Science.gov

Sample records for biodiversity red list

  1. Measuring Global Trends in the Status of Biodiversity: Red List Indices for Birds

    PubMed Central

    2004-01-01

    The rapid destruction of the planet's biodiversity has prompted the nations of the world to set a target of achieving a significant reduction in the rate of loss of biodiversity by 2010. However, we do not yet have an adequate way of monitoring progress towards achieving this target. Here we present a method for producing indices based on the IUCN Red List to chart the overall threat status (projected relative extinction risk) of all the world's bird species from 1988 to 2004. Red List Indices (RLIs) are based on the number of species in each Red List category, and on the number changing categories between assessments as a result of genuine improvement or deterioration in status. The RLI for all bird species shows that their overall threat status has continued to deteriorate since 1988. Disaggregated indices show that deteriorations have occurred worldwide and in all major ecosystems, but with particularly steep declines in the indices for Indo-Malayan birds (driven by intensifying deforestation of the Sundaic lowlands) and for albatrosses and petrels (driven by incidental mortality in commercial longline fisheries). RLIs complement indicators based on species population trends and habitat extent for quantifying global trends in the status of biodiversity. Their main weaknesses are that the resolution of status changes is fairly coarse and that delays may occur before some status changes are detected. Their greatest strength is that they are based on information from nearly all species in a taxonomic group worldwide, rather than a potentially biased subset. At present, suitable data are only available for birds, but indices for other taxonomic groups are in development, as is a sampled index based on a stratified sample from all major taxonomic groups. PMID:15510230

  2. Molecular biodiversity of Red Sea demosponges.

    PubMed

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M; Berumen, Michael L; Büttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schätzle, Simone; Wörheide, Gert

    2016-04-30

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters. PMID:26776057

  3. National red listing beyond the 2010 target.

    PubMed

    Zamin, Tara J; Baillie, Jonathan E M; Miller, Rebecca M; Rodríguez, Jon Paul; Ardid, Ana; Collen, Ben

    2010-08-01

    Following creation of the 2010 Biodiversity Target under the Convention on Biological Diversity and adoption of the United Nations Millennium Development Goals, information on status and trends of biodiversity at the national level has become increasingly important to both science and policy. National red lists (NRLs) of threatened species may provide suitable data for reporting on progress toward these goals and for informing national conservation priority setting. This information will also become increasingly important for developing species- and ecosystem-based strategies for climate change adaptation. We conducted a thorough global review of NRLs in 109 countries and analyzed gaps in NRL coverage in terms of geography and taxonomy to determine priority regions and taxonomic groups for further investment. We then examined correlations between the NRL data set and gross domestic product (GDP) and vertebrate species richness. The largest geographic gap was in Oceania, followed by middle Africa, the Caribbean, and western Africa, whereas the largest taxonomic gaps were for invertebrates, fungi, and lichens. The comprehensiveness of NRL coverage within a given country was positively correlated with GDP and negatively correlated with total vertebrate richness and threatened vertebrate richness. This supports the assertion that regions with the greatest and most vulnerable biodiversity receive the least conservation attention and indicates that financial resources may be an integral limitation. To improve coverage of NRLs, we propose a combination of projects that target underrepresented taxa or regions and projects that provide the means for countries to create or update NRLs on their own. We recommend improvements in knowledge transfer within and across regions as a priority for future investment. PMID:20337689

  4. Scientific Foundations for an IUCN Red List of Ecosystems

    PubMed Central

    Keith, David A.; Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M.; Nicholson, Emily; Aapala, Kaisu; Alonso, Alfonso; Asmussen, Marianne; Bachman, Steven; Basset, Alberto; Barrow, Edmund G.; Benson, John S.; Bishop, Melanie J.; Bonifacio, Ronald; Brooks, Thomas M.; Burgman, Mark A.; Comer, Patrick; Comín, Francisco A.; Essl, Franz; Faber-Langendoen, Don; Fairweather, Peter G.; Holdaway, Robert J.; Jennings, Michael; Kingsford, Richard T.; Lester, Rebecca E.; Nally, Ralph Mac; McCarthy, Michael A.; Moat, Justin; Oliveira-Miranda, María A.; Pisanu, Phil; Poulin, Brigitte; Regan, Tracey J.; Riecken, Uwe; Spalding, Mark D.; Zambrano-Martínez, Sergio

    2013-01-01

    An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of

  5. Scientific foundations for an IUCN Red List of ecosystems.

    PubMed

    Keith, David A; Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M; Nicholson, Emily; Aapala, Kaisu; Alonso, Alfonso; Asmussen, Marianne; Bachman, Steven; Basset, Alberto; Barrow, Edmund G; Benson, John S; Bishop, Melanie J; Bonifacio, Ronald; Brooks, Thomas M; Burgman, Mark A; Comer, Patrick; Comín, Francisco A; Essl, Franz; Faber-Langendoen, Don; Fairweather, Peter G; Holdaway, Robert J; Jennings, Michael; Kingsford, Richard T; Lester, Rebecca E; Mac Nally, Ralph; McCarthy, Michael A; Moat, Justin; Oliveira-Miranda, María A; Pisanu, Phil; Poulin, Brigitte; Regan, Tracey J; Riecken, Uwe; Spalding, Mark D; Zambrano-Martínez, Sergio

    2013-01-01

    An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world's ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of

  6. A practical guide to the application of the IUCN Red List of Ecosystems criteria.

    PubMed

    Rodríguez, Jon Paul; Keith, David A; Rodríguez-Clark, Kathryn M; Murray, Nicholas J; Nicholson, Emily; Regan, Tracey J; Miller, Rebecca M; Barrow, Edmund G; Bland, Lucie M; Boe, Kaia; Brooks, Thomas M; Oliveira-Miranda, María A; Spalding, Mark; Wit, Piet

    2015-02-19

    The newly developed IUCN Red List of Ecosystems is part of a growing toolbox for assessing risks to biodiversity, which addresses ecosystems and their functioning. The Red List of Ecosystems standard allows systematic assessment of all freshwater, marine, terrestrial and subterranean ecosystem types in terms of their global risk of collapse. In addition, the Red List of Ecosystems categories and criteria provide a technical base for assessments of ecosystem status at the regional, national, or subnational level. While the Red List of Ecosystems criteria were designed to be widely applicable by scientists and practitioners, guidelines are needed to ensure they are implemented in a standardized manner to reduce epistemic uncertainties and allow robust comparisons among ecosystems and over time. We review the intended application of the Red List of Ecosystems assessment process, summarize 'best-practice' methods for ecosystem assessments and outline approaches to ensure operational rigour of assessments. The Red List of Ecosystems will inform priority setting for ecosystem types worldwide, and strengthen capacity to report on progress towards the Aichi Targets of the Convention on Biological Diversity. When integrated with other IUCN knowledge products, such as the World Database of Protected Areas/Protected Planet, Key Biodiversity Areas and the IUCN Red List of Threatened Species, the Red List of Ecosystems will contribute to providing the most complete global measure of the status of biodiversity yet achieved. PMID:25561664

  7. Application of the Red List Index for conservation assessment of Spanish vascular plants.

    PubMed

    Saiz, Juan Carlos Moreno; Lozano, Felipe Domínguez; Gómez, Manuel Marrero; Baudet, Ángel Bañares

    2015-06-01

    The International Union for Conservation of Nature (IUCN) Red List Index (RLI) is used to measure trends in extinction risk of species over time. The development of 2 red lists for Spanish vascular flora during the past decade allowed us to apply the IUCN RLI to vascular plants in an area belonging to a global biodiversity hotspot. We used the Spanish Red Lists from 2000 and 2010 to assess changes in level of threat at a national scale and at the subnational scales of Canary Islands, Balearic Islands, and peninsular Spain. We assigned retrospective IUCN categories of threat to 98 species included in the Spanish Red List of 2010 but absent in the Spanish Red List of 2000. In addition, we tested the effect of different random and taxonomic and spatial Spanish samples on the overall RLI value. From 2000 to 2010, the IUCN categories of 768 species changed (10% of Spanish flora), mainly due to improved knowledge (63%), modifications in IUCN criteria (14%), and changes in threat status (12%). All measured national and subnational RLI values decreased during this period, indicating a general decline in the conservation status of the Spanish vascular flora. The Canarian RLI value (0.84) was the lowest, although the fastest deterioration in conservation status occurred on peninsular Spain (from 0.93 in 2000 to 0.92 in 2010). The RLI values based on subsamples of the Spanish Red List were not representative of RLI values for the entire country, which would discourage the use of small areas or small taxonomic samples to assess general trends in the endangerment of national biotas. The role of the RLI in monitoring of changes in biodiversity at the global and regional scales needs further reassessment because additional areas and taxa are necessary to determine whether the index is sufficiently sensitive for use in assessing temporal changes in species' risk of extinction. PMID:25580521

  8. Conservation Actions Based on Red Lists Do Not Capture the Functional and Phylogenetic Diversity of Birds in Brazil

    PubMed Central

    Hidasi-Neto, José; Loyola, Rafael Dias; Cianciaruso, Marcus Vinicius

    2013-01-01

    Red Lists of threatened species play a critical role in conservation science and practice. However, policy-making based on Red Lists ignores ecological and evolutionary consequences of losing biodiversity because these lists focus on species alone. To decide if relying on Red Lists alone can help to conserve communities’ functional (FD) and phylogenetic (PD) diversity, it is useful to evaluate whether Red List categories represent species with diverse ecological traits and evolutionary histories. Additionally, local scale analyses using regional Red Lists should represent more realistic pools of co-occurring species and thereby better capture eventual losses of FD and PD. Here, we used 21 life-history traits and a phylogeny for all Brazilian birds to determine whether species assigned under the IUCN global Red List, the Brazilian national, and regional Red Lists capture more FD and PD than expected by chance. We also built local Red Lists and analysed if they capture more FD and PD at the local scale. Further, we investigated whether individual threat categories have species with greater FD and PD than expected by chance. At any given scale, threat categories did not capture greater FD or PD than expected by chance. Indeed, mostly categories captured equal or less FD or PD than expected by chance. These findings would not have great consequences if Red Lists were not often considered as a major decision support tool for policy-making. Our results challenge the practice of investing conservation resources based only on species Red Lists because, from an ecological and evolutionary point of view, this would be the same as protecting similar or random sets of species. Thus, new prioritization methods, such as the EDGE of Existence initiative, should be developed and applied to conserve species’ ecological traits and evolutionary histories at different spatial scales. PMID:24039939

  9. Using Red List Indices to measure progress towards the 2010 target and beyond

    PubMed Central

    Butchart, S.H.M; Stattersfield, A.J; Baillie, J; Bennun, L.A; Stuart, S.N; Akçakaya, H.R; Hilton-Taylor, C; Mace, G.M

    2005-01-01

    The World Conservation Union (IUCN) Red List is widely recognized as the most authoritative and objective system for classifying species by their risk of extinction. Red List Indices (RLIs) illustrate the relative rate at which a particular set of species change in overall threat status (i.e. projected relative extinction-risk), based on population and range size and trends as quantified by Red List categories. RLIs can be calculated for any representative set of species that has been fully assessed at least twice. They are based on the number of species in each Red List category, and the number changing categories between assessments as a result of genuine improvement or deterioration in status. RLIs show a fairly coarse level of resolution, but for fully assessed taxonomic groups they are highly representative, being based on information from a high proportion of species worldwide. The RLI for the world's birds shows that that their overall threat status has deteriorated steadily during the years 1988–2004 in all biogeographic realms and ecosystems. A preliminary RLI for amphibians for 1980–2004 shows similar rates of decline. RLIs are in development for other groups. In addition, a sampled index is being developed, based on a stratified sample of species from all major taxonomic groups, realms and ecosystems. This will provide extinction-risk trends that are more representative of all biodiversity. PMID:15814344

  10. Red List of spiders (araneae) of the Wadden Sea Area

    NASA Astrophysics Data System (ADS)

    Vangsgård, C.; Reinke, H.-D.; Schultz, W.; van Helsdingen, P. J.

    1996-10-01

    In the Wadden Sea, in total, 55 species of spiders are threatened in at least one subregion. Of these, 50 species are threatened in the entire area and are therefore placed on the trilateral Red List. According to the present knowledge, no species of the listed spiders are extinct in the entire Wadden Sea area. The status of 3 species of spiders is (probably) critical; 12 species are endangered; the status of 30 species is (probably) vulnerable and of 6 species susceptible.

  11. Detecting extinction risk from climate change by IUCN Red List criteria.

    PubMed

    Keith, David A; Mahony, Michael; Hines, Harry; Elith, Jane; Regan, Tracey J; Baumgartner, John B; Hunter, David; Heard, Geoffrey W; Mitchell, Nicola J; Parris, Kirsten M; Penman, Trent; Scheele, Ben; Simpson, Christopher C; Tingley, Reid; Tracy, Christopher R; West, Matt; Akçakaya, H Resit

    2014-06-01

    Anthropogenic climate change is a key threat to global biodiversity. To inform strategic actions aimed at conserving biodiversity as climate changes, conservation planners need early warning of the risks faced by different species. The IUCN Red List criteria for threatened species are widely acknowledged as useful risk assessment tools for informing conservation under constraints imposed by limited data. However, doubts have been expressed about the ability of the criteria to detect risks imposed by potentially slow-acting threats such as climate change, particularly because criteria addressing rates of population decline are assessed over time scales as short as 10 years. We used spatially explicit stochastic population models and dynamic species distribution models projected to future climates to determine how long before extinction a species would become eligible for listing as threatened based on the IUCN Red List criteria. We focused on a short-lived frog species (Assa darlingtoni) chosen specifically to represent potential weaknesses in the criteria to allow detailed consideration of the analytical issues and to develop an approach for wider application. The criteria were more sensitive to climate change than previously anticipated; lead times between initial listing in a threatened category and predicted extinction varied from 40 to 80 years, depending on data availability. We attributed this sensitivity primarily to the ensemble properties of the criteria that assess contrasting symptoms of extinction risk. Nevertheless, we recommend the robustness of the criteria warrants further investigation across species with contrasting life histories and patterns of decline. The adequacy of these lead times for early warning depends on practicalities of environmental policy and management, bureaucratic or political inertia, and the anticipated species response times to management actions. PMID:24512339

  12. Red List of vascular plants of the Wadden Sea Area

    NASA Astrophysics Data System (ADS)

    Wind, P.; van der Ende, M.; Garve, E.; Schacherer, A.; Thissen, J. B. M.

    1996-10-01

    In the Wadden Sea area, a total of 248 (sub)species of vascular plants are threatened in at least one subregion. Of these, 216 (sub)species are threatened in the entire area and are therefore placed on the trialteral Red List. 17 (sub)species of the listed vascular plants are (probably) extinct in the entire Wadden Sea area. The status of 47 (sub)species of vascular plants is (probably) critical; 61 (sub)species are (probably) endangered; the status of 65 (sub)species is (probably) vulnerable and that of 26 (sub)species susceptible.

  13. Red List of macrofaunal benthic invertebrates of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Petersen, G. H.; Madsen, P. B.; Jensen, K. T.; van Bernem, K. H.; Harms, J.; Heiber, W.; Kröncke, I.; Michaelis, H.; Rachor, E.; Reise, K.; Dekker, R.; Visser, G. J. M.; Wolff, W. J.

    1996-10-01

    In the Wadden Sea, in total, 93 species of macrofaunal benthic invertebrates are threatened in at least one subregion. Of these, 72 species are threatened in the entire area and are therefore placed on the trilateral Red List. 7 species are (probably) extinct in the entire Wadden Sea area. The status of 9 species of macrofaunal invertebrates is critical, 13 species are (probably) endangered, the status of 25 species is (probably) vulnerable and of 17 species (probably) susceptible.

  14. Red List of beetles of the Wadden Sea Area

    NASA Astrophysics Data System (ADS)

    Mahler, V.; Suikat, R.; Aßmann, Th.

    1996-10-01

    As no data on beetles in the Wadden Sea area are available from The Netherlands, the trilateral status of threat only refers to the Danish and German part of the Wadden Sea. In this area, in total, 238 species of beetles are threatened in at least one subregion. Of these, 189 species are threatened in the entire area and are therefore placed on the trilateral Red List. 4 species are (probably) extinct in the entire Wadden Sea area. The status of 24 species of beetles is (probably) critical, 46 species are (probably) endangered, the status of 86 species is (probably) vulnerable and of 29 species (probably) susceptible.

  15. Red List of grasshoppers of the Wadden Sea area

    NASA Astrophysics Data System (ADS)

    Holst, K.; Grein, G.; Dierking, U.; van Wingerden, W. K. R. E.

    1996-10-01

    In typical coastal habitats of the Wadden Sea, 15 species of grasshoppers are threatened in at least one subregion. Of these, 14 species are threatened in the entire area and are therefore placed on the trilateral Red List. The situation in the Danish part of the Wadden Sea could only be taken into consideration in a limited way due to the latest available data in Denmark from 1969. The status of 2 species of grasshoppers in the entire Wadden Sea area is critical, 4 species are endangered, the status of 3 species is vulnerable and of 5 species susceptible.

  16. Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants.

    PubMed

    Brummitt, Neil A; Bachman, Steven P; Griffiths-Lee, Janine; Lutz, Maiko; Moat, Justin F; Farjon, Aljos; Donaldson, John S; Hilton-Taylor, Craig; Meagher, Thomas R; Albuquerque, Sara; Aletrari, Elina; Andrews, A Kei; Atchison, Guy; Baloch, Elisabeth; Barlozzini, Barbara; Brunazzi, Alice; Carretero, Julia; Celesti, Marco; Chadburn, Helen; Cianfoni, Eduardo; Cockel, Chris; Coldwell, Vanessa; Concetti, Benedetta; Contu, Sara; Crook, Vicki; Dyson, Philippa; Gardiner, Lauren; Ghanim, Nadia; Greene, Hannah; Groom, Alice; Harker, Ruth; Hopkins, Della; Khela, Sonia; Lakeman-Fraser, Poppy; Lindon, Heather; Lockwood, Helen; Loftus, Christine; Lombrici, Debora; Lopez-Poveda, Lucia; Lyon, James; Malcolm-Tompkins, Patricia; McGregor, Kirsty; Moreno, Laura; Murray, Linda; Nazar, Keara; Power, Emily; Quiton Tuijtelaars, Mireya; Salter, Ruth; Segrott, Robert; Thacker, Hannah; Thomas, Leighton J; Tingvoll, Sarah; Watkinson, Gemma; Wojtaszekova, Katerina; Nic Lughadha, Eimear M

    2015-01-01

    Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question 'How threatened are plants?' is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world's plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed. PMID:26252495

  17. Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants

    PubMed Central

    Griffiths-Lee, Janine; Lutz, Maiko; Moat, Justin F.; Farjon, Aljos; Donaldson, John S.; Hilton-Taylor, Craig; Meagher, Thomas R.; Albuquerque, Sara; Aletrari, Elina; Andrews, A. Kei; Atchison, Guy; Baloch, Elisabeth; Barlozzini, Barbara; Brunazzi, Alice; Carretero, Julia; Celesti, Marco; Chadburn, Helen; Cianfoni, Eduardo; Cockel, Chris; Coldwell, Vanessa; Concetti, Benedetta; Contu, Sara; Crook, Vicki; Dyson, Philippa; Gardiner, Lauren; Ghanim, Nadia; Greene, Hannah; Groom, Alice; Harker, Ruth; Hopkins, Della; Khela, Sonia; Lakeman-Fraser, Poppy; Lindon, Heather; Lockwood, Helen; Loftus, Christine; Lombrici, Debora; Lopez-Poveda, Lucia; Lyon, James; Malcolm-Tompkins, Patricia; McGregor, Kirsty; Moreno, Laura; Murray, Linda; Nazar, Keara; Power, Emily; Quiton Tuijtelaars, Mireya; Salter, Ruth; Segrott, Robert; Thacker, Hannah; Thomas, Leighton J.; Tingvoll, Sarah; Watkinson, Gemma; Wojtaszekova, Katerina; Nic Lughadha, Eimear M.

    2015-01-01

    Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed. PMID:26252495

  18. Biodiversity

    SciTech Connect

    Wilson, E.O.; Peter, F.M.

    1988-01-01

    In tropical forests, on coral reefs, and in other threatened habitats, countless plant, animal, and microbial species face possible extinction - their names unknown, their numbers uncounted, their value unreckoned. Although popular attention has focused on the plight of more visible and widely known species like the whooping crane or the African elephant, most-experts agree that the loss of less-obvious organisms could be much more devastating. This is the subject of the volume. It calls attention to a most urgent global problem: the rapidly accelerating loss of plant and animal species to increasing human-population pressure and the demands of economic development. The book explores biodiversity from a wide variety of viewpoints.

  19. Building on IUCN regional red lists to produce lists of species of conservation priority: a model with Irish bees.

    PubMed

    Fitzpatrick, Una; Murray, Tomás E; Paxton, Robert J; Brown, Mark J F

    2007-10-01

    A World Conservation Union (IUCN) regional red list is an objective assessment of regional extinction risk and is not the same as a list of conservation priority species. Recent research reveals the widespread, but incorrect, assumption that IUCN Red List categories represent a hierarchical list of priorities for conservation action. We developed a simple eight-step priority-setting process and applied it to the conservation of bees in Ireland. Our model is based on the national red list but also considers the global significance of the national population; the conservation status at global, continental, and regional levels; key biological, economic, and societal factors; and is compatible with existing conservation agreements and legislation. Throughout Ireland, almost one-third of the bee fauna is threatened (30 of 100 species), but our methodology resulted in a reduced list of only 17 priority species. We did not use the priority species list to broadly categorize species to the conservation action required; instead, we indicated the individual action required for all threatened, near-threatened, and data-deficient species on the national red list based on the IUCN's conservation-actions template file. Priority species lists will strongly influence prioritization of conservation actions at national levels, but action should not be exclusive to listed species. In addition, all species on this list will not necessarily require immediate action. Our method is transparent, reproducible, and readily applicable to other taxa and regions. PMID:17883497

  20. Biodiversity

    SciTech Connect

    Dobson, A. ); Carper, R. )

    1993-10-30

    Traditional herbalists act as a first-level screen for plants which may contain chemicals with significant pharmaceutical potential. Unfortunately, the destruction of rain forests is likely to lead to the extinction of many plant species before their potential can be explored. 165,000 km[sup 2] of tropical forest and 90,000 km[sup 2] of range land are destroyed or degraded each year, an annual attrition rate of about 1% for tropical forest. If these losses continue until only land set aside in parks is left, 66% of plant and 69% of animal species may be lost. The burning of forests to clear land for human settlement also makes a significant contribution to the greenhouse gases that are raising global mean temperatures. There are synergisms--here between rainforest destruction, loss of biodiversity, and global climate change--with potential impacts on health. Some aspects will be explored more fully in the contributions on vector-borne diseases and direct impacts and in the collaborative review of monitoring with which the series ends.

  1. The sampled Red List Index for plants, phase II: ground-truthing specimen-based conservation assessments.

    PubMed

    Brummitt, Neil; Bachman, Steven P; Aletrari, Elina; Chadburn, Helen; Griffiths-Lee, Janine; Lutz, Maiko; Moat, Justin; Rivers, Malin C; Syfert, Mindy M; Nic Lughadha, Eimear M

    2015-02-19

    The IUCN Sampled Red List Index (SRLI) is a policy response by biodiversity scientists to the need to estimate trends in extinction risk of the world's diminishing biological diversity. Assessments of plant species for the SRLI project rely predominantly on herbarium specimen data from natural history collections, in the overwhelming absence of accurate population data or detailed distribution maps for the vast majority of plant species. This creates difficulties in re-assessing these species so as to measure genuine changes in conservation status, which must be observed under the same Red List criteria in order to be distinguished from an increase in the knowledge available for that species, and thus re-calculate the SRLI. However, the same specimen data identify precise localities where threatened species have previously been collected and can be used to model species ranges and to target fieldwork in order to test specimen-based range estimates and collect population data for SRLI plant species. Here, we outline a strategy for prioritizing fieldwork efforts in order to apply a wider range of IUCN Red List criteria to assessments of plant species, or any taxa with detailed locality or natural history specimen data, to produce a more robust estimation of the SRLI. PMID:25561676

  2. Comprehensive Red List Assessment Reveals Exceptionally High Extinction Risk to Madagascar Palms

    PubMed Central

    Rakotoarinivo, Mijoro; Dransfield, John; Bachman, Steven P.; Moat, Justin; Baker, William J.

    2014-01-01

    The establishment of baseline IUCN Red List assessments for plants is a crucial step in conservation planning. Nowhere is this more important than in biodiversity hotspots that are subject to significant anthropogenic pressures, such as Madagascar. Here, all Madagascar palm species are assessed using the IUCN Red List categories and criteria, version 3.1. Our results indicate that 83% of the 192 endemic species are threatened, nearly four times the proportion estimated for plants globally and exceeding estimates for all other comprehensively evaluated plant groups in Madagascar. Compared with a previous assessment in 1995, the number of Endangered and Critically Endangered species has substantially increased, due to the discovery of 28 new species since 1995, most of which are highly threatened. The conservation status of most species included in both the 1995 and the current assessments has not changed. Where change occurred, more species have moved to lower threat categories than to higher categories, because of improved knowledge of species and their distributions, rather than a decrease in extinction risk. However, some cases of genuine deterioration in conservation status were also identified. Palms in Madagascar are primarily threatened by habitat loss due to agriculture and biological resource use through direct exploitation or collateral damage. The recent extension of Madagascar’s protected area network is highly beneficial for palms, substantially increasing the number of threatened species populations included within reserves. Notably, three of the eight most important protected areas for palms are newly designated. However, 28 threatened and data deficient species are not protected by the expanded network, including some Critically Endangered species. Moreover, many species occurring in protected areas are still threatened, indicating that threatening processes persist even in reserves. Definitive implementation of the new protected areas combined

  3. Comprehensive Red List assessment reveals exceptionally high extinction risk to Madagascar palms.

    PubMed

    Rakotoarinivo, Mijoro; Dransfield, John; Bachman, Steven P; Moat, Justin; Baker, William J

    2014-01-01

    The establishment of baseline IUCN Red List assessments for plants is a crucial step in conservation planning. Nowhere is this more important than in biodiversity hotspots that are subject to significant anthropogenic pressures, such as Madagascar. Here, all Madagascar palm species are assessed using the IUCN Red List categories and criteria, version 3.1. Our results indicate that 83% of the 192 endemic species are threatened, nearly four times the proportion estimated for plants globally and exceeding estimates for all other comprehensively evaluated plant groups in Madagascar. Compared with a previous assessment in 1995, the number of Endangered and Critically Endangered species has substantially increased, due to the discovery of 28 new species since 1995, most of which are highly threatened. The conservation status of most species included in both the 1995 and the current assessments has not changed. Where change occurred, more species have moved to lower threat categories than to higher categories, because of improved knowledge of species and their distributions, rather than a decrease in extinction risk. However, some cases of genuine deterioration in conservation status were also identified. Palms in Madagascar are primarily threatened by habitat loss due to agriculture and biological resource use through direct exploitation or collateral damage. The recent extension of Madagascar's protected area network is highly beneficial for palms, substantially increasing the number of threatened species populations included within reserves. Notably, three of the eight most important protected areas for palms are newly designated. However, 28 threatened and data deficient species are not protected by the expanded network, including some Critically Endangered species. Moreover, many species occurring in protected areas are still threatened, indicating that threatening processes persist even in reserves. Definitive implementation of the new protected areas combined with

  4. Modeling regional variation in riverine fish biodiversity in the Arkansas-White-Red River basin

    SciTech Connect

    Schweizer, Peter E; Jager, Yetta

    2011-01-01

    The patterns of biodiversity in freshwater systems are shaped by biogeography, environmental gradients, and human-induced factors. In this study, we developed empirical models to explain fish species richness in subbasins of the Arkansas White Red River basin as a function of discharge, elevation, climate, land cover, water quality, dams, and longitudinal position. We used information-theoretic criteria to compare generalized linear mixed models and identified well-supported models. Subbasin attributes that were retained as predictors included discharge, elevation, number of downstream dams, percent forest, percent shrubland, nitrate, total phosphorus, and sediment. The random component of our models, which assumed a negative binomial distribution, included spatial correlation within larger river basins and overdispersed residual variance. This study differs from previous biodiversity modeling efforts in several ways. First, obtaining likelihoods for negative binomial mixed models, and thereby avoiding reliance on quasi-likelihoods, has only recently become practical. We found the ranking of models based on these likelihood estimates to be more believable than that produced using quasi-likelihoods. Second, because we had access to a regional-scale watershed model for this river basin, we were able to include model-estimated water quality attributes as predictors. Thus, the resulting models have potential value as tools with which to evaluate the benefits of water quality improvements to fish.

