft Academic Search

Cement is a widely used mixture in construction. A corrosive alkali, calcium hydroxide, is liberated as water is added to the lime present in the cement mixture. Skin contact for prolonged periods produces deep chemical burns with thick eschar formation. Five cases of chemical burns to the lower extremities following contact with the cement mixture are presented. When full-thickness burns

Susan H. Early; Roger L. Simpson

2010-01-01

315

Blended cement using volcanic ash and pumice  

Microsoft Academic Search

This paper reports the results of investigation to assess the suitability of volcanic ash (VA) and pumice powder (VPP) for blended cement production. Tests were conducted on cement where Portland cement (PC) was replaced by VA and VPP within the range of 0 to 50%. The physical and chemical properties of VA and VPP were critically reviewed to evaluate the

Khandaker M. Anwar Hossain

2003-01-01

316

21 CFR 872.3275 - Dental cement.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 ...Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol ...a temporary tooth filling or as a base cement to affix a temporary tooth...

2010-04-01

317

21 CFR 872.3275 - Dental cement.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 2013-04-01 false Dental cement. 872.3275 Section 872.3275 ...Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol ...a temporary tooth filling or as a base cement to affix a temporary tooth...

2013-04-01

318

21 CFR 872.3275 - Dental cement.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 2012-04-01 false Dental cement. 872.3275 Section 872.3275 ...Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol ...a temporary tooth filling or as a base cement to affix a temporary tooth...

2012-04-01

319

Autonomic healing of acrylic bone cement.  

PubMed

Self-healing in orthopedic bone cement is demonstrated with a novel thermoplastic solvent-bonding approach. Low toxicity solvent-filled microcapsules, embedded in a commercial acrylic bone cement matrix, enable recovery of up to 80% of the virgin fracture toughness of the cement at room and body temperature conditions without external stimuli or human intervention. PMID:25116439

Gladman, A Sydney; Celestine, Asha-Dee N; Sottos, Nancy R; White, Scott R

2015-01-28

320

Basic Chemistry for the Cement Industry.  

ERIC Educational Resources Information Center

This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement

Turner, Mason

321

Elastic moduli of cemented sphere packs  

Microsoft Academic Search

We present a method for estimating the effective elastic moduli of a dense random pack of identical elastic spheres with elastic binder (cement). The cement concentration in the pore space varies from a few percent (where it fills the space at grain contacts) to 100%. To construct the solution we start at a small cement concentration value where the effective

Jack Dvorkin; Jim Berryman; Amos Nur

1999-01-01

322

ADVANCED CEMENTS FOR GEOTHERMAL WELLS  

SciTech Connect

Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further their deterioration was a major impediment in expediting the development of geothermal energy resources.

SUGAMA,T.

2007-01-01

323

Development of strength in cements  

NASA Astrophysics Data System (ADS)

The production of doped belite (dicalcium silicate) clinkers as a prospective means for saving energy in Portland cement production is described. This is accomplished by small additions of either barium sulfate (BaSO4), calcium tribasic phosphate (Ca5(PO4)3OH), or vanadium oxide (V2O5) to belite (Ca2SiO4) clinker. In addition to conserving energy, doping the belite with barium sulfate imparts greater strength to the resulting modified belite. Reactants, additives, and factors contributing to the fabrication of Sorel cement are described.

Matkovic, B.

1981-04-01

324

Biocompatibility of materials for total joint replacement.  

PubMed

The clinical use of total joint prostheses demands absolute biocompatibility of the materials employed. The purpose of this experiment was the bioassay of some materials considered as possible candidates for use in total joint prostheses as load-bearing members or as wear-resistant surfaces. Some materials already in use were also tested. 316L stainless steel was used as a control. The materials were implanted as a standardized rod and in particulate form. An average of 12 samples per material were implanted in soft tissue for six months and a total of 145 rabbits were used in this study. Twenty-five materials including metals, polymers, and ceramics were tested in solid and powdered form. A semiquantitative evaluation of local tissue reaction and a study of organs was performed. Polymers and metallic materials showed in general a mild tissue reaction. Ceramics, which some authors describe as the best tolerated materials, elicited variable tissue responses. Some of these (glass-ceramics) presented very poor tissue tolerance. The least reactive, titanium oxide, titanium aluminate, and aluminum oxide, presented a degree of tissue reaction comparable to that of corrosion resistant metals, but not superior to them. Moderate reactivity was the general rule for particulate materials except for the Pyroceram glass-ceramics, polymides, and Teflon. Ultrahigh molecular weight polyethylene in particulate form elicited a rather cellular tissue response, a fact to be considered when projecting long-term results in total joint arthroplasty. No pathological changes compatible with systemic toxicity by materials tested were observed in the study of the organs. PMID:1254613

Escalas, F; Galante, J; Rostoker, W

1976-03-01

325

Preparation, characterization, release kinetics, and in vitro cytotoxicity of calcium silicate cement as a risedronate delivery system.  

PubMed

Injectable bone cements have been well characterized and studied in non-load bearing bone fixation and bone screw augmentation applications. Current calcium phosphate cement or poly(methyl methacrylate) cement have drawbacks like low mechanical strength and in situ exothermic properties. This leads especially in patients with osteoporosis to worsening contact between implant and bone and can finally lead to implant failure. To improve these properties, a calcium silicate cement (CSC) was prepared, which additionally contained the bisphosphonate risedronate (RA) to promote osteoblast function. Cement setting rate and compressive strength were measured and found to be reduced by RA above 0.5 wt%. X-ray diffraction, Rietveld refinement analysis, scanning electron microscopy, and porosity measurements by gas sorption revealed that RA reduces calcium silicate hydrate gel formation and changes the cement's microstructure. Cumulative release profiles of RA from CSC up to 6 months into phosphate buffer solution were analyzed by high-performance liquid chromatography, and the results were compared with theoretical release curves obtained from the Higuchi equation. Fourier transform infrared spectra measurements and drug release studies indicate that calcium-RA formed within the cement, from which the drug can be slowly released over time. An investigation of the cytotoxicity of the RA-CSC systems upon osteoblast-like cells showed no toxic effects of concentrations up to 2%. The delivery of RA from within a CSC might thus be a valuable and biocompatible new approach to locally deliver RA and to reconstruct and/or repair osteoporosis-related bone fractures. PMID:23946228

Gong, Tianxing; Wang, Zhiqin; Zhang, Yubiao; Sun, Changshan; Yang, Quanzu; Troczynski, Tom; Häfeli, Urs O

2014-07-01

326

How to avoid myths of squeeze cementing  

SciTech Connect

This article describes a method of hydraulic fracturing using cement. Squeeze cementing is usually accompanied by elevated pressure caused by pumping into a crack, channel, or other severe restriction to high velocity flow. It is recommended that the total pressure inside the well bore at any depth should be about 500-1,000 psi higher than the reservoir pressure of any zone exposed to the cement, but lower than formation fracturing pressure of any exposed zone. The objective is to keep the cement and all well fluids static and in place until the cement sets and reaches at least 500 psi CS.

Crenshaw, P.L.

1985-04-23

327

Process for cementing geothermal wells  

DOEpatents

A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

Eilers, Louis H. (Inola, OK)

1985-01-01

328

Biocompatibility of an experimental MTA sealer implanted in the rat subcutaneous: quantitative and immunohistochemical evaluation.  

PubMed

The tissue reaction promoted by an experimental mineral trioxide aggregate sealer (MTAS) in the rat subcutaneous was evaluated by morphological and morphometric analyses. In the animals from each group (n = 20), polyethylene tubes filled with MTAS, Portland cement (PC) or MTA were implanted in the dorsal subcutaneous. In the control group, empty tubes were implanted. After 7, 14, 30, and 60 days, the specimens were fixed and embedded in paraffin. In the HE-stained sections, the numerical density of inflammatory cells (IC) in the capsule was evaluated and statistical analyses performed (p ? 0.05). The expression of osteopontin (OPN) was evaluated by immunohistochemistry. The von Kossa method for detection of calcified structures was also performed. A moderate inflammatory process in the capsule was seen in all groups, at 7 and 14 days. At 60 days, significant reduction in the number of IC was verified in comparison to initial periods; however, significant differences were not verified among the groups. OPN immunolabeling was observed in the fibroblasts cytoplasm of the capsule next to the implants. Structures von Kossa-positive were observed in the capsule adjacent to all materials implanted at 7, 14, and 30 days. The results strongly indicate that MTAS presents biocompatibility similarly to MTA and PC. PMID:22821748

Viola, Naiana Viana; Guerreiro-Tanomaru, Juliane Maria; da Silva, Guilherme Ferreira; Sasso-Cerri, Estela; Tanomaru-Filho, Mario; Cerri, Paulo Sérgio

2012-10-01

329

Nanospearing - Biomolecule Delivery and Its Biocompatibility  

NASA Astrophysics Data System (ADS)

