Science.gov

Sample records for biocompatible glass-ionomer cement

  1. Thermal diffusivity of glass ionomer cement systems.

    PubMed

    Brantley, W A; Kerby, R E

    1993-01-01

    The thermal diffusivity has been measured for 10 glass ionomer and resin-based materials: three conventional (water-hardened) glass ionomer cements, two silver-reinforced glass ionomers, an experimental stainless steel-reinforced glass ionomer, three visible light-cured (VLC) glass ionomer-resin hybrid materials, and a VLC resin-based product developed for the same clinical uses as the hybrid materials. Cube-shaped specimens, c. 10 x 10 x 10 mm, initially at room temperature were immersed in mercury surrounded by an ice-water bath. From the experimental cooling curve a semi-log plot of relative temperature decrease vs. time yielded a straight line whose slope is proportional to the thermal diffusivity. The values ranged from 1.74-5.16 x 10(-3) cm2 s-1, and all of the materials tested would have adequate insulating properties provided normal clinical thickness levels for lining materials are maintained. It was found that the thermal diffusivities for the three metal-reinforced glass ionomers, where composition information is available, do not follow a rule of mixtures applied to the individual components. PMID:8429424

  2. Evaluation of a new 2-paste glass ionomer cement.

    PubMed

    Komori, Akira; Kojima, Iori

    2003-06-01

    A new 2-paste resin-reinforced glass ionomer cement, Fuji Ortho Band Paste Pak (GC Corporation, Tokyo, Japan), for the placement of orthodontic bands, has been developed for easier handling. The aim of this study was to compare the fluoride release and uptake characteristics of this cement with that of 3 others commonly used to cement orthodontic bands: a conventional resin-reinforced glass ionomer cement, a polyacid-modified composite resin, and a conventional glass ionomer cement. Fluoride release was measured during a 28-day period. After the measurement on day 28, experimental samples were exposed to 1000 ppm sodium fluoride solution for 5 minutes, and fluoride release was then measured for 7 days. Initially, the new 2-paste resin-reinforced glass ionomer cement released the greatest amount of fluoride; the polyacid-modified composite resin released the least initially, and it continued to show the lowest values throughout the study. The fluoride uptake and release values of the new 2-paste resin-reinforced glass ionomer cement were statistically significantly higher than those of the conventional resin-reinforced glass ionomer cement or the conventional glass ionomer cement. The new 2-paste resin-reinforced glass ionomer cement might be a good alternative to conventional products for cementing orthodontic bands. PMID:12806344

  3. How mobile are protons in the structure of dental glass ionomer cements?

    PubMed

    Benetti, Ana R; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C R; Okhrimenko, Denis V; Telling, Mark T F; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N

    2015-01-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements. PMID:25754555

  4. How mobile are protons in the structure of dental glass ionomer cements?

    NASA Astrophysics Data System (ADS)

    Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

    2015-03-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements.

  5. Comparative laboratory investigation of dual-cured vs. conventional glass ionomer cements for band cementation.

    PubMed

    Millett, D T; Kamahli, K; McColl, J

    1998-08-01

    This laboratory study compared the mean tensile bond strength, mode of band failure, and survival time of orthodontic bands cemented with dual-cured cement or conventional glass ionomer cement. Survival time was assessed following application of mechanical stress in a ball mill. Mean tensile bond strength was significantly higher for bands cemented with the dual-cured cement (p < 0.01), and mean survival time was significantly greater. Bands cemented with glass ionomer failed mainly at the cement/band interface. The results suggest that dual-cured cement is superior to glass ionomer for band cementation. PMID:9709835

  6. Do conventional glass ionomer cements release more fluoride than resin-modified glass ionomer cements?

    PubMed Central

    Cabral, Maria Fernanda Costa; Martinho, Roberto Luiz de Menezes; Guedes-Neto, Manoel Valcácio; Rebelo, Maria Augusta Bessa; Pontes, Danielson Guedes

    2015-01-01

    Objectives The aim of this study was to evaluate the fluoride release of conventional glass ionomer cements (GICs) and resin-modified GICs. Materials and Methods The cements were grouped as follows: G1 (Vidrion R, SS White), G2 (Vitro Fil, DFL), G3 (Vitro Molar, DFL), G4 (Bioglass R, Biodinâmica), and G5 (Ketac Fil, 3M ESPE), as conventional GICs, and G6 (Vitremer, 3M ESPE), G7 (Vitro Fil LC, DFL), and G8 (Resiglass, Biodinâmica) as resin-modified GICs. Six specimens (8.60 mm in diameter; 1.65 mm in thickness) of each material were prepared using a stainless steel mold. The specimens were immersed in a demineralizing solution (pH 4.3) for 6 hr and a remineralizing solution (pH 7.0) for 18 hr a day. The fluoride ions were measured for 15 days. Analysis of variance (ANOVA) and Tukey's test with 5% significance were applied. Results The highest amounts of fluoride release were found during the first 24 hr for all cements, decreasing abruptly on day 2, and reaching gradually decreasing levels on day 7. Based on these results, the decreasing scale of fluoride release was as follows: G2 > G3 > G8 = G4 = G7 > G6 = G1 > G5 (p < 0.05). Conclusions There were wide variations among the materials in terms of the cumulative amount of fluoride ion released, and the amount of fluoride release could not be attributed to the category of cement, that is, conventional GICs or resin-modified GICs. PMID:26295024

  7. Laboratory evaluation of a compomer and a resin-modified glass ionomer cement for orthodontic bonding.

    PubMed

    Millett, D T; Cattanach, D; McFadzean, R; Pattison, J; McColl, J

    1999-02-01

    The mean shear debonding force of stainless steel orthodontic brackets with microetched bases bonded with either a compomer or a resin-modified glass ionomer cement was assessed. In addition, the amount of cement remaining on the enamel surface following bracket removal was evaluated. Finally, survival time of orthodontic brackets bonded with these materials was assessed following simulated mechanical stress in a ball mill. Debonding force and survival time data were compared with those obtained for brackets bonded with a chemically cured resin adhesive, a light-cured resin adhesive, and a conventional glass ionomer cement. There were no significant differences in mean shear debonding force of brackets bonded with the compomer, resin-modified glass ionomer, chemically cured resin adhesive, or the light-cured resin adhesive. Brackets bonded with a conventional glass ionomer cement had a significantly lower mean shear debonding force than that recorded for the other materials. The Adhesive Remnant Index (ARI) mode score indicated that significantly less cement remained on the enamel following debonding of brackets cemented with resin-modified or conventional glass ionomers compared with other adhesives. The median survival time for brackets cemented with the compomer, resin-modified glass ionomer, chemically cured resin, or light-cured resin were significantly longer than for brackets cemented with conventional glass ionomer. The compomer and the resin-modified glass ionomer adhesive appear to offer viable alternatives to the more commonly used resin adhesives for bracket bonding. PMID:10022186

  8. Cytotoxicity of glass ionomer cements containing silver nanoparticles

    PubMed Central

    Magalhães, Ana-Paula-Rodrigues; Pires, Wanessa-Carvalho; Pereira, Flávia-Castro; Silveira-Lacerda, Elisângela-Paula; Carrião, Marcus-Santos; Bakuzis, Andris-Figueiroa; Souza-Costa, Carlos-Alberto; Lopes, Lawrence-Gonzaga; Estrela, Carlos

    2015-01-01

    Background Some studies have investigated the possibility of incorporating silver nanoparticles (NAg) into dental materials to improve their antibacterial properties. However, the potential toxic effect of this material on pulp cells should be investigated in order to avoid additional damage to the pulp tissue. This study evaluated the cytotoxicity of conventional and resin-modified glass ionomer cements (GIC) with and without addition of NAg. Material and Methods NAg were added to the materials at two different concentrations by weight: 0.1% and 0.2%. Specimens with standardized dimensions were prepared, immersed in 400 µL of culture medium and incubated at 37°C and 5% CO2 for 48 h to prepare GIC liquid extracts, which were then incubated in contact with cells for 48 h. Culture medium and 0.78% NAg solution were used as negative and positive controls, respectively. Cell viability was determined by MTT and Trypan Blue assays. ANOVA and the Tukey test (?=0.05) were used for statistical analyses. Results Both tests revealed a significant decrease in cell viability in all groups of resin modified cements (p<0.001). There were no statistically significant differences between groups with and without NAg (p>0.05). The differences in cell viability between any group of conventional GIC and the negative control were not statistically significant (p>0.05). Conclusions NAg did not affect the cytotoxicity of the GIC under evaluation. Key words:Glass ionomer cements, totoxicity, cell culture techniques, nanotechnology, metal nanoparticles. PMID:26644839

  9. Spheroidization of glass powders for glass ionomer cements.

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs. PMID:15046893

  10. Caries protection after orthodontic band cementation with glass ionomer.

    PubMed

    Marcushamer, M; Garcia-Godoy, F; Chan, D C

    1993-01-01

    This study evaluated the resistance of the enamel to an artificial caries challenge after removing orthodontic bands cemented with a glass ionomer cement (GIC). Ten extracted caries-free molars were cleaned with a slurry of pumice and randomly divided into 2 groups of 5 teeth each: Group 1: Cementation with GIC (Fuji) and Group 2: Cementation with a zinc phosphate cement (Mizzy). Both cements were handled according to manufacturer's instructions. Before cementing the bands, an area of S x S mm was masked with adhesive tape on the lingual surfaces of all teeth. The orthodontic bands were cemented over this adhesive tape. After band cementation, the occlusal and gingival margins of the band were delineated with a bur on the tooth surface. The teeth were thermocycled (200 cycles, 5-55 degrees C, 30-second dwell time) and stored in distilled water for 24 hours. Then, the bands and adhesive tape were removed and the teeth again stored in distilled water for a week, changing the water daily. The teeth were then varnished with the exception of a 5 x 5 mm window (including previously exposed and covered areas) on the buccal and lingual surfaces. All teeth were then placed in an acidified gel (pH 4.5) for 5 weeks to produce artificial caries. At least three sections from the exposed and covered areas were made from the buccal and lingual challenged areas. Sections were ground to approximately 100 microns. Polarized microscopy and image analysis were used to analyze the results.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8258573

  11. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles.

    PubMed

    Valanezhad, Alireza; Odatsu, Tetsuro; Udoh, Koichi; Shiraishi, Takanobu; Sawase, Takashi; Watanabe, Ikuya

    2016-01-01

    In the present study, sol-gel derived nanoparticle calcium silicate bioactive glass was added to the resin-modified light cure glass-ionomer cement to assess the influence of additional bioactive glass nanoparticles on the mechanical and biological properties of resin-modified glass-ionomer cement. The fabricated bioactive glass nanoparticles added resin-modified glass-ionomer cements (GICs) were immersed in the phosphate buffer solution for 28 days to mimic real condition for the mechanical properties. Resin-modified GICs containing 3, 5 and 10 % bioactive glass nanoparticles improved the flexural strength compared to the resin-modified glass-ionomer cement and the samples containing 15 and 20 % bioactive glass nanoparticles before and after immersing in the phosphate buffer solution. Characterization of the samples successfully expressed the cause of the critical condition for mechanical properties. Cell study clarified that resin-modified glass-ionomer cement with high concentrations of bioactive glass nanoparticles has higher cell viability and better cell morphology compare to control groups. The results for mechanical properties and toxicity approved that the considering in selection of an optimum condition would have been a more satisfying conclusion for this study. PMID:26610926

  12. Resin-modified glass ionomer cements for bonding orthodontic retainers.

    PubMed

    Baysal, Asli; Uysal, Tancan

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS), fracture mode, and wire pull out (WPO) resistance between resin-modified glass ionomer cement (RMGIC) and conventional orthodontic composite used as a lingual retainer adhesive. Forty lower human incisors were randomly divided into two equal groups. To determine the SBS, either Transbond-LR or Fuji Ortho-LC was applied to the lingual surface of the teeth by packing the material into cylindrical plastic matrices with an internal diameter of 2.34 mm and a height of 3 mm (Ultradent) to simulate the lingual retainer bonding area. To test WPO resistance, 20 samples were prepared for each composite where the wire was embedded in the composite material and cured, 20 seconds for Transbond-LR and 40 seconds for Fuji Ortho-LC. The ends of the wire were then drawn up and tensile stress was applied until failure of the resin. A Student's t-test for independent variables was used to compare the SBS and WPO data. Fracture modes were analyzed using Pearson chi-square test. Significance was determined at P < 0.05. The SBS values were 24.7 +/- 9.2 and 10.2 +/- 5.5 MPa and the mean WPO values 19.8 +/- 4.6 and 11.1 +/- 5.7 N for Transbond-LR and Fuji Ortho-LC, respectively. Statistical analysis showed that the SBS and WPO values of Transbond-LR and Fuji Ortho-LC were significantly different (P < 0.001). No significant differences were present among the groups in terms of fracture mode. However, the RMGIC resulted in a significant decrease in SBS and WPO; it produced sufficient SBS values on the etched enamel surfaces, when used as a bonded orthodontic retainer adhesive. PMID:19793779

  13. Solving endodontic isolation problems with interim buildups of reinforced glass ionomer cement.

    PubMed

    Morgan, L A; Marshall, J G

    1990-09-01

    A technique is presented for the expedient placement of interim buildups of type II glass ionomer cement as an aid for endodontic isolation of broken down teeth. The bond strength of glass ionomer cement to tooth structure is sufficient to withstand the forces of endodontic manipulation without the need for reinforcing pins. The material also shows promise as an intermediate endodontic seal. Variations of this technique are presented to address some other common isolation problems and the esthetic needs of the patient. PMID:2129125

  14. Resin-modified glass ionomer, modified composite or conventional glass ionomer for band cementation?--an in vitro evaluation.

    PubMed

    Millett, D T; Cummings, A; Letters, S; Roger, E; Love, J

    2003-12-01

    The aims of this study were to compare the mean shear-peel bond strength and predominant site of bond failure of micro-etched orthodontic bands cemented with resin-modified glass ionomer cement (RMGIC; Fuji Ortho LC or 3M Multi-Cure), a modified composite or a conventional GIC. The survival time of bands was also assessed following simulated mechanical stress in a ball mill. One hundred and twenty molar bands were cemented to extracted human third molars. Eighty bands (20 cemented with each cement) were used to assess the debonding force and 40 bands (10 cemented with each cement) were used to determine survival time. The specimens were prepared in accordance with the manufacturers' instructions for each cement. After storage in a humidor at 37 degrees C for 24 hours, the shear debonding force was assessed for each specimen using a Nene M3000 testing machine with a crosshead speed of 1 mm/minute. The predominant site of band failure was recorded visually for all specimens as either at the band/cement or cement/enamel interface. Survival time was assessed following application of mechanical stress in a ball mill. There was no significant difference in mean shear-peel bond strength between the cement groups (P = 0.816). The proportion of specimens failing at each interface differed significantly between cement groups (P < 0.001). The predominant site of bond failure for bands cemented with the RMGIC (Fuji Ortho LC) or the modified composite was at the enamel/cement interface, whereas bands cemented with 3M Multi-Cure failed predominantly at the cement/band interface. Conventional GIC specimens failed mostly at the enamel/cement interface. The mean survival time of bands cemented with either of the RMGICs or with the modified composite was significantly longer than for those cemented with the conventional GIC. The findings indicate that although there appears to be equivalence in the mean shear-peel bond strength of the band cements assessed, the fatigue properties of the conventional GIC when subjected to simulated mechanical stress seem inferior to those of the other cements for band cementation. PMID:14700267

  15. Minimal intervention dentistry II: part 7. Minimal intervention in cariology: the role of glass-ionomer cements in the preservation of tooth structures against caries.

    PubMed

    Ngo, H; Opsahl-Vital, S

    2014-05-01

    Glass-ionomer cements (GICs) are essential materials in clinical practice because of their versatility, self-adhesion to enamel and dentine, and good biocompatibility. In addition, being chemically cured, with no shrinkage stress, makes them well suited for minimally invasive restorative techniques. This article looks at some of the clinical situations where the chemical adhesion and high biocompatibility of GIC are important for clinical success: excavation of deep carious lesions, fissure sealing and protection of root surfaces against caries. PMID:24852986

  16. Initial Sliding Wear Kinetics of Two Types of Glass Ionomer Cement: A Tribological Study

    PubMed Central

    Ponthiaux, Pierre; Pradelle-Plasse, Nelly; Grosgogeat, Brigitte; Colon, Pierre

    2014-01-01

    The aim of this work was to characterize the initial wear kinetics of two different types of glass ionomer cement used in dentistry (the conventional glass ionomer cement and the resin-modified glass ionomer cement) under sliding friction after 28-day storing in distilled water or Ringer's solution. Sliding friction was applied through a pin-on-disk tribometer, in sphere-on-plane contact conditions, under 5 N normal load and 120 rotations per minute. The test lasted 7500 cycles and replicas were performed at 2500, 5000 and 7500 cycles. A profilometer was used to evaluate the wear volume. Data were analysed using Student's t-test at a significant level of 5%. There is no statistical significant difference between the results obtained for a given material with the maturation media (P > 0.05). However, for a given maturation medium, there are significant statistical differences between the data obtained for the two materials at each measurement (P < 0.0001). The wear rates of both materials decrease continuously during the running-in period between 0 and 2500 cycles. After 2500 cycles, the wear rate becomes constant and equal for both materials. The resin matrix contained in the resin-modified glass ionomer cement weakens the tribological behaviour of this material. PMID:25093185

  17. Antimicrobial Effects of Dental Luting Glass Ionomer Cements on Streptococcus mutans

    PubMed Central

    Altenburger, Markus; Spitzmüller, Bettina; Anderson, Annette; Hellwig, Elmar

    2014-01-01

    Objective. To reduce secondary caries, glass ionomer luting cements are often used for cementing of indirect restorations. This is because of their well-known antimicrobial potential through the release of fluoride ions. The aim of this in vitro study was to investigate the antimicrobial effect of five dental luting cements which were based on glass ionomer cement technology. Methods. Five different glass ionomer based luting cements were tested for their antimicrobial effects on Streptococcus mutans in two different experimental setups: (i) determination of colony-forming units (CFUs) in a plate-counting assay; (ii) live/dead staining (LDS) and fluorescence microscopy. All experiments were conducted with or without prior treatment of the materials using sterilized human saliva. Antimicrobial effects were evaluated for adherent and planktonic bacteria. Bovine enamel slabs (BES) were used as negative control. BES covered with 0.2% chlorhexidine (CHX) served as positive control. Results. Each of the tested materials significantly reduced the number of initially adhered CFUs; this reduction was even more pronounced after prior incubation in saliva. Antimicrobial effects on adherent bacteria were confirmed by live-dead staining. Conclusion. All five luting cements showed an antimicrobial potential which was increased by prior incubation with human saliva, suggesting an enhanced effect in vivo. PMID:24795539

  18. Mechanism for erosion of glass-ionomer cements in an acidic buffer solution.

    PubMed

    Fukazawa, M; Matsuya, S; Yamane, M

    1987-12-01

    In order to clarify the mechanism for erosion of glass-ionomer cements, we immersed two commercial luting cements in an acidic buffer solution under various conditions. The amounts of F, Al, Si, and Ca eluted from the cement were (1) in proportion to the square root of immersion time, (2) unrelated to shape or volume of the sample, (3) dependent on its surface area, and (4) not affected by shaking of the solution. It was concluded that the dissolution was controlled by the diffusion of those species in the cement matrix, which was influenced by the structure of the matrix and the concentration of H+ ion at the cement surface. The unreacted glass particles near the cement surface were dissolved by the long immersion, and many pores were left in the surface region. PMID:2824587

  19. Etching conditions for resin-modified glass ionomer cement for orthodontic brackets.

    PubMed

    Valente, Rudolfo M; De Rijk, Waldemar G; Drummond, James L; Evans, Carla A

    2002-05-01

    This study reports the tensile bond strength of orthodontic eyelets (RMO, Inc, Denver, Colo) bonded to human extracted teeth with a resin-modified glass ionomer cement (RMGIC) (Fuji Ortho LC, GC America, Alsip, Ill) and various acid etchants (Etch-37 and All-Etch, Bisco, Schaumburg, Ill; Ultra Etch, 3M Unitek, St Paul, Minn) for enamel preparation before bonding. The enamel etch conditions were as follows: 37% phosphoric acid with silica; 37% phosphoric acid, silica-free; 10% phosphoric acid, silica-free; 10% polyacrylic acid; and unetched enamel. Bond strength was measured by pulling in tension on the eyelet with a 0.018-in steel wire perpendicular to the enamel surface with a testing machine (Instron model 1125, Canton, Mass) at a speed of 2 mm/min. A light-cured resin cement (Transbond XT, 3M Unitek, Monrovia, Calif) applied to enamel etched with 37% phosphoric acid containing silica served as a control. Each group included 30 specimens. The Weibull distribution (m) was used for statistical analysis with a 90% CI. The different etchants used with RMGIC did not affect tensile bond strength. The resin cement group had the highest tensile strength. Significantly lower bond strengths were observed when glass ionomer cement was used to bond orthodontic attachments to nonetched teeth. However, unlike resin cement, RMGIC can bond effectively to etched teeth in a moist environment without an additional bonding agent. PMID:12045770

  20. Surgical management of invasive cervical resorption using resin-modified glass ionomer cement.

    PubMed

    Tavares, Warley Luciano Fonseca; Lopes, Renata Carvalho Portes; Oliveira, Ricardo Reis; Souza, Rodrigo Goncalves de; Henriques, Luiz Carlos Feitosa; Ribeiro-Sobrinho, Antonio Paulino

    2013-01-01

    Invasive cervical resorption is an external resorption that begins below the epithelial attachment. It is caused primarily by dental trauma, orthodontic treatment, or dental bleaching. This case report involved an invasive Class III cervical resorption resulting from trauma to the superior right central incisor. Root canal treatment was followed by surgical intervention. The resorptive defect was debrided, and part of the tooth was restored with resin-modified glass ionomer cement. Postoperative follow-up revealed complete healing and healthy gingival attachment. PMID:24192742

  1. Comparative Evaluation of Voids Present in Conventional and Capsulated Glass Ionomer Cements Using Two Different Conditioners: An In Vitro Study

    PubMed Central

    Sharma, Roshni; Reddy, Pallavi; Udameshi, Pooja; Vallakuruchi Jayabal, Narmatha

    2014-01-01

    This in vitro study evaluated the presence of voids in powder-liquid and capsulated glass ionomer cement. 40 cavities were prepared on root surfaces of maxillary incisors and divided into four groups. Cavities were conditioned with glass ionomer cement liquid (GC Corporation, Tokyo, Japan) in Groups 1 and 3 and with dentin conditioner (GC Corporation, Tokyo, Japan) in Groups 2 and 4. Conventional powder-liquid glass ionomer cement (GC Fuji II, GC Corporation, Tokyo, Japan) was used as a restorative material in Groups 1 and 2. Capsulated glass ionomer cement (GC Fuji II, GC Corporation, Tokyo, Japan) was used in Groups 3 and 4. Samples were sectioned and viewed under stereomicroscope to check for the presence of voids within the cement and at the cement-tooth junction. Data was analyzed using one-way ANOVA and Tukey's post hoc tests. Group 4 showed statistically significant results (P < 0.05) when compared to Groups 1 and 2 for voids within the cement. However, for voids at the margins, the results were statistically insignificant. PMID:25544842

  2. Effect of Self-etching Adhesives on the Bond Strength of Glass-Ionomer Cements

    PubMed Central

    Jaberi Ansari, Zahra; Panahandeh, Narges; Tabatabaei Shafiei, Zahra Sadat; Akbarzadeh Baghban, Alireza

    2014-01-01

    Objective: Statement of Problem: Adequate bond strength between glass ionomer cements and composite resin is necessary for the success of the sandwich technique. Purpose of Study: This study assessed the micro-shear bond strength of composite resin to glass-ionomer cements (GIC) using self-etch adhesives with different pH values. Materials and Methods: One hundred specimens (6×4×2 mm) were made using Fuji II and Fuji II LC GICs and treated with different adhesives as follows: Group 1:Fuji II+ Adper Prompt L-Pop, Group-2: Fuji II+SE bond, Group-3: Fuji II + AdheSE, Group-4:Fuji II+ Protect bond, Group-5: Fuji II + Single bond, Group-6:Fuji II LC+ Adper Prompt LPop, Group-7: Fuji II LC+SE bond, Group-8:Fuji II LC+ AdheSE, Group-9: Fuji II LC+ Protect bond, and Group-10: Fuji II LC+ Single bond. Each group consisted of 10 specimens. A cylinder of Z100 composite resin was placed on each sample and light cured. After 24 hours of water storage (37°C), the specimens were subjected to micro-shear bond strength tests (0.5 mm/min). Data were analyzed using two-way ANOVA and Tukey’s test. Results: The mean micro-shear bond strength of groups 1–10 was 11.66±1.79, 16.50±1.85, 18.47±1.77, 13.95±1.77, 15.27±1.49, 15.14±0.90, 20.03±1.19, 17.48±3.00, 16.24±1.98 and 16.03±1.49 MPa, respectively. There were significant differences between groups 1 and 7 (P<0.05). No significant difference was observed between other groups (P>0.05). Fuji II LC showed higher bond strength than Fuji II (P<0.05). Conclusion: Type of self-etch adhesive had no significant effect on micro-shear bond strength of glass-ionomer to composite resin. Resin modified glass ionomer cement (RMGIC) exhibited higher bond strength than the conventional GIC. PMID:25628698

  3. The role of sandblasting on the retention of metallic brackets applied with glass ionomer cement.

    PubMed

    Millett, D; McCabe, J F; Gordon, P H

    1993-05-01

    A laboratory investigation of the shear bond strength of stainless steel brackets applied with glass ionomer cement (Ketac-Cem) and a conventional adhesive (Right-on) is described. Sandblasting of the bracket base was undertaken in half of the sample bonded with Ketac-Cem and produced a significant reduction in the probability of failure relative to the unsandblasted sample. Brackets with sandblasted and unsandblasted bases, bonded with Ketac-Cem were subjected to mechanical fatigue in a ball mill for a total of 20 hours. Mean survival time (MST) was then calculated for each group and was found to be significantly improved by sandblasting of the bracket base (P < 0.01). PMID:8518265

  4. Microleakage evaluation of class V restorations with conventional and resin-modified glass ionomer cements.

    PubMed

    Pontes, Danielson Guedes; Guedes-Neto, Manoel Valcacio; Cabral, Maria Fernanda Costa; Cohen-Carneiro, Flávia

    2014-09-01

    The aim of this study was to evaluate in vitro the marginal microleakage of conventional Glass Ionomer Cements (GIC) and Resin Modified Glass Ionomer Cements (RMGIC). The tested materials were grouped as follows: GIC category - G1 (Vidrion R - SSWhite); G2 (Vitro Fill - DFL); G3 (Vitro Molar - DFL); G4 (Bioglass R - Biodinâmica); and G5 (Ketac Fill - 3M/ESPE); and RMGIC category - G6 (Vitremer - 3M/ESPE); G7 (Vitro Fill LC - DFL); and G8 (Resiglass - Biodinâmica). Therefore, 80 class V cavities (2.0X2.0 mm) were prepared in bovine incisors, either in the buccal face. The samples were randomly divided into 8 groups and restored using each material tested according to the manufacturer. The root apices were then sealed with acrylic resin. The teeth were stored for 24 h in 100% humidity at 37°C. After storage, the specimens were polished with extra-slim burs and silicon disc (Soft-lex - 3M/ESPE), then were isolated with cosmetic nail polish up to 1 mm around the restoration. Then, the samples were immersed in 50% AgNO3 solution for 12 h and in a developing solution for 30 min. They were rinsed and buccal-lingual sectioned. The evaluation of the microleakage followed scores from 0 to 3. The Kruskal-Wallis test and Dunn method test were applied (a=0.05). The results showed that there was no difference between the enamel and dentin margins. However, GIC materials presented more microleakage than RMGIC. PMID:25284528

  5. Effect of Nanoclay Dispersion on the Properties of a Commercial Glass Ionomer Cement

    PubMed Central

    Fareed, Muhammad A.; Stamboulis, Artemis

    2014-01-01

    Objective. The reinforcement effect of polymer-grade montmorillonite (PGV and PGN nanoclay) on Fuji-IX glass ionomer cement was investigated. Materials and Method. PGV and PGV nanoclays (2.0?wt%) were dispersed in the liquid portion of Fuji-IX. Fourier-transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) were used to quantify acid-base reaction and the liquid portion of GIC. The mechanical properties (CS, DTS, FS, and Ef) of cements (n = 20) were measured at 1 hour, 1 day, and 1 month. The microstructure was examined by cryo-SEM and TEM. Results. FTIR shows that the setting reaction involves the neutralisation of PAA by the glass powder which was linked with the formation of calcium and aluminium salt-complexes. The experimental GICs (C-V and C-N) exhibited mechanical properties in compliance to ISO standard requirement have higher values than Fuji-IX cement. There was no significant correlation of mechanical properties was found between C-V and C-N. The average Mw of Fuji-IX was 15,700 and the refractive index chromatogram peak area was 33,800. TEM observation confirmed that nanoclays were mostly exfoliated and dispersed in the matrix of GIC. Conclusion. The reinforcement of nanoclays in GICs may potentially produce cements with better mechanical properties without compromising the nature of polyacid neutralisation. PMID:25210518

  6. A Confocal Microscopic Evaluation of the Dehydration Effect on Conventional, Resin Reinforced Powder/Liquid and Paste to Paste Glass Ionomer Luting Cements

    PubMed Central

    George, Liza; Kandaswamy, D

    2015-01-01

    Background: The purpose of this study was to evaluate the effect of dehydration of resin-modified glass ionomer powder/liquid system, resin-modified glass ionomer paste/paste luting cements in three different quantities and to compare them with a conventional glass ionomer luting cement using confocal laser scanning microscope. Materials and Methods: A conventional glass ionomer (Group I), a resin modified powder/liquid system (Group II), and a resin-modified paste/paste system (Group III) were selected for the study. In Group III, there were three subgroups based on the quantity of material dispensed. 50 premolar teeth were selected and randomly divided among the groups with 10 samples in each. The teeth were ground flat to expose a flat occlusal dentin. A device was made to standardize the thickness of cement placed on the teeth. The teeth were stored in distilled water for 24 h and then longitudinally sectioned to examine the tooth dentin interface under a confocal microscope. The specimens were allowed to dehydrate under the microscope for different time intervals. The width of the crack after dehydration near the dentinal interface was measured at definite intervals in all the groups and analyzed statistically using Student’s t-test. Results: Conventional glass ionomer cement showed the maximum width of the crack followed by resin modified paste/paste system during the dehydration period. Resin modified powder/liquid system did not show cohesive failure. Conclusions: Conventional glass ionomer luting cement is more susceptible to cohesive failure when subjected to dehydration compared to resin-modified glass ionomer paste/paste luting cement. Among the luting cements, resin-modified glass ionomer powder/liquid system showed the best results when subjected to dehydration. PMID:26464535

  7. Factors that influence the setting characteristics of encapsulated glass ionomer cements.

    PubMed

    Kilpatrick, N M; McCabe, J F; Murray, J J

    1994-06-01

    The slow rate of the setting reaction of glass ionomer cements (GICs) is one of the problems associated with their clinical use. The manufacturers of these materials suggest that increasing the mixing time will increase the rate of reaction and it was the purpose of this study to investigate the limits of this relationship. The method used to monitor the setting reaction with Differential Thermal Analysis (DTA). The results obtained using DTA were compared with those obtained using the ISO penetrometer method as defined in the ISO standard for water-based cements, ISO 9917:1991E. It was shown that increasing the mixing time of cements did not significantly reduce the setting time (P > 0.05). Under the conditions of the study it was only possible to measure a working time for the Chemfil II (and then only if it was mixed for less than 12 s). Storing the capsules at 4 degrees C did enable a working time to be measured using the DTA for all the materials, however these storage conditions also produced a significant increase in the setting time which would be undesirable to the clinician. The penetrometer method underestimated the duration of the setting reaction by up to 32% compared with the DTA method. However it was a quick and reproducible method of measuring setting time and as such may still be an appropriate method for use in the ISO standards. PMID:8027462

  8. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    NASA Astrophysics Data System (ADS)

    Fuchs, Maximilian; Gentleman, Eileen; Shahid, Saroash; Hill, Robert; Brauer, Delia

    2015-10-01

    Bioactive glasses (BG) are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC) are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO) with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid), ions were released fast (up to 90% within 15 minutes at pH 1), which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa), staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid), which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  9. Nanoclay addition to a conventional glass ionomer cements: Influence on physical properties

    PubMed Central

    Fareed, Muhammad A.; Stamboulis, Artemis

    2014-01-01

    Objective: The objective of the present study is to investigate the reinforcement effect of polymer-grade montmorillonite (PGN nanoclay) on physical properties of glass ionomer cement (GIC). Materials and Methods: The PGN nanoclay was dispersed in the liquid portion of GIC (HiFi, Advanced Healthcare, Kent, UK) at 1%, 2% and 4% (w/w). Fourier-transform infrared (FTIR) spectroscopy was used to quantify the polymer liquid of GICs after dispersion of nanoclay. The molecular weight (Mw) of HiFi liquid was determined by gel permeation chromatography. The compressive strength (CS), diametral-tensile strength, flexural strength (FS) and flexural modulus (Ef) of cements (n = 20) were measured after storage for 1 day, 1 week and 1 month. Fractured surface was analyzed by scanning electron microscopy. The working and setting time (WT and ST) of cements was measured by a modified Wilson's rheometer. Results: The FTIR results showed a new peak at 1041 cm?1 which increased in intensity with an increase in the nanoclay content and was related to the Si-O stretching mode in PGN nanoclay. The Mw of poly (acrylic acid) used to form cement was in the range of 53,000 g/mol. The nanoclay reinforced GICs containing <2% nanoclays exhibited higher CS and FS. The Ef cement with 1% nanoclays was significantly higher. The WT and ST of 1% nanoclay reinforced cement were similar to the control cement but were reduced with 2% and 4% nanoclay addition. Conclusion: The dispersion of nanoclays in GICs was achieved, and GIC containing 2 wt% nanoclay is a promising restorative materials with improved physical properties. PMID:25512724

  10. Evaluation of the Microleakage of Chlorhexidine-Modified Glass Ionomer Cement: An in vivo Study

    PubMed Central

    Thomas, Abi Mathew; Koshy, George; Dua, Kapil

    2013-01-01

    ABSTRACT Aim: Recent advances including the incorporation of antibacterial substances, such as chlorhexidine, into restorative materials such as glass ionoer cement (GIC), might alter the physical properties of the material, which might affect the marginal seal of the restorations. Hence, the objective of this study was to compare the marginal sealing ability of GC Fuji IX modified with 1% chlorhexidine diacetate and conventional GC Fuji IX. Materials and methods: Sixty healthy molars were selected from the oral cavities of 30 children. The teeth were divided into two groups: Group I, teeth restored with 1% chlorhexidine diacetate modified GC Fuji IX and group II, teeth restored with GC Fuji IX. The restored teeth were extracted following 4 weeks and immersed in 2% basic fuchsin solution for 24 hours. They were then sectioned and scored under a light microscope of 10 × 10 magnification for dye penetration. Results: On statistical analysis difference between Chlorhexidine-Modified GIC group and GIC group with regard to grade of microleakage was found to be statistically nonsignificant (p = 0.543). Conclusion: Since, addition of 1% chlorhexidine diacetate to GC Fuji IX showed comparable results with regard to microleakage, it can be considered a valuable alternative especially in atraumatic restorative treatment and for general clinical utility in restorative dentistry. How to cite this article: Mathew SM, Thomas AM, Koshy G, Dua K. Evaluation of the Microleakage of Chlorhexidine-Modified Glass Ionomer Cement: An in vivo Study. Int J Clin Pediatr Dent 2013;6(1):7-11. PMID:25206179

  11. Low-cost glass ionomer cement as ART sealant in permanent molars: a randomized clinical trial.

    PubMed

    Hesse, Daniela; Bonifácio, Clarissa Calil; Guglielmi, Camila de Almeida Brandão; Franca, Carolina da; Mendes, Fausto Medeiros; Raggio, Daniela Prócida

    2015-01-01

    Clinical trials are normally performed with well-known brands of glass ionomer cement (GIC), but the cost of these materials is high for public healthcare in less-affluent communities. Given the need to research cheaper materials, it seems pertinent to investigate the retention rate of a low-cost GIC applied as atraumatic restorative treatment (ART) sealants in two centers in Brazil. Four hundred and thirty-seven 6-to-8-year-old schoolchildren were selected in two cities in Brazil. The children were randomly divided into two groups, according to the tested GIC applied in the first permanent molars. The retention rate was evaluated after 3, 6 and 12 months. Kaplan-Meier survival analysis and the log-rank test were performed. The variables were tested for association with sealant longevity, using logistic regression analyses (? = 5%). The retention rate of sealants after 12 months was 19.1%. The high-cost GIC brand presented a 2-fold-more-likely-to-survive rate than the low-cost brand (p < 0.001). Significant difference was also found between the cities where the treatments were performed, in that Barueri presented a higher sealant survival rate than Recife (p < 0.001). The retention rate of a low-cost GIC sealant brand was markedly lower than that of a well-known GIC sealant brand. PMID:26039906

  12. Comparative Evaluation of Shear Bond Strength of Three Commercially Available Glass Ionomer Cements in Primary Teeth

    PubMed Central

    Murthy, S Srinivasa; Murthy, Gargi S

    2015-01-01

    Background: This study aims to comparatively evaluate the shear bond strength (SBS) of three commercially available glass ionomer cements - Miracle Mix (MM) (GC America Inc., Alsip, USA), Ketac Molar (KM) (3M Corp., Minnesota, USA) and amalgomer CR (AM) (Advanced Healthcare Ltd., Kent, England) in primary teeth and later examine the mode of the adhesive failure at the interface. Materials and Methods: Totally, 90 extracted sound primary molars were selected, and dentin on the buccal surface of crowns was exposed. Specimens were randomly assigned into three groups according to the restorative materials being tested. SBS tests were performed, and the obtained values were statistically analyzed using ANOVA and Tukey tests (P < 0.05). SBS mean values on were recorded in megapascals (MPa) and the mode of failure was assessed using a scanning electron microscope. Results: SBS (in MPa) was - MM-5.39, KM-4.84, AM-6.38. The predominant failure mode was cohesive. Conclusion: Amalgomer CR exhibited statistically significant higher SBS of 6.38 MPa to primary teeth and has better adhesion to the primary teeth compared to the other test materials and can be considered as a restorative material in pediatric dentistry. However, the results of this study should be corroborated with further investigation to reach a definitive conclusion. PMID:26464550

  13. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement

    PubMed Central

    GARCIA-CONTRERAS, Rene; SCOUGALL-VILCHIS, Rogelio Jose; CONTRERAS-BULNES, Rosalía; SAKAGAMI, Hiroshi; MORALES-LUCKIE, Raul Alberto; NAKAJIMA, Hiroshi

    2015-01-01

    The use of nanoparticles (NPs) has become a significant area of research in Dentistry. Objective The aim of this study was to investigate the physical, antibacterial activity and bond strength properties of conventional base, core build and restorative of glass ionomer cement (GIC) compared to GIC supplemented with titanium dioxide (TiO2) nanopowder at 3% and 5% (w/w). Material and Methods Vickers microhardness was estimated with diamond indenter. Compressive and flexural strengths were analyzed in a universal testing machine. Specimens were bonded to enamel and dentine, and tested for shear bond strength in a universal testing machine. Specimens were incubated with S. mutans suspension for evaluating antibacterial activity. Surface analysis of restorative conventional and modified GIC was performed with SEM and EDS. The analyses were carried out with Kolmogorov-Smirnov, ANOVA (post-hoc), Tukey test, Kruskal-Wallis, and Mann Whitney. Results Conventional GIC and GIC modified with TiO2 nanopowder for the base/liner cement and core build showed no differences for mechanical, antibacterial, and shear bond properties (p>0.05). In contrast, the supplementation of TiO2 NPs to restorative GIC significantly improved Vickers microhardness (p<0.05), flexural and compressive strength (p<0.05), and antibacterial activity (p<0.001), without interfering with adhesion to enamel and dentin. Conclusion GIC supplemented with TiO2 NPs (FX-II) is a promising material for restoration because of its potential antibacterial activity and durable restoration to withstand the mastication force. PMID:26221928

  14. Effect of antibacterial agents on the surface hardness of a conventional glass-ionomer cement

    PubMed Central

    TÜZÜNER, Tamer; ULUSU, Tezer

    2012-01-01

    In atraumatic restorative treatment (ART), caries removal with hand excavation instruments is not as efficient as that with rotary burs in eliminating bacteria under the glass ionomer cements (GICs). Thus, different antibacterial agents have been used in recent studies to enhance the antibacterial properties of the GICs, without jeopardizing their basic physical properties. Objective The objective of this study was to evaluate the effect of antibacterial agents on the surface hardness of a conventional GIC (Fuji IX) using Vickers microhardness [Vickers hardness number (VHN)] test. Material and Methods Cetrimide (CT), cetylpyridinium chloride (CPC) and chlorhexidine (CHX) were added to the powder and benzalkonium chloride (BC) was added to the liquid of Fuji IX in concentrations of 1% and 2%, and served as the experimental groups. A control group containing no additive was also prepared. After the completion of setting reaction, VHN measurements were recorded at 1, 7, 15, 30, 60, and 90 days after storage in 37ºC distilled water. A one-way ANOVA was performed followed by a Dunnett t test and Tamhane T2 tests and also repeated measurements ANOVA was used for multiple comparisons in 95% confidence interval. Results VHN results showed significant differences between the control and the experimental groups at all time periods (p<0.05 for all). Significant differences were observed between all study periods for individual groups (p<0.05). After 7 days, VHNs were decreased in all experimental groups while they continued to increase in the control group. BC and CHX groups demonstrated the least whereas CT and CPC groups exhibited most adverse effect on the hardness of set cements. Conclusions Despite the decreased microhardness values in all experimental groups compared to the controls after 7 up to 90 days, incorporating certain antibacterial agents into Fuji IX GIC showed tolerable microhardness alterations within the limitations of this in vitro study. PMID:22437677

  15. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement.

    PubMed

    Garcia-Contreras, Rene; Scougall-Vilchis, Rogelio Jose; Contreras-Bulnes, Rosalía; Sakagami, Hiroshi; Morales-Luckie, Raul Alberto; Nakajima, Hiroshi

    2015-01-01

    The use of nanoparticles (NPs) has become a significant area of research in Dentistry. Objective The aim of this study was to investigate the physical, antibacterial activity and bond strength properties of conventional base, core build and restorative of glass ionomer cement (GIC) compared to GIC supplemented with titanium dioxide (TiO2) nanopowder at 3% and 5% (w/w). Material and Methods Vickers microhardness was estimated with diamond indenter. Compressive and flexural strengths were analyzed in a universal testing machine. Specimens were bonded to enamel and dentine, and tested for shear bond strength in a universal testing machine. Specimens were incubated with S. mutans suspension for evaluating antibacterial activity. Surface analysis of restorative conventional and modified GIC was performed with SEM and EDS. The analyses were carried out with Kolmogorov-Smirnov, ANOVA (post-hoc), Tukey test, Kruskal-Wallis, and Mann Whitney. Results Conventional GIC and GIC modified with TiO2 nanopowder for the base/liner cement and core build showed no differences for mechanical, antibacterial, and shear bond properties (p>0.05). In contrast, the supplementation of TiO2 NPs to restorative GIC significantly improved Vickers microhardness (p<0.05), flexural and compressive strength (p<0.05), and antibacterial activity (p<0.001), without interfering with adhesion to enamel and dentin. Conclusion GIC supplemented with TiO2 NPs (FX-II) is a promising material for restoration because of its potential antibacterial activity and durable restoration to withstand the mastication force. PMID:26221928

  16. Effect of Marginal Sealant on Shear Bond Strength of Glass Ionomer Cement: Used as A Luting Agent

    PubMed Central

    Nazirkar, Girish; Singh, Shailendra; Badgujar, Mayura; Gaikwad, Bhushan; Bhanushali, Shilpa; Nalawade, Sumit

    2014-01-01

    Background: Moisture sensitivity and dissolution has been a known drawback of glass ionomer cement (GIC). When used as a luting agent for cementation of casted indirect restoration, the exposed cement at the margins is often a primary factor for marginal leakage and consequent failure of the restoration. The following in vitro study was planned to evaluate the effect of a marginal sealant on GIC used as luting agent. Materials and Methods: Sixty healthy extracted premolars were selected and prepared to receive metal-ceramic prosthesis. The prepared restorations were cemented using GIC and were divided randomly into two groups. The specimens in Group A were directly immersed in artificial saliva solution without any protection at the margins, while the exposed cement for Group B specimens was protected using a marginal sealant before immersing it in the artificial saliva solution. The specimens were tested after 24 h using a crown pull test on the universal testing machine to measure the shear bond strength of the cement. Result: The specimens in Group B showed statistically significant difference from the specimens in Group A with the mean shear bond strength of 6.60 Mpa and 5.32 respectively. Conclusion: Protection of GIC exposed at the margins of indirect cast restorations with a marginal sealant can significantly increase the longevity of the prosthesis by reducing the marginal leakage and perlocation of fluids. How to cite the article: Nazirkar G, Singh S, Badgujar M, Gaikwad B, Bhanushali S, Nalawade S. Effect of marginal sealant on shear bond strength of glass ionomer cement: Used as a luting agent. J Int Oral Health 2014;6(3):65-9 PMID:25083035

  17. Methotrexate-loaded glass ionomer cements for drug release in the skeleton: An examination of composition-property relationships.

    PubMed

    Kiri, Lauren; Filiaggi, Mark; Boyd, Daniel

    2016-01-01

    Chemotherapeutic-loaded bone cement may be an effective method of drug delivery for the management of cancer-related vertebral fractures that require cement injection for pain relief. Recent advancements in the development of aluminum-free glass ionomer cements (GICs) have rendered this class of biomaterials clinically viable for such applications. To expand the therapeutic benefits of these materials, this study examined, for the first time, their drug delivery potential. Through incrementally loading the GIC with methotrexate (MTX) by up to 10-wt%, composition-property relationships were established, correlating MTX loading with working time and setting time, as well as compressive strength, drug release, and cytotoxic effect over 31 days. The most significant finding of this study was that MTX was readily released from the GIC, while maintaining cytotoxic activity. Release correlated linearly with initial loading and appeared to be diffusion mediated, delivering a total of 1-2% of the incorporated drug. MTX loading in this range exerted minimal effects to handling and strength, indicating the clinical utility of the material was not compromised by MTX loading. The MTX-GIC systems examined herein are promising materials for combined structural delivery applications. PMID:25940017

  18. The physical properties of conventional and resin-modified glass-ionomer dental cements stored in saliva, proprietary acidic beverages, saline and water.

    PubMed

    McKenzie, M A; Linden, R W A; Nicholson, J W

    2003-10-01

    Specimens of three conventional and one resin-modified glass-ionomer cement were prepared for both compressive strength and biaxial flexure strength determination. They were stored either in neutral media (water, saline, unstimulated whole saliva or stimulated parotid saliva) or in acidic beverages (apple juice, orange juice or Coca-Cola) for time periods ranging from 1 day to 1 year. In neutral media, the compressive and biaxial flexural strengths of all cements studied showed similar results, with significant increases apparent in compressive strengths at 6 months and which continued to 1 year, but no significant differences between the media; and no significant differences with time for biaxial flexure strength in all media. These findings show that interactions of these cements with saliva, which are known to result in deposition of calcium and phosphate, do not affect strength. Results for specimens stored in Coca-Cola were the same as for those stored in neutral media. By contrast, in orange and apple juice specimens underwent severe erosion resulting in dissolution of the conventional glass-ionomers after 3-6 months, and/or significant loss of strength at 1-3 months. Erosion of the resin-modified glass-ionomer, Vitremer, led to a significant reduction in strength, but not in dissolution, even after 12 months. The chelating carboxylic acids in these fruit juices were assumed to be responsible for these effects. PMID:12834602

  19. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease

    PubMed Central

    Watson, Timothy F.; Atmeh, Amre R.; Sajini, Shara; Cook, Richard J.; Festy, Frederic

    2014-01-01

    Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. Methods This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin–restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement–dentin interface samples behavior over time. Results The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. Significance The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. PMID:24113131

  20. Bonding of contemporary glass ionomer cements to different tooth substrates; microshear bond strength and scanning electron microscope study

    PubMed Central

    El Wakeel, Aliaa Mohamed; Elkassas, Dina Wafik; Yousry, Mai Mahmoud

    2015-01-01

    Objective: This study was conducted to evaluate the microshear bond strength (?SBS) and ultramorphological characterization of glass ionomer (GI) cements; conventional GI cement (Fuji IX, CGI), resin modified GI (Fuji II LC, RMGI) and nano-ionomer (Ketac N100, NI) to enamel, dentin and cementum substrates. Materials and Methods: Forty-five lower molars were sectioned above the cemento-enamel junction. The occlusal surfaces were ground flat to obtain enamel and dentin substrates, meanwhile the cervical one-third of the root portion were utilized to evaluate the bonding efficacy to cementum substrate. Each substrate received microcylinders from the three tested materials; which were applied according to manufacturer instructions. ?SBS was assessed using a universal testing machine. The data were analyzed using two-way analysis of variance (ANOVA) and Tukey's post-hoc test. Modes of failure were examined using stereomicroscope at ×25 magnification. Interfacial analysis of the bonded specimens was carried out using environmental field emission scanning electron microscope. Results: Two-way ANOVA revealed that materials, substrates and their interaction had a statistically significant effect on the mean ?SBS values at P values; ?0.0001, 0.0108 and 0.0037 respectively. RMGI showed statistically significant the highest ?SBS values to all examined tooth substrates. CGI and RMGI show substrate independent bonding efficiency, meanwhile; NI showed higher ?SBS values to dentin and cementum compared to enamel. Conclusion: Despite technological development of GI materials, mainly the nano-particles use, better results have not been achieved for both investigations, when compared to RMGI, independent of tooth substrate. PMID:26038646

  1. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO

    PubMed Central

    Dong-Ae, KIM; Hany, ABO-MOSALLAM; Hye-Young, LEE; Jung-Hwan, LEE; Hae-Won, KIM; Hae-Hyoung, LEE

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved. Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements. Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitro rat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC. Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs. Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials. PMID:26398508

  2. Microleakage after Thermocycling of Three Self-Etch Adhesives under Resin-Modified Glass-Ionomer Cement Restorations

    PubMed Central

    Geerts, Sabine O.; Seidel, Laurence; Albert, Adelin I.; Gueders, Audrey M.

    2010-01-01

    This study was designed to evaluate microleakage that appeared on Resin-Modified Glass-Ionomer Cement (RMGIC) restorations. Sixty class V cavities (h × w × l = 2?mm × 2?mm × 3?mm) were cut on thirty extracted third molars, which were randomly allocated to three experimental groups. All the buccal cavities were pretreated with polyacrylic acid, whereas the lingual cavities were treated with three one-step Self-Etch adhesives, respectively, Xeno III (Dentsply Detrey GmbH, Konstanz, Germany), iBond exp (Heraeus Kulzer gmbH & Co. KG, Hanau, Germany), and Adper Prompt-L-Pop (3M ESPE AG, Dental products Seefeld, Germany). All cavities were completely filled with RMGIC, teeth were thermocycled for 800 cycles, and leakage was evaluated. Results were expressed as means ± standard deviations (SDs). Microleakage scores were analysed by means of generalized linear mixed models (GLMMs) assuming an ordinal logistic link function. All results were considered to be significant at the 5% critical level (P < .05). The results showed that bonding RMGIC to dentin with a Self-Etch adhesive rather than using polyacrylic acid did not influence microleakage scores (P = .091), except for one tested Self-Etch adhesive, namely, Xeno III (P < .0001). Nevertheless, our results did not show any significant difference between the three tested Self-Etch adhesive systems. In conclusion, the pretreatment of dentin with Self-Etch adhesive system, before RMGIC filling, seems to be an alternative to the conventional Dentin Conditioner for the clinicians as suggested by our results (thermocycling) and others (microtensile tests). PMID:20628510

  3. Microleakage of Three Types of Glass Ionomer Cement Restorations: Effect of CPP-ACP Paste Tooth Pretreatment

    PubMed Central

    Doozandeh, Maryam; Shafiei, Fereshteh; Alavi, Mostafa

    2015-01-01

    Statement of the Problem Casein phosphopeptide–amorphous calcium phosphate (CPP-ACP) increases the mineral content of tooth structure. This may enhance the chemical bonding of glass ionomer cements (GIC) and marginal sealing of their restorations. Purpose The aim of this study was to evaluate the effect of CPP-ACP paste pretreatment on the microleakage of three types of GIC. Materials and Method In this study, 72 Class V cavities were prepared on the buccal and lingual surfaces of molars with occlusal margins in enamel and gingival margins in root. The cavities were divided into 6 groups. Cavities in group 1 and 2 were restored with Fuji II, group 3 and 4 with Fuji II LC, and group 5 and 6 with Ketac N100 with respect to the manufacturers’ instructions. In groups 2, 4 and 6, CPP-ACP containing paste (MI paste) was placed into the cavities for 3 minutes before being filled with GIC. The teeth were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. Kruskall-Wallis and Chi-Square tests were used to analyze the data. Result There were no statistically significant differences between the control and the CPP-ACP pretreatment groups in enamel and dentin margins. In pairwise comparisons, there were no significant differences between the control and the experimental groups in enamel margin, and in dentin margins of G1 and 2, G5 and 6; however, a significant differences was detected in dentin margins between G3 and 4 (p= 0.041). Conclusion CPP-ACP paste pretreatment did not affect the microleakage of Fuji II and Ketac N100 in enamel or dentin, but decreased the microleakage in dentine margins of Fuji II LC when cavity conditioner was applied before surface treatment. PMID:26331147

  4. Bond strength of resin modified glass ionomer cement to primary dentin after cutting with different bur types and dentin conditioning.