  5. Taxonomic biodiversity of geniculate coralline red algae (Corallinales, Rhodophyta) from the Macaronesian region: summary and analysis

    NASA Astrophysics Data System (ADS)

    Rosas-Alquicira, Edgar F.; Riosmena-Rodríguez, Rafael; Afonso-Carrillo, Julio; Neto, Ana I.

    2011-06-01

    A catalog and critical review of species and infraspecific taxa of non-fossil geniculate coralline red algae (Corallinales, Rhodophyta) previously reported from the Macaronesian region are presented along with an assessment of species diversity in the region. Published records of geniculate coralline algae are included along with comments relating to type material. Within the catalog, taxa are organized alphabetically by genus and within this by final epithet. From the 31 taxa recorded, 4 are based on type collections from Macaronesian localities. The types of most species and infraspecific taxa reported from the region have yet to be re-examined in a modern context, and most Macaronesian records require verification. The biodiversity of Macaronesian geniculate coralline algae may be lower than current information indicates.

  6. Clarifying misconceptions of extinction risk assessment with the IUCN Red List.

    PubMed

    Collen, Ben; Dulvy, Nicholas K; Gaston, Kevin J; Gärdenfors, Ulf; Keith, David A; Punt, André E; Regan, Helen M; Böhm, Monika; Hedges, Simon; Seddon, Mary; Butchart, Stuart H M; Hilton-Taylor, Craig; Hoffmann, Michael; Bachman, Steven P; Akçakaya, H Reşit

    2016-04-01

    The identification of species at risk of extinction is a central goal of conservation. As the use of data compiled for IUCN Red List assessments expands, a number of misconceptions regarding the purpose, application and use of the IUCN Red List categories and criteria have arisen. We outline five such classes of misconception; the most consequential drive proposals for adapted versions of the criteria, rendering assessments among species incomparable. A key challenge for the future will be to recognize the point where understanding has developed so markedly that it is time for the next generation of the Red List criteria. We do not believe we are there yet but, recognizing the need for scrutiny and continued development of Red Listing, conclude by suggesting areas where additional research could be valuable in improving the understanding of extinction risk among species. PMID:27072401

  7. Please mind the gap - Visual census and cryptic biodiversity assessment at central Red Sea coral reefs.

    PubMed

    Pearman, John K; Anlauf, Holger; Irigoien, Xabier; Carvalho, Susana

    2016-07-01

    Coral reefs harbor the most diverse assemblages in the ocean, however, a large proportion of the diversity is cryptic and, therefore, undetected by standard visual census techniques. Cryptic and exposed communities differ considerably in species composition and ecological function. This study compares three different coral reef assessment protocols: i) visual benthic reef surveys: ii) visual census of Autonomous Reef Monitoring Structures (ARMS) plates; and iii) metabarcoding techniques of the ARMS (including sessile, 106-500 μm and 500-2000 μm size fractions), that target the cryptic and exposed communities of three reefs in the central Red Sea. Visual census showed a dominance of Cnidaria (Anthozoa) and Rhodophyta on the reef substrate, while Porifera, Bryozoa and Rhodophyta were the most abundant groups on the ARMS plates. Metabarcoding, targeting the 18S rRNA gene, significantly increased estimates of the species diversity (p < 0.001); revealing that Annelida were generally the dominant phyla (in terms of reads) of all fractions and reefs. Furthermore, metabarcoding detected microbial eukaryotic groups such as Syndiniophyceae, Mamiellophyceae and Bacillariophyceae as relevant components of the sessile fraction. ANOSIM analysis showed that the three reef sites showed no differences based on the visual census data. Metabarcoding showed a higher sensitivity for identifying differences between reef communities at smaller geographic scales than standard visual census techniques as significant differences in the assemblages were observed amongst the reefs. Comparison of the techniques showed no similar patterns for the visual techniques while the metabarcoding of the ARMS showed similar patterns amongst fractions. Establishing ARMS as a standard tool in reef monitoring will not only advance our understanding of local processes and ecological community response to environmental changes, as different faunal components will provide complementary information but

  8. Biodiversity on Swedish pastures: estimating biodiversity production costs.

    PubMed

    Nilsson, Fredrik Olof Laurentius

    2009-01-01

    This paper estimates the costs of producing biological diversity on Swedish permanent grasslands. A simple model is introduced where biodiversity on pastures is produced using grazing animals. On the pastures, the grazing animals create a sufficient grazing pressure to lead to an environment that suits many rare and red-listed species. Two types of pastures are investigated: semi-natural and cultivated. Biological diversity produced on a pasture is estimated by combining a biodiversity indicator, which measures the quality of the land, with the size of the pasture. Biodiversity is, in this context, a quantitative measure where a given quantity can be produced either by small area with high quality or a larger area with lower quality. Two areas in different parts of Sweden are investigated. Box-Cox transformations, which provide flexible functional forms, are used in the empirical analysis and the results indicate that the biodiversity production costs differ between the regions. The major contribution of this paper is that it develops and tests a method of estimating biodiversity production costs on permanent pastures when biodiversity quality differs between pastures. If the method were to be used with cost data, that were more thoroughly collected and covered additional production areas, biodiversity cost functions could be estimated and used in applied policy work. PMID:18079049

  9. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool.

    PubMed

    Bachman, Steven; Moat, Justin; Hill, Andrew W; de Torre, Javier; Scott, Ben

    2011-01-01

    GeoCAT is an open source, browser based tool that performs rapid geospatial analysis to ease the process of Red Listing taxa. Developed to utilise spatially referenced primary occurrence data, the analysis focuses on two aspects of the geographic range of a taxon: the extent of occurrence (EOO) and the area of occupancy (AOO). These metrics form part of the IUCN Red List categories and criteria and have often proved challenging to obtain in an accurate, consistent and repeatable way. Within a familiar Google Maps environment, GeoCAT users can quickly and easily combine data from multiple sources such as GBIF, Flickr and Scratchpads as well as user generated occurrence data. Analysis is done with the click of a button and is visualised instantly, providing an indication of the Red List threat rating, subject to meeting the full requirements of the criteria. Outputs including the results, data and parameters used for analysis are stored in a GeoCAT file that can be easily reloaded or shared with collaborators. GeoCAT is a first step toward automating the data handling process of Red List assessing and provides a valuable hub from which further developments and enhancements can be spawned. PMID:22207809

  10. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool

    PubMed Central

    Bachman, Steven; Moat, Justin; Hill, Andrew W.; de Torre, Javier; Scott, Ben

    2011-01-01

    Abstract GeoCAT is an open source, browser based tool that performs rapid geospatial analysis to ease the process of Red Listing taxa. Developed to utilise spatially referenced primary occurrence data, the analysis focuses on two aspects of the geographic range of a taxon: the extent of occurrence (EOO) and the area of occupancy (AOO). These metrics form part of the IUCN Red List categories and criteria and have often proved challenging to obtain in an accurate, consistent and repeatable way. Within a familiar Google Maps environment, GeoCAT users can quickly and easily combine data from multiple sources such as GBIF, Flickr and Scratchpads as well as user generated occurrence data. Analysis is done with the click of a button and is visualised instantly, providing an indication of the Red List threat rating, subject to meeting the full requirements of the criteria. Outputs including the results, data and parameters used for analysis are stored in a GeoCAT file that can be easily reloaded or shared with collaborators. GeoCAT is a first step toward automating the data handling process of Red List assessing and provides a valuable hub from which further developments and enhancements can be spawned. PMID:22207809

  11. Red List of amphibians and reptiles of the Wadden Sea area

    NASA Astrophysics Data System (ADS)

    Fog, K.; Podloucky, R.; Dierking, U.; Stumpel, A. H. P.

    1996-10-01

    In the Wadden Sea, in total, 8 species of amphibians and 4 species of reptiles are threatened in at least one subregion. Of these, 7 species of amphibians and all 4 species of reptiles are threatened in the entire area and are therefore placed on the trilateral Red List. 1 species of the listed reptiles is (probably) extinct in the entire Wadden Sea area. The status of 1 species of amphibians is endangered, the status of (probably) 4 species of amphibians and 3 species of reptiles are vulnerable and of 2 species of amphibians susceptible.

  12. Analysis of rbcL sequences reveals the global biodiversity, community structure, and biogeographical pattern of thermoacidophilic red algae (Cyanidiales).

    PubMed

    Hsieh, Chia-Jung; Zhan, Shing Hei; Lin, Yiching; Tang, Sen-Lin; Liu, Shao-Lun

    2015-08-01

    Thermoacidophilic cyanidia (Cyanidiales) are the primary photosynthetic eukaryotes in volcanic areas. These red algae also serve as important model organisms for studying life in extreme habitats. The global biodiversity and community structure of Cyanidiales remain unclear despite previous sampling efforts. Here, we surveyed the Cyanidiales biodiversity in the Tatun Volcano Group (TVG) area in Taiwan using environmental DNA sequencing. We generated 174 rbcL sequences from eight samples from four regions in the TVG area, and combined them with 239 publicly available rbcL sequences collected worldwide. Species delimita-tion using this large rbcL data set suggested at least 20 Cyanidiales OTUs (operational taxono-mic units) worldwide, almost three times the presently recognized seven species. Results from environmental DNA showed that OTUs in the TVG area were divided into three groups: (i) dominant in hot springs with 92%-99% sequence identity to Galdieria maxima; (ii) largely distributed in drier and more acidic microhabitats with 99% identity to G. partita; and (iii) primarily distributed in cooler microhabitats and lacking identity to known cyanidia species (a novel Cyanidiales lineage). In both global and individual area analyses, we observed greater species diversity in non-aquatic than aquatic habitats. Community structure analysis showed high similarity between the TVG community and West Pacific-Iceland communities, reflecting their geographic proximity to each other. Our study is the first examination of the global species diversity and biogeographic affinity of cyanidia. Additionally, our data illuminate the influence of microhabitat type on Cyanidiales diversity and highlight intriguing questions for future ecological research. PMID:26986790

  13. Human Disturbance Threats the Red-Listed Macrolichen Seirophora villosa (Ach.) Frödén in Coastal Juniperus Habitats: Evidence From Western Peninsular Italy

    NASA Astrophysics Data System (ADS)

    Benesperi, Renato; Lastrucci, Lorenzo; Nascimbene, Juri

    2013-10-01

    In Europe, coastal dune systems with Juniperus spp. (Natura 2000 habitat code 2250) are a priority habitat for conservation according to the Natura 2000 policies. Currently, anthropogenic pressure is threatening the biodiversity of this habitat. While the impact of human pressure on animals and vascular plants is already documented, information is still scanty for other organisms such as epiphytic lichens. The main aim of this study is to test the effect of human disturbance on the occurrence and abundance of the red-listed macrolichen Seirophora villosa. We also tested the effect of human disturbance on the whole community of epiphytic lichens in terms of species richness and composition. The study was performed along the coast of Tuscany by comparing both disturbed and undisturbed Juniperus stands according to a stratified random sampling design. Our results provided evidence that in coastal systems the long-term conservation of the red-listed macrolichen S. villosa and its characteristic community composed by several Mediterranean species of conservation concern depends on the maintenance of undisturbed Juniperus habitats. Results also support the possibility of using S. villosa as an indicator species of habitat conservation importance and habitat integrity since its occurrence is predicted on nestedness in term of species composition, assemblages of species poor disturbed stands being subsets of those of richer undisturbed stands.

  14. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea.

    PubMed

    Pearman, J K; Kürten, S; Sarma, Y V B; Jones, B H; Carvalho, S

    2016-03-01

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water. PMID:26738552

  15. Red List of lampreys and marine fishes of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Berg, S.; Krog, C.; Muus, B.; Nielsen, J.; Fricke, R.; Berghahn, R.; Neudecker, Th.; Wolff, W. J.

    1996-10-01

    In the Wadden Sea areas of Denmark, Germany and The Netherlands, a total of 162 fish and lamprey species is known. 72 of these species are migrants entering the area occasionally; the total number of resident species in the Wadden Sea area is 90. In the Wadden Sea, in total, 20 species of fish and lamprey species are threatened in at least one subregion. Of these, 19 species are threatened in the entire area and are therefore placed on the trilateral Red List. 2 species of the listed fish and lamprey species are (probably) extinct in the entire Wadden Sea area. The status of 5 species of fish and lamprey species is critical, 5 species are (probably) endangered, the status of 6 is vulnerable and of 1 species susceptible. For about 16 rare species which may also be threatened, data were not sufficient to estimate past and present population sizes. The contributors to the list would like to encourage researchers to intensify work on the ecology and the present population sizes of these rare Wadden Sea species (see Fricke et al., 1995).

  16. Biodiversity conservation status in the Republic of Kosovo with focus on biodiversity centres.

    PubMed

    Zeqir, Veselaj; Behxhet, Mustafa; Avni, Hajdari; Zenel, Krasniqi

    2012-04-01

    This paper presents the most recent results on Kosovo biodiversity conservation efforts with focus on two main biodiversity centers of Kosovo: Sharri mountain (already declared as National Park) and Bjeshket e Nemuna mountains in process of designation as a National park. The study presents collection of up to date publications on biodiversity of Kosovo. Of course, there is still to be investigated particularly in the field of lower plants as well invertebrate fauna species. Beside the small territory of 10,887 km2, Kosovo is quite rich in both plant and animal biodiversity. Up to date 1800 vascular plant species have been recorded, while expected number is about 2500 species. Number of higher vertebrates is 210, while the invertebrates are not studied with exception of Lepidoptera with about 150 species. There is no Red List of species for Kosovo developed yet, while some short term conservation measures have already taken place. PMID:23424833

  17. Conus: first comprehensive conservation red list assessment of a marine gastropod mollusc genus.

    PubMed

    Peters, Howard; O'Leary, Bethan C; Hawkins, Julie P; Carpenter, Kent E; Roberts, Callum M

    2013-01-01

    Marine molluscs represent an estimated 23% of all extant marine taxa, but research into their conservation status has so far failed to reflect this importance, with minimal inclusion on the authoritative Red List of the International Union for the Conservation of Nature (IUCN). We assessed the status of all 632 valid species of the tropical marine gastropod mollusc, Conus (cone snails), using Red List standards and procedures to lay the groundwork for future decadal monitoring, one of the first fully comprehensive global assessments of a marine taxon. Three-quarters (75.6%) of species were not currently considered at risk of extinction owing to their wide distribution and perceived abundance. However, 6.5% were considered threatened with extinction with a further 4.1% near threatened. Data deficiency prevented 13.8% of species from being categorised although they also possess characteristics that signal concern. Where hotspots of endemism occur, most notably in the Eastern Atlantic, 42.9% of the 98 species from that biogeographical region were classified as threatened or near threatened with extinction. All 14 species included in the highest categories of Critically Endangered and Endangered are endemic to either Cape Verde or Senegal, with each of the three Critically Endangered species restricted to single islands in Cape Verde. Threats to all these species are driven by habitat loss and anthropogenic disturbance, in particular from urban pollution, tourism and coastal development. Our findings show that levels of extinction risk to which cone snails are exposed are of a similar magnitude to those seen in many fully assessed terrestrial taxa. The widely held view that marine species are less at risk is not upheld. PMID:24376693

  18. Conus: First Comprehensive Conservation Red List Assessment of a Marine Gastropod Mollusc Genus

    PubMed Central

    Peters, Howard; O'Leary, Bethan C.; Hawkins, Julie P.; Carpenter, Kent E.; Roberts, Callum M.

    2013-01-01

    Marine molluscs represent an estimated 23% of all extant marine taxa, but research into their conservation status has so far failed to reflect this importance, with minimal inclusion on the authoritative Red List of the International Union for the Conservation of Nature (IUCN). We assessed the status of all 632 valid species of the tropical marine gastropod mollusc, Conus (cone snails), using Red List standards and procedures to lay the groundwork for future decadal monitoring, one of the first fully comprehensive global assessments of a marine taxon. Three-quarters (75.6%) of species were not currently considered at risk of extinction owing to their wide distribution and perceived abundance. However, 6.5% were considered threatened with extinction with a further 4.1% near threatened. Data deficiency prevented 13.8% of species from being categorised although they also possess characteristics that signal concern. Where hotspots of endemism occur, most notably in the Eastern Atlantic, 42.9% of the 98 species from that biogeographical region were classified as threatened or near threatened with extinction. All 14 species included in the highest categories of Critically Endangered and Endangered are endemic to either Cape Verde or Senegal, with each of the three Critically Endangered species restricted to single islands in Cape Verde. Threats to all these species are driven by habitat loss and anthropogenic disturbance, in particular from urban pollution, tourism and coastal development. Our findings show that levels of extinction risk to which cone snails are exposed are of a similar magnitude to those seen in many fully assessed terrestrial taxa. The widely held view that marine species are less at risk is not upheld. PMID:24376693

  19. By-Catch Impacts in Fisheries: Utilizing the IUCN Red List Categories for Enhanced Product Level Assessment in Seafood LCAs

    NASA Astrophysics Data System (ADS)

    Hornborg, Sara; Svensson, Mikael; Nilsson, Per; Ziegler, Friederike

    2013-11-01

    Overexploitation of fish stocks causes concern not only to fisheries managers and conservation biologists, but also engages seafood consumers; more integrated product perspectives would be useful. This could be provided by life cycle assessment (LCA); however, further complements of present LCA methodology are needed to assess seafood production, one being by-catch impacts. We studied the scientific rationale behind using the IUCN Red List of Threatened Species™ for assessment of impacts relating to fish species’ vulnerability. For this purpose, the current Red List status of marine fish in Sweden was compared to the advice given in fisheries as well as key life history traits known to indicate sensitivity to high fishing pressure. Further, we quantified the amount of threatened fish (vulnerable, endangered, or critically endangered) that was discarded in demersal trawl fisheries on the Swedish west coast. The results showed that not only did the national Red List of marine fish have a high consistency with advice given in fisheries and indices of vulnerability, the different fishing practices studied were also found to have vastly different amounts of threatened fish discarded per kilo landing. The suggested approach is therefore promising as a carrier of aggregated information on the extent to which seafood production interferes with conservation priorities, in particular for species lacking adequate stock assessment. To enable extensive product comparisons, it is important to increase coverage of fish species by the global IUCN Red List, and to reconsider the appropriate assessment unit (species or stocks) in order to avoid false alarms.

  20. Conservation Status of the Australian Humpback Dolphin (Sousa sahulensis) Using the IUCN Red List Criteria.

    PubMed

    Parra, Guido J; Cagnazzi, Daniele

    2016-01-01

    Australian humpback dolphins (Sousa sahulensis) were recently described as a new species endemic to northern Australia and potentially southern New Guinea. We assessed the species conservation status against IUCN Red List Criteria using available information on their biology, ecology and threatening processes. Knowledge of population sizes and trends across the species range is lacking. Recent genetic studies indicate Australian humpback dolphins live in small and relatively isolated populations with limited gene flow among them. The available abundance estimates range from 14 to 207 individuals and no population studied to date is estimated to contain more than 104 mature individuals. The Potential Biological Removal method indicates populations are vulnerable to even low rates of anthropogenic mortality. Habitat degradation and loss is ongoing and expected to increase across the species range in Australia, and a continuing decline in the number of mature individuals is anticipated. Considering the available evidence and following a precautionary approach, we considered this species as Vulnerable under IUCN criterion C2a(i) because the total number of mature individuals is plausibly fewer than 10,000, an inferred continuing decline due to cumulative impacts, and each of the populations studied to date is estimated to contain fewer than 1000 mature individuals. Ongoing research efforts and recently developed research strategies and priorities will provide valuable information towards the future conservation and management of Australian humpback dolphins. PMID:26790892

  1. Remotely Sensed Data Informs Red List Evaluations and Conservation Priorities in Southeast Asia

    PubMed Central

    Li, Binbin V.; Hughes, Alice C.; Jenkins, Clinton N.; Ocampo-Peñuela, Natalia; Pimm, Stuart L.

    2016-01-01

    The IUCN Red List has assessed the global distributions of the majority of the world’s amphibians, birds and mammals. Yet these assessments lack explicit reference to widely available, remotely-sensed data that can sensibly inform a species’ risk of extinction. Our first goal is to add additional quantitative data to the existing standardised process that IUCN employs. Secondly, we ask: do our results suggest species of concern—those at considerably greater risk than hitherto appreciated? Thirdly, these assessments are not only important on a species-by-species basis. By combining distributions of species of concern, we map conservation priorities. We ask to what degree these areas are currently protected and how might knowledge from remote sensing modify the priorities? Finally, we develop a quick and simple method to identify and modify the priority setting in a landscape where natural habitats are disappearing rapidly and so where conventional species’ assessments might be too slow to respond. Tropical, mainland Southeast Asia is under exceptional threat, yet relatively poorly known. Here, additional quantitative measures may be particularly helpful. This region contains over 122, 183, and 214 endemic mammals, birds, and amphibians, respectively, of which the IUCN considers 37, 21, and 37 threatened. When corrected for the amount of remaining natural habitats within the known elevation preferences of species, the average sizes of species ranges shrink to <40% of their published ranges. Some 79 mammal, 49 bird, and 184 amphibian ranges are <20,000km2—an area at which IUCN considers most other species to be threatened. Moreover, these species are not better protected by the existing network of protected areas than are species that IUCN accepts as threatened. Simply, there appear to be considerably more species at risk than hitherto appreciated. Furthermore, incorporating remote sensing data showing where habitat loss is prevalent changes the locations of

  2. Remotely Sensed Data Informs Red List Evaluations and Conservation Priorities in Southeast Asia.

    PubMed

    Li, Binbin V; Hughes, Alice C; Jenkins, Clinton N; Ocampo-Peñuela, Natalia; Pimm, Stuart L

    2016-01-01

    The IUCN Red List has assessed the global distributions of the majority of the world's amphibians, birds and mammals. Yet these assessments lack explicit reference to widely available, remotely-sensed data that can sensibly inform a species' risk of extinction. Our first goal is to add additional quantitative data to the existing standardised process that IUCN employs. Secondly, we ask: do our results suggest species of concern-those at considerably greater risk than hitherto appreciated? Thirdly, these assessments are not only important on a species-by-species basis. By combining distributions of species of concern, we map conservation priorities. We ask to what degree these areas are currently protected and how might knowledge from remote sensing modify the priorities? Finally, we develop a quick and simple method to identify and modify the priority setting in a landscape where natural habitats are disappearing rapidly and so where conventional species' assessments might be too slow to respond. Tropical, mainland Southeast Asia is under exceptional threat, yet relatively poorly known. Here, additional quantitative measures may be particularly helpful. This region contains over 122, 183, and 214 endemic mammals, birds, and amphibians, respectively, of which the IUCN considers 37, 21, and 37 threatened. When corrected for the amount of remaining natural habitats within the known elevation preferences of species, the average sizes of species ranges shrink to <40% of their published ranges. Some 79 mammal, 49 bird, and 184 amphibian ranges are <20,000km2-an area at which IUCN considers most other species to be threatened. Moreover, these species are not better protected by the existing network of protected areas than are species that IUCN accepts as threatened. Simply, there appear to be considerably more species at risk than hitherto appreciated. Furthermore, incorporating remote sensing data showing where habitat loss is prevalent changes the locations of

  3. Conservation threats and the phylogenetic utility of IUCN Red List rankings in Incilius toads.

    PubMed

    Schachat, Sandra R; Mulcahy, Daniel G; Mendelson, Joseph R

    2016-02-01

    Phylogenetic analysis of extinction threat is an emerging tool in the field of conservation. However, there are problems with the methods and data as commonly used. Phylogenetic sampling usually extends to the level of family or genus, but International Union for Conservation of Nature (IUCN) rankings are available only for individual species, and, although different species within a taxonomic group may have the same IUCN rank, the species may have been ranked as such for different reasons. Therefore, IUCN rank may not reflect evolutionary history and thus may not be appropriate for use in a phylogenetic context. To be used appropriately, threat-risk data should reflect the cause of extinction threat rather than the IUCN threat ranking. In a case study of the toad genus Incilius, with phylogenetic sampling at the species level (so that the resolution of the phylogeny matches character data from the IUCN Red List), we analyzed causes of decline and IUCN threat rankings by calculating metrics of phylogenetic signal (such as Fritz and Purvis' D). We also analyzed the extent to which cause of decline and threat ranking overlap by calculating phylogenetic correlation between these 2 types of character data. Incilius species varied greatly in both threat ranking and cause of decline; this variability would be lost at a coarser taxonomic resolution. We found far more phylogenetic signal, likely correlated with evolutionary history, for causes of decline than for IUCN threat ranking. Individual causes of decline and IUCN threat rankings were largely uncorrelated on the phylogeny. Our results demonstrate the importance of character selection and taxonomic resolution when extinction threat is analyzed in a phylogenetic context. PMID:26243724

  4. A Biodiversity Indicators Dashboard: Addressing Challenges to Monitoring Progress towards the Aichi Biodiversity Targets Using Disaggregated Global Data

    PubMed Central

    Han, Xuemei; Smyth, Regan L.; Young, Bruce E.; Brooks, Thomas M.; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H. M.; Larsen, Frank W.; Hamilton, Healy; Hansen, Matthew C.; Turner, Will R.