Introduction of exogenous DNA into mammalian cells represents a powerful approach for manipulating signal transduction. However, the currently available techniques have serious limits in terms of either low transduction efficiency or low cell viability. It is found that carbon nanotubes (CNTs) can mediate molecule transportations via various mechanisms. We have reported a highly efficient molecular delivery technique, called nanotube spearing, based on the penetration of Ni-particle-embedded nanotubes into cell membranes by magnetic field driving. DNA was immobilized onto the nanotubes and subsequently speared into targeted cells. We have achieved a high transduction efficiency in Bal 17 B-lymphoma cell line, ex vivo B cells, and primary neurons with high viability. This technique may provide a powerful tool for highly efficient gene transfer in a variety of cells, especially, in the hard-to-transfect cells. However, CNTs have been associated with environmental and public health concerns which arose in the course of research on possible biomedical applications. The disturbances CNTs cause in the immune system have been met with particular interest because any ideal in vivo application of CNTs should not trigger any undesirable bodily responses. It is imperative to unravel the effects of CNTs on B cells, which represent the humoral component of acquired immunity, so that the potential risk of CNTs to public health can be thoroughly understood and advanced strategies can be employed to develop safe applications. We investigated the compatibility of the PECVD nanotubes and the nanospearing procedure in terms of cell viability, growth, and intracellular signal pathways by means of flow cytometry and biochemical analysis. No additional cell death was observed after the spearing treatment, nor had B cell activation been indicated by changes in cell size, growth, CD69 expression, and kinase phosphorylation. The post-spearing cells preserve the ability to respond to stimulation in as robust a manner as cells left untreated. Our study suggests the biocompatibility of the nanospearing procedure and PECVD nanotubes under the proposed spearing conditions with regard to the humoral component of the immune system, therefore, reducing concerns that surround in vivo applications of CNTs.

Cai, Dong; Kempa, Krzysztof; Ren, Zhifeng; Carnahan, David; Chiles, Thomas C.

330

Interfacial properties of three different bioactive dentine substitutes.  

PubMed

Three different bioactive materials suitable as dentine substitutes in tooth repair have been studied: glass-ionomer cement, particulate bioglass, and calcium-silicate cement. On 15 permanent human molars, Class V cavities were prepared and the bottom of each cavity was de-mineralized by an artificial caries gel. After the de-mineralization, the teeth were restored with: (1) Bioglass®45S5 and ChemFil® Superior; (2) Biodentine™ and ChemFil® Superior; and (3) ChemFil® Superior for a complete repair. The teeth were stored for 6 weeks in artificial saliva, then cut in half along the longitudinal axis: the first half was imaged in a scanning electron microscope (SEM) and the other half was embedded in resin and analyzed by SEM using energy-dispersive X-ray analysis. The glass-ionomer and the bioglass underwent ion exchange with the surrounding tooth tissue, confirming their bioactivity. However, the particle size of the bioglass meant that cavity adaptation was poor. It is concluded that smaller particle size bioglasses may give more acceptable results. In contrast, both the glass-ionomer and the calcium-silicate cements performed well as dentine substitutes. The glass-ionomer showed ion exchange properties, whereas the calcium silicate gave an excellent seal resulting from its micromechanical attachment. PMID:24148964

Gjorgievska, Elizabeta S; Nicholson, John W; Apostolska, Sonja M; Coleman, Nichola J; Booth, Samantha E; Slipper, Ian J; Mladenov, Mitko I

2013-12-01

331

Visualization of cement exocytosis in the cypris cement gland of the barnacle Megabalanus rosa  

PubMed

Cementation to substrata during permanent attachment concludes the planktonic larval phase in many sessile marine invertebrates, including barnacles. However, the neural control and the mechanism of cement secretion from cement organs are poorly understood. In the present study, using isolated cement glands from cyprids of Megabalanus rosa, we have visualized cement secretion and demonstrated the stimulatory effect of dopamine and noradrenaline on such secretion. The abrupt disappearance of secretory granules and subsequent omega-figure formation indicated that exocytosis was the major mode of cement secretion. Exocytosis was localized at the apical surface of cement-secreting cells and lasted for over 30 min. Dopamine and noradrenaline also activated the directional transport of secretory granules to the sites of exocytosis. Glyoxylic acid staining provided histochemical evidence for catecholaminergic innervation to the cement glands. These results suggest that gradual, localized exocytotic secretion of cement triggered by catecholaminergic neurones is a key mechanism during permanent attachment by barnacle cyprids. PMID:9320045

Okano; Shimizu; Satuito; Fusetani

1996-01-01

332

Biocompatibility correlation of polymeric materials using human osteosarcoma cells  

NASA Astrophysics Data System (ADS)

Metal implants are the preferred materials to generate articular prostheses, plates, or bone pegs in orthopedic surgery. Although titanium and titanium alloys show a relatively good biocompatibility, clinical experience revealed that coating of the metallic implant surface may increase the biocompatibility. In a search for optimum bone implant surfaces, we determined polarity and contact angle parameters of a variety of polymers and substances and correlated the findings in a biocompatibility assay using an in vitro bone cell model. We report that an optimum adherence of SAOS-2 cells to such surfaces and a good vitality for polymers are characterized by water-based contact angles of 80° and 20° for advancing and receding probes, respectively.

Geckeler, K. E.; Wacker, Roland; Aicher, Wilhelm K.

333

Biocompatibilities of sapphire and borosilicate glass as cortical neuroprostheses.  

PubMed

The in vivo biocompatibility of pure sapphire and borosilicate glass (BSG) implanted onto the cerebral cortex was studied via magnetic resonance imaging (MRI) and histopathology. Each implant was embedded onto the cortical surface of an adult rat brain for a total of 28 days. Rats underwent surgery with and without implants, and rats with purposely damaged cortical implant sites were also studied. Each animal was imaged via MRI before surgery as well as 10 and 28 days after the surgery. Histopathological results of animals were obtained on the 28th day to determine the specific effect on neurons. Despite the fact that sapphire has been widely used in a variety of medical implants, both MRI and histopathological results indicate that pure sapphire is not biocompatible with the cerebral cortex. On the contrary, BSG implants appear to be biocompatible with the cortical surface. PMID:17462843

Parthasarathy, Kaushik S; Cheng, Yu-Chung N; McAllister, J Patterson; Shen, Yimin; Li, Jie; Deren, Kelley; Haacke, E Mark; Auner, Gregory W

2007-11-01

334

Biocompatibility of oxygen-plasma-treated polystyrene substrates  

NASA Astrophysics Data System (ADS)

The biocompatibility of polystyrene (PS) samples has been improved by treatment with weakly ionized highly non-equilibrium oxygen plasma. Samples were exposed to plasma for 30 s for which they have received a dose of ions of 4.5 × 1017 m-2 and a neutral oxygen atom dose of 3 × 10-23 m-2. Both untreated and plasma-treated samples were tested for biocompatibility according to the same procedure. Proliferation of human mammary epithelial cells (HMECs) on samples revealed a dramatically improved biocompatibility of polystyrene treated by oxygen plasma. The HMECs were deposited on all samples and incubated for 1, 2 and 6 days. MTT test revealed about two times higher activity of cell enzymes after 48 h incubation. The activity for plasma-treated samples remained much higher than for untreated samples even after 6 days of incubation when the samples were already covered with a dense film of HMECs.

Vesel, A.; Mozetic, M.; Jaganjac, M.; Milkovic, L.; Cipak, A.; Zarkovic, N.

2011-11-01

335

Preparation of a biocompatible magnetic film from an aqueous ferrofluid  

NASA Astrophysics Data System (ADS)

Very promising nanoparticles for biomedical applications or in medical drug targeting are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. Polyvinyl alcohol (PVA) is a unique synthetic biocompatible polymer that can be chemically cross-linked to form a gel. Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. In this paper we report the synthesis of an aqueous ferrofluid and the preparation of a biocompatible magnetic gel with polyvinyl alcohol and glutharaldehyde (GTA). HClO 4 was used to induce the peptization since this kind of ferrofluid does not have surfactant. The magnetic gel was dried to generate a biocompatible film.

Albornoz, Cecilia; Jacobo, Silvia E.

2006-10-01

336

Retentiveness of various luting agents used with implant-supported prosthesis: an in vitro study.  