    PubMed

    Di Nicoló, Rebeca; Shintome, Luciana Keiko; Myaki, Silvio Issáo; Nagayassu, Marcos Paulo

    2007-10-01

    The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS) of a resin modified glass ionomer cement (RM-GIC) to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12). In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer - 3M/ESPE) prepared according to the manufacturer's instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37 degrees C for 24h, and then tested in a universal testing machine. SBS data were submitted to 2-way ANOVA (= 5%) and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence. PMID:19089179

  5. Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (PG) montmorillonite with poly(acrylic acid).

    PubMed

    Fareed, Muhammad A; Stamboulis, Artemis

    2014-01-01

    Montmorillonite nanoclays (PGV and PGN) were dispersed in poly(acrylic acid) (PAA) for utilization as reinforcing filler in glass ionomer cements (GICs). Chemical and physical interaction of PAA and nanoclay (PGV and PGN) was studied. PAA–PGV and PAA–PGN solutions were prepared in different weight percent loadings of PGV and PGN nanoclay (0.5-8.0 wt%) via exfoliation-adsorption method. Characterization was carried out by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR) spectroscopy. XRD results of PAA–PGN demonstrated that the interlayer space expanded from 12.83 to 16.03 Å indicating intercalation whereas the absence of the peak at d(001) in PAA–PGV indicated exfoliation. XPS scans of PGV and PGN nanoclays depicted the main peak of O 1s photoelectron due to Si–O–M (M = Mg, Al, Fe) whereas, Si–O–Al linkages were identified by Si 2p or Si 2s and Al 2p or Al 2s peaks. The disappearance of the Na peak confirmed that PAA molecules exchanged sodium ions present on surface of silicate layers and significantly reduced the electrostatic van-der-Waals forces between silicate plates resulting in intercalation or exfoliation. FTIR spectra of PAA–nanoclay suspensions demonstrated the presence of a new peak at 1,019 cm(-1) associated with Si–O– stretching vibrations which increased with increasing nanoclays concentration. Information concerning the dispersion of nanoclay in PAA aqueous solutions, chemical reaction and increase interlayer space in montmorillonite nanoclay is particularly useful regarding dispersion and reinforcement of nanoclay in PAA. PMID:24077996

  6. An in vitro study on the maturation of conventional glass ionomer cements and their interface to dentin.

    PubMed

    Zoergiebel, Julius; Ilie, Nicoleta

    2013-12-01

    The objective of the study was to investigate the influence of long-term storage (up to 1 year) and coating on the variation of micro-mechanical properties of four conventional restorative glass ionomer cements (GICs) within 3.5 mm deep class I cavities. Four commercially available GICs (Riva Self Cure (SDI), ChemFil Rock (Dentsply), Fuji IX Fast and Fuji IX GP Extra/Equia (GC)) were applied to 100 teeth. In each tooth, two similar 3.5 mm deep class I cavities were prepared and filled with the GICs, with and without resin coating. The samples were stored in artificial saliva at 37 °C for 1 week, 1 month, 3 months, 6 months and 1 year. The variation in mechanical properties (indentation modulus (E) and Vickers hardness (HV)) were determined in 100 ?m steps starting from the filling surface, through the intermediate layer in between dentine and GIC, and ending 100 ?m in dentin. HV and E were strongly influenced by the material (P<0.05, partial eta-squared ?P(2) = 0.31 and 0.23) but less by aging duration (P<0.05, ?P(2) = 0.02 and 0.12) and resin coating (P<0.05, ?P(2) = 0.02 and 0.03). The depth of measurement (0-2 mm) has no influence on HV (P = 0.789). HV shows a gentle increase over the 1 year storage period (P = 0.002). A ?300 ?m GIC zone at the areas close to dentin with weaker properties as those measured in dentin or GIC was identified in all fillings, irrespective of the presence of coating, and at all storage periods. The thickness of this zone is more strongly influenced by storage (P<0.05, ?P(2) = 0.081) than by material type (P<0.05, ?P(2) = 0.056), while coating showed no influence (P = 0.869). Filler morphology and dimension were similar to upper parts of the GIC filling; however, the amount of low cations was higher. We concluded that the development of an intermediate layer in between dentine and GIC with lower mechanical properties might be responsible for the bond quality of GIC to dentine. Moreover, class I GIC restorations are unlikely to feature constant mechanical properties throughout the cavity, regardless of conditions such as aging and coating. PMID:23954325

  7. Evaluation of the relationship between the cost and properties of glass ionomer cements indicated for atraumatic restorative treatment.

    PubMed

    Calvo, Ana Flávia Bissoto; Kicuti, Ariane; Tedesco, Tamara Kerber; Braga, Mariana Minatel; Raggio, Daniela Prócida

    2016-01-01

    The aim of this study was to evaluate microshear bond strength (?SBS), water sorption and solubility of glass ionomer cements (GIC) indicated for atraumatic restorative treatment (ART). Cylindrical specimens (6x2.4 mm) were used to test the sorption and solubility of each GIC (n = 5). The specimens were weighed before and after immersion in water and desiccation. For the ?SBS test, 60 primary molars were ground to obtain flat surfaces from both enamel and dentin. The teeth were then assigned to the tested GIC (n = 10) groups, namely Fuji IX - FIX, Ketac Molar - KM and Maxxion R - MX. The exposed surfaces were pre-treated with GIC liquid. Polyethylene tubes were placed on the pre-treated surface and filled with one of the GIC. After 24 h, the specimens were submitted to the ?SBS test. The failure mode was assessed using a stereomicroscope (400x magnification). The powder to liquid ratio and cost of material were also determined (n = 3). The data were analyzed by ANOVA and Tukey's post hoc test. Linear regression was used to determine the relation between cost and the other variables. Overall, MX showed lower ?SBS values (enamel: 3.93 ± 0.38; dentin: 5.04 ± 0.70) than FIX (enamel: 5.95 ± 0.85; dentin: 7.01 ± 1.06) and KM (enamel: 5.91 ± 0.78; dentin: 6.88 ± 1.35), as well as higher sorption and solubility. The regression analyses showed a significant and positive correlation between cost and ?SBS in enamel (R2 = 0.62; p < 0.001) and dentin (R2 = 0.43; p < 0.001); and a negative correlation between cost and water sorption (R2 = 0.93; p < 0.001) and solubility (R2 = 0.79; p < 0.001). In conclusion, the materials indicated for ART exhibit distinct physical and mechanical properties; in addition, low-priced materials may interfere with GIC properties. PMID:26676191

  8. Characterization of a novel light-cured star-shape poly(acrylic acid)-composed glass-ionomer cement: fluoride release, water sorption, shrinkage, and hygroscopic expansion.

    PubMed

    Zhao, Jun; Platt, Jeffrey A; Xie, Dong

    2009-12-01

    This study evaluated the fluoride release, water sorption, curing shrinkage, and hygroscopic expansion of a novel experimental light-cured glass-ionomer cement. The effects of glycidyl methacrylate (GM) grafting, polymer : water (P : W) and powder : liquid (P : L) ratios were investigated. Commercial Fuji II and Fuji II LC cements were used as controls for comparison. All the specimens were conditioned in deionized water at 37 degrees C before testing. The results demonstrated that the experimental cement showed lower burst and slower bulk fluoride release than Fuji II and Fuji II LC. The experimental cement absorbed more water than Fuji II and Fuji II LC as a result of its hydroxyl and carboxyl functional group content. The lower water-diffusion rate and reduced hygroscopic expansion of the experimental cement suggest that it had a highly crosslinked network. Both Fuji II and Fuji II LC exhibited much higher shrinkage values (2.8% and 4.7%) than the experimental cement (0.8%). It appears that this novel cement will be a clinically attractive dental restorative because not only has it shown superior mechanical strength, it has also demonstrated satisfactory physical properties. PMID:20121941

  9. The effect of sandblasting on the retention of first molar orthodontic bands cemented with glass ionomer cement.

    PubMed

    Millett, D T; McCabe, J F; Bennett, T G; Carter, N E; Gordon, P H

    1995-05-01

    This study examined the effect of sandblasting, in vitro, on the bond strength and survival time of first molar orthodontic bands. Survival time was assessed following simulated mechanical fatigue in a ball mill. The amount of cement left attached to the band after debanding was also assessed. In addition, the effect of sandblasting on the failure rate of 320 first molar bands cemented in 107 patients was examined in a half-mouth trial. Ketac-cem, mixed according to manufacturers' instructions was used as the luting agent for both laboratory and clinical trials. In vitro, sandblasting increased bond strength by 27 per cent (P < 0.01) and produced a three-fold increase in the median survival time relative to the untreated sample (P < 0.001) in the ball mill experiment. Sandblasting resulted in more cement remaining on the band rather than on the tooth enamel after band removal. In vivo, sandblasting reduced the clinical failure rate of the first molar bands (P < 0.001). PMID:7640255

  10. Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cement.

    PubMed

    Sauro, Salvatore; Watson, Timothy F; Thompson, Ian; Toledano, Manuel; Nucci, Cesare; Banerjee, Avijit

    2012-04-01

    The aim of this study was to test the microtensile bond strength (?TBS), after 6 months of storage in PBS, of a resin-modified glass ionomer cement (RMGIC) bonded to dentine pretreated with Bioglass 45S5 (BAG) using various etching and air-abrasion techniques. The RMGIC (GC Fuji II LC) was applied onto differently treated dentine surfaces followed by light curing for 30 s. The specimens were cut into matchsticks with cross-sectional areas of 0.9 mm(2). The ?TBS of the specimens was measured after 24 h or 6 months of storage in PBS and the results were statistically analysed using two-way anova and the Student-Newman-Keuls test (? = 0.05). Further RMCGIC-bonded dentine specimens were used for interfacial characterization, micropermeability, and nanoleakage analyses by confocal microscopy. The RMGIC-dentine interface layer showed no water absorption after 6 months of storage in PBS except for the interdiffusion layer of the silicon carbide (SiC)-abraded/polyacrylic acid (PAA)-etched bonded dentine. The RMGIC applied onto dentine air-abraded with BAG/H(2)O only or with BAG/PAA-fluid followed by etching procedures (10% PAA gel) showed no statistically significant reduction in ?TBS after 6 months of storage in PBS. The abrasion procedures performed using BAG in combination with PAA might be a suitable strategy to enhance the bonding durability and the healing ability of RMGIC bonded to dentine. PMID:22409224

  11. Residual HEMA and TEGDMA Release and Cytotoxicity Evaluation of Resin-Modified Glass Ionomer Cement and Compomers Cured with Different Light Sources

    PubMed Central

    Botsali, Murat Selim; Ku?göz, Adem; Altinta?, Subutay Han; Ülker, Hayriye Esra; Kiliç, Serdar; Ba?ak, Feridun; Ülker, Mustafa

    2014-01-01

    The purpose of this study was first to evaluate the elution of 2-hydroxyethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) monomers from resin-modified glass ionomer cement (RMGIC) and compomers cured with halogen and light-emitting diode (LED) light-curing units (LCUs). The effect of cured materials on the viability of L929 fibroblast cells was also evaluated. One RMGIC (Ketac N100) and two compomers (Dyract Extra and Twinkystar) were tested. Materials were prepared in teflon disks and light-cured with LED or halogen LCUs. The residual monomers of resin materials in solution were identified using high-performance liquid chromatography. The fibroblast cells' viability was analyzed using MTT assay. The type of LCU did not have a significant effect on the elution of HEMA and TEGDMA. A greater amount of HEMA than TEGMDA was eluted. The amount of TEGDMA eluted from Twinkystar was greater than Dyract Extra (P < 0.05) when cured with a halogen LCU. All material-LCU combinations decreased the fibroblast cells' viability more than the control group (P < 0.01), except for Dyract Extra cured with a halogen LCU (P > 0.05). Curing with the LED LCU decreased the cells' viability more than curing with the halogen LCU for compomers. For Ketac N100, the halogen LCU decreased the cells' viability more than the LED LCU. PMID:24592149

  12. Effect of a CO2 Laser on the Inhibition of Root Surface Caries Adjacent to Restorations of Glass Ionomer Cement or Composite Resin: An In Vitro Study

    PubMed Central

    Daniel, L. C.; Araújo, F. C.; Zancopé, B. R.; Hanashiro, F. S.; Nobre-dos-Santos, M.; Youssef, M. N.; Souza-Zaroni, W. C.

    2015-01-01

    This study investigated the effect of CO2 laser irradiation on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement (GIC) or composite resin (CR) restorations. 40 dental blocks were divided into 4 groups: G1 (negative control): cavity preparation + adhesive restoration with CR; G2: (positive control) cavity preparation + GIC restoration; G3: equal to group 1 + CO2 laser with 6?J/cm2; G4: equal to group 2 + CO2 laser. The blocks were submitted to thermal and pH cycling. Dental demineralization around restorations was quantified using microhardness analyses and Light-Induced Fluorescence (QLF). The groups showed no significant differences in mineral loss at depths between 20??m and 40??m. At 60??m, G2 and G3 ? G1, but G4 = G1, G2 and G3. At 80??m, G4 ? G1, and at 100??m, G4 = G2 = G1. At 140 and 220??m, G2, G3, and G4 = G1. The averages obtained using QFL in groups 1, 2, 3, and 4 were 0.637, 0.162, 0.095, and 0.048, respectively. QLF and microhardness analyses showed that CO2 laser irradiation reduced mineral loss around the CR restorations but that it did not increase the anticariogenic effect of GIC restorations. PMID:26347900

  13. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    PubMed Central

    AZEVEDO, Larissa Marinho; CASAS-APAYCO, Leslie Carol; VILLAVICENCIO ESPINOZA, Carlos Andres; WANG, Linda; NAVARRO, Maria Fidela de Lima; ATTA, Maria Teresa

    2015-01-01

    Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC) lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control) – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond) + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond) + four oblique layers. Resin composite (Filtek Z250, 3M ESPE) was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE) dyed with a fluorescent reagent (Rhodamine B) to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM) analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa). Data were analyzed by two-way ANOVA and Fisher’s test. Results There was no statistical difference on bond strength among groups (p>0.05). CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations. PMID:26221927

  14. Comparative evaluation of the calcium release from mineral trioxide aggregate and its mixture with glass ionomer cement in different proportions and time intervals – An in vitro study

    PubMed Central

    Sawhney, Surbhi; Vivekananda Pai, A.R.

    2015-01-01

    Background Addition of glass ionomer cement (GIC) has been suggested to improve the setting time and handling characteristics of mineral trioxide aggregate (MTA). This study evaluated the effect of adding GIC to MTA in terms of calcium release, an issue that has not been previously studied. Materials and methods The study comprised four groups with five samples each: a control group of MTA alone and experimental groups I (1MTA:1GIC), II (2MTA:1GIC), and III (1MTA:2GIC) based on the mixture of MTA and GIC powders in the respective proportions by volume. Calcium release from the samples was measured by atomic absorption spectrophotometry at 15 min, 6 h, 24 h, and 1 week after setting. The level of statistical significance was set at p < 0.05. Results Groups I (1MTA:1GIC) and III (1MTA:2GIC) released significantly less calcium than the control group at all time periods, except at 15 min for group I. Group II (2MTA:1GIC) showed no significant difference in calcium release compared to the control at any time period. Group II exhibited greater calcium release than group I or III at all time periods, with significant differences between groups I and II at 1 week and between groups I and III at 24 h and 1 week. There were no statistical differences in calcium release between groups I and III. Conclusions Adding GIC to improve the setting time and handling properties of the MTA powder can be detrimental to the calcium-releasing ability of the resultant mixture, depending on the proportion of GIC added. Adding MTA and GIC at a proportion of 2:1 by volume did not impact calcium release from the mixture. These findings should be verified through further clinical studies.

  15. Comparative wear resistance of reinforced glass ionomer restorative materials.

    PubMed

    Yap, A U; Teo, J C; Teoh, S H

    2001-01-01

    This study investigated the wear resistance of three restorative reinforced glass ionomer cements (Fuji IX GP FAST [FJ], Miracle Mix [MM] and Ketac Silver [KS]). Microfilled (Silux [SX]) and mini-filled (Z100 [ZO]) composites were used for comparison. Six specimens were made for each material. The specimens were conditioned for one week in distilled water at 37 degrees C and subjected to wear testing at 20 MPa contact stress against SS304 counterbodies using a reciprocal compression-sliding wear instrumentation. Distilled water was used as lubricant. Wear depth (microm) was measured using profilometry every 2,000 cycles up to 10,000 cycles. Results were analyzed using ANOVA/Scheffe's test (p<0.05). After 10,000 cycles of wear testing, ranking was as follows: KS>ZO>MM>FJ>SX. Wear ranged from 26.1 microm for SX to 71.5 microm for KS. The wear resistance of KS was significantly lower than FJ, MM and SX at all wear intervals. Although KS had significantly more wear than ZO at 2,000 to 6,000 cycles, no significant difference in wear was observed between these two materials at 8,000 and 10,000 cycles. Sintering of silver particles to glass ionomer cement (KS) did not appear to improve wear resistance. The simple addition of amalgam alloy to glass ionomer may improve wear resistance but results in poor aesthetics (silver-black color). FJ, which relies on improved chemistry instead of metal fillers, showed comparable wear resistance to the composites evaluated and is tooth-colored. It may serve as a potential substitute for composites in low-stress situations where fluoride release is desirable and aesthetic requirements are not high. PMID:11504433

  16. Fluoride release and bioactivity evaluation of glass ionomer: Forsterite nanocomposite

    PubMed Central

    Sayyedan, Fatemeh Sadat; Fathi, Mohammadhossein; Edris, Hossein; Doostmohammadi, Ali; Mortazavi, Vajihesadat; Shirani, Farzaneh

    2013-01-01

    Background: The most important limitation of glass ionomer cements (GICs) is the weak mechanical properties. Our previous research showed that higher mechanical properties could be achieved by addition of forsterite (Mg2SiO4) nanoparticles to ceramic part of GIC. The objective of the present study was to fabricate a glass ionomer- Mg2SiO4 nanocomposite and to evaluate the effect of addition of Mg2SiO4 nanoparticles on bioactivity and fluoride release behavior of prepared nanocomposite. Materials and Methods: Forsterite nanoparticles were made by sol-gel process. X-ray diffraction (XRD) technique was used in order to phase structure characterization and determination of grain size of Mg2SiO4 nanopowder. Nanocomposite was fabricated via adding 3wt.% of Mg2SiO4 nanoparticles to ceramic part of commercial GIC (Fuji II GC). Fluoride ion release and bioactivity of nanocomposite were measured using the artificial saliva and simulated body fluid (SBF), respectively. Bioactivity of specimens was investigated by Fourier transitioned-infrared spectroscopy (FTIR), scanning electronmicroscopy (SEM), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and registration of the changes in pH of soaking solution at the soaking period. Statistical analysis was carried out by one Way analysis of variance and differences were considered significant if P < 0.05. Results: The results of XRD analysis confirmed that nanocrystalline and pure Mg2SiO4 powder was obtained. Fluoride ion release evaluation showed that the values of released fluoride ions from nanocomposite are somewhat less than Fuji II GC. SEM images, pH changes of the SBF and results of the ICP-OES and FTIR tests confirmed the bioactivity of the nanocomposite. Statistical analysis showed that the differences between the results of all groups were significant (P < 0.05). Conclusion: Glass ionomer- Mg2SiO4 nanocomposite could be a good candidate for dentistry and orthopedic applications, through of desirable fluoride ion release and bioactivity. PMID:24130579

  17. Comparative evaluation of microleakage in conventional glass ionomer cements and triclosan incorporated glass ionomer cements

    PubMed Central

    Somani, Rani; Jaidka, Shipra; Jawa, Deepti; Mishra, Shreya

    2014-01-01

    Aim and Objective: The aim of the following study is to comparatively evaluate the microleakage of triclosan incorporated GIC with conventional restorative GIC. Materials and Methods: Triclosan in powder form was added to conventional GIC to formulate a concentration of 2.5%. Class five cavities were prepared in non-carious extracted molars and were respectively restored with conventional restorative GIC and triclosan incorporated GIC. Samples were kept in 10% methylene blue dye. Ground sections were obtained and were observed under a binocular microscope for dye penetration. Result: No significant difference was found in the microleakage of two groups. Conclusion: Triclosan incorporated GIC can be considered as an alternative to GIC with enhanced antibacterial property. PMID:24808702

  18. Bonded amalgam restorations: using a glass-ionomer as an adhesive liner.

    PubMed

    Chen, R S; Liu, C C; Cheng, M R; Lin, C P

    2000-01-01

    Due to the lack of adhesiveness of amalgam to tooth structure, several adhesive cements have been utilized in bonded amalgam restorations. This study evaluated whether Fuji-II glass-ionomer cement is an appropriate adhesive liner in bonded amalgam restorations. Two adhesive composite luting cements (Amalgambond Plus and Panavia-21) and Copalite cavity liner were compared. The study was conducted in two phases. In the first part, we quantitatively assessed the tensile bond strengths as well as the failure modes of amalgam bonded to human dentin, using different adhesive liners. In each group, the flat dentin surface was treated with the assigned adhesive cement with a Teflon mold, followed by condensation of amalgam (Valiant PhD) onto it. Each group's mean tensile bond strengths were recorded and the statistical analysis by one way ANOVA showed no significant differences among groups (p > 0.05). Similar to the fracture patterns of the Amalgambond Plus and Panavia-21 groups, the failure mode of Fuji-II group was predominantly adhesive fracture. In the second part, the fracture strengths of amalgam restored teeth were measured using different adhesive liners. Standard MOD cavities were prepared in each tooth except for the intact tooth group. After treatment with the assigned adhesives or varnish, the cavities were restored with amalgam. Fracture strengths were then measured and the fractured interfaces examined using a scanning electron microscope. The fracture strengths of the intact tooth, Amalgambond Plus, Panavia-21 and Fuji-II groups were significantly higher than those of the Copalite and prepared cavity without restoration groups (p < 0.01). Accordingly, Fuji-II glass-ionomer cement, when used as an adhesive liner of amalgam restoration, may effectively reinforce the remaining tooth structure and, therefore, enhance the fracture resistance of the amalgam-restored teeth. PMID:11203849

  19. CYTOTOXICITY AND BIOCOMPATIBILITY OF DIRECT AND INDIRECT PULP CAPPING MATERIALS

    PubMed Central

    Modena, Karin Cristina da Silva; Casas-Apayco, Leslie Caroll; Atta, Maria Teresa; Costa, Carlos Alberto de Souza; Hebling, Josimeri; Sipert, Carla Renata; Navarro, Maria Fidela de Lima; Santos, Carlos Ferreira

    2009-01-01

    There are several studies about the cytotoxic effects of dental materials in contact with the pulp tissue, such as calcium hydroxide (CH), adhesive systems, resin composite and glass ionomer cements. The aim of this review article was to summarize and discuss the cytotoxicity and biocompatibility of materials used for protection of the dentin-pulp complex, some components of resin composites and adhesive systems when placed in direct or indirect contact with the pulp tissue. A large number of dental materials present cytotoxic effects when applied close or directly to the pulp, and the only material that seems to stimulate early pulp repair and dentin hard tissue barrier formation is CH. PMID:20027424

  20. In vitro comparison of orthodontic band cements.

    PubMed

    Millett, Declan T; Duff, Sheena; Morrison, Lynsey; Cummings, Alistair; Gilmour, W Harper

    2003-01-01

    The aim of the study was to compare the mean retentive strength of microetched orthodontic bands cemented to extracted human third molars with a modified composite, a resin-modified glass ionomer cement, and a conventional glass ionomer cement. The mode of band failure and amount of cement remaining on the tooth at deband were also assessed. Finally, survival time of bands with each cement was assessed with simulated mechanical stress in a ball mill. Ninety banded specimens were used to assess retentive strength, and another 30 banded specimens were used to assess survival time. The mean retentive strength of the modified composite (0.415 MPa) was significantly less than that of either the resin-modified (1.715 MPa) or the conventional glass ionomer cement (1.454 MPa; P <.001). Specimens failed predominantly at the cement-enamel interface. The amount of cement remaining on the tooth at deband differed significantly between bands cemented with the resin-modified cement and those cemented with the conventional glass ionomer cement (P <.05). Mean survival time of bands cemented with the resin-modified glass ionomer cement (14.3 hours) was significantly longer (P <.01) than for bands cemented with the conventional glass ionomer cement (9.9 hours) but did not differ significantly from that of bands cemented with the modified composite (11.1 hours; P >.05). Orthodontic bands cemented with the modified composite appear to have a significantly lower mean retentive strength than bands cemented with resin-modified or conventional glass ionomer cement, but mean survival time did not differ significantly for bands cemented with modified composite or resin-modified glass ionomer. PMID:12532057

  1. Secondary caries formation in vitro around glass ionomer-lined amalgam and composite restorations.

    PubMed

    Dionysopoulos, P; Kotsanos, N; Papadogianis, Y

    1996-08-01

    The aim of this in vitro secondary caries study was to examine the glass-ionomer liner's effect on wall-lesion inhibition when a conventional and a light-cured glass ionomer liner was placed under amalgam and composite resin restorations. Class V preparations in extracted upper premolars were used and ten restorations were used for each of the following groups: (i) two layers of copal varnish and amalgam; (ii) conventional glass-ionomer and amalgam; (iii) light-cured glass-ionomer and amalgam; (iv) bonding agent and light-cured composite resin; (v) conventional glass-ionomer, bonding agent and light-cured composite resin; (vi) light-cured glass-ionomer, extended 0.3 mm short of the enamel margin bonding agent and light-cured composite resin; and (vii) light-cured glass-ionomer, extended 1 mm short of the enamel margin, bonding agent and light-cured composite resin. The teeth were thermocycled and artificial caries were created using an acid-gel. The results of this study showed that artificial recurrent caries can be reduced significantly (P < 0.05) with a glass-ionomer liner under amalgam restorations. The results also showed that when the light-cured glass-ionomer liner was placed 0.3 mm from the cavosurface margin under composite resin restoration, the artificial recurrent caries reduced significantly (P < 0.05). PMID:8866262

  2. Biocompatibility of a new pulp capping cement

    PubMed Central

    Poggio, Claudio; Ceci, Matteo; Beltrami, Riccardo; Dagna, Alberto; Colombo, Marco; Chiesa, Marco

    2014-01-01

    Summary Aim The aim of the present study was to evaluate the biocompatibility of a new pulp capping material (Biodentine, Septodont) compared with reference pulp capping materials: Dycal (Dentsply), ProRoot MTA (Dentsply) and MTA-Angelus (Angelus) by using murine odontoblast cell line and Alamar blue and MTT cytotoxicity tests. Methods The citocompatibility of murine odontoblasts cells (MDPC-23) were evaluated at different times using a 24 Transwell culture plate by Alamar blue test and MTT assay. Results The results were significantly different among the pulp capping materials tested. Biocompatibility was significant different among materials with different composition. Conclusions Biodentine and MTA-based products show lower cytotoxicity varying from calcium hydroxide-based material which present higher citotoxicity. PMID:25002921

  3. Comparative in vitro evaluation of internal adaptation of resin-modified glass ionomer, flowable composite and bonding agent applied as a liner under composite restoration: A scanning electron microscope study

    PubMed Central

    Soubhagya, M; Goud, K Mallikarjun; Deepak, B S; Thakur, Sophia; Nandini, T N; Arun, J

    2015-01-01

    Background: The use of resin-modified glass Ionomer cement in sandwich technique is widely practiced with the advent of various newer generation of composites the bond between resin-modified glass Ionomer and these resins should be validated. This study is done to evaluate the interfacial microgaps between different types of liners and dentin, liners and composite (Filtek p60 [FLp60]) using scanning electron microscope (SEM). Materials and Methods: Standardized Class V preparations were performed in buccal/lingual surfaces of 30 caries, crack and defect-free extracted human third molars. The prepared teeth were divided into three groups. Group I: Single bond (SB), Group II: SB + synergy flow, Group III: SB + vitrebond. They were restored with composite resin FLp60, according to the manufacturer instructions. The SB + vitrebond, cross-sectioned through the canter of the restoration. The specimens were fixed, dehydrated, polished, and processed for SEM. The internal adaptation of the materials to the axial wall was analyzed under SEM with ×1000 magnification. Results: The data obtained were analyzed with nonparametric tests (Kruskal–Wallis, P < 0.05). flowable composite or resin-modified glass ionomer applied in conjunction with adhesive resulted in statistically wider microgaps than occurred when the dentin was only hybridized prior to the restoration. Conclusion: Hybridization of dentin only provides superior sealing of the dentin-restoration interface than does flowable resin or resin-modified glass ionomer. PMID:25954067

  4. Failure of a Glass Ionomer to Remineralize Apatite-depleted Dentin

    PubMed Central

    Kim, Y.K.; Yiu, C.K.Y.; Kim, J.R.; Gu, L.; Kim, S.K.; Weller, R.N.; Pashley, D.H.; Tay, F.R.

    2010-01-01

    Remineralization of demineralized dentin lesions adjacent to glass-ionomer cements (GICs) has been reported in the literature. This study tested the hypothesis that a strontium-based GIC can remineralize completely demineralized dentin by nucleation of new apatite crystallites within an apatite-free dentin matrix. Human dentin specimens were acid-etched, bonded with Fuji IXGP, and immersed in a calcium-and-phosphate-containing 1.5X simulated body fluid (SBF) for 1-4 months. Polyacrylic acid and polyvinylphosphonic acid biomimetic analogs were added to the SBFs to create 2 additional remineralization media. Specimens were processed by transmission electron microscopy (TEM). No apatite deposition could be identified in the completely demineralized dentin in any of the specimens immersed in the 3 remineralization media, despite TEM/EDX evidence of diffusion of ions specific to the strontium-based GIC into the demineralized dentin. The hypothesis was rejected; mineral concentration alone is not a sufficient endpoint for assessing the success of contemporary remineralization strategies. PMID:20110510

  5. Bioglass: A novel biocompatible innovation

    PubMed Central

    Krishnan, Vidya; Lakshmi, T.

    2013-01-01

    Advancement of materials technology has been immense, especially in the past 30 years. Ceramics has not been new to dentistry. Porcelain crowns, silica fillers in composite resins, and glass ionomer cements have already been proved to be successful. Materials used in the replacement of tissues have come a long way from being inert, to compatible, and now regenerative. When hydroxyapatite was believed to be the best biocompatible replacement material, Larry Hench developed a material using silica (glass) as the host material, incorporated with calcium and phosphorous to fuse broken bones. This material mimics bone material and stimulates the regrowth of new bone material. Thus, due to its biocompatibility and osteogenic capacity it came to be known as “bioactive glass-bioglass.” It is now encompassed, along with synthetic hydroxyapatite, in the field of biomaterials science known as “bioactive ceramics.” The aim of this article is to give a bird's-eye view, of the various uses in dentistry, of this novel, miracle material which can bond, induce osteogenesis, and also regenerate bone. PMID:23833747

  6. Comparison of Micro-Leakage from Resin-Modified Glass Ionomer Restorations in Cavities Prepared by Er:YAG (Erbium-Doped Yttrium Aluminum Garnet) Laser and Conventional Method in Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Razavi, Forooghosadat; Soleymani, Ali Asghar

    2014-01-01

    Introduction: In recent years, significant developments have been taking place in caries removal and cavity preparation using laser in dentistry. As laser use is considered for cavity preparation, it is necessary to determine the quality of restoration margins. Glass ionomer cements have great applications for conservative restoration in the pediatric field. The purpose of this in vitro study was to compare resin-modified glass ionomer restorations micro-leakage in cavities prepared by Er:YAG (Erbium-Doped Yttrium Aluminum Garnet) laser irradiation and conventional method in primary teeth. Methods: This was an in vitro experimental study. Forty primary canine teeth were divided into 2 groups: group 1 represented cavities prepared by the no. 008 diamond bur, group 2 represented cavities prepared by Er:YAG laser. After cavity preparation, samples were restored by resin-modified glass ionomer. The teeth were thermocycled for 700 cycles, placed in 2% methylene blue for 24h and sectioned in the buccolingual direction. The degree of dye penetration was scored by 3 examiners. Data was analyzed using Mann-Whitney Test. Results: There was no statistical difference in micro-leakage between the two modes of cavity preparation (P=0.862) Conclusion: Since preparing conservative cavities is very important in pediatric dentistry, it is possible to use Er:YAG laser because of its novel and portable technology. However, further investigations of other restorative materials and other laser powers are required. PMID:25653819

  7. Biocompatibility of mineral trioxide aggregate and three new endodontic cements: An animal study

    PubMed Central

    Aminozarbian, Mohammad-Ghasem; Barati, Masoud; Salehi, Iman; Mousavi, Seyed Behrouz

    2012-01-01

    Background: Introducing new endodontic cements should await comprehensive investigations and new formulations have to be tested in vivo before applying in human beings. So, the purpose of this study was to compare the biocompatibility of new endodontic cements, calcium aluminate ?-aluminate cement (CAAC), calcium aluminate ?-aluminate plus cement (CAAC plus), and a mixture of wollastonite and CAAC cement (WOLCA) and mineral trioxide aggregate (MTA), in subcutaneous connective tissue of rats. Materials and Methods: Twenty-seven Wistar rats were divided into three groups of 7, 14, and 30 experimental days. Sterile polyethylene tubes were filled with MTA, CAAC, CAAC Plus, and WOLCA cement and implanted subcutaneously. Empty tubes were implanted as negative control. After the experimental periods, animals were sacrificed by anesthetic overdosing. The occurrence of inflammatory responses was scored according to the previously established scores. Data were statistically analyzed using Friedman, Wilcoxon, Kruskal-Wallis, and Mann-Whitney tests. The level of significance was 5% (P<0.05). Results: There was a statistically significant difference between experimental and negative control sites in each group (P<0.05). CAAC Plus showed the highest mean scores of inflammation, compared with MTA, CAAC, and WOLCA cement sits at the end of all periods (P<0.05). There were no statistically significant differences between inflammatory scores of each site in different experimental groups, except CAAC plus sites, in which inflammation increased significantly with time (P<0.05). Conclusion: According to the results of the current study, biocompatibility of CAAC and WOLCA cement were comparable with that of MTA, but CAAC Plus induced an inflammatory response higher than MTA, therefore is not biocompatible. PMID:22363364

  8. Evaluation of the Effect of Different Food Media on the Marginal Integrity of Class V Compomer, Conventional and Resin-Modified Glass-Ionomer Restorations: An In Vitro Study

    PubMed Central

    Dinakaran, Shiji

    2015-01-01

    Background: Cervical lesions of anterior and posterior teeth are a common finding in routine dental practice. They are of much concern to the patient, if present in esthetically sensitive regions. Adhesive tooth-colored restorative materials are generally recommended for treating such lesions. The aim of the present study was to evaluate and compare the effect of various food media (lime juice, tea, coffee, and Coca-Cola) on the marginal integrity of Class V compomer (Dyract®), conventional glass-ionomer (Fuji II) and resin-modified glass-ionomer (Fuji II LC improved) restorations along their cemental and enamel margins with saline as control media. Materials and Methods: After restoration of prepared Class V cavities in human premolars with the three different materials (n = 8), they were immersed in the test media for 7 days and then stained with methylene blue dye. Buccolingual sections were prepared and examined under stereomicroscope and scores (0-2) were given. Results: Data were analyzed statistically using one-way analysis of variance in SPSS version 16.0. P < 0.05 were considered statistically significant. Conclusions: Among the three tested materials Compomer (Dyract®) showed more marginal integrity than the other two. Micro leakage values of Fuji II and Fuji II LC improved were statistically significant in acidic media (lime juice and Coca-Cola) compared to saline. Enamel margins showed more marginal adaptation than cemental margins. PMID:25878480

  9. Comparison of effect of desensitizing agents on the retention of crowns cemented with luting agents: an in vitro study

    PubMed Central

    Pandharinath, Dange Shankar; Arun, Khalikar; Smita, Vaidya

    2012-01-01

    PURPOSE Many dentists use desensitizing agents to prevent hypersensitivity. This study compared and evaluated the effect of two desensitizing agents on the retention of cast crowns when cemented with various luting agents. MATERIALS AND METHODS Ninety freshly extracted human molars were prepared with flat occlusal surface, 6 degree taper and approximately 4 mm axial length. The prepared specimens were divided into 3 groups and each group is further divided into 3 subgroups. Desensitizing agents used were GC Tooth Mousse and GLUMA® desensitizer. Cementing agents used were zinc phosphate, glass ionomer and resin modified glass ionomer cement. Individual crowns with loop were made from base metal alloy. Desensitizing agents were applied before cementation of crowns except for control group. Under tensional force the crowns were removed using an automated universal testing machine. Statistical analysis included one-way ANOVA followed by Turkey-Kramer post hoc test at a preset alpha of 0.05. RESULTS Resin modified glass ionomer cement exhibited the highest retentive strength and all dentin treatments resulted in significantly different retentive values (In Kg.): GLUMA (49.02 ± 3.32) > Control (48.61 ± 3.54) > Tooth mousse (48.34 ± 2.94). Retentive strength for glass ionomer cement were GLUMA (41.14 ± 2.42) > Tooth mousse (40.32 ± 3.89) > Control (39.09 ± 2.80). For zinc phosphate cement the retentive strength were lowest GLUMA (27.92 ± 3.20) > Control (27.69 ± 3.39) > Tooth mousse (25.27 ± 4.60). CONCLUSION The use of GLUMA® desensitizer has no effect on crown retention. GC Tooth Mousse does not affect the retentive ability of glass ionomer and resin modified glass ionomer cement, but it decreases the retentive ability of zinc phosphate cement. PMID:22977719

  10. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro.

    PubMed

    Li, Yu-Hua; Wang, Zhen-Dong; Wang, Wei; Ding, Chang-Wei; Zhang, Hao-Xuan; Li, Jian-Min

    2015-11-01

    The composite of poly-lactic-co-glycolic acid (PLGA) and calcium phosphate cements (CPC) are currently widely used in bone tissue engineering. However, the properties and biocompatibility of the alendronate-loaded PLGA/CPC (APC) porous scaffolds have not been characterized. APC scaffolds were prepared by a solid/oil/water emulsion solvent evaporation method. The morphology, porosity, and mechanical strength of the scaffolds were characterized. Bone marrow mesenchymal stem cells (BMSCs) from rabbit were cultured, expanded and seeded on the scaffolds, and the cell morphology, adhesion, proliferation, cell cycle and osteogenic differentiation of BMSCs were determined. The results showed that the APC scaffolds had a porosity of 67.43?±?4.2% and pore size of 213?±?95?µm. The compressive strength for APC was 5.79?±?1.21?MPa, which was close to human cancellous bone. The scanning electron microscopy, cell counting kit-8 assay, flow cytometry and ALP activity revealed that the APC scaffolds had osteogenic potential on the BMSCs in vitro and exhibited excellent biocompatibility with engineered bone tissue. APC scaffolds exhibited excellent biocompatibility and osteogenesis potential and can potentially be used for bone tissue engineering. PMID:25877763

  11. Effect of Tricalcium Aluminate on the Physicochemical Properties, Bioactivity, and Biocompatibility of Partially Stabilized Cements

    PubMed Central

    Chang, Kai-Chun; Chang, Chia-Chieh; Huang, Ying-Chieh; Chen, Min-Hua; Lin, Feng-Huei; Lin, Chun-Pin

    2014-01-01

    Background/Purpose Mineral Trioxide Aggregate (MTA) was widely used as a root-end filling material and for vital pulp therapy. A significant disadvantage to MTA is the prolonged setting time has limited the application in endodontic treatments. This study examined the physicochemical properties and biological performance of novel partially stabilized cements (PSCs) prepared to address some of the drawbacks of MTA, without causing any change in biological properties. PSC has a great potential as the vital pulp therapy material in dentistry. Methods This study examined three experimental groups consisting of samples that were fabricated using sol-gel processes in C3S/C3A molar ratios of 9/1, 7/3, and 5/5 (denoted as PSC-91, PSC-73, and PSC-55, respectively). The comparison group consisted of MTA samples. The setting times, pH variation, compressive strength, morphology, and phase composition of hydration products and ex vivo bioactivity were evaluated. Moreover, biocompatibility was assessed by using lactate dehydrogenase to determine the cytotoxicity and a cell proliferation (WST-1) assay kit to determine cell viability. Mineralization was evaluated using Alizarin Red S staining. Results Crystalline phases, which were determined using X-ray diffraction analysis, confirmed that the C3A contents of the material powder differed. The initial setting times of PSC-73 and PSC-55 ranged between 15 and 25 min; these values are significantly (p<0.05, ANOVA and post-hoc test) lower than those obtained for MTA (165 min) and PSC-91 (80.5 min). All of the PSCs exhibited ex vivo bioactivity when immersed in simulated body fluid. The biocompatibility results for all of the tested cements were as favorable as those of the negative control, except for PSC-55, which exhibited mild cytotoxicity. Conclusion PSC-91 is a favorable material for vital pulp therapy because it exhibits optimal compressive strength, a short setting time, and high biocompatibility and bioactivity. PMID:25247808

  12. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations.

    PubMed

    Gonçalves, Gil; Portolés, María-Teresa; Ramírez-Santillán, Cecilia; Vallet-Regí, María; Serro, Ana Paula; Grácio, José; Marques, Paula A A P

    2013-12-01

    Although commercially-available poly(methyl methacrylate) bone cement is widely used in total joint replacements, it has many shortcomings, a major one being that it does not osseointegrate with the contiguous structures. We report on the in vitro evaluation of the biocompatibility of modified formulations of the cement in which a high loading of hydroxyapatite (67 wt/wt%), an extra amount of benzoyl peroxide, and either 0.1 wt/wt% functionalized carbon nanotubes or 0.5 wt/wt% graphene oxide was added to the cement powder and an extra amount of dimethyl-p-toluidiene was added to the cement's liquid monomer. This evaluation was done using mouse L929 fibroblasts and human Saos-2 osteoblasts. For each combination of cement formulation and cell type, there was high cell viability, low apoptosis, and extensive spread on disc surfaces. Thus, these two cement formulations may have potential for use in the clinical setting. PMID:23963685

  13. Evaluation of sealing ability two self-etching adhesive systems and a glass ionomer lining LC under composite restoration in primary tooth: An in vitro study

    PubMed Central

    Pragasam, Ananda Xavier; Duraisamy, Vinola; Nayak, Ullal Anand; Reddy, Venugopal; Rao, Arun Prasad

    2015-01-01

    Aims and Objectives: To evaluate the sealing ability of two self-etching adhesive systems and glass ionomer cement (GIC) lining Light cure (LC) under composite restorations in primary teeth. Materials and Methods: Class V cavities are prepared on the cervical third of the facial and lingual surfaces of primary molars. The specimens are then assigned into four experimental groups. The restored primary molars are stored in distilled water and subjected to thermocycling. Each section was examined using a stereomicroscope to assess dye penetration at the margin of the restoration and evaluated via pictures. Statistical Analysis Used: The degree of microleakage was analyzed using Kruskal–Wallis test and the intergroup significance by multiple comparison analysis. Results: The mean rank of the groups are Group I (Adper Prompt™ + Z?100) 19.44, Group II (UniFil BOND + Solare) 5.38, Group III (GIC lining LC + Z?100) 20.06, and Group IV (GIC lining LC + Solare) 21.13 with the P < 0.001. Conclusion: Composite resin restorations bonded with two-step self-etching adhesive system (UniFil Bond) exhibited lesser microleakage than one-step self-etching adhesive system (Adperprompt™) in primary teeth. PMID:26538910

  14. Comparative study of radiopacity of resin-based and glass ionomer-based bulk-fill restoratives using digital radiography.

    PubMed

    Yasa, Bilal; Kucukyilmaz, Ebru; Yasa, Elif; Ertas, Elif T

    2015-01-01

    This study investigated the radiopacity values of glass ionomer- and resin-based bulk-fill restoratives of different thicknesses using digital radiography. Two glass ionomer-based and three resin-based bulk-fill restoratives, and a conventional composite were studied. Five disc-shaped specimens were prepared from each of these materials at three different thicknesses; specimens of enamel and dentin with the same thicknesses were also prepared. Materials were placed over a complementary metal oxide-semiconductor sensor together with the tooth specimen and an aluminum step-wedge, and then exposed using a dental X-ray unit. The images were analyzed using a software program to measure the mean gray values (MGVs), which were converted to equivalent aluminum thicknesses. Two-way ANOVA was used to investigate the significance of differences among the groups. The GCP Glass Fill specimens showed the lowest radiopacity values, and the Quixfil specimens had the highest values. All materials had higher radiopacity values than enamel and dentin, except for GCP Glass Fill, which had a radiopacity similar to that of enamel. The resin-based bulk-fill restoratives had significantly higher radiopacity values than glass ionomer-based restoratives. All of the tested materials showed radiopacity values higher than that of dentin, as recommended by the ISO. PMID:26062855

  15. Experimental studies on a new bioactive material: HAIonomer cements.

    PubMed

    Yap, A U J; Pek, Y S; Kumar, R A; Cheang, P; Khor, K A

    2002-02-01

    The lack of exotherm during setting, absence of monomer and improved release of incorporated therapeutic agents has resulted in the development of glass ionomer cements (GICs) for biomedical applications. In order to improve biocompatibility and biomechanically match GICs to bone, hydroxyapatite-ionomer (HAIonomer) hybrid cements were developed. Ultra-fine hydroxyapatite (HA) powders were produced using a new induction spraying technique that utilizes a radio-frequency source to spheriodize an atomized suspension containing HA crystallites. The spheriodized particulates were then held at 800 degrees C for 4 h in a carbolite furnace using a heating and cooling rate of 25 degrees C/min to obtain almost fully crystalline HA powders. The heat-treated particles were characterized and introduced into a commercial glass ionomer cement. 4 (H4), 12 (H12) and 28 (H28) vol% of fluoroalumino silicate were substituted by crystalline HA particles that were dispersed using a high-speed dispersion technique. The HAIonomer cements were subjected to hardness, compressive and diametral tensile strength testing based upon BS6039:1981. The storage time were extended to one week to investigate the effects of cement maturation on mechanical properties. Commercially available capsulated GIC (GC) and GIC at maximum powder:liquid ratio (GM) served as comparisons. Results were analyzed using factorial ANOVA/Scheffe's post-hoc tests and independent samples t-test at significance level 0.05. The effect of time on hardness was material dependent. With the exception of H12, a significant increase in hardness was observed for all materials at one week. A significant increase in compressive strength was, however, observed for H12 over time. At 1 day and 1 week, the hardness of H28 was significantly lower than for GM, H4, and H12. No significant difference in compression and diametral tensile strengths were observed between materials at both time intervals. Results show that HAIonomers is a promising material, which possess good mechanical properties. Potential uses of this new material include bone cements and performed implants for hard tissue replacement in the field of otological, oral-maxillofacial and orthopedic surgery. PMID:11774854

  16. Microleakage of three cement bases.

    PubMed

    Heys, R J; Fitzgerald, M

    1991-01-01

    The purpose of this study was to evaluate the ability of a glass-ionomer cement-base material to prevent bacterial penetration along the dentin interface and to compare it with two conventional cement-base materials. A total of 107 Class 5 restorations was placed in Rhesus monkey teeth by means of three test materials [zinc oxide-eugenol (ZOE), copalite varnish + zinc phosphate cement base (V + ZP), and a glass-ionomer lining cement (GI)], with unetched and unbonded resin composite used alone as a control material and as a final restoration over the test base materials. Following disinfection, Class 5 cavities were prepared on the buccal surfaces of the teeth to the inner one-half of dentin. A sterile filter-paper disk was then placed on the axial wall and covered with a Teflon disk. Next, the cavities were based to the dento-enamel junction with one of the test base materials and finally restored with unetched and unbonded resin composite. After five and 16 weeks, the filter-paper disks were retrieved and cultivated for the presence and type of bacteria. The five-week results showed positive growth in two groups: the composite-only controls and the V + ZP group. The 16-week results showed growth in all of the test groups, but only one of nine teeth showed growth in the zinc oxide-eugenol group and one of 16 teeth in the glass-ionomer group. The results of this study indicate that under the conditions tested, a glass-ionomer base was capable of minimizing bacterial penetration along the material-tooth interface. PMID:1991861

  17. Highly sensitive amperometric biosensor based on a biocompatible calcium phosphate cement.

    PubMed

    Sánchez-Paniagua López, M; Tamimi, F; López-Cabarcos, E; López-Ruiz, B

    2009-04-15

    Brushite is a biocompatible calcium phosphate mineral with properties of solid electrolyte. In this study we take advantage of this characteristic to develop an enzymatic amperometric biosensor based on brushite cement. The biosensor was prepared by immobilizing tyrosinase (PPO) on a brushite cement layer which was subsequently cross-linked with glutaraldehyde (GA) on the surface of a glassy carbon electrode. The system was optimized for the detection of phenolic compounds in both aqueous and non-aqueous solutions. Several variables involved in the enzyme immobilization method such as glutaraldehyde cross-linking time, PPO/brushite ratio and thickness of the brushite film were investigated. Furthermore, the effects of the pH, temperature and applied potential on the biosensor performance were also optimized. On the other hand, the biosensor analytical properties were studied in presence of different organic solvents: dioxane, acetonitrile and ethanol. In both, phosphate buffer solution (PBS) and acetonitrile/PBS solution, the biosensor exhibits a rapid response (12 s); a wide linear range (0.001-3 microM and 0.007-2 microM respectively); low detection limit (1 and 2 nM respectively); and high sensitivity (46.6 and 28.6 A M(-1) cm(-2) respectively). The performance of the biosensor in the analysis of phenols in real samples was successful. PMID:19211238

  18. Do Laboratory Results Concerning High-Viscosity Glass-Ionomers versus Amalgam for Tooth Restorations Indicate Similar Effect Direction and Magnitude than that of Controlled Clinical Trials? - A Meta-Epidemiological Study

    PubMed Central

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2015-01-01

    Background A large percentage of evidence concerning dental interventions is based on laboratory research. The apparent wealth of laboratory evidence is sometimes used as basis for clinical inference and recommendations for daily dental practice. In this study two null-hypotheses are tested: whether trial results from laboratory and controlled clinical trials concerning the comparison of high-viscosity glass-ionomer cements (HVGIC) to amalgam for restorations placed in permanent posterior teeth have: (i) similar effect direction and (ii) similar effect magnitude. Methods 7 electronic databases were searched, as well as reference lists. Odds ratios (OR) and Standardised Mean Differences (SMD) with 95% Confidence intervals were computed for extracted dichotomous and continuous data, respectively. Pooled effect estimates for laboratory and clinical data were computed to test for effect direction. Odds ratios were converted into SMDs. SMDs from laboratory and clinical data were statistically compared to test for differences in effect magnitude. The analysed results were further investigated within the context of potential influencing or confounding factors using a Directed acyclic graph. Results Of the accepted eight laboratory and nine clinical trials, 13 and 21 datasets could be extracted, respectively. The pooled results of the laboratory datasets were highly statistically significant in favor of amalgam. No statistically significant differences, between HVGICs and amalgam, were identified for clinical data. For effect magnitude, statistically significant differences between clinical and laboratory trial results were found. Both null-hypotheses were rejected. Conclusion Laboratory results concerning high-viscosity glass-ionomers versus amalgam for tooth restorations do not indicate similar effect direction and magnitude than that of controlled clinical trials. PMID:26168274

  19. Effectiveness of a resin-modified glass ionomer liner in reducing hypersensitivity in posterior restorations

    PubMed Central

    Strober, Brad; Veitz-Keenan, Analia; Barna, Julie Ann; Matthews, Abigail G.; Vena, Donald; Craig, Ronald G.; Curro, Frederick A.; Thompson, Van P.

    2014-01-01

    Background The objectives of this randomized comparative effectiveness study conducted by members of the Practitioners Engaged in Applied Research and Learning (PEARL) Network were to determine whether using a resin-modified glass ionomer (RMGI) liner reduces postoperative hypersensitivity (POH) in dentin-bonded Class I and Class II resin-based composite (RBC) restorations, as well as to identify other factors (putative risk factors) associated with increased POH. Methods PEARL Network practitioner-investigators (P-Is) (n = 28) were trained to assess sensitivity determination, enamel and dentin caries activity rankings, evaluation for sleep bruxism, and materials and techniques used. The P-Is enrolled 341 participants who had hypersensitive posterior lesions. Participants were randomly assigned to receive an RBC restoration with or without an RMGI liner before P-Is applied a one-step, self-etching bonding agent. P-Is conducted sensitivity evaluations at baseline, at one and four weeks after treatment, and at all visits according to patient-reported outcomes. Results P-Is collected complete data regarding 347 restorations (339 participants) at baseline, with 341 (98 percent) (333 participants) recalled at four weeks. Treatment groups were balanced across baseline characteristics and measures. RBC restorations with or without an RMGI liner had the same one-week and four-week POH outcomes, as measured clinically (by means of cold or air stimulation) and according to patient-reported outcomes. Conclusions Use of an RMGI liner did not reduce clinically measured or patient-reported POH in moderate-depth Class I and Class II restorations. Cold and air clinical stimulation findings were similar between groups. Practical Implications The time, effort and expense involved in placing an RMGI liner in these moderate-depth RBC restorations may be unnecessary, as the representative liner used did not improve hypersensitivity outcomes. PMID:23904575

  20. Comparative Evaluation of Antimicrobial Efficacy of Resin-Modified Glass Ionomers, Compomers and Giomers – An Invitro Study

    PubMed Central

    Reddy, J. Sharada; Suhasini, K.; Hemachandrika, I.