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's “Aichi Targets”. These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity “dashboard” – a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the

  5. A biodiversity indicators dashboard: addressing challenges to monitoring progress towards the Aichi biodiversity targets using disaggregated global data.

    PubMed

    Han, Xuemei; Smyth, Regan L; Young, Bruce E; Brooks, Thomas M; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H M; Larsen, Frank W; Hamilton, Healy; Hansen, Matthew C; Turner, Will R

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's "Aichi Targets". These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity "dashboard"--a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the protection of

  6. The IUCN Red List of Threatened Species: an assessment of coral reef fishes in the US Pacific Islands

    NASA Astrophysics Data System (ADS)

    Zgliczynski, B. J.; Williams, I. D.; Schroeder, R. E.; Nadon, M. O.; Richards, B. L.; Sandin, S. A.

    2013-09-01

    Widespread declines among many coral reef fisheries have led scientists and managers to become increasingly concerned over the extinction risk facing some species. To aid in assessing the extinction risks facing coral reef fishes, large-scale censuses of the abundance and distribution of individual species are critically important. We use fisheries-independent data collected as part of the NOAA Pacific Reef Assessment and Monitoring Program from 2000 to 2009 to describe the range and density across the US Pacific of coral reef fishes included on The International Union for the Conservation of Nature's (IUCN) 2011 Red List of Threatened Species. Forty-five species, including sharks, rays, groupers, humphead wrasse ( Cheilinus undulatus), and bumphead parrotfish ( Bolbometopon muricatum), included on the IUCN List, were recorded in the US Pacific Islands. Most species were generally rare in the US Pacific with the exception of a few species, principally small groupers and reef sharks. The greatest diversity and densities of IUCN-listed fishes were recorded at remote and uninhabited islands of the Pacific Remote Island Areas; in general, lower densities were observed at reefs of inhabited islands. Our findings complement IUCN assessment efforts, emphasize the efficacy of large-scale assessment and monitoring efforts in providing quantitative data on reef fish assemblages, and highlight the importance of protecting populations at remote and uninhabited islands where some species included on the IUCN Red List of Threatened Species can be observed in abundance.

  7. Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?

    PubMed

    Magnago, Luiz Fernando S; Magrach, Ainhoa; Laurance, William F; Martins, Sebastião V; Meira-Neto, João Augusto A; Simonelli, Marcelo; Edwards, David P

    2015-09-01

    Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon-based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above-ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red-listed species. We found that increasing fragment size has a positive relationship with above-ground carbon stock and with abundance of IUCN Red-listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red-listed species abundance. These resulted in positive congruence between carbon stocks and Red-listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer

  8. Toward equality of biodiversity knowledge through technology transfer.

    PubMed

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  9. Re-assessment of the Conservation Status of the Atlantic Humpback Dolphin, Sousa teuszii (), Using the IUCN Red List Criteria.

    PubMed

    Collins, Tim

    2015-01-01

    The Atlantic humpback dolphin (Sousa teuszii) is an obligate shallow water dolphin that is endemic to the western coasts of Africa, ranging from Western Sahara to Angola. The species occurs exclusively in a limited number of near-shore habitats, a tendency that routinely exposes it to a suite of lethal and deleterious anthropogenic threats. These include habitat degradation, accidental capture in artisanal fishing nets, and hunting for use as food and bait. The species also competes with rapidly expanding human populations for coastal resources in some of the poorest countries on Earth. Data for most aspects of the species' ecology are sparse, but S. teuszii is considered by most qualified observers to be rare and greatly threatened. A lack of appropriate survey data precludes a quantitative assessment of population trends and status. Most populations for which any data are available are considered to be extremely small, numbering in the tens or low hundreds of individuals. The available published estimates suggest that the total population likely falls below 3000 individuals. Declines in abundance have been observed or are suspected for each population and will continue, given projected expansions of identified threats that affect most of the species' known range, and a corresponding lack of appropriate management actions. The apparent scale of threats, the presumed isolation of most populations, and a lack of directed conservation efforts in most areas suggest that the species qualifies for a listing of Critically Endangered (under criteria A3cd) on the IUCN Red List. PMID:26555622

  10. Assessment of the Conservation Status of the Indian Ocean Humpback Dolphin (Sousa plumbea) Using the IUCN Red List Criteria.

    PubMed

    Braulik, Gill T; Findlay, Ken; Cerchio, Salvatore; Baldwin, Robert

    2015-01-01

    Indian Ocean humpback dolphins (Sousa plumbea) are obligate shallow-water dolphins that occur exclusively in the near-shore waters of the Indian Ocean, from South Africa to the Bay of Bengal. They have a narrow habitat preference, restricted distribution and do not appear very abundant across any part of their range. There is no estimate of total species abundance; all populations that have been quantitatively evaluated have been small in size, usually fewer than 200 individuals. Fishing, dredging, land reclamation, construction blasting, port and harbour construction, pollution, boat traffic and other coastal development activities all occur, or are concentrated within, humpback dolphin habitat and threaten their survival. Although data are far from sufficient to make a rigorous quantitative assessment of population trends for this species, the scale of threats is large enough over a significant enough portion of the range to suspect or infer a decline of at least 50% over three generations, which qualifies it for listing on the IUCN Red List as Endangered. The issue primarily responsible is incidental mortality in fisheries, but the loss and degradation of habitat is likely a contributing factor. None of the threats have been adequately addressed in any part of the species' range, even though threat levels are increasing virtually everywhere. PMID:26555624

  11. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  12. Biodiversity Prospecting.

    ERIC Educational Resources Information Center

    Sittenfeld, Ana; Lovejoy, Annie

    1994-01-01

    Examines the use of biodiversity prospecting as a method for tropical countries to value biodiversity and contribute to conservation upkeep costs. Discusses the first agreement between a public interest organization and pharmaceutical company for the extraction of plant and animal materials in Costa Rica. (LZ)

  13. Total Catch of a Red-Listed Marine Species Is an Order of Magnitude Higher than Official Data

    PubMed Central

    Kleiven, Alf Ring; Olsen, Esben Moland; Vølstad, Jon Helge

    2012-01-01

    Accurate information on total catch and effort is essential for successful fisheries management. Officially reported landings, however, may be underestimates of total catch in many fisheries. We investigated the fishery for the nationally red-listed European lobster (Homarus gammarus) in south-eastern Norway. Probability-based strip transect surveys were used to count buoys in the study area in combination with catch per unit effort data obtained independently from volunteer catch diaries, phone interviews, and questionnaires. We estimate that recreational catch accounts for 65% of total catch in the study area. Moreover, our results indicate that only a small proportion (24%) of lobsters landed commercially were sold through the legal market and documented. Total estimated lobster catch was nearly 14 times higher than reported officially. Our study highlights the need for adequate catch monitoring and data collection efforts in coastal areas, presents a clear warning to resource managers that illegal, unreported and unregulated (IUU) fisheries in coastal areas should not be ignored, and shows the potential impact of recreational fisheries. PMID:22363583

  14. Zoos through the lens of the IUCN Red List: a global metapopulation approach to support conservation breeding programs.

    PubMed

    Conde, Dalia A; Colchero, Fernando; Gusset, Markus; Pearce-Kelly, Paul; Byers, Onnie; Flesness, Nate; Browne, Robert K; Jones, Owen R

    2013-01-01

    Given current extinction trends, the number of species requiring conservation breeding programs (CBPs) is likely to increase dramatically. To inform CBP policies for threatened terrestrial vertebrates, we evaluated the number and representation of threatened vertebrate species on the IUCN Red List held in the ISIS zoo network and estimated the complexity of their management as metapopulations. Our results show that 695 of the 3,955 (23%) terrestrial vertebrate species in ISIS zoos are threatened. Only two of the 59 taxonomic orders show a higher proportion of threatened species in ISIS zoos than would be expected if species were selected at random. In addition, for most taxa, the management of a zoo metapopulation of more than 250 individuals will require the coordination of a cluster of 11 to 24 ISIS zoos within a radius of 2,000 km. Thus, in the zoo network, the representation of species that may require CBPs is currently low and the spatial distribution of these zoo populations makes management difficult. Although the zoo community may have the will and the logistical potential to contribute to conservation actions, including CBPs, to do so will require greater collaboration between zoos and other institutions, alongside the development of international agreements that facilitate cross-border movement of zoo animals. To maximize the effectiveness of integrated conservation actions that include CBPs, it is fundamental that the non-zoo conservation community acknowledges and integrates the expertise and facilities of zoos where it can be helpful. PMID:24348999

  15. Backyard Biodiversity.

    ERIC Educational Resources Information Center

    Thompson, Sarah S.

    2002-01-01

    Describes a field trip experience for the Earth Odyssey project for elementary school students focusing on biodiversity. Introduces the concept of diversity, field work, species richness, and the connection between animals and their habitat. (YDS)

  16. Mapping Biodiversity.

    ERIC Educational Resources Information Center

    World Wildlife Fund, Washington, DC.

    This document features a lesson plan that examines how maps help scientists protect biodiversity and how plants and animals are adapted to specific ecoregions by comparing biome, ecoregion, and habitat. Samples of instruction and assessment are included. (KHR)

  17. Assessing the Cost of Global Biodiversity and Conservation Knowledge

    PubMed Central

    Juffe-Bignoli, Diego; Brooks, Thomas M.; Butchart, Stuart H. M.; Jenkins, Richard B.; Boe, Kaia; Hoffmann, Michael; Angulo, Ariadne; Bachman, Steve; Böhm, Monika; Brummitt, Neil; Carpenter, Kent E.; Comer, Pat J.; Cox, Neil; Cuttelod, Annabelle; Darwall, William R. T.; Fishpool, Lincoln D. C.; Goettsch, Bárbara; Heath, Melanie; Hilton-Taylor, Craig; Hutton, Jon; Johnson, Tim; Joolia, Ackbar; Keith, David A.; Langhammer, Penny F.; Luedtke, Jennifer; Nic Lughadha, Eimear; Lutz, Maiko; May, Ian; Miller, Rebecca M.; Oliveira-Miranda, María A.; Parr, Mike; Pollock, Caroline M.; Ralph, Gina; Rodríguez, Jon Paul; Rondinini, Carlo; Smart, Jane; Stuart, Simon; Symes, Andy; Tordoff, Andrew W.; Young, Bruce; Kingston, Naomi

    2016-01-01

    Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US$160 million (range: US$116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US$ 14 million (range US$12–16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013) is US$6.5 million in total (range: US$6.2–6.7 million). We estimated that an additional US$114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US$12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision

  18. Assessing the Cost of Global Biodiversity and Conservation Knowledge.

    PubMed

    Juffe-Bignoli, Diego; Brooks, Thomas M; Butchart, Stuart H M; Jenkins, Richard B; Boe, Kaia; Hoffmann, Michael; Angulo, Ariadne; Bachman, Steve; Böhm, Monika; Brummitt, Neil; Carpenter, Kent E; Comer, Pat J; Cox, Neil; Cuttelod, Annabelle; Darwall, William R T; Di Marco, Moreno; Fishpool, Lincoln D C; Goettsch, Bárbara; Heath, Melanie; Hilton-Taylor, Craig; Hutton, Jon; Johnson, Tim; Joolia, Ackbar; Keith, David A; Langhammer, Penny F; Luedtke, Jennifer; Nic Lughadha, Eimear; Lutz, Maiko; May, Ian; Miller, Rebecca M; Oliveira-Miranda, María A; Parr, Mike; Pollock, Caroline M; Ralph, Gina; Rodríguez, Jon Paul; Rondinini, Carlo; Smart, Jane; Stuart, Simon; Symes, Andy; Tordoff, Andrew W; Woodley, Stephen; Young, Bruce; Kingston, Naomi

    2016-01-01

    Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US$160 million (range: US$116-204 million), plus 293 person-years of volunteer time (range: 278-308 person-years) valued at US$ 14 million (range US$12-16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013) is US$6.5 million in total (range: US$6.2-6.7 million). We estimated that an additional US$114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US$12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision-making for

  19. Analysing biodiversity and conservation knowledge products to support regional environmental assessments.

    PubMed

    Brooks, Thomas M; Akçakaya, H Resit; Burgess, Neil D; Butchart, Stuart H M; Hilton-Taylor, Craig; Hoffmann, Michael; Juffe-Bignoli, Diego; Kingston, Naomi; MacSharry, Brian; Parr, Mike; Perianin, Laurence; Regan, Eugenie C; Rodrigues, Ana S L; Rondinini, Carlo; Shennan-Farpon, Yara; Young, Bruce E

    2016-01-01

    Two processes for regional environmental assessment are currently underway: the Global Environment Outlook (GEO) and Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES). Both face constraints of data, time, capacity, and resources. To support these assessments, we disaggregate three global knowledge products according to their regions and subregions. These products are: The IUCN Red List of Threatened Species, Key Biodiversity Areas (specifically Important Bird &Biodiversity Areas [IBAs], and Alliance for Zero Extinction [AZE] sites), and Protected Planet. We present fourteen Data citations: numbers of species occurring and percentages threatened; numbers of endemics and percentages threatened; downscaled Red List Indices for mammals, birds, and amphibians; numbers, mean sizes, and percentage coverages of IBAs and AZE sites; percentage coverage of land and sea by protected areas; and trends in percentages of IBAs and AZE sites wholly covered by protected areas. These data will inform the regional/subregional assessment chapters on the status of biodiversity, drivers of its decline, and institutional responses, and greatly facilitate comparability and consistency between the different regional/subregional assessments. PMID:26881749

  20. Analysing biodiversity and conservation knowledge products to support regional environmental assessments

    PubMed Central

    Brooks, Thomas M.; Akçakaya, H. Resit; Burgess, Neil D.; Butchart, Stuart H.M.; Hilton-Taylor, Craig; Hoffmann, Michael; Juffe-Bignoli, Diego; Kingston, Naomi; MacSharry, Brian; Parr, Mike; Perianin, Laurence; Regan, Eugenie C.; Rodrigues, Ana S.L.; Rondinini, Carlo; Shennan-Farpon, Yara; Young, Bruce E.

    2016-01-01

    Two processes for regional environmental assessment are currently underway: the Global Environment Outlook (GEO) and Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES). Both face constraints of data, time, capacity, and resources. To support these assessments, we disaggregate three global knowledge products according to their regions and subregions. These products are: The IUCN Red List of Threatened Species, Key Biodiversity Areas (specifically Important Bird & Biodiversity Areas [IBAs], and Alliance for Zero Extinction [AZE] sites), and Protected Planet. We present fourteen Data citations: numbers of species occurring and percentages threatened; numbers of endemics and percentages threatened; downscaled Red List Indices for mammals, birds, and amphibians; numbers, mean sizes, and percentage coverages of IBAs and AZE sites; percentage coverage of land and sea by protected areas; and trends in percentages of IBAs and AZE sites wholly covered by protected areas. These data will inform the regional/subregional assessment chapters on the status of biodiversity, drivers of its decline, and institutional responses, and greatly facilitate comparability and consistency between the different regional/subregional assessments. PMID:26881749

  1. An annotated list of fish parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda, Nematoda) collected from Snappers and Bream (Lutjanidae, Nemipteridae, Caesionidae) in New Caledonia confirms high parasite biodiversity on coral reef fish

    PubMed Central

    2012-01-01

    Background Coral reefs are areas of maximum biodiversity, but the parasites of coral reef fishes, and especially their species richness, are not well known. Over an 8-year period, parasites were collected from 24 species of Lutjanidae, Nemipteridae and Caesionidae off New Caledonia, South Pacific. Results Host-parasite and parasite-host lists are provided, with a total of 207 host-parasite combinations and 58 parasite species identified at the species level, with 27 new host records. Results are presented for isopods, copepods, monogeneans, digeneans, cestodes and nematodes. When results are restricted to well-sampled reef fish species (sample size > 30), the number of host-parasite combinations is 20–25 per fish species, and the number of parasites identified at the species level is 9–13 per fish species. Lutjanids include reef-associated fish and deeper sea fish from the outer slopes of the coral reef: fish from both milieus were compared. Surprisingly, parasite biodiversity was higher in deeper sea fish than in reef fish (host-parasite combinations: 12.50 vs 10.13, number of species per fish 3.75 vs 3.00); however, we identified four biases which diminish the validity of this comparison. Finally, these results and previously published results allow us to propose a generalization of parasite biodiversity for four major families of reef-associated fishes (Lutjanidae, Nemipteridae, Serranidae and Lethrinidae): well-sampled fish have a mean of 20 host-parasite combinations per fish species, and the number of parasites identified at the species level is 10 per fish species. Conclusions Since all precautions have been taken to minimize taxon numbers, it is safe to affirm than the number of fish parasites is at least ten times the number of fish species in coral reefs, for species of similar size or larger than the species in the four families studied; this is a major improvement to our estimate of biodiversity in coral reefs. Our results suggest that

  2. PROTECTING BIODIVERSITY

    EPA Science Inventory

    At present, over 40% of the earth's land surface has been converted from its natural state to one dominated by human activities such as agriculture and development. The destruction and degradation of natural habitats has been clearly linked to the loss of biodiversity. Biodiver...

  3. Biodiversity Performs!

    ERIC Educational Resources Information Center

    World Wildlife Fund, Washington, DC.

    This document features a lesson plan in which students work in teams to act out different ecosystem services, describe several free services that biodiversity provides to human, and explain how these services make life on earth possible. Samples of instruction and assessment are included. (KHR)

  4. Biodiversity Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiversity management is summarized for the global chickpea (Cicer arietinum) crop germplasm held in genebanks as ex situ collections. Morphological diversity is presented with the range of variation reported from the global collections. The largest collections are held at international agricult...

  5. Teaching Biodiversity: A Successful Approach

    ERIC Educational Resources Information Center

    Gilbert, Lynne; Brown, Lucy

    2010-01-01

    This article takes you on a journey through the authors' school course unit, the "Variety of Life," which aims to unpick the idea of biodiversity and its many facets. The aims and principles of each teaching topic are defined, teaching activities suggested, resources described and the skills each topic develops listed. Whilst aimed at 11- to…

  6. 76 FR 304 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition To List the Red Knot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... our list of candidate species with a listing priority number of 6 (71 FR 53758-53759). ``Warranted but... threats were determined to be imminent (73 FR 75178-75179, December 10, 2008). Because we determined that... number of 3 for this subspecies (74 FR 57825-57826, November 9, 2009). Accordingly, as we addressed...

  7. List of primary types of the larentiine moth species (Lepidoptera: Geometridae) described from Indonesia - a starting point for biodiversity assessment of the subfamily in the region

    PubMed Central

    2015-01-01

    Abstract Background The Indonesian geometrid moth fauna is rich and diverse, yet it is poorly studied. This is particularly the case for the second largest geometrid subfamily Larentiinae which comprises moths with predominantly high mountainous distribution in the tropics. The present study provides a first inventory of the primary type specimens of larentiine moth species (Lepidoptera: Geometridae) described from Indonesia. New information The list of species described from Indonesia is arranged alphabetically by the tribe, genus, and species, and presents data on 251 species and subspecies. For each species type status, type locality, depository, and a full reference to the original description are listed. Synonyms with Indonesian type localities are included. The study indicates a large part of the Indonesian geometrid fauna belong to the tribe Eupitheciini. PMID:26311296

  8. Leveraging biodiversity knowledge for potential phyto-therapeutic applications

    PubMed Central

    Sharma, Vivekanand; Sarkar, Indra Neil

    2013-01-01

    Objective To identify and highlight the feasibility, challenges, and advantages of providing a cross-domain pipeline that can link relevant biodiversity information for phyto-therapeutic assessment. Materials and methods A public repository of clinical trials information (ClinicalTrials.gov) was explored to determine the state of plant-based interventions under investigation. Results The results showed that ∼15% of drug interventions in ClinicalTrials.gov were potentially plant related, with about 60% of them clustered within 10 taxonomic families. Further analysis of these plant-based interventions identified ∼3.7% of associated plant species as endangered as determined from the International Union for the Conservation of Nature Red List. Discussion The diversity of the plant kingdom has provided human civilization with life-sustaining food and medicine for centuries. There has been renewed interest in the investigation of botanicals as sources of new drugs, building on traditional knowledge about plant-based medicines. However, data about the plant-based biodiversity potential for therapeutics (eg, based on genetic or chemical information) are generally scattered across a range of sources and isolated from contemporary pharmacological resources. This study explored the potential to bridge biodiversity and biomedical knowledge sources. Conclusions The findings from this feasibility study suggest that there is an opportunity for developing plant-based drugs and further highlight taxonomic relationships between plants that may be rich sources for bioprospecting. PMID:23518859

  9. Hollow rhodoliths increase Svalbard's shelf biodiversity

    PubMed Central

    Teichert, Sebastian

    2014-01-01

    Rhodoliths are coralline red algal assemblages that commonly occur in marine habitats from the tropics to polar latitudes. They form rigid structures of high-magnesium calcite and have a good fossil record. Here I show that rhodoliths are ecosystem engineers in a high Arctic environment that increase local biodiversity by providing habitat. Gouged by boring mussels, originally solid rhodoliths become hollow ecospheres intensely colonised by benthic organisms. In the examined shelf areas, biodiversity in rhodolith-bearing habitats is significantly greater than in habitats without rhodoliths and hollow rhodoliths yield a greater biodiversity than solid ones. This biodiversity, however, is threatened because hollow rhodoliths take a long time to form and are susceptible to global change and anthropogenic impacts such as trawl net fisheries that can destroy hollow rhodoliths. Rhodoliths and other forms of coralline red algae play a key role in a plurality of environments and need improved management and protection plans. PMID:25382656

  10. Hollow rhodoliths increase Svalbard's shelf biodiversity

    NASA Astrophysics Data System (ADS)

    Teichert, Sebastian

    2014-11-01

    Rhodoliths are coralline red algal assemblages that commonly occur in marine habitats from the tropics to polar latitudes. They form rigid structures of high-magnesium calcite and have a good fossil record. Here I show that rhodoliths are ecosystem engineers in a high Arctic environment that increase local biodiversity by providing habitat. Gouged by boring mussels, originally solid rhodoliths become hollow ecospheres intensely colonised by benthic organisms. In the examined shelf areas, biodiversity in rhodolith-bearing habitats is significantly greater than in habitats without rhodoliths and hollow rhodoliths yield a greater biodiversity than solid ones. This biodiversity, however, is threatened because hollow rhodoliths take a long time to form and are susceptible to global change and anthropogenic impacts such as trawl net fisheries that can destroy hollow rhodoliths. Rhodoliths and other forms of coralline red algae play a key role in a plurality of environments and need improved management and protection plans.

  11. Re-assessment of the Conservation Status of the Indo-Pacific Humpback Dolphin (Sousa chinensis) Using the IUCN Red List Criteria.

    PubMed

    Jefferson, Thomas A; Smith, Brian D

    2016-01-01

    The IUCN Red List designation of the Indo-Pacific humpback dolphin (Sousa chinensis) is re-assessed in light of its newly recognized taxonomic status (it has recently been separated into three species) and findings that humpback dolphins along the coast of Bangladesh, and possibly eastern India, are phylogenetically distinct from other members of the Sousa genus. Sousa chinensis is found in Southeast/South Asia (in both the Indian and Pacific oceans), from at least the southeastern Bay of Bengal east to central China, and then south to the Indo-Malay Archipelago. There are no global population estimates, and the sum of available abundance estimates add up to about 5700 individuals, although only a portion of the range has been covered by surveys. This species occurs in shallow (<30m deep), coastal waters of the tropics and subtropics, and feeds mainly on small fishes. It has a similar reproductive biology to other large dolphins, occurs mostly in small groups, and generally has individual movements of about 50-200km(2). Major threats throughout the range include entanglement in fishing nets (primarily gillnets) and habitat destruction/degradation, although in some more industrialized areas, vessel traffic, and environmental contamination from organochlorines are also serious issues. Conservation management is largely lacking in most parts of the species' range, although there has been significant (though still inadequate) attention in some parts of China (e.g. Hong Kong and adjacent areas, and Taiwan). Much greater efforts are needed toward conservation of Indo-Pacific humpback dolphins to stop apparent declines, and to lower the species' extinction risk. Sousa chinensis meets the IUCN Red List requirements for Vulnerable (under criteria A4cd), with fisheries bycatch and habitat loss/degradation being the main pervasive threats. PMID:26790886

  12. Integrating Biodiversity Data into Botanic Collections

    PubMed Central

    2016-01-01

    Abstract Background Today's species names are entry points into a web of publicly available knowledge and are integral parts of legislation concerning biological conservation and consumer safety. Species information usually is fragmented, can be misleading due to the existence of different names and might even be biased because of an identical name that is used for a different species. Safely navigating through the name space is one of the most challenging tasks when associating names with data and when decisions are made which name to include in legislation. Integrating publicly available dynamic data to characterise plant genetic resources of botanic gardens and other facilities will significantly increase the efficiency of recovering relevant information for research projects, identifying potentially invasive taxa, constructing priority lists and developing DNA-based specimen authentication. New information To demonstrate information availability and discuss integration into botanic collections, scientific names derived from botanic gardens were evaluated using the Encyclopedia of Life, The Catalogue of Life and The Plant List. 98.5% of the names could be verified by the combined use of these providers. Comparing taxonomic status information 13 % of the cases were in disagreement. About 7 % of the verified names were found to be included in the International Union for Conservation of Nature Red List, including one extinct taxon and three taxa with the status "extinct in the wild". As second most important factor for biodiversity loss, potential invasiveness was determined. Approximately 4 % of the verified names were detected using the Global Invasive Species Information Network, including 208 invasive taxa. According to Delivering Alien Invasive Species Inventories for Europe around 20 % of the verified names are European alien taxa including 15 of the worst European invasive taxa. Considering alternative names in the data recovery process, success increased up

  13. Making Robust Policy Decisions Using Global Biodiversity Indicators

    PubMed Central

    Nicholson, Emily; Collen, Ben; Barausse, Alberto; Blanchard, Julia L.; Costelloe, Brendan T.; Sullivan, Kathryn M. E.; Underwood, Fiona M.; Burn, Robert W.; Fritz, Steffen; Jones, Julia P. G.; McRae, Louise; Possingham, Hugh P.; Milner-Gulland, E. J.

    2012-01-01

    In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD) meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change. PMID:22815938

  14. Soft Corals Biodiversity in the Egyptian Red Sea: A Comparative MS and NMR Metabolomics Approach of Wild and Aquarium Grown Species.