PubMed

Desired retrievability of cemented implant-supported fixed prosthesis makes the retentive strength of cementing agents an important consideration. The aim of the study was to evaluate the retentiveness of purposely designed implant cement and compare its retentiveness with dental cements that are commonly used with implant systems. Ten implant analogs were embedded in auto-polymerizing acrylic resin blocks and titanium abutments were attached to them. Fifty standardized copings were waxed directly on the abutment and casted. The cements used were: (1) resin-bonded zinc oxide eugenol cement, (2) purposely designed implant cement, (3) zinc phosphate cement, (4) zinc polycarboxylate cement, and (5) glass ionomer cement. After cementation, each sample was subjected to a pull-out test using universal testing machine and loads required to remove the crowns were recorded. The mean values and standard deviations of cement failure loads were analyzed using ANOVA and Bonferroni test. The mean values (± SD) of loads at failure (n = 10) for various cements were as follows (N): resin-bonded zinc oxide eugenol cement 394.62 (± 9.76), Premier implant cement 333.86 (± 18.91), zinc phosphate cement 629.30 (± 20.65), zinc polycarboxylate cement 810.08 (± 11.52), and glass ionomer cement 750.17 (± 13.78). The results do not suggest that one cement type is better than another, but they do provide a ranking order of the cements regarding their ability to retain the prosthesis and facilitate easy retrievability. PMID:25506659

Garg, Pooja; Pujari, Malesh; Prithviraj, D R; Khare, Sumit

2014-12-01

337

Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance  

NASA Astrophysics Data System (ADS)

Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate-belite cement that contained medium C4A3 S¯ and C2S contents showed good dimensional stability, sulfate resistance, and compressive strength development and was considered the optimum phase composition for calcium sulfoaluminate-belite cement in terms of comparable performance characteristics to portland cement. Furthermore, two calcium sulfoaluminate-belite cement clinkers were successfully synthesized from natural and waste materials such as limestone, bauxite, flue gas desulfurization sludge, Class C fly ash, and fluidized bed ash proportioned to the optimum calcium sulfoaluminate-belite cement synthesized from reagent-grade chemicals. Waste materials composed 30% and 41% of the raw ingredients. The two calcium sulfoaluminate-belite cements synthesized from natural and waste materials showed good dimensional stability, sulfate resistance, and compressive strength development, comparable to commercial portland cement.

Chen, Irvin Allen

338

Biocompatibility of Ti-alloys for long-term implantation.  

PubMed

The design of new low-cost Ti-alloys with high biocompatibility for implant applications, using ubiquitous alloying elements in order to establish the strategic method for suppressing utilization of rare metals, is a challenge. To meet the demands of longer human life and implantation in younger patients, the development of novel metallic alloys for biomedical applications is aiming at providing structural materials with excellent chemical, mechanical and biological biocompatibility. It is, therefore, likely that the next generation of structural materials for replacing hard human tissue would be of those Ti-alloys that do not contain any of the cytotoxic elements, elements suspected of causing neurological disorders or elements that have allergic effect. Among the other mechanical properties, the low Young's modulus alloys have been given a special attention recently, in order to avoid the occurrence of stress shielding after implantation. Therefore, many Ti-alloys were developed consisting of biocompatible elements such as Ti, Zr, Nb, Mo, and Ta, and showed excellent mechanical properties including low Young's modulus. However, a recent attention was directed towards the development of low cost-alloys that have a minimum amount of the high melting point and high cost rare-earth elements such as Ta, Nb, Mo, and W. This comes with substituting these metals with the common low cost, low melting point and biocompatible metals such as Fe, Mn, Sn, and Si, while keeping excellent mechanical properties without deterioration. Therefore, the investigation of mechanical and biological biocompatibility of those low-cost Ti-alloys is highly recommended now lead towards commercial alloys with excellent biocompatibility for long-term implantation. PMID:23507261

Abdel-Hady Gepreel, Mohamed; Niinomi, Mitsuo

2013-04-01

339

Biocompatibility of diamond-like nanocomposite thin films.  

PubMed

Diamond-like nanocomposite (DLN) films consist of network structure of amorphous carbon and quartz like silicon. In the present work, DLN films have been synthesized on pyrex glass and subsequently, their biocompatibility have been investigated through primary and secondary cell adhesion, cytotoxicity, protein adsorption and murine peritoneal macrophage activation experiments. Variable degree of cell and protein response have been found based on variable film synthesis parameters but in overall, required biocompatibility has been established for all types of film-coating. PMID:17334700

Das, T; Ghosh, D; Bhattacharyya, T K; Maiti, T K

2007-03-01

340

Reinforced Portland cement porous scaffolds for load-bearing bone tissue engineering applications.  

PubMed

Modified Portland cement porous scaffolds with suitable characteristics for load-bearing bone tissue engineering applications were manufactured by combining the particulate leaching and foaming methods. Non-crosslinked polydimethylsiloxane was evaluated as a potential reinforcing material. The scaffolds presented average porosities between 70 and 80% with mean pore sizes ranging from 300 ?m up to 5.0 mm. Non-reinforced scaffolds presented compressive strengths and elastic modulus values of 2.6 and 245 MPa, respectively, whereas reinforced scaffolds exhibited 4.2 and 443 MPa, respectively, an increase of ?62 and 80%. Portland cement scaffolds supported human osteoblast-like cell adhesion, spreading, and propagation (t = 1-28 days). Cell metabolism and alkaline phosphatase activity were found to be enhanced at longer culture intervals (t ? 14 days). These results suggest the possibility of obtaining strong and biocompatible scaffolds for bone repair applications from inexpensive, yet technologically advanced materials such as Portland cement. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 501-507, 2012. PMID:22121151

Higuita-Castro, Natalia; Gallego-Perez, Daniel; Pelaez-Vargas, Alejandro; García Quiroz, Felipe; Posada, Olga M; López, Luis E; Sarassa, Carlos A; Agudelo-Florez, Piedad; Monteiro, Fernando J; Litsky, Alan S; Hansford, Derek J

2012-02-01

341

Bone cement based on vancomycin loaded mesoporous silica nanoparticle and calcium sulfate composites.  

PubMed

A novel bone cement pellet, with sustained release of vancomycin (VAN), was prepared by mixing VAN loaded mesoporous silica nanoparticle (MSN) and calcium sulfate ?-hemihydrate (CS) together. To improve the VAN loading ability, MSN was functionalized with aminopropyltriethoxysilane (APS) to give APS-MSN. The VAN loading content and entrapment efficiency of APS-MSN could reach up to 45.91±0.81% and 84.88±1.52%, respectively, much higher than those of MSN, which were only 3.91% and 4.07%, respectively. The nitrogen adsorption-desorption measurement results demonstrated that most of the VAN were in the pores of APS-MSN. The CS/VAN@APS-MSN composite pellet showed a strongly drug sustained release effect in comparison with CS control pellet. The in vitro cell assays demonstrated that CS/APS-MSN composite was highly biocompatible and suitable to use as bone cement. Furthermore, CS/VAN@APS-MSN pellet showed no pyrogenic effect and meet the clinical requirements on hemolytic reaction. These results imply that CS/VAN@APS-MSN was an ideal candidate to replace CS bone cement in the treatment of open fractures. PMID:25686941

Li, Hanwen; Gu, Jisheng; Shah, Luqman Ali; Siddiq, Mohammad; Hu, Jianhua; Cai, Xiaobing; Yang, Dong

2015-04-01

342

Key-properties outlook of a levofloxacin-loaded acrylic bone cement with improved antibiotic delivery.  

PubMed

Antibiotic-loaded acrylic bone cements (ALABCs) are widely used to decrease the occurrence of bone infections in cemented arthroplasties and actually being considered as a more cost-effective procedure when compared to cementless implants. However, ALABCs have a major drawback, which is the incomplete release of the antibiotics and, as a result, pathogens that commonly are responsible for those infections are becoming resistant. Consequently, it is of most relevance to find new antibacterial agents to load into BC with an effective mechanism against those microorganisms. This research work intended to load levofloxacin, a fluoroquinolone with anti-staphylococcal activity and adequate penetration into osteoarticular tissues, on lactose-modified commercial bone cement (BC). This modified BC matrix exhibited increased levofloxacin release and delayed Staphylococcus aureus biofilm formation. Further insights on material-drug interaction during BC setting were investigated by density functional theory calculations. The obtained results suggested that favorable covalent and non-covalent interactions could be established between levofloxacin and the BC. Moreover, BC mechanical and biocompatibility properties were maintained. These features justify the potential of levofloxacin-loaded modified-BC as a valuable approach for local antibiotic delivery in bone infections management. PMID:25797053

Matos, Ana C; Ribeiro, Isabel A C; Guedes, Rita C; Pinto, Rosana; Vaz, Mário A; Gonçalves, Lídia M; Almeida, António J; Bettencourt, Ana F

2015-05-15

343

Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique  

PubMed Central

Background One of few persisting problems of cemented total knee arthroplasty (TKA) is aseptic loosening of tibial component due to degradation of the interface between bone cement and metallic tibial shaft component, particularly for surface cemented tibial components. Surface cementation technique has important clinical meaning in case of revision and for avoidance of stress shielding. Degradation of the interface between bone cement and bone may be a secondary effect due to excessive crack formation in bone cement starting at the opposite metallic surface. Methods This study was done to prove crack formation in the bone cement near the metallic surface when this is not coated. We propose a newly developed coating process by PVD layering with SiOx to avoid that crack formation in the bone cement. A biomechanical model for vibration fatigue test was done to simulate the physiological and biomechanical conditions of the human knee joint and to prove excessive crack formation. Results It was found that coated tibial components showed a highly significant reduction of cement cracking near the interface metal/bone cement (p < 0.01) and a significant reduction of gap formation in the interface metal-to-bone cement (p < 0.05). Conclusion Coating dramatically reduces hydrolytic- and stress-related crack formation at the prosthesis interface metal/bone cement. This leads to a more homogenous load transfer into the cement mantle which should reduce the frequency of loosening in the interfaces metal/bone cement/bone. With surface coating of the tibial component it should become possible that surface cemented TKAs reveal similar loosening rates as TKAs both surface and stem cemented. This would be an important clinical advantage since it is believed that surface cementing reduces metaphyseal bone loss in case of revision and stress shielding for better bone health. PMID:16262888