    2015-01-01

    Background Dental restorative materials, especially those applied in direct contact with the contaminated substrate, should have appropriate antibacterial activity in order to prevent residual bacteria from continuing their metabolic activity in addition to impairing new bacteria from reaching the tooth-restoration interface. Aim To determine the antibacterial efficacy of three different restorative materials against the common cariogenic microorganism i.e., Streptococcus mutans. Materials and Methods Three different restorative materials were evaluated in this study: Giomer (Beautifil), Compomer (F2000) & Resin modified Glass ionomer (Fuji II LC) for their anti microbial efficacy against Streptococcus mutans by standard agar diffusion method and zones of inhibition for each restorative material were calculated. Statistical Analysis Inhibition zones around each restorative material were measured and values were subjected to one-way ANOVA with least square difference (LSD) Post-hoc test. Results The mean inhibitory zones for Resin modified glass ionomers, Giomers & Compomers ranged from 10.1 – 6.90mm. Fuji II LC exhibited the highest mean inhibitory zone of 10.1 ± 1.97 for S.mutans. Beautifil exhibited mean inhibitory zone of 8.20 ± 1.62, whereas F2000 showed the least mean inhibitory zone of 6.90 ± 1.29. Conclusion Based on the inhibitory zones of three restorative materials, Fuji II LC is recommended as the best restorative material among the three tested restorative materials. PMID:26393212

  1. Influence of the temperature on the cement disintegration in cement-retained implant restorations.

    PubMed

    Linkevicius, Tomas; Vindasiute, Egle; Puisys, Algirdas; Linkeviciene, Laura; Svediene, Olga

    2012-01-01

    The aim of this study was to estimate the average disintegration temperature of three dental cements used for the cementation of the implant-supported prostheses. One hundred and twenty metal frameworks were fabricated and cemented on the prosthetic abutments with different dental cements. After heat treatment in the dental furnace, the samples were set for the separation to test the integration of the cement. Results have shown that resin-modified glass-ionomer cement (RGIC) exhibited the lowest disintegration temperature (p<0.05), but there was no difference between zinc phosphate cement (ZPC) and dual cure resin cement (RC) (p>0.05). Average separation temperatures: RGIC - 306 ± 23 °C, RC - 363 ± 71 °C, it could not be calculated for the ZPC due to the eight unseparated specimens. Within the limitations of the study, it could be concluded that RGIC cement disintegrates at the lowest temperature and ZPC is not prone to break down after exposure to temperature. PMID:23455980

  2. Comparison of Microleakage of Glass Ionomer Restoration in Primary Teeth Prepared by Er: YAG Laser and the Conventional Method

    PubMed Central

    Ghandehari, M.; Mighani, G.; Shahabi, S.; Chiniforush, N.; Shirmohammadi, Z.

    2012-01-01

    Objective: One of the main criteria in evaluating the restorative materials is the degree of microleakage. The aim of this study was to compare the microleakage of glass ionomer restored cavities prepared by Er:YAG laser or turbine and bur. Materials and Methods: Twenty extracted caries-free deciduous posterior teeth were selected for this study. The teeth were randomly divided into two groups for cavity preparation. Cavities in group one were prepared by high speed turbine and bur. In the second group, Er:YAG laser with a 3W output power, 300 mJ energy and 10 Hz frequency was used. Cavities were restored with GC Fuji II LC. After thermocycling, the samples were immersed into 0.5% methylene blue solution. They were sectioned for examination under optic microscope. Results: The Wilcoxon signed ranks test showed no significant difference between microleakage of the laser group and the conventional group (P>0.05). Conclusion: Er:YAG laser with its advantages in pediatric dentistry may be suggested as an alternative device for cavity preparation. PMID:23119130

  3. Long-term monitoring of microleakage of dental cements by radiochemical diffusion

    SciTech Connect

    Powis, D.R.; Prosser, H.J.; Wilson, A.D.

    1988-06-01

    Radioactive /sup 14/C sucrose was found to be an ideal marker for microleakage because it did not penetrate tooth tissue, dental cement, or mounting resin. The main finding is that the adhesive cements--the glass-ionomer and polycarboxylate--are significantly more effective at preventing microleakage than are the traditional phosphate cements--silicate and zinc phosphate. The differences can be as high as two orders of magnitude. The adhesive cements provide almost perfect and reliable seals. By contrast, the nonadhesive cements are erratic sealants with most of the restorations leaking.

  4. Inferior alveolar nerve damage because of overextended endodontic material: a problem of sealer cement biocompatibility?

    PubMed

    Escoda-Francoli, Jaume; Canalda-Sahli, Carles; Soler, Albert; Figueiredo, Rui; Gay-Escoda, Cosme

    2007-12-01

    Damage to the inferior alveolar nerve is a relatively infrequent complication in dental practice. When root canal treatment of a lower molar or premolar surpasses and/or overextends beyond the apical foramen and invades the periapical zone, the foreign material introduced within such a sensitive anatomical space may mechanically or even chemically affect the inferior alveolar nerve. We describe a case of endodontic treatment of a permanent right lower first molar in which the sealer cement overextended in large amounts and damaged the right inferior alveolar nerve. The condition reverted a few months after the surgical removal of the material. Evaluation of the removed material, using powder x-ray diffraction and scanning electron microscopy with coupled dispersive energy spectroscopy, showed it to consist of calcium tungstate (scheelite [CaWO4]) and zirconium oxide (baddeleyite [ZrO2]), which were chemical components of the sealer cement. PMID:18037065

  5. Comparative Evaluation of Shear Bond Strength of Luting Cements to Different Core Buildup Materials in Lactic Acid Buffer Solution

    PubMed Central

    Patil, Siddharam M.; Desai, Raviraj G.; Arabbi, Kashinath C.; Prakash, Ved

    2015-01-01

    Aim and Objectives The core buildup material is used to restore badly broken down tooth to provide better retention for fixed restorations. The shear bond strength of a luting agent to core buildup is one of the crucial factors in the success of the cast restoration. The aim of this invitro study was to evaluate and compare the shear bond strength of luting cements with different core buildup materials in lactic acid buffer solution. Materials and Methods Two luting cements {Traditional Glass Ionomer luting cement (GIC) and Resin Modified Glass Ionomer luting cement (RMGIC)} and five core buildup materials {Silver Amalgam, Glass ionomer (GI), Glass Ionomer Silver Reinforced (GI Silver reinforced), Composite Resin and Resin Modified Glass Ionomer(RMGIC)} were selected for this study. Total 100 specimens were prepared with 20 specimens for each core buildup material using a stainless steel split metal die. Out of these 20 specimens, 10 specimens were bonded with each luting cement. All the bonded specimens were stored at 370c in a 0.01M lactic acid buffer solution at a pH of 4 for 7days. Shear bond strength was determined using a Universal Testing Machine at a cross head speed of 0.5mm/min. The peak load at fracture was recorded and shear bond strength was calculated. The data was statistically analysed using Two-way ANOVA followed by HOLM-SIDAK method for pair wise comparison at significance level of p<0.05. Results Two-Way ANOVA showed significant differences in bond strength of the luting cements (p<0.05) and core materials (p<0.05) and the interactions (p<0.05). Pairwise comparison of luting cements by HOLM-SIDAK test, showed that the RMGIC luting cement had higher shear bond strength values than Traditional GIC luting cement for all the core buildup materials. RMGIC core material showed higher bond strength values followed by Composite resin, GI silver reinforced, GI and silver amalgam core materials for both the luting agents. Conclusion Shear bond strength of RMGIC luting cement was significantly higher than traditional GIC luting cement for all core buildup materials except, for silver amalgam core buildup material. RMGIC core material showed highest shear bond strength values followed by Composite resin, GI Silver Reinforced, GI and Silver Amalgam core materials irrespective of luting cements. PMID:26436055

  6. Marginal microleakage of a resin-modified glass-ionomer restoration: Interaction effect of delayed light activation and surface pretreatment

    PubMed Central

    Shafiei, Fereshteh; Yousefipour, Bahareh; Farhadpour, Hajar

    2015-01-01

    Background: Despite widespread clinical uses of resin-modified glass-ionomers (RMGIs), their sealing ability is still a concern. This study evaluated the effect of delayed light activation (DLA) of RMGI on marginal sealing in differently pretreated cavities. Materials and Methods: In this in vitro study, two standardized Class V cavities were prepared on the buccal and lingual surfaces of 56 sound maxillary premolars at the cementoenamel junction. The cavities were randomly divided into eight equal groups. In groups 1-4 (immediate light activation [ILA]), no pretreatment (negative control [NC]) and three surface pretreatments were used, respectively as follows: Cavity conditioner, Vitremer primer, cavity conditioner plus and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). Fuji II LC (GC, Japan) was prepared and placed in the cavities and immediately light-cured according to manufacturer's instructions. In groups 5-8 (DLA), the same pretreatments were applied, respectively. After placing Fuji II LC in the cavities, the restorations were light-cured after a 3-min delay. After finishing the restorations, the specimens were placed in water for 1-week and thermocycled. Microleakage scores were determined using the dye penetration technique. Kruskal–Wallis test and Mann–Whitney U-test were used to analyze the obtained data (? = 0.05). Results: At the dentin margins, DLA resulted in a lower microleakage for no treatment (NC), cavity conditioner and cavity conditioner plus ACP-CPP pretreatments groups (P ? 0.004); however, no difference was observed for Vitremer group (P > 0.05). At the enamel margins, no difference was observed between DLA and ILA for all groups (P > 0.05); only NC group exhibited a lower microleakage in case of DLA (P = 0.007). Conclusion: Delayed light activation of RMGI may lead to different effects on marginal sealing, depending on pretreatment procedures used in the cavity. It might improve dentin sealing when no treatment and conditioner alone or with CCP-ACP is used. PMID:26005461

  7. Effect of ultrasound application during setting on the mechanical properties of high viscous glass-ionomers used for ART restorations

    PubMed Central

    Daifalla, Lamia E.; Mobarak, Enas H.

    2014-01-01

    This study was conducted to evaluate the effect of ultrasound application on the surface microhardness (VHN) and diametral tensile strength (DTS) of three high viscous glass-ionomer restorative materials (HVGIRMs). For each test (VHN and DTS), a total of 180 specimens were prepared from three HVGIRMs (Ketac-Molar Aplicap, Fuji IX GP Fast, and ChemFil Rock). Specimens of each material (n = 60) were further subdivided into three subgroups (n = 20) according to the setting modality whether ultrasound (20 or 40 s) was applied during setting or not (control). Specimens within each subgroup were then equally divided (n = 10) and tested at 24 h or 28 days. For the VHN measurement, five indentations, with a 200 g load and a dwell time for 20 s, were made on the top surface of each specimen. The DTS test was done using Lloyd Testing machine at a cross-head speed of 0.5 mm/min. Ultrasound application had no significant effect on the VHN. Fuji IX GP Fast revealed the highest VHN value, followed by Ketac-Molar Aplicap, and the least was recorded for ChemFil Rock. Fuji IX GP Fast and Ketac-Molar Aplicap VHN values were significantly increased by time. ChemFil Rock recorded the highest DTS value at 24 h and was the only material that showed significant improvement with both US application times. However, this improvement did not sustain till 28 days. The ultrasound did not enhance the surface microhardness, but its positive effect on the diametral tensile strength values was material and time dependent.

  8. Practical clinical considerations of luting cements: A review

    PubMed Central

    Lad, Pritam P; Kamath, Maya; Tarale, Kavita; Kusugal, Preethi B

    2014-01-01

    The longevity of fixed partial denture depends on the type of luting cement used with tooth preparation. The clinician’s understating of various cements, their advantages and disadvantages is of utmost importance. In recent years, many luting agents cements have been introduced claiming clinically better performance than existing materials due to improved characteristics. Both conventional and contemporary dental luting cements are discussed here. The various agents discussed are: Zinc phosphate, Zinc polycarboxylate, Zinc oxide-eugenol, Glass-ionomer, Resin modified GIC, Compomers and Resin cement. The purpose of this article is to provide a discussion that provides a clinical perspective of luting cements currently available to help the general practitioner make smarter and appropriate choices. How to cite the article: Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: A review. J Int Oral Health 2014;6(1):116-20. PMID:24653615

  9. A Comparative Evaluation of the Effect of Resin based Sealers on Retention of Crown Cemented with Three Types of Cement – An In Vitro Study

    PubMed Central

    Sharma, Sumeet; Patel, J.R.; Sethuraman, Rajesh; Singh, Sarbjeet; Wazir, Nikhil Dev; Singh, Harvinder

    2014-01-01

    Aim: In an effort to control postoperative sensitivity, dentin sealers are being applied following crown preparations, with little knowledge of how crown retention might be affected. A previous study demonstrated no adverse effect when using a gluteraldehyde-based sealer, and existing studies have shown conflicting results for resin-based products. This study determined the retention of the casting cemented with three types of cement, with and without use of resin sealers and it determined the mode of failure. Materials and Methods: Extracted human molars (n=60) were prepared with a flat occlusal, 20-degree taper, and 4-mm axial length. The axial surface area of each preparation was determined and specimens were distributed equally among groups (n=10). A single-bottle adhesive system (one step single bottle adhesive system) was used to seal dentin, following tooth preparation. Sealers were not used on the control specimens. The test castings were prepared by using Ni-Cr alloy for each specimen and they were cemented with a seating force of 20 Kg by using either Zinc Phosphate (Harvard Cement), Glass Ionomer (GC luting and lining cement,GC America Inc.) and modified-resin cement (RelyXTMLuting2). Specimens were thermocycled for one month and were then removed along the path of insertion by using a Universal Testing Machine at 0.5 mm/min. A single-factor ANOVA was used with a p value of .05. The nature of failure was recorded and the data was analyzed by using Chi-square test. Results: Mean dislodgement stress for Zinc phosphate (Group A) was 24.55±1.0 KgF and that for zinc phosphate with sealer (Group D) was 14.65±0.8 KgF. For glass ionomer (Group B) without sealer, the mean value was 32.0±1.0 KgF and mean value for glass ionomer with sealer (Group E) was 37.90±1.0 KgF. The mean value for modified resin cement (Group C) was 44.3±1.0KgF and that for modified resins with sealer (Group F) was 57.2±1.2 KgF. The tooth failed before casting dislodgement in 8 to 10 specimens cemented with modified-resin cement. Conclusion: Resin sealer decreased casting retentive stress by 46% when it was used with Zinc phosphate. However, sealer use resulted in 60% increased retention when it was used with Glass ionomer cement. The modified-resin cement produced the highest mean dislodgement stress, which nearly always exceeded the strength of the tooth. PMID:24783150

  10. Evaluation of tensile retention of Y-TZP crowns cemented on resin composite cores: effect of the cement and Y-TZP surface conditioning.

    PubMed

    Rippe, M P; Amaral, R; Oliveira, F S; Cesar, P F; Scotti, R; Valandro, L F; Bottino, M A

    2015-01-01

    This study evaluated the effect of the cement type (adhesive resin, self-adhesive, glass ionomer, and zinc phosphate) on the retention of crowns made of yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP). Therefore, 108 freshly extracted molars were embedded in acrylic resin, perpendicular to their long axis, and prepared for full crowns: the crown preparations were removed and reconstructed using composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and Y-TZP copings were produced, which presented a special setup for the tensile testing. Cementation was performed with two adhesive resin cements (Multilink Automix, Ivoclar-Vivadent; RelyX ARC, 3M ESPE, St Paul, MN, USA), one self-adhesive resin cement (RelyX U100, 3M ESPE), one glass ionomer based cement (RelyX Luting, 3M ESPE), and one zinc phosphate cement (Cimento de Zinco, SS White, Rio de Janeiro, Brazil). For the resin cement groups, the inner surfaces of the crowns were subjected to three surface treatments: cleaning with isopropyl alcohol, tribochemical silica coating, or application of a thin low-fusing glass porcelain layer plus silanization. After 24 hours, all groups were subjected to thermocycling (6000 cycles) and included in a special device for tensile testing in a universal testing machine to test the retention of the infrastructure. After testing, the failure modes of all samples were analyzed under a stereomicroscope. The Kruskal-Wallis test showed that the surface treatment and cement type (?=0.05) affected the tensile retention results. The Multilink cement presented the highest tensile retention values, but that result was not statistically different from RelyX ARC. The surface treatment was statistically relevant only for the Multilink cement. The cement choice was shown to be more important than the crown surface treatment for cementation of a Y-TZP crown to a composite resin substrate. PMID:25162722

  11. A comparison of shear-peel band strengths of 5 orthodontic cements.

    PubMed

    Aggarwal, M; Foley, T F; Rix, D

    2000-08-01

    The objective of this study was to compare the shear-peel band strength of 5 orthodontic cements using both factory and in-office micro-etched bands. The 5 orthodontic cements evaluated were a zinc phosphate (Fleck's Cement), 2 resin-modified glass ionomer cements (RMGI)(3M Multicure glass ionomer and Optiband), and 2 polyacid-modified composite resin cements (PMCR)(Transbond Plus and Ultra Band Lok). Salivary contamination was examined with a polyacid-modified composite resin (Transbond Plus). Two hundred and eighty extracted human molar teeth were embedded in resin blocks and each was randomly assigned to the following 7 groups: 6 groups with factory etched bands, 5 cement groups and salivary contaminated group, and 1 in-office micro-etched group. The cemented teeth were put in deionized water at 37 degrees C for 30 days and thermocycled for 24 hours. The force required to break the cement bond was used as a measure of shear-peel band retention. With the use of an Instron testing machine, a shear-peel load was applied to each cemented band. Data were analyzed with a one-way analysis of variance (ANOVA) with a Tukey test for the multiple comparisons. The RMGIs and PMCRs demonstrated significantly greater shear-peel band strengths compared to the zinc phosphate cement. No statistically significant differences were noted between the RMGI cement and PMCR cements and within the RMGI groups, however, there was a statistically significant difference within the PMCR groups. Significantly lower band strengths were noted with the saliva contaminated PMCR cement group (Transbond Plus) and the inpractice sandblasted PMCR group. Both RMGIs and PMCRs were found to demonstrate favorable banding qualities. The lower band strength with saliva-contaminated bands suggests that moisture control is critical when using a PMCR. The variability noted in the in-office micro-etched bands might be technique related. PMID:10961781

  12. Comparison of the Shear Bond Strength of Resin Modified Glass Ionomer to Enamel in Bur-Prepared or Lased Teeth (Er:YAG)

    PubMed Central

    Jafari, Ahmad; Shahabi, Sima; Chiniforush, Nasim; Shariat, Ali

    2013-01-01

    Objective: The purpose of this study was to evaluate the effect of Er:YAG laser on the shear bond strength of resin modified glass ionomer (RMGI) to enamel. Materials and Methods: Twenty extracted caries-free human premolars were selected. The teeth were embedded in acrylic resin. The buccal surfaces of each sample were ground to plane enamel with carbonated disc. The teeth were randomly divided in two groups. In the first group, the surfaces were treated by Er:YAG laser (350mJ/10Hz). The second group was prepared by carbide bur. Fuji IX RMGI was adhered to surfaces of the samples in both groups in rod shape. The shear bond strength of samples was measured by a universal testing machine. The results of the two groups were analyzed by T- test. Results: The means and standard deviations of shear bond strength of the laser-treated group and the bur-treated group were 6.75 ± 1.99 and 4.41 ± 1.62 Mpa, respectively. There is significant difference in the shear bond strength of RMGI between the two groups (P-value=0.01). Conclusion: The laser group showed better results. Er:YAG laser can be an alternative technology in restorative dentistry. PMID:23724210

  13. Effect of light-cure initiation time on polymerization and orthodontic bond strength with a resin-modified glass-ionomer

    NASA Astrophysics Data System (ADS)

    Thomas, Jess

    Introduction: The polymerization and acid-base reactions in resin-modified glass-ionomers (RMGI) are thought to compete with and inhibit one another. The objective of this study was to examine the effect of visible light-cure (VLC) delay on the polymerization efficiency and orthodontic bond strength of a dual-cured RMGI. Methods: An RMGI light-cured immediately, 2.5, 5, or 10 minutes after mixing comprised the experimental groups. Isothermal and dynamic temperature scan differential scanning calorimetry (DSC) analysis of the RMGI was performed to determine extents of VLC polymerization and acid-base reaction exotherms. Human premolars (n = 18/group) were bonded with the RMGI. Shear bond strength and adhesive remnant index (ARI) scores were determined. Results: DSC results showed the 10 minute delay RMGI group experienced significantly (P <0.05) lower VLC polymerization compared to the other groups. Acid-base reaction exotherms were undetected in all groups except the 10 minute delay group. No significant differences (P >0.05) were noted among the groups for mean shear bond strength. A chi-square test showed no significant difference (P = 0.428) in ARI scores between groups. Conclusions: Delay in light-curing may reduce polymerization efficiency and alter the structure of the RMGI, but orthodontic shear bond strength does not appear to be compromised.

  14. In vitro bond strength and fatigue stress test evaluation of different adhesive cements used for fixed space maintainer cementation

    PubMed Central

    Cantekin, Kenan; Delikan, Ebru; Cetin, Secil

    2014-01-01

    Objective: The purposes of this research were to (1) compare the shear-peel bond strength (SPBS) of a band of a fixed space maintainer (SM) cemented with five different adhesive cements; and (2) compare the survival time of bands of SM with each cement type after simulating mechanical fatigue stress. Materials and Methods: Seventy-five teeth were used to assess retentive strength and another 50 teeth were used to assess the fatigue survival time. SPBS was determined with a universal testing machine. Fatigue testing was conducted in a ball mill device. Results: The mean survival time of bands cemented with R & D series Nova Glass-LC (6.2 h), Transbond Plus (6.7 h), and R & D series Nova Resin (6.8 h) was significantly longer than for bands cemented with Ketac-Cem (5.4 h) and GC Equia (5.2 h) (P < 0.05). Conclusion: Although traditional glass ionomer cement (GIC) cement presented higher retentive strength than resin-based cements (resin, resin modified GIC, and compomer cement), resin based cements, especially dual cure resin cement (nova resin cement) and compomer (Transbond Plus), can be expected to have lower failure rates for band cementation than GIC (Ketac-Cem) in the light of the results of the ball mill test. PMID:25202209

  15. EFFECT OF FLUORIDE-CONTAINING DESENSITIZING AGENTS ON THE BOND STRENGTH OF RESIN-BASED CEMENTS TO DENTIN

    PubMed Central

    Saraç, Duygu; Külünk, Safak; Saraç, Y. Sinasi; Karakas, Özlem

    2009-01-01

    Objective: The objective of this study was to evaluate the effect of desensitizing agents containing different amounts of fluoride on the shear bond strength of a dual polymerized resin cement and a resin-modified glass ionomer cement (RMGIC) to dentin. Material and Methods: One hundred human molars were mounted in acrylic resin blocks and prepared until the dentin surface was exposed. The specimens were treated with one of four desensitizing agents: Bifluorid 12, Fluoridin, Thermoline and PrepEze. The remaining 20 specimens served as untreated controls. All groups were further divided into 2 subgroups in which a dual polymerized resin cement (Bifix QM) or a resin-modified glass ionomer cement (AVANTO) was used. The shear bond strength (MPa) was measured using a universal testing machine at a 0.5 mm/min crosshead speed. The data were analyzed statistically with a 2-way ANOVA, Tukey HSD test and regression analysis (?=0.05). The effect of the desensitizing agents on the dentin surface was examined by scanning electron microscopy. Results: The fluoride-containing desensitizing agents affected the bond strength of the resin-based cements to dentin (p<0.001). PrepEze showed the highest bond strength values in all groups (p<0.001). Conclusion: Regression analysis showed a reverse relation between bond strength values of resin cements to dentin and the amount of fluoride in the desensitizing agent (p<0.05). PMID:19936532

  16. Comparison of Marginal Microleakage of Glass Ionomer Restorations in Primary Molars Prepared by Chemo-mechanical Caries Removal (CMCR), Erbium: Yttrium Aluminum-Garnet (Er:YAG) Laser and Atraumatic Restorative Technique (ART)

    PubMed Central

    Juntavee, Niwut; Peerapattana, Jomjai; Nualkaew, Nartsajee; Sutthisawat, Sitikorn

    2013-01-01

    ABSTRACT Background: It is important to emphasize that the aspects of pretreatment techniques, as well as the composition and mechanism of adhesion, may decisively influence the effectiveness of the restorative materials in sealing cavity margins and preventing marginal leakage. Aims: This study assessed the in vitro influence of surface preparation techniques on the microleakage of glass ionomer restorations in primary teeth. Materials and methods: The study groups were divided into three different techniques: (1) The chemomechanical caries removal (CMCR) method using the Apacaries gel, (2) the erbium:yttrium aluminum-garnet (Er:YAG) laser method and (3) the atraumatic restorative technique (ART). The teeth restored with a glass ionomer restorative material (Fuji IX GP capsule, GC Corporation, Tokyo, Japan). The dye penetration was measured in micrometers using a polarized light microscope and specific computer software. Results: The results showed that the mean microleakage level after was lowest with the CMCR method using Apacaries gel and highest with the Er:YAG laser. There was a statistically significant difference regarding the mean microleakage level between the group with the CMCR method using Apacaries gel and the Er:YAG laser. Conclusion: Marginal leakage was significantly higher with preparations made using the Er:YAG laser than with the CMCR method using Apacaries gel and spoon excavator (p < 0.05). How to cite this article: Juntavee A, Juntavee N, Peerapattana J, Nualkaew N, Sutthisawat S. Comparison of Marginal Microleakage of Glass Ionomer Restorations in Primary Molars Prepared by Chemomechanical Caries Removal (CMCR), Erbium: Yttrium Aluminum-Garnet (Er:YAG) Laser and Atraumatic Restorative Technique (ART). Int J Clin Pediatr Dent 2013;6(2):75-79. PMID:25206196

  17. Remineralizing efficacy of silver diamine fluoride and glass ionomer type VII for their proposed use as indirect pulp capping materials – Part II (A clinical study)

    PubMed Central

    Sinha, N; Gupta, A; Logani, A; Shah, N

    2011-01-01

    Aim: To evaluate in vivo the remineralizing efficacy of silver diamine fluoride (SDF), glass ionomer Type VII (GC VII) and calcium hydroxide (Dycal). Materials and Methods: 60 subjects in the age group of 18-35 years, matching the inclusion criteria and having deep carious lesions in the permanent first and second molars were selected. The teeth were aseptically opened under rubber dam and after gross caries removal, approximately 0.4mg of soft discolored dentin was removed with a sharp spoon excavator from the mesial or distal aspect of the cavity. The test material was randomly selected and applied in a thickness of 1.5-2mm and the cavity sealed with cavit. The patients were followed up at regular intervals with radiographic evaluation at 12 weeks. At 3 months the temporary restoration was removed and dentin samples were collected from the other half of the cavity which was left in the first appointment. Atomic absorption spectrophotometry, Colorimetric test using UV-vis spectrometer and potentiometric titration were used for determining calcium, phosphorous and fluoride respectively. Results: Almost equivalent rise in the percentage of calcium level was seen in GC VII and Ca(OH)2 groups, followed by SDF group. Highest percentage rise in phosphate ions was seen in GC VII group followed by SDF group and Ca(OH)2 group. Highest percentage of fluoride rise was seen in GC VII group followed by SDF group and Ca(OH)2 group. Conclusions: The results indicated that both GC VII and SDF can be potential indirect pulp capping materials. PMID:22025824

  18. Effect of Different Luting Cements on Fracture Resistance in Endodontically Treated Teeth

    PubMed Central

    Mohammadi, Narmin; Ajami, Amir Ahmad; Kimyai, Soodabeh; Rezaei Aval, Mojdeh

    2008-01-01

    INTRODUCTION: The aim of the present study was to evaluate the effect of three types of luting cements used for post cementation on the fracture resistance of endodontically treated maxillary premolars, restored with resin composite. MATERIALS AND METHODS: One hundred intact single-rooted human maxillary premolars were randomly divided into 5 groups of 20 each. In groups 2-5, post spaces were prepared after root canal treatment and clinical crown reduction up to 1.5 mm above the CEJ. Teeth were divided in groups as follows: Group 1: intact teeth, Group 2: active prefabricated metallic posts (PMP), Group 3: PMP cemented with zinc phosphate luting cement, Group 4: PMP cemented with glass ionomer luting cement and Group 5: PMP cemented with resin luting cement. In groups 2-5 the teeth were restored with resin composite. Following thermocycling, the palatal cusp of each specimen was loaded to compression at an angle of 150? to its longitudinal axis at a strain rate of 2 mm/min until fracture occurred. Data were analyzed using one-way ANOVA and a post hoc Tukey test. Chi-square test was used for comparison of failure mode. RESULTS: There were significant differences in fracture resistance between the test groups (P<0.001). The differences between group 2 with groups 1, 4 and 5 were statistically significant (P<0.05); whereas there were no significant differences in fracture resistance between the two other groups (P>0.05). Furthermore, there were no significant differences in the mode of failure between the 5 groups (P>0.05). CONCLUSION: Zinc phosphate, glass ionomer and resin luting cements showed similar behaviors and achieved fracture resistance comparable to intact teeth. However, the use of active post (without cement) adversely affected the fracture resistance of root canal treated teeth. PMID:24082900

  19. In Vitro Biocompatibility of Contemporary Bulk-fill Composites.

    PubMed

    Toh, W S; Yap, Auj; Lim, S Y

    2015-01-01

    This study evaluated the biocompatibility of contemporary bulk-fill resin-based composites (RBCs) including PRG (pre-reacted glass ionomer) materials based on the International Organization for Standardization 10993. In addition, the effect of composite thickness on cytotoxicity was also assessed. Two standard composites, two bulk-fill PRG RBCs, and three bulk-fill non-PRG RBCs were investigated. Block-shaped specimens of 2-mm and 4-mm thickness were cured with an irradiance of 700 mW/cm(2) for 20 seconds with a light-emitting diode curing light and eluted with culture medium at 37°C for 24 hours. L929 mouse fibroblasts were exposed to extracts at varying dilutions (1:1, 1:2, and 1:10) for 24 hours. Analyses were performed to assess cytotoxicity, phase contrast microscopy, and quantitative cell viability. Among the bulk-fill RBCs, extracts of PRG materials resulted in the lowest cell viability. At 4-mm thickness, undiluted extracts of bulk-fill non-PRG RBCs had significantly higher cell viability than the standard composites. Chemical composition, specimen thickness, and testing concentrations of extracts had significant effects on cell viability and morphology. Cytotoxic effects of composites on cell viability were parallel with cell morphologic changes. Not all bulk-fill RBCs demonstrated high cell viability (>70%) at 4-mm thickness despite manufacturers' recommendations of bulk placement and curing. PMID:26237640

  20. 3D FEA of cemented glass fiber and cast posts with various dental cements in a maxillary central incisor.

    PubMed

    Madfa, Ahmed A; Al-Hamzi, Mohsen A; Al-Sanabani, Fadhel A; Al-Qudaimi, Nasr H; Yue, Xiao-Guang

    2015-01-01

    This study aimed to analyse and compare the stability of two dental posts cemented with four different luting agents by examining their shear stress transfer through the FEM. Eight three-dimensional finite element models of a maxillary central incisor restored with glass fiber and Ni-Cr alloy cast dental posts. Each dental post was luted with zinc phosphate, Panavia resin, super bond C&B resin and glass ionomer materials. Finite element models were constructed and oblique loading of 100 N was applied. The distribution of shear stress was investigated at posts and cement/dentine interfaces using ABAQUS/CAE software. The peak shear stress for glass fiber post models minimized approximately three to four times of those for Ni-Cr alloy cast post models. There was negligible difference in peak of shear stress when various cements were compared, irrespective of post materials. The shear stress had same trend for all cement materials. This study found that the glass fiber dental post reduced the shear stress concentration at interfacial of post and cement/dentine compared to Ni-Cr alloy cast dental post. PMID:26543733

  1. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting

    NASA Astrophysics Data System (ADS)

    Tian, Kun V.; Yang, Bin; Yue, Yuanzheng; Bowron, Daniel T.; Mayers, Jerry; Donnan, Robert S.; Dobó-Nagy, Csaba; Nicholson, John W.; Fang, De-Cai; Greer, A. Lindsay; Chass, Gregory A.; Greaves, G. Neville

    2015-11-01

    Bioactive glass ionomer cements (GICs) have been in widespread use for ~40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC's developing fracture toughness during setting is related to interfacial THz dynamics, changing atomic cohesion and fluctuating interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass-polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces. Subsequently, toughness declines asymptotically to long-term fracture test values. We expect the insight afforded by these in situ non-destructive techniques will assist in raising understanding of the setting mechanisms and associated dynamics of cementitious materials.

  2. Simulations reveal the role of composition into the atomic-level flexibility of bioactive glass cements.

    PubMed

    Tian, Kun Viviana; Chass, Gregory A; Tommaso, Devis Di

    2015-12-23

    Bioactive glass ionomer cements (GICs), the reaction product of a fluoro-alumino-silicate glass and polyacrylic acid, have been in effective use in dentistry for over 40 years and more recently in orthopaedics and medical implantation. Their desirable properties have affirmed GIC's place in the medical materials community, yet are limited to non-load bearing applications due to the brittle nature of the hardened composite cement, thought to arise from the glass component and the interfaces it forms. Towards helping resolve the fundamental bases of the mechanical shortcomings of GICs, we report the 1st ever computational models of a GIC-relevant component. Ab initio molecular dynamics simulations were employed to generate and characterise three fluoro-alumino-silicate glasses of differing compositions with focus on resolving the atomic scale structural and dynamic contributions of aluminium, phosphorous and fluorine. Analyses of the glasses revealed rising F-content leading to the expansion of the glass network, compression of Al-F bonding, angular constraint at Al-pivots, localisation of alumino-phosphates and increased fluorine diffusion. Together, these changes to the structure, speciation and dynamics with raised fluorine content impart an overall rigidifying effect on the glass network, and suggest a predisposition to atomic-level inflexibility, which could manifest in the ionomer cements they form. PMID:26646505

  3. Novel experimental cements for use on the dentin-pulp complex.

    PubMed

    Dantas, Raquel Venâncio Fernandes; Conde, Marcus Cristian Muniz; Sarmento, Hugo Ramalho; Zanchi, Cesar Henrique; Tarquinio, Sandra Beatriz Chaves; Ogliari, Fabrício Aulo; Demarco, Flávio Fernando

    2012-01-01

    This aim of this study was to evaluate the physicochemical and biological properties of novel experimental cements (Hybrid, Paste and Resin) based on synergistic combinations of existing materials, including pH, diametral tensile strength (DTS) and cytotoxicity comparing them with mineral trioxide aggregate (MTA - Angelus®) and a glass ionomer cement (GIC) developed at our laboratory. For the physicochemical and biological tests, specimens with standard dimensions were produced. pH measurements were performed with digital pH meter at the following time intervals: 3, 24, 48 and 72 h. For the DTS test, cylindrical specimens were subjected to compressive load until fracture. The MTT assay was performed for cytotoxicity evaluation. Data were analyzed by ANOVA and Tukey's test (?=0.05). Paste group showed pH values similar to MTA, and Hybrid group presented pH values similar to GIC (p>0.05). The tested materials showed pH values ranging from alkaline to near neutrality at the evaluated times. MTA and GIC showed similar DTS values. The lowest and highest DTS values were seen in the Paste and Resin groups, respectively (p<0.05). Cell viability for MTA and experimental Hybrid, Paste and Resin groups was 49%, 93%, 90% and 86%, respectively, when compared with the control group. The photo-cured experimental resin cement showed similar or superior performance compared with the current commercial or other tested experimental materials. PMID:23207847

  4. Comparative Evaluation of Enhancing Retention of Dislodged Crowns Using Preparation Modifications and Luting Cements: An In-Vitro Study

    PubMed Central

    Amarnath, G S; Pandey, Apurva; Prasad, Hari Ananth; Hilal, Mohammed

    2015-01-01

    Background: Complete cast crowns are good alternatives and have best longevity for the restoration of damaged posterior teeth. Occasionally, a crown with clinically acceptable margins, preparation design, and occlusion becomes loose. Providers often debate whether such a crown can be successfully recemented with any degree of confidence that it will not be dislodged under normal masticatory function. It has been documented that resistance form increases by placing grooves opposing each other in a crown and tooth; cements also have a role to play in retention of crowns. To determine whether the addition of horizontal groove in the internal surface of the crown and/or tooth preparation will increase retention of the crowns, without remaking them and achieving better retention with cements. Materials and Methods: A total of 80 extracted human mandibular molars were taken and standard preparation was done. After the crowns were ready, the groove was made in the internal surface of the crown and on the tooth, which were cemented with glass ionomer cement and resin cement. The tensile force needed to dislodge the crowns and teeth after cementation was found out. Result: The mean tensile force needed to dislodge the crown and tooth combination was highest for the group in which crown had a groove without any groove on the tooth and cemented using resin cement (252.60N). Conclusion: It can be concluded from the study that it is best to recement a crown and tooth combination using resin cement where the crown has a groove, and the tooth has no groove. PMID:26464539

  5. Film Thickness and Flow Properties of Resin-Based Cements at Different Temperatures

    PubMed Central

    Bagheri, R

    2013-01-01

    Statement of Problem: For a luting agent to allow complete seating of prosthetic restorations, it must obtain an appropriate flow rate maintaining a minimum film thickness. The performance of recently introduced luting agents in this regard has not been evaluated. Purpose: To measure and compare the film thickness and flow properties of seven resin-containing luting cements at different temperatures (37°C, 25°C and10°C). Material and Methods: Specimens were prepared from five resin luting cements; seT (SDI), Panavia F (Kuraray), Varioloink II (Ivoclar), Maxcem (Kerr), Nexus2 (Kerr) and two resin-modified glass-ionomer luting cements (RM-GICs); GC Fuji Plus (GC Corporation), and RelyX Luting 2 (3 M/ESPE). The film thickness and flow rate of each cement (n=15) was determined using the test described in ISO at three different temperatures. Results: There was a linear correlation between film thickness and flow rate for most of the materials. Cooling increased fluidity of almost all materials while the effect of temperature on film thickness was material dependent. At 37°C, all products revealed a film thickness of less than 25µm except for GC Fuji Plus. At 25°C, all cements produced a film thickness of less than 27 µm except for seT. At 10°C, apart from seT and Rely X Luting 2, the remaining cements showed a film thickness smaller than 20 µm. Conclusion: Cooling increased fluidity of almost all materials, however. the film thickness did not exceed 35 µm in either condition, in spite of the lowest film thickness being demonstrated at the lowest temperature. PMID:24724120

  6. CORRELATION BETWEEN MARGIN FIT AND MICROLEAKAGE IN COMPLETE CROWNS CEMENTED WITH THREE LUTING AGENTS

    PubMed Central

    Rossetti, Paulo Henrique Orlato; do Valle, Accacio Lins; de Carvalho, Ricardo Marins; Goes, Mario Fernando De; Pegoraro, Luiz Fernando

    2008-01-01

    Microleakage can be related to margin misfit. Also, traditional microleakage techniques are time-consuming. This study evaluated the existence of correlation between in vitro margin fit and a new microleakage technique for complete crowns cemented with 3 different luting agents. Thirty human premolars were prepared for full-coverage crowns with a convergence angle of 6 degrees, chamfer margin of 1.2 mm circumferentially, and occlusal reduction of 1.5 mm. Ni-Cr cast crowns were cemented with either zinc phosphate (ZP) (S.S. White), resin-modified glass-ionomer (RMGI) (Rely X Luting Cement) or a resin-based luting agent (RC) (Enforce). Margin fit (seating discrepancy and margin gap) was evaluated according to criteria in the literature under microscope with 0.001 mm accuracy. After thermal cycling, crowns were longitudinally sectioned and microleakage scores at tooth-cement interface were obtained and recorded at x100 magnification. Margin fit parameters were compared with the one-way ANOVA test and microleakage scores with Kruskal-Wallis and Dunn's tests (?=0.05). Correlation between margin fit and microleakage was analyzed with the Spearman's test (?=0.05). Seating discrepancy and marginal gap values ranged from 81.82 ?m to 137.22 ?m (p=0.117), and from 75.42 ?m to 78.49 ?m (p=0.940), respectively. Marginal microleakage scores were ZP=3.02, RMGI=0.35 and RC=0.12 (p<0.001), with no differences between RMGI and RC scores. The correlation coefficient values ranged from -0.27 to 0.30 (p>0.05). Conclusion: Margin fit parameters and microleakage showed no strong correlations; cast crowns cemented with RMGI and RC had lower microleakage scores than ZP cement. PMID:19089292

  7. Biocompatibility of surgical implants

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.

    1979-01-01

    Method of selecting biocompatible materials for surgical implants uses fracture mechanic relationships and surface energies of candidate materials in presence of blood plasma. Technique has been used to characterize 190 materials by parameters that reflect their biocompatibility.

  8. Addition of mechanically processed cellulosic fibers to ionomer cement: mechanical properties.

    PubMed

    Silva, Rafael Menezes; Carvalho, Vinícius Xavier Mattar de; Dumont, Vitor César; Santos, Maria Helena; Carvalho, Ana Márcia Macedo Ladeira

    2015-01-01

    In this study, conventional restorative glass ionomer cement (GIC) was modified by embedding it with mechanically processed cellulose fibers. Two concentrations of fibers were weighed and agglutinated into the GIC during manipulation, yielding Experimental Groups 2 (G2; 3.62 wt% of fibers) and 3 (G3; 7.24 wt% of fibers), which were compared against a control group containing no fibers (G1). The compressive strengths and elastic modulus of the three groups, and their diametral tensile strengths and stiffness, were evaluated on a universal test machine. The compressive and diametral tensile strengths were significantly higher in G3 than in G1. Statistically significant differences in elastic modulus were also found between G2 and G1 and between G2 and G3, whereas the stiffness significantly differed between G1 and G2. The materials were then characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Heterogeneously shaped particles were found on the G2 and G3 surfaces, and the cement matrices were randomly interspersed with long intermingled fibers. The EDS spectra of the composites revealed the elemental compositions of the precursor materials. The physically processed cellulosic fibers (especially at the higher concentration) increased the compressive and diametral tensile strengths of the GIC, and demonstrated acceptable elastic modulus and stiffness. PMID:25627882

  9. Laser treatment of dental ceramic/cement layers: transmitted energy, temperature effects and surface characterisation.

    PubMed

    Pich, Olena; Franzen, René; Gutknecht, Norbert; Wolfart, Stefan

    2015-02-01

    In the present paper, we investigate the behaviour of different dental materials under laser irradiation. We have used e.max Ceram, e.max ZirCAD, and e.max Press dental ceramics and glass ionomer cement Ketac Cem in the present study. The dental ceramics were prepared in the form of samples with thickness of 0.5-2 mm. We used two lasers [solid-state laser (Er:YAG, Fidelis III+, Fotona) and an 810-?nm diode laser (FOX, A.R.C)] for the transillumination of ceramic samples. It has been shown that the laser energy transmitted through the ceramic material decreases to 30-40% of the original values along with an increase in the thickness of the irradiated sample. Pigmented ceramic samples show more laser energy loss compared to the samples containing no pigment. We investigated the temperature evolution in composite sandwiched ceramic/cement samples under laser treatment. The increase in the irradiation time and laser power led to a temperature increase of up to 80 °C. The surfaces of irradiated ceramic samples were examined with X-ray photoelectron spectroscopy to evaluate changes in chemical composition, such as a decrease in the C signal, accompanied by a strong increase in the Zr peak for the Er:YAG laser, while the 810-nm diode laser showed no change in the ratio of elements on the surface. PMID:23793369

  10. Microleakage of Four Dental Cements in Metal Ceramic Restorations With Open Margins

    PubMed Central

    Eftekhar Ashtiani, Reza; Farzaneh, Babak; Azarsina, Mohadese; Aghdashi, Farzad; Dehghani, Nima; Afshari, Aisooda; Mahshid, Minu

    2015-01-01

    Background: Fixed prosthodontics is a routine dental treatment and microleakage is a major cause of its failure. Objectives: The aim of this study was to assess the marginal microleakage of four cements in metal ceramic restorations with adapted and open margins. Materials and Methods: Sixty sound human premolars were selected for this experimental study performed in Tehran, Iran and prepared for full-crown restorations. Wax patterns were formed leaving a 300 µm gap on one of the proximal margins. The crowns were cast and the samples were randomly divided into four groups based on the cement used. Copings were cemented using zinc phosphate cement (Fleck), Fuji Plus resin-modified glass ionomer, Panavia F2.0 resin cement, or G-Cem resin cement, according to the manufacturers’ instructions. Samples were immersed in 2% methylene blue solution. After 24 hours, dye penetration was assessed under a stereomicroscope and analyzed using the respective software. Data were analyzed using ANOVA, paired t-tests, and Kruskal-Wallis, Wilcoxon, and Mann-Whitney tests. Results: The least microleakage occurred in the Panavia F2.0 group (closed margin, 0.18 mm; open margin, 0.64 mm) and the maximum was observed in the Fleck group (closed margin, 1.92 mm; open margin, 3.32 mm). The Fleck group displayed significantly more microleakage compared to the Fuji Plus and Panavia F2.0 groups (P < 0.001) in both closed and open margins. In open margins, differences in microleakage between the Fuji Plus and G-Cem as well as between the G-Cem and Panavia F2.0 groups were significant (P < 0.001). In closed margins, only the G-Cem group displayed significantly more microleakage as compared to the Panavia F2.0 group (P < 0.05). Paired t-test results showed significantly more microleakage in open margins compared to closed margins, except in the Fuji Plus group (P = 0.539). Conclusions: Fuji Plus cement exhibited better sealing ability in closed and open margins compared to G-Cem and Fleck cements. When using G-Cem and Fleck cements for full metal ceramic restorations, clinicians should try to minimize marginal gaps in order to reduce restoration failure. In situations where there are doubts about perfect marginal adaptation, the use of Fuji Plus cement may be helpful.

  11. Mineral Trioxide Aggregate and Portland Cement for Direct Pulp Capping in Dog: A Histopathological Evaluation

    PubMed Central

    Bidar, Maryam; Naghavi, Neda; Mohtasham, Nooshin; Sheik-Nezami, Mahshid; Fallahrastegar, Amir; Afkhami, Farzaneh; Attaran Mashhadi, Negin; Nargesi, Iman

    2014-01-01

    Background and aims. Mineral trioxide aggregate and calcium hydroxide are considered the gold standard pulp-capping materials. Recently, Portland cement has been introduced with properties similar to those of mineral trioxide aggregate. Histopathological effects of direct pulp capping using mineral trioxide aggregate and Portland cements on dog dental pulp tissue were evaluated in the present study. Materials and methods. This histopatological study was carried out on 64 dog premolars. First, the pulp was exposed with a sterile bur. Then, the exposed pulp was capped with white or gray mineral trioxide aggregates and white or gray Portland cements in each quadrant and sealed with glass-ionomer. The specimens were evaluated under a light microscope after 6 months. Statistical analysis was carried out using Kruskal-Wallis test. Statistical significance was defined at ?=5%. Results. There was no acute inflammation in any of the specimens. Chronic inflammation in white and gray mineral trioxide aggregates and white and gray Portland cements was reported to be 45.5%, 27.3%, 57.1% and 34.1%, respectively. Although the differences were not statistically significant, severe inflammation was observed mostly adjacent to white mineral trioxide aggregate. The largest extent of increased vascularization (45%) and the least increase in fibrous tissue were observed adjacent to white mineral trioxide aggregate, with no significant differences. In addition, the least calcified tissue formed adjacent to white mineral trioxide aggregate, although the difference was not significant. Conclusion. The materials used in this study were equally effective as pulp protection materials following direct pulp capping in dog teeth. PMID:25346831

  12. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting

    PubMed Central

    Tian, Kun V.; Yang, Bin; Yue, Yuanzheng; Bowron, Daniel T.; Mayers, Jerry; Donnan, Robert S.; Dobó-Nagy, Csaba; Nicholson, John W.; Fang, De-Cai; Greer, A. Lindsay; Chass, Gregory A.; Greaves, G. Neville

    2015-01-01

    Bioactive glass ionomer cements (GICs) have been in widespread use for ?40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC's developing fracture toughness during setting is related to interfacial THz dynamics, changing atomic cohesion and fluctuating interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass–polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces. Subsequently, toughness declines asymptotically to long-term fracture test values. We expect the insight afforded by these in situ non-destructive techniques will assist in raising understanding of the setting mechanisms and associated dynamics of cementitious materials. PMID:26548704

  13. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting.

    PubMed

    Tian, Kun V; Yang, Bin; Yue, Yuanzheng; Bowron, Daniel T; Mayers, Jerry; Donnan, Robert S; Dobó-Nagy, Csaba; Nicholson, John W; Fang, De-Cai; Greer, A Lindsay; Chass, Gregory A; Greaves, G Neville

    2015-01-01

    Bioactive glass ionomer cements (GICs) have been in widespread use for ?40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC's developing fracture toughness during setting is related to interfacial THz dynamics, changing atomic cohesion and fluctuating interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass-polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces. Subsequently, toughness declines asymptotically to long-term fracture test values. We expect the insight afforded by these in situ non-destructive techniques will assist in raising understanding of the setting mechanisms and associated dynamics of cementitious materials. PMID:26548704

  14. Microdrilling of Biocompatible Materials 

    E-print Network

    Mohanty, Sankalp

    2012-02-14

    This research studies microdrilling of biocompatible materials including commercially pure titanium, 316L stainless steel, polyether ether ketone (PEEK) and aluminum 6061-T6. A microdrilling technique that uses progressive pecking and micromist...

  15. Asphalt cement

    MedlinePLUS

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. This is ... Road paving materials Roofing materials Tile cements Note: This list may not include all uses of asphalt.

  16. Shear Bond Strength of Calcium Enriched Mixture Cement and Mineral Trioxide Aggregate to Composite Resin with Two Different Adhesive Systems

    PubMed Central

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Kimyai, Soodabeh; Motahhari, Paria; Eghbal, Mohammad Jafar; Asgary, Saeed

    2014-01-01

    Objective: Immediate restoration after vital pulp therapy is essential in order to create and maintain effective coronal seal. Purpose of Study: The aim of this study was to evaluate the shear bond strength of recently used pulp capping materials: white mineral trioxide aggregate (MTA), and calcium enriched mixture cement (CEM) to composite resin with the use of etch-and-rinse and self-etch adhesive systems and compare them with the bond strength of commonly used resin modified glass ionomer (RMGI) cement. Materials and Methods: Forty specimens from each test material were fabricated, measuring 4 mm in diameter and 2 mm in depth. The specimens of each material were divided into 2 groups of 20 specimens according to the adhesive system (Single Bond vs. Clearfil SE Bond) used for bonding of resin composite. The shear bond strength values were measured at a crosshead speed of 1.0 mm/min and fractured surfaces were examined. Data were analyzed using two-way ANOVA and a post hoc Tukey’s test (P<0.05). Results: Analysis of data showed a significantly higher bond strength for RMGI compared to MTA and CEM (P<0.001); however, no significant differences were observed in the bond strength values of MTA and CEM (P=0.9). Furthermore, there were no significant differences in relation to the type of the adhesive system irrespective of the type of the material used (P=0.95) All the failures were of cohesive type in RMGI, MTA and CEM. Conclusion: Bond strength of RMGI cement to composite resin was higher than that of MTA or CEM cement irrespective of the type of the adhesive system. PMID:25628696

  17. In Vitro Cytotoxicity Evaluation of a Novel Root Repair Material

    E-print Network

    Zheng, Yufeng

    ProRoot mineral trioxide aggregate (MTA), and glass ionomer cement were evaluated. Human gingival cells exposed to glass ionomer cement extracts displayed the lowest viabilities (P . Conclusions: Biodentine caused gingival fibroblast reaction similar to that by MTA. Both materials were less

  18. Squeeze cementing

    SciTech Connect

    Ewert, D.P.; Kundert, D.P.; Dahl, J.A.; Dalrymple, E.D.; Gerke, R.R.

    1992-06-16

    This patent describes a method for terminating the flow of fluid from a portion of a subterranean formation into a wellbore. It comprises: placing within the wellbore adjacent the portion a volume of a slurry of hydraulic cement, permitting the volume to penetrate into the portion; and maintaining the slurry in the portion for a time sufficient to enable the slurry to form a rigid mass of cement in the portion.

  19. Cement sealing

    SciTech Connect

    Cowan, K.M.