    PubMed

    Farag, Mohamed A; Porzel, Andrea; Al-Hammady, Montasser A; Hegazy, Mohamed-Elamir F; Meyer, Achim; Mohamed, Tarik A; Westphal, Hildegard; Wessjohann, Ludger A

    2016-04-01

    Marine life has developed unique metabolic and physiologic capabilities and advanced symbiotic relationships to survive in the varied and complex marine ecosystems. Herein, metabolite composition of the soft coral genus Sarcophyton was profiled with respect to its species and different habitats along the coastal Egyptian Red Sea via (1)H NMR and ultra performance liquid chromatography-mass spectrometry (UPLC-MS) large-scale metabolomics analyses. The current study extends the application of comparative secondary metabolite profiling from plants to corals revealing for metabolite compositional differences among its species via a comparative MS and NMR approach. This was applied for the first time to investigate the metabolism of 16 Sarcophyton species in the context of their genetic diversity or growth habitat. Under optimized conditions, we were able to simultaneously identify 120 metabolites including 65 diterpenes, 8 sesquiterpenes, 18 sterols, and 15 oxylipids. Principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS) were used to define both similarities and differences among samples. For a compound based classification of coral species, UPLC-MS was found to be more effective than NMR. The main differentiations emanate from cembranoids and oxylipids. The specific metabolites that contribute to discrimination between soft corals of S. ehrenbergi from the three different growing habitats also belonged to cembrane type diterpenes, with aquarium S. ehrenbergi corals being less enriched in cembranoids compared to sea corals. PCA using either NMR or UPLC-MS data sets was found equally effective in predicting the species origin of unknown Sarcophyton. Cyclopropane containing sterols observed in abundance in corals may act as cellular membrane protectant against the action of coral toxins, that is, cembranoids. PMID:26892921

  15. The Contribution of DNA Metabarcoding to Fungal Conservation: Diversity Assessment, Habitat Partitioning and Mapping Red-Listed Fungi in Protected Coastal Salix repens Communities in the Netherlands

    PubMed Central

    Geml, József; Gravendeel, Barbara; van der Gaag, Kristiaan J.; Neilen, Manon; Lammers, Youri; Raes, Niels; Semenova, Tatiana A.; de Knijff, Peter; Noordeloos, Machiel E.

    2014-01-01

    Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S. repens coastal dune vegetation. We carried out massively parallel pyrosequencing of ITS rDNA from soil samples taken at ten sites in an extended area of joined nature reserves located along the North Sea coast of the Netherlands, representing habitats with varying soil pH and moisture levels. Fungal communities in Salix repens beds are highly diverse and we detected 1211 non-singleton fungal 97% sequence similarity OTUs after analyzing 688,434 ITS2 rDNA sequences. Our comparison along a north-south transect indicated strong correlation between soil pH and fungal community composition. The total fungal richness and the number OTUs of most fungal taxonomic groups negatively correlated with higher soil pH, with some exceptions. With regard to ecological groups, dark-septate endophytic fungi were more diverse in acidic soils, ectomycorrhizal fungi were represented by more OTUs in calcareous sites, while detected arbuscular mycorrhizal genera fungi showed opposing trends regarding pH. Furthermore, we detected numerous red listed species in our samples often from previously unknown locations, indicating that some of the fungal species currently considered rare may be more abundant in Dutch S. repens communities than previously thought. PMID:24937200

  16. The contribution of DNA metabarcoding to fungal conservation: diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands.

    PubMed

    Geml, József; Gravendeel, Barbara; van der Gaag, Kristiaan J; Neilen, Manon; Lammers, Youri; Raes, Niels; Semenova, Tatiana A; de Knijff, Peter; Noordeloos, Machiel E

    2014-01-01

    Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S. repens coastal dune vegetation. We carried out massively parallel pyrosequencing of ITS rDNA from soil samples taken at ten sites in an extended area of joined nature reserves located along the North Sea coast of the Netherlands, representing habitats with varying soil pH and moisture levels. Fungal communities in Salix repens beds are highly diverse and we detected 1211 non-singleton fungal 97% sequence similarity OTUs after analyzing 688,434 ITS2 rDNA sequences. Our comparison along a north-south transect indicated strong correlation between soil pH and fungal community composition. The total fungal richness and the number OTUs of most fungal taxonomic groups negatively correlated with higher soil pH, with some exceptions. With regard to ecological groups, dark-septate endophytic fungi were more diverse in acidic soils, ectomycorrhizal fungi were represented by more OTUs in calcareous sites, while detected arbuscular mycorrhizal genera fungi showed opposing trends regarding pH. Furthermore, we detected numerous red listed species in our samples often from previously unknown locations, indicating that some of the fungal species currently considered rare may be more abundant in Dutch S. repens communities than previously thought. PMID:24937200

  17. Pastures and biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers often plant monocultures or simple grass-legume mixtures in their pastures. Increased biodiversity in pastures may be one tool to improve sustainability and productivity. This fact sheet addresses some common questions regarding biodiversity in pastures. Very broadly, biodiversity refers to ...

  18. International trade drives biodiversity threats in developing nations.

    PubMed

    Lenzen, M; Moran, D; Kanemoto, K; Foran, B; Lobefaro, L; Geschke, A

    2012-06-01

    Human activities are causing Earth's sixth major extinction event-an accelerating decline of the world's stocks of biological diversity at rates 100 to 1,000 times pre-human levels. Historically, low-impact intrusion into species habitats arose from local demands for food, fuel and living space. However, in today's increasingly globalized economy, international trade chains accelerate habitat degradation far removed from the place of consumption. Although adverse effects of economic prosperity and economic inequality have been confirmed, the importance of international trade as a driver of threats to species is poorly understood. Here we show that a significant number of species are threatened as a result of international trade along complex routes, and that, in particular, consumers in developed countries cause threats to species through their demand of commodities that are ultimately produced in developing countries. We linked 25,000 Animalia species threat records from the International Union for Conservation of Nature Red List to more than 15,000 commodities produced in 187 countries and evaluated more than 5 billion supply chains in terms of their biodiversity impacts. Excluding invasive species, we found that 30% of global species threats are due to international trade. In many developed countries, the consumption of imported coffee, tea, sugar, textiles, fish and other manufactured items causes a biodiversity footprint that is larger abroad than at home. Our results emphasize the importance of examining biodiversity loss as a global systemic phenomenon, instead of looking at the degrading or polluting producers in isolation. We anticipate that our findings will facilitate better regulation, sustainable supply-chain certification and consumer product labelling. PMID:22678290

  19. Conserving tropical biodiversity via market forces and spatial targeting.

    PubMed

    Bateman, Ian J; Coombes, Emma; Fitzherbert, Emily; Binner, Amy; Bad'ura, Tomáš; Carbone, Chris; Fisher, Brendan; Naidoo, Robin; Watkinson, Andrew R

    2015-06-16

    The recent report from the Secretariat of the Convention on Biological Diversity [(2010) Global Biodiversity Outlook 3] acknowledges that ongoing biodiversity loss necessitates swift, radical action. Protecting undisturbed lands, although vital, is clearly insufficient, and the key role of unprotected, private land owned is being increasingly recognized. Seeking to avoid common assumptions of a social planner backed by government interventions, the present work focuses on the incentives of the individual landowner. We use detailed data to show that successful conservation on private land depends on three factors: conservation effectiveness (impact on target species), private costs (especially reductions in production), and private benefits (the extent to which conservation activities provide compensation, for example, by enhancing the value of remaining production). By examining the high-profile issue of palm-oil production in a major tropical biodiversity hotspot, we show that the levels of both conservation effectiveness and private costs are inherently spatial; varying the location of conservation activities can radically change both their effectiveness and private cost implications. We also use an economic choice experiment to show that consumers' willingness to pay for conservation-grade palm-oil products has the potential to incentivize private producers sufficiently to engage in conservation activities, supporting vulnerable International Union for Conservation of Nature Red Listed species. However, these incentives vary according to the scale and efficiency of production and the extent to which conservation is targeted to optimize its cost-effectiveness. Our integrated, interdisciplinary approach shows how strategies to harness the power of the market can usefully complement existing--and to-date insufficient--approaches to conservation. PMID:26077906

  20. Conserving tropical biodiversity via market forces and spatial targeting

    PubMed Central

    Bateman, Ian J.; Coombes, Emma; Fitzherbert, Emily; Binner, Amy; Bad’ura, Tomáš; Carbone, Chris; Fisher, Brendan; Naidoo, Robin; Watkinson, Andrew R.

    2015-01-01

    The recent report from the Secretariat of the Convention on Biological Diversity [(2010) Global Biodiversity Outlook 3] acknowledges that ongoing biodiversity loss necessitates swift, radical action. Protecting undisturbed lands, although vital, is clearly insufficient, and the key role of unprotected, private land owned is being increasingly recognized. Seeking to avoid common assumptions of a social planner backed by government interventions, the present work focuses on the incentives of the individual landowner. We use detailed data to show that successful conservation on private land depends on three factors: conservation effectiveness (impact on target species), private costs (especially reductions in production), and private benefits (the extent to which conservation activities provide compensation, for example, by enhancing the value of remaining production). By examining the high-profile issue of palm-oil production in a major tropical biodiversity hotspot, we show that the levels of both conservation effectiveness and private costs are inherently spatial; varying the location of conservation activities can radically change both their effectiveness and private cost implications. We also use an economic choice experiment to show that consumers' willingness to pay for conservation-grade palm-oil products has the potential to incentivize private producers sufficiently to engage in conservation activities, supporting vulnerable International Union for Conservation of Nature Red Listed species. However, these incentives vary according to the scale and efficiency of production and the extent to which conservation is targeted to optimize its cost-effectiveness. Our integrated, interdisciplinary approach shows how strategies to harness the power of the market can usefully complement existing—and to-date insufficient—approaches to conservation. PMID:26077906

  1. The status of coral reef ecology research in the Red Sea

    NASA Astrophysics Data System (ADS)

    Berumen, M. L.; Hoey, A. S.; Bass, W. H.; Bouwmeester, J.; Catania, D.; Cochran, J. E. M.; Khalil, M. T.; Miyake, S.; Mughal, M. R.; Spaet, J. L. Y.; Saenz-Agudelo, P.

    2013-09-01

    The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef systems. We carried out a quantitative assessment of ISI-listed research published from the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef-associated bacteria) and compared the amount of research conducted in the Red Sea to that from Australia's Great Barrier Reef (GBR) and the Caribbean. On average, for these eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and about 1/8th the amount of the Caribbean. Further, more than 50 % of the published research from the Red Sea originated from the Gulf of Aqaba, a small area (<2 % of the area of the Red Sea) in the far northern Red Sea. We summarize the general state of knowledge in these eight topics and highlight the areas of future research priorities for the Red Sea region. Notably, data that could inform science-based management approaches are badly lacking in most Red Sea countries. The Red Sea, as a geologically "young" sea located in one of the warmest regions of the world, has the potential to provide insight into pressing topics such as speciation processes as well as the capacity of reef systems and organisms to adapt to global climate change. As one of the world's most biodiverse coral reef regions, the Red Sea may yet have a significant role to play in our understanding of coral reef ecology at a global scale.

  2. Fungal biodiversity to biotechnology.

    PubMed

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application. PMID:26810078

  3. Using Social Media to Measure the Contribution of Red List Species to the Nature-Based Tourism Potential of African Protected Areas.

    PubMed

    Willemen, Louise; Cottam, Andrew J; Drakou, Evangelia G; Burgess, Neil D

    2015-01-01

    Cultural ecosystem services are defined by people's perception of the environment, which make them hard to quantify systematically. Methods to describe cultural benefits from ecosystems typically include resource-demanding survey techniques, which are not suitable to assess cultural ecosystem services for large areas. In this paper we explore a method to quantify cultural benefits through the enjoyment of natured-based tourism, by assessing the potential tourism attractiveness of species for each protected area in Africa using the IUCN's Red List of Threatened Species. We use the number of pictures of wildlife posted on a photo sharing website as a proxy for charisma, popularity, and ease of observation, as these factors combined are assumed to determine how attractive species are for the global wildlife tourist. Based on photo counts of 2473 African animals and plants, species that seem most attractive to nature-based tourism are the Lion, African Elephant and Leopard. Combining the photo counts with species range data, African protected areas with the highest potential to attract wildlife tourists based on attractive species occurrence were Samburu National Reserve in Kenya, Mukogodo Forest Reserve located just north of Mount Kenya, and Addo Elephant National Park in South-Africa. The proposed method requires only three data sources which are freely accessible and available online, which could make the proposed index tractable for large scale quantitative ecosystem service assessments. The index directly links species presence to the tourism potential of protected areas, making the connection between nature and human benefits explicit, but excludes other important contributing factors for tourism, such as accessibility and safety. This social media based index provides a broad understanding of those species that are popular globally; in many cases these are not the species of highest conservation concern. PMID:26068111

  4. Using Social Media to Measure the Contribution of Red List Species to the Nature-Based Tourism Potential of African Protected Areas

    PubMed Central

    Drakou, Evangelia G.; Burgess, Neil D.

    2015-01-01

    Cultural ecosystem services are defined by people’s perception of the environment, which make them hard to quantify systematically. Methods to describe cultural benefits from ecosystems typically include resource-demanding survey techniques, which are not suitable to assess cultural ecosystem services for large areas. In this paper we explore a method to quantify cultural benefits through the enjoyment of natured-based tourism, by assessing the potential tourism attractiveness of species for each protected area in Africa using the IUCN’s Red List of Threatened Species. We use the number of pictures of wildlife posted on a photo sharing website as a proxy for charisma, popularity, and ease of observation, as these factors combined are assumed to determine how attractive species are for the global wildlife tourist. Based on photo counts of 2473 African animals and plants, species that seem most attractive to nature-based tourism are the Lion, African Elephant and Leopard. Combining the photo counts with species range data, African protected areas with the highest potential to attract wildlife tourists based on attractive species occurrence were Samburu National Reserve in Kenya, Mukogodo Forest Reserve located just north of Mount Kenya, and Addo Elephant National Park in South-Africa. The proposed method requires only three data sources which are freely accessible and available online, which could make the proposed index tractable for large scale quantitative ecosystem service assessments. The index directly links species presence to the tourism potential of protected areas, making the connection between nature and human benefits explicit, but excludes other important contributing factors for tourism, such as accessibility and safety. This social media based index provides a broad understanding of those species that are popular globally; in many cases these are not the species of highest conservation concern. PMID:26068111

  5. Essential biodiversity variables

    USGS Publications Warehouse

    Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.G.; Scholes, R.J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.M.; Cardoso, A.C.; Coops, N.C.; Dulloo, E.; Faith, D.P.; Freyhof, J.; Gregory, R.D.; Heip, C.; Höft, R.; Hurtt, G.; Jetz, W.; Karp, D.S.; McGeoch, M.A.; Obura, D.; Onada, Y.; Pettorelli, N.; Reyers, B.; Sayre, R.; Scharlemann, J.P.W.; Stuart, S.N.; Turak, E.; Walpole, M.; Wegmann, M.

    2013-01-01

    Reducing the rate of biodiversity loss and averting dangerous biodiversity change are international goals, reasserted by the Aichi Targets for 2020 by Parties to the United Nations (UN) Convention on Biological Diversity (CBD) after failure to meet the 2010 target (1, 2). However, there is no global, harmonized observation system for delivering regular, timely data on biodiversity change (3). With the first plenary meeting of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) soon under way, partners from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (4) are developing—and seeking consensus around—Essential Biodiversity Variables (EBVs) that could form the basis of monitoring programs worldwide.

  6. Biodiversity in forage stands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers often plant monocultures or simple grass-legume mixtures in their pastures. Increased biodiversity in pastures may be one tool to improve sustainability and productivity. For this production guide, we will focus on plant biodiversity because it is the most amenable to management in pastures....

  7. Marine biodiversity characteristics.

    PubMed

    Boeuf, Gilles

    2011-05-01

    Oceans contain the largest living volume of the "blue" planet, inhabited by approximately 235-250,000 described species, all groups included. They only represent some 13% of the known species on the Earth, but the marine biomasses are really huge. Marine phytoplankton alone represents half the production of organic matter on Earth while marine bacteria represent more than 10%. Life first appeared in the oceans more than 3.8 billion years ago and several determining events took place that changed the course of life, ranging from the development of the cell nucleus to sexual reproduction going through multi-cellular organisms and the capture of organelles. Of the 31 animal phyla currently listed, 12 are exclusively marine phyla and have never left the ocean. An interesting question is to try to understand why there are so few marine species versus land species? This pattern of distribution seems pretty recent in the course of Evolution. From an exclusively marine world, since the beginning until 440 million years ago, land number of species much increased 110 million years ago. Specific diversity and ancestral roles, in addition to organizational models and original behaviors, have made marine organisms excellent reservoirs for identifying and extracting molecules (>15,000 today) with pharmacological potential. They also make particularly relevant models for both fundamental and applied research. Some marine models have been the source of essential discoveries in life sciences. From this diversity, the ocean provides humankind with renewable resources, which are highly threatened today and need more adequate management to preserve ocean habitats, stocks and biodiversity. PMID:21640952

  8. List identifies threatened ecosystems

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”

  9. BIODIVERSITY AND HUMAN IMPACTS

    EPA Science Inventory

    The basic issue that drives all concerns about biodiversity is theaccelerating and irreplaceable loss of genes, species, populations,and ecosystems through environmental degradation such asdeforestation, strip mining and other developmental projects. Associated with these losses ...

  10. Utility terrestrial biodiversity issues

    SciTech Connect

    Breece, G.A.; Ward, B.J.

    1996-11-01

    Results from a survey of power utility biologists indicate that terrestrial biodiversity is considered a major issued by only a few utilities; however, a majority believe it may be a future issue. Over half of the respondents indicated that their company is involved in some management for biodiversity, and nearly all feel that it should be a goal for resource management. Only a few utilities are funding biodiversity research, but a majority felt more research was needed. Generally, larger utilities with extensive land holdings had greater opportunities and resources for biodiversity management. Biodiversity will most likely be a concern with transmission rights-of-way construction and maintenance, endangered species issues and general land resource management, including mining reclamation and hydro relicensing commitments. Over half of the companies surveyed have established voluntary partnerships with management groups, and biodiversity is a goal in nearly all the joint projects. Endangered species management and protection, prevention of forest fragmentation, wetland protection, and habitat creation and protection are the most common partnerships involving utility companies. Common management practices and unique approaches are presented, along with details of the survey. 4 refs.

  11. Cobb's Red Cabbage Indicator.

    ERIC Educational Resources Information Center

    Cobb, Vicki

    1998-01-01

    Describes the use of an indicator made from the pigment in red cabbage. Cabbage is grated then soaked in water. When the water is a strong red, the cabbage is strained out. The cabbage-juice indicator is then used to test for acids and bases. Includes a list of good foods to test for acidity and alkalinity. (PVD)

  12. Edge Effects Are Important in Supporting Beetle Biodiversity in a Gravel-Bed River Floodplain

    PubMed Central

    Langhans, Simone D.; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60–100 m, and 5 m within the riparian forest), and time of the year (February–November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct – yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity. PMID:25545280

  13. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    PubMed

    Langhans, Simone D; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest), and time of the year (February-November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity. PMID:25545280

  14. When bugs reveal biodiversity.

    PubMed

    Bohmann, Kristine; Schnell, Ida B; Gilbert, M Thomas P

    2013-02-01

    One of the fundamental challenges of conservation biology is gathering data on species distribution and abundance. And unless conservationists know where a species is found and in which numbers, it is very difficult to apply effective conservation efforts. In today's age of increasingly powerful monitoring tools, instant communication and online databases, one might be forgiven for thinking that such knowledge is easy to come by. However, of the approximately 5,400 terrestrial mammals on the IUCN Red List, no fewer than 789 (ca. 14%) are listed as 'Data Deficient' (IUCN 2012) – IUCN’s term for 'haven't got a clue'. Until recently, the only way to gather information of numbers and distribution of terrestrial mammals (and many other vertebrates) was through observational-based approaches such as visual records, the presence of tracks or spoor or even identification from bushmeat or hunters' trophies pinned to the walls in local villages. While recent technological developments have considerably improved the efficacy of such approaches, for example, using remote-sensing devices such as audio- or camera-traps or even remote drones (Koh & Wich 2012), there has been a growing realization of the power of molecular methods that identify mammals based on trace evidence. Suitable substrates include the obvious, such as faecal and hair samples (e.g. Vigilant et al. 2009), to the less obvious, including environmental DNA extracted from sediments, soil or water samples (e.g. Taberlet et al. 2012), and as recently demonstrated, the dietary content of blood-sucking invertebrates (Gariepy et al. 2012; Schnell et al. 2012). In this issue of Molecular Ecology, Calvignac-Spencer et al. (2013) present a potentially powerful development in this regard; diet analysis of carrion flies. With their near global distribution, and as most field biologists know, irritatingly high frequency in most terrestrial areas of conservation concern (which directly translates into ease of sampling

  15. Warfare in biodiversity hotspots.

    PubMed

    Hanson, Thor; Brooks, Thomas M; Da Fonseca, Gustavo A B; Hoffmann, Michael; Lamoreux, John F; Machlis, Gary; Mittermeier, Cristina G; Mittermeier, Russell A; Pilgrim, John D

    2009-06-01

    Conservation efforts are only as sustainable as the social and political context within which they take place. The weakening or collapse of sociopolitical frameworks during wartime can lead to habitat destruction and the erosion of conservation policies, but in some cases, may also confer ecological benefits through altered settlement patterns and reduced resource exploitation. Over 90% of the major armed conflicts between 1950 and 2000 occurred within countries containing biodiversity hotspots, and more than 80% took place directly within hotspot areas. Less than one-third of the 34 recognized hotspots escaped significant conflict during this period, and most suffered repeated episodes of violence. This pattern was remarkably consistent over these 5 decades. Evidence from the war-torn Eastern Afromontane hotspot suggests that biodiversity conservation is improved when international nongovernmental organizations support local protected area staff and remain engaged throughout the conflict. With biodiversity hotspots concentrated in politically volatile regions, the conservation community must maintain continuous involvement during periods of war, and biodiversity conservation should be incorporated into military, reconstruction, and humanitarian programs in the world's conflict zones. PMID:19236450

  16. Biodiversity conservation and NEPA

    SciTech Connect

    Southerland, M.T. )

    1993-01-01

    The Council of Environmental Quality (CEQ) and the Environmental Protection Agency (EPA) have recently developed new guidelines to facilitate the consideration of biodiversity in the preparation and review of environmental impact assessments. The purpose of these efforts is to facilitate the incorporation of biodiversity considerations into the ecological analyses of all federal agencies. Because federal decisions requiring environmental impact assessments under NEPA affect hundreds of millions of federal and non-federal lands and waters, improved consideration of the impacts of federal activities is essential to stemming the loss of biological diversity in the United States. The designation of ecosystems or habitats'' of concern is a useful first step identifying risks to biodiversity. After reviewing the status and trends of habitats within eight major regions of the US, the EPA guidelines identify habitats contributing to regional and global biodiversity such as remnant prairies, riparian habitats, and old-growth forests. This document also discusses how the impacts on habitats vary with the different activities of land conversion, timber harvesting, grazing, mining, and water management.

  17. CAN NEPA PROTECT BIODIVERSITY?

    EPA Science Inventory

    Biodiversity has emerged as a prominent issue in the scientific andconservation communities, and is of increasing concern to thegeneral public. s with other "new" environmental probLems (e.g..global climate change, stratospheric ozone depletion), biodiversityis difficult to evalu...

  18. Books, Biodiversity, and Beyond!

    ERIC Educational Resources Information Center

    Governor, Donna; Helms, Sarah

    2007-01-01

    Reading in science class does not have to be boring, but it is no secret to students or teachers that textbooks are not much fun to read. It is always a challenge for teachers to find reading materials that would grab the interests of their students. In this article, the author relates how she used Biodiversity, a nonfiction book by Dorothy…

  19. Biodiversity in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2012-12-01

    Humans have altered or replaced native ecosystems across more than three quarters of the terrestrial biosphere, creating new global patterns of biodiversity as a result of native species extinctions, domestication and anthropogenic introductions of nonnative species. These anthropogenic global changes in biodiversity have been portrayed as resulting primarily from recent and unprecedented human disturbances that are potentially indicative of catastrophic changes in the Earth system. Yet anthropogenic changes in species richness and community structure caused by human populations and their use of land have been widespread and profound in many regions since before the Holocene, and have been sustained for millennia in many regions, especially in the Temperate Zone. Beyond the anthropogenic megafaunal extinctions of the Pleistocene, habitat loss and fragmentation by agricultural land use has been sustained throughout the Holocene in many biomes at levels theoretically associated with major species extinctions. Anthropogenic patterns of species extinction differ greatly among taxa, with mammals and other larger fauna showing the greatest impacts. However, spatially explicit observations and models of contemporary global patterns of vascular plant species richness confirm that while native losses are likely significant across at least half of Earth's ice-free land, species richness has increased overall in most regional landscapes, mostly because nonnative species invasions tend to exceed native losses. Effective stewardship of biodiversity in the Anthropocene will require integrated global frameworks for observing, modeling and forecasting anthropogenic biodiversity change processes within the novel biotic communities created and sustained by human systems.; Percentage of terrestrial biomes converted to agricultural land over time. ; Conceptual diagram of biodiversity patterns associated with variations in population density, land use and land cover.

  20. Evaluating biodiversity of mineral lands

    SciTech Connect

    Wade, G.L.; Tritton, L.M.

    1997-12-31

    Increasingly, lands intended for mining, or lands that have been mined and reclaimed, are being evaluated in terms of biological diversity (biodiversity). The concept of biodiversity includes die variety and number of living organisms, their organizations, and the environments that support them. This paper presents a framework for discussing and evaluating biodiversity and for constructing checklists for evaluating biodiversity before and after mining. This framework identifies some of the different types of biodiversity applicable to mineral lands, die ranges of scale at which they are applicable, and the social stakes and stakeholders relevant across scale and diversity types.

  1. Wilderness and biodiversity conservation

    NASA Astrophysics Data System (ADS)

    Mittermeier, R. A.; Mittermeier, C. G.; Brooks, T. M.; Pilgrim, J. D.; Konstant, W. R.; da Fonseca, G. A. B.; Kormos, C.

    2003-09-01

    Human pressure threatens many species and ecosystems, so conservation efforts necessarily prioritize saving them. However, conservation should clearly be proactive wherever possible. In this article, we assess the biodiversity conservation value, and specifically the irreplaceability in terms of species endemism, of those of the planet's ecosystems that remain intact. We find that 24 wilderness areas, all > 1 million hectares, are > 70% intact and have human densities of less than or equal to five people per km2. This wilderness covers 44% of all land but is inhabited by only 3% of people. Given this sparse population, wilderness conservation is cost-effective, especially if ecosystem service value is incorporated. Soberingly, however, most wilderness is not speciose: only 18% of plants and 10% of terrestrial vertebrates are endemic to individual wildernesses, the majority restricted to Amazonia, Congo, New Guinea, the Miombo-Mopane woodlands, and the North American deserts. Global conservation strategy must target these five wildernesses while continuing to prioritize threatened biodiversity hotspots.