Marx, Rudolf; Qunaibi, Mutaz; Wirtz, Dieter Christian; Niethard, Fritz Uwe; Mumme, Thorsten

2005-01-01

344

Mud to cement technology proven in offshore drilling project  

Microsoft Academic Search

One problem with conventional cements is the incompatibility of Portland cement and the drilling mud. Expensive preflushes and spacer fluids have been used, often with limited success, to attempt to separate mud and Portland cement effectively. Under downhole conditions, most spacers are ineffective in preventing high viscosities and cement contamination problems which lead to poor primary cement jobs. One solution

K. Javanmardi; K. D. Flodberg; J. J. Nahm

1993-01-01

345

Structure and Formation of Magnesium Oxychloride Sorel Cements  

Microsoft Academic Search

THE hardening process by which a cement is formed from a polycrystalline matrix has been investigated using a cement of relatively simple composition and structure-Sorel cement1. This cement is formed by the addition of magnesium chloride solution to a fine powder of magnesium oxide2. The viscous paste hardens on drying and sets to a cement consisting of a mass of

B. Tooper; L. Cartz

1966-01-01

346

NON-PORTLAND CEMENT ACTIVATION OF BLAST FURNACE SLAG  

Microsoft Academic Search

The purpose of this project was to produce a “greener” cement from granulated ground blast furnace slag (GGBS) using non-Portland cement activation. By eventually developing “greener” cement, the ultimate goal of this research project would be to reduce the amount of Portland cement used in concrete, therefore reducing the amount of carbon dioxide emitted into the atmosphere during cement production.

Anne Elizabeth Oberlink

2010-01-01

347

Lunar cement and lunar concrete  

NASA Technical Reports Server (NTRS)

Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

Lin, T. D.

1991-01-01

348

Calculator programs replace cementing tables  

SciTech Connect

Two programs written for use on the two most popular programmable calculators solve routine volume and fill problems using data available on the drill floor. And while those familiar books of cementing tables should be kept for special jobs, the programs given here provide quick solutions to everyday cementing problems. Programs are presented for the solution of annular volume and pipe and hole capacity problems using the TI-59 or any of the Hewlett-Packard programmable calculators. The TI program was written for use with the PC-100C printer to prompt for input data and label output. A procedure is presented to modify this for hand-held operation using storage register numbers for prompts and to recall output information from storage registers. The program using the printer is discussed first.

Landry, W.E.

1987-01-01

349

In vitro cytotoxicity of four calcium silicate-based endodontic cements on human monocytes, a colorimetric MTT assay  

PubMed Central

Objectives This study was performed to evaluate the cytotoxicity of four calcium silicate-based endodontic cements at different storage times after mixing. Materials and Methods Capillary tubes were filled with Biodentine (Septodont), Calcium Enriched Mixture (CEM cement, BioniqueDent), Tech Biosealer Endo (Tech Biosealer) and ProRoot MTA (Dentsply Tulsa Dental). Empty tubes and tubes containing Dycal were used as negative and positive control groups respectively. Filled capillary tubes were kept in 0.2 mL microtubes and incubated at 37?. Each material was divided into 3 groups for testing at intervals of 24 hr, 7 day and 28 day after mixing. Human monocytes were isolated from peripheral blood mononuclear cells and cocultered with 24 hr, 7 day and 28 day samples of different materials for 24 and 48 hr. Cell viability was evaluated using an MTT assay. Results In all groups, the viability of monocytes significantly improved with increasing storage time regardless of the incubation time (p < 0.001). After 24 hr of incubation, there was no significant difference between the materials regarding monocyte viability. However, at 48 hr of incubation, ProRoot MTA and Biodentine were less cytotoxic than CEM cement and Biosealer (p < 0.01). Conclusions Biodentine and ProRoot MTA had similar biocompatibility. Mixing ProRoot MTA with PBS in place of distilled water had no effect on its biocompatibility. Biosealer and CEM cement after 48 hr of incubation were significantly more cytotoxic to on monocyte cells compared to ProRoot MTA and Biodentine. PMID:25110637

Khedmat, Sedigheh; Dehghan, Somayyeh; Hadjati, Jamshid; Masoumi, Farimah; Dummer, Paul Michael Howell

2014-01-01

350

Development of strength in cements  

Microsoft Academic Search

The production of doped belite (dicalcium silicate) clinkers as a prospective means for saving energy in Portland cement production is described. This is accomplished by small additions of either barium sulfate (BaSO4), calcium tribasic phosphate (Ca5(PO4)3OH), or vanadium oxide (V2O5) to belite (Ca2SiO4) clinker. In addition to conserving energy, doping the belite with barium sulfate imparts greater strength to the

B. Matkovic

1981-01-01

351

Characterization of cement minerals, cements and their reaction products at the atomic and nano scale   

E-print Network

Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption...

Skibsted, Joergen; Hall, Christopher

352

Sustainable cement production-present and future  

SciTech Connect

Cement will remain the key material to satisfy global housing and modern infrastructure needs. As a consequence, the cement industry worldwide is facing growing challenges in conserving material and energy resources, as well as reducing its CO{sub 2} emissions. According to the International Energy Agency, the main levers for cement producers are the increase in energy efficiency and the use of alternative materials, be it as fuel or raw materials. Accordingly, the use of alternative fuels has already increased significantly in recent years, but potential for further increases still exists. In cement, the reduction of the clinker factor remains a key priority: tremendous progress has already been made. Nevertheless, appropriate materials are limited in their regional availability. New materials might be able to play a role as cement constituents in the future. It remains to be seen to what extent they could substitute Portland cement clinker to a significant degree.

Schneider, M., E-mail: sch@vdz-online.de [VDZ, Duesseldorf (Germany); Romer, M.; Tschudin, M. [Holcim Group Support Ltd, Holderbank (Switzerland); Bolio, H. [CEMEX, Monterrey (Mexico)

2011-07-15

353

The cement solidification systems at LANL  

SciTech Connect

There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cement type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.

Veazey, G.W.

1990-01-01

354

Biological tests of a silicophosphate cement.  

PubMed

The biological compatibility of a silicophosphate cement (Fluoro-Thin) and a zinc phosphate cement (de Trey's Improved) has been assessed in in vitro (cell culture) and in vivo (monkey teeth) tests. In the in vitro tests both materials were toxic when freshly prepared. In experiments with prolonged cell-material contact time, with set specimens of the materials, the zinc phosphate cement appeared to be non-toxic, whereas the silicophosphate cement was clearly toxic. The in vivo experiments confirmed that a possible pulp reaction cauded by zinc phosphate cement is of a mild nature. The silicophosphate cement, however, cauded a moderate or severe reaction in the pulp after 8 days of observation, and there was chronic inflammation in most teeth after 36 or 72 days. It was concluded, therefore, that Fluoro-Thin should not be used as a luting agent or for restorative purposes in direct contact with vital dentine. PMID:807693

Dahl, B L; Tronstad, L; Spånberg, L

1975-07-01

355

Biocompatibility of dialysis membranes: Effects of chronic complement activation  

Microsoft Academic Search

Biocompatibility of dialysis membranes: Effects of chronic complement activation. The ability of three dialysis membranes (cuprophane, cellulose acetate, and polymethylmethacrylate) to activate complement was studied prospectively in ten chronic dialysis patients using new and reused membranes. Patients were dialyzed for 1 month with each type of membrane. New cuprophane membranes caused the most intense activation, while polymethylmethacrylate (PMMA) surfaces caused

Raymond M Hakim; Douglas T Fearon; J Michael Lazarus; Cynthia S Perzanowski

1984-01-01

356

Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels.  

PubMed

Based on the molecular stent concept, a series of tough double-network hydrogels (St-DN gels) made from the components of proteoglycan aggregates - chondroitin sulfate proteoglycans (1), chondroitin sulfate (2), and sodium hyaluronate (3) - are successfully developed in combination with a neutral biocompatible polymer. This work demonstrates a promising method to create biopolymer-based tough hydrogels for biomedical applications. PMID:24431128

Zhao, Yu; Nakajima, Tasuku; Yang, Jing Jing; Kurokawa, Takayuki; Liu, Jian; Lu, Jishun; Mizumoto, Shuji; Sugahara, Kazuyuki; Kitamura, Nobuto; Yasuda, Kazunori; Daniels, A U D; Gong, Jian Ping

2014-01-22

357

Three-dimensional laser micromachining and imaging of biocompatible polymers  

E-print Network

lamination [3], and 3D printing [4]. All of these methods, with the exception of melt molding, require of America OCIS codes: (220.4000) Microstructure fabrication; (180.6900) 3D microscopy; (140.3440) Laser by producing the appropriate topography within a scaffolding material that is biocompatible as well as pliable

Oldenburg, Amy

358

Biomaterials and Biocompatibility Bryan J. Pfister, PhD  

E-print Network

BME 420 Biomaterials and Biocompatibility Bryan J. Pfister, PhD pfister@njit.edu, 596-3401 Class, BME 303, Mech 320, MtSE 301 Textbooks and Materials: 1. Tissue-Biomaterial Interactions (TBI); Dee Course Description: An introduction to the field of biomaterials. The goal of this course is to learn