    1991-05-21

    This patent describes a process for cementing a selected part of a well. It comprises: determining a surfactant capable of reducing the volumetric shrinkage of an aqueous cement slurry from about 10% to about 75% during setting and hardening, ascertaining the amount of the surfactant necessary to accomplish the reduction in volumetric shrinkage, and injecting the slurry with the necessary amount of surfactant into the selected part of the well.

  20. Effect of fluoride varnish on demineralization adjacent to brackets bonded with RMGI cement.

    PubMed

    Schmit, Jason L; Staley, Robert N; Wefel, James S; Kanellis, Michael; Jakobsen, Jane R; Keenan, Peter J

    2002-08-01

    Far too often a less-than-optimal esthetic result occurs after orthodontic treatment due to demineralization of enamel adjacent to fixed orthodontic appliances in patients with inadequate oral hygiene. In vitro studies have shown that a resin-modified glass ionomer (RMGI) cement and a fluoride varnish might help clinicians combat this problem. The purpose of this study was to evaluate, in vitro, the effect of a fluoride-releasing cavity varnish on inhibition of enamel demineralization adjacent to orthodontic brackets bonded with RMGI and composite resin cements. Brackets were bonded to 48 extracted human third molars. Half were bonded with a composite resin (Transbond, 3M Unitek, Monrovia, Calif) and half with an RMGI (Fuji Ortho LC, GC America, Alsip, Ill). Each group was further divided into 2, with half receiving an application of fluoride-releasing varnish (Duraflor, Pharmascience, Montreal, Québec, Canada). The samples were cycled in an artificial caries solution for an hour twice daily for 31 days. After each caries challenge, the teeth were brushed with a soft toothbrush to simulate normal mechanical wear of the varnish. The loss of fluoride varnish was timed. Teeth were sectioned longitudinally and photographed under polarized light microscopy. Mean lesion depth was measured, and analysis of variance (ANOVA) (P cement showed no significant differences in lesion depth between varnish and nonvarnish groups. Both RMGI groups had 50% smaller mean lesion depths when compared with the composite resin group without fluoride varnish. Samples bonded with RMGI cement illustrated a wedge effect, with lesion depth shallower near the bracket. A chi-square test showed that the fluoride varnish was lost significantly faster in samples bonded with Fuji Ortho LC (P =.013). Although the fluoride varnish could not prevent demineralization, it appears to be beneficial in reducing lesion formation. Clinicians should consider applying fluoride varnish on areas of enamel that exhibit demineralization or are at risk of demineralization in patients with poor oral hygiene. PMID:12165766

  1. Biocompatibility of Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Ruan, Jing; Song, Hua; Zhang, Jiali; Wo, Yan; Guo, Shouwu; Cui, Daxiang

    2011-12-01

    Herein, we report the effects of graphene oxides on human fibroblast cells and mice with the aim of investigating graphene oxides' biocompatibility. The graphene oxides were prepared by the modified Hummers method and characterized by high-resolution transmission electron microscope and atomic force microscopy. The human fibroblast cells were cultured with different doses of graphene oxides for day 1 to day 5. Thirty mice divided into three test groups (low, middle, high dose) and one control group were injected with 0.1, 0.25, and 0.4 mg graphene oxides, respectively, and were raised for 1 day, 7 days, and 30 days, respectively. Results showed that the water-soluble graphene oxides were successfully prepared; graphene oxides with dose less than 20 ?g/mL did not exhibit toxicity to human fibroblast cells, and the dose of more than 50 ?g/mL exhibits obvious cytotoxicity such as decreasing cell adhesion, inducing cell apoptosis, entering into lysosomes, mitochondrion, endoplasm, and cell nucleus. Graphene oxides under low dose (0.1 mg) and middle dose (0.25 mg) did not exhibit obvious toxicity to mice and under high dose (0.4 mg) exhibited chronic toxicity, such as 4/9 mice death and lung granuloma formation, mainly located in lung, liver, spleen, and kidney, almost could not be cleaned by kidney. In conclusion, graphene oxides exhibit dose-dependent toxicity to cells and animals, such as inducing cell apoptosis and lung granuloma formation, and cannot be cleaned by kidney. When graphene oxides are explored for in vivo applications in animal or human body, its biocompatibility must be considered.

  2. Electrospinning of Biocompatible Nanofibers

    NASA Astrophysics Data System (ADS)

    Coughlin, Andrew J.; Queen, Hailey A.; McCullen, Seth D.; Krause, Wendy E.

    2006-03-01

    Artificial scaffolds for growing cells can have a wide range of applications including wound coverings, supports in tissue cultures, drug delivery, and organ and tissue transplantation. Tissue engineering is a promising field which may resolve current problems with transplantation, such as rejection by the immune system and scarcity of donors. One approach to tissue engineering utilizes a biodegradable scaffold onto which cells are seeded and cultured, and ideally develop into functional tissue. The scaffold acts as an artificial extracellular matrix (ECM). Because a typical ECM contains collagen fibers with diameters of 50-500 nm, electrostatic spinning (electrospinning) was used to mimic the size and structure of these fibers. Electrospinning is a novel way of spinning a nonwoven web of fibers on the order of 100 nm, much like the web of collagen in an ECM. We are investigating the ability of several biocompatible polymers (e.g., chitosan and polyvinyl alcohol) to form defect-free nanofiber webs and are studying the influence of the zero shear rate viscosity, molecular weight, entanglement concentration, relaxation time, and solvent on the resulting fiber size and morphology.

  3. Biocompatibility of Dental Amalgams

    PubMed Central

    Uçar, Yurdanur; Brantley, William A.

    2011-01-01

    Objective. The purpose of this review paper is to review the literature regarding the toxicology of mercury from dental amalgam and evaluate current statements on dental amalgam. Materials and Methods. Two key-words “dental amalgam” and “toxicity” were used to search publications on dental amalgam biocompatibility published in peer-reviewed journals written in English. Manual search was also conducted. The most recent declarations and statements were evaluated using information available on the internet. Case reports were excluded from the study. Results. The literature show that mercury released from dental amalgam restorations does not contribute to systemic disease or systemic toxicological effects. No significant effects on the immune system have been demonstrated with the amounts of mercury released from dental amalgam restorations. Only very rarely have there been reported allergic reactions to mercury from amalgam restorations. No evidence supports a relationship between mercury released from dental amalgam and neurological diseases. Almost all of the declarations accessed by the internet stated by official organizations concluded that current data are not sufficient to relate various complaints and mercury release from dental amalgam. Conclusions. Available scientific data do not justify the discontinuation of amalgam use from dental practice or replacement with alternative restorative dental materials. PMID:22145006

  4. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  5. Sculpting with Cement.

    ERIC Educational Resources Information Center

    Olson, Lynn

    1983-01-01

    Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

  6. Method of making biocompatible electrodes

    DOEpatents

    Wollam, John S. (Acton, MA)

    1992-01-01

    A process of improving the sensing function of biocompatible electrodes and the product so made are disclosed. The process is designed to alter the surfaces of the electrodes at their tips to provide increased surface area and therefore decreased contact resistance at the electrode-tissue interface for increased sensitivity and essentially includes rendering the tips atomically clean by exposing them to bombardment by ions of an inert gas, depositing an adhesion layer on the cleaned tips, forming a hillocked layer on the adhesion layer by increasing the temperature of the tips, and applying a biocompatible coating on the hillocked layer. The resultant biocompatible electrode is characterized by improved sensitivity, minimum voltage requirement for organ stimulation and a longer battery life for the device in which it is employed.

  7. Cementing: A systematic approach

    SciTech Connect

    Sauer, C.W.; Landrum, W.R.

    1983-10-01

    A step-by-step approach in the form of a cementing process design chart, has been developed for use in Conoco's operating divisions worldwide. The design chart described in this paper includes cement and additive selection and associated hardware for casing and liner cementing operations. Each type of cementing operation is designed to insure the compatibility of hardware and cement slurry components. The process design chart is separated into two major categories: primary cementing; and liner cementing. These categories are separated further into design criteria for cementing each casing string in a well, conductor pipe through production string and each type of liner that is set. Conoco has realized reduced primary cementing costs, up to $35,000.00 per well in some cases, and fewer remedial cement jobs as a result of using practices included in this process design chart. These cost savings can be attributed to the proper cementing practices from many geographic regions which are consolidated into this easy to use cementing design chart. One example of how cement costs can be reduced is by limiting the amount of expensive synthetic cement additives that have been added to less critical pipe strings. These expensive cement additives have been replaced by less expensive natural cement additives that perform just as well, and have resulted in a reduction in the cost per cubic foot of cement slurry.

  8. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  9. CEMENT RELATED RESEARCH HYDROGEOCHEMISTRY GROUP

    E-print Network

    Politècnica de Catalunya, Universitat

    CEMENT RELATED RESEARCH HYDROGEOCHEMISTRY GROUP Josep M. Soler Jordi Cama Carles Ayora Ana Trapote.soler@idaea.csic.es #12;NOMECLATURE cement + water = hardened cement paste cement + water + sand = mortar cement + waterC) clinker + gypsum portland cement PORTLAND CEMENT #12;GTS-HPF Core Infiltration Experiment Experimental

  10. Liquid-Solid Phase Transition Alloy as Reversible and Rapid Molding Bone Cement

    E-print Network

    Yi, Liting; Liu, Jing

    2013-01-01

    Bone cement has been demonstrated as an essential restorative material in the orthopedic surgery. However current materials often imply unavoidable drawbacks, such as tissue-cement reaction induced thermal injuries and troublesome revision procedure. Here we proposed an injectable alloy cement to address such problems through its liquid-solid phase transition mechanism. The cement is made of a unique alloy BiInSnZn with a specifically designed low melting point 57.5{\\deg}C. This property enables its rapid molding into various shapes with high plasticity. Some fundamental characteristics including mechanical strength behaviors and phase transition-induced thermal features have been measured to demonstrate the competence of alloy as unconventional cement with favorable merits. Further biocompatible tests showed that this material could be safely employed in vivo. In addition, experiments also found the alloy cement capability as an excellent contrast agent for radiation imaging. Particularly, the proposed alloy...

  11. Cement mixing with vibrator

    SciTech Connect

    Allen, T.E.

    1991-07-09

    This patent describes a method of cementing a casing string in a bore hole of a well. It comprises introducing water and dry cement material into a mixing vessel; mixing the water and dry cement material in the mixing vessel to form a cement slurry, the slurry including lumps of the dry cement material, the mixing including steps of: agitating the slurry; and while agitating the slurry, transmitting vibrational energy into the slurry and thereby aiding disintegration and subsequent wetting of the lumps of the dry cement material in the slurry; and pumping the slurry into an annulus between the casing string and the bore hole.

  12. In Vitro and In Vivo Response to Low-Modulus PMMA-Based Bone Cement

    PubMed Central

    Carlsson, Elin; Mestres, Gemma; Treerattrakoon, Kiatnida; López, Alejandro; Karlsson Ott, Marjam; Larsson, Sune; Persson, Cecilia

    2015-01-01

    The high stiffness of acrylic bone cements has been hypothesized to contribute to the increased number of fractures encountered after vertebroplasty, which has led to the development of low-modulus cements. However, there is no data available on the in vivo biocompatibility of any low-modulus cement. In this study, the in vitro cytotoxicity and in vivo biocompatibility of two types of low-modulus acrylic cements, one modified with castor oil and one with linoleic acid, were evaluated using human osteoblast-like cells and a rodent model, respectively. While the in vitro cytotoxicity appeared somewhat affected by the castor oil and linoleic acid additions, no difference could be found in the in vivo response to these cements in comparison to the base, commercially available cement, in terms of histology and flow cytometry analysis of the presence of immune cells. Furthermore, the in vivo radiopacity of the cements appeared unaltered. While these results are promising, the mechanical behavior of these cements in vivo remains to be investigated. PMID:26366415

  13. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-10-31

    The objective of this project is to develop an improved ultra- lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  14. Borehole cementing over water

    SciTech Connect

    Perkins, T.K.

    1984-05-01

    A borehole cementing process is disclosed in which a quantity of water-like fluid is pumped into a borehole above drilling mud and the cement slurry is pumped into the borehole above at least a portion of the water-like fluid. Turbulent mixing of cement slurry and water at the interface creates an isolation zone preventing degradation of the bulk of the cement slug.

  15. [Augmentation with PMMA cement].

    PubMed

    Kühn, K-D; Höntzsch, D

    2015-09-01

    Cements based on polymethyl methacrylate (PMMA) can be used without any problem in a variety of clinical augmentations. Cement-related complications in surgical procedures involving PMMA cements, such as embolism, thermal necrosis, toxicity and hypersensitivity, are often due to other causes. Knowledge about the properties of the cement helps the user to safely employ PMMA cements in augmentations. High radio-opacity is required in vertebral body augmentations and this is provided in particular by zirconium dioxide. In vertebral body augmentations, a low benzoyl peroxide (BPO) content can considerably prolong the liquid dough phase. In augmentations with cement fillings in the region of a tumor, a high BPO content can specifically increase the peak temperature of the PMMA cement. In osteosynthetic augmentations with PMMA, necrosis is rare because heat development in the presence of metallic implants is low due to heat conduction via the implant. Larger cement fillings where there is no heat conduction via metal implants can exhibit substantially higher peak temperatures. The flow properties of PMMA cements are of particular importance for the user to allow optimum handling of PMMA cements. In patients with hypersensitivity to antibiotics, there is no need to avoid the use of PMMA as there are sufficient PMMA-based alternatives. The PMMA cements are local drug delivery systems and antibiotics, antiseptics, antimycotics and also cytostatics can be mixed with the cement. Attention must be paid to antagonistic and synergistic effects. PMID:26315391

  16. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-04-15

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

  17. Principles of squeeze cementing

    SciTech Connect

    Goodwin, K.J.

    1984-03-01

    Squeeze cementing is, by historical definition, the application of differential pressure across a cement slurry to accomplish the process of cement dehydration. The primary purpose of the dehydration is to create immobility of the cement slurry until some compressive strength can be developed. Current cementing technology and additives have improved the process sufficiently that the term ''squeeze'' may no longer be applicable. It is felt that ''Remedial Cement Placement'' may be more appropriate, and may more accurately define the process. The success of a remedial cementing operation depends on a finite definition of the existing problem and the results expected from the operation. If the purpose of the squeeze is not definable, a squeeze job may not be necessary. Significant completion dollars are wasted annually on unnecessary squeezes, poorly designed squeeze slurries, and/or improper slurry placement.

  18. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-04-29

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, and shear bond. Testing to determine the effect of temperature cycling on the shear bond properties of the cement systems was also conducted. In addition, the stress-strain behavior of the cement types was studied. This report discusses a software program that is being developed to help design ULHS cements and foamed cements.

  19. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-10-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that will be performed for analyzing the alkali-silica reactivity of ULHS in cement slurries, as well as the results of Field Tests 1 and 2.

  20. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-07-18

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.

  1. Mineral of the month: cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2006-01-01

    Hydraulic cement is a virtually ubiquitous construction material that, when mixed with water, serves as the binder in concrete and most mortars. Only about 13 percent of concrete by weight is cement (the rest being water and aggregates), but the cement contributes all of the concrete’s compressional strength. The term “hydraulic” refers to the cement’s ability to set and harden underwater through the hydration of the cement’s components.

  2. Fiber-enriched double-setting calcium phosphate bone cement.

    PubMed

    dos Santos, Luís Alberto; Carrodéguas, Raúl Garcia; Boschi, Anselmo Ortega; Fonseca de Arruda, Antônio Celso

    2003-05-01

    Calcium phosphate bone cements are useful in orthopedics and traumatology, their main advantages being their biocompatibility and bioactivity, which render bone tissue osteoconductive, providing in situ hardening and easy handling. However, their low mechanical strength, which, in the best of cases, is equal to the trabecular bone, and their very low toughness are disadvantages. Calcium phosphate cement compositions with mechanical properties more closely resembling those of human bone would broaden the range of applications, which is currently limited to sites subjected to low loads. This study investigated the influence of added polypropylene, nylon, and carbon fibers on the mechanical properties of double setting alpha-tricalcium phosphate-based cement, using calcium phosphate cement added to an in situ polymerizable acrylamide-based system recently developed by the authors. Although the addition of fibers was found to reduce the compression strength of the double-setting calcium phosphate cement because of increased porosity, it strongly increased the cement's toughness (J(IC)) and tensile strength. The composites developed in this work, therefore, have a potential application in shapes subjected to flexure. PMID:12734819

  3. Nanostructure of biocompatible titania/hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Rodionov, Igor V.; Steinhauer, Aleksey B.; Fomina, Marina A.; Petrova, Natalia V.; Zakharevich, Andrey M.; Skaptsov, Aleksandr A.; Gribov, Andrey N.; Atkin, Vsevolod S.

    2014-01-01

    The article describes prospective composite biocompatible titania coatings modified with hydroxyapatite nanoparticles and obtained on intraosseous implants fabricated from commercially pure titanium VT1-00. Consistency changes of morphological characteristics, crystalline structure, physical and mechanical properties and biocompatibility of experimental titanium implant coatings obtained by the combination of oxidation and surface modification with hydroxyapatite during induction heat treatment are defined.

  4. Mechanical and fracture behavior of calcium phosphate cements

    NASA Astrophysics Data System (ADS)

    Jew, Victoria Chou

    Apatite-based calcium phosphate cements are currently employed to a limited extent in the biomedical and dental fields. They present significant potential for a much broader range of applications, particularly as a bone mineral substitute for fracture fixation. Specifically, hydroxyapatite (HA) is known for its biocompatibility and non-immunogenicity, attributed to its similarity to the mineral phase of natural bone. The advantages of a cement-based HA include injectability, greater resorbability and osteoconductivity compared to sintered HA, and an isothermal cement-forming reaction that avoids necrosis during cement setting. Although apatite cements demonstrate good compressive strength, tensile properties are very weak compared to natural bone. Applications involving normal weight-bearing require better structural integrity than apatite cements currently provide. A more thorough understanding of fracture behavior can elucidate failure mechanisms and is essential for the design of targeted strengthening methods. This study investigated a hydroxyapatite cement using a fracture mechanics approach, focusing on subcritical crack growth properties. Subcritical crack growth can lead to much lower load-bearing ability than critical strength values predict. Experiments show that HA cement is susceptible to crack growth under both cyclic fatigue-crack growth and stress corrosion cracking conditions, but only environmental, not mechanical, mechanisms contribute to crack extension. This appears to be the first evidence ever presented of stress corrosion crack growth behavior in calcium phosphate cements. Stress corrosion cracking was examined for a range of environmental conditions. Variations in pH have surprisingly little effect. Behavior in water at elevated temperature (50°C) is altered compared to water at ambient temperature (22°C), but only for crack-growth velocities below 10-7 m/s. However, fracture resistance of dried HA cement in air increases significantly compared to in water. Based on observed trends, mechanisms of stress corrosion cracking are considered. Strengthening methods using proteins as second phase additions to HA cement were also investigated. Critical flexure strength of these composites increases to a limited extent, primarily due to bridging of the fracture surfaces by organic phases. Despite the increase for critical values, stress corrosion crack growth of cement-albumin composites remains similar to unreinforced cement. This discrepancy between critical and subcritical behavior is discussed.

  5. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-01-15

    The objective of this project is to develop an improved ultra-lightweigh cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems, Task 2: Review Russian Ultra-Lightweight Cement Literature, and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary surface pipe and intermediate casing cementing conditions historically encountered in the US and establishment of average design conditions for ULHS cements. Russian literature concerning development and use of ultra-lightweight cements employing either nitrogen or ULHS was reviewed, and a summary is presented. Quality control testing of materials used to formulate ULHS cements in the laboratory was conducted to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS. This protocol is presented and discussed. finally, results of initial testing of ULHS cements is presented along with analysis to establish cement performance design criteria to be used during the remainder of the project.

  6. Horizontal wells pose cementing challenges

    SciTech Connect

    1996-07-01

    Successful cementing of horizontal wells depends on many factors such as drilling fluid properties, casing centralization, displacement mechanics, cement-mud spacer design and cement slurry properties. Finally, proper evaluation is essential to determine the success or failure of a horizontal casing cement job. The paper discusses displacement mechanics of the drilling fluid and cuttings and cement rheology.

  7. Polycrystalline Silicon: a Biocompatibility Assay

    NASA Astrophysics Data System (ADS)

    Pecheva, E.; Laquerriere, P.; Bouthors, Sylvie; Fingarova, D.; Pramatarova, L.; Hikov, T.; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-01

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  8. Polycrystalline Silicon: a Biocompatibility Assay

    SciTech Connect

    Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T.; Laquerriere, P.; Bouthors, Sylvie; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-21

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  9. Improvement of casing cementation of deep and ultradeep wells. Part 2: Oilfield cements and cement additives

    NASA Astrophysics Data System (ADS)

    Arens, K. H.; Akstinat, M.

    1982-07-01

    Oilfield cements and cement additives were investigated in order to improve the casing cementation of deep and ultradeep wells. Characterization and evaluation of the main oil field cements commercially available were studied. The testing was carried out according to American Petroleum Institute API standards and nonstandardized test methods (dynamic modulus of elasticity, expansion/shrinkage), especially the rheology, thickening time and the influence of pressure, temperature and water-cement ratio, were considered. The main emphasis in the field of cement additives was on the evaluation of cement retarders for high temperatures, accelerators, and additives for cement expansion. Furthermore oil field cements were tested, and their properties are described.

  10. A Novel Injectable Borate Bioactive Glass Cement as an Antibiotic Delivery Vehicle for Treating Osteomyelitis

    PubMed Central

    Cui, Xu; Gu, Yi-Fei; Jia, Wei-Tao; Rahaman, Mohamed N.; Wang, Yang; Huang, Wen-Hai; Zhang, Chang-Qing

    2014-01-01

    Background A novel injectable cement composed of chitosan-bonded borate bioactive glass (BG) particles was evaluated as a carrier for local delivery of vancomycin in the treatment of osteomyelitis in a rabbit tibial model. Materials and Methods The setting time, injectability, and compressive strength of the borate BG cement, and the release profile of vancomycin from the cement were measured in vitro. The capacity of the vancomycin-loaded BG cement to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in rabbit tibiae in vivo was evaluated and compared with that for a vancomycin-loaded calcium sulfate (CS) cement and for intravenous injection of vancomycin. Results The BG cement had an injectability of >90% during the first 3 minutes after mixing, hardened within 30 minutes and, after hardening, had a compressive strength of 18±2 MPa. Vancomycin was released from the BG cement into phosphate-buffered saline for up to 36 days, and the cumulative amount of vancomycin released was 86% of the amount initially loaded into the cement. In comparison, vancomycin was released from the CS cement for up 28 days and the cumulative amount released was 89%. Two months post-surgery, radiography and microbiological tests showed that the BG and CS cements had a better ability to eradicate osteomyelitis when compared to intravenous injection of vancomycin, but there was no significant difference between the BG and CS cements in eradicating the infection. Histological examination showed that the BG cement was biocompatible and had a good capacity for regenerating bone in the tibial defects. Conclusions These results indicate that borate BG cement is a promising material both as an injectable carrier for vancomycin in the eradication of osteomyelitis and as an osteoconductive matrix to regenerate bone after the infection is cured. PMID:24427311

  11. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  12. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ...No. 731-TA-461 (Third Review)] Gray Portland Cement and Cement Clinker From...revocation of the antidumping duty order on gray Portland cement and cement clinker from...Publication 4281 (December 2011), entitled Gray Portland Cement and Cement Clinker...

  13. Event cementation in sandstones

    SciTech Connect

    Robinson, A. ); Gluyas, J. )

    1991-08-01

    Precipitation of quartz overgrowths on sand grains is a common cause of porosity reduction in sandstones. The amount of quartz overgrowths (cement) often increases with depth so that the process of cementation is generally considered to be a direct response to burial and to proceed throughout the burial history of a sandstone. The authors show that some Mesozoic and Cenozoic sandstones are cemented during events 1-10 m.y. in length, periods one to two orders of magnitude less than their burial histories. Burial alone is unlikely to be the cause of quartz cementation. This new knowledge should markedly change our perception of porosity evolution in sandstones.

  14. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2004-01-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  15. Matrix control cementing slurry

    SciTech Connect

    Arpenter, R.B.

    1986-02-11

    This patent describes a method of cementing a well bore. The method consists of 1.) mixing together at ambient temperatures at the well surface a hydraulic cement, water, in an effective amount to produce a pumpable slurry, and a polyvinyl acetate-polyvinyl alcohol polymer, which is insoluble in the slurry at ambient temperatures. The polymer has a greater than about 95 percent acetate groups converted to hydroxyl groups. The polymer is heated to actuable solubilization in the cement slurry at temperatures above about 120/sup 0/F. The solubilizing of the polyvinyl acetate-polyvinyl alcohol polymer in the slurry prior to the setting of the slurry by pumping the cement slurry to a desired location in the well bore. This action increases the temperature of the slurry; and 2.) allows the cement slurry to harden to a solid mass.

  16. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  17. Cement-based electronics

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory A.

    2004-03-01

    The term Intelligent Highway is usually intended to mean external systems that are added to pre-existing highways. However, the ability to construct basic passive electronic elements is demonstrated employing electrically dissimilar Portland cement pastes. These electronic elements include resistors, rectifying pn-junctions, piezoelectric and piezoresistive sensors, and thermocouple junctions. It may therefore be possible to build intelligence into the highway itself utilizing cement-based electronic devices. As compared to semiconductor-based electronic components, those derived from cement have minimal materials and processing costs, do not require clean rooms, and are mechanically more rugged. Results and characterizations are presented for resistive elements and rectifying pn-junctions derived from admixtures of stainless steel fiber (n-type) and carbon fiber (p-type) in Portland cement. These elements are then combined to produce a monolithic cement-based digital logic 2-input AND gate.

  18. Biocompatibility of crystalline opal nanoparticles

    PubMed Central

    2012-01-01

    Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2?-deoxyuridine (BrdU). Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells. PMID:23088559

  19. Ossiculoplasty with hydroxyapatite bone cement: our reconstruction philosophy.

    PubMed

    Gérard, Jean-Marc; De Bie, Gersende; Franceschi, Daniel; Deggouj, Naima; Gersdorff, Michel

    2015-07-01

    The main objective of this study is to analyze results obtained with hydroxyapatite bone cement (HABC) ossiculoplasties. This is a retrospective study of a case series. This study was conducted in an academic hospital and tertiary referral center. A total of 127 ossiculoplasties using HABC were evaluated. Ears were divided into three groups according to procedure: group 1 involved reinforcement of the incudostapedial joint with cement and reconstruction of an incus long process defect with cement. Group 2 involved partial ossicular reconstruction between the stapes and malleus handle with HABC. Group 3 was divided into two subgroups. Group 3B entailed reconstruction of the stapes with a mobile footplate (Austin-Kartush type B = group 3B) and group 3F with a fixed footplate (Austin-Kartush type F = group 3F) using a K-Helix piston (Grace Medical, Memphis, TN, USA) or a classical titanium piston (Kurz, Fuerth, Germany) glued to the incus remnant or malleus handle with cement. Anatomical and pre- and postoperative audiological results were assessed. The mean follow-up was 26 ± 14 months. Percentages of average postoperative air-bone gap ? 20 dB were 95, 82.5, 50 and 83.3%, and for air-bone gap ? 1 0 dB, 80, 50.9, 16.6 and 50% for groups 1, 2, 3B and 3F, respectively. No complications related to the cement or extrusion occurred. Hearing outcomes also remained stable over time. In our experience, ossiculoplasty with cement provides good and stable functional results, is safe, cost effective, and easy to use. HABC with or without biocompatible ossicular prostheses allows repair of different types of ossicular defects with preservation of the anatomical and physiological ossicular chain, as well as improved stability. Reconstruction of the incus long process or incudostapedial joint defect with cement is preferred over partial ossicular reconstruction. PMID:24615652

  20. Liquid-solid phase transition alloy as reversible and rapid molding bone cement.

    PubMed

    Yi, Liting; Jin, Chao; Wang, Lei; Liu, Jing

    2014-12-01

    Acrylic bone cement has been an essential non-metallic implant used as fixing agent in the cemented total joint arthroplasty (THA). However, the currently available materials based mainly on polymethylmethacrylate (PMMA) still encounter certain limitations, such as time-consuming polymerization, thermal and chemical necrosis and troublesome revision procedure. Here from an alternative way, we proposed for the first time to adopt the injectable alloy cement to address such tough issues through introducing its unique liquid-solid phase transition mechanism. A typical cement along this way is thus made of an alloy Bi/In/Sn/Zn with a specifically designed low melting point 57.5 °C, which enables its rapid molding into various desired shapes with high plasticity and ultimate metallic behaviors. The fundamental characteristics including the mechanical strength, biocompatibility and phase transition-induced thermal effects have been clarified to demonstrate the importance of such alloy as unconventional cement with favorable merits. In addition, we also disclosed its advantage as an excellent contrast agent for radiation imaging on the bone interior structure which is highly beneficial for guiding the surgery and monitoring the therapeutic effects. Particularly, the proposed alloy cement with reversible phase transition feature significantly simplifies the revision of the cement and prosthesis. This study opens the way for employing the injectable alloy materials as reversible bone cement to fulfill diverse clinical needs in the coming time. PMID:25239039

  1. Performance Cements Focus on Sustainability

    E-print Network

    allowed in the US ASTM C 150 in 2004 AASHTO M 85 in 2007 Negligible effects Some slight performance) Inc. Concrete data ­ ASTM vs. CSA cements, 3 days #12;7 High Limestone Cements 5/21/08 Cost Holcim (US) Inc. Concrete data ­ ASTM vs. CSA cements, 7 days #12;8 High Limestone Cements 5/21/08 Cost Holcim (US

  2. Premixed macroporous calcium phosphate cement scaffold

    PubMed Central

    Carey, Lisa E.; Simon, Carl G.

    2009-01-01

    Calcium phosphate cement (CPC) sets in situ to form resorbable hydroxyapatite and is promising for orthopaedic applications. However, it requires on-site powder-liquid mixing during surgery, which prolongs surgical time and raises concerns of inhomogeneous mixing. The objective of this study was to develop a premixed CPC scaffold with macropores suitable for tissue ingrowth. To avoid the on-site powder-liquid mixing, the CPC paste was mixed in advance and did not set in storage; it set only after placement in a physiological solution. Using 30% and 40% mass fractions of mannitol porogen, the premixed CPC scaffold with fibers had flexural strength (mean ± sd; n = 5) of (3.9 ± 1.4) MPa and (1.8 ± 0.8) MPa, respectively. The scaffold porosity reached (68.6 ± 0.7)% and (74.7 ± 1.2)%, respectively. Osteoblast cells colonized in the surface macropores of the scaffold and attached to the hydroxyapatite crystals. Cell viability values for the premixed CPC scaffold was not significantly different from that of a conventional non-premixed CPC known to be biocompatible (P > 0.1). In conclusion, using fast-dissolving porogen and slow-dissolving fibers, a premixed macroporous CPC scaffold was developed with strength approaching the reported strengths of sintered porous hydroxyapatite implants and cancellous bone, and non-cytotoxicity similar to a biocompatible non-premixed CPC. PMID:17277972

  3. Synthetic cornea: biocompatibility and optics

    NASA Astrophysics Data System (ADS)

    Parel, Jean-Marie A.; Kaminski, Stefan; Fernandez, Viviana; Alfonso, E.; Lamar, Peggy; Lacombe, Emmanuel; Duchesne, Bernard; Dubovy, Sander; Manns, Fabrice; Rol, Pascal O.

    2002-06-01

    Purpose. Experimentally find a method to provide a safe surgical technique and an inexpensive and long lasting mesoplant for the restoration of vision in patients with bilateral corneal blindness due to ocular surface and stromal diseases. Methods. Identify the least invasive and the safest surgical technique for synthetic cornea implantation. Identify the most compatible biomaterials and the optimal shape a synthetic cornea must have to last a long time when implanted in vivo. Results. Penetrating procedures were deemed too invasive, time consuming, difficult and prone to long term complications. Therefore a non-penetrating delamination technique with central trephination was developed to preserve the integrity of Descemet's membrane and the anterior segment. Even though this approach limits the number of indications, it is acceptable since the majority of patients only have opacities in the stroma. The prosthesis was designed to fit in the removed tissue plane with its skirt fitted under the delaminated stroma. To improve retention, the trephination wall was made conical with the smallest opening on the anterior surface and a hat-shaped mesoplant was made to fit. The skirt was perforated in its perimeter to allow passage of nutrients and tissues ingrowths. To simplify the fabrication procedure, the haptic and optic were made of the same polymer. The intrastromal biocompatibility of several hydrogels was found superior to current clinically used PMMA and PTFE materials. Monobloc mesoplants made of 4 different materials were implanted in rabbits and followed weekly until extrusion occurred. Some remained optically clear allowing for fundus photography. Conclusions. Hydrogel synthetic corneas can be made to survive for periods longer than 1 year. ArF excimer laser photoablation studies are needed to determine the refractive correction potential of these mesoplants. A pilot FDA clinical trial is needed to assess the mesoplant efficacy and very long-term stability.

  4. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-07-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the eleventh quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. This report provides a progress summary of ASR testing. The original laboratory procedure for measuring set cement expansion resulted in unacceptable erosion of the test specimens. In subsequent tests, a different expansion procedure was implemented and an alternate curing method for cements formulated with TXI Lightweight cement was employed to prevent sample failure caused by thermal shock. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but data for some compositions were still questionable. Additional modification of test procedures for compositions containing TXI Lightweight cement were implemented and testing is ongoing.

  5. Preparation of acrylic bone cements for vertebroplasty with bismuth salicylate as radiopaque agent.

    PubMed

    Hernández, Lidia; Fernández, Mar; Collía, Francisco; Gurruchaga, Mariló; Goñi, Isabel

    2006-01-01

    One of the problems of percutaneous vertebroplasty attributed to the use of acrylic cements is related to the radiopacity of the formulation. The use of bismuth salicylate as the radiopaque agent is proposed in this work, taking into account the high radiopacity of organobismuth compounds used in dental applications and the possible analgesic effect of salicylic acid. Various cements formulated with this compound (some of them modified with polyethylene oxide) were examined. Setting parameters, mechanical properties, rheological behaviour, injectability, radiopacity and biocompatibility were studied for a variety of formulations, showing that the cement formulations containing bismuth salicylate have a higher radiopacity and better injection properties than commercial bone cement preparations and present good mechanical properties. PMID:16009418

  6. In Vitro and in Vivo Characteristics of Fluorapatite-Forming Calcium Phosphate Cements

    PubMed Central

    Takagi, Shozo; Frukhtbeyn, Stan; Chow, Laurence C.; Sugawara, Akiyoshi; Fujikawa, Kenji; Ogata, Hidehiro; Hayashi, Makoto; Ogiso, Binnai

    2010-01-01

    This study reports for the first time in vitro and in vivo properties of fluorapatite (FA)-forming calcium phosphate cements (CPCs). The experimental cements contained from (0 to 3.1) mass % of F, corresponding to presence of FA at levels of approximately (0 to 87) mass %. The crystallinity of the apatitic cement product increased greatly with the FA content. When implanted subcutaneously in rats, the in vivo resorption rate decreased significantly with increasing FA content. The cement with the highest FA content was not resorbed in soft tissue, making it the first known biocompatible and bioinert CPC. These bioinert CPCs might be useful for applications where slow or no resorption of the implant is required to achieve the desired clinical outcome. PMID:21479080

  7. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  8. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  9. Environmentally compatible spray cement

    SciTech Connect

    Loeschnig, P.

    1995-12-31

    Within the framework of a European research project, Heidelberger Zement developed a quickly setting and hardening binder for shotcrete, called Chronolith S, which avoids the application of setting accelerators. Density and strength of the shotcrete produced with this spray cement correspond to those of an unaccelerated shotcrete. An increased hazard for the heading team and for the environment, which may occur when applying setting accelerators, can be excluded here. Owing to the special setting properties of a spray cement, the process engineering for its manufacturing is of great importance. The treatment of a spray cement as a dry concrete with kiln-dried aggregates is possible without any problems. The use of a naturally damp pre-batched mixture is possible with Chronolith S but requires special process engineering; spray cement and damp aggregate are mixed with one another immediately before entering the spraying machinery.

  10. Nanomaterials: the next step in injectable bone cements.

    PubMed

    No, Young Jung; Roohani-Esfahani, Seyed-Iman; Zreiqat, Hala

    2014-08-01

    Injectable bone cements (IBCs) are biocompatible materials that can be used as bone defect fillers in maxillofacial surgeries and in orthopedic fracture treatment in order to augment weakened bone due to osteoporosis. Current clinically available IBCs, such as polymethylmethacrylate and calcium phosphate cement, have certain advantages; however, they possess several drawbacks that prevent them from gaining universal acceptance. New gel-based injectable materials have also been developed, but these are too mechanically weak for load-bearing applications. Recent research has focused on improving various injectable materials using nanomaterials in order to render them suitable for bone tissue regeneration. This article outlines the requirements of IBCs, the advantages and limitations of currently available IBCs and the state-of-the-art developments that have demonstrated the effects of nanomaterials within injectable systems. PMID:25321173

  11. Method for cementing a well

    SciTech Connect

    Allen, T.E.

    1992-04-14

    This patent describes a method of performing a cement job on a well so that a cement slurry is made and placed in the well, it comprises: flowing cement and water through a mixer into a tub to provide a first body of cement slurry; flowing a portion of the first body of cement slurry into a displacement tank to provide a second body of cement slurry; flowing the second body of cement slurry from the displacement tank into the well; flowing displacement fluid into the displacement tank; and flowing displacement fluid from the displacement tank into the well behind the cement slurry to place the cement slurry at a desired location in the well.

  12. Titaniumcarboxonitride layer increased biocompatibility of medical polyetherurethanes.

    PubMed

    Riescher, Sebastian; Wehner, Daniel; Schmid, Thomas; Zimmermann, Hanngoerg; Hartmann, Björn; Schmid, Christof; Lehle, Karla

    2014-01-01

    Polyetherurethane (PEU) is in use for blood-contacted devices because of its excellent mechanical properties. However, poor hemocompatibility of the hydrophobic material required surface modification or endothelialization. To increase the biocompatibility of PEU, the polymer was coated with a titaniumcarboxonitride [Ti(C,N,O)] layer by a plasma-activated chemical vapor deposition (PACVD) process. Biocompatibility of titaniferously coated PEU was verified using static and dynamic cell culture techniques. Titaniferous coating significantly improved proliferation and mitochondrial activity of human endothelial cells on PEU. These cells captured significantly less mononuclear cells and platelets. Under shear stress for up to 72 hours, titaniferous coating increased endothelial cell adhesion, spreading, and cell density to form an organized monolayer covering the whole luminal surface of vascular PEU grafts. In summary, coating of PEU surfaces with Ti(C,N,O) might be a promising strategy to improve the biocompatibility of biomedical biomaterials. PMID:23853113

  13. Biocompatible composites of ultrahigh molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Suan, T. Nguen; Ivanova, L. P.; Korchagin, M. A.; Chaikina, M. V.; Shilko, S. V.; Pleskachevskiy, Yu. M.

    2015-10-01

    Mechanical and tribotechnical characteristics of biocompatible, antifriction and extrudable composites based on ultrahigh molecular weight polyethylene (UHMWPE) as well as hybrid matrix "UHMWPE + PTFE" with biocompatible hydroxyapatite filler under the dry friction and boundary lubrication were investigated. A comparative analysis of effectiveness of adding the hydroxyapatite to improve the wear resistance of composites based on these two matrices was performed. It is shown that the wear intensity of nanocomposites based on the hybrid matrix is lower than that for the composites based on pure UHMWPE. Possibilities of using the composites of the polymer "UHMWPE-PTFE" mixture as a material for artificial joints implants are discussed.

  14. Highly piezoelectric biocompatible and soft composite fibers

    NASA Astrophysics Data System (ADS)

    Morvan, J.; Buyuktanir, E.; West, J. L.; Jákli, A.

    2012-02-01

    We report the fabrication of highly piezoelectric biocompatible soft fibers containing barium titanate ferroelectric ceramic particles dispersed in electrospun poly lactic acid (PLA). These fibers form mats that have two orders of magnitude larger piezoelectric constant per weight than single crystal barium titanate films. We propose that the observed apparent piezoelectricity results from the electrospinning induced polar alignment of the ferroelectric particles that pole the fibers similar to ferroelectret polymer foams that are poled by corona discharge. Due to the biocompatibility of PLA that encases the ferroelectric particles, these mats can be used in biological applications such as bio-sensors, artificial muscles, and energy harvesting devices.

  15. Biocompatible silk step-index optical waveguides

    PubMed Central

    Applegate, Matthew B.; Perotto, Giovanni; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  16. Adhesion of biocompatible and biodegradable micropatterned surfaces.

    PubMed

    Kaiser, Jessica S; Kamperman, Marleen; de Souza, Emerson J; Schick, Bernhard; Arzt, Eduard

    2011-02-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PLGA) polymer systems. Micropatterned and non-patterned compliant PDMS did not show significant differences in adhesion on compliant mice ear skin or on gelatin-glycerin model substrates. However, adhesion measurements for micropatterned stiff PLGA on compliant gelatin-glycerin model substrates showed significant enhancement in pull-off strengths compared to non-patterned controls. PMID:21374557

  17. Polymeric-Calcium Phosphate Cement Composites-Material Properties: In Vitro and In Vivo Investigations

    PubMed Central

    Khashaba, Rania M.; Moussa, Mervet M.; Mettenburg, Donald J.; Rueggeberg, Frederick A.; Chutkan, Norman B.; Borke, James L.

    2010-01-01

    New polymeric calcium phosphate cement composites (CPCs) were developed. Cement powder consisting of 60?wt% tetracalcium phosphate, 30?wt% dicalcium phosphate dihydrate, and 10?wt% tricalcium phosphate was combined with either 35%?w/w poly methyl vinyl ether maleic acid or polyacrylic acid to obtain CPC-1 and CPC-2. The setting time and compressive and diametral tensile strength of the CPCs were evaluated and compared with that of a commercial hydroxyapatite cement. In vitro cytotoxicity and in vivo biocompatibility of the two CPCs and hydroxyapatite cement were assessed. The setting time of the cements was 5–15?min. CPC-1 and CPC-2 showed significantly higher compressive and diametral strength values compared to hydroxyapatite cement. CPC-1 and CPC-2 were equivalent to Teflon controls after 1 week. CPC-1, CPC-2, and hydroxyapatite cement elicited a moderate to intense inflammatory reaction at 7 days which decreased over time. CPC-1 and CPC-2 show promise for orthopedic applications. PMID:20811498

  18. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-06-16

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the tenth quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. The original laboratory procedure for measuring set cement expansion resulted in test specimen erosion that was unacceptable. A different expansion procedure is being evaluated. This report provides a progress summary of ASR testing. The testing program initiated in November produced questionable initial results so the procedure was modified slightly and the testing was reinitiated. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but questionable data were obtained from several of the compositions. Additional modification of test procedures for compositions containing TXI Lightweight cement are being implemented and testing is ongoing.

  19. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  20. Set retarded cement compositions and well cementing methods

    SciTech Connect

    Childs, J.D.; Sabins, F.L.

    1986-04-15

    This patent describes a method of cementing a subterranean zone penetrated by a well bore comprising: providing a set retarded aqueous hydraulic cement slurry; admixing with the cement slurry to enhance the compressive strength development thereof after placement, an effective amount of a delayed retarder neutralizer selected from the group consisting of: a triethanolamine titanium chelate.

  1. Preparation of small bio-compatible microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1979-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such a hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  2. System for radioactive waste cementation

    SciTech Connect

    Dmitriev, S.A.; Barinov, A.S.; Varlakov, A.P.; Volkov, A.S.; Karlin, S.V.

    1995-12-31

    NPP, research reactors and radiochemical enterprises produce a great amount of liquid radioactive waste (LRW). One of the methods of LRW solidification is cementation. The recent investigations demonstrated possible inclusion of sufficient amount of waste in the cement matrix (up to 20--30 mass% on dry residue). In this case the cementation process becomes competitive with bituminization process, where the matrix can include 40--50 mass% and the solidified product volume is equal to the volume, obtained by cementation. Additionally, the cement matrix in contrast with the bituminous one is unburnable. Many countries are investigating the cementation process. The main idea governing technological process is the waste and cement mixing method and type of mixer. In world practice some principal types of cementation systems are used. The paper describes the SIA Radon industrial plant in Moscow.

  3. In Vivo Disintegration of Four Different Luting Agents

    PubMed Central

    Gemalmaz, Deniz; Pameijer, Cornelis H.; Latta, Mark; Kuybulu, Ferah; Alcan, Toros

    2012-01-01

    The purpose of this study was to evaluate the disintegration of luting agents. An intraoral sample holder was made having four holes of 1.4?mm diameter and 2?mm depth. The holder was soldered onto the buccal surface of an orthodontic band, which was cemented to the first upper molar in 12 patients, average age 26 years. The holes were filled with a zinc phosphate (Phosphate Kulzer), a glass ionomer (Ketac Cem), a resin-modified-glass ionomer (Fuji Plus), and a resin cement (Calibra). Impressions were made at baseline, and 6, 12, and 18 months from which epoxy replicas were made, which were scanned with an optical scanner. Total volume loss was calculated. The rank order of mean volume loss was as follows: Phosphate cement > Ketac Cem = Fuji Plus = Calibra. Cement type and time had statistically significant effects on volume loss of cements (P < 0.001). Under in vivo conditions, zinc phosphate cement disintegrated the most, whereas no significant difference was observed for glass ionomer and resin-based cements. As intraoral conditions are considerably less aggressive than experimental laboratory conditions, the erosion behavior of glass ionomer cement was found to be similar to the resin-based cements in contradiction to previous laboratory results. PMID:22007219

  4. Small-particle-size cement

    SciTech Connect

    Ewert, D.P.; Almond, S.W.; Blerhaus, W.M. II )

    1991-05-01

    Successful remedial cementing has historically been difficult in wells with large-interval, multizone, gravel-packed completions. The reason is the inability of conventional oilfield cements to penetrate gravel packs adequately. Small-particle-size cement (SPSC) was developed to penetrate gravel packs and to provide the zonal isolation required. This paper details the laboratory work, job design, and field implementation of this new cement.

  5. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  6. Communication Cement-based thermocouples

    E-print Network

    Chung, Deborah D.L.

    Communication Cement-based thermocouples Sihai Wen, D.D.L. Chung* Composite Materials Research Received 31 May 2000; accepted 4 August 2000 Abstract A cement-based thermocouple in the form of a junction between dissimilar cement pastes and exhibiting thermocouple sensitivity 70 7 mV/°C is provided

  7. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  8. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  9. Cement Mason's Curriculum. Instructional Units.

    ERIC Educational Resources Information Center

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  10. Primary cementing improvement by casing vibration during cement curing time

    SciTech Connect

    Cooke, C.E. Jr.; Gonzalez, O.J.; Broussard, D.J.

    1988-08-01

    Vibration of casing to improve primary cementing was investigated in the laboratory and in a 200-ft (60-m) deep test well. The effect of vibration is to decrease or to eliminate gel strength of the cement slurry as it is curing. The slurry then flows downward to compensate for shrinkage and re-establishes the hydrostatic head of the cement. This method can prevent pore-fluid entry into the annulus before the cement cures and can increase the radial stress at the interface between the formation and the cured cement.

  11. Set retarded cement compositions and methods for well cementing

    SciTech Connect

    Brothers, L.E.; Lindsey, D.W.; Terry, D.T.

    1990-07-17

    This patent describes a method of cementing a zone in a subterranean formation penetrated by a wellbore; It comprises: forming a pumpable set retarded cement slurry comprising hydraulic cement, fresh water, particulate silica having a particle size in the range of from about 0.02 to about 0.5 micron and a set retarder comprising a copolymer consisting essentially of 2-acrylamido, 2-methylpropane sulfonic acid (AMPS) and acrylic acid having an average molecular weight below about 5000 and comprising from about 40 to about 60 mole percent AMPS; pumping the cement slurry into the zone by way of the wellbore, and allowing the cement slurry to set therein.

  12. Neutron powder diffraction studies of Portland cement and cement compounds

    SciTech Connect

    Berliner, R.; Ball, C.; West, P.B.

    1995-12-31

    Neutron powder diffraction data from phase-pure cement compounds has been used to develop structural models suitable for profile refinement of cements. These models were then applied to the determination of cement compound phase abundance in clinkers. This paper reports on the results of clinker phase analysis by powder neutron diffraction and summarizes the results of the refinements of neutron diffraction data from phase-pure cement compounds. The profile refinements provide generally good agreement with cement compound phase abundance measurements of NIST reference clinker specimens by chemical, optical and X-ray methods.

  13. Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer/calcium sulfate hemihydrate for bone repair

    PubMed Central

    Qi, Xiaotong; Li, Hong; Qiao, Bo; Li, Weichao; Hao, Xinyan; Wu, Jun; Su, Bao; Jiang, Dianming

    2013-01-01

    A novel injectable bone cement was developed by integration of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer (n-CDHA/MAC) and calcium sulfate hemihydrate (CSH; CaSO4 · 1/2H2O). The structure, setting time, and compressive strength of the cement were investigated. The results showed that the cement with a liquid to powder ratio of 0.8 mL/g exhibited good injectability and appropriate setting time and mechanical properties. In vitro cell studies indicated that MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite spread well and showed a good proliferation state. The alkaline phosphatase activity of the MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite was significantly higher than that of the cells on pure CSH at 4 and 7 days of culture. The n-CDHA/MAC/CSH cement was implanted into critical size defects of the femoral condyle in rabbits to evaluate its biocompatibility and osteogenesis in vivo. Radiological and histological results indicated that introduction of the n-CDHA/MAC into CSH enhanced new bone formation, and the n-CDHA/MAC/CSH cement exhibited good biocompatibility and degradability. In conclusion, the injectable n-CDHA/MAC/CSH composite cement has a significant clinical advantage over pure CSH cement, and may be a promising bone graft substitute for the treatment of bone defects. PMID:24293996

  14. Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement.

    PubMed

    Kotha, S P; Li, C; McGinn, P; Schmid, S R; Mason, J J

    2006-12-01

    Acrylic bone cements are widely used in total joint arthroplasties to grout the prosthesis to bone. The changes in the tensile properties and fracture toughness of polymethylmethacrylate (PMMA) bone cements obtained by the addition of control and heat treated short titanium fibers are studied. Heat treatment of titanium fibers is conducted to precipitate titania particles on the fiber surface to improve the biocompatibility of the metal. Control and heat treated short titanium fibers (250 micro long and 20 micro diameter) were used as reinforcements at 3 volume %. X-ray diffraction indicated the presence of a rutile form of titania due to the heat treatments. The tensile and fracture properties were improved by the addition of fibers. Bone cements reinforced with titanium fibers heated at 550 degrees C for 1 h followed by 800 degrees C for 30 minutes show the largest increase in fracture toughness along with the smallest changes in elastic modulus and needs to be further investigated. PMID:17143773

  15. Electroactive biocompatible materials for nerve cell stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Liang, Youlong; Gui, Qingyuan; Chen, Jun; Liu, Yong

    2015-04-01

    In the past decades, great efforts have been developed for neurobiologists and neurologists to restore nervous system functions. Recently much attention has been paid to electrical stimulation (ES) of the nervous system as a potential way to repair it. Various conductive biocompatible materials with good electrical conductivity, biocompatibility, and long-term ES or electrical stability have been developed as the substrates for ES. In this review, we summarized different types of materials developed in the purpose for ES of nervous system, including conducting polymers, carbon nanomaterials and composites from conducting polymer/carbon nanomaterials. The present review will give our perspective on the future research directions for further investigation on development of ES particularly on the nerve system.

  16. Biocompatible Peritoneal Dialysis Fluids: Clinical Outcomes

    PubMed Central

    Cho, Yeoungjee; Badve, Sunil V.; Hawley, Carmel M.; Wiggins, Kathryn; Johnson, David W.

    2012-01-01

    Peritoneal dialysis (PD) is a preferred home dialysis modality and has a number of added advantages including improved initial patient survival and cost effectiveness over haemodialysis. Despite these benefits, uptake of PD remains relatively low, especially in developed countries. Wider implementation of PD is compromised by higher technique failure from infections (e.g., PD peritonitis) and ultrafiltration failure. These are inevitable consequences of peritoneal injury, which is thought to result primarily from continuous exposure to PD fluids that are characterised by their “unphysiologic” composition. In order to overcome these barriers, a number of more biocompatible PD fluids, with neutral pH, low glucose degradation product content, and bicarbonate buffer have been manufactured over the past two decades. Several preclinical studies have demonstrated their benefit in terms of improvement in host cell defence, peritoneal membrane integrity, and cytokine profile. This paper aims to review randomised controlled trials assessing the use of biocompatible PD fluids and their effect on clinical outcomes. PMID:23251801

  17. New cement formulation helps solve deep cementing problems

    SciTech Connect

    Brothers, L.E.; DeBlanc, F.X.