  2. Beyond biodiversity: fish metagenomes.

    PubMed

    Ardura, Alba; Planes, Serge; Garcia-Vazquez, Eva

    2011-01-01

    Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits.Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific). Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the barcoding target gene coi as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas.Treating all sequences obtained from each regional catch as a biological unit (exploited community) we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods.We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level. PMID:21829636

  3. Beyond Biodiversity: Fish Metagenomes

    PubMed Central

    Ardura, Alba; Planes, Serge; Garcia-Vazquez, Eva

    2011-01-01

    Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits. Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific). Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the Barcoding target gene COI as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas. Treating all sequences obtained from each regional catch as a biological unit (exploited community) we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods. We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level. PMID:21829636

  4. Education and biodiversity

    SciTech Connect

    Ahearn, S.K.

    1988-01-01

    This study focuses on the importance of developing educational programs about biological diversity in order to preserve it more effectively. The study is divided into two parts. Part I is a needs assessment consisting of the results of: (1) a survey and checklist of land management and education/interpretive practices in natural areas of the United States, (2) a study of ecology research reports, (3) interviews of scientists, land managers, and environmental educators in natural areas, and (4) an analysis of popular published environmental-education activity and curriculum guides. From this, a set of needs was identified for purposes of planning activities for teaching about biodiversity in natural areas. Part II consists of sample activities that represent ways to incorporate current knowledge of biodiversity into education/interpretive programming on nature preserves, parks, and wildlife refuges. The ideas focus mainly on developing an understanding of what biodiversity looks like, from the scale of the habitat to the landscape, and from the genetic level to the ecosystem level. The activities are grouped according to six major topics: open space, marine resources, energy, solid waste, surface waters, and freshwater wetlands, and groundwater.

  5. Environmental services of biodiversity.

    PubMed Central

    Myers, N

    1996-01-01

    Humans derive many utilitarian benefits from the environmental services of biotas and ecosystems. This is often advanced as a prime argument to support conservation of biodiversity. There is much to be said for this viewpoint, as is documented in this paper through a summary assessment of several categories of environmental services, including regulation of climate and biogeochemical cycles, hydrological functions, soil protection, crop pollination, pest control, recreation and ecotourism, and a number of miscellaneous services. It is shown that the services are indeed significant, whether in ecological or economic senses. Particularly important is the factor of ecosystem resilience, which appears to underpin many of the services. It should not be supposed, however, that environmental services stem necessarily and exclusively from biodiversity. While biodiversity often plays a key role, the services can also derive from biomass and other attributes of biotas. The paper concludes with a brief overview assessment of economic values at issue and an appraisal of the implications for conservation planning. PMID:11607645

  6. Soil biodiversity and human health

    NASA Astrophysics Data System (ADS)

    Wall, Diana H.; Nielsen, Uffe N.; Six, Johan

    2015-12-01

    Soil biodiversity is increasingly recognized as providing benefits to human health because it can suppress disease-causing soil organisms and provide clean air, water and food. Poor land-management practices and environmental change are, however, affecting belowground communities globally, and the resulting declines in soil biodiversity reduce and impair these benefits. Importantly, current research indicates that soil biodiversity can be maintained and partially restored if managed sustainably. Promoting the ecological complexity and robustness of soil biodiversity through improved management practices represents an underutilized resource with the ability to improve human health.

  7. Soil biodiversity and human health.

    PubMed

    Wall, Diana H; Nielsen, Uffe N; Six, Johan

    2015-12-01

    Soil biodiversity is increasingly recognized as providing benefits to human health because it can suppress disease-causing soil organisms and provide clean air, water and food. Poor land-management practices and environmental change are, however, affecting belowground communities globally, and the resulting declines in soil biodiversity reduce and impair these benefits. Importantly, current research indicates that soil biodiversity can be maintained and partially restored if managed sustainably. Promoting the ecological complexity and robustness of soil biodiversity through improved management practices represents an underutilized resource with the ability to improve human health. PMID:26595276

  8. Biofuels and biodiversity.

    PubMed

    Wiens, John; Fargione, Joseph; Hill, Jason

    2011-06-01

    The recent increase in liquid biofuel production has stemmed from a desire to reduce dependence on foreign oil, mitigate rising energy prices, promote rural economic development, and reduce greenhouse gas emissions. The growth of this industry has important implications for biodiversity, the effects of which depend largely on which biofuel feedstocks are being grown and the spatial extent and landscape pattern of land requirements for growing these feedstocks. Current biofuel production occurs largely on croplands that have long been in agricultural production. The additional land area required for future biofuels production can be met in part by reclaiming reserve or abandoned croplands and by extending cropping into lands formerly deemed marginal for agriculture. In the United States, many such marginal lands have been enrolled in the Conservation Reserve Program (CRP), providing important habitat for grassland species. The demand for corn ethanOl has changed agricultural commodity economics dramatically, already contributing to loss of CRP lands as contracts expire and lands are returned to agricultural production. Nevertheless, there are ways in which biofuels can be developed to enhance their coexistence with biodiversity. Landscape heterogeneity can be improved by interspersion of land uses, which is easier around facilities with smaller or more varied feedstock demands. The development of biofuel feedstocks that yield high net energy returns with minimal carbon debts or that do not require additional land for production, such as residues and wastes, should be encouraged. Competing land uses, including both biofuel production and biodiversity protection, should be subjected to comprehensive cost-benefit analysis, so that incentives can be directed where they will do the most good. PMID:21774415

  9. Biodiversity of rangelands

    SciTech Connect

    West, N.E. )

    1993-01-01

    Biodiversity is a multifaceted phenomenon involving the variety of organisms present, the genetic differences among them, and the communities, ecosystems, and landscape patterns in which they occur. Society will increasingly value biodiversity and influence the passage of laws and writing of regulations involving biodiversity which rangeland managers will have to abide by over the coming decades. Even private and developing world rangelands will be affected. While taxonomic knowledge of vertebrates and vascular plants and their abundance, rarity, and distribution, in the developed nations is generally adequate, the same cannot be said of the developing world. Furthermore, adequate knowledge of invertebrates, nonvascular plants, and microbes is deficient everywhere. Although the basis of variation at all higher levels, genetic variation within rangeland species, even the major ones, has barely been assessed. Obtaining statistically adequate data on populations of rare species that are small and secretive is well nigh impossible. There are many means of measuring community diversity, but all of them are value laden. That is, choice of variables to measure and how they are indexed betrays what one considers are important. One should be more forthright in stating to the users the biases of these methods. There are many other, more useful ways to describe community-level diversity besides the traditional focus on species. Ungulate grazing is an important process in many ecosystems. Thus, removal of grazing destabilizes some systems. Livestock grazing will actually increase the chances of survival of some species. Sustainable development will depend on finding balance between use and protection, from range sites to landscapes, and even on a global basis. 120 refs., 5 figs., 1 tab.

  10. Recovering plant biodiversity

    PubMed Central

    2011-01-01

    Studying recovering plant biodiversity on Mount Pinatubo may provide valuable insights that improve our understanding of recovery of other ecosystems following disturbances of all types. Ongoing sheet and rill erosion coupled with mass waste events in the unstable pyroclastic flow deposits persist, effectively re-setting primary succession at micro-landscape scale without affecting habitat level diversity. Spatial factors and micro-habitat diversity may exert more control over continued succession as the riparian systems become more deeply dissected and complex. The number of taxa within functional groups and conservation concerns are botanical issues that deserve further research. PMID:22019638

  11. Threats to Biodiversity.

    ERIC Educational Resources Information Center

    Wilson, Edward O.

    1989-01-01

    Discusses the extinction of biological wealth due to deforestation. Describes the historical trend of biological diversity and the importance of tropical forests. Lists five references for further reading. (YP)

  12. Net present biodiversity value and the design of biodiversity offsets.

    PubMed

    Overton, Jacob McC; Stephens, R T Theo; Ferrier, Simon

    2013-02-01

    There is an urgent need to develop sound theory and practice for biodiversity offsets to provide a better basis for offset multipliers, to improve accounting for time delays in offset repayments, and to develop a common framework for evaluating in-kind and out-of-kind offsets. Here, we apply concepts and measures from systematic conservation planning and financial accounting to provide a basis for determining equity across type (of biodiversity), space, and time. We introduce net present biodiversity value (NPBV) as a theoretical and practical measure for defining the offset required to achieve no-net-loss. For evaluating equity in type and space we use measures of biodiversity value from systematic conservation planning. Time discount rates are used to address risk of non-repayment, and loss of utility. We illustrate these concepts and measures with two examples of biodiversity impact-offset transactions. Considerable further work is required to understand the characteristics of these approaches. PMID:22956430

  13. Structural Analysis of Biodiversity

    PubMed Central

    Sirovich, Lawrence; Stoeckle, Mark Y.; Zhang, Yu

    2010-01-01

    Large, recently-available genomic databases cover a wide range of life forms, suggesting opportunity for insights into genetic structure of biodiversity. In this study we refine our recently-described technique using indicator vectors to analyze and visualize nucleotide sequences. The indicator vector approach generates correlation matrices, dubbed Klee diagrams, which represent a novel way of assembling and viewing large genomic datasets. To explore its potential utility, here we apply the improved algorithm to a collection of almost 17000 DNA barcode sequences covering 12 widely-separated animal taxa, demonstrating that indicator vectors for classification gave correct assignment in all 11000 test cases. Indicator vector analysis revealed discontinuities corresponding to species- and higher-level taxonomic divisions, suggesting an efficient approach to classification of organisms from poorly-studied groups. As compared to standard distance metrics, indicator vectors preserve diagnostic character probabilities, enable automated classification of test sequences, and generate high-information density single-page displays. These results support application of indicator vectors for comparative analysis of large nucleotide data sets and raise prospect of gaining insight into broad-scale patterns in the genetic structure of biodiversity. PMID:20195371

  14. Wilderness and biodiversity conservation

    PubMed Central

    Mittermeier, R. A.; Mittermeier, C. G.; Brooks, T. M.; Pilgrim, J. D.; Konstant, W. R.; da Fonseca, G. A. B.; Kormos, C.

    2003-01-01

    Human pressure threatens many species and ecosystems, so conservation efforts necessarily prioritize saving them. However, conservation should clearly be proactive wherever possible. In this article, we assess the biodiversity conservation value, and specifically the irreplaceability in terms of species endemism, of those of the planet's ecosystems that remain intact. We find that 24 wilderness areas, all > 1 million hectares, are > 70% intact and have human densities of less than or equal to five people per km2. This wilderness covers 44% of all land but is inhabited by only 3% of people. Given this sparse population, wilderness conservation is cost-effective, especially if ecosystem service value is incorporated. Soberingly, however, most wilderness is not speciose: only 18% of plants and 10% of terrestrial vertebrates are endemic to individual wildernesses, the majority restricted to Amazonia, Congo, New Guinea, the Miombo-Mopane woodlands, and the North American deserts. Global conservation strategy must target these five wildernesses while continuing to prioritize threatened biodiversity hotspots. PMID:12930898

  15. Mechanisms maintaining grassland biodiversity and ecosystem stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecologists need to know how particular processes influence biodiversity and ecosystem stability. We demonstrate how data from biodiversity-ecosystem functioning experiments can be used to identify and quantify the classes of mechanisms maintaining biodiversity and ecosystem stability. We predicted...

  16. Biodiversity: past, present, and future

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1997-01-01

    Data from the fossil record are used to illustrate biodiversity in the past and estimate modern biodiversity and loss. This data is used to compare current rates of extinction with past extinction events. Paleontologists are encouraged to use this data to understand the course and consequences of current losses and to share this knowledge with researchers interested in conservation and ecology.

  17. Undergraduate Students' Attitudes toward Biodiversity

    ERIC Educational Resources Information Center

    Huang, Hui-Ju; Lin, Yu-Teh Kirk

    2014-01-01

    The study investigated American and Taiwan undergraduate students' attitudes toward biodiversity. The survey questionnaire consisted of statements prompted by the question "To what extent do you agree with the following statements about problems with the biodiversity issues." Students indicated strongly disagree, disagree, agree,…

  18. Systematics and the biodiversity crisis

    SciTech Connect

    Savage, J.M.

    1995-11-01

    This article discusses the importance of systematics in evaluating the global biodiversity crisis. Topics covered include the following: what systematic biology is; the diversity of species and higher taxa; biodiversity undersiege; systematics and conservation; systematics and global climatic change. 28 refs., 2 figs., 1 tab.

  19. Biodiversity: Who Knows, Who Cares?

    ERIC Educational Resources Information Center

    Zemits, Birut

    2006-01-01

    Biodiversity is an abstract concept, attracting various responses from different people according to where they have come from and what ecosystems they have been closely linked to. In theory, most people would agree that protecting biodiversity is an important process, but in practice, few people commit to actions on a local level. This paper…

  20. Biodiversity tracks temperature over time

    PubMed Central

    Mayhew, Peter J.; Bell, Mark A.; Benton, Timothy G.; McGowan, Alistair J.

    2012-01-01

    The geographic distribution of life on Earth supports a general pattern of increase in biodiversity with increasing temperature. However, some previous analyses of the 540-million-year Phanerozoic fossil record found a contrary relationship, with paleodiversity declining when the planet warms. These contradictory findings are hard to reconcile theoretically. We analyze marine invertebrate biodiversity patterns for the Phanerozoic Eon while controlling for sampling effort. This control appears to reverse the temporal association between temperature and biodiversity, such that taxonomic richness increases, not decreases, with temperature. Increasing temperatures also predict extinction and origination rates, alongside other abiotic and biotic predictor variables. These results undermine previous reports of a negative biodiversity-temperature relationship through time, which we attribute to paleontological sampling biases. Our findings suggest a convergence of global scale macroevolutionary and macroecological patterns for the biodiversity-temperature relationship. PMID:22949697

  1. The Biodiversity Informatics Potential Index

    PubMed Central

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  2. Biodiversity--from Sea to Shining Sea.

    ERIC Educational Resources Information Center

    St. Antoine, Sara; Runk, Julie Velasquez

    1996-01-01

    Describes teaching strategies that allow teachers to use the topic of biodiversity to talk about a range of social and scientific issues. Discusses biodiversity basics, local links to global biodiversity, mapping our ecoregions, and activity ideas. Presents activities that introduce students to different reasons for protecting biodiversity and…

  3. Social challenge of biodiversity conservation

    SciTech Connect

    Castilleja, G.; Poole, P.J.; Geisler, C.C.; Davis, S.H.

    1993-12-31

    ;Contents: Introduction; Opportunities for Collaboration between the Global Environment Facility and Non-Governmental Organizations; Indigenous Peoples and Biodiversity Protection; and Adapting Social Impact Assessment to Protected Area Development.

  4. LINE LISTS FOR THE A {sup 2}Π-X {sup 2}Σ{sup +} (RED) AND B {sup 2}Σ{sup +}-X {sup 2}Σ{sup +} (VIOLET) SYSTEMS OF CN, {sup 13}C{sup 14}N, AND {sup 12}C{sup 15}N, AND APPLICATION TO ASTRONOMICAL SPECTRA

    SciTech Connect

    Sneden, Christopher; Lucatello, Sara; Ram, Ram S.; Brooke, James S. A.; Bernath, Peter E-mail: sara.lucatello@oapd.inaf.it E-mail: jsabrooke@gmail.com

    2014-10-01

    New red and violet system line lists for the CN isotopologues {sup 13}C{sup 14}N and {sup 12}C{sup 15}N have been generated. These new transition data are combined with those previously derived for {sup 12}C{sup 14}N, and applied to the determination of CNO abundances in the solar photosphere and in four red giant stars: Arcturus, the bright, very low-metallicity star HD 122563, and the carbon-enhanced metal-poor stars HD 196944 and HD 201626. When both red and violet system lines are detectable in a star, their derived N abundances are in good agreement. The mean N abundances determined in this work are also generally in accord with published values.

  5. Software List.

    ERIC Educational Resources Information Center

    Computers in Chemical Education Newsletter, 1984

    1984-01-01

    Lists and briefly describes computer programs recently added to those currently available from Project SERAPHIM. Program name, subject, hardware, author, supplier, and current cost are provided in separate listings for Apple, Atari, Pet, VIC-20, TRS-80, and IBM-PC. (JN)

  6. TIP list

    SciTech Connect

    Ludwig, M E

    2006-06-22

    Subcontractors and vendors providing services, including the installation of purchased goods, are required to complete a TIP List. This list does not include every Environment, Safety, and Health (ES&H) related concern at LLNL. It is intended to highlight major concerns common to most on-site service activities.

  7. Biodiversity and Industry Ecosystem Management

    PubMed

    COLEMAN

    1996-11-01

    / The term biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they comprise, and the variety of ecosystems of which they are functioning parts. Ecosystem health, a closely related concept, is described in terms of a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability and sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the face of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish "near-trump" (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-wide, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute

  8. Biodiversity informatics: managing and applying primary biodiversity data.

    PubMed Central

    Soberón, Jorge; Peterson, A Townsend

    2004-01-01

    Recently, advances in information technology and an increased willingness to share primary biodiversity data are enabling unprecedented access to it. By combining presences of species data with electronic cartography via a number of algorithms, estimating niches of species and their areas of distribution becomes feasible at resolutions one to three orders of magnitude higher than it was possible a few years ago. Some examples of the power of that technique are presented. For the method to work, limitations such as lack of high-quality taxonomic determination, precise georeferencing of the data and availability of high-quality and updated taxonomic treatments of the groups must be overcome. These are discussed, together with comments on the potential of these biodiversity informatics techniques not only for fundamental studies but also as a way for developing countries to apply state of the art bioinformatic methods and large quantities of data, in practical ways, to tackle issues of biodiversity management. PMID:15253354

  9. Eye redness

    MedlinePlus

    Bloodshot eyes; Red eyes; Scleral infection; Conjunctival infection ... There are many causes of a red eye or eyes. Some are medical emergencies and some are a cause for concern, but not an emergency. Others are nothing to worry about. ...

  10. Red Clover

    MedlinePlus

    ... 17):2057–2071. Red clover. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on July 22, 2009. Red clover ( Trifolium pratense ). Natural Standard Database Web site. Accessed at www.naturalstandard.com on July ...

  11. Red clover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover (Trifolium pratense L.) is an important forage legume grown on approximately 4 million hectares worldwide. An estimated 2.8 million kg of red clover seed per year was produced worldwide in 2005-2007. This amount of seed would be enough to maintain approximately 4 million hectares of red...

  12. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... Imaging SpectroRadiometer (MISR) image of the Red Sea was acquired on August 13, 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of algae,  Trichodesmium ...

  13. Listing people.

    PubMed

    Delbourgo, James

    2012-12-01

    Historians and commentators have long discussed tensions between specialist and lay expertise in the making of scientific knowledge. Such accounts have often described quarrels over the distribution of expertise in nineteenth-century "popular" and imperial sciences. The "crowdsourcing" of science on a global scale, however, arguably began in the early modern era. This essay examines the lists of specimen suppliers, the artifacts of a worldwide collecting campaign, published by the London apothecary James Petiver at the turn of the eighteenth century. Listing suppliers helped Petiver advertise his status as a global specimen broker in the Republic of Letters. However, publicly listing his sources drew criticism over the social character of his collecting project, while lists became synonymous with the debasement of learning in polemics over natural history. PMID:23488241

  14. Biodiversity and industry ecosystem management

    NASA Astrophysics Data System (ADS)

    Coleman, William G.

    1996-11-01

    The term biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they comprise, and the variety of ecosystems of which they are functioning parts. Ecosystem health, a closely related concept, is described in terms of a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability and sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the face of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish “near-trump” (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-wide, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute

  15. Biodiversity and industry ecosystem management

    SciTech Connect

    Coleman, W.G.

    1996-11-01

    Biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they are functioning parts. Ecosystem health is a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability an sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the fact of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish {open_quotes}near-trump{close_quotes} (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-side, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute incrementally to the broader agenda of rebuilding or maintaining biodiversity. 40 refs., 8 figs.

  16. Biodiversity, Sustainability and Human Communities

    NASA Astrophysics Data System (ADS)

    O'Riordan, Tim; Stoll-Kleemann, Susanne

    2002-09-01

    The rate at which the planet is losing its biodiversity, the implications of this loss, and possible remedies are the subject of much public and academic debate. This book shows how biodiversity can be protected through the involvement of local communities. The authors suggest that strict protection of threatened areas must be combined with involvement by local economies and societies. The book examines the experience of regions around the world where this approach has been tried, drawing upon the insights of political scientists, economists and social psychologists.

  17. Biodiverse Planting for Carbon and Biodiversity on Indigenous Land

    PubMed Central

    Renwick, Anna R.; Robinson, Catherine J.; Martin, Tara G.; May, Tracey; Polglase, Phil; Possingham, Hugh P.; Carwardine, Josie

    2014-01-01

    Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes. PMID:24637736

  18. Children Prioritize Virtual Exotic Biodiversity over Local Biodiversity

    PubMed Central

    Ballouard, Jean-Marie; Brischoux, François; Bonnet, Xavier

    2011-01-01

    Environmental education is essential to stem current dramatic biodiversity loss, and childhood is considered as the key period for developing awareness and positive attitudes toward nature. Children are strongly influenced by the media, notably the internet, about biodiversity and conservation issues. However, most media focus on a few iconic, appealing, and usually exotic species. In addition, virtual activities are replacing field experiences. This situation may curb children knowledge and concerns about local biodiversity. Focusing our analyses on local versus exotic species, we examined the level of knowledge and the level of diversity of the animals that French schoolchildren are willing to protect, and whether these perceptions are mainly guided by information available in the internet. For that, we collected and compared two complementary data sets: 1) a questionnaire was administered to schoolchildren to assess their knowledge and consideration to protect animals, 2) an internet content analysis (i.e. Google searching sessions using keywords) was performed to assess which animals are the most often represented. Our results suggest that the knowledge of children and their consideration to protect animal are mainly limited to internet contents, represented by a few exotic and charismatic species. The identification rate of local animals by schoolchildren was meager, suggesting a worrying disconnection from their local environment. Schoolchildren were more prone to protect “virtual” (unseen, exotic) rather than local animal species. Our results reinforce the message that environmental education must also focus on outdoor activities to develop conservation consciousness and concerns about local biodiversity. PMID:21829710

  19. Biodiverse planting for carbon and biodiversity on indigenous land.

    PubMed

    Renwick, Anna R; Robinson, Catherine J; Martin, Tara G; May, Tracey; Polglase, Phil; Possingham, Hugh P; Carwardine, Josie

    2014-01-01

    Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes. PMID:24637736

  20. Global biodiversity monitoring: from data sources to essential biodiversity variables

    USGS Publications Warehouse

    Proenca, Vania; Martin, Laura J.; Pereira, Henrique M.; Fernandez, Miguel; McRae, Louise; Belnap, Jayne; Böhm, Monika; Brummitt, Neil; Garcia-Moreno, Jaime; Gregory, Richard D.; Honrado, Joao P; Jürgens, Norbert; Opige, Michael; Schmeller, Dirk S.; Tiago, Patricia; van Sway, Chris A

    2016-01-01

    Essential Biodiversity Variables (EBVs) consolidate information from varied biodiversity observation sources. Here we demonstrate the links between data sources, EBVs and indicators and discuss how different sources of biodiversity observations can be harnessed to inform EBVs. We classify sources of primary observations into four types: extensive and intensive monitoring schemes, ecological field studies and satellite remote sensing. We characterize their geographic, taxonomic and temporal coverage. Ecological field studies and intensive monitoring schemes inform a wide range of EBVs, but the former tend to deliver short-term data, while the geographic coverage of the latter is limited. In contrast, extensive monitoring schemes mostly inform the population abundance EBV, but deliver long-term data across an extensive network of sites. Satellite remote sensing is particularly suited to providing information on ecosystem function and structure EBVs. Biases behind data sources may affect the representativeness of global biodiversity datasets. To improve them, researchers must assess data sources and then develop strategies to compensate for identified gaps. We draw on the population abundance dataset informing the Living Planet Index (LPI) to illustrate the effects of data sources on EBV representativeness. We find that long-term monitoring schemes informing the LPI are still scarce outside of Europe and North America and that ecological field studies play a key role in covering that gap. Achieving representative EBV datasets will depend both on the ability to integrate available data, through data harmonization and modeling efforts, and on the establishment of new monitoring programs to address critical data gaps.

  1. Biodiversity: past, present and future

    PubMed Central

    Rubidge, Emily M.; Burton, A. Cole; Vamosi, Steven M.

    2012-01-01

    On 12–15 May 2011, a diverse group of students, researchers and practitioners from across Canada and around the world met in Banff, Alberta, to discuss the many facets of biodiversity science at the 6th Annual Meeting of the Canadian Society for Ecology and Evolution. PMID:21733869

  2. Trading biodiversity for pest problems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent shifts in agricultural practices have resulted in increased pesticide use, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic a...

  3. Teaching about Biodiversity. ERIC Digest.

    ERIC Educational Resources Information Center

    Haury, David L.

    There are three aspects to biodiversity: (1) genetic diversity within species that enables organisms to evolve and adapt to new conditions; (2) species diversity that refers to the number and kind of organisms distributed within an ecosystem; and (3) ecosystem diversity that refers to the variety of habitats and communities interacting in complex…

  4. Biodiversity Conservation in the REDD

    PubMed Central

    2010-01-01

    Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG) emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics. PMID:21092321

  5. Biodiversity Lab: Using Local Resources.

    ERIC Educational Resources Information Center

    Gillie, Lynn L.

    1997-01-01

    Examining living organisms in one's own backyard is a key first step toward appreciating the scope and importance of biological diversity throughout the world. The goals of this lab are to involve students in exploring the biodiversity around them, appreciating its scope, and asking questions of new organisms that they may never have noticed…

  6. Scaling issues for biodiversity protection

    SciTech Connect

    Pearson, S.M.; Turner, M.G.; Gardner, R.H.; O`Neill, R.V.

    1992-08-01

    Environmental heterogeneity, in both space and time, has been important in the evolution and maintenance of biodiversity. Moreover, this heterogeneity is hierarchical in nature. Differences occur between biomes, between landscapes. Thus, hierarchical patterns of heterogeneity are a consequence of the the complexity within ecological communities, and the maintenance of biodiversity means the preservation of this complexity. Natural landscapes are dynamic systems that exhibit temporal and spatial heterogeneity. However, the exploitative nature of human activity tends to simplify landscapes (Krummel et al. 1987). The challenge of preserving biodiversity in managed landscapes is to incorporate natural levels of spatial and temporal heterogeneity into management schemes. The concept of scale has emerged as an important topic among ecologists that recognize the role of heterogeneity in natural ecosystems. Subjects related to scale such as grain (level of detail) and extent (size of area or duration of time) are frequently used to determine the appropriate interpretation of ecological data. Likewise, scale is important when applying ecological principles to biodiversity protection and conservation. The scale of a conservation endeavor affects the strategy involved, realistic goals, and probability of success. For instance, the spatial extent of a reserve system may be determined, for better or worse, by biogeography, distribution of surviving populations, political boundaries, or fiscal constraints. Our objectives are to: emphasize the importance of natural patterns of spatial and temporal heterogeneity, encourage a broader-scale perspective for conservation efforts, and illustrate the interaction between landscape-level heterogeneity and organism-based scales of resource utilization with a simulation experiment.