Bieber, Michael

359

Dynamic In Vivo Biocompatibility of Angiogenic Peptide Amphiphile Nanofibers  

PubMed Central

Biomaterials that promote angiogenesis have great potential in regenerative medicine for rapid revascularization of damaged tissue, survival of transplanted cells, and healing of chronic wounds. Supramolecular nanofibers formed by self-assembly of a heparin-binding peptide amphiphile and heparan sulfate-like glycosaminoglycans were evaluated here using a dorsal skinfold chamber model to dynamically monitor the interaction between the nanofiber gel and the microcirculation, representing a novel application of this model. We paired this model with a conventional subcutaneous implantation model for static histological assessment of the interactions between the gel and host tissue. In the static analysis, the heparan sulfate-containing nanofiber gels were found to persist in the tissue for up to 30 days and revealed excellent biocompatibility. Strikingly, as the nanofiber gel biodegraded, we observed the formation of a de novo vascularized connective tissue. In the dynamic experiments using the dorsal skinfold chamber, the material again demonstrated good biocompatibility, with minimal dilation of the microcirculation and only a few adherent leukocytes, monitored through intravital fluorescence microscopy. The new application of the dorsal skinfold model corroborated our findings from the traditional static histology, demonstrating the potential use of this technique to dynamically evaluate the biocompatibility of materials. The observed biocompatibility and development of new vascularized tissue using both techniques demonstrates the potential of these angiogenesis-promoting materials for a host of regenerative strategies. PMID:19683342

Ghanaati, Shahram; Webber, Matthew J.; Unger, Ronald E.; Orth, Carina; Hulvat, James F.; Kiehna, Sarah E.; Barbeek, Mike; Rasic, Angela; Stupp, Samuel I.; Kirkpatrick, C. James

2009-01-01

360

Usefulness verification of biocompatible microneedle patch for transdermal drug delivery  

Microsoft Academic Search

The key issues in the development of a microneedle patch as a tool for transdermal drug delivery are safety and delivery performance in addition to economical production. In this paper, a novel fabrication method for an inexpensive microneedle patch made of biocompatible polymer is reported, along with verifications for the fabricated microneedle patch. For microneedle patch fabrication, we combined the

Chun Yan Jin; Man Hee Han; S. S. Lee; Yo Han Choi

2009-01-01

361

Self-Assembled Antimicrobial and biocompatible copolymer films on Titanium  

PubMed Central

Biofilm formation on biomedical devices such as dental implants can result in serious infections and finally in device failure. Polymer coatings which provide antimicrobial action to surfaces without compromising the compatibility with human tissue are of great interest. Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate are interesting candidates in this respect. These copolymers form ultrathin polycationic layers on titanium surfaces. As the copolymerization reaction is almost ideal statistical, copolymers with varying compositions can be synthesized and immobilized onto titanium surfaces for comprehensive screening concerning antimicrobial activity and biocompatibility. Copolymer films on titanium were characterized by contact angle measurements, ellipsometry and X-ray photoelectron spectroscopy. Antibacterial properties were assessed by investigation of adherence of S. mutans which represents a strain found in the human oral cavity. Biocompatibility was rated based on human gingival fibroblast adhesion, proliferation and cell morphology. Depending on polymer composition the coatings displayed a behavior ranging from biocompatibility equal to titanium but no antibacterial action to highly antimicrobial activity but poor biocompatibility. By balancing these two opposing effects by tailoring chemical composition, copolymer coatings were fabricated, which were able to inhibit the growth of S. mutans on the surface significantly but still show a sufficient attachment of gingival fibroblasts. PMID:21818855

Pfaffenroth, Cornelia; Winkel, Andreas; Dempwolf, Wibke; Gamble, Lara J.; Castner, David G.; Stiesch, Meike; Menzel, Henning

2013-01-01

362

Labeling of macrophage cell using biocompatible magnetic nanoparticles  

Microsoft Academic Search

This work investigates the intrinsic cell labeling efficiency of the Fe3O4 nanoparticles prepared by a modified thermal decomposition method using nontoxic precursors and a biocompatible polymer surfactant. This method eliminates the current need for additional step of surface modification. The structural analysis reveals the highly crystalline feature of the nanoparticles, while the magnetic measurement shows their superparamagnetic behavior at room

Ji Hyun Min; Sung Tae Kim; Ji Sung Lee; Kwanghee Kim; Jun Hua Wu; Jaeho Jeong; Ah Young Song; Kyung-Mi Lee; Young Keun Kim

2011-01-01

363

Biocompatibility and biofouling of MEMS drug delivery devices  

Microsoft Academic Search

The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8TM photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model.

Gabriela Voskerician; Matthew S. Shive; Rebecca S. Shawgo; Horst von Recum; James M. Anderson; Michael J. Cima; Robert Langer

2003-01-01

364

The leachability of heavy metals in hardened fly ash cement and cement-solidified fly ash  

Microsoft Academic Search

The effect of mix proportion, leachant pH, curing age, carbonation and specimen making method etc. on the leaching of heavy metals and Cr(VI) in fly ash cement mortars and cement-solidified fly ashes has been investigated. In addition, a method for reducing the leaching of Cr(VI) from cement-solidified fly ashes is proposed. The results mainly indicate that: (1) either Portland cement

Qijun Yu; S. Nagataki; Jinmei Lin; T. Saeki; M. Hisada

2005-01-01

365

Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response.  

PubMed

New insight on the conversion of amorphous calcium phosphate (ACP) to nano-sized alpha tricalcium phosphate (?-TCP) provides a faster pathway to calcium phosphate bone cements. In this work, synthesized ACP powders were treated with either water or ethanol, dried, crystallized between 700 and 800?°C, and then cooled at different cooling rates. Particle size was measured in a scanning electron microscope, but crystallite size calculated by Rietveld analysis. Phase composition and bonding in the crystallized powder was assessed by x-ray diffraction and Fourier-transform infrared spectroscopy. Results showed that 50?nm sized ?-TCP formed after crystallization of lyophilized powders. Water treated ACP retained an unstable state that may allow ordering to nanoapatite, and further transition to ?-TCP after crystallization and subsequent decomposition. Powders treated with ethanol, favoured the formation of pure ?-TCP. Faster cooling limited the growth of ?-TCP. Both the initial contact with water and the cooling rate after crystallization dictated ?-TCP formation. Nano-sized ?-TCP reacted faster with water to an apatite bone cement than conventionally prepared ?-TCP. Water treated and freeze-dried powders showed faster apatite cement formation compared to ethanol treated powders. Good biocompatibility was found in pure ?-TCP nanoparticles made from ethanol treatment and with a larger crystallite size. This is the first report of pure ?-TCP nanoparticles with a reactivity that has not required additional milling to cause cementation. PMID:25886478

Vecbiskena, Linda; Gross, Karlis Agris; Riekstina, Una; Yang, Thomas Chung-Kuang

2015-01-01

366

Porous calcium phosphate cement for alveolar bone regeneration.  

PubMed

The present study aimed to provide information on material degradation and subsequent alveolar bone formation, using composites consisting of calcium phosphate cement (CPC) and poly(lactic-co-glycolic) acid (PLGA) with different microsphere morphology (hollow vs dense). In addition to the plain CPC-PLGA composites, loading the microspheres with the growth factors platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF) was investigated. A total of four different CPC composites were applied into one-wall mandible bone defects in beagle dogs in order to evaluate them as candidates for alveolar bone regeneration. These composites consisted of CPC and hollow or dense PLGA microspheres, with or without the addition of PDGF-IGF growth factor combination (CPC-hPLGA, CPC-dPLGA, CPC-hPLGAGF , CPC-dPLGAGF ). Histological evaluation revealed significantly more bone formation in CPC-dPLGA than in CPC-hPLGA composites. The combination PDGF-IGF enhanced bone formation in CPC-hPLGA materials, but significantly more bone formation occurred when CPC-dPLGA was used, with or without the addition of growth factors. The findings demonstrated that CPC-dPLGA composite was the biologically superior material for use as an off-the-shelf material, due to its good biocompatibility, enhanced degradability and superior bone formation. PMID:22777771

Félix Lanao, R P; Hoekstra, J W M; Wolke, J G C; Leeuwenburgh, S C G; Plachokova, A S; Boerman, O C; van den Beucken, J J J P; Jansen, J A

2014-06-01

367

Modification of cement systems with oxalic aldehyde  

NASA Astrophysics Data System (ADS)

The experimental results of physical-chemical properties of composite materials on the basis of cement and wood waste modified by an aquatic solution of oxalic aldehyde are presented in this paper. The injection of a chemical addition agent being in optimal concentration is shown to result in the increase of compressive strength of a cement stone by 30%, that of wood-cement composition – in 7 times. IR spectroscopy investigations, microphotographs of structures, kinetics of samples strength changes are shown.

Subbotina, N. V.; Gorlenko, N. P.; Sarkisov, Ju S.; Naumova, L. B.; Minakova, T. S.