    1989-06-01

    Invert-emulsion muds are used in most deep, hot wells. The internal aqueous phase of these muds frequently contains high concentrations of salts. It is desirable to complete these wells with a cement slurry containing salt concentrations up to and including saturation to minimize compatibility problems between cement slurry and mud. Above their effective temperature range, however, saturated salt cements - though still considered desirable for their other properties - pose design difficulties regarding thickening time, fluid loss, and rheology. High salt concentrations tend to decrease the effectiveness of most common cement additives - e.g., retarders, fluid-loss additives, and dispersants. At high temperatures, concentrations of these additives can become unacceptably large, while the additives themselves are not as effective under these conditions. Development of and field experience with a new cementing formulation for deep, high-temperature, saturated-salt applications have helped resolve the cement design problems encountered in south Texas and southern and offshore Louisiana. A single synthetic-polymer additive provides cement retardation, fluid-loss control, and dispersant properties with normal design considerations as opposed to the lengthy design requirements of other cement systems. A particular benefit derived from use of the new cement system involves cementing of long liners. Such liners frequently require squeeze cementing at the liner top because the cement is designed for conditions at the bottom of the liner and is thus frequently over-retarded for the cooler temperatures encountered at the top of the liner. This over-retardation tendency is alleviated greatly by use of the new saturated-salt cement additive.

  18. Mineral resource of the month: hydraulic cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  19. Thermal Shock-resistant Cement

    SciTech Connect

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

  20. Fluoride Release and Uptake of Five Dental Restoratives from Mouthwashes and Dentifrices

    PubMed Central

    Rao, B Saketh Rama; Moosani, Gopi Krishna Reddy; Shanmugaraj, Muthu; Kannapan, Balamurugan; Shankar, B. Shiva; Ismail, Prabu Mahin Syed

    2015-01-01

    Background: This study evaluated the fluoride release and uptake of five common dental restoratives mainly glass ionomer formulations, including a conventional glass ionomer, a relatively new caries stabilization glass ionomer and resin-modified glass ionomer (Fuji II, Fuji VII and Fuji II LC); one compomer (F2000); and one fluoride releasing composite resin (tetric ceram). Materials and Methods: A total of 12 cylindrical specimens for each of the five materials were prepared following manufacturer’s instructions for manipulation and immersed independently in 25 ml of artificial saliva and stored as five groups Group I-V. Each group was further divided into three sub Groups A, B, C. The saliva was changed every day in all the specimens. No treatment was carried out for the specimens in subgroup A. The specimens were immersed in 2% sodium fluoride for 1 min before changing saliva in sub group B and the specimens were treated by brushing with a fluoridated dentifrice for 2 min before changing saliva in sub Group C. The fluoride release was evaluated on the 1st, 7th and 28th day using a fluoride ion specific electrode. Results: The results demonstrated that the conventional glass ionomer and the recently introduced caries stabilizing glass ionomer showed similar patterns and quantity of fluoride release, which was significantly higher than the resin-modified glass ionomer, the compomer and the composite resin. The resin-modified glass ionomer showed higher fluoride release than the compomer and the composite resin. All the formulations of glass ionomers showed fluoride uptake from the neutral sodium fluoride and the fluoridated dentifrice, by releasing increased amounts of fluoride after treatment, in comparison with the untreated group. However, the compomer and the composite resin showed no fluoride uptake. Conclusion: The fluoride released by the glass ionomer cements (GICs) was found to be highest during the first 24 h and decreased significantly over the 1st week with lower levels obtained on the 7th and 28th day, thus demonstrating the phenomenon of “initial burst.” The composite resin and compomer used in this study did not show this phenomenon of the initial burst. The resin-modified GICs released more fluoride than the compomer, and the composite resin. PMID:25709358

  1. Development of a 3D polymer reinforced calcium phosphate cement scaffold for cranial bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Alge, Daniel L.

    The repair of critical-sized cranial bone defects represents an important clinical challenge. The limitations of autografts and alloplastic materials make a bone tissue engineering strategy desirable, but success depends on the development of an appropriate scaffold. Key scaffold properties include biocompatibility, osteoconductivity, sufficient strength to maintain its structure, and resorbability. Furthermore, amenability to rapid prototyping fabrication methods is desirable, as these approaches offer precise control over scaffold architecture and have the potential for customization. While calcium phosphate cements meet many of these criteria due to their composition and their injectability, which can be leveraged for scaffold fabrication via indirect casting, their mechanical properties are a major limitation. Thus, the overall goal of this work was to develop a 3D polymer reinforced calcium phosphate cement scaffold for use in cranial bone tissue engineering. Dicalcium phosphate dihydrate (DCPD) setting cements are of particular interest because of their excellent resorbability. We demonstrated for the first time that DCPD cement can be prepared from monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) mixtures. However, subsequent characterization revealed that MCPM/HA cements rapidly convert to HA during degradation, which is undesirable and led us to choose a more conventional formulation for scaffold fabrication. In addition, we developed a novel method for calcium phosphate cement reinforcement that is based on infiltrating a pre-set cement structure with a polymer, and then crosslinking the polymer in situ. Unlike prior methods of cement reinforcement, this method can be applied to the reinforcement of 3D scaffolds fabricated by indirect casting. Using our novel method, composites of poly(propylene fumarate) (PPF) reinforced DCPD were prepared and demonstrated as excellent candidate scaffold materials, as they had increased strength and ductility and were biocompatible in vitro. Furthermore, 3D PPF reinforced DCPD scaffolds had strengths comparable to trabecular bone. Based on these results, 3D PPF reinforced DCPD scaffolds were evaluated in vivo using a rabbit calvarial defect model. Although bone formation was not enhanced by the addition of mesenchymal stem cells, significant bone ingrowth from the surrounding tissue was observed. The results of this work provide a foundation for future research on 3D polymer reinforced calcium phosphate cement scaffolds.

  2. Operators tackle Anadarko cementing problems

    SciTech Connect

    Spradlin, W.N.

    1983-06-01

    Successful cementing in the deep Anadarko Basin, as in other deep producing provinces, requires meticulous attention to detail. Problems encountered during cementing operations include high temperature, high pressure, gas migration, and lost circulation. At times, these problems stretch the bounds of technology in rheological control of drilling mud and cement slurry. Although successful cementing techniques for Anadarko Basin deep wells present particular challenges, the principles involved also apply to other deep producing provinces. Deep well programs vary from one area of the Anadarko Basin to another. The variation is a function of the pressure encountered while drilling.

  3. Study of two MTA cements

    PubMed Central

    Valmaseda-Castellón, Eduard; Faus, Vicente; Ballester, María-Luisa; Berini-Aytés, Leonardo

    2014-01-01

    Introduction: To determine and compare the pH, conductivity and calcium release of an experimental Portland cement (PE) consisting of trioxid mineral aggregate and a comercially available modified Portland cement (C.P.M.) after 1, 2, 3, 4, 8, 10, 15 and 30 days. Material and Methods: Cements were mixed following the manufacturer’s instructions, with a powder: liquid ratio of 3:1. Each cement was placed in 12 PVC tubes 1 mm in diameter and 10 mm in length and allowed to set. Four empty tubes were used as negative controls. Tubes were submerged in plastic flasks containing 10 ml deionized water and stored at 37ºC and 100% humidity. After 1, 2, 3, 4, 8, 10, 15 and 30 days tubes were removed from the flasks and these were refilled with deionized water. We measured pH, conductivity and calcium content of the recovered solution. Data were analyzed using repeated measures ANOVA. Results: pH was 0.3 units more alkaline with PE cement (p=0.023). pH experienced a slight decrease with time (p<0.001), independently of the cement type (p>0.05). Conductivity of PE and CPM cements diminished at 4 days and almost recovered at 30 days (p<0.001). PE cement had a higher conductivity (p<0.001). Calcium release diminished from the first day and recovered at 30 days (p<0.001) similarly for both cements (p>0.05). Conclusions: PE cement raised pH slightly more and had higher conductivity than CPM. Calcium release diminished after the first day and recovered at 30 days, similarly for both cements. Key words:Mineral trioxide aggregate, pH, electrical conductivity, periapical surgery. PMID:25350596

  4. Biocompatibility of Bacterial Cellulose Based Biomaterials

    PubMed Central

    Torres, Fernando G.; Commeaux, Solene; Troncoso, Omar P.

    2012-01-01

    Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications. BC nanocomposites can be processed either in a static or an agitated medium. The fabrication of BC nanocomposites in static media can be carried out while keeping the original mat structure obtained after the synthesis to form the final nanocomposite or by altering the culture media with other components. The present article reviews the issue of biocompatibility of BC and BC nanocomposites. Biomedical aspects, such as surface modification for improving cell adhesion, in vitro and in vivo studies are given along with details concerning the physics of network formation and the changes that occur in the cellulose networks due to the presence of a second phase. The relevance of biocompatibility studies for the development of BC-based materials in bone, skin and cardiovascular tissue engineering is also discussed. PMID:24955750

  5. Biocompatibility and osteogenic properties of porous tantalum

    PubMed Central

    WANG, QIAN; ZHANG, HUI; LI, QIJIA; YE, LEI; GAN, HONGQUAN; LIU, YINGJIE; WANG, HUI; WANG, ZHIQIANG

    2015-01-01

    Porous tantalum has been reported to be a promising material for use in bone tissue engineering. In the present study, the biocompatibility and osteogenic properties of porous tantalum were studied in vitro and in vivo. The morphology of porous tantalum was observed using scanning electron microscopy (SEM). Osteoblasts were cultured with porous tantalum, and cell morphology, adhesion and proliferation were investigated using optical microscopy and SEM. In addition, porous tantalum rods were implanted in rabbits, and osteogenesis was observed using laser scanning confocal microscopy and hard tissue slice examination. The osteoblasts were observed to proliferate over time and adhere to the tantalum surface and pore walls, exhibiting a variety of shapes and intercellular connections. The porous tantalum rod connected tightly with the host bone. At weeks 2 and 4 following implantation, new bone and small blood vessels were observed at the tantalum-host bone interface and pores. At week 10 after the porous tantalum implantation, new bone tissue was observed at the tantalum-host bone interface and pores. By week 12, the tantalum-host bone interface and pores were covered with new bone tissue and the bone trabeculae had matured and connected directly with the materials. Therefore, the results of the present study indicate that porous tantalum is non-toxic, biocompatible and a promising material for use in bone tissue engineering applications. PMID:25667628

  6. Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement.

    PubMed

    Kotha, S P; Li, C; McGinn, P; Schmid, S R; Mason, J J

    2006-08-01

    Acrylic bone cements are widely used in total joint arthroplasties to grout the prosthesis to bone. The changes in the tensile properties and fracture toughness of polymethylmethacrylate (PMMA) bone cements obtained by the addition of control and heat treated short titanium fibers are studied. Heat treatment of titanium fibers is conducted to precipitate titania particles on the fiber surface, which may improve the biocompatibility of the metal. Control (non-heat treated) and heat treated short titanium fibers (250 microm long and 20microm diameter) were used as reinforcements at 3 volume %. X-ray diffraction indicated the presence of a rutile form of titania due to the heat treatments. Results indicate that the tensile and fracture properties of unfilled bone cement were improved by the addition of control and heat-treated fibers. The fracture properties of bone cements reinforced with control titanium fibers were at least 10% higher than those reinforced with heat treated titanium fibers. Therefore, we recommend further studies on the use of non-heat treated titanium fibers to reinforce acrylic bone cement. PMID:16897167

  7. Adhesion enhancement of steel fibers to acrylic bone cement through a silane coupling agent.

    PubMed

    Kotha, S P; Lieberman, M; Vickers, A; Schmid, S R; Mason, J J

    2006-01-01

    The use of a silane coupling agent (methacryloxypropyl-trichlorosilane) to improve the mechanical properties of steel fiber-reinforced acrylic bone cements was assessed. Changes to the tensile and fracture properties of bone cements reinforced with silane-coated or uncoated 316L stainless steel fibers of different aspect ratios were studied. Contact-angle measurements indicated that the coupling agent coats the metal surface through room temperature treatments in a short time (within 2 h). Push-out tests indicated that the interfacial shear strength of silane-coated 316L stainless steel rods is 141% higher than the uncoated rods. The elastic moduli, ultimate stresses, and fracture toughness of the silane-coated, steel fiber-reinforced bone cements are significantly higher than the bone cements reinforced with uncoated steel fibers. There were no differences in the tensile mechanical properties of the silane-coated or uncoated, steel fiber-reinforced cements after aging in a physiological saline solution, indicating that the bonding effectiveness is decreased by the intrusion of water at the metal-polymer interface. Because of possible biocompatibility issues with leaching of the silane coupling agent and no long-term mechanical benefit in simulated aging experiments, the use of these agents is not recommended for in vivo use. PMID:16224777

  8. Process for cementing a well

    SciTech Connect

    Cowan, K.M.; Hale, A.H.

    1991-06-04

    This paper describes a process for cementing a casing in a borehole of a well. It comprises: preparing an aqueous cement slurry containing a sufficient amount of a selected water soluble polyalcohol having from 2 to 18 carbon atoms and 2 to 13 hydroxyl groups, the concentration of polyalcohol in the water used to prepare and set the slurry being about 0.01 to about 5% by volume, the selection of the polyalcohol being restricted to a polyalcohol which functions to promote a more fluid-tight seal and better mechanical shear bond between the cement and surfaces contacting the cement; and injecting the cement slurry into the well between the casing and the borehole.

  9. Cement compositions and method of cementing casing in a well

    SciTech Connect

    Baker, W.S.; Harrison, J.J.

    1986-03-04

    This patent describes a cement composition for the preparation of a novel aqueous slurry useful in cementing casing in the borehole of a well comprising (1) a cement selected from Class A through H, (2) at least one polysaccharide, and (3) a 1,2-dicarbonyl wherein the amount of the 1,2-dicarbonyl is sufficient to obtain a viscosity of an aqueous slurry prepared from the composition at 140/sup 0/F and atmospheric pressure which is greater than the viscosity of such slurry at 70/sup 0/F and atmospheric pressure. A method is described of cementing casing in the borehole of a well comprising suspending the casing in the borehole of a well, whether vertical or slanted, pumping an aqueous cement slurry comprising (1) a cement selected from Class A through Class H, (2) at least one polysaccharide, (3) water, and (4) a 1,2-dicarbonyl wherein the amount of the 1,2-dicarbonyl is sufficient to obtain a viscosity of such aqueous slurry at 140/sup 0/F, and atmospheric pressure which is greater than the viscosity of the slurry at 70/sup 0/F and atmospheric pressure into the well until the slurry fills that portion of the space desired to be sealed and then maintaining the slurry in place until the cement sets.

  10. The processing, mechanical properties and bioactivity of strontium based glass polyalkenoate cements.

    PubMed

    Wren, Anthony; Boyd, Daniel; Towler, M R

    2008-04-01

    The suitability of zinc-based glass polyalkenoate cements (GPCs) for use in orthopaedics can be improved by the substitution of strontium into the glass phase which should impart improved radiopacity and bone forming properties to the cements without retarding strength. The purpose of this research was to produce novel GPCs based on calcium-strontium-zinc-silicate glasses and to evaluate their mechanical properties and biocompatibility with the ultimate objective of developing a new range of cements for skeletal applications. Three glass compositions, based on incremental substitutions of strontium for calcium, were synthesized; BT100 (0.16CaO, 0.36ZnO, 0.48SiO2), BT101 (0.04SrO, 0.12CaO, 0.36ZnO, 0.48SiO2) and BT102 (0.08SrO 0.08CaO, 0.36ZnO, 0.48SiO2). Each glass was then mixed with varying concentrations and molecular weights of polyacrylic acids in order to determine the working times, setting times, compressive strengths and biaxial flexural strengths of the novel cements. The maximum working time and setting time achieved was 29 and 110 s respectively; which, at present is inadequate for current clinical procedures. However, the optimum compressive and biaxial flexural strengths were up to 75 and 34 MPa respectively indicating that these formulations have potential in load bearing applications. Importantly, the substitution of Ca with Sr in the glasses did not have a deleterious effect on strengths or working times. Finally, the bioactivity of the best performing cements was determined in vitro using simulated body fluid. It was found that all cements facilitate the formation of an amorphous calcium phosphate at their surface which increases in density and coverage with time, indicating that these cement will bond directly to bone in vivo. PMID:17943414

  11. Development of an injectable bioactive bone filler cement with hydrogen orthophosphate incorporated calcium sulfate.

    PubMed

    Sony, Sandhya; Suresh Babu, S; Nishad, K V; Varma, Harikrishna; Komath, Manoj

    2015-01-01

    Calcium sulfate cement (CSC) has emerged as a potential bone filler material mainly because of the possibility of incorporating therapeutic agents. Delivery of the cement through a needle or cannula will make it more useful in clinical applications. However, it was not possible to make CSC injectable because of the inherent lack of viscosity. The present work demonstrates the design development of a viscous and fully-injectable CSC by incorporating hydrogen orthophosphate ions, which does not hamper the biocompatibility of the material. The effect of addition of hydrogen orthophosphate on the rheological properties of the CSC paste was studied using a custom made capillary rheometer. The physicochemical changes associated with cement setting process were examined using X-ray diffraction and Fourier transform infrared spectroscopy and the thermal changes were measured through isothermal differential scanning calorimetry. Micromorphological features of different compositions were observed in environmental scanning electron microscopy and the presence of phosphate ions was identified with energy dispersive X-ray spectroscopic analysis and inductively coupled plasma-optical emission spectroscopy. The results indicated that HPO4 (2-) ions have profound effects on the rheological properties and setting of the CSC paste. Significant finding is that the HPO4 (2-) ions are getting substituted in the calcium sulfate dihydrate crystals during setting. The variations of setting time and compressive strength of the cement with the additive concentration were investigated. An optimum concentration of 2.5 % w/w gave a fully-injectable cement with clinically relevant setting time (below 20 min) and compressive strength (12 MPa). It was possible to inject the optimised cement paste from a syringe through an 18-gauge needle with thumb pressure. This cement will be useful both as bone filler and as a local drug delivery medium and it allows minimally invasive bone defect management. PMID:25578708

  12. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model.

    PubMed

    Zhang, Yadong; Cui, Xu; Zhao, Shichang; Wang, Hui; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-02-01

    The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 ± 1.2 min) and a compressive strength of 19 ± 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery. PMID:25591177

  13. Transport in Cement:Transport in Cement: Relating Permeability and PoreRelating Permeability and Pore

    E-print Network

    Petta, Jason

    Transport in Cement:Transport in Cement: Relating Permeability and PoreRelating Permeability, 2004 #12;OutlineOutline Cement Manufacturing and StructureCement Manufacturing and Structure ofofCalcinated in rotaryin rotary kiln at 1500 C for 30kiln at 1500 C for 30-- 40 minutes40 minutes Produces Cement

  14. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  15. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  16. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  17. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  18. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  19. Biocompatible lipidic formulations: phase behavior and microstructure.

    PubMed

    Mele, S; Murgia, S; Caboi, F; Monduzzi, M

    2004-06-22

    Biocompatible systems formulated for use in the food, cosmetic, and pharmaceutical fields are characterized. Ternary phase diagrams of mixtures of natural lipids (glycerol trioleate, glycerol monooleate, diglycerol monooleate, and lecithin) and water were investigated by means of optical microscopy in polarized light and by multinuclear NMR spectroscopy. All systems showed a microemulsion region at high oil content and a large area of coexistence of two liquid crystalline (hexagonal and lamellar) phases. 1H and 13C NMR self-diffusion measurements were used to characterize microstructural features of the microemulsions. On water dilution, the two-phase liquid crystalline region transforms into a creamy emulsion area where the droplets of water are stabilized by both the lamellar and the hexagonal phases, as indicated by 2H NMR measurements. Due to the very effective dispersing action of the two liquid crystalline phases, these emulsions show a high stability toward phase separation. PMID:15986658

  20. Electrospun fullerenol-cellulose biocompatible actuators.

    PubMed

    Li, Jia; Vadahanambi, Sridhar; Kee, Chang-Doo; Oh, Il-Kwon

    2011-06-13

    Though there are many stimuli-responsive polymer actuators based on synthetic polymers, electroactive natural biopolymer actuators are very rare. We developed an electrospun fullernol-cellulose biocompatible actuator with much lower power consumption and larger electromechanical displacement in comparison with a pure cellulose acetate actuator. Morphology of the electrospun membranes resembles the nanoporous structure of extracellular matrix in natural muscles. Presence of minute concentrations of fullerenol leads to sharp increase in the degree of crystallinity and substantial increase in tensile strength of membranes. Chemical interactions between cellulose acetate and fullerenols are confirmed by three shifts in carboxylate, carboxy, and carbonyl linkages from the Fourier-transform infrared spectrometry. Much larger tip displacement, nearly 3-fold even at 0.5 wt % fullerenol content, was observed with much lower power consumption under both alternating and direct current conditions. PMID:21517072

  1. Titanium nanostructural surface processing for improved biocompatibility

    SciTech Connect

    Cheng, H.-C.; Lee, S.-Y.; Chen, C.-C.; Shyng, Y.-C.; Ou, K.-L.

    2006-10-23

    X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO{sub 2} on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO{sub 2} by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration.

  2. Phosphorylcholine-Based Zwitterionic Biocompatible Thermogel.

    PubMed

    Ko, Du Young; Patel, Madhumita; Jung, Bo Kyoeng; Park, Jin Hye; Jeong, Byeongmoon

    2015-12-14

    Zwitterionic polymers have been investigated as surface-coating materials due to their low protein adsorption properties, which reduce immunogenicity, biofouling, and bacterial adsorption of coated materials. Most zwitterionic polymers, reported so far, are based on (meth)acrylate polymers which can induce toxicity by residual monomers or amines produced by degradation. Here, we report a new zwitterionic polymer consisting of phosphorylcholine (PC) and biocompatible poly(propylene glycol) (PPG) as a new thermogelling material. The PC-PPG-PC polymer aqueous solution undergoes unique multiple sol-gel transitions as the temperature increases. A heat-induced unimer-to-micelle transition, changes in ionic interactions, and dehydration of PPG are involved in the sol-gel transitions. Based on the broad gel window and low protein adsorption properties, the PC-PPG-PC thermogel is proved for sustained delivery of protein drugs and stem cells over 1 week. PMID:26551029

  3. Biostability and biocompatibility of modified polyurethane elastomers

    NASA Astrophysics Data System (ADS)

    Christenson, Elizabeth Marie

    Several strategies have been employed to increase the biostability of medical grade polyurethanes while maintaining the desirable properties of current poly(ether urethanes). It was hypothesized that polyurethane surface chemistry controls biodegradation/biostability that can lead to ultimate failure/success of these materials in clinical applications. Chemical modification or replacement of the susceptible soft segment was evaluated as a design strategy to increase the biostability of medical grade polyurethanes. The effect of soft segment chemistry on the phase morphology, mechanical properties and in vivo response of commercial polyurethanes were compared. Poly(ether urethane) (PEU), silicone-modified poly(ether urethane) (PEU-S), poly(carbonate urethane) (PCU) and silicone-modified poly(carbonate urethane) (PCU-S) elastomers were investigated. AFM phase imaging indicated that the overall two-phase morphology of poly(ether urethanes), necessary for its thermoplastic elastomeric properties, was not disrupted by changing the soft segment chemistry. All of the polyurethanes exhibited thermoplastic elastomeric behavior similar to that of the poly(ether urethane). Following material characterization, the biocompatibility of the polyurethane elastomers was evaluated using a subcutaneous cage implant protocol. All of the polyurethanes tested retained the excellent biocompatibility typical of poly(ether urethane) elastomers. Overall, the candidate polyurethanes were concluded to be suitable replacements of current poly(ether urethane) elastomers in medical applications. The results from the cage implant study and cell culture experiments indicated that monocytes adhere, differentiate and fuse to form foreign body giant cells (FBGCs) on all of the polyurethane specimens. It is now generally accepted that the reactive oxygen species released by these adherent macrophages and FBGCs initiate PEU biodegradation. ATR-FTIR analysis of explanted samples provided evidence of chain scission and crosslinking in all of the polyurethane specimens. Therefore, it was concluded that the chosen soft segment modifications were insufficient to fully inhibit biodegradation. (Abstract shortened by UMI.)

  4. Cementing portion of conductor string

    SciTech Connect

    Sieler, J.J.

    1987-11-03

    The method of drilling an offshore well from a movable drilling rig and cementing at least a portion of a well conductor pipe string in the well is described comprising: lowering into the ocean floor a large-diameter two-section drive pipe having a first releasable connector means between the upper and lower sections that are connected together just above the ocean floor; providing fluid inlet means through the wall of the lower drive pipe section; providing high pressure fluid conduit means in communication with the fluid inlet means and having second releasable connector means adjacent thereto; driving the lower section of the drive pipe into the ocean floor such that the connector means and the fluid inlet means are above the ocean floor; drilling the upper portion of the well at a selected diameter and to a selected depth through the drive pipe; installing a well conductor in the drilled hole; cementing the well conductor in the well below the ocean floor by pumping cement slurry down through the well conductor; simultaneously pumping liquid down the conduit means to the inlet means below the connector means and injecting the liquid into the cement slurry stream flowing upwardly in the annulus to dilute the cement slurry as it passes the inlet means; stopping the pumping of cement slurry down the well conductor when the annulus has been filled up to at least the ocean floor to form a cement plug in the annulus; preventing the formation of a cement plug in the annulus above the inlet means by continuing the injection of liquid through the inlet means and into the annulus to be discharged from the annulus at the rig; and stopping the pumping of liquid and its circulation up the annulus when substantially all the cement has been washed therefrom above the ocean floor.

  5. Dendritic Glycopolymer as Drug Delivery System for Proteasome Inhibitor Bortezomib in a Calcium Phosphate Bone Cement: First Steps Toward a Local Therapy of Osteolytic Bone Lesions.

    PubMed

    Striegler, Christin; Schumacher, Matthias; Effenberg, Christiane; Müller, Martin; Seckinger, Anja; Schnettler, Reinhard; Voit, Brigitte; Hose, Dirk; Gelinsky, Michael; Appelhans, Dietmar

    2015-09-01

    Establishment of drug delivery system (DDS) in bone substitute materials for local treatment of bone defects still requires ambitious solutions for a retarded drug release. We present two novel DDS, a weakly cationic dendritic glycopolymer and a cationic polyelectrolyte complex, composed of dendritic glycopolymer and cellulose sulfate, for the proteasome inhibitor bortezomib. Both DDS are able to induce short-term retarded release of bortezomib from calcium phosphate bone cement in comparison to a burst-release of the drug from bone cement alone. Different release parameters have been evaluated to get a first insight into the release mechanism from bone cements. In addition, biocompatibility of the calcium phosphate cement, modified with the new DDS was investigated using human mesenchymal stromal cells. PMID:26018141

  6. Checklist aids successful primary cementing

    SciTech Connect

    Smith, R.C.

    1982-11-01

    The success of any cementing operation is improved significantly by controlling the many different factors involved. Major areas requiring detailed attention are slurry design, blending of bulk materials at service company bulk plant, reblending of bulk materials on location prior to mixing, slurry mixing on location, and displacement of the cement slurry. Of necessity, these major areas include other important considerations such as mud and hole conditioning and running casing. This checklist has been developed to assist the drilling foreman and drilling engineer in improving cementing operations. Sources of more detailed information are presented in the bibliography at the end of this article.

  7. Reciprocating cement slurries after placement

    SciTech Connect

    1997-08-01

    The construction industry routinely vibrates concrete slurries to improve the quality of the set concrete. Several attempts have been made to adapt this technology to well cementing. Casing has been vibrated in contact with well cement slurries in the laboratory and in full-scale tests. Large-scale hydraulic equipment has been constructed to support and vibrate the casing string directly. The method described in this paper uses very simple and inexpensive equipment to introduce pulses of compressed air or water directly into the annulus above the slurry. The annulus serves as a wave guide to transmit pressure pulses efficiently through the slurry deep in the well. The objective of reciprocating, or vibrating, the slurry is to improve the bond between the casing and cement by preventing the influx of gas into the cement slurry before it sets.

  8. Graphite-reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1976-01-01

    Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.

  9. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals

    PubMed Central

    Zhang, Yanjie; Clapp, Aaron

    2011-01-01

    Luminescent colloidal quantum dots (QDs) possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands. PMID:22247651

  10. Carbon nanotube biocompatibility with cardiac muscle cells

    NASA Astrophysics Data System (ADS)

    Garibaldi, Silvano; Brunelli, Claudio; Bavastrello, Valter; Ghigliotti, Giorgio; Nicolini, Claudio

    2006-01-01

    Purified carbon nanotubes are new carbon allotropes, sharing similarities with graphite, that have recently been proposed for their potential use with biological systems as probes for in vitro research and for diagnostic and clinical purposes. However the biocompatibility of carbon nanotubes with cells represents an important problem that, so far, remains largely uninvestigated. The objective of this in vitro study is to explore the cytocompatibility properties of purified carbon nanofibres with cardiomyocytes. Cardiac muscle cells from a rat heart cell line H9c2 (2-1) have been used. Highly purified single-walled nanotubes (SWNTs) were suspended at the concentration of 0.2 mg ml-1 by ultrasound in complete Dulbecco's modified Eagle's medium, and administered to cells to evaluate cell proliferation and shape changes by light microscopy, cell viability by trypan blue exclusion, and apoptosis, determined flow cytometrically by annexin/PI staining. Microscopic observation evidenced that carbon nanotubes bind to the cell membrane, causing a slight modification in cell shape and in cell count only after three days of treatment. Cell viability was not affected by carbon nanotubes in the first three days of culture, while after this time, cell death was slightly higher in nanotube-treated cells (p = ns). Accordingly, nanotube treatment induced little and non-significant change in the apoptotic cell number at day 1 and 3. The effect of nanotubes bound to cells was tested by reseeding treated cardiomyocytes. Cells from a trypsinized nanotube-treated sample showed a limited ability to proliferate, and a definite difference in shape, with a high degree of cell death: compared to reseeded untreated ones, in SWNT-treated samples the annexin-positive/PI-negative cells increased from 2.9% to 9.3% in SWNT (p<0.05, where p<0.05 defines a statistically significant difference with a probability above 95%), and the annexin-positive/PI-positive cells increased from 5.2% to 18.7% (p<0.05). However, overtime cells from a trypsinized nanotube-treated sample continued to grow, and partially recovered the original shape. In conclusion our results demonstrate that highly purified carbon nanotubes possess no evident short-term toxicity and can be considered biocompatible with cardiomyocytes in culture, while the long-term negative effects, that are evidenced after reseeding, are probably due to physical rather than chemical interactions.

  11. Manufacture and properties of fluoride cement

    NASA Astrophysics Data System (ADS)

    Malata-Chirwa, Charles David

    This research work aimed at characterising composition, hydration and physical properties of fluoride cement, by studying samples of the cement obtained from Malawi, and comparing them to ordinary Portland cement. By confirming the suitable characteristics of fluoride cement through this work, the results of the research work provide a good basis for the wider adoption of fluoride cement as an alternative to ordinary Portland cement, especially in developing economies. Numerous accounts have been cited regarding the production and use of fluoride cement. Since there have not been conclusive agreement as to its properties, this study was limited to the theories of successful incorporation of fluoride compounds in the manufacture of fluoride cement. Hence, the properties and characteristics reported in this study relate to the cement currently manufactured in Malawi, and, on a comparative basis only, to that manufactured in other parts of the world. Samples of the fluoride cement used in the study were obtained by synthetic manufacture of the cement using common raw materials for the manufacture of fluoride cement that is limestone, silica sand, and fluorspar. These samples were subjected to several comparative tests used to characterise cements including examination under x-ray diffractometer, scanning electron microscopy and tests for setting time and compressive strength. Under similar laboratory conditions, it was possible to prove that fluoride cement hardens more rapidly than ordinary Portland cement. Also observed during the experimental work is that fluoride cement develops higher compressive strengths than ordinary Portland cement. The hardening and setting times are significantly different between the two cements. Also the nature of the hydration products, that is the microstructural development is significantly different in the two cements. The differences brought about between the two cements are because of the presence of fluorine during the clinkering process. It was observed in the laboratory simulated production of fluoride cement, that the clinkering temperature is much lower (around 1 170 °C) compared to that for the production of ordinary Portland cement. The other observed differences were attributed to the different mineralogical composition as a result of fluoride incorporation into the cement. While fluorine content is very minimal in fluoride cement, not more than 2 %, the resulting cementitious products are altered significantly as was observed from the study. Part of the experimental results has been used as reference material in the preparation of a draft Malawi Standard on fluoride cement. This draft standard will be submitted to the Malawi Bureau of Standards for further processing before it can be officially endorsed as a Malawi Standard.

  12. Biocompatible polymer microarrays for cellular high-content screening 

    E-print Network

    Pernagallo, Salvatore

    2010-11-25

    The global aim of this thesis was to study the use of microarray technology for the screening and identification of biocompatible polymers, to understand physiological phenomena, and the design of biomaterials, implant ...

  13. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    PubMed Central

    Wei, Kai; Kim, Byoung-Suhk; Kim, Ick-Soo

    2011-01-01

    Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS) hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM). The water contact angle of silk/tetramethoxysilane (TMOS) composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposites is prepared by means of an effective calcium and phosphate (Ca–P) alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering. PMID:24957869

  14. Ocular Biocompatibility of Nitinol Intraocular Clips

    PubMed Central

    Velez-Montoya, Raul; Erlanger, Michael

    2012-01-01

    Purpose. To evaluate the tolerance and biocompatibility of a preformed nitinol intraocular clip in an animal model after anterior segment surgery. Methods. Yucatan mini-pigs were used. A 30-gauge prototype injector was used to attach a shape memory nitinol clip to the iris of five pigs. Another five eyes received conventional polypropylene suture with a modified Seipser slip knot. The authors compared the surgical time of each technique. All eyes underwent standard full-field electroretinogram at baseline and 8 weeks after surgery. The animals were euthanized and eyes collected for histologic analysis after 70 days (10 weeks) postsurgery. The corneal thickness, corneal endothelial cell counts, specular microscopy parameters, retina cell counts, and electroretinogram parameters were compared between the groups. A two sample t-test for means and a P value of 0.05 were use for assessing statistical differences between measurements. Results. The injection of the nitinol clip was 15 times faster than conventional suturing. There were no statistical differences between the groups for corneal thickness, endothelial cell counts, specular microscopy parameters, retina cell counts, and electroretinogram measurements. Conclusions. The nitinol clip prototype is well tolerated and showed no evidence of toxicity in the short-term. The injectable delivery system was faster and technically less challenging than conventional suture techniques. PMID:22064995

  15. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.

    PubMed

    Waanders, Daan; Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico

    2010-11-16

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect the mechanical response of the cement-bone interface at various load levels in terms of plastic displacement and crack formation. Two FEA models were created, which were based on micro-computed tomography data of two physical cement-bone interface specimens. These models were subjected to tensile fatigue loads with four different magnitudes. Three deformation modes of the cement were considered: 'only creep', 'only damage' or 'creep and damage'. The interfacial plastic deformation, the crack reduction as a result of creep and the interfacial stresses in the bone were monitored. The results demonstrate that, although some models failed early, the majority of plastic displacement was caused by fatigue damage, rather than cement creep. However, cement creep does decrease the crack formation in the cement up to 20%. Finally, while cement creep hardly influences the stress levels in the bone, fatigue damage of the cement considerably increases the stress levels in the bone. We conclude that at low load levels the plastic displacement is mainly caused by creep. At moderate to high load levels, however, the plastic displacement is dominated by fatigue damage and is hardly affected by creep, although creep reduced the number of cracks in moderate to high load region. PMID:20692663

  16. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  17. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  18. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  19. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  20. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  1. A Novel Controlled-Release System for Antibacterial Enzyme Lysostaphin Delivery Using Hydroxyapatite/Chitosan Composite Bone Cement

    PubMed Central

    Wang, Yihan; Wang, Jincheng; Zhang, Jien; Lu, Min; Li, Guodong; Cao, Zhizhong; Huang, Qingshan

    2014-01-01

    In this work, a lysostaphin-loaded, control-released, self-setting and injectable porous bone cement with efficient protein delivery was prepared by a novel setting method using hydroxyapatite/chitosan (HA/CS) composite scaffold. The cement samples were made through cementitious reactions by mixing solid powder, a mixture of HA/CS composite particles, lysostaphin, Ca(OH)2, CaCO3 and NaHCO3, with setting liquid containing citric acid, acetic acid, NaH2PO4, CaCl2 and poloxamer. The setting parameters of the cement samples were determined. The results showed that the final setting time was 96.6±5.2 min and the pH value increased from approximately 6.2 to nearly 10 during the setting process and the porosity was 34% at the end. And the microstructure and composition were detected by scanning electron microscopy (SEM), x-ray diffraction and Fourier transform-infrared spectroscopy. For the release behavior of lysostaphin loaded in the cement sample, the in vitro cement extract experiment indicated that about 94.2±10.9% of the loaded protein was released before day 8 and the in vivo Qdot 625 fluorescence tracking experiment showed that the loaded protein released slower than the free one. Then the biocompatibility of the cement samples was evaluated using the methylthiazol tetrazolium assay, SEM and hematoxylin-eosin staining, which suggested good biocompatibility of cement samples with MC 3T3-E1 cells and subcutaneous tissues of mice. Finally the antibacterial activity assay indicated that the loaded lysostaphin had good release ability and strong antibacterial enzymatic activity against methicillin-resistant Staphylococcus aureus. Collectively, all the results suggested that the lysostaphin-loaded self-setting injectable porous bone cement released the protein in a controlled and effective way and the protein activity was well retained during the setting and releasing process. Thus this bone cement can be potentially applied as a combination of artificial bone substitute and controlled-release system for delivery of lysostaphin to treat bone defects and infections. PMID:25464506

  2. Fluid loss control in oil field cements

    SciTech Connect

    Newlove, J. C.; Kitano, K.; Portnoy, R. C.; Schulz, D. N.

    1984-11-06

    The present invention relates to materials which reduce the filtration of fluid into permeable earth formations during cementing processes in the drilling and completing of subterranean wells, particularly wells for the recovery of petroleum resources. Petroleum well cementing is the process of mixing a slurry of cement, water, and other additives and pumping it down through steel casing to critical points in the oil well annulus around the casing or in the open hole below the casing string. The primary functions of the cementing process are to restrict fluid movement between geological formations and to bond and support the casing. In addition the cement aids in protecting the casing from corrosion, preventing blowouts by quickly sealing formations, protecting the casing from shock loads in drilling deeper wells, and sealing off lost circulation or thief zones. A common problem in petroleum well cementing is the flow of liquid from the cement slurry into porous earth formations in contact with the cement. This fluid loss is undesirable since it can result in dehydration of the cement slurry, and it causes thick filter cakes of cement solids which can plug the well bore. The fluid lost can damage sensitive formations. Cement fluid loss is particularly a problem in the process known as squeeze cementing. There is a requirement, therefore, for materials which, when added to the cement formulation, reduce the loss of fluid from the slurry to porous formations.

  3. Set retarded cement compositions and methods for well cementing

    SciTech Connect

    Brothers, L.E.; Lindsey, D.W.; Terry, D.T.

    1991-09-17

    This patent describes a retarded cement composition consisting essentially of hydraulic cement, water, a set retarder and a borate compound. It comprises the set retarder, a copolymer consisting of acrylic acid and 2-acrylamido, 2-methylpropane sulfonic acid (AMPS) present in the copolymer in the range of from about 40 to about 60 mole percent, the copolymer having an average molecular weight below about 5,000 such that a 10 percent aqueous solution of the copolymer has a Brookfield viscosity reading at 20 rpm of the UL Adapter Spindle in the range of from about 2 to less than 5 centipoises, the amount in the range of from about 0.3 percent to about 5.0 percent by weight of the hydraulic cement; and further wherein the borate compound is capable of providing a borate ion species in the composition.

  4. Communication Damage monitoring of cement paste by electrical resistance measurement

    E-print Network

    Chung, Deborah D.L.

    .D.L. Chung* Composite Materials Research Laboratory, State University of New York at Buffalo, Buffalo, NY cement paste (consisting of just cement and water), (ii) silica-fume cement paste (consisting of cement, water, and silica fume), and (iii) latex cement paste (consisting of cement, water, latex, and antifoam

  5. Fluoride-containing restorative materials.

    PubMed

    Burke, F M; Ray, N J; McConnell, R J

    2006-02-01

    Dental practitioners are exposed to an increasing number of dental materials, which claim the benefits of fluoride release. The purpose of this paper is to critically review the literature of these materials. Glass ionomers, resin modified glass ionomers, compomers, resin composites, fissure sealants and amalgam are discussed. It is clear that a long-term measurable release of fluoride can be observed from certain restorative materials, in vitro, particularly glass ionomer cement, resin modified glass ionomer cement, fluoridated cements, fluoridated dental amalgam and certain fissure sealants. In general, the rate of fluoride release is not constant but exhibits a relatively rapid initial rate, which decreases with time. However, the fluoride release profiles may be dependent on specific formulation and on experimental design and sampling methods. These materials may feature greater longevity, a reduced incidence of marginal failure, an elevated concentration of fluoride in contingent plaque, together with an antibacterial action when compared with non-fluoride releasing materials. In addition, fluoride-releasing materials may perform better in caries inhibition in artificial caries model studies than non-fluoridated materials. While any, or all, of these anti-cariogenic effects may be associated with fluoride release, a direct relationship between fluoride release profiles and such effects has not been determined in vivo. PMID:16515011

  6. Cement plant CKD recovery system

    SciTech Connect

    Cohen, S.M.; Prokesch, M.E.

    1996-12-31

    A fluid bed system has been developed to produce a low alkali cement clinker from cement plant kiln ducts (CKD). The system is comprised of three main components: feed preparation system, fluid bed reactor and process gas handling system. Cement kiln dust is first pelletized and dried, then processed at 1,300--1,320 C in the fluid bed reactor. The combination of excellent thermal transfer and extended retention time at reaction temperatures provides typical volatilization rates on the order of 90% K{sub 2}O, 70% Na{sub 2}O, 90% SO{sub 3}, and 95% Cl. High concentrations of volatilized alkali compounds in the process off gas stream are cooled and condensed in a specially designed heat exchange system while providing preheated process air for the fluid bed reactor. Condensed alkali compounds are collected at the dust collector in the form of a fine, white powder. This co-product may offer marketable value due to its high concentration of potassium sulfates. The system offers the potential for a 100% recovery of cement kiln dusts to produce cement clinker and an alkali co-product.

  7. Heterogeneous Glasses and Sustainable Cement

    NASA Astrophysics Data System (ADS)

    Del Gado, Emanuela

    2015-03-01

    Calcium-silicate hydrate (C-S-H) is the main binding agent in cement and concrete. It forms at the beginning of cement hydration, it progressively densifies as cement hardens and is ultimately responsible for the performances of concrete. This hydration product is a cohesive nano-scale heterogeneous glass, whose structure and mechanics are still poorly understood, in spite of its practical importance. I will review some of the open questions for this fascinating material and discuss a statistical physics approach recently developed, which allows us to investigate the structural arrest and solidification under the out-of-equilibrium conditions typical of cement hydration and the role of the nano-scale structure in C-S-H mechanics upon hardening. Our approach unveils how some distinctive features of the kinetics of cement hydration can be related to changes in the morphology of this glassy material and elucidates the role of nano-scale mechanical heterogeneities in the hardened C-S-H.

  8. Biocompatible Dispersion Methods for Carbon Black

    PubMed Central

    Kim, Hwa; Park, Kwangsik

    2012-01-01

    The biological activity of particles is largely dependent on their size in biological systems. Dispersion in the aqueous phase has been both a critical impediment to and a prerequisite for particle studies. Carbon black has been used as a surrogate to investigate the biological effects of carbonaceous particles. Here, biocompatible methods were established to disperse carbon black into ultrafine and fine particles which are generally distinguished by the small size of 100 nm. Carbon black with a distinct particle size, N330 and N990 were suspended in blood plasma, cell culture media, Krebs-Ringer’s solution (KR), or physiological salt solution (PSS). Large clumps were observed in all dispersion preparations; however, sonication improved dispersion - averaged particle sizes for N330 and N990 were 85.0 ± 42.9 and 112.4 ± 67.9 nm, respectively, in plasma; the corresponding sizes in culture media were 84.8 ± 38.4 and 164.1 ± 77.8 nm. However, sonication was not enough to disperse N330 less than 100 nm in either KR or PSS. Application of Tween 80 along with sonication reduced the size of N330 to less than 100 nm, and dispersed N990 larger than 100 nm (73.6 ± 28.8 and 80.1 ± 30.0 nm for N330 and 349.5 ± 161.8 and 399.8 ± 181.1 nm for N990 in KR and PSS, respectively). In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) exhibited little effect. Electron microscopy confirmed the typical aciniform structure of the carbon arrays; however, zeta potential measurement failed to explain the dispersibility of carbon black. The methods established in this study could disperse carbon black into ultrafine and fine particles, and may serve as a useful model for the study of particle toxicity, particularly size-related effects. PMID:24278612

  9. Biocompatibility of mannuronic acid-rich alginates.

    PubMed

    Klöck, G; Pfeffermann, A; Ryser, C; Gröhn, P; Kuttler, B; Hahn, H J; Zimmermann, U

    1997-05-01

    Highly purified algin preparations free of adverse contaminants with endotoxins and other mitogens recently became available by a new purification process (Klöck et al., Appl. Microbiol. Biotechnol., 1994, 40, 638-643). An advantage of this purification protocol is that it can be applied to alginates with various ratios of mannuronic acid to guluronic acid. High mannuronic acid alginate capsules are of particular practical interest for cell transplantation and for biohybrid organs, because mannuronate-rich alginates are usually less viscous, allowing one to make gels with a higher alginate content. This will increase their stability and reduce the diffusion permeability and could therefore protect immobilized cells more efficiently against the host immune system. Here we report the biocompatibility of purified, mannuronic acid-rich alginate (68% mannuronate residues) in a series of in vitro, as well as in vivo, assays. In contrast to raw alginate extracts, the purified product showed no mitogenic activity towards murine lymphocytes in vitro. Its endotoxin content was reduced to the level of the solvent. Animal studies with these new, purified algin formulations revealed the absence of a mitogen-induced foreign body reaction, even when the purified material (after cross-linking with Ba2+ ions) is implanted into animal models with elevated macrophage activity (diabetes-prone BB/OK rat). Thus, alginate capsules with high mannuronic acid content become available for applications such as implantation. In addition to the utilization as implantable cell reactors in therapy and biotechnology, these purified algins have broad application potential as ocular fillings, tissue replacements, microencapsulated growth factors and/or interleukins or slow-release dosage forms of antibodies, surface coatings of sensors and other invasive medical devices, and in encapsulation of genetically engineered cells for gene therapy. PMID:9158852

  10. A MODIFIED PMMA CEMENT (SUB-CEMENT) FOR ACCELERATED FATIGUE TESTING OF CEMENTED IMPLANT CONSTRUCTS USING CADAVERIC BONE

    PubMed Central

    Race, Amos; Miller, Mark A.; Mann, Kenneth A.

    2008-01-01

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress intensity factor, fatigue crack propagation rates for sub-cement were higher by a factor of 25 ± 19. When tested in a simplified 2 1/2D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models. PMID:18774136

  11. Guides emerge for cementing horizontal strings

    SciTech Connect

    Parcevaux, P.

    1987-10-19

    This article recommends the following guidelines for cementing of horizontal strings: turbulent flow displacement technique for ensuring vest casing centralization and a cement slurry with a density as close as possible to that of the drilling mud.

  12. 76 FR 24519 - Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ...No. 731-TA-461 (Third Review)] Gray Portland Cement and Cement Clinker From...Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From...revocation of the antidumping duty order on gray portland cement and cement clinker...

  13. 76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ...No. 731-TA-461 (Third Review)] Gray Portland Cement and Cement Clinker From...Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From...revocation of the antidumping duty order on gray portland cement and cement clinker...

  14. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system.

    PubMed

    Roy, Abhijit; Jhunjhunwala, Siddharth; Bayer, Emily; Fedorchak, Morgan; Little, Steve R; Kumta, Prashant N

    2016-02-01

    Calcium phosphate based cements (CPCs) are frequently used as bone void fillers for non-load bearing segmental bone defects due to their clinically relevant handling characteristics and ability to promote natural bone growth. Macroporous CPC scaffolds with interconnected pores are preferred for their ability to degrade faster and enable accelerated bone regeneration. Herein, a composite CPC scaffold is developed using newly developed resorbable calcium phosphate cement (ReCaPP) formulation containing degradable microspheres of bio-compatible poly (lactic-co-glycolic acid) (PLGA) serving as porogen. The present study is aimed at characterizing the effect of in-vitro degradation of PLGA microspheres on the physical, chemical and structural characteristics of the composite cements. The porosity measurements results reveal the formation of highly interconnected macroporous scaffolds after degradation of PLGA microspheres. The in-vitro characterizations also suggest that the degradation by products of PLGA reduces the pH of the local environment thereby increasing the dissolution rate of the cement. In addition, the in-vitro vancomycin release from the composite CPC scaffold suggests that the drug association with the composite scaffolds can be tuned to achieve control release kinetics. Further, the study demonstrates control release lasting for longer than 10weeks from the composite cements in which vancomycin is encapsulated in PLGA microspheres. PMID:26652353

  15. Contact damage failure analyses of fretting wear behavior of the metal stem titanium alloy-bone cement interface.

    PubMed

    Zhang, Lanfeng; Ge, Shirong; Liu, Hongtao; Wang, Qingliang; Wang, Liping; Xian, Cory J

    2015-11-01

    Although cemented titanium alloy is not favored currently in the Western world for its poor clinical and radiography outcomes, its lower modulus of elasticity and good biocompatibility are instrumental for its ability supporting and transforming physical load, and it is more suitable for usage in Chinese and Japanese populations due to their lower body weights and unique femoral characteristics. Through various friction tests of different cycles, loads and conditions and by examining fretting hysteresis loops, fatigue process curves and wear surfaces, the current study investigated fretting wear characteristics and wear mechanism of titanium alloy stem-bone cement interface. It was found that the combination of loads and displacement affected the wear quantity. Friction coefficient, which was in an inverse relationship to load under the same amplitude, was proportional to amplitudes under the same load. Additionally, calf serum was found to both lubricate and erode the wear interface. Moreover, cement fatigue contact areas appeared black/oxidative in dry and gruel in 25% calf serum. Fatigue scratches were detected within contact areas, and wear scars were found on cement and titanium surfaces, which were concave-shaped and ring concave/ convex-shaped, respectively. The coupling of thermoplastic effect and minimal torque damage has been proposed to be the major reason of contact damage. These data will be important for further studies analyzing metal-cement interface failure performance and solving interface friction and wear debris production issues. PMID:26241891

  16. Characterization of cement-stabilized Cd wastes

    SciTech Connect

    Diez, J.M.; Madrid, J.; Macias, A.

    1997-04-01

    Portland cement affords both physical and chemical immobilization of cadmium. The immobilization has been studied analyzing the pore fluid of cement samples and characterizing the solid pastes by X-ray diffraction. The influence of cadmium on the cement hydration and on its mechanical properties has been also studied by isothermal conduction calorimetry and by the measure of strength and setting development. Finally, the effect of cement carbonation on the immobilization of cadmium has been analyzed.

  17. Characterization of cement-stabilized Cd wastes

    SciTech Connect

    Diez, J.M.; Madrid, J.; Macias, A.

    1997-03-01

    Portland cement affords both physical and chemical immobilization of cadmium. The immobilization has been studied analyzing the pore fluid of cement samples and characterizing the solid pastes by X-ray diffraction. The influence of cadmium on the cement hydration and on its mechanical properties has been also studied by isothermal conduction calorimetry and by the measure of strength and setting development. Finally, the effect of cement carbonation on the immobilization of cadmium has been analyzed.

  18. High temperature well bore cement slurry

    SciTech Connect

    Nahm, J.J.W.; Vinegar, H.J.; Karanikas, J.M.; Wyant, R.E.

    1993-07-13

    A low density well bore cement slurry composition is described suitable for cementing well bores with high reservoir temperatures comprising: (a) a high alumina cement in an amount of about 40 pounds per barrel of slurry or greater: (b) graphite in an amount greater than about one quarter, by volume, of the solids in the cement slurry; and (c) and a carrier fluid comprising drilling mud.

  19. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Dental cement. 872.3275 Section 872.3275 ...Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol ...a temporary tooth filling or as a base cement to affix a temporary tooth...

  20. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Dental cement. 872.3275 Section 872.3275 ...Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol ...a temporary tooth filling or as a base cement to affix a temporary tooth...

  1. Ferricrete Formation at Base of Cement Creek

    USGS Multimedia Gallery

    Ferricrete (surficial deposits cemented by iron oxides) formation at the base of Cement Creek north of Silverton, Colorado. Red color is due to iron oxides. Ferricrete forms when pyrite and other sulfide minerals weather to form acidic iron-rich water that cements surficial mater...

  2. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 ...Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol ...a temporary tooth filling or as a base cement to affix a temporary tooth...

  3. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns...

  4. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns...

  5. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns...

  6. Undesired drying of concrete and cement paste

    E-print Network

    Langendoen, Koen

    Undesired drying of concrete and cement paste is a nightmare for any construction engineer of the concrete or cement paste surface. Inspired by the art of molecular cooking a team of TU Delft scientists for instance sodium alginates. When sprayed on the surface of concrete or cement paste, a rapid chemical

  7. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns...

  8. Basic Chemistry for the Cement Industry.

    ERIC Educational Resources Information Center

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement

  9. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns...