  7. Scaling issues for biodiversity protection

    SciTech Connect

    Pearson, S.M.; Turner, M.G.; Gardner, R.H.; O'Neill, R.V.

    1992-01-01

    Environmental heterogeneity, in both space and time, has been important in the evolution and maintenance of biodiversity. Moreover, this heterogeneity is hierarchical in nature. Differences occur between biomes, between landscapes. Thus, hierarchical patterns of heterogeneity are a consequence of the the complexity within ecological communities, and the maintenance of biodiversity means the preservation of this complexity. Natural landscapes are dynamic systems that exhibit temporal and spatial heterogeneity. However, the exploitative nature of human activity tends to simplify landscapes (Krummel et al. 1987). The challenge of preserving biodiversity in managed landscapes is to incorporate natural levels of spatial and temporal heterogeneity into management schemes. The concept of scale has emerged as an important topic among ecologists that recognize the role of heterogeneity in natural ecosystems. Subjects related to scale such as grain (level of detail) and extent (size of area or duration of time) are frequently used to determine the appropriate interpretation of ecological data. Likewise, scale is important when applying ecological principles to biodiversity protection and conservation. The scale of a conservation endeavor affects the strategy involved, realistic goals, and probability of success. For instance, the spatial extent of a reserve system may be determined, for better or worse, by biogeography, distribution of surviving populations, political boundaries, or fiscal constraints. Our objectives are to: emphasize the importance of natural patterns of spatial and temporal heterogeneity, encourage a broader-scale perspective for conservation efforts, and illustrate the interaction between landscape-level heterogeneity and organism-based scales of resource utilization with a simulation experiment.

  8. Teaching Biodiversity & Evolution through Travel Course Experiences

    ERIC Educational Resources Information Center

    Zervanos, Stam. M.; McLaughlin, Jacqueline S.

    2003-01-01

    Biodiversity is the extraordinary variety of life in this planet. In order to be fully appreciated, biodiversity needs to be experienced firsthand, or "experientially." Thus, the standard classroom lecture format is not the ideal situation for teaching biodiversity and evolutionary concepts, in that student interest and understanding are not…

  9. Making Biodiversity Meaningful through Environmental Education.

    ERIC Educational Resources Information Center

    van Weelie, Daan; Wals, Arjen E. J.

    2002-01-01

    Explores the crossroads between science education and environmental education and presents a framework for tapping environmental education's potential of biodiversity. Outlines a number of stepping stones for making biodiversity meaningful to learners. From the perspective of environmental education, the ill-defined nature of biodiversity is a…

  10. Biology Student Teachers' Conceptual Frameworks regarding Biodiversity

    ERIC Educational Resources Information Center

    Dikmenli, Musa

    2010-01-01

    In recent years, biodiversity has received a great deal of attention worldwide, especially in environmental education. The reasons for this attention are the increase of human activities on biodiversity and environmental problems. The purpose of this study is to investigate biology student teachers' conceptual frameworks regarding biodiversity.…

  11. Delayed biodiversity change: no time to waste.

    PubMed

    Essl, Franz; Dullinger, Stefan; Rabitsch, Wolfgang; Hulme, Philip E; Pyšek, Petr; Wilson, John R U; Richardson, David M

    2015-07-01

    Delayed biodiversity responses to environmental forcing mean that rates of contemporary biodiversity changes are underestimated, yet these delays are rarely addressed in conservation policies. Here, we identify mechanisms that lead to such time lags, discuss shifting human perceptions, and propose how these phenomena should be addressed in biodiversity management and science. PMID:26028440

  12. Accounting for biodiversity in the dairy industry.

    PubMed

    Sizemore, Grant C

    2015-05-15

    Biodiversity is an essential part of properly functioning ecosystems, yet the loss of biodiversity currently occurs at rates unparalleled in the modern era. One of the major causes of this phenomenon is habitat loss and modification as a result of intensified agricultural practices. This paper provides a starting point for considering biodiversity within dairy production, and, although focusing primarily on the United States, findings are applicable broadly. Biodiversity definitions and assessments (e.g., indicators, tools) are proposed and reviewed. Although no single indicator or tool currently meets all the needs of comprehensive assessment, many sustainable practices are readily adoptable as ways to conserve and promote biodiversity. These practices, as well as potential funding opportunities are identified. Given the state of uncertainty in addressing the complex nature of biodiversity assessments, the adoption of generally sustainable environmental practices may be the best currently available option for protecting biodiversity on dairy lands. PMID:25817566

  13. Place prioritization for biodiversity content.

    PubMed

    Sarkar, Sahotra; Aggarwal, Anshu; Garson, Justin; Margules, Chris R; Zeidler, Juliane

    2002-07-01

    The prioritization of places on the basis of biodiversity content is part of any systematic biodiversity conservation planning process. The place prioritization procedure implemented in the ResNet software package is described. This procedure is primarily based on the principles of rarity and complementarity. Application of the procedure is demonstrated with two analyses, one data set consisting of the distributions of termite genera in Namibia, and the other consisting of the distributions of bird species in the Islas Malvinas/Falkland Islands. The attributes that data sets should have for the effective and reliable application of such procedures are discussed. The procedure used here is compared to some others that are also currently in use. PMID:12177533

  14. Techniques for Quantifying Phytoplankton Biodiversity

    NASA Astrophysics Data System (ADS)

    Johnson, Zackary I.; Martiny, Adam C.

    2015-01-01

    The biodiversity of phytoplankton is a core measurement of the state and activity of marine ecosystems. In the context of historical approaches, we review recent major advances in the technologies that have enabled deeper characterization of the biodiversity of phytoplankton. In particular, high-throughput sequencing of single loci/genes, genomes, and communities (metagenomics) has revealed exceptional phylogenetic and genomic diversity whose breadth is not fully constrained. Other molecular tools—such as fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization—have provided additional insight into the dynamics of this diversity in the context of environmental variability. Techniques for characterizing the functional diversity of community structure through targeted or untargeted approaches based on RNA or protein have also greatly advanced. A wide range of techniques is now available for characterizing phytoplankton communities, and these tools will continue to advance through ongoing improvements in both technology and data interpretation.

  15. Is marine biodiversity at risk

    SciTech Connect

    Culotta, E.

    1994-02-18

    Evidence is beginning to accumulate that human development of coastlines and overfishing may be having deleterious effects on marine biodiversity. Although some biologists doubt marine extinctions, the possibility is being taken seriously by scientific organizations, who have been sponsoring conferences and workshops on the changing diversity of the oceans. Four federal agencies (NSF, NOAA, the Office of Naval Research, and DOE) have banded together to sponsor a National Research Council initiative to chart a research agenda.

  16. Biodiversity in Word and Meaning

    ERIC Educational Resources Information Center

    Slingsby, David

    2010-01-01

    This article argues that we need to abandon the word "biodiversity", to rediscover the biology that it obscures and to rethink how to introduce this biology to young people. We cannot go back to the systematics that once made up a large part of a biology A-level course (ages 16-18), so we need to find alternative ways of introducing the variety of…

  17. Extinction Risk and Diversification Are Linked in a Plant Biodiversity Hotspot

    PubMed Central

    Davies, T. Jonathan; Smith, Gideon F.; Bellstedt, Dirk U.; Boatwright, James S.; Bytebier, Benny; Cowling, Richard M.; Forest, Félix; Harmon, Luke J.; Muasya, A. Muthama; Schrire, Brian D.; Steenkamp, Yolande; van der Bank, Michelle; Savolainen, Vincent

    2011-01-01

    It is widely recognized that we are entering an extinction event on a scale approaching the mass extinctions seen in the fossil record. Present-day rates of extinction are estimated to be several orders of magnitude greater than background rates and are projected to increase further if current trends continue. In vertebrates, species traits, such as body size, fecundity, and geographic range, are important predictors of vulnerability. Although plants are the basis for life on Earth, our knowledge of plant extinctions and vulnerabilities is lagging. Here, we disentangle the underlying drivers of extinction risk in plants, focusing on the Cape of South Africa, a global biodiversity hotspot. By comparing Red List data for the British and South African floras, we demonstrate that the taxonomic distribution of extinction risk differs significantly between regions, inconsistent with a simple, trait-based model of extinction. Using a comprehensive phylogenetic tree for the Cape, we reveal a phylogenetic signal in the distribution of plant extinction risks but show that the most threatened species cluster within short branches at the tips of the phylogeny—opposite to trends in mammals. From analyzing the distribution of threatened species across 11 exemplar clades, we suggest that mode of speciation best explains the unusual phylogenetic structure of extinction risks in plants of the Cape. Our results demonstrate that explanations for elevated extinction risk in plants of the Cape flora differ dramatically from those recognized for vertebrates. In the Cape, extinction risk is higher for young and fast-evolving plant lineages and cannot be explained by correlations with simple biological traits. Critically, we find that the most vulnerable plant species are nonetheless marching towards extinction at a more rapid pace but, surprisingly, independently from anthropogenic effects. Our results have important implications for conservation priorities and cast doubts on the

  18. Red Sky with Red Mesa

    SciTech Connect

    2011-04-14

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  19. Red Sky with Red Mesa

    ScienceCinema

    None

    2014-06-23

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  20. Red Capes, Red Herrings, and Red Flags.

    ERIC Educational Resources Information Center

    Fiske, Donald W.

    The argument that the personality structures obtained from retrospective ratings reflect semantic similarity structures has been as provocative as a red cape in the bull ring. High congruence between those two kinds of structures seems well established. What is less clear is how and why those structures differ from that for immediate judgments of…

  1. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    PubMed Central

    Coll, Marta; Piroddi, Chiara; Steenbeek, Jeroen; Kaschner, Kristin; Ben Rais Lasram, Frida; Aguzzi, Jacopo; Ballesteros, Enric; Bianchi, Carlo Nike; Corbera, Jordi; Dailianis, Thanos; Danovaro, Roberto; Estrada, Marta; Froglia, Carlo; Galil, Bella S.; Gasol, Josep M.; Gertwagen, Ruthy; Gil, João; Guilhaumon, François; Kesner-Reyes, Kathleen; Kitsos, Miltiadis-Spyridon; Koukouras, Athanasios; Lampadariou, Nikolaos; Laxamana, Elijah; López-Fé de la Cuadra, Carlos M.; Lotze, Heike K.; Martin, Daniel; Mouillot, David; Oro, Daniel; Raicevich, Saša; Rius-Barile, Josephine; Saiz-Salinas, Jose Ignacio; San Vicente, Carles; Somot, Samuel; Templado, José; Turon, Xavier; Vafidis, Dimitris; Villanueva, Roger; Voultsiadou, Eleni

    2010-01-01

    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of

  2. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats.

    PubMed

    Coll, Marta; Piroddi, Chiara; Steenbeek, Jeroen; Kaschner, Kristin; Ben Rais Lasram, Frida; Aguzzi, Jacopo; Ballesteros, Enric; Bianchi, Carlo Nike; Corbera, Jordi; Dailianis, Thanos; Danovaro, Roberto; Estrada, Marta; Froglia, Carlo; Galil, Bella S; Gasol, Josep M; Gertwagen, Ruthy; Gil, João; Guilhaumon, François; Kesner-Reyes, Kathleen; Kitsos, Miltiadis-Spyridon; Koukouras, Athanasios; Lampadariou, Nikolaos; Laxamana, Elijah; López-Fé de la Cuadra, Carlos M; Lotze, Heike K; Martin, Daniel; Mouillot, David; Oro, Daniel; Raicevich, Sasa; Rius-Barile, Josephine; Saiz-Salinas, Jose Ignacio; San Vicente, Carles; Somot, Samuel; Templado, José; Turon, Xavier; Vafidis, Dimitris; Villanueva, Roger; Voultsiadou, Eleni

    2010-01-01

    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet-undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of

  3. Portunoid crabs as indicators of the Red Sea fauna history and endemism

    NASA Astrophysics Data System (ADS)

    Spiridonov, Vassily; Türkay, Michael; Brösing, Andreas; Al-Aidaroos, Ali

    2013-04-01

    Peculiar environmental conditions and "turbulent" geological history make the Red Sea a laboratory of evolution and a significant area for understanding adaptation processes. To interpret the results of this basin-scale evolutionary experiment revised inventories of taxonomic diversity of particular groups of marine biota are essential. As one of the first results of the Red Sea Biodiversity Survey (RSBS) in the years 2011 - 2012 along the coast of Saudi Arabia (http://www.redseabiodiversity.org/) and examination of earlier collections and literature a revised species list is provided for the portunoid (swimming) crabs (Crustacea Decapoda Portunoidea). This superfamily is one of the most species rich and has one of the broadest habitat scopes among Brachyura in the global scale. The present assessment results in 54 shallow water species (including 2 recorded for the first time in the Red Sea during RSBS), 2 deep water species and 1 semipelagic species Charybdis smithii. Doubtful literature records of another 7 shallow water species remain unconfirmed. Among reliably recorded shallow water species 58 % belong to widespread Indo-West-Pacific (IWP) species, 13% are the species restricted to the western Indian Ocean, 11 % are endemics of the Arabian region (occurring also either in the western Gulf of Aden or along the eastern coast of the Arabian Peninsula, or in both areas) which are usually vicariant to the widespread IWP species, 11% are taxa that are similar to the species occurring elsewhere in the IWP but have morphological peculiarities and probably deserve a specific or subspecific status. Finally 4% of species (Thalamita murinae and Liocarcinus subcorrugatus) appear to be endemic for the Red Sea and show remarkable disjunctions from most closely related species. Carcinus sp. (probably C. aestuarii) is an introduced (but not established) species in the northern Red Sea. The deep water fauna of the Red Sea is unique because it lives in the warm (20.5-21.5 ° C

  4. The Value of Learning about Natural History in Biodiversity Markets.

    PubMed

    Bruggeman, Douglas J

    2015-01-01

    Markets for biodiversity have generated much controversy because of the often unstated and untested assumptions included in transactions rules. Simple trading rules are favored to reduce transaction costs, but others have argued that this leads to markets that favor development and erode biodiversity. Here, I describe how embracing complexity and uncertainty within a tradable credit system for the Red-cockaded Woodpecker (Picoides borealis) creates opportunities to achieve financial and conservation goals simultaneously. Reversing the effects of habitat fragmentation is one of the main reasons for developing markets. I include uncertainty in habitat fragmentation effects by evaluating market transactions using five alternative dispersal models that were able to approximate observed patterns of occupancy and movement. Further, because dispersal habitat is often not included in market transactions, I contrast how changes in breeding versus dispersal habitat affect credit values. I use an individually-based, spatially-explicit population model for the Red-cockaded Woodpecker (Picoides borealis) to predict spatial- and temporal- influences of landscape change on species occurrence and genetic diversity. Results indicated that the probability of no net loss of abundance and genetic diversity responded differently to the transient dynamics in breeding and dispersal habitat. Trades that do not violate the abundance cap may simultaneously violate the cap for the erosion of genetic diversity. To highlight how economic incentives may help reduce uncertainty, I demonstrate tradeoffs between the value of tradable credits and the value of information needed to predict the influence of habitat trades on population viability. For the trade with the greatest uncertainty regarding the change in habitat fragmentation, I estimate that the value of using 13-years of data to reduce uncertainty in dispersal behaviors is $6.2 million. Future guidance for biodiversity markets should at

  5. The Value of Learning about Natural History in Biodiversity Markets

    PubMed Central

    Bruggeman, Douglas J.

    2015-01-01

    Markets for biodiversity have generated much controversy because of the often unstated and untested assumptions included in transactions rules. Simple trading rules are favored to reduce transaction costs, but others have argued that this leads to markets that favor development and erode biodiversity. Here, I describe how embracing complexity and uncertainty within a tradable credit system for the Red-cockaded Woodpecker (Picoides borealis) creates opportunities to achieve financial and conservation goals simultaneously. Reversing the effects of habitat fragmentation is one of the main reasons for developing markets. I include uncertainty in habitat fragmentation effects by evaluating market transactions using five alternative dispersal models that were able to approximate observed patterns of occupancy and movement. Further, because dispersal habitat is often not included in market transactions, I contrast how changes in breeding versus dispersal habitat affect credit values. I use an individually-based, spatially-explicit population model for the Red-cockaded Woodpecker (Picoides borealis) to predict spatial- and temporal- influences of landscape change on species occurrence and genetic diversity. Results indicated that the probability of no net loss of abundance and genetic diversity responded differently to the transient dynamics in breeding and dispersal habitat. Trades that do not violate the abundance cap may simultaneously violate the cap for the erosion of genetic diversity. To highlight how economic incentives may help reduce uncertainty, I demonstrate tradeoffs between the value of tradable credits and the value of information needed to predict the influence of habitat trades on population viability. For the trade with the greatest uncertainty regarding the change in habitat fragmentation, I estimate that the value of using 13-years of data to reduce uncertainty in dispersal behaviors is $6.2 million. Future guidance for biodiversity markets should at

  6. Marine biodiversity in the Caribbean: regional estimates and distribution patterns.

    PubMed

    Miloslavich, Patricia; Díaz, Juan Manuel; Klein, Eduardo; Alvarado, Juan José; Díaz, Cristina; Gobin, Judith; Escobar-Briones, Elva; Cruz-Motta, Juan José; Weil, Ernesto; Cortés, Jorge; Bastidas, Ana Carolina; Robertson, Ross; Zapata, Fernando; Martín, Alberto; Castillo, Julio; Kazandjian, Aniuska; Ortiz, Manuel

    2010-01-01

    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela-Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different

  7. Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    PubMed Central

    Miloslavich, Patricia; Díaz, Juan Manuel; Klein, Eduardo; Alvarado, Juan José; Díaz, Cristina; Gobin, Judith; Escobar-Briones, Elva; Cruz-Motta, Juan José; Weil, Ernesto; Cortés, Jorge; Bastidas, Ana Carolina; Robertson, Ross; Zapata, Fernando; Martín, Alberto; Castillo, Julio; Kazandjian, Aniuska; Ortiz, Manuel

    2010-01-01

    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of

  8. Global biodiversity: indicators of recent declines

    USGS Publications Warehouse

    Butchart, Stuart H.M.; Walpole, Matt; Collen, Ben; Van Strien, Arco; Scharlemann, Jorn P.W.; Almond, Rosamunde E.A.; Baillie, Jonathan E.M.; Bomhard, Bastian; Brown, Claire; Bruno, John; Carpenter, Kent E.; Carr, Genevieve M.; Chanson, Janice; Chenery, Anna M.; Csirke, Jorge; Davidson, Nick C.; Dentener, Frank; Foster, Matt; Galli, Alessandro; Galloway, James N.; Genovesi, Piero; Gregory, Richard D.; Hockings, Marc; Kapos, Valerie; Lamarque, Jean-Francois; Leverington, Fiona; Loh, Jonathan; McGeoch, Melodie A.; McRae, Louise; Minasyan, Anahit; Morcillo, Monica Hernandez; Oldfield, Thomasina E.E.; Pauly, Daniel; Quader, Suhel; Revenga, Carmen; Sauer, John R.; Skolnik, Benjamin; Spear, Dian; Stanwell-Smith, Damon; Stuart, Simon N.; Symes, Andy; Tierney, Megan; Tyrrell, Tristan D.; Vie, Jean-Christophe; Watson, Reg

    2011-01-01

    In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species' population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.

  9. Global biodiversity: indicators of recent declines.

    PubMed

    Butchart, Stuart H M; Walpole, Matt; Collen, Ben; van Strien, Arco; Scharlemann, Jörn P W; Almond, Rosamunde E A; Baillie, Jonathan E M; Bomhard, Bastian; Brown, Claire; Bruno, John; Carpenter, Kent E; Carr, Geneviève M; Chanson, Janice; Chenery, Anna M; Csirke, Jorge; Davidson, Nick C; Dentener, Frank; Foster, Matt; Galli, Alessandro; Galloway, James N; Genovesi, Piero; Gregory, Richard D; Hockings, Marc; Kapos, Valerie; Lamarque, Jean-Francois; Leverington, Fiona; Loh, Jonathan; McGeoch, Melodie A; McRae, Louise; Minasyan, Anahit; Hernández Morcillo, Monica; Oldfield, Thomasina E E; Pauly, Daniel; Quader, Suhel; Revenga, Carmen; Sauer, John R; Skolnik, Benjamin; Spear, Dian; Stanwell-Smith, Damon; Stuart, Simon N; Symes, Andy; Tierney, Megan; Tyrrell, Tristan D; Vié, Jean-Christophe; Watson, Reg

    2010-05-28

    In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species' population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing. PMID:20430971

  10. Biodiversity technologies: tools as change agents

    PubMed Central

    Snaddon, Jake; Petrokofsky, Gillian; Jepson, Paul; Willis, Katherine J.

    2013-01-01

    A meeting on Biodiversity Technologies was held by the Biodiversity Institute, Oxford on the 27–28 of September 2012 at the Department of Zoology, University of Oxford. The symposium brought together 36 speakers from North America, Australia and across Europe, presenting the latest research on emerging technologies in biodiversity science and conservation. Here we present a perspective on the general trends emerging from the symposium. PMID:23221877

  11. On biodiversity conservation and poverty traps

    PubMed Central

    Barrett, Christopher B.; Travis, Alexander J.; Dasgupta, Partha

    2011-01-01

    This paper introduces a special feature on biodiversity conservation and poverty traps. We define and explain the core concepts and then identify four distinct classes of mechanisms that define important interlinkages between biodiversity and poverty. The multiplicity of candidate mechanisms underscores a major challenge in designing policy appropriate across settings. This framework is then used to introduce the ensuing set of papers, which empirically explore these various mechanisms linking poverty traps and biodiversity conservation. PMID:21873176

  12. Marine Biodiversity in Japanese Waters

    PubMed Central

    Fujikura, Katsunori; Lindsay, Dhugal; Kitazato, Hiroshi; Nishida, Shuhei; Shirayama, Yoshihisa

    2010-01-01

    To understand marine biodiversity in Japanese waters, we have compiled information on the marine biota in Japanese waters, including the number of described species (species richness), the history of marine biology research in Japan, the state of knowledge, the number of endemic species, the number of identified but undescribed species, the number of known introduced species, and the number of taxonomic experts and identification guides, with consideration of the general ocean environmental background, such as the physical and geological settings. A total of 33,629 species have been reported to occur in Japanese waters. The state of knowledge was extremely variable, with taxa containing many inconspicuous, smaller species tending to be less well known. The total number of identified but undescribed species was at least 121,913. The total number of described species combined with the number of identified but undescribed species reached 155,542. This is the best estimate of the total number of species in Japanese waters and indicates that more than 70% of Japan's marine biodiversity remains un-described. The number of species reported as introduced into Japanese waters was 39. This is the first attempt to estimate species richness for all marine species in Japanese waters. Although its marine biota can be considered relatively well known, at least within the Asian-Pacific region, considering the vast number of different marine environments such as coral reefs, ocean trenches, ice-bound waters, methane seeps, and hydrothermal vents, much work remains to be done. We expect global change to have a tremendous impact on marine biodiversity and ecosystems. Japan is in a particularly suitable geographic situation and has a lot of facilities for conducting marine science research. Japan has an important responsibility to contribute to our understanding of life in the oceans. PMID:20689840

  13. Biodiversity in urban habitat patches.

    PubMed

    Angold, P G; Sadler, J P; Hill, M O; Pullin, A; Rushton, S; Austin, K; Small, E; Wood, B; Wadsworth, R; Sanderson, R; Thompson, K

    2006-05-01

    We examined the biodiversity of urban habitats in Birmingham (England) using a combination of field surveys of plants and carabid beetles, genetic studies of four species of butterflies, modelling the anthropochorous nature of the floral communities and spatially explicit modelling of selected mammal species. The aim of the project was to: (i) understand the ecological characteristics of the biota of cities model, (ii) examine the effects of habitat fragment size and connectivity upon the ecological diversity and individual species distributions, (iii) predict biodiversity in cities, and (iv) analyse the extent to which the flora and fauna utilise the 'urban greenways' both as wildlife corridors and as habitats in their own right. The results suggest that cities provide habitats for rich and diverse range of plants and animals, which occur sometimes in unlikely recombinant communities. The studies on carabids and butterflies illustrated the relative importance of habitat quality on individual sites as opposed to site location within the conurbation. This suggests that dispersal for most of our urban species is not a limiting factor in population persistence, although elements of the woodland carabid fauna did appear to have some geographical structuring. Theoretical models suggested that dormice and water voles may depend on linear habitats for dispersal. The models also indicated that other groups, such as small and medium sized mammals, may use corridors, although field-based research did not provide any evidence to suggest that plants or invertebrates use urban greenways for dispersal. This finding indicates the importance of identifying a target species or group of species for urban greenways intended as dispersal routeways rather than as habitat in their own right. Their importance for most groups is rather that greenways provide a chain of different habitats permeating the urban environment. We suggest that planners can have a positive impact on urban

  14. Biodiversity conservation in running waters

    SciTech Connect

    Allan, J.D. ); Flecker, A.S. )

    1993-01-01

    In the concerns about biodiversity conservation, fresh waters have received less attention than tropical forests and oceans. However, running waters harbor a diverse panoply of species, habitats, and ecosystems, including some of the most threatened and many having great value to human society. An overview of the biological diversity of running waters and the state of imperilment is presented. Six major factors that threaten destruction of running water species and ecosystems are discussed: habitat loss and degradation; species invasions; overharvesting; secondary extinctions; chemical and organic pollution; global climate change. General measures for recovery and restoration of running waters conclude the article.

  15. Biodiversity

    SciTech Connect

    Janetos, Anthony C.; Hansen, Lara; Inouye, David; Kelly, Brendan; Meyerson, Laura; Peterson, Bill; Shaw, Rebecca

    2008-05-27

    This synthesis and assessment report bulds on extensive scientific literature and series of recent assessments of the historical and potential impacts of climate change and climate variability on managed and unmanaged ecosystems.

  16. Biodiversity

    SciTech Connect

    Not Available

    1988-01-01

    This book calls attention to a most urgent global problem: the rapidly accelerating loss of plant and animal species to increasing human population pressure and the demands of economic development. Based on a major conference sponsored by the National Academy of Sciences and the Smithsonian Institution, this book creates a systematic framework for analyzing the problem and searching for possible solutions.