2015-01-01

368

The nature of CSH in hardened cements  

Microsoft Academic Search

Calcium silicate hydrates (C-S-H) are the main binding phases in all Portland cement-based systems. This paper considers the morphology, composition, and nanostructure of C-S-H in a range of hardened cements. Inner product (Ip) C-S-H present in larger Portland cement grains typically has a fine-scale and homogeneous morphology with pores somewhat under 10 nm in diameter. Ip from larger slag grains

I. G Richardson

1999-01-01

369

Chemical shrinkage properties of oilfield cements  

SciTech Connect

Chemical shrinkage in oil field cements was measured at elevated temperatures and pressures for 29 different cements with modified PVT equipment. Results showed that a dilution effect exists; i.e., the cements that had the highest yield had the lowest chemical shrinkage. For the 29 tests, the maximum chemical shrinkage measured was 4.% and the minimum was 1.6%. Tube column tests showed that chemical shrinkage helped to reduce hydrostatic pressures.

Chenevert, M.E.; Shrestha, B.K. (Univ. of Texas (US))

1991-03-01

370

Cement industry: sustainability, challenges and perspectives  

Microsoft Academic Search

Cement-based materials, such as concrete and mortars, are used in extremely large amounts. For instance, in 2009 concrete\\u000a production was superior to 10 billion tons. Cement plays an important role in terms of economic and social relevance since\\u000a it is fundamental to build and improve infrastructure. On the other hand, this industry is also a heavy polluter. Cement production\\u000a releases

F. A. Rodrigues; I. Joekes

2011-01-01

371

Pulmonary Cement Embolism following Percutaneous Vertebroplasty  

PubMed Central

Percutaneous vertebroplasty is a minimal invasive procedure that is applied for the treatment of osteoporotic vertebral fractures. During vertebroplasty, the leakage of bone cement outside the vertebral body leads to pulmonary cement embolism, which is a serious complication of this procedure. Here we report a 48-year-old man who was admitted to our hospital with dyspnea after percutaneous vertebroplasty and diagnosed as pulmonary cement embolism. PMID:25580343

Co?kun, Tuba; Acat, Murat; Onaran, Hilal; Gül, ?ule; Çetinkaya, Erdo?an

2014-01-01

372

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

SciTech Connect

Low cost material is needed for grouting abandoned retorts. Experimental work has shown that a hydraulic cement can be produced from Lurgi spent shale by mixing it in a 1:1 weight ratio with limestone and heating one hour at 1000°C. With 5% added gypsum, strengths up to 25.8 MPa are obtained. This cement could make an economical addition up to about 10% to spent shale grout mixes, or be used in ordinary cement applications.

Mehta, P.K.; Persoff, P.; Fox, J.P.

1980-06-01

373

Activated fly ash\\/slag blended cement  

Microsoft Academic Search

This paper presents the results of the preparation of an ecological cementing material from granulated blast-furnace slag (GBFS) and Class C fly ash (CCFA). The desulphurization gypsum, calcined at 600–800°C for 0.5–1.5h, works as the main ingredient of the activator in the cementing material. The optimized formulation of the cementing material was obtained with the aid of factorial design method:

Feng-Qing Zhao; Wen Ni; Hui-Jun Wang; Hong-Jie Liu

2007-01-01

374

Activation of blended cements containing fly ash  

Microsoft Academic Search

This study has investigated the activation of reactivity of fly ash in different blended cements such as lime–fly ash, lime–fly ash–slag and Portland fly ash cements. Experimental results have indicated that the addition of Na2SO4 can significantly increase the strength of all these blended cements. The activation effect happens mainly during the first 3 to 7 days. The grinding of

Jueshi Qian; Caijun Shi; Zhi Wang

2001-01-01

375

Use of incinerator ash as a replacement for cement and sand in cement mortars  

Microsoft Academic Search

Incinerator ash was investigated for its potential use as a replacement for sand and cement in cement mortars. The physical and chemical characteristics of the raw materials were determined. Two sets of mixes were prepared. For the first set, cement and water quantities were fixed while incinerator ash was used at 0%, 10%, 20%, 30% and 40% replacement by weight

Amer Ali Al-Rawas; Abdel Wahid Hago; Ramzi Taha; Khalid Al-Kharousi

2005-01-01

376

Early-Age Properties of Cement-Based Materials. I: Influence of Cement Fineness  

Microsoft Academic Search

The influence of cement fineness on early-age properties of cement-based materials is investigated using a variety of experimental techniques. Properties that are critical to the early- age performance of these materials are tested, including heat release, temperature rise, chemical shrinkage and autogenous deformation. Measurements of these properties for two cements of widely different fineness are supplemented with other performance measures,

Dale P. Bentz; Gaurav Sant; Jason Weiss

2008-01-01

377

Modelling of cement-based systems—the alchemy of cement chemistry  

Microsoft Academic Search

The history and present role of modelling in the field of cement chemistry are described. The complexity of modelling cement-based systems is emphasized and the specific features of models for hardening and hardened cement pastes are briefly described. The potential of models for supporting research and the engineering practice are discussed, particularly in view of multiscale modelling.

K. van Breugel

2004-01-01

378

Usage of cement kiln dust in cement products – Research review and preliminary investigations  

Microsoft Academic Search

Large quantity of dust, commonly known as cement kiln dust (CKD), is produced during the production of Portland cement. In order to meet environmental requirements, CKD is disposed off in land fills. Recently, there has been a trend of utilizing it for soil stabilization, treatment of sewage, etc. Also, attempts were made at using it in cement products. This paper

M. Maslehuddin; O. S. B. Al-Amoudi; M. Shameem; M. K. Rehman; M. Ibrahim

2008-01-01

379

Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes  

Microsoft Academic Search

The majority of solidification\\/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of

P. D. Kalb; J. H. Heiser; P. Colombo

1990-01-01

380

Influence of superplasticizers on the hydration of cement and the pore structure of hardened cement  

Microsoft Academic Search

This paper describes the influence of various types of superplasticizers such as naphthalene type (?-NS), refined lignin sulfonate type (LS) and polycarboxylate types (P34, S34) on the hydration of cement and the pore structure of hardened cement. Other superplasticizers except ?-NS delayed the initial hydration of cement. In any case, it hardly influences the hydration reaction at late stage of

Etsuo Sakai; Takayuki Kasuga; Tomomi Sugiyama; Kiyoshi Asaga; Masaki Daimon

2006-01-01

381

General hydration model for portland cement and blast furnace slag cement  

Microsoft Academic Search

This paper focusses on the evolution of the heat of hydration of hardening concrete or cement based materials. Based on isothermal and adiabatic hydration tests a new general hydration model is developed, valid both for portland cement and blast furnace slag cement. This hydration model enables the calculation of the heat production rate as a function of the actual temperature

L. Taerwe

1995-01-01

382

Foamed Cement for Squeeze Cementing Low-Pressure, Highly Permeable Reservoirs: Design and Evaluation  

Microsoft Academic Search

Four different cement squeezing techniques have been used on wells producing from the Keg River formation in the Rainbow Lake area of Alberta, Canada. This paper evaluates 151 cement squeeze treatments performed at 96 wellsites and compares the use of foam cement vs. conventional squeeze treatments and techniques. Discussion includes key aspects, such as candidate selection, slurry design, treatment design,

Walter Chmilowski; L. B. Kondratoff

1992-01-01

383

21 CFR 888.4230 - Cement ventilation tube.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device...

2010-04-01

384

21 CFR 888.4230 - Cement ventilation tube.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 2013-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device...

2013-04-01

385

21 CFR 888.4230 - Cement ventilation tube.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 2011-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device...

2011-04-01

386

21 CFR 888.4230 - Cement ventilation tube.  

Code of Federal Regulations, 2014 CFR

...2014-04-01 2014-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device...

2014-04-01

387

21 CFR 888.4230 - Cement ventilation tube.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 2012-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device...

2012-04-01

388

21 CFR 888.4220 - Cement monomer vapor evacuator.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 2011-04-01 false Cement monomer vapor evacuator. 888.4220...DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a...

2011-04-01

389

21 CFR 888.4210 - Cement mixer for clinical use.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 2013-04-01 false Cement mixer for clinical use. 888.4210...DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device...

2013-04-01

390

21 CFR 888.4210 - Cement mixer for clinical use.  

Code of Federal Regulations, 2014 CFR

...2014-04-01 2014-04-01 false Cement mixer for clinical use. 888.4210...DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device...

2014-04-01

391

21 CFR 888.4220 - Cement monomer vapor evacuator.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 2013-04-01 false Cement monomer vapor evacuator. 888.4220...DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a...

2013-04-01

392

21 CFR 888.4220 - Cement monomer vapor evacuator.  

Code of Federal Regulations, 2014 CFR

...2014-04-01 2014-04-01 false Cement monomer vapor evacuator. 888.4220...DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a...

2014-04-01

393

21 CFR 888.4210 - Cement mixer for clinical use.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 2012-04-01 false Cement mixer for clinical use. 888.4210...DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device...