  10. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further their deterioration was a major impediment in expediting the development of geothermal energy resources.

  11. Premixed calcium phosphate cements: Synthesis, physical properties, and cell cytotoxicity

    PubMed Central

    Xu, Hockin H.K.; Carey, Lisa E.; Simon, Carl G.; Takagi, Shozo; Chow, Laurence C.

    2009-01-01

    Objectives Calcium phosphate cement (CPC) is a promising material for dental, periodontal, and craniofacial repairs. However, its use requires on-site powder–liquid mixing that increases the surgical placement time and raises concerns of insufficient and inhomogeneous mixing. The objective of this study was to determine a formulation of premixed CPC (PCPC) with rapid setting, high strength, and good in vitro cell viability. Methods PCPCs were formulated from CPC powder + non-aqueous liquid + gelling agent + hardening accelerator. Five PCPCs were thus developed: PCPC-Tartaric, PCPC-Malonic, PCPC-Citric, PCPC-Glycolic, and PCPC-Malic. Formulations and controls were compared for setting time, diametral tensile strength, and osteoblast cell compatibility. Results Setting time (mean ± S.D.; n = 4) for PCPC-Tartaric was 8.2 ± 0.8 min, significantly less than the 61.7 ± 1.5 min for the Premixed Control developed previously (p < 0.001). On 7th day immersion, the diametral tensile strength of PCPC-Tartaric reached 6.5 ± 0.8 MPa, higher than 4.5 ± 0.8 MPa of Premixed Control (p = 0.036). Osteoblast cells displayed a polygonal morphology and attached to the nano-hydroxyapatite crystals in the PCPCs. All cements had similar live cell density values (p = 0.126), indicating that the new PCPCs were as cell compatible as a non-premixed CPC control known to be biocompatible. Each of the new PCPCs had a cell viability that was not significantly different (p > 0.1) from that of the non-premixed CPC control. Significance PCPCs will eliminate the powder–liquid mixing during surgery and may also improve the cement performance. The new PCPCs supported cell attachment and yielded a high cell density and viability. Their mechanical strengths approached the reported strengths of sintered porous hydroxyapatite implants and cancellous bone. These nano-crystalline hydroxyapatite cements may be useful in dental, periodontal, and craniofacial repairs. PMID:16678895

  12. Nanospearing - Biomolecule Delivery and Its Biocompatibility

    NASA Astrophysics Data System (ADS)

    Cai, Dong; Kempa, Krzysztof; Ren, Zhifeng; Carnahan, David; Chiles, Thomas C.

    Introduction of exogenous DNA into mammalian cells represents a powerful approach for manipulating signal transduction. However, the currently available techniques have serious limits in terms of either low transduction efficiency or low cell viability. It is found that carbon nanotubes (CNTs) can mediate molecule transportations via various mechanisms. We have reported a highly efficient molecular delivery technique, called nanotube spearing, based on the penetration of Ni-particle-embedded nanotubes into cell membranes by magnetic field driving. DNA was immobilized onto the nanotubes and subsequently speared into targeted cells. We have achieved a high transduction efficiency in Bal 17 B-lymphoma cell line, ex vivo B cells, and primary neurons with high viability. This technique may provide a powerful tool for highly efficient gene transfer in a variety of cells, especially, in the hard-to-transfect cells. However, CNTs have been associated with environmental and public health concerns which arose in the course of research on possible biomedical applications. The disturbances CNTs cause in the immune system have been met with particular interest because any ideal in vivo application of CNTs should not trigger any undesirable bodily responses. It is imperative to unravel the effects of CNTs on B cells, which represent the humoral component of acquired immunity, so that the potential risk of CNTs to public health can be thoroughly understood and advanced strategies can be employed to develop safe applications. We investigated the compatibility of the PECVD nanotubes and the nanospearing procedure in terms of cell viability, growth, and intracellular signal pathways by means of flow cytometry and biochemical analysis. No additional cell death was observed after the spearing treatment, nor had B cell activation been indicated by changes in cell size, growth, CD69 expression, and kinase phosphorylation. The post-spearing cells preserve the ability to respond to stimulation in as robust a manner as cells left untreated. Our study suggests the biocompatibility of the nanospearing procedure and PECVD nanotubes under the proposed spearing conditions with regard to the humoral component of the immune system, therefore, reducing concerns that surround in vivo applications of CNTs.

  13. Bridging the gap--biocompatibility of microelectronic materials.

    PubMed

    Bogner, E; Dominizi, K; Hagl, P; Bertagnolli, E; Wirth, M; Gabor, F; Brezna, W; Wanzenboeck, H D

    2006-03-01

    There is an increasing interest in cell-based microelectronic biosensors for high-throughput screening of new products from the biotech pipeline. This requires fundamental knowledge of the biocompatibility of the materials used as the growing support for the cells. Using monolayer-forming Caco-2 cells of human origin, the biocompatibility of silicon wafers coated with various metals, dielectrics and semiconductors was assessed. Besides microscopic inspection, proliferation of cells indicating viability as well as brush border enzyme activity indicating differentiation of adherent growing cells were chosen as parameters to estimate biocompatibility. The type of wafer used for deposition of the coating initially influences the biocompatibility of the final product. Whereas p-doped silicon was fully biocompatible, n-doped silicon reduced the proliferation of cells. Among the different coatings, Al and Ti even increased the cell growth as compared to glass. Culturing the cells for 6 days on coated wafers demonstrated that the differentiation of adhering cells on Ti- and ZrO2-coated wafers was comparable to glass, whereas coatings with Si3N4, Au, Al, and ITO reduced differentiation to 15-35%. In the cases of Au and Si3N4 this effect equilibrated with prolonged culturing. These results demonstrate the importance of a careful selection of the materials used for the production of cell-based biosensors. PMID:16701882

  14. An estimate of the prevalence of biocompatible and habitable planets.

    PubMed

    Fogg, M J

    1992-01-01

    A Monte Carlo computer model of extra-solar planetary formation and evolution, which includes the planetary geochemical carbon cycle, is presented. The results of a run of one million galactic disc stars are shown where the aim was to assess the possible abundance of both biocompatible and habitable planets. (Biocompatible planets are defined as worlds where the long-term presence of surface liquid water provides environmental conditions suitable for the origin and evolution of life. Habitable planets are those worlds with more specifically Earthlike conditions). The model gives an estimate of 1 biocompatible planet per 39 stars, with the subset of habitable planets being much rarer at 1 such planet per 413 stars. The nearest biocompatible planet may thus lie approximately 14 LY distant and the nearest habitable planet approximately 31 LY away. If planets form in multiple star systems then the above planet/star ratios may be more than doubled. By applying the results to stars in the solar neighbourhood, it is possible to identify 28 stars at distances of < 22 LY with a non-zero probability of possessing a biocompatible planet. PMID:11539465

  15. Biocompatibility of an experimental MTA sealer implanted in the rat subcutaneous: quantitative and immunohistochemical evaluation.

    PubMed

    Viola, Naiana Viana; Guerreiro-Tanomaru, Juliane Maria; da Silva, Guilherme Ferreira; Sasso-Cerri, Estela; Tanomaru-Filho, Mario; Cerri, Paulo Sérgio

    2012-10-01

    The tissue reaction promoted by an experimental mineral trioxide aggregate sealer (MTAS) in the rat subcutaneous was evaluated by morphological and morphometric analyses. In the animals from each group (n = 20), polyethylene tubes filled with MTAS, Portland cement (PC) or MTA were implanted in the dorsal subcutaneous. In the control group, empty tubes were implanted. After 7, 14, 30, and 60 days, the specimens were fixed and embedded in paraffin. In the HE-stained sections, the numerical density of inflammatory cells (IC) in the capsule was evaluated and statistical analyses performed (p ? 0.05). The expression of osteopontin (OPN) was evaluated by immunohistochemistry. The von Kossa method for detection of calcified structures was also performed. A moderate inflammatory process in the capsule was seen in all groups, at 7 and 14 days. At 60 days, significant reduction in the number of IC was verified in comparison to initial periods; however, significant differences were not verified among the groups. OPN immunolabeling was observed in the fibroblasts cytoplasm of the capsule next to the implants. Structures von Kossa-positive were observed in the capsule adjacent to all materials implanted at 7, 14, and 30 days. The results strongly indicate that MTAS presents biocompatibility similarly to MTA and PC. PMID:22821748

  16. Preparation, characterization, release kinetics, and in vitro cytotoxicity of calcium silicate cement as a risedronate delivery system.

    PubMed

    Gong, Tianxing; Wang, Zhiqin; Zhang, Yubiao; Sun, Changshan; Yang, Quanzu; Troczynski, Tom; Häfeli, Urs O

    2014-07-01

    Injectable bone cements have been well characterized and studied in non-load bearing bone fixation and bone screw augmentation applications. Current calcium phosphate cement or poly(methyl methacrylate) cement have drawbacks like low mechanical strength and in situ exothermic properties. This leads especially in patients with osteoporosis to worsening contact between implant and bone and can finally lead to implant failure. To improve these properties, a calcium silicate cement (CSC) was prepared, which additionally contained the bisphosphonate risedronate (RA) to promote osteoblast function. Cement setting rate and compressive strength were measured and found to be reduced by RA above 0.5 wt%. X-ray diffraction, Rietveld refinement analysis, scanning electron microscopy, and porosity measurements by gas sorption revealed that RA reduces calcium silicate hydrate gel formation and changes the cement's microstructure. Cumulative release profiles of RA from CSC up to 6 months into phosphate buffer solution were analyzed by high-performance liquid chromatography, and the results were compared with theoretical release curves obtained from the Higuchi equation. Fourier transform infrared spectra measurements and drug release studies indicate that calcium-RA formed within the cement, from which the drug can be slowly released over time. An investigation of the cytotoxicity of the RA-CSC systems upon osteoblast-like cells showed no toxic effects of concentrations up to 2%. The delivery of RA from within a CSC might thus be a valuable and biocompatible new approach to locally deliver RA and to reconstruct and/or repair osteoporosis-related bone fractures. PMID:23946228

  17. Fracture behavior of cemented sand

    NASA Astrophysics Data System (ADS)

    Alqasabi, Ahmad Othman

    While fracture mechanics for cementitious materials and composites in the past three decades have developed mainly in concrete applications, it has not yet gained its rightful place in the geotechnical field. There are many examples in the geotechnical literature, especially those related to brittle and stiff soils, where traditional approaches of analysis have proven to be inadequate. While geotechnical problems are inherently complex in nature, using the finite element method (FEM) with fracture mechanics (FM) have been shown to provide powerful analytical tool that could be used to investigate and solve many problems in geomechanics and geotechnical engineering. This thesis addresses the application of FM concepts and theories in analysis of cemented soils. In addition to theoretical aspects, experiments were conducted to evaluate the application of FM to cemented soils. Three point bending beam tests with crack mouth opening displacements (CMOD) conducted on cemented sand samples showed that fracture parameters, such as CMOD, indeed could play an important role in investigation of such soils. Using this unambiguous material parameter, field engineers might have a reliable measure that could prove to be useful in stability assessment of earth structures and soil structure system. By studying size effect on cemented sand, strong relationship was established between critical CMOD and failure, which might be a very useful index and analysis tool in geotechnical engineering practice.

  18. Cement Creek Following Storm Event

    USGS Multimedia Gallery

    Cement Creek following storm event in July, 2004. Note the orange discoloration of the stream derived from weathering of bedrocks and from mined areas. This type of event happens frequently in the Animas Watershed near Silverton, Colorado. View is to the south, with Kendall Mountain in the distance....

  19. Process for cementing geothermal wells

    DOEpatents

    Eilers, Louis H. (Inola, OK)

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  20. Biocompatibility of Pristine Graphene Monolayers, Nanosheets and Thin Films

    E-print Network

    Conroy, Jennifer; Smith, Ronan J; Rezvani, Ehsan; Duesberg, Georg S; Coleman, Jonathan N; Volkov, Yuri

    2014-01-01

    There is an increasing interest to develop nanoscale biocompatible graphene structures due to their desirable physicochemical properties, unlimited application opportunities and scalable production. Here we report the preparation, characterization and biocompatibility assessment of novel graphene flakes and their enabled thin films suitable for a wide range of biomedical and electronic applications. Graphene flakes were synthesized by a chemical vapour deposition method or a liquid-phase exfoliation procedure and then thin films were prepared by transferring graphene onto glass coverslips. Raman spectroscopy and transmission electron microscopy confirmed a predominantly monolayer and a high crystalline quality formation of graphene. The biocompatibility assessment of graphene thin films and graphene flakes was performed using cultured human lung epithelial cell line A549 employing a multimodal approach incorporating automated imaging, high content screening, real-time impedance sensing in combination with bio...

  1. Cementing head apparatus and method of operation

    SciTech Connect

    Harris, M.E.

    1982-03-02

    A cementing head is disclosed, which is particularly designed for injecting an omega-type cementing plug into a well casing. Prior to cementing, the plug is retained in a housing. Located above the plug is a movable plunger, actuated by an operating fluid, such as hydraulic fluid. Below the plug is a control valve. When the valve is closed, it prevents any accidental downward movement of the plug into the well casing. Following injection of the cement slurry into the casing, the valve is opened, and the plunger is moved down to push the plug through the valve and beyond the cement inlet. A fluid such as water is passed through the cement inlet, under pressure, to push the plug down the casing behind the cement slurry.

  2. Lightweight Cement Slurries based on vermiculite

    NASA Astrophysics Data System (ADS)

    Minaev, K.; Gorbenko, V.; Ulyanova, O.

    2014-08-01

    The main purpose of the research is to study the lightweight cement slurry based on vermiculite and its parameters in accordance with GOST 1581-96 requirements as well as improvement of its formulation by polymer additives. Analysis of vermiculite-containing mixture providing the lowest density while maintaining other required parameters was conducted. As a cement base, cement PTscT-I-G-CC-1, cement PTscT - 100 and vermiculite M200 and M150 were used. Vermiculite content varied from 10 to 15 %; and water-to-cement-ratio ranged from 0.65 to 0.8. To sum up, despite the fact that lightweight cement slurry based on vermiculite satisfies GOST 1581-96 requirements under laboratory conditions, field studies are necessary in order to make a conclusion about applicability of this slurry for well cementing.

  3. Biocompatibility and surface analysis of nitrogen containing DLC

    SciTech Connect

    Hauert, R.; Spescha, G.; Keller, B.

    1995-12-31

    Nitrogen doped a-C:N:H films, also known as amorphous diamond like carbon, have been deposited by using different mixtures of argon, nitrogen and cyclopentane (C{sub 5}H{sub 10}). With increasing nitrogen content in the film the electrical resistivity, hardness and the wetting angle could been lowered continuously. XPS analysis of the C1s core, level revealed the relative contributions of carbon in C-C, C-H and C-N bonds at the surface. Biocompatibility tests (cell culturing with fibroblasts) revealed a good surface biocompatibility by means of proliferation rate and morphological behavior for all nitrogen doped samples.

  4. Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators.

    PubMed

    Wiklund, Martin

    2012-05-01

    Manipulation of biological cells by acoustic radiation forces is often motivated by its improved biocompatibility relative to alternative available methods. On the other hand, it is well known that acoustic exposure is capable of causing damage to tissue or cells, primarily due to heating or cavitation effects. Therefore, it is important to define safety guidelines for the design and operation of the utilized devices. This tutorial discusses the biocompatibility of devices designed for acoustic manipulation of mammalian cells, and different methods for quantifying the cell viability in such devices. PMID:22562376

  5. Biocompatible fluorescent organic nanoparticles derived from glucose and polyethylenimine.

    PubMed

    Zhang, Xiqi; Zhang, Xiaoyong; Yang, Bin; Yang, Yang; Chen, Qiaomei; Wei, Yen

    2014-11-01

    Fluorescent organic nanoparticles (FONs) were facilely prepared from polyethylenimine and glucose at mild reaction condition, and further utilized for cell imaging with various fluorescent wavelengths. The as-prepared PEI-Glu FONs were fully characterized by a series of techniques including 1H NMR spectrum, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, dynamic light scattering, UV-vis absorption spectrum, and fluorescence spectra. Such FONs were demonstrated with intense fluorescence and high water dispersibility. Biocompatibility evaluation and cell uptake behavior of these FONs were further investigated, which proved excellent biocompatibility and made them promising for cell imaging. PMID:25454666

  6. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    NASA Astrophysics Data System (ADS)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate-belite cement that contained medium C4A3 S¯ and C2S contents showed good dimensional stability, sulfate resistance, and compressive strength development and was considered the optimum phase composition for calcium sulfoaluminate-belite cement in terms of comparable performance characteristics to portland cement. Furthermore, two calcium sulfoaluminate-belite cement clinkers were successfully synthesized from natural and waste materials such as limestone, bauxite, flue gas desulfurization sludge, Class C fly ash, and fluidized bed ash proportioned to the optimum calcium sulfoaluminate-belite cement synthesized from reagent-grade chemicals. Waste materials composed 30% and 41% of the raw ingredients. The two calcium sulfoaluminate-belite cements synthesized from natural and waste materials showed good dimensional stability, sulfate resistance, and compressive strength development, comparable to commercial portland cement.

  7. One-step continuous synthesis of biocompatible gold nanorods for optical coherence tomography

    E-print Network

    Sebastián, Víctor

    We present a novel one-step flow process to synthesize biocompatible gold nanorods with tunable absorption and biocompatible surface ligands. Photothermal optical coherence tomography (OCT) of human breast tissue is ...

  8. Research of magnesium phosphosilicate cement

    NASA Astrophysics Data System (ADS)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product in MPSC is MgKPO4·6H2O (MKP), which has both crystalline and amorphous phases. There are many unreacted magnesia grains in the hardened MPSC paste. They act as nucleus of the hardened framework. The hydrates grow around the magnesia grains rims, fill in the voids among the magnesia grains and bond unreacted magnesia part into a solid continuum. (Abstract shortened by UMI.)

  9. Bone cement based on vancomycin loaded mesoporous silica nanoparticle and calcium sulfate composites.

    PubMed

    Li, Hanwen; Gu, Jisheng; Shah, Luqman Ali; Siddiq, Mohammad; Hu, Jianhua; Cai, Xiaobing; Yang, Dong

    2015-04-01

    A novel bone cement pellet, with sustained release of vancomycin (VAN), was prepared by mixing VAN loaded mesoporous silica nanoparticle (MSN) and calcium sulfate ?-hemihydrate (CS) together. To improve the VAN loading ability, MSN was functionalized with aminopropyltriethoxysilane (APS) to give APS-MSN. The VAN loading content and entrapment efficiency of APS-MSN could reach up to 45.91±0.81% and 84.88±1.52%, respectively, much higher than those of MSN, which were only 3.91% and 4.07%, respectively. The nitrogen adsorption-desorption measurement results demonstrated that most of the VAN were in the pores of APS-MSN. The CS/VAN@APS-MSN composite pellet showed a strongly drug sustained release effect in comparison with CS control pellet. The in vitro cell assays demonstrated that CS/APS-MSN composite was highly biocompatible and suitable to use as bone cement. Furthermore, CS/VAN@APS-MSN pellet showed no pyrogenic effect and meet the clinical requirements on hemolytic reaction. These results imply that CS/VAN@APS-MSN was an ideal candidate to replace CS bone cement in the treatment of open fractures. PMID:25686941

  10. TECHNICAL NOTE Geotechnical properties of fresh cement groutpressure ltration

    E-print Network

    Bolton, Malcolm

    TECHNICAL NOTE Geotechnical properties of fresh cement groutÐpressure ®ltration and consolidation relations; grouting; laboratory tests; permeability. INTRODUCTION Cement is a basic construction material, and in geotechnics the hydraulic cements known as Port- land cements are particularly important. Hydraulic cements

  11. Performance of Concrete Made With Slag Cement and

    E-print Network

    Performance of Concrete Made With Slag Cement and Portland-Limestone Blended Cement Philadelphia;Today's Discussion ! The materials ! Slag cement ! Portland-limestone cement ! Use in concrete is slag cement? #12;! Non-metallic product of an iron blast furnace ! Granulated ! Ground ! Cementitious

  12. Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier.

    PubMed

    Pooja, Deep; Panyaram, Sravani; Kulhari, Hitesh; Reddy, Bharathi; Rachamalla, Shyam S; Sistla, Ramakrishna

    2015-09-01

    Biocompatibility is one of the major concerns with inorganic nanoparticles for their applications as drug delivery system. Natural compounds such as sugars, hydrocolloids and plant extracts have shown potential for the green synthesis of biocompatible gold nanoparticles. In this study, we report the synthesis of gum karaya (GK) stabilized gold nanoparticles (GKNP) and the application of prepared nanoparticles in the delivery of anticancer drugs. GKNP were characterized using different analytical techniques. GKNP exhibited high biocompatibility during cell survival study against CHO normal ovary cells and A549 human non-small cell lung cancer cells and during hemolytic toxicity studies. Gemcitabine hydrochloride (GEM), an anticancer drug, was loaded on the surface of nanoparticles with 19.2% drug loading efficiency. GEM loaded nanoparticles (GEM-GNP) showed better inhibition of growth of cancer cells in anti-proliferation and clonogenic assays than native GEM. This effect was correlated with higher reactive oxygen species generation by GEM-GNP in A549 cells than native GEM. In summary, GK has significant potential in the synthesis of biocompatible gold nanoparticles that could be used as prospective drug delivery carrier for anticancer drugs. PMID:26093321

  13. Dynamic In Vivo Biocompatibility of Angiogenic Peptide Amphiphile Nanofibers

    PubMed Central

    Ghanaati, Shahram; Webber, Matthew J.; Unger, Ronald E.; Orth, Carina; Hulvat, James F.; Kiehna, Sarah E.; Barbeek, Mike; Rasic, Angela; Stupp, Samuel I.; Kirkpatrick, C. James

    2009-01-01

    Biomaterials that promote angiogenesis have great potential in regenerative medicine for rapid revascularization of damaged tissue, survival of transplanted cells, and healing of chronic wounds. Supramolecular nanofibers formed by self-assembly of a heparin-binding peptide amphiphile and heparan sulfate-like glycosaminoglycans were evaluated here using a dorsal skinfold chamber model to dynamically monitor the interaction between the nanofiber gel and the microcirculation, representing a novel application of this model. We paired this model with a conventional subcutaneous implantation model for static histological assessment of the interactions between the gel and host tissue. In the static analysis, the heparan sulfate-containing nanofiber gels were found to persist in the tissue for up to 30 days and revealed excellent biocompatibility. Strikingly, as the nanofiber gel biodegraded, we observed the formation of a de novo vascularized connective tissue. In the dynamic experiments using the dorsal skinfold chamber, the material again demonstrated good biocompatibility, with minimal dilation of the microcirculation and only a few adherent leukocytes, monitored through intravital fluorescence microscopy. The new application of the dorsal skinfold model corroborated our findings from the traditional static histology, demonstrating the potential use of this technique to dynamically evaluate the biocompatibility of materials. The observed biocompatibility and development of new vascularized tissue using both techniques demonstrates the potential of these angiogenesis-promoting materials for a host of regenerative strategies. PMID:19683342

  14. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels

    E-print Network

    Suo, Zhigang

    26 July 2013 Keywords: Biocompatibility Hydrogel Mechanical properties Tendon prosthesis a b s t r attempts at such material designs included IPNs of two covalently crosslinked networks, but these materials) was reported which displays remarkable mechanical properties [7]. One advantage of this material is its

  15. Characterization of Biocompatible Parylene-C Coatings for BIOMEMS Applications

    E-print Network

    Characterization of Biocompatible Parylene-C Coatings for BIOMEMS Applications Quoc P. Nguyen a and therefore allowing samples and/or chemicals to interact with only the coating surface. Parylene the present study Parylene film will be deposited on different HARMS substrates typically for Bio

  16. Fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide.

    PubMed

    Rajagopalan, Mahendran; Oh, Il-Kwon

    2011-03-22

    Two essential functional requirements for electroactive artificial muscles, which can be used for biomedical active devices, are biocompatibility and sufficient range of motion. Fullerenol nanoparticles and their derivatives have been validated as potential candidates to be used for nanobiomaterials and biomedical applications because of their excellent proton conductivity, hydrophilicity, and biocompatibility. We developed fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide. By using a solvent recasting method, present ionic networking membranes have been successfully synthesized with homogeneous dispersion of polyhydroxylated fullerene (PHF) nanoparticles into a sulfonated polyetherimide (SPEI) matrix. In comparison with pure SPEI membranes, the PHF-SPEI nanocomposite membranes show much higher water uptake and proton conductivity, which are both essential characteristics for high-performance ionic polymer actuators. The developed PHF-SPEI actuator shows over three times larger motion ranges and two times higher blocking forces than the pure SPEI actuator. The excellent biocompatibility of PHF and SPEI makes these actuators promising candidate materials for biomedical devices such as active stents and catheters. PMID:21332175

  17. Biocompatibility of Bletilla striata Microspheres as a Novel Embolic Agent

    PubMed Central

    Luo, ShiHua; Song, SongLin; Zheng, ChuanSheng; Wang, Yong; Xia, XiangWen; Liang, Bin; Feng, GanSheng

    2015-01-01

    We have prepared Chinese traditional herb Bletilla striata into microspheres as a novel embolic agent for decades. The aim of this study was to evaluate the biocompatibility of Bletilla striata microspheres (BSMs). After a thermal test of BSMs in vitro, the cell biocompatibility of BSMs was investigated in mouse fibroblasts and human umbilical vein endothelial cells using the methyl tetrazolium (MTT) assay. In addition, blood biocompatibility was evaluated. In vivo intramuscular implantation and renal artery embolization in rabbits with BSMs were used to examine the inflammatory response. The experimental rabbits did not develop any fever symptoms after injection of BSMs, and BSMs exhibited no cytotoxicity in cultured mouse fibroblasts and human umbilical vein endothelial cells. Additionally, BSMs exhibited high compatibility with red blood cells and no hemolysis activity. Intramuscular implantation with BSMs resulted in a gradually lessened mild inflammatory reaction that disappeared after eight weeks. The occlusion of small renal vessels was associated with a mild perivascular inflammatory reaction without significant renal and liver function damage. In conclusion, we believe that BSMs exhibit high biocompatibility and are a promising embolic agent. PMID:26472985

  18. Three-dimensional laser micromachining and imaging of biocompatible polymers

    E-print Network

    Oldenburg, Amy

    of America OCIS codes: (220.4000) Microstructure fabrication; (180.6900) 3D microscopy; (140.3440) Laser lamination [3], and 3D printing [4]. All of these methods, with the exception of melt molding, requireThree-dimensional laser micromachining and imaging of biocompatible polymers Amy L. Oldenburg, John

  19. The density of cement phases

    SciTech Connect

    Balonis, M. Glasser, F.P.

    2009-09-15

    The densities of principal crystalline phases occurring in Portland cement are critically assessed and tabulated, in some cases with addition of new data. A reliable and self-consistent density set for crystalline phases was obtained by calculating densities from crystallographic data and unit cell contents. Independent laboratory work was undertaken to synthesize major AFm and AFt cement phases, determine their unit cell parameters and compare the results with those recorded in the literature. Parameters were refined from powder diffraction patterns using CELREF 2 software. A density value is presented for each phase, showing literature sources, in some cases describing limitations on the data, and the weighting attached to numerical values where an averaging process was used for accepted data. A brief discussion is made of the consequences of the packing of water to density changes in AFm and AFt structures.

  20. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  1. In vitro cytotoxicity of four calcium silicate-based endodontic cements on human monocytes, a colorimetric MTT assay

    PubMed Central

    Khedmat, Sedigheh; Dehghan, Somayyeh; Hadjati, Jamshid; Masoumi, Farimah; Dummer, Paul Michael Howell

    2014-01-01

    Objectives This study was performed to evaluate the cytotoxicity of four calcium silicate-based endodontic cements at different storage times after mixing. Materials and Methods Capillary tubes were filled with Biodentine (Septodont), Calcium Enriched Mixture (CEM cement, BioniqueDent), Tech Biosealer Endo (Tech Biosealer) and ProRoot MTA (Dentsply Tulsa Dental). Empty tubes and tubes containing Dycal were used as negative and positive control groups respectively. Filled capillary tubes were kept in 0.2 mL microtubes and incubated at 37?. Each material was divided into 3 groups for testing at intervals of 24 hr, 7 day and 28 day after mixing. Human monocytes were isolated from peripheral blood mononuclear cells and cocultered with 24 hr, 7 day and 28 day samples of different materials for 24 and 48 hr. Cell viability was evaluated using an MTT assay. Results In all groups, the viability of monocytes significantly improved with increasing storage time regardless of the incubation time (p < 0.001). After 24 hr of incubation, there was no significant difference between the materials regarding monocyte viability. However, at 48 hr of incubation, ProRoot MTA and Biodentine were less cytotoxic than CEM cement and Biosealer (p < 0.01). Conclusions Biodentine and ProRoot MTA had similar biocompatibility. Mixing ProRoot MTA with PBS in place of distilled water had no effect on its biocompatibility. Biosealer and CEM cement after 48 hr of incubation were significantly more cytotoxic to on monocyte cells compared to ProRoot MTA and Biodentine. PMID:25110637

  2. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale 

    E-print Network

    Skibsted, Joergen; Hall, Christopher

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption...

  3. Natural cement as the precursor of Portland cement: Methodology for its identification

    SciTech Connect

    Varas, M.J. . E-mail: mjvaras@geo.ucm.es; Alvarez de Buergo, M.; Fort, R.

    2005-11-15

    When cements appeared in the 19th century, they took the place of traditional binding materials (lime, gypsum, and hydraulic lime) which had been used until that time. Early cements can be divided into two groups, natural and artificial (Portland) cements. Natural cements were introduced first, but their widespread usage was short-lived as they were quickly replaced by artificial cements (Portland), still the most important and predominant today. The main differences between natural and artificial cements arise during the manufacturing process. The final properties of the cements are greatly influenced by differences in the raw materials and burning temperatures employed. The aim of this paper is to assess the efficiency of traditional analytical techniques (petrographic microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR)) used to differentiate natural and artificial cements.

  4. Sustainable cement production-present and future

    SciTech Connect

    Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H.

    2011-07-15

    Cement will remain the key material to satisfy global housing and modern infrastructure needs. As a consequence, the cement industry worldwide is facing growing challenges in conserving material and energy resources, as well as reducing its CO{sub 2} emissions. According to the International Energy Agency, the main levers for cement producers are the increase in energy efficiency and the use of alternative materials, be it as fuel or raw materials. Accordingly, the use of alternative fuels has already increased significantly in recent years, but potential for further increases still exists. In cement, the reduction of the clinker factor remains a key priority: tremendous progress has already been made. Nevertheless, appropriate materials are limited in their regional availability. New materials might be able to play a role as cement constituents in the future. It remains to be seen to what extent they could substitute Portland cement clinker to a significant degree.

  5. Cement compositions containing a polysaccharide and a salt and method of cementing casing in a well

    SciTech Connect

    Baker, W.S.; Harrison, J.J.

    1987-05-05

    A cement composition is described for the preparation of an aqueous cement slurry useful in cementing casing in the borehole of a well comprising a cement selected from Class A through Class H; at least one polysaccharide or mixture of polysaccharides having a solution time greater than about 10 minutes; and at least one salt and wherein the amount of the polysaccharide or mixture of polysaccharides is sufficient so that the viscosity of the aqueous slurry increases with an increase in temperature.

  6. Fluid loss control in well cement slurries

    SciTech Connect

    Roark, D.N.; Nugent, A. Jr.; Bandlish, B.K.

    1987-11-17

    In a process of cementing subterranean well formations employing an aqueous well cement slurry, this patent describes the improvement characterized in that the slurry contains a gelatinous material that tends to plug porous zones and minimize premature water loss from the well cement slurry when present in the subterranean well formation. The gelatinous material is formed by interaction in the presence of water between (i) a sulfonated polymer and (ii) a polymer of monoallylamine.

  7. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    SciTech Connect

    Mehta, P.K.; Persoff, P.; Fox, J.P.

    1980-06-01

    Low cost material is needed for grouting abandoned retorts. Experimental work has shown that a hydraulic cement can be produced from Lurgi spent shale by mixing it in a 1:1 weight ratio with limestone and heating one hour at 1000°C. With 5% added gypsum, strengths up to 25.8 MPa are obtained. This cement could make an economical addition up to about 10% to spent shale grout mixes, or be used in ordinary cement applications.

  8. Pulmonary Cement Embolism following Percutaneous Vertebroplasty

    PubMed Central

    Co?kun, Tuba; Acat, Murat; Onaran, Hilal; Gül, ?ule; Çetinkaya, Erdo?an

    2014-01-01

    Percutaneous vertebroplasty is a minimal invasive procedure that is applied for the treatment of osteoporotic vertebral fractures. During vertebroplasty, the leakage of bone cement outside the vertebral body leads to pulmonary cement embolism, which is a serious complication of this procedure. Here we report a 48-year-old man who was admitted to our hospital with dyspnea after percutaneous vertebroplasty and diagnosed as pulmonary cement embolism. PMID:25580343

  9. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response.

    PubMed

    Vecbiskena, Linda; Gross, Karlis Agris; Riekstina, Una; Yang, Thomas Chung-Kuang

    2015-04-01

    New insight on the conversion of amorphous calcium phosphate (ACP) to nano-sized alpha tricalcium phosphate (?-TCP) provides a faster pathway to calcium phosphate bone cements. In this work, synthesized ACP powders were treated with either water or ethanol, dried, crystallized between 700 and 800?°C, and then cooled at different cooling rates. Particle size was measured in a scanning electron microscope, but crystallite size calculated by Rietveld analysis. Phase composition and bonding in the crystallized powder was assessed by x-ray diffraction and Fourier-transform infrared spectroscopy. Results showed that 50?nm sized ?-TCP formed after crystallization of lyophilized powders. Water treated ACP retained an unstable state that may allow ordering to nanoapatite, and further transition to ?-TCP after crystallization and subsequent decomposition. Powders treated with ethanol, favoured the formation of pure ?-TCP. Faster cooling limited the growth of ?-TCP. Both the initial contact with water and the cooling rate after crystallization dictated ?-TCP formation. Nano-sized ?-TCP reacted faster with water to an apatite bone cement than conventionally prepared ?-TCP. Water treated and freeze-dried powders showed faster apatite cement formation compared to ethanol treated powders. Good biocompatibility was found in pure ?-TCP nanoparticles made from ethanol treatment and with a larger crystallite size. This is the first report of pure ?-TCP nanoparticles with a reactivity that has not required additional milling to cause cementation. PMID:25886478

  10. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate) Bone Cement on Mechanical Properties and Bioactivity

    PubMed Central

    Li, Tao; Weng, Xisheng; Bian, Yanyan; Zhou, Lei; Cui, Fuzhai; Qiu, Zhiye

    2015-01-01

    Objective This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA) bone cement after addition of the nano-hydroxyapatite(HA) coated bone collagen (mineralized collagen, MC). Materials & Methods The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis. Results 15.0%(wt) impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA. Conclusions MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values. PMID:26039750

  11. Retention of Root Canal Posts: Effect of Cement Film Thickness, Luting Cement, and Post Pretreatment.

    PubMed

    Sahafi, A; Benetti, A R; Flury, S; Peutzfeldt, A

    2015-01-01

    The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc] and a self-etch adhesive resin cement [Panavia F2.0]) were used. After removal of the crowns of 360 extracted premolars, canines, or incisors, the root canals were prepared with a parallel-sided drill system to three different final diameters. Half the posts did not receive any pretreatment. The other half received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement, pretreatment with tribochemical silicate coating significantly increased retention of the posts. Increased cement film thickness resulted in decreased retention of untreated posts and of pretreated posts luted with zinc phosphate cement. Increased cement film thickness had no influence on retention of pretreated posts luted with resin cement. Thus, retention of the posts was influenced by the type of luting cement, by the cement film thickness, and by the post pretreatment. PMID:25764045

  12. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Cement mixer for clinical use. 888.4210 Section 888.4210...Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a...

  13. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Cement mixer for clinical use. 888.4210...DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device...

  14. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Cement monomer vapor evacuator. 888.4220...DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a...

  15. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Cement mixer for clinical use. 888.4210...DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device...

  16. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Cement mixer for clinical use. 888.4210...DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device...

  17. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Cement monomer vapor evacuator. 888.4220...DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a...

  18. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Cement monomer vapor evacuator. 888.4220...DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a...

  19. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220...DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a...

  20. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Cement mixer for clinical use. 888.4210...DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device...

  1. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Cement monomer vapor evacuator. 888.4220...DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a...

  2. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device...

  3. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device...

  4. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device...

  5. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device...

  6. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device...

  7. Deterioration mechanisms of historic cement renders and concrete 

    E-print Network

    Griffin, Isobel Margaret

    2013-11-28

    Since the introduction of Portland cement in the early nineteenth century the number of buildings constructed from concrete or using cement mortars and renders has grown exponentially, and cement is one of the most common ...

  8. Control of gas flow through cement column

    SciTech Connect

    Ganguli, K.K.

    1992-03-31

    This patent describes a method of inhibiting gas channeling during the cementing of a casing in a borehole penetrating a high temperature subterranean formation. It comprises: introducing a cementing composition into the annulus between the conduit and the formation, the cementing composition comprising a gas channeling inhibiting additive comprised of a copolymer of 5 to 95 weight percent of 2-acrylamido-2-methylpropane-3-sulphonic acid; 5 to 95 weight percent of a vinylacylamide; and 0 to 80 weight percent of acrylamide; and allowing the cementing composition to set within the space.

  9. Microbial analysis of biofilms on cement surfaces: An investigation in cement-associated peri-implantitis.

    PubMed

    Korsch, Michael; Walther, Winfried; Marten, Silke-Mareike; Obst, Ursula

    2014-01-01

    The cementation of implant-supported restorations always poses the risk of excess cement retained in the peri-implant sulcus despite careful clinical control. Excess cement can become the basis of colonization by oral microorganisms. As a result of the biofilm formation peri-mucositis or peri-implantitis may develop. Complications were observed in the routine prosthetic restoration of implants when a methacrylate-based cement was used. These developed a few weeks after cementation of the suprastructure and caused bleeding on probing as well as suppuration from the peri-implant tissue. In the revision therapy, excess cement in the peri-implant sulcus was found in many cases. This excess cement was sampled from ten patients and investigated for biofilm formation. For this purpose, the cement samples were collected and analyzed for bacterial in situ colonization by 16S rDNA-based methods. In laboratory experiments, the methacrylate-based cement and two other dental cements were then investigated for their proneness to form biofilm. The results of the in situ and in vitro investigations revealed a strong tendency towards bacterial invasion of the methacrylate-based cement by opportunistic species and pathogens. PMID:24980683

  10. Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars

    SciTech Connect

    Klyusov, A.A.

    1988-08-20

    Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration products are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.

  11. Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release.

    PubMed

    Bettini, Simona; Bonfrate, Valentina; Syrgiannis, Zois; Sannino, Alessandro; Salvatore, Luca; Madaghiele, Marta; Valli, Ludovico; Giancane, Gabriele

    2015-09-14

    A porous collagen-based hydrogel scaffold was prepared in the presence of iron oxide nanoparticles (NPs) and was characterized by means of infrared spectroscopy and scanning electron microscopy. The hybrid scaffold was then loaded with fluorescein sodium salt as a model compound. The release of the hydrosoluble species was triggered and accurately controlled by the application of an external magnetic field, as monitored by fluorescence spectroscopy. The biocompatibility of the proposed matrix was also tested by the MTT assay performed on 3T3 cells. Cell viability was only slightly reduced when the cells were incubated in the presence of the collagen-NP hydrogel, compared to controls. The economicity of the chemical protocol used to obtain the paramagnetic scaffolds as well as their biocompatibility and the safety of the external trigger needed to induce the drug release suggest the proposed collagen paramagnetic matrices for a number of applications including tissue engeneering and drug delivery. PMID:26270197

  12. Method for making a bio-compatible scaffold

    DOEpatents

    Cesarano, III, Joseph (Albuquerque, NM); Stuecker, John N. (Albuquerque, NM); Dellinger, Jennifer G. (Champaigne, IL); Jamison, Russell D. (Urbana, IL)

    2006-01-31

    A method for forming a three-dimensional, biocompatible, porous scaffold structure using a solid freeform fabrication technique (referred to herein as robocasting) that can be used as a medical implant into a living organism, such as a human or other mammal. Imaging technology and analysis is first used to determine the three-dimensional design required for the medical implant, such as a bone implant or graft, fashioned as a three-dimensional, biocompatible scaffold structure. The robocasting technique is used to either directly produce the three-dimensional, porous scaffold structure or to produce an over-sized three-dimensional, porous scaffold lattice which can be machined to produce the designed three-dimensional, porous scaffold structure for implantation.

  13. Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes.

    PubMed

    Solanki, Archana; Mehta, Jayen; Thakore, Sonal

    2014-09-22

    Biocompatible and biodegradable polyurethanes (PUs) based on castor oil and polypropylene glycols (PPGs) were prepared using various carbohydrate crosslinkers: monosaccharide (glucose), disaccharide (sucrose) and polysaccharides (starch and cellulose). The mechanical and thermal properties were investigated and interpreted on the basis of SEM study. The advantage of incorporating various carbohydrates is to have tunable mechanical properties and biodegradability due to variety in their structure. The glass transition temperature and sorption behavior were dominated by the type of polyol than by the type of crosslinker. All the PUs were observed to be biodegradable as well as non-cytotoxic as revealed by MTT assay in normal lung cell line L132. The study supports the suitability of carbohydrates as important components of biocompatible PUs for development of biomedical devices. PMID:24906764

  14. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  15. Composition for a lightweight cement slurry for cementing oil and gas wells

    SciTech Connect

    Parcevaux, P.; Sault, P.

    1988-01-26

    A homogeneous lightweight cement slurry for cementing the annulus of an oil or gas well is described comprising: cement, an extender in the form of solid particles, a styrenebutadiene latex, and water, having a specific gravity lying substantially in the range from 1.2 to 1.6 and having a volume ratio of the liquid phase of the slurry to the total volume of the slurry of less than about 70%. A method of cementing the annulus of a wellbore by pumping an aqueous cement slurry through the wellbore and into the annulus the aqueous cement slurry comprising is described comprising cement, an extender in the form of solid particles, a styrenebutadiene latex and water, having a specific gravity lying substantially in the range from 1.2 to 1.6 and having a volume ratio of the liquid phase of the slurry to the total volume of the slurry of less than about 70%.

  16. Liquid antibiotics in bone cement

    PubMed Central

    Chang, Y. H.; Tai, C. L.; Hsu, H. Y.; Hsieh, P. H.; Lee, M. S.; Ueng, S. W. N.

    2014-01-01

    Objectives The objective of this study was to compare the elution characteristics, antimicrobial activity and mechanical properties of antibiotic-loaded bone cement (ALBC) loaded with powdered antibiotic, powdered antibiotic with inert filler (xylitol), or liquid antibiotic, particularly focusing on vancomycin and amphotericin B. Methods Cement specimens loaded with 2 g of vancomycin or amphotericin B powder (powder group), 2 g of antibiotic powder and 2 g of xylitol (xylitol group) or 12 ml of antibiotic solution containing 2 g of antibiotic (liquid group) were tested. Results Vancomycin elution was enhanced by 234% in the liquid group and by 12% in the xylitol group compared with the powder group. Amphotericin B elution was enhanced by 265% in the liquid group and by 65% in the xylitol group compared with the powder group. Based on the disk-diffusion assay, the eluate samples of vancomycin-loaded ALBC of the liquid group exhibited a significantly larger inhibitory zone than samples of the powder or the xylitol group. Regarding the ALBCs loaded with amphotericin B, only the eluate samples of the liquid group exhibited a clear inhibitory zone, which was not observed in either the xylitol or the powder groups. The ultimate compressive strength was significantly reduced in specimens containing liquid antibiotics. Conclusions Adding vancomycin or amphotericin B antibiotic powder in distilled water before mixing with bone cement can significantly improve the efficiency of antibiotic release than can loading ALBC with the same dose of antibiotic powder. This simple and effective method for preparation of ALBCs can significantly improve the efficiency of antibiotic release in ALBCs. Cite this article: Bone Joint Res 2014;3:246–51. PMID:25104836

  17. Engineering Biomaterials to Integrate and Heal: The Biocompatibility Paradigm Shifts

    PubMed Central

    Bryers, James D.; Giachelli, Cecilia M.; Ratner, Buddy D.

    2012-01-01

    This article focuses on one of the major failure routes of implanted medical devices, the foreign body reaction (FBR)—that is, the phagocytic attack and encapsulation by the body of the so-called “biocompatible” biomaterials comprising the devices. We then review strategies currently under development that might lead to biomaterial constructs that will harmoniously heal and integrate into the body. We discuss in detail emerging strategies to inhibit the FBR by engineering biomaterials that elicit more biologically pertinent responses. PMID:22592568

  18. Cementing head apparatus and method of operation

    SciTech Connect

    Harris, M.E.

    1981-01-27

    A cementing head apparatus is disclosed, for injecting a cementing plug into a well casing. The basic apparatus is made up of a head unit, manifold unit, and a tubular mandrel slidable within the manifold unit. Prior to injecting cement into the well casing, the cementing plug is mounted in the head unit and held in place by a shearable O-ring. During the cementing operation, part of the slurry stream flows through the head unit below the cementing plug, and part of the slurry collects in a ''head'' space above the plug. This arrangement provides an equal pressure force on both sides of the plug, to prevent premature injection of the plug into the well casing. When the desired amount of cement has been pumped, the mandrel is moved to a position which cuts off the cement flow and diverts another fluid only into the space above the plug. The resulting pressure above the plug shears the o-ring and allows the plug to follow the slurry down the well casing.

  19. TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.

    ERIC Educational Resources Information Center

    WESSON, CARL E.

    THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

  20. Biocompatibility of chitosan carriers with application in drug delivery.

    PubMed

    Rodrigues, Susana; Dionísio, Marita; López, Carmen Remuñán; Grenha, Ana

    2012-01-01

    Chitosan is one of the most used polysaccharides in the design of drug delivery strategies for administration of either biomacromolecules or low molecular weight drugs. For these purposes, it is frequently used as matrix forming material in both nano and micron-sized particles. In addition to its interesting physicochemical and biopharmaceutical properties, which include high mucoadhesion and a great capacity to produce drug delivery systems, ensuring the biocompatibility of the drug delivery vehicles is a highly relevant issue. Nevertheless, this subject is not addressed as frequently as desired and even though the application of chitosan carriers has been widely explored, the demonstration of systems biocompatibility is still in its infancy. In this review, addressing the biocompatibility of chitosan carriers with application in drug delivery is discussed and the methods used in vitro and in vivo, exploring the effect of different variables, are described. We further provide a discussion on the pros and cons of used methodologies, as well as on the difficulties arising from the absence of standardization of procedures. PMID:24955636

  1. Polyamide 6 composite membranes: properties and in vitro biocompatibility evaluation.

    PubMed

    Risbud, M V; Bhonde, R R

    2001-01-01

    The aim of the present study was to develop polyamide 6 membrane blended with gelatin and chondroitin sulfate using the phase precipitation method and evaluate its in vitro biocompatibility. Morphology of membranes was studied by laser scanning confocal microscopy which allowed the nondestructive visualization of internal bulk morphology of membranes. Membranes exhibited porous morphology with pores spanning across the membrane width with interconnections at various depths. Membranes showed adequate mechanical properties with tensile strengths of 20.10 +/- 0.64 MPa, % strain of 3.01+/-0.07, and modulus of 1082.50+/-23.50 MPa. In vitro biocompatibility of membranes by direct contact test did not show degenerative effects on NIH3T3 cells and also its leach-out products (LOP), as determined by tetrazolium (MTT) and neutral red uptake (NRU) assay. Mouse peritoneal macrophage cultured in contact with membranes and PTFE control showed comparable expression of activation markers such as CD11b/CD18, CD45, CD14, and CD86 suggesting the membranes' non-activating nature. Membrane LOP did not induce excessive proliferation of mouse splenocytes suggesting its non-antigenic nature. Preliminary blood compatibility of membranes was observed with no detectable hemolysis in static incubation assay. Taken collectively, the present data demonstrate that polyamide 6 composite membranes are biocompatible and prospective candidates for tissue engineering applications. PMID:11334186

  2. Biomechanical and biocompatibility characteristics of electrospun polymeric tracheal scaffolds.

    PubMed

    Ajalloueian, Fatemeh; Lim, Mei Ling; Lemon, Greg; Haag, Johannes C; Gustafsson, Ylva; Sjöqvist, Sebastian; Beltrán-Rodríguez, Antonio; Del Gaudio, Costantino; Baiguera, Silvia; Bianco, Alessandra; Jungebluth, Philipp; Macchiarini, Paolo

    2014-07-01

    The development of tracheal scaffolds fabricated based on electrospinning technique by applying different ratios of polyethylene terephthalate (PET) and polyurethane (PU) is introduced here. Prior to clinical implantation, evaluations of biomechanical and morphological properties, as well as biocompatibility and cell adhesion verifications are required and extensively performed on each scaffold type. However, the need for bioreactors and large cell numbers may delay the verification process during the early assessment phase. Hence, we investigated the feasibility of performing biocompatibility verification using static instead of dynamic culture. We performed bioreactor seeding on 3-dimensional (3-D) tracheal scaffolds (PET/PU and PET) and correlated the quantitative and qualitative results with 2-dimensional (2-D) sheets seeded under static conditions. We found that an 8-fold reduction for 2-D static seeding density can essentially provide validation on the qualitative and quantitative evaluations for 3-D scaffolds. In vitro studies revealed that there was notably better cell attachment on PET sheets/scaffolds than with the polyblend. However, the in vivo outcomes of cell seeded PET/PU and PET scaffolds in an orthotopic transplantation model in rodents were similar. They showed that both the scaffold types satisfied biocompatibility requirements and integrated well with the adjacent tissue without any observation of necrosis within 30 days of implantation. PMID:24703872

  3. A biodegradable and biocompatible gecko-inspired tissue adhesive

    PubMed Central

    Mahdavi, Alborz; Ferreira, Lino; Sundback, Cathryn; Nichol, Jason W.; Chan, Edwin P.; Carter, David J. D.; Bettinger, Chris J.; Patanavanich, Siamrut; Chignozha, Loice; Ben-Joseph, Eli; Galakatos, Alex; Pryor, Howard; Pomerantseva, Irina; Masiakos, Peter T.; Faquin, William; Zumbuehl, Andreas; Hong, Seungpyo; Borenstein, Jeffrey; Vacanti, Joseph; Langer, Robert; Karp, Jeffrey M.

    2008-01-01

    There is a significant medical need for tough biodegradable polymer adhesives that can adapt to or recover from various mechanical deformations while remaining strongly attached to the underlying tissue. We approached this problem by using a polymer poly(glycerol-co-sebacate acrylate) and modifying the surface to mimic the nanotopography of gecko feet, which allows attachment to vertical surfaces. Translation of existing gecko-inspired adhesives for medical applications is complex, as multiple parameters must be optimized, including: biocompatibility, biodegradation, strong adhesive tissue bonding, as well as compliance and conformability to tissue surfaces. Ideally these adhesives would also have the ability to deliver drugs or growth factors to promote healing. As a first demonstration, we have created a gecko-inspired tissue adhesive from a biocompatible and biodegradable elastomer combined with a thin tissue-reactive biocompatible surface coating. Tissue adhesion was optimized by varying dimensions of the nanoscale pillars, including the ratio of tip diameter to pitch and the ratio of tip diameter to base diameter. Coating these nanomolded pillars of biodegradable elastomers with a thin layer of oxidized dextran significantly increased the interfacial adhesion strength on porcine intestine tissue in vitro and in the rat abdominal subfascial in vivo environment. This gecko-inspired medical adhesive may have potential applications for sealing wounds and for replacement or augmentation of sutures or staples. PMID:18287082

  4. Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation.

    PubMed

    Wu, Jingjing; Xu, Suju; Qiu, Zhiye; Liu, Peng; Liu, Huiying; Yu, Xiang; Cui, Fu-Zhai; Chunhua, Zhao Robert

    2016-01-01

    Poly(methyl methacrylate) bone cement is widely used in vertebroplasty, joint replacement surgery, and other orthopaedic surgeries, while it also exposed many problems on mechanical property and biocompatibility. Better performance in mechanical match and bone integration is highly desirable. Recently, there reported that incorporation of mineralized collagen into poly(methyl methacrylate) showed positive results in mechanical property and osteointegration ability in vivo. In the present study, we focused on the comparison of osteogenic behavior between mineralized collagen incorporated in poly(methyl methacrylate) and poly(methyl methacrylate). Human marrow mesenchymal stem cells are used in this experiment. Adhesion and proliferation were used to characterize biocompatibility. Activity of alkaline phosphatase was used to assess the differentiation of human marrow mesenchymal stem cells into osteoblasts. Real-time PCR was performed to detect the expression of osteoblast-related markers at messenger RNA level. The results show that osteogenic differentiation on mineralized collagen incorporated in poly(methyl methacrylate) bone cement is more than two times higher than that of poly(methyl methacrylate) after culturing for 21 days. Thus, important mechanism on mineralized collagen incorporation increasing the osteogenetic ability of poly(methyl methacrylate) bone cement may be understood in this concern. PMID:25899928

  5. Principles and applications of cement slurries

    SciTech Connect

    Guillot, D.; Baret, J.F.