  17. Aquatic biodiversity and the electric utility industry

    SciTech Connect

    Olmsted, L.L.; Bolin, J.W.

    1996-11-01

    Results for a 1995 survey of utility company biologists indicate that aquatic biodiversity is an emerging and poorly understood issue. As a result, there is some confusion about what aquatic biodiversity actually is, and how we can best conserve it. Only one fourth (24%) of the respondents said their company has a stated environmental policy that addresses biodiversity. Many respondents indicate that over the years they have not specially managed for biodiversity, but have been doing that through their efforts to assure balanced indigenous populations. While regulations are still the major driver for biological work, an increasing number of companies are involved in voluntary partnerships in managing water resources. Of these voluntary partnerships, 70% have biodiversity as a goal. Biodiversity is becoming an increasingly common subject of study, and a vast majority (75%) of the respondents suggested is should be a goal for utility for resource management. Conservation of aquatic biodiversity is a complex task, and to date most aquatic efforts have been directed toward fish and macroinvertebrates. Ecological research and technological development performed by the utility industry have resulted in a number of successful biopreservation and biorestoration success stories. A common theme to preserving or enhancing aquatic biodiversity is preserving aquatic habitat. Increasingly, ecosystem management is touted as the most likely approach to achieve success in preserving aquatic biodiversity. Several utilities are conducting progressive work in implementing ecosystem management. This paper presents the potential interactions between power plants and biodiversity, and overview of aquatic biodiversity preservations efforts within the electric utility industry, more detail on the results of the survey, and recent initiatives in ecosystem management. 17 refs., 1 tab.

  18. Valuing biodiversity: reality or mirage?

    PubMed

    Dore, Mohammed H I; Webb, David

    2003-01-01

    The objective of this paper was to consider the social value of biological diversity and explore if this value could be expressed in terms of a unidimensional metric in money. Economics distinguishes between use-values and non-use-values, which are critically evaluated for valuing biodiversity. It is shown that these utility-based valuations have severe limitations as they treat species in isolation from their ecological contexts. In contrast, ecosystem ecology regards ecosystems as an integrated non-linear and nonconvex system in which ecosystem functions can be understood as a four-component cycle; exploitation, accumulation of biomass, creative destruction and renewal. Within such a cycle, ecosystems can be seen to have two properties: stability and resilience. A good proxy for resilience is the probability of extinction of species, and social value of biodiversity can be expressed as a partial ordering with this probability as an index. This approach is consistent with decision theory, of which social choice is an important component, pioneered by Arrow. PMID:12859001

  19. River networks as biodiversity hotlines.

    PubMed

    Décamps, Henri

    2011-05-01

    For several years, measures to insure healthy river functions and to protect biodiversity have focused on management at the scale of drainage basins. Indeed, rivers bear witness to the health of their drainage basins, which justifies integrated basin management. However, this vision should not mask two other aspects of the protection of aquatic and riparian biodiversity as well as services provided by rivers. First, although largely depending on the ecological properties of the surrounding terrestrial environment, rivers are ecological systems by themselves, characterized by their linearity: they are organized in connected networks, complex and ever changing, open to the sea. Second, the structure and functions of river networks respond to manipulations of their hydrology, and are particularly vulnerable to climatic variations. Whatever the scale considered, river networks represent "hotlines" for sharing water between ecological and societal systems, as well as for preserving both systems in the face of global change. River hotlines are characterized by spatial as well as temporal legacies: every human impact to a river network may be transmitted far downstream from its point of origin, and may produce effects only after a more or less prolonged latency period. Here, I review some of the current issues of river ecology in light of the linear character of river networks. PMID:21640951

  20. Comparative genomics for biodiversity conservation

    PubMed Central

    Grueber, Catherine E.

    2015-01-01

    Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few comparative genomic studies are performed with explicit and specific objectives to aid conservation of wild populations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodiversity conservation. Because conservation examples are few, I draw on research from other areas to demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conservation units and studies of hybridisation, as well as studies that provide conservation outcomes from a better understanding of the drivers of divergence. A comparative approach can also provide valuable insight into the threatening processes that impact rare species, such as emerging diseases and their management in conservation. In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and contrasting the genomic composition of threatened and other species provide several useful tools for helping to preserve the molecular biodiversity of the global ecosystem. PMID:26106461

  1. Trading biodiversity for pest problems.

    PubMed

    Lundgren, Jonathan G; Fausti, Scott W

    2015-07-01

    Recent shifts in agricultural practices have resulted in altered pesticide use patterns, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic and environmental costs. Characteristics of the ecological community influence pest populations, but the nature of these interactions remains poorly understood within realistic community complexities and on operating farms. We examine how species diversity and the topology of linkages in species' abundances affect pest abundance on maize farms across the Northern Great Plains. Our results show that increased species diversity, community evenness, and linkage strength and network centrality within a biological network all correlate with significantly reduced pest populations. This supports the assertion that reduced biological complexity on farms is associated with increased pest populations and provides a further justification for diversification of agroecosystems to improve the profitability, safety, and sustainability of food production systems. Bioinventories as comprehensive as the one conducted here are conspicuously absent for most agroecosystems but provide an important baseline for community and ecosystem ecology and the effects of food production on local biodiversity and ecosystem function. Network analyses of abundance correlations of entire communities (rather than focal interactions, for example, trophic interactions) can reveal key network characteristics, especially the importance and nature of network centrality, which aid in understanding how these communities function. PMID:26601223

  2. Anthropic Risk Assessment on Biodiversity

    NASA Astrophysics Data System (ADS)

    Piragnolo, M.; Pirotti, F.; Vettore, A.; Salogni, G.

    2013-01-01

    This paper presents a methodology for risk assessment of anthropic activities on habitats and species. The method has been developed for Veneto Region, in order to simplify and improve the quality of EIA procedure (VINCA). Habitats and species, animals and plants, are protected by European Directive 92/43/EEC and 2009/147/EC but they are subject at hazard due to pollution produced by human activities. Biodiversity risks may conduct to deterioration and disturbance in ecological niches, with consequence of loss of biodiversity. Ecological risk assessment applied on Natura 2000 network, is needed to best practice of management and monitoring of environment and natural resources. Threats, pressure and activities, stress and indicators may be managed by geodatabase and analysed using GIS technology. The method used is the classic risk assessment in ecological context, and it defines the natural hazard as influence, element of risk as interference and vulnerability. Also it defines a new parameter called pressure. It uses risk matrix for the risk analysis on spatial and temporal scale. The methodology is qualitative and applies the precautionary principle in environmental assessment. The final product is a matrix which excludes the risk and could find application in the development of a territorial information system.

  3. Trading biodiversity for pest problems

    PubMed Central

    Lundgren, Jonathan G.; Fausti, Scott W.

    2015-01-01

    Recent shifts in agricultural practices have resulted in altered pesticide use patterns, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic and environmental costs. Characteristics of the ecological community influence pest populations, but the nature of these interactions remains poorly understood within realistic community complexities and on operating farms. We examine how species diversity and the topology of linkages in species’ abundances affect pest abundance on maize farms across the Northern Great Plains. Our results show that increased species diversity, community evenness, and linkage strength and network centrality within a biological network all correlate with significantly reduced pest populations. This supports the assertion that reduced biological complexity on farms is associated with increased pest populations and provides a further justification for diversification of agroecosystems to improve the profitability, safety, and sustainability of food production systems. Bioinventories as comprehensive as the one conducted here are conspicuously absent for most agroecosystems but provide an important baseline for community and ecosystem ecology and the effects of food production on local biodiversity and ecosystem function. Network analyses of abundance correlations of entire communities (rather than focal interactions, for example, trophic interactions) can reveal key network characteristics, especially the importance and nature of network centrality, which aid in understanding how these communities function. PMID:26601223

  4. Coral reef resilience through biodiversity

    USGS Publications Warehouse

    Rogers, Caroline S.

    2013-01-01

    Irrefutable evidence of coral reef degradation worldwide and increasing pressure from rising seawater temperatures and ocean acidification associated with climate change have led to a focus on reef resilience and a call to “manage” coral reefs for resilience. Ideally, global action to reduce emission of carbon dioxide and other greenhouse gases will be accompanied by local action. Effective management requires reduction of local stressors, identification of the characteristics of resilient reefs, and design of marine protected area networks that include potentially resilient reefs. Future research is needed on how stressors interact, on how climate change will affect corals, fish, and other reef organisms as well as overall biodiversity, and on basic ecological processes such as connectivity. Not all reef species and reefs will respond similarly to local and global stressors. Because reef-building corals and other organisms have some potential to adapt to environmental changes, coral reefs will likely persist in spite of the unprecedented combination of stressors currently affecting them. The biodiversity of coral reefs is the basis for their remarkable beauty and for the benefits they provide to society. The extraordinary complexity of these ecosystems makes it both more difficult to predict their future and more likely they will have a future.

  5. DNA barcoding using skin exuviates can improve identification and biodiversity studies of snakes.

    PubMed

    Khedkar, Trupti; Sharma, Rashmi; Tiknaik, Anita; Khedkar, Gulab; Naikwade, Bhagwat S; Ron, Tetsuzan Benny; Haymer, David

    2016-01-01

    Snakes represent a taxonomically underdeveloped group of animals in India with a lack of experts and incomplete taxonomic descriptions being the main deterrents to advances in this area. Molecular taxonomic approaches using DNA barcoding could aid in snake identification as well as studies of biodiversity. Here a non-invasive sampling method using DNA barcoding is tested using skin exuviates. Taxonomically authenticated samples were collected and tested for validation and comparisons to unknown snake exuviate samples. This approach was also used to construct the first comprehensive study targeting the snake species from Maharashtra state in India. A total of 92 skin exuviate samples were collected and tested for this study. Of these, 81 samples were successfully DNA barcoded and compared with unknown samples for assignment of taxonomic identity. Good quality DNA was obtained irrespective of age and quality of the exuviate material, and all unknown samples were successfully identified. A total of 23 species of snakes were identified, six of which were in the list of Endangered species (Red Data Book). Intra- and inter-specific distance values were also calculated, and these were sufficient to allow discrimination among species and between species without ambiguity in most cases. Two samples were suspected to represent cryptic species based on deep K2P divergence values (>3%), and one sample could be identified to the genus level only. Eleven samples failed to amplify COI sequences, suggesting the need for alternative PCR primer pairs. This study clearly documents how snake skin exuviates can be used for DNA barcoding, estimates of diversity and population genetic structuring in a noninvasive manner. PMID:24724934

  6. List based prefetch

    DOEpatents

    Boyle, Peter; Christ, Norman; Gara, Alan; Kim; ,Changhoan; Mawhinney, Robert; Ohmacht, Martin; Sugavanam, Krishnan

    2012-08-28

    A list prefetch engine improves a performance of a parallel computing system. The list prefetch engine receives a current cache miss address. The list prefetch engine evaluates whether the current cache miss address is valid. If the current cache miss address is valid, the list prefetch engine compares the current cache miss address and a list address. A list address represents an address in a list. A list describes an arbitrary sequence of prior cache miss addresses. The prefetch engine prefetches data according to the list, if there is a match between the current cache miss address and the list address.

  7. List based prefetch

    SciTech Connect

    Boyle, Peter; Christ, Norman; Gara, Alan; Kim, Changhoan; Mawhinney, Robert; Ohmacht, Martin; Sugavanam, Krishnan

    2014-08-12

    A list prefetch engine improves a performance of a parallel computing system. The list prefetch engine receives a current cache miss address. The list prefetch engine evaluates whether the current cache miss address is valid. If the current cache miss address is valid, the list prefetch engine compares the current cache miss address and a list address. A list address represents an address in a list. A list describes an arbitrary sequence of prior cache miss addresses. The prefetch engine prefetches data according to the list, if there is a match between the current cache miss address and the list address.

  8. Marine Biodiversity in the Australian Region

    PubMed Central

    Butler, Alan J.; Rees, Tony; Beesley, Pam; Bax, Nicholas J.

    2010-01-01

    The entire Australian marine jurisdictional area, including offshore and sub-Antarctic islands, is considered in this paper. Most records, however, come from the Exclusive Economic Zone (EEZ) around the continent of Australia itself. The counts of species have been obtained from four primary databases (the Australian Faunal Directory, Codes for Australian Aquatic Biota, Online Zoological Collections of Australian Museums, and the Australian node of the Ocean Biogeographic Information System), but even these are an underestimate of described species. In addition, some partially completed databases for particular taxonomic groups, and specialized databases (for introduced and threatened species) have been used. Experts also provided estimates of the number of known species not yet in the major databases. For only some groups could we obtain an (expert opinion) estimate of undiscovered species. The databases provide patchy information about endemism, levels of threat, and introductions. We conclude that there are about 33,000 marine species (mainly animals) in the major databases, of which 130 are introduced, 58 listed as threatened and an unknown percentage endemic. An estimated 17,000 more named species are either known from the Australian EEZ but not in the present databases, or potentially occur there. It is crudely estimated that there may be as many as 250,000 species (known and yet to be discovered) in the Australian EEZ. For 17 higher taxa, there is sufficient detail for subdivision by Large Marine Domains, for comparison with other National and Regional Implementation Committees of the Census of Marine Life. Taxonomic expertise in Australia is unevenly distributed across taxa, and declining. Comments are given briefly on biodiversity management measures in Australia, including but not limited to marine protected areas. PMID:20689847

  9. The origins of tropical marine biodiversity.

    PubMed

    Bowen, Brian W; Rocha, Luiz A; Toonen, Robert J; Karl, Stephen A

    2013-06-01

    Recent phylogeographic studies have overturned three paradigms for the origins of marine biodiversity. (i) Physical (allopatric) isolation is not the sole avenue for marine speciation: many species diverge along ecological boundaries. (ii) Peripheral habitats such as oceanic archipelagos are not evolutionary graveyards: these regions can export biodiversity. (iii) Speciation in marine and terrestrial ecosystems follow similar processes but are not the same: opportunities for allopatric isolation are fewer in the oceans, leaving greater opportunity for speciation along ecological boundaries. Biodiversity hotspots such as the Caribbean Sea and the Indo-Pacific Coral Triangle produce and export species, but can also accumulate biodiversity produced in peripheral habitats. Both hotspots and peripheral ecosystems benefit from this exchange in a process dubbed biodiversity feedback. PMID:23453048

  10. Focus on biodiversity, health and wellbeing

    NASA Astrophysics Data System (ADS)

    Stephens, Carolyn; Athias, Renato

    2015-12-01

    In 2012 Environmental Research Letters (ERL) launched a focus series of research papers on the theme of biodiversity, health and well-being. It was the year of the second Rio Summit on Sustainable Development, a huge number of species had been made extinct and conservationists were making increasingly urgent calls for the protection of biodiversity. The situation is ever more critical. Since we started the issue more species have become extinct, and hundreds more have now become critically endangered. The focus issue highlighted the complexity of the links of biodiversity and health, and provides more evidence for the importance to human health of biodiversity on our planet. Research papers contrasted anthropocentric western scientific views of biodiversity and its ecosystem service to humans, with the more horizontal conceptions of indigenous communities in the Amazon—and as many cultures have recognized throughout history, they recognize that we are part of nature: nature does not exist for us.

  11. Food variety and biodiversity: Econutrition.

    PubMed

    Wahlqvist, M L; Specht, R L

    1998-12-01

    Both annual biomass production and biodiversity at any locality on earth are continually under threat as the population of Homo sapiens steadily increases, with the resultant pollution of atmosphere, soil and water. Today, environmental degradation and global warming (with its effect on evaporative aerodynamics and cellular respiration) have increased at an alarming rate. The ABP of all terrestrial plant communities (natural or cultivated) is slowly declining, thus reducing the energy supply of component plants and resident animals; in turn, the biodiversity of all the world's ecosystems, plant and animal, is threatened. The maintenance of biodiversity is important to human health for several reasons: (i) a varied food supply is essential to maintain the health of the omnivorous human species; (ii) a range of diverse food sources is necessary to safe-guard against climatic and pestilent disasters which may affect one or more of the food sources; (iii) a diversity of plants and animals may provide a rich source of medicinal material, essential for the extraction of undiscovered therapeutic compounds; (iv) intact ecosystems of indigenous plants and animals appear to act as a buffer to the spread of invasive plants and animals, and of pathogens and toxins, thus contributing to the health of populations nearby; and (v) the 'spiritual' values of exploring the diversity of plants, animals and ecosystems in an area appear to have a beneficial effect on mental health, strengthening the feeling of 'belonging to the landscape'. The variety of foods, their energy contents and food values, consumed throughout the year is amenable to scientific enquiry; as is the amount of energy expended in this collection or production. The control and management of food production and of water supplies, with attention to safety issues, has led to an improvement in life expectancy for a proportion of the world's population. The question is at what point might human health be disadvantaged by

  12. Effects of pond draining on biodiversity and water quality of farm ponds.

    PubMed

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo. PMID:23869702

  13. Evaluating Temporal Consistency in Marine Biodiversity Hotspots.

    PubMed

    Piacenza, Susan E; Thurman, Lindsey L; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lindsley, Amy J; Nelson, Jake; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Heppell, Selina S

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  14. Evaluating Temporal Consistency in Marine Biodiversity Hotspots

    PubMed Central

    Barner, Allison K.; Benkwitt, Cassandra E.; Boersma, Kate S.; Cerny-Chipman, Elizabeth B.; Ingeman, Kurt E.; Kindinger, Tye L.; Lindsley, Amy J.; Nelson, Jake; Reimer, Jessica N.; Rowe, Jennifer C.; Shen, Chenchen; Thompson, Kevin A.; Heppell, Selina S.

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon’s diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  15. Forestry practices and aquatic biodiversity: Fish

    USGS Publications Warehouse

    Gresswell, Robert E.

    2005-01-01

    In the Pacific Northwest, fish communities are found in a diverse array of aquatic habitats ranging from the large coastal rivers of the temperate rainforests, to the fragmented and sometimes ephemeral streams of the xeric interior basins, and high-elevation streams and lakes in the mountainous areas (Rieman et al. 2003). Only high-elevation lakes and streams isolated above barriers to fish passage remained historically devoid of fish because they were never invaded following Pleistocene glaciation (Smith 1981). Despite this widespread distribution and once great population abundances, taxonomic diversity of fishes in these forested systems is naturally lower than in aquatic habitats in the eastern U.S. (Reeves, Bisson, and Dambacher 1998). Interactions among factors that influence species richness in aquatic systems (e.g., basin size, long-term stability of habitat, and barriers to colonization; Smith 1981) continue to influence the occurrence and persistence of fishes in these systems today. Consequently, the larger low-elevation rivers and estuaries support the greatest variety of fish species. In the high-elevation tributary streams, fish communities are less complex because these aquatic systems were less climatically and geologically stable, and fish populations were smaller and more prone to local extirpation. Furthermore, barriers to fish passage inhibited dispersal and colonization (Smith 1981). Streams in forested landscapes generally support salmon and trout, Oncorhynchus spp., whitefish Prosopium spp., sculpins Cottus spp., suckers Catostomus spp., and minnows (Cyprinidae), but in some of the colder streams, chars (e.g., Salvelinus confluentus and Salvelinus malma) and lampreys (Petromyzontidae)may also occur (Rieman et al. 2003).Although biodiversity defined in terms of fish species richness is low in the Pacific Northwest, intraspecific variability is high, and polytypic fish species are common in the diverse aquatic habitats of the region. For

  16. Hydropower, adaptive management, and Biodiversity

    NASA Astrophysics Data System (ADS)

    Wieringa, Mark J.; Morton, Anthony G.

    1996-11-01

    Adaptive management is a policy framework within which an iterative process of decision making is followed based on the observed responses to and effectiveness of previous decisions. The use of adaptive management allows science-based research and monitoring of natural resource and ecological community responses, in conjunction with societal values and goals, to guide decisions concerning man's activities. The adaptive management process has been proposed for application to hydropower operations at Glen Canyon Dam on the Colorado River, a situation that requires complex balancing of natural resources requirements and competing human uses. This example is representative of the general increase in public interest in the operation of hydropower facilities and possible effects on downstream natural resources and of the growing conflicts between uses and users of river-based resources. This paper describes the adaptive management process, using the Glen Canyon Dam example, and discusses ways to make the process work effectively in managing downstream natural resources and biodiversity.

  17. 76 FR 54741 - Procurement List; Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... INFORMATION: Additions On 7/8/2011 (76 FR 40342-40343), the Committee for Purchase From People Who Are Blind... added to the Procurement List: Products NSN: M.R. 1001--Towels, Dish, Kitchen Gourmet, Black, 2pc. NSN: M.R. 1002--Towels, Dish, Kitchen Gourmet, Red, 2pc. NSN: M.R. 1003--Towels, Dish, Kitchen...

  18. Towards the global monitoring of biodiversity change.

    PubMed

    Pereira, Henrique M; David Cooper, H

    2006-03-01

    Governments have set the ambitious target of reducing biodiversity loss by the year 2010. The scientific community now faces the challenge of assessing the progress made towards this target and beyond. Here, we review current monitoring efforts and propose a global biodiversity monitoring network to complement and enhance these efforts. The network would develop a global sampling programme for indicator taxa (we suggest birds and vascular plants) and would integrate regional sampling programmes for taxa that are locally relevant to the monitoring of biodiversity change. The network would also promote the development of comparable maps of global land cover at regular time intervals. The extent and condition of specific habitat types, such as wetlands and coral reefs, would be monitored based on regional programmes. The data would then be integrated with other environmental and socioeconomic indicators to design responses to reduce biodiversity loss. PMID:16701487

  19. Chemical warfare between microbes promotes biodiversity.

    PubMed

    Czárán, Tamás L; Hoekstra, Rolf F; Pagie, Ludo

    2002-01-22

    Evolutionary processes generating biodiversity and ecological mechanisms maintaining biodiversity seem to be diverse themselves. Conventional explanations of biodiversity such as niche differentiation, density-dependent predation pressure, or habitat heterogeneity seem satisfactory to explain diversity in communities of macrobial organisms such as higher plants and animals. For a long time the often high diversity among microscopic organisms in seemingly uniform environments, the famous "paradox of the plankton," has been difficult to understand. The biodiversity in bacterial communities has been shown to be sometimes orders of magnitudes higher than the diversity of known macrobial systems. Based on a spatially explicit game theoretical model with multiply cyclic dominance structures, we suggest that antibiotic interactions within microbial communities may be very effective in maintaining diversity. PMID:11792831

  20. 2010: A new beginning for biodiversity?

    PubMed

    Barbault, Robert

    2011-05-01

    Proclaimed "International Year of Biodiversity", will 2010 hold all its promises? Reminder: initiated by the Convention on Biological Diversity ratified after the global summit in Rio de Janeiro, delegations from more than one hundred countries gathered in Johannesburg in 2002 and committed themselves to slowing the erosion of biodiversity by 2010. The European Union was more ambitious (or reckless?) and even spoke about halting this erosion (European Environment Agency, Progress towards the European 2010 biodiversity target, 2009)! Well, that date has come and the overall appraisal that has been made formally in Nagoya in October this year was not so brilliant (see Leadley et al., 2010)-but the same slogan has been launched for 2020! The aim here is not to repeat that appraisal, but, after considering the broad outlines, to evoke some of the issues and challenges that inevitably result from the great question of the protection and management of global biodiversity. PMID:21640957

  1. Chemical warfare between microbes promotes biodiversity

    NASA Astrophysics Data System (ADS)

    Czárán, Tamás L.; Hoekstra, Rolf F.; Pagie, Ludo

    2002-01-01

    Evolutionary processes generating biodiversity and ecological mechanisms maintaining biodiversity seem to be diverse themselves. Conventional explanations of biodiversity such as niche differentiation, density-dependent predation pressure, or habitat heterogeneity seem satisfactory to explain diversity in communities of macrobial organisms such as higher plants and animals. For a long time the often high diversity among microscopic organisms in seemingly uniform environments, the famous "paradox of the plankton," has been difficult to understand. The biodiversity in bacterial communities has been shown to be sometimes orders of magnitudes higher than the diversity of known macrobial systems. Based on a spatially explicit game theoretical model with multiply cyclic dominance structures, we suggest that antibiotic interactions within microbial communities may be very effective in maintaining diversity.

  2. Biodiversity: The benefits of traditional knowledge

    NASA Astrophysics Data System (ADS)

    Pardo-de-Santayana, Manuel; Macía, Manuel J.

    2015-02-01

    A study of two Balkan ethnic groups living in close proximity finds that traditional knowledge about local plant resources helps communities to cope with periods of famine, and can promote the conservation of biodiversity.

  3. Hydropower, adaptive management, and biodiversity

    SciTech Connect

    Wieringa, M.J.; Morton, A.G.

    1996-11-01

    Adaptive management is a policy framework within which an iterative process of decision making is allowed based on the observed responses to and effectiveness of previous decisions. The use of adaptive management allows science-based research and monitoring of natural resource and ecological community responses, in conjunction with societal values and goals, to guide decisions concerning man`s activities. The adaptive management process has been proposed for application to hydropower operations at Glen Canyon Dam on the Colorado River, a situation that requires complex balancing of natural resources requirements and competing human uses. This example is representative of the general increase in public interest in the operation of hydropower facilities and possible effects on downstream natural resources and of the growing conflicts between uses and users of river-based resources. This paper describes the adaptive management process, using the Glen Canyon Dam example, and discusses ways to make the process work effectively in managing downstream natural resources and biodiversity. 10 refs., 2 figs.

  4. The biodiversity-dependent ecosystem service debt.

    PubMed

    Isbell, Forest; Tilman, David; Polasky, Stephen; Loreau, Michel

    2015-02-01

    Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity-dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2-21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity-dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services. PMID:25430966

  5. Towards a Duty of Care for Biodiversity

    NASA Astrophysics Data System (ADS)

    Earl, G.; Curtis, A.; Allan, C.

    2010-04-01

    The decline in biodiversity is a worldwide phenomenon, with current rates of species extinction more dramatic than any previously recorded. Habitat loss has been identified as the major cause of biodiversity decline. In this article we suggest that a statutory duty of care would complement the current mix of policy options for biodiversity conservation. Obstacles hindering the introduction of a statutory duty of care include linguistic ambiguity about the terms ‘duty of care’ and ‘stewardship’ and how they are applied in a natural resource management context, and the absence of a mechanism to guide its implementation. Drawing on international literature and key informant interviews we have articulated characteristics of duty of care to reduce linguistic ambiguity, and developed a framework for implementing a duty of care for biodiversity at the regional scale. The framework draws on key elements of the common law ‘duty of care’, the concepts of ‘taking reasonable care’ and ‘avoiding foreseeable harm’, in its logic. Core elements of the framework include desired outcomes for biodiversity, supported by current recommended practices. The focus on outcomes provides opportunities for the development of innovative management practices. The framework incorporates multiple pathways for the redress of non-compliance including tiered negative sanctions, and positive measures to encourage compliance. Importantly, the framework addresses the need for change and adaptation that is a necessary part of biodiversity management.