2012-04-01

394

21 CFR 888.4210 - Cement mixer for clinical use.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 2011-04-01 false Cement mixer for clinical use. 888.4210...DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device...

2011-04-01

395

21 CFR 888.4220 - Cement monomer vapor evacuator.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220...DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a...

2010-04-01

396

21 CFR 888.4210 - Cement mixer for clinical use.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210...DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device...

2010-04-01

397

21 CFR 888.4220 - Cement monomer vapor evacuator.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 2012-04-01 false Cement monomer vapor evacuator. 888.4220...DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a...

2012-04-01

398

Deterioration mechanisms of historic cement renders and concrete   

E-print Network

Since the introduction of Portland cement in the early nineteenth century the number of buildings constructed from concrete or using cement mortars and renders has grown exponentially, and cement is one of the most common ...

Griffin, Isobel Margaret

2013-11-28

399

Soft-tissue response to injectable calcium phosphate cements  

Microsoft Academic Search

In this study, the soft tissue reaction to two newly developed injectable calcium phosphate bone cements (cement D and W) was evaluated after implantation in the back of goats. For one of the cements (cement D) the tissue reaction was also investigated after varying the concentration of accelerator Na2HPO4 in the cement liquid (resulting in cement D1 and D2). Eight

E. M. Ooms; E. A. Egglezos; J. G. C. Wolke; J. A. Jansen

2003-01-01

400

The compressive modulus and strength of saturated calcium sulphate dihydrate cements: implications for testing standards.  

PubMed

Calcium sulphate-based bone cement is a bone filler with proven biological advantages including biodegradability, biocompatibility and osteoconductivity. Mechanical properties of such brittle ceramic cements are frequently determined using the testing standard designed for ductile acrylic cements. The aims of the study were (1) to validate the suitability of this common testing protocol using saturated calcium sulphate dihydrate (CSD), and (2) to compare the strength and effective modulus of non-saturated and saturated CSD, in order to determine the changes in the mechanical behavior of CSD upon saturation. Unconfined compression tests to failure were performed on 190 cylindrical CSD samples. The samples were divided into four groups having different saturation levels (saturated, non-saturated) and end conditions (capped and non-capped). Two effective moduli were calculated per sample, based on the deformations measured using the machine platens and a sample-mounted extensometer. The effective moduli of non-saturated groups were found to be independent of the end conditions. The saturated and capped group showed no difference in the effective moduli derived from different measurement methods, while the saturated and non-capped group showed a significant difference between the machine platen- and extensometer-derived moduli. Strength and modulus values were significantly lower for saturated samples. It was assumed that the existence of water in saturated CSD alters the mechanical response of the material due to the changes in chemical and physical behaviors. These factors are considered to play important roles to decrease the shear strength of CSD. It was proposed that the reduction in CSD shear strength evokes local deformation at the platen-sample boundary, affecting the strength and effective moduli derived from the experiments. The results of this study highlighted the importance of appropriate and consistent testing methods when determining the mechanical properties of saturated ceramic cements. PMID:24603215

Koh, Ilsoo; López, Alejandro; Helgason, Benedikt; Ferguson, Stephen J

2014-06-01

401

S Sppeeccttrroopphhoottoommeettrriicc A Annaallyyssiiss o off A Allll-c ceerraammiicc MMaatteerriiaallss a anndd T Thheeiirr IInntteerraaccttiioonn w wiitthh LLuuttiinngg A Aggeennttss a anndd D Diiffffeerreenntt B Baacckkggrroouunnddss  

Microsoft Academic Search

In this study, two All-Ceramic (AC) materials— Empress 2 (EMP) (Ivoclar Vivadent AG, Schaan, Liechtenstein) and In-Ceram ALUMINA (ICA) (Vita Zahnfabrik, Bad Säckingen, Germany)—were analyzed, along with the effects of 3 luting agents—viz. Zinc Phosphate cement (ZNPO, PhospaCEM PL, Ivoclar Vivadent AG, Schaan, Liechtenstein), Glass Ionomer Cement (GIC, Ketac-Cem Radiopaque, ESPE Dental AG, Seefeld, Germany), and Compolute (COMP, ESPE Dental

V. S. Barath; F.-J. Faber; S. Westland; W. Niedermeier

402

An evaluation of the inflammatory response of lipopolysaccharide-treated primary dental pulp cells with regard to calcium silicate-based cements.  

PubMed

This study compared the biological changes of lipopolysaccharide (LPS)-treated dental pulp (DP) cells directly cultured on mineral trioxide aggregate (MTA) and calcium silicate (CS) cements. DP cells were treated with LPS for 24 h. Then, the LPS-treated DP cells were cultured on MTA or CS cements. Cell viability, cell death mechanism and interleukin (IL)-1? expressions were analysed. A one-way analysis of variance was used to evaluate the significance of the differences between the means. A significantly higher IL-1? expression (2.9-fold) was found for LPS-treated cells (P<0.05) compared with DP cells without LPS treatment at 24 h. Absorbance values of LPS-treated cells cultured on CS cement were higher than a tissue culture plate. A significant difference (P<0.05) in cell viability was observed between cells on CS and MTA cements 24 h after seeding. At 48 h, a high concentration of Si (5 mM) was released from MTA, which induced LPS-treated DP cell apoptosis. The present study demonstrates that CS cement is biocompatible with cultured LPS-treated DP cells. MTA stimulates inflammation in LPS-treated DP cells, which leads to greater IL-1? expression and apoptosis. PMID:24556955

Lai, Wei-Yun; Kao, Chia-Tze; Hung, Chi-Jr; Huang, Tsui-Hsien; Shie, Ming-You

2014-06-01

403

Fracture model for cemented aggregates  

DOE PAGESBeta

A mechanisms-based fracture model applicable to a broad class of cemented aggregates and, among them, plastic-bonded explosive (PBX) composites, is presented. The model is calibrated for PBX 9502 using the available experimental data under uniaxial compression and tension gathered at various strain rates and temperatures. We show that the model correctly captures inelastic stress-strain responses prior to the load peak and it predicts the post-critical macro-fracture processes, which result from the growth and coalescence of micro-cracks. In our approach, the fracture zone is embedded into elastic matrix and effectively weakens the material's strength along the plane of the dominant fracture.

Zubelewicz, Aleksander; Thompson, Darla G.; Ostoja-Starzewski, Martin; Ionita, Axinte; Shunk, Devin; Lewis, Matthew W.; Lawson, Joe C.; Kale, Sohan; Koric, Seid

2013-01-01

404

TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.  

ERIC Educational Resources Information Center

THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

WESSON, CARL E.

405

Cardiovascular Effects of Implanted Acrylic Bone Cement  

Microsoft Academic Search

A pilot study has shown that there is usually but not invariably a fall in systemic arterial blood pressure within 90 seconds of implanting acrylic cement into the femoral shaft during hip arthroplasty. There is usually no change in arterial blood pressure on implanting acrylic cement into the acetabulum. The observed hypotension may be due to absorption of monomer or

Hugh Phillips; Peter V. Cole; Alan W. F. Lettin

1971-01-01

406

Geologic vs. geographic constraints on cement resources  

Microsoft Academic Search

This study evaluates the importance of geologic and geographic factors in constraining the location of limestone mining operations for the production of cement in the Great Lakes region of the United States. Cities and their infrastructure require abundant cement, which is manufactured from limestone and other quarry products, but expansion of cities limits the locations of these operations. Possible locations

Alissa Kendall; Stephen E. Kesler; Gregory A. Keoleian

2008-01-01

407

A cement fixation system for total hip arthroplasty.  

PubMed

To combat the most common and most serious cause of mechanical failure of total hip arthroplastics, namely loosening, a method of improving the insertion of methacrylate is presented, called the cement fixation system. Using the cement gun with the keying hole seal, the methacrylate is pressure injected into the keying holes in the acetabulum. The acetabular cement compactor pressurizes the rest of the cement used in the acetabulum. The medullary canal of the femur is occluded by a bolus of methacrylate delivered to the desired depth by the medullary plug syringe. Thus, the cement is delivered from the plug proximally via the cement gun and femoral cement syringe. Finger packing is not used. The entire femoral cement mass is then pressurized using the femoral cement compactor. This cement fixation system produces higher extrusion pressure, better penetration of the cement, better fixation to the bone and reduces voids, defects, and discontinuities in the methacrylate mantle. PMID:7067290

Oh, I; Harris, W H

1982-04-01

408

Cement analysis using d + D neutrons  

NASA Astrophysics Data System (ADS)

In the cement industry, the primary concern is quality control. The earlier the cement industry can institute quality control upon their product, the more significant their savings in labor, energy and material. We are developing a prototype cement analyzer using pulsed neutrons from a d-D electronic neutron generator with the goal of ensuring quality control of cement in an on-line manner. By utilizing a low intensity d-D neutron source and a specially-designed moderator assembly, we are able to produce one of the safest neutron-based systems in the market. Also, this design includes some exciting new methods of data acquisition which may substantially reduce the final installation costs. In our proof-of-principle measurements, we were able to measure the primary components of cement (Al, Si, Ca and Fe) to limits required for the raw materials, the derived mixes and the clinkers utilizing this neutron generator.