    1996-12-31

    The basic principles of oil well cementing are first described together with the main critical engineering constraints encountered during a primary cementing operation, that is, wellbore control, mud displacement, fluid loss control, and gas migration. Then cement slurry properties that are relevant to the process are reviewed and the procedures used to measure these properties are discussed. Particular attention is given to rheological measurements that call be affected by wall slip when losing coaxial cylinder or pipe flow viscometers. This is followed by an overview of the additives that are used to obtained the required cement slurry or set cement properties, like weighting agents/extenders, retarders, dispersants, fluid loss agents, and antisettling agents. Some typical mechanisms of action of these additives are briefly discussed. 30 refs., 23 figs., 2 tabs.

  6. Current Status of Geothermal Well Cement Development

    SciTech Connect

    Kukacka, L. E.

    1981-01-01

    The results of a study made in 1976 indicated that the cements used for well completion deteriorate in the geothermal environments and that the life expectancy of a well, and therefore the economics of geothermal processes, could be improved significantly if better materials were developed. On the basis of this assessment, Brookhaven National Laboratory (BNL) helped the Department of Energy, Division of Geothermal Energy to organize a program to develop materials that meet the estimated design criteria for geothermal well cements. The BNL work involves research on polymer cements and full management of an integrated program involving contract research and industrial participation. The program consists of the following phases: (1) problem definition, (2) cement research and development, (3) property verification, (4) downhole testing, and (5) cementing of demonstration wells.

  7. Rheological Characterization of Oil Cement Suspensions

    NASA Astrophysics Data System (ADS)

    Abderrahmane, Mellak; Moh-Amokrane, Aitouche

    2015-04-01

    This study is a contribution to the study of the rheological behavior of cement suspensions. An oil well is drilled, cased, cemented and set completion. The well drilling is done in several phases then at various diameters to isolate the following problems like land fragile subsidence and poorly consolidated aquifer formations, loss of the movement in the porous and permeable formations. Therefore, it would go down a casing and cementing to work safely. The materials studied were chosen to satisfy the requirements and the problems encountered in real applications in the oil field (casing cementing wells). So it was used an oil hydraulic binder "G". This systematic study of rheological properties of cement Class "G" standardized API (American Petroleum Institute) deal with a formulation which is compatible with the surrounding environment taking account an optimal efficiency.

  8. A new technique for removing intramedullary cement.

    PubMed

    Lowe, Jason A; Vosburg, Caleb; Murtha, Yvonne M; Della Rocca, Gregory J; Crist, Brett D

    2011-12-01

    Treatment of infected long bone fractures or nonunions requires stability for bony union, yet retained implants can lead to persistent infection. Antibiotic cement intramedullary nails, in addition to external fixation, are commonly used to deliver intramedullary antibiotics in infected long bone fractures and provide temporary stability. However, the retrieval of these nails can result in debonding of antibiotic cement, which can require significant time and effort to remove. A variety of methods, including intramedullary hooks, reverse curettes, flexible osteotomes, and stacked guide rods, are commonly used to remove cement fragments. When these methods fail to allow access to the entire length of the canal, the Reamer Irrigator Aspirator system (Synthes, Paoli, PA) serves as an effective method for removing retained intramedullary cement. The surgical technique is described, and three cases illustrate the successful use of the Reamer Irrigator Aspirator system for removal of an antibiotic cement intramedullary nail. PMID:21697739

  9. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 ?M) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge, this is the first report to describe the synthesis of monodispersed, biocompatible, and soluble AuNPs with an average size of 20 nm using Ganoderma spp. This study opens up new possibilities of using an inexpensive and non-toxic mushroom extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, biocompatible, and monodispersed AuNPs, which may have future diagnostic and therapeutic applications. PMID:24940177

  10. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    PubMed Central

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 ?M) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge, this is the first report to describe the synthesis of monodispersed, biocompatible, and soluble AuNPs with an average size of 20 nm using Ganoderma spp. This study opens up new possibilities of using an inexpensive and non-toxic mushroom extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, biocompatible, and monodispersed AuNPs, which may have future diagnostic and therapeutic applications. PMID:24940177

  11. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 ?M) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge, this is the first report to describe the synthesis of monodispersed, biocompatible, and soluble AuNPs with an average size of 20 nm using Ganoderma spp. This study opens up new possibilities of using an inexpensive and non-toxic mushroom extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, biocompatible, and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  12. Cements with low Clinker Content

    NASA Astrophysics Data System (ADS)

    García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.

    2015-11-01

    Hybrid alkaline cements are multi-component systems containing a high percentage of mineral additions (fly ash, blast furnace slag), low proportions (<30%) of Portland clinker and scarce amounts of alkaline activators. The substantially lower amount of clinker needed to manufacture these binders in comparison to ordinary Portland cement is both economically and ecologically beneficial. Their enormous versatility in terms of the raw materials used has made them the object of considerable interest. The present study explored the mechanical strength of binary blends mixes; B1= 20% clinker (CK) + 80% fly ash (FA) and B2=20% clinker + 80% blast furnace slag (BFS), both hydrated in the presence and absence of an alkaline activator specifically designed for this purpose. The use of the activator enhanced the development of early age strength considerably. All the hydrated matrices were characterised with XRD, SEM/EDX and (29Si and 27Al) NMR. The use of the alkaline activator generated reaction products consisting primarily of a mix of gels ((N,C)-A-S-H and C-A-S-H) whose respective proportions were found to depend upon system composition and initial reactivity.

  13. Microscale investigation of arsenic distribution and species in cement product from cement kiln coprocessing wastes.

    PubMed

    Yang, Yufei; Xue, Jingchuan; Huang, Qifei

    2013-01-01

    To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As) in the cement product from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale investigation methods, including electron probe microanalysis (EPMA) and X-ray absorption spectroscopy. In this study, sodium arsenate crystals (Na3AsO412H2O) were mixed with cement production raw materials and calcined to produce cement clinker. Then, clinker was mixed water to prepare cement paste. EPMA results showed that As was generally distributed throughout the cement paste. As content in calcium silicate hydrates gel (C-S-H) was in low level, but higher than that in other cement mineral phases. This means that most of As is expected to form some compounds that disperse on the surfaces of cement mineral phases. Linear combination fitting (LCF) of the X-ray absorption near edge structure spectra revealed that As in the cement paste was predominantly As(V) and mainly existed as Mg3(AsO4)2, Ca3(AsO4)2, and Na2HAsO4. PMID:24223030

  14. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic

    PubMed Central

    Eštoková, Adriana; Palaš?áková, Lenka

    2013-01-01

    The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices) of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in the cements ranged from 8.58–19.1 Bq·kg?1, 9.78–26.3 Bq·kg?1 and 156.5–489.4 Bq·kg?1 for 226Ra, 232Th and 40K, respectively. The radiological parameters in cement samples were calculated as follows: mean radium equivalent activity Raeq = 67.87 Bq·kg?1, gamma index I? = 0.256, alpha index I? = 0.067, the absorbed gamma dose rate D = 60.76 nGy·h?1, external hazard index Hex = 0.182 and internal hazard index Hin was 0.218. The radionuclide activity in composites ranged from 6.84–10.8 Bq·kg?1 for 226Ra, 13.1–20.5 Bq·kg?1 for 232Th and 250.4–494.4 Bq·kg?1 for 40K. The calculated radiological parameters of cements were lower than calculated radiological parameters of cement composites. PMID:24351739

  15. Microscale Investigation of Arsenic Distribution and Species in Cement Product from Cement Kiln Coprocessing Wastes

    PubMed Central

    Yang, Yufei; Xue, Jingchuan; Huang, Qifei

    2013-01-01

    To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As) in the cement product from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale investigation methods, including electron probe microanalysis (EPMA) and X-ray absorption spectroscopy. In this study, sodium arsenate crystals (Na3AsO412H2O) were mixed with cement production raw materials and calcined to produce cement clinker. Then, clinker was mixed water to prepare cement paste. EPMA results showed that As was generally distributed throughout the cement paste. As content in calcium silicate hydrates gel (C-S-H) was in low level, but higher than that in other cement mineral phases. This means that most of As is expected to form some compounds that disperse on the surfaces of cement mineral phases. Linear combination fitting (LCF) of the X-ray absorption near edge structure spectra revealed that As in the cement paste was predominantly As(V) and mainly existed as Mg3(AsO4)2, Ca3(AsO4)2, and Na2HAsO4. PMID:24223030

  16. Treating wells to mitigate flow-after-cementing

    SciTech Connect

    Messenger, J.U.

    1980-11-25

    A method of cementing a well drilled into the earth is disclosed wherein there is formed a pumpable thixotropic cement slurry having essentially zero water separation at downhole conditions and being formed of portland cement, bentonite and water. This cement slurry is injected into a well and allowed to set.

  17. Study of composite cement containing burned oil shale

    E-print Network

    Psaltis, Demetri

    Study of composite cement containing burned oil shale Julien Ston Supervisors : Prof. Karen supplementary cementitious materials (SCMs), allows to reduce the environmental impact and improve cement aims to characterize the effect of BOS in cement and concrete. To this end, 4 Holcim cements were

  18. Guide to Cement-Based Integrated Pavement Solutions

    E-print Network

    Guide to Cement-Based Integrated Pavement Solutions August 2011 #12;Cement-Based Integrated Commercial Residential Recreation LAND USE CEMENT-BASED INTEGRATED PAVEMENT SOLUTIONS 1 2 3 4 5 6 7 8 Conventional Overlays CRCP VIBRATORY COMPACTION Pervious Concrete Full-Depth Reclamation Cement- Treat- ed Base

  19. Portland Cement Concrete Pavement Shannon Golden, Alabama DOT

    E-print Network

    Portland Cement Concrete Pavement Shannon Golden, Alabama DOT PORTLAND CEMENT CONCRETE PAVEMENT may be substituted for part of the required Portland cement. Substitution of mineral admixtures shall Cement shall not exceed the percentages shown in the following table: MAXIMUM ALLOWABLE SUBSTITUTION

  20. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature

    PubMed Central

    Pepla, Erlind; Besharat, Lait Kostantinos; Palaia, Gaspare; Tenore, Gianluca; Migliau, Guido

    2014-01-01

    Summary This study aims to critically summarize the literature about nano-hydroxyapatite. The purpose of this work is to analyze the benefits of using nano-hydroxyapatite in dentistry, especially for its preventive, restorative and regenerative applications. We also provide an overview of new dental materials, still experimental, which contain the nano-hydroxyapatite in its nano-crystalline form. Hydroxyapatite is one of the most studied biomaterials in the medical field for its proven biocompatibility and for being the main constituent of the mineral part of bone and teeth. In terms of restorative and preventive dentistry, nano-hydroxyapatite has significant remineralizing effects on initial enamel lesions, certainly superior to conventional fluoride, and good results on the sensitivity of the teeth. The nano-HA has also been used as an additive material, in order to improve already existing and widely used dental materials, in the restorative field (experimental addition to conventional glass ionomer cements, that has led to significant improvements in their mechanical properties). Because of its unique properties, such as the ability to chemically bond to bone, to not induce toxicity or inflammation and to stimulate bone growth through a direct action on osteoblasts, nano-HA has been widely used in periodontology and in oral and maxillofacial surgery. Its use in oral implantology, however, is a widely used practice established for years, as this substance has excellent osteoinductive capacity and improves bone-to-implant integration. PMID:25506416

  1. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  2. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi (Mastic Beach, NY)

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  3. Silica Transport and Cementation in Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Pebble, C.; Farver, J.; Onasch, C.; Winslow, D.

    2008-12-01

    Silica transport and cementation in quartz aggregates have been experimentally investigated. Starting materials include a natural quartz arenite (Pocono sandstone), sized clasts of synthetic quartz, and sized grains of disaggregated natural sandstones. Experimental charges consisted of amorphous silica powder (~25 mg), AlCl3 powder (~3 mg), 25 wt% NaCl brine solution (~20 mg), and the starting material (~150 mg). The charges were weld-sealed in gold capsules and run in cold-seal pressure vessels at 300°C to 600°C at 150 MPa confining pressure for up to 4 weeks. Detailed calibrations of the furnaces indicate the maximum temperature variation across the length of the sample charges (3-7mm) was <5°C, and typically <3°C. After the experiments, samples were vacuum impregnated with epoxy containing a blue dye and sawn in half along the long axis of the sample charge. The nature and amount of silica transport and cementation in the samples was determined by a combination of Cathodoluminescence (CL), Light Microscopy (LM), and Scanning Electron Microscopy (SEM). Photomosaics of the samples were collected and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement was easily recognized from the quartz grains by the difference in luminescence. The experiments indicate that the presence of amorphous silica results in rapid silica cementation in quartz aggregates (e.g., up to 12% cement by volume in 4 weeks at 450°C). The amount of cementation is a function of substrate type, time, temperature, and ionic strength of the brine. The rate of silica transport through the length of the experimental charge appears to be limited by the silica solubility and its rapid depletion by cementation. Although most of the cement was derived from the amorphous silica, evidence for local dissolution-precipitation was observed. The experiments demonstrate that the mobility of silica, and consequent precipitation of cement, does not require a temperature or pressure gradient as is commonly assumed. Rather, the only requirement is a concentration gradient, which is much easier to maintain in a variety of geologic environments. In addition, we have begun to investigate the important role of iron oxides on silica transport and cementation. Preliminary results show the amount of cementation is increased in the presence of iron oxides, which is most likely due to an increase in silica solubility.

  4. Foamed cement for squeeze cementing low-pressure, highly permeable reservoirs; Design and evaluation

    SciTech Connect

    Chmllowski, W. ); Kondratoff, L.B. )

    1992-12-01

    Four different cement squeezing techniques have been used on wells producing from the Keg River formation in the Rainbow Lake area of Alberta, Canada. This paper evaluates 151 cement squeeze treatments performed at 96 wellsites and compares the use of foam cement vs. conventional squeeze treatments and techniques. Discussion includes key aspects, such as candidate selection, slurry design, treatment design, economic evaluation, and operational considerations.

  5. Green chemistry approach for the synthesis of biocompatible graphene

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kim, Jin-Hoi

    2013-01-01

    Background Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms isolated from its three-dimensional parent material, graphite. One of the most common methods for preparation of graphene is chemical exfoliation of graphite using powerful oxidizing agents. Generally, graphene is synthesized through deoxygenation of graphene oxide (GO) by using hydrazine, which is one of the most widespread and strongest reducing agents. Due to the high toxicity of hydrazine, it is not a promising reducing agent in large-scale production of graphene; therefore, this study focused on a green or sustainable synthesis of graphene and the biocompatibility of graphene in primary mouse embryonic fibroblast cells (PMEFs). Methods Here, we demonstrated a simple, rapid, and green chemistry approach for the synthesis of reduced GO (rGO) from GO using triethylamine (TEA) as a reducing agent and stabilizing agent. The obtained TEA reduced GO (TEA-rGO) was characterized by ultraviolet (UV)–visible absorption spectroscopy, X-ray diffraction (XRD), particle size dynamic light scattering (DLS), scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). Results The transition of graphene oxide to graphene was confirmed by UV–visible spectroscopy. XRD and SEM were used to investigate the crystallinity of graphene and the surface morphologies of prepared graphene respectively. The formation of defects further supports the functionalization of graphene as indicated in the Raman spectrum of TEA-rGO. Surface morphology and the thickness of the GO and TEA-rGO were analyzed using AFM. The presented results suggest that TEA-rGO shows significantly more biocompatibility with PMEFs cells than GO. Conclusion This is the first report about using TEA as a reducing as well as a stabilizing agent for the preparation of biocompatible graphene. The proposed safe and green method offers substitute routes for large-scale production of graphene for several biomedical applications. PMID:23940417

  6. Science and technology of biocompatible thin films for implantable biomedical devices.

    SciTech Connect

    Li, W.; Kabius, B.; Auciello, O.; Materials Science Division

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: (1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye) - the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and (2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human body.

  7. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds.

    PubMed

    Nasonova, M V; Glushkova, T V; Borisov, V V; Velikanova, E A; Burago, A Yu; Kudryavtseva, Yu A

    2015-11-01

    We performed a comparative analysis of physicochemical properties and biocompatibility of scaffolds of different composition on the basis of biodegradable polymers fabricated by casting and electrospinning methods. For production of polyhydroxyalkanoate-based scaffolds by electrospinning method, the optimal concentration of the polymer was 8-10%. Fiber diameter and properties of the scaffold produced by electrospinning method depended on polymer composition. Addition of polycaprolactone increased elasticity of the scaffolds. Bio- and hemocompatibility of the scaffolds largely depended on the composition formulation and method of scaffold fabrication. Polylactide introduced into the composition of polyhydroxybutyrate-oxyvalerate scaffolds accelerated degradation and increased adhesive properties of the scaffolds. PMID:26608377

  8. Biocompatible implants and methods of making and attaching the same

    DOEpatents

    Rowley, Adrian P; Laude, Lucien D; Humayun, Mark S; Weiland, James D; Lotfi, Atoosa; Markland, Jr., Francis S

    2014-10-07

    The invention provides a biocompatible silicone implant that can be securely affixed to living tissue through interaction with integral membrane proteins (integrins). A silicone article containing a laser-activated surface is utilized to make the implant. One example is an implantable prosthesis to treat blindness caused by outer retinal degenerative diseases. The device bypasses damaged photoreceptors and electrically stimulates the undamaged neurons of the retina. Electrical stimulation is achieved using a silicone microelectrode array (MEA). A safe, protein adhesive is used in attaching the MEA to the retinal surface and assist in alleviating focal pressure effects. Methods of making and attaching such implants are also provided.

  9. Biocompatibility and applications of carbon nanotubes in medical nanorobots

    PubMed Central

    Popov, Andrei M; Lozovik, Yurii E; Fiorito, Silvana; Yahia, L’Hocine

    2007-01-01

    The set of nanoelectromechanical systems (NEMS) based on relative motion of carbon nanotubes walls is proposed for use in medical nanorobots. This set includes electromechanical nanothermometer, jet nanoengine, nanosyringe (the last can be used simultaneously as nanoprobe for individual biological molecules and drug nanodeliver). Principal schemes of these NEMS are considered. Operational characteristics of nanothermometer are analyzed. The possible methods of these NEMS actuation are considered. The present-day progress in nanotechnology techniques which are necessary for assembling of NEMS under consideration is discussed. Biocompatibility of carbon nanotubes is analyzed in connection with perspectives of their application in nanomedicine. PMID:18019835

  10. Novel doped calcium phosphate-PMMA bone cement composites as levofloxacin delivery systems.

    PubMed

    Matos, Ana C; Marques, Catarina F; Pinto, Rosana V; Ribeiro, Isabel A C; Gonçalves, Lídia M; Vaz, Mário A; Ferreira, J M F; Almeida, António J; Bettencourt, Ana F

    2015-07-25

    Antibiotic-loaded acrylic bone cements (ALABCs) are well-established and cost-effective materials to control the occurrence of bone and joint infections. However, the inexistence of alternative antibiotics other than those already commercially available and the poor ability to bind to bone tissue hampering its biological function are still major drawbacks of ALABCs clinical application. The concept of this research work is to develop a novel bone cement (BC) drug delivery system composed by Mg- and Sr-doped calcium phosphate (CaP) particles as drug carriers loaded into a lactose-modified acrylic BC, which, to the best of our knowledge, has never been reported. CaP particles are known to promote bone ingrowth and current research is focused on using these carriers as antibiotic delivery systems for the treatment of bone infections, like osteomyelitis. Levofloxacin is a fluoroquinolone with anti-staphylococcal activity and adequate penetration into osteoarticular tissues and increasingly being recommended to manage bone-related infections. Also, the lactose-modified BC matrix, with a more porous structure, has already proved to enhance antibiotic release from the BC inner matrix. This novel BC composite biomaterial has shown improved mechanical integrity, biocompatibility maintenance, and sustained release of levofloxacin, with concentrations over the minimum inhibitory concentration values after a 48h while maintaining antibacterial activity over an 8-week period against Staphyloccocus aureus and Staphyloccocus epidermidis, common pathogens associated with bone infections. PMID:26002570

  11. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol —(1) Identification. Zinc...

  12. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol —(1) Identification. Zinc...

  13. Well cement fluid loss additive and method

    SciTech Connect

    Moran, L.K.; Murray, T.R.

    1991-04-23

    This patent describes a method of cementing a casing in a wellbore. It comprises pumping a cement slurry into the annulus between the casing and the wellbore, the cement slurry containing from 0.2 to 2.0 percent by weight, based on the weight of cement solids in the slurry, of an additive consisting essentially of from 30 to 80 percent by weight of partially hydrolyzed high molecular weight vinyl acetate polymer, calcium sulfate in an amount equivalent to from 10 to 60 percent by weight of calcium sulfate hemihydrate, up to 5 percent by weight of a cross-linking compound for the polyvinyl acetate, and from 0 to 5 percent by weight of defoamer.

  14. A nanochemomechanical investigation of carbonated cement paste

    E-print Network

    Vanzo, James (James F.)

    2009-01-01

    Concrete, and in particular its principal component, cement paste, has an interesting relation with carbon dioxide. Concrete is a carbon dioxide generator-- it is estimated that 5-10% of atmospheric CO? comes from this ...

  15. Supply chain management in the cement industry

    E-print Network

    Agudelo, Isabel

    2009-01-01

    Traditionally supply chain management has played an operational role within cement and mineral extraction commodity companies. Recently, cost reduction projects have brought supply chain management into the limelight. In ...

  16. Fabrication and characterization of a novel carbon fiber-reinforced calcium phosphate silicate bone cement with potential osteo-inductivity.

    PubMed

    Zheng, Jiangjiang; Xiao, Yu; Gong, Tianxing; Zhou, Shuxin; Troczynski, Tom; Yang, Quanzu; Bao, Chongyun; Xu, Xiaoming

    2015-01-01

    The repair of bone defects is still a pressing challenge in clinics. Injectable bone cement is regarded as a promising material to solve this problem because of its special self-setting property. Unfortunately, its poor mechanical conformability, unfavorable osteo-genesis ability and insufficient osteo-inductivity seriously limit its clinical application. In this study, novel experimental calcium phosphate silicate bone cement reinforced by carbon fibers (CCPSC) was fabricated and characterized. First, a compressive strength test and cell culture study were carried out. Then, the material was implanted into the femoral epiphysis of beagle dogs to further assess its osteo-conductivity using a micro-computed tomography scan and histological analysis. In addition, we implanted CCPSC into the beagles' intramuscular pouches to perform an elementary investigation of its osteo-inductivity. The results showed that incorporation of carbon fibers significantly improved its mechanical properties. Meanwhile, CCPSC had better biocompatibility to activate cell adhesion as well as proliferation than poly-methyl methacrylate bone cement based on the cell culture study. Moreover, pronounced biodegradability and improved osteo-conductivity of CCPSC could be observed through the in vivo animal study. Finally, a small amount of osteoid was found at the heterotopic site one month after implantation which indicated potential osteo-inductivity of CCPSC. In conclusion, the novel CCPSC shows promise as a bioactive bone substitute in certain load-bearing circumstances. PMID:26695113

  17. Stem Cells and Calcium Phosphate Cement Scaffolds for Bone Regeneration

    PubMed Central

    Wang, P.; Zhao, L.; Chen, W.; Liu, X.; Weir, M.D.; Xu, H.H.K.

    2014-01-01

    Calcium phosphate cements (CPCs) have excellent biocompatibility and osteoconductivity for dental, craniofacial, and orthopedic applications. This article reviews recent developments in stem cell delivery via CPC for bone regeneration. This includes: (1) biofunctionalization of the CPC scaffold, (2) co-culturing of osteoblasts/endothelial cells and prevascularization of CPC, (3) seeding of CPC with different stem cell species, (4) human umbilical cord mesenchymal stem cell (hUCMSC) and bone marrow MSC (hBMSC) seeding on CPC for bone regeneration, and (5) human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) seeding with CPC for bone regeneration. Cells exhibited good attachment/proliferation in CPC scaffolds. Stem-cell-CPC constructs generated more new bone and blood vessels in vivo than did the CPC control without cells. hUCMSCs, hESC-MSCs, and hiPSC-MSCs in CPC generated new bone and blood vessels similar to those of hBMSCs; hence, they were viable cell sources for bone engineering. CPC with hESC-MSCs and hiPSC-MSCs generated new bone two- to three-fold that of the CPC control. Therefore, this article demonstrates that: (1) CPC scaffolds are suitable for delivering cells; (2) hUCMSCs, hESCs, and hiPSCs are promising alternatives to hBMSCs, which require invasive procedures to harvest with limited cell quantity; and (3) stem-cell-CPC constructs are highly promising for bone regeneration in dental, craniofacial, and orthopedic applications. PMID:24799422

  18. Exposure to moisture alters well cement

    SciTech Connect

    Silk, I.M.

    1986-03-01

    When cement is exposed to moist air, hydration and carbonation occur as reactions with the air's components. These reactions may alter the properties of the cement. In cement chemistry, hydration and carbonation are commonly referred to as aeration, and in the oil industry it is known as prehydration. The concept of aeration should not be confused with the physical injection of compressed air to facilitate the pneumatic transfer of bulk powder, also known as aeration in the oil industry. A major source of moisture during the pneumatic transfer of bulk powder between pressure vessels is the air compressor. A figure shows the amount of gaseous water in air at 1 atm pressure. From the graph, at 15/sup 0/C 80% relative humidity, and 1 atm, air contains 10 g of water/cu m (0.075 gal/Mcf). A transfer using this air would result in 10 kg (2.64 gal) of water being added to a 33-ton batch of bulk cement moved with the typical 1,000 cu m of compressed air. The effect of cooling compressed air to near ambient temperature during transfer is to condense some of the water into an aerosol of submicron droplets. There would be enough water available under these conditions to provide each cement particle of 10 ..mu.. average size with six droplets of water of 0.5 ..mu.. diameter. The remaining gas-phase water would also be available for adsorption. Samples of cement can also be mistreated during sampling, transit, and use or storage in the laboratory. A literature survey showed early strength reduction due to prehydration of Portland cements, but little influence on final strengths. No tests on well cements were found.

  19. Finite element analysis of stress concentration in Class V restorations of four groups of restorative materials in mandibular premolar

    PubMed Central

    N, Shubhashini; N, Meena; Shetty, Ashish; Kumari, Anitha; DN, Naveen

    2008-01-01

    Aim: To study the concentration of stress in class V restoration of four different restorative materials subjected to occlusal load of 100N, 150N, 200N, 250N and to analyse the obtained data with the listed properties of the restorative material. Materials and Methods: Using FEM analysis the stresses generated in a class V lesion in a mandibular premolar was studied. Results: Within the framework of the aforementioned views, and from the results of the study it can be concluded that microfilled composite is the most suitable restorative material followed by flowable composite, glass ionomer cement and resin modified glass ionomer cement. Conclusion: Restoration of Class V lesions with materials of higher modulus of elasticity will enable better stress distribution. PMID:20142899

  20. Management of mucosal fenestration with external root resorption by multidisciplinary approach.

    PubMed

    Bharti, Ramesh; Chandra, Anil; Tikku, Aseem Prakash; Prasad, Veerendra; Shakya, Vijay Kumar; Singhal, Rameshweri

    2014-01-01

    Mucosal fenestration is a clinical condition in which the overlying gingiva is denuded and the root is exposed to the oral cavity. Invasive cervical resorption is an entirely uncommon entity and its aetiology is poorly understood. This case presents an invasive cervical resorption of maxillary right central incisor with fenestration at the cervical third of the tooth. The resorption area was chemomechanically debrided. It was then restored with Mineral Trioxide Aggregate over which pink glass ionomer cement (GC Fuji VII) was placed. Lateral pedicle flap was used to cover the fenestration. The resorptive defect was restored using tooth coloured restorative resin after removal of the pink glass ionomer cement. Orthodontic treatment was continued for correction of malocclusion. PMID:25301425

  1. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    PubMed

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers. PMID:26686105

  2. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents.

    PubMed

    Bowen, Patrick K; Guillory, Roger J; Shearier, Emily R; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy

    2015-11-01

    Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells. PMID:26249616

  3. Tailoring the stealth properties of biocompatible polysaccharide nanocontainers.

    PubMed

    Kang, Biao; Okwieka, Patricia; Schöttler, Susanne; Seifert, Oliver; Kontermann, Roland E; Pfizenmaier, Klaus; Musyanovych, Anna; Meyer, Ralf; Diken, Mustafa; Sahin, Ugur; Mailänder, Volker; Wurm, Frederik R; Landfester, Katharina

    2015-05-01

    Fundamental development of a biocompatible and degradable nanocarrier platform based on hydroxyethyl starch (HES) is reported. HES is a derivative of starch and possesses both high biocompatibility and improved stability against enzymatic degradation; it is used to prepare nanocapsules via the polyaddition reaction at the interface of water nanodroplets dispersed in an organic miniemulsion. The synthesized hollow nanocapsules can be loaded with hydrophilic guests in its aqueous core, tuned in size, chemically functionalized in various pathways, and show high shelf life stability. The surface of the HES nanocapsules is further functionalized with poly(ethylene glycol) via different chemistries, which substantially enhanced blood half-life time. Importantly, methods for precise and reliable quantification of the degree of functionalization are also introduced, which enable the precise control of the chemistry on the capsules' surface. The stealth properties of these capsules is studied both in-vitro and in-vivo. The functionalized nanocapsules serve as a modular platform for specific cell targeting, as they show no unspecific up-taken by different cell types and show very long circulating time in blood (up to 72 h). PMID:25725561

  4. Biocompatible Coating of Encapsulated Cells Using Ionotropic Gelation

    PubMed Central

    Ehrhart, Friederike; Mettler, Esther; Böse, Thomas; Weber, Matthias Max; Vásquez, Julio Alberto; Zimmermann, Heiko

    2013-01-01

    The technique of immunoisolated transplantation has seen in the last twenty years improvements in biocompatibility, long term stability and methods for avoidance of fibrosis in alginate capsules. However, two major problems are not yet solved: living cellular material that is not centered in the capsule is not properly protected from the hosts’ immune system and the total transplant volume needs to be reduced. To solve these problems, we present a method for applying fully biocompatible alginate multilayers to a barium-alginate core without the use of polycations. We report on the factors that influence layer formation and stability and can therefore provide data for full adjustability of the additional layer. Although known for yeast and plant cells, this technique has not previously been demonstrated with mammalian cells or ultra-high viscous alginates. Viability of murine insulinoma cells was investigated by live-dead staining and live cell imaging, for murine Langerhans’ islets viability and insulin secretion have been measured. No hampering effects of the second alginate layer were found. This multi-layer technique therefore has great potential for clinical and in vitro use and is likely to be central in alginate matrix based immunoisolated cell therapy. PMID:24039964

  5. Biocompatible Silk-Poly(Pyrrole) Composite Trilayer Electromechanical Actuators

    NASA Astrophysics Data System (ADS)

    Klemke, Carly; Bradshaw, Nathan; Larson, Jesse; Severt, Sean; Ostrovsky-Snider, Nicholas; Murphy, Amanda; Leger, Janelle

    2015-03-01

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymers (CPs) have some desirable traits for use as an actuator, such as the ability to operate in biologically relevant fluids and responsiveness to low voltages. However CPs alone are limited due to their brittle nature and poor solubility. Recently we have shown that a composite material of silk and the CP poly(pyrrole) (PPy) shows promising characteristics as an actuator; it is mechanically robust as well as fully biocompatible. Initial proof-of-concept experiments demonstrated that these composites bend under an applied voltage (or current) using a simple bilayer device. Here we present the development of a trilayer device, composed of two conductive layers separated by an insulating silk layer. This configuration has twice the active surface area as a bilayer, potentially increasing the amount of mechanical motion per volt applied. We will discuss the fabrication and characterization of these devices, as well as their performance and future applications of this technology.

  6. Evaluation of the biocompatibility of a chitosan scaffold in mice.

    PubMed

    VandeVord, Pamela J; Matthew, Howard W T; DeSilva, Stephen P; Mayton, Lois; Wu, Bin; Wooley, Paul H

    2002-03-01

    Chitosan scaffolds appear to be suitable for a variety of tissue engineering applications. This study addressed the biocompatibility of chitosan in a mouse implantation model. Porous chitosan scaffolds were implanted in mice, and animals were sacrificed after 1, 2, 4, 8, or 12 weeks. Macroscopic inspection of the implantation site revealed no pathological inflammatory responses. Histological assessment indicated marked neutrophil accumulation within the implant, which resolved with increasing implantation time. Gram staining and limulus assays revealed no evidence of infection or endotoxin. Collagen was observed within the chitosan pore spaces, indicating that connective tissue matrix was deposited within the implant. Angiogenic activity associated with the external implant surface was also observed. Cellular immune responses were determined by lymphocyte proliferation assays, and antibody responses were measured using ELISA techniques. These assays indicated a very low incidence of chitosan-specific reactions. Although there was a large migration of neutrophils into the implantation area, there were minimal signs of any inflammatory reaction to the material itself. This preliminary study demonstrates that chitosan has a high degree of biocompatibility in this animal model. Overall, the findings suggest that chitosan may be suitable for the development of implantable materials. PMID:11774317

  7. Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation.

    PubMed

    Zhu, Changlai; Li, Feng; Zhou, Xinyang; Lin, Lin; Zhang, Tianyi

    2014-05-01

    Bacterial cellulose (BC) is a natural biomaterial with unique properties suitable for tissue engineering applications, but it has not yet been used for preparing nerve conduits to repair peripheral nerve injuries. The objectives of this study were to prepare and characterize the Kampuchea-synthesized bacterial cellulose (KBC) and further evaluate the biocompatibility of KBC with peripheral nerve cells and tissues in vitro and in vivo. KBC membranes were composed of interwoven ribbons of about 20-100 nm in width, and had a high purity and the same crystallinity as that of cellulose I?. The results from light and scanning electron microscopy, MTT assay, flow cytometry, and RT-PCR indicated that no significant differences in the morphology and cell function were observed between Schwann cells (SCs) cultured on KBC membranes and glass slips. We also fabricated a nerve conduit using KBC, which was implanted into the spatium intermusculare of rats. At 1, 3, and 6 weeks post-implantation, clinical chemistry and histochemistry showed that there were no significant differences in blood counts, serum biochemical parameters, and tissue reactions between implanted rats and sham-operated rats. Collectively, our data indicated that KBC possessed good biocompatibility with primary cultured SCs and KBC did not exert hematological and histological toxic effects on nerve tissues in vivo. PMID:23666905

  8. Biocompatibility of poly(ether)urethane-gold nanocomposites.

    PubMed

    Hsu, Shan-Hui; Tang, Cheng-Ming; Tseng, Hsiang-Jung

    2006-12-15

    We have prepared the nanocomposites of a polyether-type waterborne polyurethane (PU) incorporated with different amounts (17.4-174 ppm) of gold (Au) nanoparticles ( approximately 5 nm). The nanocomposite containing a certain amount (43.5 ppm) of gold was previously demonstrated to possess the optimal thermal and mechanical properties, as well as much reduced foreign body reactions in subcutaneous rats. In this study, the surface morphology, biocompatibility, oxidative degradation, and free radical scavenging ability of the nanocomposites were characterized in vitro. The nanocomposite at 43.5 ppm of gold ("PU-Au 43.5 ppm") exhibited different surface morphology confirmed by the atomic force microscope. PU-Au 43.5 ppm also showed enhanced cellular proliferation, reduced platelet and monocyte activation, and much less bacterial adhesion, relative to PU alone or nanocomposites at the other Au contents, in general. This better biocompatibility was associated with the surface morphological change in the presence of Au. The oxidative degradation in PU-Au 43.5 ppm was also inhibited. The increased oxidative stability corresponded to the greater free radical scavenging ability of the nanocomposites. PMID:16871514

  9. Biocompatible fluorescent nanoparticles for in vivo stem cell tracking.

    PubMed

    Cova, Lidia; Bigini, Paolo; Diana, Valentina; Sitia, Leopoldo; Ferrari, Raffaele; Pesce, Ruggiero Maria; Khalaf, Rushd; Bossolasco, Patrizia; Ubezio, Paolo; Lupi, Monica; Tortarolo, Massimo; Colombo, Laura; Giardino, Daniela; Silani, Vincenzo; Morbidelli, Massimo; Salmona, Mario; Moscatelli, Davide

    2013-06-21

    Efficient application of stem cells to the treatment of neurodegenerative diseases requires safe cell tracking to follow stem cell fate over time in the host environment after transplantation. In this work, for the first time, fluorescent and biocompatible methyl methacrylate (MMA)-based nanoparticles (fluoNPs) were synthesized through a free-radical co-polymerization process with a fluorescent macromonomer obtained by linking Rhodamine B and hydroxyethyl methacrylate. We demonstrate that the fluoNPs produced by polymerization of MMA-Rhodamine complexes (1) were efficient for the labeling and tracking of multipotent human amniotic fluid cells (hAFCs); (2) did not alter the main biological features of hAFCs (such as viability, cell growth and metabolic activity); (3) enabled us to determine the longitudinal bio-distribution of hAFCs in different brain areas after graft in the brain ventricles of healthy mice by a direct fluorescence-based technique. The reliability of our approach was furthermore confirmed by magnetic resonance imaging analyses, carried out by incubating hAFCs with both superparamagnetic iron oxide nanoparticles and fluoNPs. Our data suggest that these finely tunable and biocompatible fluoNPs can be exploited for the longitudinal tracking of stem cells. PMID:23690139

  10. Biocompatible fluorescent nanoparticles for in vivo stem cell tracking

    NASA Astrophysics Data System (ADS)

    Cova, Lidia; Bigini, Paolo; Diana, Valentina; Sitia, Leopoldo; Ferrari, Raffaele; Pesce, Ruggiero Maria; Khalaf, Rushd; Bossolasco, Patrizia; Ubezio, Paolo; Lupi, Monica; Tortarolo, Massimo; Colombo, Laura; Giardino, Daniela; Silani, Vincenzo; Morbidelli, Massimo; Salmona, Mario; Moscatelli, Davide

    2013-06-01

    Efficient application of stem cells to the treatment of neurodegenerative diseases requires safe cell tracking to follow stem cell fate over time in the host environment after transplantation. In this work, for the first time, fluorescent and biocompatible methyl methacrylate (MMA)-based nanoparticles (fluoNPs) were synthesized through a free-radical co-polymerization process with a fluorescent macromonomer obtained by linking Rhodamine B and hydroxyethyl methacrylate. We demonstrate that the fluoNPs produced by polymerization of MMA-Rhodamine complexes (1) were efficient for the labeling and tracking of multipotent human amniotic fluid cells (hAFCs); (2) did not alter the main biological features of hAFCs (such as viability, cell growth and metabolic activity); (3) enabled us to determine the longitudinal bio-distribution of hAFCs in different brain areas after graft in the brain ventricles of healthy mice by a direct fluorescence-based technique. The reliability of our approach was furthermore confirmed by magnetic resonance imaging analyses, carried out by incubating hAFCs with both superparamagnetic iron oxide nanoparticles and fluoNPs. Our data suggest that these finely tunable and biocompatible fluoNPs can be exploited for the longitudinal tracking of stem cells.

  11. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  12. Biocompatibility and biofouling of MEMS drug delivery devices.

    PubMed

    Voskerician, Gabriela; Shive, Matthew S; Shawgo, Rebecca S; von Recum, Horst; Anderson, James M; Cima, Michael J; Langer, Robert

    2003-05-01

    The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8(TM) photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model. Exudates within the cage were sampled at 4, 7, 14, and 21 days, representative of the stages of the inflammatory response, and leukocyte concentrations (leukocytes/microl) were measured. Overall, the inflammatory responses elicited by these materials were not significantly different than those for the empty cage controls over the duration of the study. The material surface cell density (macrophages or foreign body giant cells, FBGCs), an indicator of in vivo biofouling, was determined by scanning electron microscopy of materials explanted at 4, 7, 14, and 21 days. The adherent cellular density of gold, silicon nitride, silicon dioxide, and SU-8(TM) were comparable and statistically less (p<0.05) than silicon. These analyses identified the MEMS component materials, gold, silicon nitride, silicon dioxide, SU-8(TM), and silicon as biocompatible, with gold, silicon nitride, silicon dioxide, and SU-8(TM) showing reduced biofouling. PMID:12615486

  13. Synthesis and characterization of self-curing hydrophilic bone cements for protein delivery.

    PubMed

    Franco-Marquès, E; Parra, J; Pèlach, M A; Méndez, J A

    2015-07-01

    New formulations of acrylic bone cements for bone defect reparation, based on self-hardening methyl methacrylate (MMA)/methacrylic acid (MAA), with a high capacity for protein delivery, have been developed. The self-curing formulations were prepared by partial substitution of solid phase PMMA microparticles by newly obtained PMAA microspheres. The PMAA microspheres were prepared by inverse suspension polymerization of their monomer and were cross-linked with N,N'-methylene-bis-acrylamide (MBA) (10-15 wt %) to produce stable systems in contact with aqueous media. PMAA microspheres were loaded with hydrolyzed collagen (HC) as a model protein to simulate bone morphogenetic protein delivery useful for hard tissue reconstruction. Solid phase PMMA microparticles in the formulation were partially substituted by new PMAA-HC microspheres and were characterized to determine viability as an acrylic bone cement in minimally invasive surgery. The incorporation of PMAA-HC microspheres decreased peak temperature by 20°C, which minimized thermal necrotic risk after implantation. Mechanical compression tests revealed a behavior, under dry conditions, close to ISO 5833 standard requirements. However, a drastic drop in mechanical strength, ?64%, was obtained after 15 days of immersion in simulated physiological conditions (37°C and pH 7.4) and was attributed to water absorption and a subsequent plasticizing effect. The increase in water uptake and retention enhanced the capability for controlled protein delivery. Finally, the biocompatibility of the cements was determined; some toxicity of the material during the first hours of culture incubation was observed. Later, toxicity was observed to decrease due to nonreacted monomer leaching, which ensured the low toxicity of the already polymerized phase. PMID:25209322

  14. Controlled release of local anesthetic from calcium phosphate bone cements.

    PubMed

    Irbe, Zilgma; Loca, Dagnija; Vempere, Daina; Berzina-Cimdina, Liga

    2012-08-01

    Novel lidocaine containing calcium phosphate bone cements have been developed. Lidocaine release kinetics of these cements have been evaluated. Calcium phosphate cements have a great potential for local drug delivery. Release of local anesthetic, such as lidocaine, at the implant site can be useful for reducing pain immediately after implantation. In this work a local anesthetic - lidocaine hydrochloride - was incorporated into ?-tricalcium phosphate cement. Lidocaine release profile was dependent on cement components used. All cements were characterized by an initial burst release, which can be correlated with cement pH values, followed by gradual drug release. Drug release continued for up to 6 days and was slower, if cement pH was higher. Addition of lidocaine hydrochloride accelerated setting and changed microstructure of the set cement. PMID:24364978

  15. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    SciTech Connect

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  16. An Octacalcium Phosphate Forming Cement

    PubMed Central

    Markovic, M.; Chow, L. C.

    2010-01-01

    The osteoconductive and possibly osteoinductive characteristics of OCP increased the interest in preparation of bone graft materials that contain OCP in its composition. Calcium phosphate cements (CPCs) were prepared using a mixture of ?-tricalcium phosphate (?-TCP) and dicalcium phosphate anhydrous (DCPA), with ?-TCP / DCPA molar ratio of 1/1 and distilled water or 0.5 mol / L phosphate aqueous solution (pH = 6.1 ± 0.1) as the cement liquid. Hardening time was (30 ± 1) min for the CPC mixed with water and (5 ± 1) min for the CPC mixed with phosphate solution. Diametral tensile strength (DTS), porosity (P), and phase composition (powder x-ray diffraction) were determined after the hardened specimens had been immersed in a physiological-like solution (PLS) for 1 d, 3 d, and 7 d. In CPC specimens prepared with water, calcium hydroxyapatite (HA) was formed and DTS and P were (9.03 ± 0.48) MPa and (37.05 ± 0.20) vol % after 1 d, respectively, and (9.15 ± 0.45) MPa and (37.24 ± 0.63) vol % after 3 d, respectively. In CPC specimens prepared with phosphate solution OCP and HA were formed and DTS and P were (4.38 ± 0.49) MPa and (41.44 ± 1.25) vol % after 1 d, respectively,(4.38 ± 0.29) MPa and (42.52 ± 2.15) vol % after 3 d, respectively, and (4.30 ± 0.60) MPa and (41.38 ± 1.65) vol % after 7 d, respectively. For each group DTS and P did not change with PLS immersion time. DTS was significantly higher and P was significantly lower for CPCs prepared with water. HA formation slightly increased with immersion time from 40 mass % after 1 d to 50 mass % after 3 d in CPCs prepared with water. OCP + HA formation increased with immersion time from 30 mass % after 1 d to 35 mass % after 3 d and to 45 mass % after 7 d in CPCs prepared with 0.5 mol / L phosphate solution. PMID:20976025

  17. EVALUATION OF HAZARDOUS WASTE INCINERATION IN CEMENT KILNS AT SAN JUAN CEMENT COMPANY

    EPA Science Inventory

    Cement kiln incineration of chlorinated liquid organic wastes was investigated in a 5-month demonstration program at San Juan Cement Company in Puerto Rico. Chlorinated monocarbon compounds (POHC's) were monitored in the waste and emissions, and the fate of added chlorine in ceme...

  18. Low fluid leakoff cementing compositions and filtration control additive for cement

    SciTech Connect

    Forrest, G.T.

    1993-07-20

    A cementing composition is described, for cementing oil or gas wells penetrating subterranean formations, capable of forming a fluid slurry when mixed with water comprising: dry hydraulic cement; and a filtration control additive of from about 0.2 to 5.0 percent by weight, based upon dry hydraulic cement, of finely ground peanut hulls, wherein 10 percent or more of the finely ground peanut hulls is in the particle size range of less than 20 standard sieve mesh and greater than 500 standard sieve mesh. In a process for cementing a casing in an oil or gas well penetrating a subterranean formation wherein a cement slurry, formed by mixing water and hydraulic cement, is pumped down the well to flow upwardly between the casing and the subterranean formation, the improvement is described comprising: utilizing as a filtration control additive of from about 0.2 to 5.0 percent by weight, based upon dry hydraulic cement, of finely ground peanut hulls, and utilizing finely ground peanut hulls wherein 10 percent or more of the finely ground peanut hulls is in the particle size range of less than 20 standard sieve mesh and greater than 500 standard sieve mesh.

  19. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... review. Background The Commission instituted this review on May 2, 2011 (76 FR 24519) and determined on August 5, 2011 that it would conduct an expedited review (76 FR 50252, August 12, 2011). The Commission... Gray Portland Cement and Cement Clinker From Japan Determination On the basis of the record...

  20. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    SciTech Connect

    Skibsted, Jorgen Hall, Christopher

    2008-02-15

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly.

  1. Analysis of CCRL proficiency cements 151 and 152 using the Virtual Cement and Concrete Testing Laboratory

    SciTech Connect

    Bullard, Jeffrey W. . E-mail: jeffrey.bullard@nist.gov; Stutzman, Paul E.

    2006-08-15

    To test the ability of the Virtual Cement and Concrete Testing Laboratory (VCCTL) software to predict cement hydration properties, characterization of mineralogy and phase distribution is necessary. Compositional and textural characteristics of Cement and Concrete Reference Laboratory (CCRL) cements 151 and 152 were determined via scanning electron microscopy (SEM) analysis followed by computer modeling of hydration properties. The general procedure to evaluate a cement is as follows: (1) two-dimensional SEM backscattered electron and X-ray microanalysis images of the cement are obtained, along with a measured particle size distribution (PSD); (2) based on analysis of these images and the measured PSD, three-dimensional microstructures of various water-to-cement ratios are created and hydrated using VCCTL, and (3) the model predictions for degree of hydration under saturated conditions, heat of hydration (ASTM C186), setting time (ASTM C191), and strength development of mortar cubes (ASTM C109) are compared to experimental measurements either performed at NIST or at the participating CCRL proficiency sample evaluation laboratories. For both cements, generally good agreement is observed between the model predictions and the experimental data.

  2. Nd:YAG laser in endodontics: filling-material edge bordering on a root channel laser cavity

    NASA Astrophysics Data System (ADS)

    Belikov, Andrei V.; Sinelnik, Yuri A.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1997-12-01

    For the very first time it is represented a study of filling material edge bordering upon root channel cavity modified with a laser. As a filling material it is used a glass ionomer cement. It is demonstrated that Nd:YAG laser radiation effects on increase of grade of edge bordering on the average of 20 - 30% at temperature rise of no more than 2 - 3 degrees in periodontium area in a period of operation.

  3. Alternative Fuel for Portland Cement Processing

    SciTech Connect

    Anton K. Schindler; Steve R. Duke; Thomas E. Burch; Edward W. Davis; Ralph H. Zee; David I. Bransby; Carla Hopkins; Rutherford L. Thompson; Jingran Duan; Vignesh Venkatasubramanian; Stephen Giles.

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted at a full-scale cement plant with alternative fuels to examine their compatibility with the cement production process. Construction and demolition waste, woodchips, and soybean seeds were used as alternative fuels at a full-scale cement production facility. These fuels were co-fired with coal and waste plastics. The alternative fuels used in this trial accounted for 5 to 16 % of the total energy consumed during these burns. The overall performance of the portland cement produced during the various trial burns performed for practical purposes very similar to the cement produced during the control burn. The cement plant was successful in implementing alternative fuels to produce a consistent, high-quality product that increased cement performance while reducing the environmental footprint of the plant. The utilization of construction and demolition waste, woodchips and soybean seeds proved to be viable replacements for traditional fuels. The future use of these fuels depends on local availability, associated costs, and compatibility with a facilityâ??s production process.

  4. Cement Allergy: A Case Study.

    PubMed

    Gamez, Marcia

    2015-01-01

    The purpose of this article was to educate nurses about the possibility of patients having an allergic reaction to polymethyl methacrylate (PMMA). Although rare, an allergic reaction to PMMA or the bone cement used to adhere the metal components of a total knee arthroplasty (TKA) to the bone can cause aseptic loosening of a TKA ( S. A. Edwards & J. Gardiner, 2007). The prevalence of PMMA allergies in the population has not been reported in the literature; therefore, no high-level research studies on the subject are available ( K. Kaplan, C. Della Valle, K. Haines, & J. D. Zuckerman, 2002). A case study and literature review was used to construct this article. The patient, L.W., a 61-year-old, white woman, is a nail technician with a history of right knee pain, stiffness, soreness, and a decreased range of motion for one and a half years following a TKA. The complications from a PMMA allergy could be avoided by adding one or two questions to the patient's history and physical form. A complete history could also do away with the need for additional testing and increased medical expenses for the patient and the healthcare system as a whole. PMID:26213878

  5. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    SciTech Connect

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-01

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  6. Translational Applications of Nanodiamonds: From Biocompatibility to Theranostics

    NASA Astrophysics Data System (ADS)

    Moore, Laura Kent

    Nanotechnology marks the next phase of development for drug delivery, contrast agents and gene therapy. For these novel systems to achieve success in clinical translation we must see that they are both effective and safe. Diamond nanoparticles, also known as nanodiamonds (NDs), have been gaining popularity as molecular delivery vehicles over the last decade. The uniquely faceted, carbon nanoparticles possess a number of beneficial properties that are being harnessed for applications ranging from small-molecule drug delivery to biomedical imaging and gene therapy. In addition to improving the effectiveness of a variety of therapeutics and contrast agents, initial studies indicate that NDs are biocompatible. In this work we evaluate the translational potential of NDs by demonstrating efficacy in molecular delivery and scrutinizing particle tolerance. Previous work has demonstrated that NDs are effective vehicles for the delivery of anthracycline chemotherapeutics and gadolinium(III) based contrast agents. We have sought to enhance the gains made in both areas through the addition of active targeting. We find that ND-mediated targeted delivery of epirubicin to triple negative breast cancers induces tumor regression and virtually eliminates drug toxicities. Additionally, ND-mediated delivery of the MRI contrast agent ProGlo boosts the per gadolinium relaxivity four fold, eliminates water solubility issues and effectively labels progesterone receptor expressing breast cancer cells. Both strategies open the door to the development of targeted, theranostic constructs based on NDs, capable of treating and labeling breast cancers at the same time. Although we have seen that NDs are effective vehicles for molecular delivery, for any nanoparticle to achieve clinical utility it must be biocompatible. Preliminary research has shown that NDs are non-toxic, however only a fraction of the ND-subtypes have been evaluated. Here we present an in depth analysis of the cellular response to multiple subtypes of NDs, including pristine, amine functionalized, fluorescent and daunorubicin-loaded NDs. Furthermore, we present the most comprehensive analysis of in vivo tolerance of nanodiamonds to date. We find that NDs, regardless of subtype, are non-toxic to multiple cell types. Furthermore, we find that NDs are well tolerated by mice and rats at both acute and sub-acute time frames. These results indicate that NDs are biocompatible and will serve as the foundation for future clinical translation of diamond-based imaging, therapeutic or theranostic agents.

  7. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    NASA Astrophysics Data System (ADS)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the experiments run to date suggest that the cement-pozzolans used will be an effective seal for CO2, as long as the well was properly installed and is initially undamaged.

  8. Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia.

    SciTech Connect

    Liu, X.; Novosad, V.; Rozhkova, E. A.; Chen, H.; Yefremenko, V.; Pearson, J.; Torno, M.; Bader, S. D.; Rosengart, A. J.; Univ. Chicago Pritzker School of Medicine

    2007-06-01

    We report a simplified single emulsion (oil-in-water) solvent evaporation protocol to synthesize surface functionalized biocompatible magnetic nanospheres by using highly concentrated hydrophobic magnetite (gel) and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol-maleimide) (PLA-PEG-maleimide) (10:1 by mass) polymers. The as-synthesized particles are approximately spherical with an average diameter of 360-370 nm with polydispersity index of 0.12-0.18, are surface-functionalized with maleimide groups, and have saturation magnetization values of 25-40 emu/g. The efficiency of the heating induced by 400-kHz oscillating magnetic fields is compared for two samples with different magnetite loadings. Results show that these nanospheres have the potential to provide an efficient cancer-targeted hyperthermia.

  9. [Initial results of the biocompatibility, cytotoxicity and genotoxicity of Aramid].

    PubMed

    Wening, J V; Langendorff, U; Delling, G; Marquardt, H; Hoffmann, M; Jungbluth, K H

    1989-10-01

    Tissue biocompatibility of aramid fibres was tested over up to 16 weeks after subcutaneous (A = nine) and intraarticular (B = twelve animals) implantation in the rabbit. Histologically all specimens showed connective tissue ingrowth with interspersed mesenchymal cells. Foreign body giant cells were numerous and demonstrated intracellular dye or aramid particles. Following implantation into the knee joint the aramid ligament was invaded by longitudinally arranged, stress-oriented collagen fibres as soon as four weeks postoperatively. In spite of reactive new bone formation a functional bony anchorage in the bore holes did not take place during the 16 week period. Additional investigations in bacteria (particularly the Salmonella-microsome Assay according to Ames) and mammalian cell cultures showed no evidence for any cyto- or genotoxic effects of aramid fibres. PMID:2694563

  10. Biocompatible optical needle array for antibacterial blue light therapy

    NASA Astrophysics Data System (ADS)

    Guimarães, Caio; An, Jeesoo; Humar, Matjaz; Goth, Will; Yun, Andy

    2015-03-01

    Biocompatible Optical Needle Array (BONA) is showing to be a powerful tool complementing the novel antibacterial blue light therapy. BONA is able to deliver light to deeper skin tissue layers successfully as shown in experiments. In this study, we will discuss BONA's design, mechanical and optical properties, production method, plus propose improvements to optimize it all. A special skin phantom with photosensitizer was developed in order to investigate how light is delivered inside the tissue. The phantom shows the light scattering pattern through photobleach, allowing us to determine length, thickness and spacing between needles. Other quantitative optical properties as penetration depth were determined using a different phantom (using PDMS). Mechanical properties as needle resistance were determined using one axis of a custom biaxial tensile strain device. The results led us to conclude that besides the great results, there is still room for improvements regarding tip sharpness and manufacturing time and cost, which would be solved with the enhanced fabrication method proposed.

  11. Biodegradation and biocompatibility of a degradable chitosan vascular prosthesis

    PubMed Central

    Kong, Xiaoying; Xu, Wenhua

    2015-01-01

    An instrument made by ourselves was used to fabricate biodegradable chitosan-heparin artificial vascular prosthesis with small internal diameter (2 mm) and different crosslinking degree from biodegradable chitosan, chitosan derivates and heparin. In vivo and in vitro degradation studies, inflammatory analysis and electron microscope scanning of this artificial vascular prosthesis were performed. It was observed that 50% of the prosthesis decomposed in vivo and was replaced by natural tissues. The degradation process of the chitosan-heparin artificial vascular prosthesis of small diameter could be controlled by changing the crosslinking degree. This kind of artificial vascular prosthesis shows good biocompatibility that can be controllability designed to achieve desirable in vascular replacement application. PMID:26064241

  12. Properties of silver nanostructure-coated PTFE and its biocompatibility

    NASA Astrophysics Data System (ADS)

    Siegel, Jakub; Polívková, Markéta; Kasálková, Nikola Slepi?ková; Kolská, Zde?ka; Švor?ík, Václav

    2013-09-01

    Silver nanolayers were sputtered on polytetrafluoroethylene (PTFE) and subsequently transformed into discrete nanoislands by thermal annealing. The Ag/PTFE composites prepared under different conditions were characterized by several complementary methods (goniometry, UV-visible spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy), and new data on the mechanism of Ag layer growth and Ag atom clustering under annealing were obtained. Biocompatibility of selected Ag/PTFE composites was studied in vitro using vascular smooth muscle cell (VSMC) cultures. Despite of the well-known inhibitory properties of silver nanostructures towards broad spectrum of bacterial strains and cells, it was found that very thin silver coating stimulates both adhesion and proliferation of VSMCs.

  13. Biocompatible hydrodispersible magnetite nanoparticles used as antibiotic drug carriers.

    PubMed

    Bolocan, Alexandra; Mihaiescu, Dan Eduard; Andronescu, Ecaterina; Voicu, Georgeta; Grumezescu, Alexandru Mihai; Ficai, Anton; Vasile, Bogdan ?tefan; Bleotu, Coralia; Chifiriuc, Mariana Carmen; Pop, Corina Silvia

    2015-01-01

    Here we report a newly synthesized vectorizing nanosystem, based on hydrodispersible magnetite nanoparticles (HMNPs) with an average size less than 10 nm, obtained by precipitation of Fe(II) and Fe(III) in basic solution of p-aminobenzoic acid (PABA), characterized by high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), differential thermal analysis coupled with thermogravimetric analysis (DTA-TGA) and bioevaluated for cytotoxicity and antibiotic delivery in active forms. The obtained data demonstrate that HMNPs can be used as an efficient drug delivery system, for clinically relevant antimicrobial drugs. HMNPs antimicrobial activity depended on the loaded drug structure and the tested microbial strain, being more efficient against Pseudomonas aeruginosa, comparing with the Escherichia coli strain. The novel HMNPs demonstrated an acceptable biocompatibility level, being thus a very good candidate for biomedical applications, such as drug delivery or targeting. PMID:26193200

  14. Revised 08-2014 TASK FORCE ARTICLES OF AGREEMENT FOR PORTLAND CEMENT

    E-print Network

    Revised 08-2014 TASK FORCE ARTICLES OF AGREEMENT FOR PORTLAND CEMENT AND BLENDED CEMENTS CEMENT OF CEMENT COMPANY: FACILITY LOCATED AT CEMENT TYPE & ASSOCIATED PRODUCT NAME 1. The host state agency that performs testing for acceptance of hydraulic cement plants within its boundaries shall have a laboratory

  15. New technology eliminates bulking in cementing operations

    SciTech Connect

    Anderson, J.W.; Buchanan, A.I.; Susanto, A.

    1996-12-31

    For years the drilling industry has wrestled with the problems associated with well cementing. The introduction of pneumatic bulk systems increased cement slurry mixing rates but accurate density control still eluded the experts. Many companies have introduced process controlled mixing systems but these are both expensive and not totally reliable. A new cementing system, that does not rely on bulking, has become available to the industry a storable oilwell cement slurry that can be kept in a liquid state indefinitely and made to set as and when required. Operators in Indonesia are now benefiting from this new technology. Slurries are mixed and tested to ensure they meet design specifications well before they are required on site. The {open_quotes}Base Slurry{close_quotes} or {open_quotes}Liquid Cement Premix{close_quotes} (LCP), which typically has a density of 16.0 pounds per gallon (ppg), is transported to the rig, diluted to produce the required density and pumped, ensuring a homogeneous slurry from start to finish.

  16. Plug cementing: Horizontal to vertical conditions

    SciTech Connect

    Calvert, D.G.; Heathman, J.F.; Griffith, J.E.

    1995-12-31

    This paper presents an in-depth study of cement plug placement that was conducted with large-scale models for the improvement of plug cementing practices and plug integrity. Common hole and workstring geometries were examined with various rheology and density ratios between the drilling fluid and cement. The critical conditions dictating the difference between success and failure for various wellbore angles and conditions were explored, and the mechanisms controlling slurry movement before and after placement are now better understood. An understanding of these mechanisms allows the engineer to better tailor a design to specific hole conditions. Controversial concepts regarding plug-setting practices have been examined and resolved. The cumulative effects of density, rheology, and hole angle are major factors affecting plug success. While the Boycott effect and an extrusion effect were observed to be predominant in inclined wellbores, a spiraling or {open_quotes}roping{close_quotes} effect controls slurry movement in vertical wellbores. Ultimate success of a cement plug can be obtained if allowances are made for these effects in the job design, provided all other previously published recommended placement practices are followed. Results of this work can be applied to many sidetracking and plug-to-abandon operations. Additionally, the understanding of the fluid movement (creep) mechanisms holds potential for use in primary and remedial cementing work, and in controlling the placement of noncementitious fluids in the wellbore.

  17. New technology improves cement-slurry design

    SciTech Connect

    1997-08-01

    A promising geothermal concession is located in a tea plantation on the island of Java. A drilling project was undertaken to evaluate and harness this resource for geothermal electricity generation. The program used two slimhole rigs to drill appraisal wells to establish the potential of the field. Geothermal wells present the most severe conditions to which cements are exposed. As a result, their performance requirements are among the most stringent. Geothermal cements are usually designed to provide at least 1,000 psi compressive strength and no more than 1.0-md water permeability. While casings with tight annular clearances require that good cementing practices be observed, they also create conditions that demand much greater care and control in slurry and procedure design than regular casing cementation. Free-water and thickening-time requirements are similar for geothermal and slimhole conditions, but the use of perlite and silica flour complicate the rheology required for geothermal wells. The paper describes liquid-cement premix, applications, laboratory testing, field pilot testing, and field operations.

  18. Fe-containing phases in hydrated cements

    SciTech Connect

    Dilnesa, B.Z.; Wieland, E.; Lothenbach, B.; Dähn, R.; Scrivener, K.L.

    2014-04-01

    In this study synchrotron X-ray absorption spectroscopy (XAS) has been applied, an element specific technique which allows Fe-containing phases to be identified in the complex mineral mixture of hydrated cements. Several Fe species contributed to the overall Fe K-edge spectra recorded on the cement samples. In the early stage of cement hydration ferrite was the dominant Fe-containing mineral. Ferrihydrite was detected during the first hours of the hydration process. After 1 day the formation of Al- and Fe-siliceous hydrogarnet was observed, while the amount of ferrihydrite decreased. The latter finding agrees with thermodynamic modeling, which predicts the formation of Fe-siliceous hydrogarnet in Portland cement systems. The presence of Al- and Fe-containing siliceous hydrogarnet was further substantiated in the residue of hydrated cement by performing a selective dissolution procedure. - Highlights: • Fe bound to ferrihydrite at early age hydration • Fe found to be stable in siliceous hydrogarnet at longer term age hydration • Fe-containing AFt and AFm phases are less stable than siliceous hydrogarnet. • The study demonstrates EXAFS used to identify amorphous or poorly crystalline phases.

  19. Hemocompatibility and biocompatibility of antibacterial biomimetic hybrid films

    SciTech Connect

    Coll Ferrer, M. Carme; Eckmann, Uriel N.; Composto, Russell J.; Eckmann, David M.

    2013-11-01

    In previous work, we developed novel antibacterial hybrid coatings based on dextran containing dispersed Ag NPs (? 5 nm, DEX-Ag) aimed to offer dual protection against two of the most common complications associated with implant surgery, infections and rejection of the implant. However, their blood-material interactions are unknown. In this study, we assess the hemocompatibility and biocompatibility of DEX-Ag using fresh blood and two cell lines of the immune system, monocytes (THP-1 cells) and macrophages (PMA-stimulated THP-1 cells). Glass, polyurethane (PU) and bare dextran (DEX) were used as reference surfaces. PU, DEX and DEX-Ag exhibited non-hemolytic properties. Relative to glass (100%), platelet attachment on PU, DEX and DEX-Ag was 15%, 10% and 34%, respectively. Further, we assessed cell morphology and viability, pro-inflammatory cytokines expression (TNF-? and IL-1?), pro-inflammatory eicosanoid expression (Prostaglandin E{sub 2}, PGE{sub 2}) and release of reactive oxygen species (ROS, superoxide and H{sub 2}O{sub 2}) following incubation of the cells with the surfaces. The morphology and cell viability of THP-1 cells were not affected by DEX-Ag whereas DEX-Ag minimized spreading of PMA-stimulated THP-1 cells and caused a reduction in cell viability (16% relative to other surfaces). Although DEX-Ag slightly enhanced release of ROS, the expression of pro-inflammatory cytokines remained minimal with similar levels of PGE{sub 2}, as compared to the other surfaces studied. These results highlight low toxicity of DEX-Ag and hold promise for future applications in vivo. - Highlights: • We examined specific blood-contact reactions of dextran doped with Ag NPs coatings. • Biocompatibility was assessed with THP-1 cells and PMA-stimulated THP-1 cells. • Glass, polyurethane and dextran were used as reference surfaces. • Hybrid coatings exhibited non-hemolytic properties. • Low toxicity, inflammatory response and ROS suggest potential for in vivo use.

  20. Microemulsions for use as spaces in well cementation

    SciTech Connect

    Carriay, J.; De Lautrec, J.

    1980-09-23

    New application of microemulsions as buffers between the slurry and the cement in the cementation of oil wells. The microemulsions contain an amphoteric surfactant selected from the group of alkyl dimethyl betaines.

  1. Identification of Concrete Incompatibilities Using Cement Paste Rheology 

    E-print Network

    Jang, Se Hoon

    2010-07-14

    as well as heat evolution abnormalities. The objectives of the present study were to examine the applicability of the dynamic shear rheometer (DSR) to measure cement paste rheology, and to identify cement and mineral/chemical admixture incompatibilities...

  2. Cemented implant restoration: A technique for minimizing adverse biologic consequences.

    PubMed

    Galván, Guillermo; Kois, John C; Chaiyabutr, Yada; Kois, Dean

    2015-10-01

    The purpose of this technique was to eliminate excess cement from the implant restoration by using a 2-step cementation process. A custom acrylic resin abutment, a duplicate of the titanium abutment, is fabricated before the restoration is cemented. At cementation, cement is placed inside the restoration, which is placed onto the acrylic resin abutment outside the mouth. The majority of the excess cement from inside the restoration is expressed onto the acrylic resin abutment. The restoration is then placed on the titanium abutment inside the mouth. The result is a minimum amount of excess cement expressed intraorally. This technique minimizes the adverse biological consequences of leaving excess cement beneath implant-supported restorations. PMID:26119018

  3. 3. Cement and Plaster Warehouse, north facade. Loading ramp on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Cement and Plaster Warehouse, north facade. Loading ramp on the right. Utility building, intrusion, on the far right. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA

  4. 4. Cement and Plaster Warehouse, southeast corner, showing alterations; pent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Cement and Plaster Warehouse, southeast corner, showing alterations; pent roof, window and door openings, siding, brick foundation sheathing. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA

  5. 6. Cement and Plaster Warehouse, interior. View looking south. Original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Cement and Plaster Warehouse, interior. View looking south. Original wood roof truss can be seen at upper left. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA

  6. Natural Iron-rich Acidic Spring Flowing into Cement Creek

    USGS Multimedia Gallery

    Photograph showing natural iron-rich acidic spring flowing into Cement Creek near Silverton, Colorado.  Similar natural springs contribute water to Cement Creek and other tributaries of the upper Animas River. ...

  7. Energy conservation potential of Portland cement particle size distribution control

    SciTech Connect

    Tresouthick, S.W.; Weiss, S.J.

    1986-01-01

    The main objective of Phase 3 is to develop practical economic methods of controlling the particles size distribution of portland cements using existing or modified mill circuits with the principal aim of reducing electrical energy requirements for cement manufacturing.

  8. Bone Cement Dislodgement: One of Complications Following Bone Cement Augmentation Procedures for Osteoporotic Spinal Fracture

    PubMed Central

    Ha, Kee-Yong; Yoo, Sung-Rim; Molon, Jan Noel

    2015-01-01

    Bone cement augmentation procedures have been getting more position as a minimally invasive surgical option for osteoporotic spinal fractures. However, complications related to these procedures have been increasingly reported. We describe a case of bone cement dislodgement following cement augmentation procedure for osteoporotic spinal fracture by reviewing the patient's medical records, imaging results and related literatures. A 73-year-old woman suffering back and buttock pain following a fall from level ground was diagnosed as an osteoporotic fracture of the 11th thoracic spine. Percutaneous kyphoplasty was performed for this lesion. Six weeks later, the patient complained of a recurrence of back and buttock pain. Radiologic images revealed superior dislodgement of bone cement through the 11th thoracic superior endplate with destruction of the lower part of the 10th thoracic spine. Staged anterior and posterior fusion was performed. Two years postoperatively, the patient carries on with her daily living without any significant disability. Delayed bone cement dislodgement can occur as one of complications following bone cement augmentation procedure for osteoporotic spinal fracture. It might be related to the presence of intravertebral cleft, lack of interdigitation of bone cement with the surrounding trabeculae, and possible damage of endplate during ballooning procedure. PMID:26113965

  9. Cogrinding significance for calcium carbonate-calcium phosphate mixed cement. II. Effect on cement properties.

    PubMed

    Tadier, Solène; Bolay, Nadine Le; Fullana, Sophie Girod; Cazalbou, Sophie; Charvillat, Cédric; Labarrère, Michel; Boitel, Daniel; Rey, Christian; Combes, Christèle

    2011-11-01

    In the present study, we aim to evaluate the contribution of the cogrinding process in controlling calcium carbonate-dicalcium phosphate dihydrate cement properties. We set a method designed to evaluate phase separation, usually occurring during paste extrusion, which is quantitative, reliable, and discriminating and points out the determining role of cogrinding to limit filter-pressing. We show that solid-phase cogrinding leads to synergistic positive effects on cement injectability, mechanical properties, and radio-opacity. It allows maintaining a low (<0.4 kg) and constant load during the extrusion of paste, and the paste's composition remains constant and close to that of the initial paste. Analogous behavior was observed when adding a third component into the solid phase, especially SrCO(3) as a contrasting agent. Moreover, the cement's mechanical properties can be enhanced by lowering the L/S ratio because of the lower plastic limit. Finally, unloaded or Sr-loaded cements show uniform and increased optical density because of the enhanced homogeneity of dry component distribution. Interestingly, this study reveals that cogrinding improves and controls essential cement properties and involves processing parameters that could be easily scaled up. This constitutes a decisive advantage for the development of calcium carbonate-calcium phosphate mixed cements and, more generally, of injectable multicomponent bone cements that meet a surgeon's requirements. PMID:21953727

  10. Utilization of clay wastes containing boron as cement additives

    SciTech Connect

    Oezdemir, Mine; Oeztuerk, Nese Uygan

    2003-10-01

    The utilization of clay wastes (CW) containing boron as cement additives was investigated. The effect of CW on mechanical and chemical properties of cement prepared by adding CW to clinker and gypsum was determined. The results obtained were compared with Portland cement properties and Turkish standards (TS) values. It was determined that the first clay waste (CW1) and the second clay waste (CW2) may be used as cement additives up to 5% and 10%, respectively.

  11. Revision of hemiarthroplasty to total hip arthroplasty using the cement-in-cement technique.

    PubMed

    Mounsey, E J; Williams, D H; Howell, J R; Hubble, M J

    2015-12-01

    Revision of a cemented hemiarthroplasty of the hip may be a hazardous procedure with high rates of intra-operative complications. Removing well-fixed cement is time consuming and risks damaging already weak bone or perforating the femoral shaft. The cement-in-cement method avoids removal of intact cement and has shown good results when used for revision total hip arthroplasty (THA). The use of this technique for the revision of a hemiarthroplasty to THA has not been previously reported. A total of 28 consecutive hemiarthroplasties (in 28 patients) were revised to a THA using an Exeter stem and the cement-in-cement technique. There were four men and 24 women; their mean age was 80 years (35 to 93). Clinical and radiographic data, as well as operative notes, were collected prospectively and no patient was lost to follow-up. Four patients died within two years of surgery. The mean follow up of the remainder was 70 months (25 to 124). Intra-operatively there was one proximal perforation, one crack of the femoral calcar and one acetabular fracture. No femoral components have required subsequent revision for aseptic loosening or are radiologically loose. Four patients with late complications (14%) have since undergone surgery (two for a peri-prosthetic fracture, and one each for deep infection and recurrent dislocation) resulting in an overall major rate of complication of 35.7%. The cement-in-cement technique provides reliable femoral fixation in this elderly population and may reduce operating time and rates of complication. Cite this article: Bone Joint J 2015;97-B:1623-7. PMID:26637675

  12. Hydration kinetics of cement composites with varying water-cement ratio using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Ray, Shaumik; Dash, Jyotirmayee; Devi, Nirmala; Sasmal, Saptarshi; Pesala, Bala

    2015-03-01

    Cement is mixed with water in an optimum ratio to form concrete with desirable mechanical strength and durability. The ability to track the consumption of major cement constituents, viz., Tri- and Dicalcium Silicates (C3S, C2S) reacting with water along with the formation of key hydration products, viz., Calcium-Silicate-Hydrate (C-S-H) which gives the overall strength to the concrete and Calcium Hydroxide (Ca(OH)2), a hydration product which reduces the strength and durability, using an efficient technique is highly desirable. Optimizing the amount of water to be mixed with cement is one of the main parameters which determine the strength of concrete. In this work, THz spectroscopy has been employed to track the variation in hydration kinetics for concrete samples with different water-cement ratios, viz., 0.3, 0.4, 0.5 and 0.6. Results show that for the sample with water-cement ratio of 0.3, significant amount of the C3S and C2S remain unreacted even after the initial hydration period of 28 days while for the cement with water-cement ratio of 0.6, most of the constituents get consumed during this stage. Analysis of the formation of Ca(OH)2 has been done which shows that the concrete sample with water-cement ratio of 0.6 produces the highest amount of Ca(OH)2 due to higher consumption of C3S/C2S in presence of excess water which is not desirable. Samples with water-cement ratio of 0.4 and 0.5 show more controlled reaction during the hydration which can imply formation of an optimized level of desired hydration products resulting in a more mechanically strong and durable concrete.

  13. Development of fluidized bed cement sintering technology

    SciTech Connect

    Mukai, Katsuji

    1994-12-31

    In the new system presented in this paper, the cement clinker is sintered, not in a rotary kiln, but in two different furnaces: a spouted bed kiln and a fluidized bed kiln. The heat generated in the process of cooling the cement clinker is recovered by a fluidized bed cooler and a packed bed cooler, which are more efficient than the conventional coolers. Compared with the rotary kiln system, the new technology significantly reduces NO{sub x} emissions, appreciably cuts energy consumption, and reduces CO{sub 2} emissions as well. Thus, the new system is an efficient cement sintering system that is friendly to the global environment. In this paper, we describe this new technology as one of the applied technologies at an industrial level that is being developed in the Clean Coal Technology Project, and we present the results from test operations at our pilot plant.

  14. On calcium phosphate bio-cements

    NASA Astrophysics Data System (ADS)

    Stepuk, A. A.; Veresov, A. G.; Putlyaev, V. I.

    2007-10-01

    The prospect of clinical applications of bio-cements in bone implantation and tissue substitution implies strict requirements as regards material reliability and robustness. We suggest a technique to enhance the mechanical properties of bio-cements based on ?-Ca3(PO4)2. Various types of mechanical testing, including compressive deformation analysis, proved that the most robust bio-cement might be fabricated of ?-TCP and 1% chitosan. The kinetics of transformation in experiments was considered in order to define the best selection of substance ratios and terms of stabilization. It is essential to increase the ultimate strength and other properties so that they are close to those of cortical bone and this was achieved with the additives chitosan and hydroxyapatite nanoparticles.

  15. High temperature expanding cement composition and use

    DOEpatents

    Nelson, Erik B. (Tulsa County, OK); Eilers, Louis H. (Rogers County, OK)

    1982-01-01

    A hydratable cement composition useful for preparing a pectolite-containing expanding cement at temperatures above about 150.degree. C. comprising a water soluble sodium salt of a weak acid, a 0.1 molar aqueous solution of which salt has a pH of between about 7.5 and about 11.5, a calcium source, and a silicon source, where the atomic ratio of sodium to calcium to silicon ranges from about 0.3:0.6:1 to about 0.03:1:1; aqueous slurries prepared therefrom and the use of such slurries for plugging subterranean cavities at a temperature of at least about 150.degree. C. The invention composition is useful for preparing a pectolite-containing expansive cement having about 0.2 to about 2 percent expansion, by volume, when cured at at least 150.degree. C.

  16. Well cementing method using acid removable low density well cement compositions

    SciTech Connect

    King, B.J.; Totten, P.L.

    1993-05-25

    A method of forming a cement plug or seal in a subterranean zone penetrated by a well bore which can subsequently be removed by dissolution in acid is described comprising: pumping a low density cement composition which sets into a hard substantially impermeable mass into said zone comprised of magnesium oxide, an aqueous magnesium chloride solution, calcium carbonate filler, a foaming agent, a foam stabilizer and a gas entrained in said slurry in an amount sufficient to obtain a desired slurry density; and allowing said cement composition to set in said zone.

  17. ASCE Journal of Materials in Civil Engineering, 20 (7), 502-508, 2008. Early-Age Properties of Cement-Based Materials: I. Influence of Cement Fineness

    E-print Network

    Bentz, Dale P.

    of Cement-Based Materials: I. Influence of Cement Fineness Dale P. Bentz1* , Gaurav Sant1 , and Jason Weiss1 Abstract The influence of cement fineness on early-age properties of cement-based materials is investigated deformation. Measurements of these properties for two cements of widely different fineness are supplemented

  18. ELIMINATION OF WATER POLLUTION BY RECYCLING CEMENT PLANT KILN DUST

    EPA Science Inventory

    Excessive amounts of alkalies can have deleterious effects upon the process of cement manufacture and the product. Normally much of the alkali present in cement raw materials is volatilized in the cement kiln and condenses on the particles of kiln dust which are carried out of th...

  19. Primary Cementing of a Highly Deviated Oil Well

    E-print Network

    Fournier, John J.F.

    Primary Cementing of a Highly Deviated Oil Well by Mariana Carrasco-Teja B.Sc., Instituto Tecnol. The study comes from the primary cementing of highly deviated oil and gas wells. Highly deviated wells are those in which part of the wellbore is nearly horizontal. Primary cementing is a critical process

  20. EVOLUTION OF CEMENTED PASTE BACKFILL SATURATED HYDRAULIC CONDUCTIVITY AT

    E-print Network

    Aubertin, Michel

    EVOLUTION OF CEMENTED PASTE BACKFILL SATURATED HYDRAULIC CONDUCTIVITY AT EARLY CURING TIME Jovette in using them as a component of cemented paste backfill (CPB). CPB consists of a mixture of tailings tests performed on cemented paste backfill samples at different curing times are presented. Results show

  1. Cementation in Los Angeles basin: compositional and isotopic constraints

    SciTech Connect

    Coffman, R.L.

    1988-03-01

    Evidence of carbonate and laumontite cementation has been documented in wells from several oil fields within the Los Angeles basin. Petrographic examination reveals that carbonate cementation can be both early and late diagenetic phases. Early calcite commonly replaces the matrix but preserves the detrital grains, whereas later carbonate cement may replace matrix and fill porosity resulting from earlier dissolution. Laumontite cement is commonly observed replacing the matrix and detrital components (primarily plagioclase). Compositional variations (particularly trace elements) occur within carbonate cements and are useful in determining the relative timing of multiple cementation events, whereas the composition of laumontite cement seldom varies from its stoichiometric formula. Oxygen isotope analyses of the cements permit limits to be placed on the temperatures of crystallization, which also places further constraints on the timing of cementation. Strontium isotopes are also being used as a tracer to determine the potential sources of calcium necessary to crystallize both calcite and laumontite. Comparison of strontium isotope ratios (/sup 87/Sr//sup 86/Sr) from calcite and laumontite cements reveal whether the source of calcium is the same for both cements or different. The determination of possible calcium sources together with the timing of cementation enable calculations to be made concerning the timing and amount of mass transfer that has occurred.

  2. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted...

  3. Making a Cement Upper Molding Surface for Compression Molding

    E-print Network

    Chisholm, Rex L.

    1 Making a Cement Upper Molding Surface for Compression Molding of Shape&Roll Prosthetic Foot Cores is shown above. This manual describes how to create the upper molding surface out of cement. The manual entitled "Making a Cement Tray for Compression Molding of Shape&Roll Prosthetic Foot Cores" describes how

  4. MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE

    E-print Network

    Meyer, Christian

    MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE Feng Lin Submitted in partial and Sciences COLUMBIA UNIVERSITY 2006 #12;MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE;ABSTRACT MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE Feng Lin A mathematical

  5. Communication Seebeck effect in steel fiber reinforced cement

    E-print Network

    Chung, Deborah D.L.

    Communication Seebeck effect in steel fiber reinforced cement Sihai Wen, D.D.L. Chung* Composite Abstract Cement pastes containing short steel fibers, which contribute to electron conduction, exhibit.0% by mass of cement gives a higher value of the absolute thermoelectric power than a content of 0.5% by mass

  6. Characterizing Curing-Cement Slurries by Permeability, Tensile Strength,

    E-print Network

    Backe, Knut

    Characterizing Curing-Cement Slurries by Permeability, Tensile Strength, and Shrinkage K.R. Backe oilwell cements. The results show that the curing characteristics are a function of temperature and that there is a correlation between shrinkage and cement content. The paper also introduces a new mechanism for gas migration

  7. ORIGINAL ARTICLE Percutaneous Cement Injection into a Created Cavity for

    E-print Network

    Casto, Joseph M.

    ORIGINAL ARTICLE Percutaneous Cement Injection into a Created Cavity for the Treatment of Vertebral vertebroplasty (PV) procedure during which a cavity is created manually in the VBF, allowing the cement to be in included extrusion of cement in two patients (an incidence of 5.7% of the levels operated) and two patients

  8. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or...

  9. Microscale Investigations of Ni Uptake by Cement Using a

    E-print Network

    Microscale Investigations of Ni Uptake by Cement Using a Combination of Scanning Electron Laboratory, IMX, Ecole Polytechnique Fe´de´ral de Lausanne (EPFL), 1015 Lausanne, Switzerland Cement is used-level radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim

  10. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in...

  11. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted...

  12. Communication Effect of stress on the electric polarization in cement

    E-print Network

    Chung, Deborah D.L.

    Communication Effect of stress on the electric polarization in cement Sihai Wen, D.D.L. Chung the extent of electric polarization in the transverse direction in cement pastes with and without carbon smaller when carbon fibers were present. It was smaller for carbon fiber cement paste containing silica

  13. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in...

  14. Microcapsule-Induced Toughening of Bone Cement Gina M. Miller

    E-print Network

    Sottos, Nancy R.

    27 Microcapsule-Induced Toughening of Bone Cement Gina M. Miller Senior in Aerospace Engineering R. White, and TAM Prof. Nancy R. Sottos Acrylic bone cement is the primary material used cement, it may be possible to extend the lifetime of the implant, thus reducing the occurrence

  15. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted...

  16. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or...

  17. A NONLINEAR LEARNING CONTROL APPROACH FOR A CEMENT MILLING PROCESS

    E-print Network

    Efe, Mehmet Önder

    A NONLINEAR LEARNING CONTROL APPROACH FOR A CEMENT MILLING PROCESS 1 OGUZ H. DAGCI, 2 M. ÖNDER EFE, control of a cement milling circuit is studied with time-varying set values, time-varying plant parameters popularity since the field of nonlinear control still does not offer systematized procedures. Cement mill

  18. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in...

  19. NIST Special Publication 1173 Virtual Cement and Concrete

    E-print Network

    #12;NIST Special Publication 1173 Virtual Cement and Concrete Testing Laboratory Version 9.5 User;Virtual Cement and Concrete Testing Laboratory Version 9.5 User Guide Jeffrey W. Bullard1 Materials-8615 This document serves as the user's guide for the Virtual Cement and Con- crete Testing Laboratory (VCCTL

  20. LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS

    EPA Science Inventory

    Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...

  1. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted...

  2. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or...

  3. Cement Distribu-on in Vertebroplasty By Annick Baur

    E-print Network

    Psaltis, Demetri

    Cement Distribu-on in Vertebroplasty By Annick Baur Objec&ve The objec-ve of the project is to create a numerical model able to predict the cement distribu-on posi-on and the cement quan-ty to inject can be offered to the surgeon

  4. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted...

  5. Communication Electric polarization in carbon fiber-reinforced cement

    E-print Network

    Chung, Deborah D.L.

    Communication Electric polarization in carbon fiber-reinforced cement Sihai Wen, D.D.L. Chung-reinforced cement paste during resistivity measurement. The effect was diminished by increasing the conductivity of the cement paste through the use of carbon fibers that were more crystalline, the increase of the fiber

  6. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or...

  7. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in...

  8. Making a Cement Tray for Compression Molding of

    E-print Network

    Chisholm, Rex L.

    Making a Cement Tray for Compression Molding of Shape&Roll Prosthetic Foot Cores Andrew Hansen, Ph&Roll Prosthetic Foot cores is shown above. This manual describes how to create the cement tray. The manual entitled "Making a Cement Upper Molding Surface for Compression Molding of Shape&Roll Prosthetic Foot Cores

  9. COMPOSITE PORTLAND CEMENT CONCRETE PAVEMENTS (Tollway) Effective: January 30, 2012

    E-print Network

    COMPOSITE PORTLAND CEMENT CONCRETE PAVEMENTS (Tollway) Effective: January 30, 2012 Revised: May 8 tomography (MIT) device. Ternary concrete mix refers to concrete that incorporates portland cement, ground materials. A Type IT blended ternary cement in accordance with AASHTO M 240 shall be acceptable. A Type IP

  10. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or...

  11. Cementation of Colloidal Particles on Electrodes in a Galvanic Microreactor

    E-print Network

    Aksay, Ilhan A.

    processing, galvanic corrosion, cementation, reaction products INTRODUCTION Colloidal crystals have16,17 have been well-understood, the effect of the reaction parameters on the cementationCementation of Colloidal Particles on Electrodes in a Galvanic Microreactor Linda Jan, Christian

  12. The suitability of a supersulfated cement for nuclear waste immobilisation

    NASA Astrophysics Data System (ADS)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  13. A geotechnical description of fresh cement groutfiltration and consolidation behaviour

    E-print Network

    Bolton, Malcolm

    - ments known as Portland cements, which set and hard- en as a result of hydration reactions between waterA geotechnical description of fresh cement groutÐfiltration and consolidation behaviour J. D. Mc cement grouts by pressure filtration is examined, and the consolidation behaviour of the filtered

  14. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in...

  15. User's Guide to the NIST Virtual Cement and Concrete Testing

    E-print Network

    Bentz, Dale P.

    , cement hydration, computer modeling, concrete testing, microstructure, simulation, virtual laboratoryUser's Guide to the NIST Virtual Cement and Concrete Testing Laboratory. Version 1.0 Dale P. Bentz Glenn P. Forney NISTIR 6583 #12;NISTIR 6583 User's Guide to the NIST Virtual Cement and Concrete Testing

  16. MULTIMEDIA ASSESSMENT AND ENVIRONMENTAL RESEARCH NEEDS OF THE CEMENT INDUSTRY

    EPA Science Inventory

    This project was initiated to obtain a comprehensive assessment of the cement industry and its environmental research needs. This report contains a profile of the U.S. cement industry; an analysis of the cement manufacturing processes; a discussion of waste stream characteristics...

  17. Nano- and mesoscale modeling of cement matrix

    NASA Astrophysics Data System (ADS)

    Yu, Zechuan; Lau, Denvid

    2015-04-01

    Atomistic simulations of cementitious material can enrich our understanding of its structural and mechanical properties, whereas current computational capacities restrict the investigation length scale within 10 nm. In this context, coarse-grained simulations can translate the information from nanoscale to mesoscale, thus bridging the multi-scale investigations. Here, we develop a coarse-grained model of cement matrix using the concept of disk-like building block. The objective is to introduce a new method to construct a coarse-grained model of cement, which could contribute to the scale-bridging issue from nanoscale to mesoscale. PAC codes: 07.05.Tp, 62.25.-g, 82.70.Dd

  18. Durability of pulp fiber-cement composites

    NASA Astrophysics Data System (ADS)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness losses) during wet/dry cycling. SCMs have been found to be effective in mitigating composite degradation through several processes, including a reduction in the calcium hydroxide content, stabilization of monosulfate by maintaining pore solution pH, and a decrease in ettringite reprecipitation accomplished by increased binding of aluminum in calcium aluminate phases and calcium in the calcium silicate hydrate (C-S-H) phase.

  19. Investigating calcium polyphosphate addition to a conventional calcium phosphate cement for bone-interfacing applications

    NASA Astrophysics Data System (ADS)

    Krausher, Jennifer Lynn

    Calcium phosphate cements (CPCs) are of great interest in bone regeneration applications because of their biocompatibility and osteoconductivity, and as delivery vehicles for therapeutics; however, delivery applications have been limited by adverse interactions between therapeutics and the cement setting reaction. Amorphous calcium polyphosphate (CPP) yields a biodegradable material with a demonstrated drug delivery capacity following appropriate processing. The incorporation of drug-loaded CPP into a CPC is under consideration as a method of minimizing adverse interactions and extending drug release. This thesis represents the first investigation into the effects of CPP addition on the properties, setting and antibiotic release profile of a conventional apatitic calcium phosphate cement. As-made, gelled and vancomycin-loaded CPP particulate were added to the powder component of a conventional dicalcium phosphate/tetracalcium phosphate CPC. The setting behaviour, set properties and microstructure of the resulting CPP-CPCs were evaluated with setting time testing (Gilmore needle method), pH testing, mechanical testing, SEM imaging, XRD and FTIR analysis. In vitro degradation and elution behaviour were evaluated by monitoring calcium release (atomic absorbance spectroscopy), mechanical strength and vancomycin release (UV-visual spectrophotometry). CPP addition was found to increase the setting time, reduce the mechanical strength and inhibit the conversion of the CPC starting powders to the set apatitic phase. The most likely mechanism for the observed effect of CPP addition was the adsorption of polyphosphate chains on the particle surfaces, which would inhibit the dissolution of the starting powders and the conversion of apatite precursor phases to apatite, leading to reduced mechanical properties. The detrimental effects of CPP were reduced by limiting the CPP fraction to less than a few weight per cent and increasing the size of the CPP particulate. CPP-containing CPCs were found to degrade more rapidly than the CPP-free controls. The ability of drug-loaded CPP to minimize adverse interactions between drug and cement could not be determined because of the adverse effect of CPP itself and the low vancomycin loads studied, but there was evidence that vancomycin release from apatitic CPCs could be extended through the use of loaded CPP.

  20. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    SciTech Connect

    Wong, H.S. Buenfeld, N.R.

    2009-10-15

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  1. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    NASA Astrophysics Data System (ADS)

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-06-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.

  2. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    PubMed Central

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility. PMID:24961911

  3. Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials

    E-print Network

    Bentz, Dale P.

    Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials Dale P. Bentz* Building and Fire Research Laboratory, National Institute-Jochen Haecker* Wilhelm Dyckerhoff Institut, 65203 Wiesbaden, Germany The influence of cement particle

  4. Development of an Improved Cement for Geothermal Wells

    SciTech Connect

    Trabits, George

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  5. Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation

    PubMed Central

    Dioguardi, M; Perrone, D; Troiano, G; Laino, L; Ardito, F; Lauritano, F; Cicciù, M; Muzio, L Lo

    2015-01-01

    Custom-cast posts and cores are usually used to treat endodontically treated teeth. However, several researches have underlined how these devices may be a much higher elastic modulus than the supporting dentine and the difference in the modulus could lead to stress concentrating in the cement lute, leading to failure. The role of the cement seems to play a fundamental role in order to transfer the strength during the chewing phases. Aim of this research is to record the rate of cytotoxicity of five different dual-cured resin cements used for fiber posts cementation. We tested the cytotoxicity of this five materials on MG63 osteoblast-like cells through two different methods: MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide succinate) assay which tests for mitochondrial enzyme activity6 and xCELLigence® system. PMID:26309592

  6. Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation.

    PubMed

    Dioguardi, M; Perrone, D; Troiano, G; Laino, L; Ardito, F; Lauritano, F; Cicciù, M; Muzio, L Lo

    2015-01-01

    Custom-cast posts and cores are usually used to treat endodontically treated teeth. However, several researches have underlined how these devices may be a much higher elastic modulus than the supporting dentine and the difference in the modulus could lead to stress concentrating in the cement lute, leading to failure. The role of the cement seems to play a fundamental role in order to transfer the strength during the chewing phases. Aim of this research is to record the rate of cytotoxicity of five different dual-cured resin cements used for fiber posts cementation. We tested the cytotoxicity of this five materials on MG63 osteoblast-like cells through two different methods: MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide succinate) assay which tests for mitochondrial enzyme activity(6) and xCELLigence® system. PMID:26309592

  7. Use of concrete technology to improve performance of lightweight cements

    SciTech Connect

    1998-08-01

    Cementing casings and liners in weak formations with a low fracture gradient or lost-circulation zones requires the use of low-density slurries to reduce the hydrostatic pressure of the fluid column while placing the cement slurry. These lightweight slurries must perform satisfactorily during placement and after the cement sets. However, they usually develop low compressive strength, high porosity, and high permeability, which limit their application. A new engineering approach to designing lightweight cement slurries allows the physical properties of set cement to be decoupled from the slurry density.

  8. Use of marker fluid in cementing offshore wells

    SciTech Connect

    Gallus, J.P.

    1983-07-05

    Cementing casing in an offshore well is disclosed by displacing a drilling fluid with a settable cement slurry wherein there is injected into the annulus between the sidewall of the well and the casing ahead of the cement slurry a slug of a visually identifiable marker fluid containing cement, water, particulate carbon black, coal dust, and a surface active agent; visually observing when the fluid being displaced from the annulus changes from drilling fluid to marker fluid, and shutting in the well to allow the cement slurry to set.

  9. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    SciTech Connect

    Mehta, P.K.; Persoff, P.

    1980-04-01

    A process for making hydraulic cements from spent oil shale is described in this paper. Inexpensive cement is needed to grout abandoned in-situ retorts of spent shale for subsidence control, mitigation of leaching, and strengthening the retorted mass in order to recover oil from adjacent pillars of raw shale. A hydraulic cement was produced by heating a 1:1 mixture of Lurgi spent shale and CaCO{sub 3} at 1000 C for one hour. This cement would be less expensive than ordinary portland cement and is expected to fulfill the above requirements.

  10. Differential comminution of gypsum in cements ground in different mills

    SciTech Connect

    Panigrahy, P.K.; Goswami, G.; Panda, J.D.; Panda, R.K

    2003-07-01

    Identical mixes containing fixed amounts of ordinary Portland cement clinker and gypsum were ground in two types of industrial cement mills - viz. ball mill (BM) and vertical roller mill (VRM) - to identical Blaine fineness to examine the effect of any possible differential comminution of gypsum on cement setting times. The present investigation demonstrates that during comminution of cements, the degree of crystallinity of gypsum, as determined by X-ray diffraction (XRD), changes with used grinding mills and this causes changes in setting times of similar cements even when ground to identical Blaine fineness.

  11. Micro-thermal stress analysis of cement based pavement composite

    SciTech Connect

    Li, G.; Zhao, Y.; Pang, S.S.; Huang, W.

    1998-12-31

    A four-layer sphere model for microscopic thermal analysis was proposed based upon the structural form of cement based pavement composites. Using temperature induced stresses of pavement structure as the external field, the micro-thermal stresses of two types of cement based pavement composite were calculated. The results showed that, by introducing the low stiffness rubberized asphalt in the interphase of coarse aggregate phase and cement mortar phase of Portland cement concrete, the interfacial thermal stresses could be reduced significantly, thus improving crack resistance of the pavement material under low temperature environment. Factors affecting micro-thermal stress of cement based pavement composite were discussed.

  12. Capture of green-house carbon dioxide in Portland cement

    SciTech Connect

    Wagh, A.S.; Singh, D.; Pullockaran, J.; Knox, L.

    1993-12-31

    A novel process has been developed to sequester green-house carbon dioxide produced by the cement industry in precast cement products. Typically, 10--24 wt % of CO{sub 2} produced by calcination of calcium carbonate during clinkering of the cement may be captured. The carbonation process also cures the cement paste within minutes into hard bodies. The process maintains high pH conditions during curing, to allow conventional steel reinforcement of concrete. The process will save time and money to the cement industry, and at the same time, help them to comply with the Clean Air Act by sequestering the green-house carbon dioxide.

  13. Cement-Implant Interface Contamination: Possible Reason of Inferior Clinical Outcomes for Rough Surface Cemented Stems

    PubMed Central

    Wang, Tian; Pelletier, Matthew H; Bertollo, Nicky; Crosky, Alan; Walsh, William R

    2013-01-01

    Background: Shape-closed cemented implants rely on a stronger bond and have displayed inferior clinical outcomes when compared to force-closed designs. Implant contamination such as saline, bone marrow and blood prior to cement application has the potential to affect the cement-implant bond. The consequences of implant contamination were investigated in this study. Methods: Fifty Titanium alloy (Ti-6Al-4V) dowels were separated into ten groups based on surface roughness and contaminant, and then cemented in polyvinyl chloride tubes. Push-out testing was performed at 1mm per minute. The roughness of the dowel surface was measured before and after the testing. The dowel surface and cement mantel were analyzed using a Scanning Electron Microscopy (SEM) to determine the distribution and characteristics of any debris and contaminants on the surface. Results: Contaminants largely decreased stem-cement interfacial shear strength, especially for rough surfaces. Saline produced the greatest decrease, followed by blood. The effect of bone marrow was less pronounced and similar to that of oil. Increasing surface roughness increased the interfacial bonding strength, even with contaminants. There was a non-significant increase in mean bonding strength for smooth surfaces with bone marrow and oil contamination. SEM showed that contaminants influence the interfacial bond by different mechanisms. More debris was found on rough samples following testing. Conclusions: The results of this study underscore the importance of keeping an implant free from contamination, and suggest if contamination does occur, a saline rinse may further decrease the stability of an implant. The deleterious effects of contamination on rough surface cement bonding were considerable, and indicate that contamination at the time of surgery may, in part, contribute to inferior clinical outcomes for rough surfaced cemented stems. PMID:23898352

  14. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem'' wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above it's melting point (120{degree}C), combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991. 12 refs., 8 figs., 3 tabs.

  15. A unique experience with foamed cement

    SciTech Connect

    Piot, B.; Ferriere, R.; Fraboulet, B.

    1994-12-31

    An extensive laboratory program showed that foamed cement was the only technically feasible solution to prepare a floating cement plug for solving severe lost circulation problems in big caverns. The technique had, however, to be adapted to fit well conditions that are relatively unusual in the oil field: the cement slurry should not become diluted and destabilized upon exiting the drill pipe and entering the 60-plus inches wellbore and the huge caves, several feet in radius, both filled with sea water. Moreover, the foam had to remain stable, even when surrounded by large volume of water, until cement setting. Therefore a technique of using protective fluids was devised. In addition, logistics dictated the use of compressed air rather than nitrogen to prepare the foamed slurry. Therefore special gas metering and regulation devices were used for the first time in the oil field in order to automate the process and get a perfect control of the slurry density whatever the slurry mixing and pumping rates. Before field implementation, the metering and regulation device was successfully yard tested, the gas phase being supplied by nitrogen bottles. The successful field implementation with air compressors, together with the protective fluid technique to combat lost circulation in loose coral reef and in highly fractured dolomitic formation, is described.

  16. PULSED LASER ABLATION OF CEMENT AND CONCRETE

    EPA Science Inventory

    Laser ablation was investigated as a means of removing radioactive contaminants from the surface and near-surface regions of concrete from nuclear facilities. We present the results of ablation tests on cement and concrete samples using a pulsed Nd:YAG laser with fiber optic beam...

  17. Kinetics of cobalt cementation on zinc powder

    SciTech Connect

    Polcaro, A.M.; Palmas, S.; Dernini, S.

    1995-09-01

    The cementation process may be considered an interesting method to treat dilute solutions containing metal ions. The aim of the process may be either the removal of pollutant metals or the recovery of economically valuable metals such as Ag from spent photographic liquors. The kinetics of cobalt cementation on Zn powder from zinc sulfate concentrated solutions in the presence of copper and antimony ions was investigated in stirred tank reactors. The composition of the solutions was in the range usually utilized in industrial zinc electrowinning plants. The results showed that the reaction occurs by means of the formation of crystallization nuclei of noble metals on the zinc powder, followed by the cementation of cobalt ions on these newly-formed nuclei. Mass transfer to the reaction surface is shown to be the controlling step in copper and antimony reduction, and an equation correlating mass transfer coefficients has been determined. A kinetic equation, which interprets the influence of stirring speed and solution composition on cobalt cementation, has also been proposed.

  18. Preparation and properties of calcium sulfate bone cement incorporated with silk fibroin and Sema3A-loaded chitosan microspheres

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Pi, Bin; Wang, Jin-Ning; Zhu, Xue-Song; Yang, Hui-Lin

    2015-03-01

    To search for new bioactive materials which can be used as the substitute of bone repairing and drug carriers, Sema3A-loaded chitosan microspheres (SLCM) and silk fibroin (SF) were mixed with calcium sulfate cement (CSC). SEM, particle size analysis and swelling rate determination were performed to study properties of the microspheres. The drug loading, encapsulation efficiency and drug release rate were determined by ELISA. Microspheres with different SLCM weight contents (0.5%, 1% and 5%) were prepared to determine which one has the strongest mechanical properties and the appropriate setting time. It was revealed that CSC/SF/0.5SLCM has satisfactory mechanical properties, and its in vitro biocompatibility was assessed by MTS. Chitosan microspheres (5-18 ?m) were globular, the surface was smooth, and the swelling rate is (77.02 ± 5.57)%. With this formula, the setting time was increased with the addition of SLCM in CSC/SF, and the cumulative drug release rate is 44.62% in 28 d. XRD results demonstrate that the main component is calcium sulfate. Also it was found that CSC/SF/0.5SLCM supports the growth of MC3T3 cells. Thus the preparation of CSC/SF/0.5SLCM was reliable, and the products had good structures, physical properties and biocompatibility, appearing to be a promising bone substitute material.

  19. Effect of Bone Cement Implantation on Haemodynamics in Elderly Patients and Preventive Measure in Cemented Hemiarthroplasty

    PubMed Central

    Qi, Xiangbei; Zhang, Yingze; Pan, Jinshe; Ma, Lijie; Wang, Lin; Wang, Jianzhao

    2015-01-01

    This study was to investigate the influence of bone cement implantation on haemodynamics and the preventive effect of epinephrine hydrochloride on pulmonary embolism in elderly patients with cemented semihip replacement. 128 patients were retrospectively analyzed. The patients were treated with (group A, 64 cases) or without (group B, 64 cases) epinephrine hydrochloride saline. The monitoring indicators included systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), and pulse oxygen saturation (SPO2). The indicators of the two groups were compared before and 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 minutes after bone cement implantation. Analysis of variance and SNK-q test were used for the statistical analysis. Blood pressure and SPO2 of group B decreased with statistical difference (P < 0.05) and HR increased without statistical significance, comparing with those of group A. In group A, SBP, DBP, MAP, HR, and SPO2 after bone cement implantation did not change significantly at each time point comparing with before implantation (P > 0.05). Bone cement implantation has significant influence on hemodynamics in elderly patients with hemiarthroplasty. Flushing the bone marrow cavity with saline epinephrine hydrochloride is an effective measure to reduce the incidence of bone cement pulmonary embolism. PMID:26413535

  20. Mechanical properties of a cemented porous implant interface

    PubMed Central

    Beckmann, Nicholas A; Bitsch, Rudi G; Seeger, Joern B; Klotz, Matthias CM; Kretzer, Jan Philippe; Jaeger, Sebastian

    2014-01-01

    Background Revision arthroplasty often requires anchoring of prostheses to poor-quality or deficient bone stock. Recently, newer porous materials have been introduced onto the market as additional, and perhaps better, treatment options for revision arthroplasty. To date, there is no information on how these porous metals interface with bone cement. This is of clinical importance, since these components may require cementing to other prosthesis components and occasionally to bone. Methods We created porous metal and bone cylinders of the same size and geometry and cemented them in a well-established standardized setting. These were then placed under tensile loading and torsional loading until failure was achieved. This permitted comparison of the porous metal/cement interface (group A) with the well-studied bone/cement interface (group B). Results The group A interface was statistically significantly stronger than the group B interface, despite having significantly reduced depth of cement penetration: it showed a larger maximum tensile force (effect size 2.7), superior maximum tensile strength (effect size 2.6), greater maximum torsional force (effect size 2.2), and higher rotational stiffness (effect size 1.5). Interpretation The newer porous implants showed good interface properties when cemented using medium-viscosity bone cement. The axial and rotational mechanical strength of a porous metal/cement interface appeared to be greater than the strength of the standard bone/cement interface. These results indicate that cementing of porous implants can provide great stability in situations where it is needed. PMID:24798109