Womble, Phillip C.; Paschal, Jon; Moore, Ryan

2005-12-01

409

BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES  

SciTech Connect

Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

Farquar, G; Leif, R

2009-07-15

410

Phototherapeutic functionality of biocompatible graphene oxide/dendrimer hybrids.  

PubMed

Hydroxyl-terminated fourth generation poly(amido amine) dendrimer and folic acid were chemically bound on graphene oxide. The resultant hybrids exhibited one-photon and two-photon fluorescence emission, since the excitation irradiation at 390 and 780nm on the hybrids brought a fluorescence emission in the visible region around 450nm. In addition, the photocytotoxicity study revealed that under the two-photon excitation at 780nm, the hybrids can absorb near-infrared light and generate reactive oxygen species which can oxidize the HeLa cells and cause their death, suggesting the phototherapeutic behavior. Cytotoxicity measurement revealed the high biocompatibility of the hybrids toward HeLa cells. Thus, the present biocompatible hybrids consisting of only dendrimer, folic acid and graphene oxide have potentials as photodynamic therapeutic agents for medical treatment. PMID:24986752

Siriviriyanun, Ampornphan; Imae, Toyoko; Calderó, Gabriela; Solans, Conxita

2014-09-01

411

Method for making a bio-compatible scaffold  

DOEpatents

A method for forming a three-dimensional, biocompatible, porous scaffold structure using a solid freeform fabrication technique (referred to herein as robocasting) that can be used as a medical implant into a living organism, such as a human or other mammal. Imaging technology and analysis is first used to determine the three-dimensional design required for the medical implant, such as a bone implant or graft, fashioned as a three-dimensional, biocompatible scaffold structure. The robocasting technique is used to either directly produce the three-dimensional, porous scaffold structure or to produce an over-sized three-dimensional, porous scaffold lattice which can be machined to produce the designed three-dimensional, porous scaffold structure for implantation.

Cesarano, III, Joseph (Albuquerque, NM); Stuecker, John N. (Albuquerque, NM); Dellinger, Jennifer G. (Champaigne, IL); Jamison, Russell D. (Urbana, IL)

2006-01-31

412

Cellular Uptake and Biocompatibility of Bismuth Ferrite Harmonic Advanced Nanoparticles  

E-print Network

Bismuth Ferrite (BFO) nanoparticles (BFO-NP) display interesting optical (nonlinear response) and magnetic properties which make them amenable for bio-oriented applications as intra- and extra membrane contrast agents. Due to the relatively recent availability of this material in well dispersed nanometric form, its biocompatibility was not known to date. In this study, we present a thorough assessment of the effects of in vitro exposure of human adenocarcinoma (A549), lung squamous carcinoma (NCI-H520), and acute monocytic leukemia (THP-1) cell lines to uncoated and poly(ethylene glycol)-coated BFO-NP in the form of cytotoxicity, haemolytic response and biocompatibility. Our results support the attractiveness of the functional-BFO towards biomedical applications focused on advanced diagnostic imaging.

Staedler, Davide; Magouroux, Thibaud; Rogov, Andrii; Maguire, Ciaran Manus; Mohamed, Bashir M; Schwung, Sebastian; Rytz, Daniel; Jüstel, Thomas; Hwu, Stéphanie; Mugnier, Yannick; Dantec, Ronan Le; Volkov, Yuri; Gerber-Lemaire, Sandrine; Prina-Melloc, Adriele; Bonacina, Luigi; Wolf, Jean-Pierre

2014-01-01

413

Cysteine modified polyaniline films improve biocompatibility for two cell lines.  

PubMed

This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using l-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV-visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86°±1 to 90°±1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. PMID:25842107

Yslas, Edith I; Cavallo, Pablo; Acevedo, Diego F; Barbero, César A; Rivarola, Viviana A

2015-06-01

414

Engineering Biomaterials to Integrate and Heal: The Biocompatibility Paradigm Shifts  

PubMed Central

This article focuses on one of the major failure routes of implanted medical devices, the foreign body reaction (FBR)—that is, the phagocytic attack and encapsulation by the body of the so-called “biocompatible” biomaterials comprising the devices. We then review strategies currently under development that might lead to biomaterial constructs that will harmoniously heal and integrate into the body. We discuss in detail emerging strategies to inhibit the FBR by engineering biomaterials that elicit more biologically pertinent responses. PMID:22592568

Bryers, James D.; Giachelli, Cecilia M.; Ratner, Buddy D.

2012-01-01

415

Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates  

Microsoft Academic Search

The biocompatibility of microbial polyesters polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) were evaluated in vitro. The mouse fibroblast cell line L929 was inoculated on films made of PHB, PHBHHx and their blends, polylactic acid (PLA) as control. It was found that the growth of the cells L929 was poor on PHB and PLA films. The viable cell number ranged from 8.8×102

Xianshuang Yang; Kai Zhao; Guo-Qiang Chen

2002-01-01

416

Biocompatibility Study of Gold Nanoparticles to Human Cells  

Microsoft Academic Search

Gold nanoparticle (GNP) is one of the most stable and popular nanoparticles, which receives considerable attention due to\\u000a their applications in biomedical imaging and diagnostic tests. However, its cytotoxicity has not been fully investigated.\\u000a Here we report the effects on biocompatibility of water-soluble GNPs with different sizes and concentrations to human bone\\u000a marrow mesenchymal stem cells (hBMSCs) and human hepatoma

J. H. Fan; W. I. Hung; W. T. Li; J. M. Yeh

417

Permeability and Biocompatibility of Novel Medicated Hydrogel Wound Dressings  

Microsoft Academic Search

Hydrogel dressings are being popularized for wound care management because of their softness, tissue compatibility, and ability to enhance wound healing process. PVP-CMC and PVP-CMC-BA hydrogels were prepared using polyvinylpyrrolidone (PVP), sodium-carboxymethylcellulose (CMC), polyethyleneglycol (PEG), agar, glycerine and without\\/with boric acid (BA). Permeability: water vapor transmission and microbe penetration and biocompatibility: cytotoxicity, skin irritation, and skin sensitization tests of hydrogels

Niladri Roy; Nabanita Saha; Petr Humpolicek; Petr Saha

2010-01-01

418

A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys  

PubMed Central

Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy. PMID:19956791

Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Singh Gill, Puneet K.; Amruthaluri, Sushma

2009-01-01

419

Biocompatibility of Chitosan Carriers with Application in Drug Delivery  

PubMed Central

Chitosan is one of the most used polysaccharides in the design of drug delivery strategies for administration of either biomacromolecules or low molecular weight drugs. For these purposes, it is frequently used as matrix forming material in both nano and micron-sized particles. In addition to its interesting physicochemical and biopharmaceutical properties, which include high mucoadhesion and a great capacity to produce drug delivery systems, ensuring the biocompatibility of the drug delivery vehicles is a highly relevant issue. Nevertheless, this subject is not addressed as frequently as desired and even though the application of chitosan carriers has been widely explored, the demonstration of systems biocompatibility is still in its infancy. In this review, addressing the biocompatibility of chitosan carriers with application in drug delivery is discussed and the methods used in vitro and in vivo, exploring the effect of different variables, are described. We further provide a discussion on the pros and cons of used methodologies, as well as on the difficulties arising from the absence of standardization of procedures. PMID:24955636

Rodrigues, Susana; Dionísio, Marita; Remuñán López, Carmen; Grenha, Ana

2012-01-01

420

Polyamide 6 composite membranes: properties and in vitro biocompatibility evaluation.  

PubMed

The aim of the present study was to develop polyamide 6 membrane blended with gelatin and chondroitin sulfate using the phase precipitation method and evaluate its in vitro biocompatibility. Morphology of membranes was studied by laser scanning confocal microscopy which allowed the nondestructive visualization of internal bulk morphology of membranes. Membranes exhibited porous morphology with pores spanning across the membrane width with interconnections at various depths. Membranes showed adequate mechanical properties with tensile strengths of 20.10 +/- 0.64 MPa, % strain of 3.01+/-0.07, and modulus of 1082.50+/-23.50 MPa. In vitro biocompatibility of membranes by direct contact test did not show degenerative effects on NIH3T3 cells and also its leach-out products (LOP), as determined by tetrazolium (MTT) and neutral red uptake (NRU) assay. Mouse peritoneal macrophage cultured in contact with membranes and PTFE control showed comparable expression of activation markers such as CD11b/CD18, CD45, CD14, and CD86 suggesting the membranes' non-activating nature. Membrane LOP did not induce excessive proliferation of mouse splenocytes suggesting its non-antigenic nature. Preliminary blood compatibility of membranes was observed with no detectable hemolysis in static incubation assay. Taken collectively, the present data demonstrate that polyamide 6 composite membranes are biocompatible and prospective candidates for tissue engineering applications. PMID:11334186

Risbud, M V; Bhonde, R R

2001-01-01

421

Microscale Investigation of Arsenic Distribution and Species in Cement Product from Cement Kiln Coprocessing Wastes  

PubMed Central

To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As) in the cement product from coprocessing wastes using cement kiln, distrib