  6. [Mechanism on biodiversity managing crop diseases].

    PubMed

    Yang, Jing; Shi, Zhu-Feng; Gao, Dong; Liu, Lin; Zhu, You-Yong; Li, Cheng-Yun

    2012-11-01

    Reasonable utilization of natural resource and protection of ecological environment is the foundation for implementing agricultural sustainable development. Biodiversity research and protection are becoming an important issue concerned commonly in the world. Crop disease is one of the important natural disasters for food production and safety, and is also one of the main reasons that confine sustainable development of agricultural production. Large-scale deployment of single highly resistant variety results in reduction of agro-biodiversity level. In this case, excessive loss of agro-biodiversity has become the main challenge in sustainable agriculture. Biodiversity can not only effectively alleviate disease incidence and loss of crop production, but also reduce pollution of agricultural ecological environment caused by excessive application of pesticides and fertilizers to the agricultural ecological environment. Discovery of the mechanism of biodiversity to control crop diseases can reasonably guide the rational deployment and rotation of different crops and establish optimization combinations of different crops. This review summarizes recent advances of research on molecular, physiological, and ecological mechanisms of biodiversity managing crop diseases, and proposes some research that needs to be strengthened in the future. PMID:23208136

  7. Relationships between Meiofaunal Biodiversity and Prokaryotic Heterotrophic Production in Different Tropical Habitats and Oceanic Regions

    PubMed Central

    Pusceddu, Antonio; Gambi, Cristina; Corinaldesi, Cinzia; Scopa, Mariaspina; Danovaro, Roberto

    2014-01-01

    Tropical marine ecosystems are among the most diverse of the world oceans, so that assessing the linkages between biodiversity and ecosystem functions (BEF) is a crucial step to predict consequences of biodiversity loss. Most BEF studies in marine ecosystems have been carried out on macrobenthic diversity, whereas the influence of the meiofauna on ecosystem functioning has received much less attention. We compared meiofaunal and nematode biodiversity and prokaryotic heterotrophic production across seagrass, mangrove and reef sediments in the Caribbean, Celebes and Red Seas. For all variables we report the presence of differences among habitats within the same region, and among regions within the same habitat. In all regions, the richness of meiofaunal taxa in reef and seagrass sediments is higher than in mangrove sediments. The sediments of the Celebes Sea show the highest meiofaunal biodiversity. The composition of meiofaunal assemblages varies significantly among habitats in the same region. The nematode beta diversity among habitats within the same region is higher than the beta diversity among regions. Although one site per habitat was considered in each region, these results suggest that the composition of meiofaunal assemblages varies primarily among biogeographic regions, whereas the composition of nematode assemblages varies more considerably among habitats. Meiofauna and nematode biodiversity and prokaryotic heterotrophic production, even after the removal of covariate effects linked with longitude and the quantity and nutritional quality of organic matter, are positively and linearly linked both across regions and within each habitat type. Our results confirm that meiofauna and nematode biodiversity may influence benthic prokaryotic activity, which, in turn, implies that diversity loss could have negative impacts on ecosystem functioning in these systems. PMID:24603709

  8. Challenges of Biodiversity Education: A Review of Education Strategies for Biodiversity Education

    ERIC Educational Resources Information Center

    Navarro-Perez, Moramay; Tidball, Keith G.

    2012-01-01

    Biodiversity conservation has increasingly gained recognition in national and international agendas. The Convention on Biological Diversity (CBD) has positioned biodiversity as a key asset to be protected to ensure our well-being and that of future generations. Nearly 20 years after its inception, results are not as expected, as shown in the…

  9. Biodiversity of Jinggangshan Mountain: The Importance of Topography and Geographical Location in Supporting Higher Biodiversity

    PubMed Central

    Liu, Gang; Huang, Fang-Fang; Liu, Jin-Gang; Liao, Wen-Bo; Wang, Ying-Yong; Ren, Si-Jie; Chen, Chun-Quan; Peng, Shao-Lin

    2015-01-01

    Diversity is mainly determined by climate and environment. In addition, topography is a complex factor, and the relationship between topography and biodiversity is still poorly understood. To understand the role of topography, i.e., altitude and slope, in biodiversity, we selected Jinggangshan Mountain (JGM), an area with unique topography, as the study area. We surveyed plant and animal species richness of JGM and compared the biodiversity and the main geographic characteristics of JGM with the adjacent 4 mountains. Gleason’s richness index was calculated to assess the diversity of species. In total, 2958 spermatophyte species, 418 bryophyte species, 355 pteridophyte species and 493 species of vertebrate animals were recorded in this survey. In general, the JGM biodiversity was higher than that of the adjacent mountains. Regarding topographic characteristics, 77% of JGM’s area was in the mid-altitude region and approximately 40% of JGM’s area was in the 10°–20° slope range, which may support more vegetation types in JGM area and make it a biodiversity hotspot. It should be noted that although the impact of topography on biodiversity was substantial, climate is still a more general factor driving the formation and maintenance of higher biodiversity. Topographic conditions can create microclimates, and both climatic and topographic conditions contribute to the formation of high biodiversity in JGM. PMID:25763820

  10. Data hosting infrastructure for primary biodiversity data

    PubMed Central

    2011-01-01

    Background Today, an unprecedented volume of primary biodiversity data are being generated worldwide, yet significant amounts of these data have been and will continue to be lost after the conclusion of the projects tasked with collecting them. To get the most value out of these data it is imperative to seek a solution whereby these data are rescued, archived and made available to the biodiversity community. To this end, the biodiversity informatics community requires investment in processes and infrastructure to mitigate data loss and provide solutions for long-term hosting and sharing of biodiversity data. Discussion We review the current state of biodiversity data hosting and investigate the technological and sociological barriers to proper data management. We further explore the rescuing and re-hosting of legacy data, the state of existing toolsets and propose a future direction for the development of new discovery tools. We also explore the role of data standards and licensing in the context of data hosting and preservation. We provide five recommendations for the biodiversity community that will foster better data preservation and access: (1) encourage the community's use of data standards, (2) promote the public domain licensing of data, (3) establish a community of those involved in data hosting and archival, (4) establish hosting centers for biodiversity data, and (5) develop tools for data discovery. Conclusion The community's adoption of standards and development of tools to enable data discovery is essential to sustainable data preservation. Furthermore, the increased adoption of open content licensing, the establishment of data hosting infrastructure and the creation of a data hosting and archiving community are all necessary steps towards the community ensuring that data archival policies become standardized. PMID:22373257

  11. Climate-smart management of biodiversity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.; Rosenblatt, Daniel L.

    2015-01-01

    Determining where biodiversity is likely to be most vulnerable to climate change and methods to reduce that vulnerability are necessary first steps to incorporate climate change into biodiversity management plans. Here, we use a spatial climate change vulnerability assessment to (1) map the potential vulnerability of terrestrial biodiversity to climate change in the northeastern United States and (2) provide guidance on how and where management actions for biodiversity could provide long-term benefits under climate change (i.e., climate-smart management considerations). Our model suggests that biodiversity will be most vulnerable in Delaware, Maryland, and the District of Columbia due to the combination of high climate change velocity, high landscape resistance, and high topoclimate homogeneity. Biodiversity is predicted to be least vulnerable in Vermont, Maine, and New Hampshire because large portions of these states have low landscape resistance, low climate change velocity, and low topoclimate homogeneity. Our spatial climate-smart management considerations suggest that: (1) high topoclimate diversity could moderate the effects of climate change across 50% of the region; (2) decreasing local landscape resistance in conjunction with other management actions could increase the benefit of those actions across 17% of the region; and (3) management actions across 24% of the region could provide long-term benefits by promoting short-term population persistence that provides a source population capable of moving in the future. The guidance and framework we provide here should allow conservation organizations to incorporate our climate-smart management considerations into management plans without drastically changing their approach to biodiversity conservation.

  12. Biodiversity information platforms: From standards to interoperability.

    PubMed

    Berendsohn, W G; Güntsch, A; Hoffmann, N; Kohlbecker, A; Luther, K; Müller, A

    2011-01-01

    One of the most serious bottlenecks in the scientific workflows of biodiversity sciences is the need to integrate data from different sources, software applications, and services for analysis, visualisation and publication. For more than a quarter of a century the TDWG Biodiversity Information Standards organisation has a central role in defining and promoting data standards and protocols supporting interoperability between disparate and locally distributed systems.Although often not sufficiently recognized, TDWG standards are the foundation of many popular Biodiversity Informatics applications and infrastructures ranging from small desktop software solutions to large scale international data networks. However, individual scientists and groups of collaborating scientist have difficulties in fully exploiting the potential of standards that are often notoriously complex, lack non-technical documentations, and use different representations and underlying technologies. In the last few years, a series of initiatives such as Scratchpads, the EDIT Platform for Cybertaxonomy, and biowikifarm have started to implement and set up virtual work platforms for biodiversity sciences which shield their users from the complexity of the underlying standards. Apart from being practical work-horses for numerous working processes related to biodiversity sciences, they can be seen as information brokers mediating information between multiple data standards and protocols.The ViBRANT project will further strengthen the flexibility and power of virtual biodiversity working platforms by building software interfaces between them, thus facilitating essential information flows needed for comprehensive data exchange, data indexing, web-publication, and versioning. This work will make an important contribution to the shaping of an international, interoperable, and user-oriented biodiversity information infrastructure. PMID:22207807

  13. Biodiversity information platforms: From standards to interoperability

    PubMed Central

    Berendsohn, W. G.; Güntsch, A.; Hoffmann, N.; Kohlbecker, A.; Luther, K.; Müller, A.

    2011-01-01

    Abstract One of the most serious bottlenecks in the scientific workflows of biodiversity sciences is the need to integrate data from different sources, software applications, and services for analysis, visualisation and publication. For more than a quarter of a century the TDWG Biodiversity Information Standards organisation has a central role in defining and promoting data standards and protocols supporting interoperability between disparate and locally distributed systems.Although often not sufficiently recognized, TDWG standards are the foundation of many popular Biodiversity Informatics applications and infrastructures ranging from small desktop software solutions to large scale international data networks. However, individual scientists and groups of collaborating scientist have difficulties in fully exploiting the potential of standards that are often notoriously complex, lack non-technical documentations, and use different representations and underlying technologies. In the last few years, a series of initiatives such as Scratchpads, the EDIT Platform for Cybertaxonomy, and biowikifarm have started to implement and set up virtual work platforms for biodiversity sciences which shield their users from the complexity of the underlying standards. Apart from being practical work-horses for numerous working processes related to biodiversity sciences, they can be seen as information brokers mediating information between multiple data standards and protocols.The ViBRANT project will further strengthen the flexibility and power of virtual biodiversity working platforms by building software interfaces between them, thus facilitating essential information flows needed for comprehensive data exchange, data indexing, web-publication, and versioning. This work will make an important contribution to the shaping of an international, interoperable, and user-oriented biodiversity information infrastructure. PMID:22207807

  14. Macroecology of biodiversity: disentangling local and regional effects.

    PubMed

    Pärtel, Meelis; Bennett, Jonathan A; Zobel, Martin

    2016-07-01

    Contents 404 I. 404 II. 404 III. 405 IV. 406 V. 407 VI. 408 409 References 409 SUMMARY: Macroecology of biodiversity disentangles local and regional drivers of biodiversity by exploring large-scale biodiversity relationships with environmental or biotic gradients, generalizing local biodiversity relationships across regions, or comparing biodiversity patterns among species groups. A macroecological perspective is also important at local scales: a full understanding of local biodiversity drivers, including human impact, demands that regional processes be taken into account. This requires knowledge of which species could inhabit a site (the species pool), including those that are currently absent (dark diversity). Macroecology of biodiversity is currently advancing quickly owing to an unprecedented accumulation of biodiversity data, new sampling techniques and analytical methods, all of which better equip us to face current and future challenges in ecology and biodiversity conservation. PMID:27040897

  15. Species ages in neutral biodiversity models.

    PubMed

    Chisholm, Ryan A; O'Dwyer, James P

    2014-05-01

    Biogeography seeks to understand the mechanisms that drive biodiversity across long temporal and large spatial scales. Theoretical models of biogeography can be tested by comparing their predictions of quantities such as species ages against empirical estimates. It has previously been claimed that the neutral theory of biodiversity and biogeography predicts species ages that are unrealistically long. Any improved theory of biodiversity must rectify this problem, but first it is necessary to quantify the problem precisely. Here we provide analytical expressions for species ages in neutral biodiversity communities. We analyse a spatially implicit metacommunity model and solve for both the zero-sum and non-zero-sum cases. We explain why our new expressions are, in the context of biodiversity, usually more appropriate than those previously imported from neutral molecular evolution. Because of the time symmetry of the spatially implicit neutral model, our expressions also lead directly to formulas for species persistence times and species lifetimes. We use our new expressions to estimate species ages of forest trees under a neutral model and find that they are about an order of magnitude shorter than those predicted previously but still unrealistically long. In light of our results, we discuss different models of biogeography that may solve the problem of species ages. PMID:24530891

  16. Ecology and evolution of mammalian biodiversity

    PubMed Central

    Jones, Kate E.; Safi, Kamran

    2011-01-01

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future. PMID:21807728

  17. Geography of conservation spending, biodiversity, and culture.

    PubMed

    McClanahan, T R; Rankin, P S

    2016-10-01

    We used linear and multivariate models to examine the associations between geography, biodiversity, per capita economic output, national spending on conservation, governance, and cultural traits in 55 countries. Cultural traits and social metrics of modernization correlated positively with national spending on conservation. The global distribution of this spending culture was poorly aligned with the distribution of biodiversity. Specifically, biodiversity was greater in the tropics where cultures tended to spend relatively less on conservation and tended to have higher collectivism, formalized and hierarchical leadership, and weaker governance. Consequently, nations lacking social traits frequently associated with modernization, environmentalism, and conservation spending have the largest component of Earth's biodiversity. This has significant implications for setting policies and priorities for resource management given that biological diversity is rapidly disappearing and cultural traits change slowly. Therefore, we suggest natural resource management adapt to and use characteristics of existing social organization rather than wait for or promote social values associated with conservation spending. Supporting biocultural traditions, engaging leaders to increase conservation commitments, cross-national efforts that complement attributes of cultures, and avoiding interference with nature may work best to conserve nature in collective and hierarchical societies. Spending in modernized nations may be a symbolic response to a symptom of economic development and environmental degradation, and here conservation actions need to ensure that biodiversity is not being lost. PMID:26991737

  18. Seeing Red

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This New Horizons image of Jupiter's volcanic moon Io was taken at 13:05 Universal Time during the spacecraft's Jupiter flyby on February 28, 2007. It shows the reddish color of the deposits from the giant volcanic eruption at the volcano Tvashtar, near the top of the sunlit crescent, as well as the bluish plume itself and the orange glow of the hot lava at its source. The relatively unprocessed image on the left provides the best view of the volcanic glow and the plume deposits, while the version on the right has been brightened to show the much fainter plume, and the Jupiter-lit night side of Io.

    New Horizons' color imaging of Io's sunlit side was generally overexposed because the spacecraft's color camera, the super-sensitive Multispectral Visible Imaging Camera (MVIC), was designed for the much dimmer illumination at Pluto. However, two of MVIC's four color filters, the blue and 'methane' filter (a special filter designed to map methane frost on the surface of Pluto at an infrared wavelength of 0.89 microns), are less sensitive than the others, and thus obtained some well-exposed views of the surface when illumination conditions were favorable. Because only two color filters are used, rather than the usual three, and because one filter uses infrared light, the color is only a rough approximation to what the human eye would see.

    The red color of the Tvashtar plume fallout is typical of Io's largest volcanic plumes, including the previous eruption of Tvashtar seen by the Galileo and Cassini spacecraft in 2000, and the long-lived Pele plume on the opposite side of Io. The color likely results from the creation of reddish three-atom and four-atom sulfur molecules (S3 and S4) from plume gases rich in two-atom sulfur molecules (S2 After a few months or years, the S3 and S4 molecules recombine into the more stable and familiar yellowish form of sulfur consisting of eight-atom molecules (S8), so these red deposits are only seen around recently-active Io

  19. Plate tectonics drive tropical reef biodiversity dynamics

    NASA Astrophysics Data System (ADS)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-05-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.

  20. A conservation agenda for the Pantanal's biodiversity.

    PubMed

    Alho, C J R; Sabino, J

    2011-04-01

    The Pantanal's biodiversity constitutes a valuable natural resource, in economic, cultural, recreational, aesthetic, scientific and educational terms. The vegetation plus the seasonal productivity support a diverse and abundant fauna. Many endangered species occur in the region, and waterfowl are exceptionally abundant during the dry season. Losses of biodiversity and its associated natural habitats within the Pantanal occur as a result of unsustainable land use. Implementation of protected areas is only a part of the conservation strategy needed. We analyse biodiversity threats to the biome under seven major categories: 1) conversion of natural vegetation into pasture and agricultural crops, 2) destruction or degradation of habitat mainly due to wild fire, 3) overexploitation of species mainly by unsustainable fishing, 4) water pollution, 5) river flow modification with implantation of small hydroelectric plants, 6) unsustainable tourism, and 7) introduction of invasive exotic species. PMID:21537606

  1. Biodiversity analysis in the digital era

    PubMed Central

    2016-01-01

    This paper explores what the virtual biodiversity e-infrastructure will look like as it takes advantage of advances in ‘Big Data’ biodiversity informatics and e-research infrastructure, which allow integration of various taxon-level data types (genome, morphology, distribution and species interactions) within a phylogenetic and environmental framework. By overcoming the data scaling problem in ecology, this integrative framework will provide richer information and fast learning to enable a deeper understanding of biodiversity evolution and dynamics in a rapidly changing world. The Atlas of Living Australia is used as one example of the advantages of progressing towards this future. Living in this future will require the adoption of new ways of integrating scientific knowledge into societal decision making. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481789

  2. Biodiversity analysis in the digital era.

    PubMed

    La Salle, John; Williams, Kristen J; Moritz, Craig

    2016-09-01

    This paper explores what the virtual biodiversity e-infrastructure will look like as it takes advantage of advances in 'Big Data' biodiversity informatics and e-research infrastructure, which allow integration of various taxon-level data types (genome, morphology, distribution and species interactions) within a phylogenetic and environmental framework. By overcoming the data scaling problem in ecology, this integrative framework will provide richer information and fast learning to enable a deeper understanding of biodiversity evolution and dynamics in a rapidly changing world. The Atlas of Living Australia is used as one example of the advantages of progressing towards this future. Living in this future will require the adoption of new ways of integrating scientific knowledge into societal decision making.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481789

  3. Plate tectonics drive tropical reef biodiversity dynamics

    PubMed Central

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-01-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics. PMID:27151103

  4. Plate tectonics drive tropical reef biodiversity dynamics.

    PubMed

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J; de Santana, Charles N; Heine, Christian; Mouillot, David; Bellwood, David R; Pellissier, Loïc

    2016-01-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics. PMID:27151103

  5. Biodiversity and biogeography of the atmosphere.

    PubMed

    Womack, Ann M; Bohannan, Brendan J M; Green, Jessica L

    2010-11-27

    The variation of life has predominantly been studied on land and in water, but this focus is changing. There is a resurging interest in the distribution of life in the atmosphere and the processes that underlie patterns in this distribution. Here, we review our current state of knowledge about the biodiversity and biogeography of the atmosphere, with an emphasis on micro-organisms, the numerically dominant forms of aerial life. We present evidence to suggest that the atmosphere is a habitat for micro-organisms, and not purely a conduit for terrestrial and aquatic life. Building on a rich history of research in terrestrial and aquatic systems, we explore biodiversity patterns that are likely to play an important role in the emerging field of air biogeography. We discuss the possibility of a more unified understanding of the biosphere, one that links knowledge about biodiversity and biogeography in the lithosphere, hydrosphere and atmosphere. PMID:20980313

  6. Air-pollution effects on biodiversity

    SciTech Connect

    Barker, J.R.; Tingey, D.T.

    1992-04-01

    To address the issues of air pollution impacts on biodiversity, the U.S. Environmental Protection Agency, Environmental Research Laboratory in Corvallis, OR, the U.S. Fish and Wildlife Service National Fisheries Research Center in Leetown, and the Electric Power Research Institute convened a workshop to evaluate current knowledge, identify information gaps, provide direction to research and assess policy issues. In order to obtain the most current and authoritative information possible, air pollution and biodiversity experts were invited to participate in a workshop and author the papers that make up this report. Each paper was presented and discussed, then collected in this document. The material has been organized into four parts: an introduction, an overview of air pollution exposure and effects, the consequences of air pollution on biodiversity, and policy issues and research needs.

  7. Biodiversity and biogeography of the atmosphere

    PubMed Central

    Womack, Ann M.; Bohannan, Brendan J. M.; Green, Jessica L.

    2010-01-01

    The variation of life has predominantly been studied on land and in water, but this focus is changing. There is a resurging interest in the distribution of life in the atmosphere and the processes that underlie patterns in this distribution. Here, we review our current state of knowledge about the biodiversity and biogeography of the atmosphere, with an emphasis on micro-organisms, the numerically dominant forms of aerial life. We present evidence to suggest that the atmosphere is a habitat for micro-organisms, and not purely a conduit for terrestrial and aquatic life. Building on a rich history of research in terrestrial and aquatic systems, we explore biodiversity patterns that are likely to play an important role in the emerging field of air biogeography. We discuss the possibility of a more unified understanding of the biosphere, one that links knowledge about biodiversity and biogeography in the lithosphere, hydrosphere and atmosphere. PMID:20980313

  8. Cenozoic biodiversity: goals, challenges and future prospects

    NASA Astrophysics Data System (ADS)

    Lazarus, David

    2014-05-01

    Understanding biodiversity is a major goal of modern science. Biologists document living diversity; study the factors that maintain it, and the effects biodiversity has on ecosystem services. Paleontologists try to understand these same issues by examining biodiversity in the geologic past, and how this history correlates to changes in past environments. Both research agendas are driven by concerns about how biodiversity can be sustained into the future, despite human impacts on biodiversity, including climate change. Measuring biodiversity is a major challenge. Generally only a subset of the total diversity that exist(s/ed) at any one location can actually be recorded, due to rarity of many species, or (for fossils) species that were not preserved. Taxa occurrence data not collected for biodiversity studies is also frequently incompletely recorded. Incomplete, inconsistent taxonomy; and for fossils also incorrect geologic ages for observations are other major sources of error. Several different methods are used to correct for these problems, such as subsampling occurrence data or using expert-compiled taxonomic catalogs. No method is normally fully satisfactory, but, depending on data quality, can often yield useful approximations of actual (usually relative) diversity. Assuming that diversity has been accurately estimated, a second challenge comes in comparing diversity to possible causal factors. A common approach is a statistical comparison between diversity and environmental data series. Whether this is a meaningful exercise depends on the underlying statistical model, and whether this is similar to the processes that we are trying to understand. If for example, we suspect diversity to respond largely only when environmental thresholds are crossed, a linear regression test is not very informative. Our understanding of possible processes is however still primitive, and a poor guide to model selection and analysis. Scale is also important (temporal, geographic

  9. Acronym master list

    SciTech Connect

    1995-06-01

    This document is a master list of acronyms and other abbreviations that are used by or could be useful to, the personnel at Los Alamos National Laboratory. Many specialized and well-known abbreviations are not included in this list.

  10. Galaxy Zoo: passive red spirals

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.; Mosleh, Moein; Romer, A. Kathy; Nichol, Robert C.; Bamford, Steven P.; Schawinski, Kevin; Lintott, Chris J.; Andreescu, Dan; Campbell, Heather C.; Crowcroft, Ben; Doyle, Isabelle; Edmondson, Edward M.; Murray, Phil; Raddick, M. Jordan; Slosar, Anže; Szalay, Alexander S.; Vandenberg, Jan

    2010-06-01

    curiously large optical bar fraction in the red spirals (70 +/- 5 verses 27 +/- 5 per cent in blue spirals) suggesting that the cessation of star formation and bar instabilities in spirals are strongly correlated. We conclude by discussing the possible origins of these red spirals. We suggest that they may represent the very oldest spiral galaxies which have already used up their reserves of gas - probably aided by strangulation or starvation, and perhaps also by the effect of bar instabilities moving material around in the disc. We provide an online table listing our full sample of red spirals along with the normal/blue spirals used for comparison. This publication has been made possible by the participation of more than 160000 volunteers in the Galaxy Zoo project. Their contributions are individually acknowledged at http://www.galaxyzoo.org/Volunteers.aspx E-mail: karen.masters@port.ac.uk

  11. Shifting environmental baselines in the Red Sea.

    PubMed

    Price, A R G; Ghazi, S J; Tkaczynski, P J; Venkatachalam, A J; Santillan, A; Pancho, T; Metcalfe, R; Saunders, J

    2014-01-15

    The Red Sea is among the world's top marine biodiversity hotspots. We re-examined coastal ecosystems at sites surveyed during the 1980s using the same methodology. Coral cover increased significantly towards the north, mirroring the reverse pattern for mangroves and other sedimentary ecosystems. Latitudinal patterns are broadly consistent across both surveys and with results from independent studies. Coral cover showed greatest change, declining significantly from a median score of 4 (1000-9999 m(2)) to 2 (10-99m(2)) per quadrat in 2010/11. This may partly reflect impact from coastal construction, which was evident at 40% of sites and has significantly increased in magnitude over 30 years. Beach oil has significantly declined, but shore debris has increased significantly. Although substantial, levels are lower than at some remote ocean atolls. While earlier reports have suggested that the Red Sea is generally healthy, shifting environmental baselines are evident from the current study. PMID:24246651

  12. Management Implications of the Biodiversity and Socio-Economic Impacts of Shrimp Trawler By-Catch in Bahía de Kino, Sonora, México

    PubMed Central

    Meltzer, Lorayne; Blinick, Naomi S.; Fleishman, Abram B.

    2012-01-01

    The shrimp fishery is the most economically important fishery in Mexico. The trawler-based portion of this fishery results in high rates of by-catch. This study quantifies and describes the biodiversity of by-catch associated with trawling in the Bahía de Kino region of Sonora, Mexico. Data were collected from 55 trawls, on six boats, over 14 nights, during November of 2003, 2004, 2006–2009. By-catch rates within trawl samples averaged 85.9% measured by weight. A total of 183 by-catch species were identified during the course of this study, including 97 species of bony fish from 43 families, 19 species of elasmobranchs from 12 families, 66 species of invertebrates from eight phyla, and one species of marine turtle; seven of the documented by-catch species are listed on the IUCN Red List, CITES, or the Mexican NOM-059-ECOL-2010; 35 species documented in the by-catch are also targeted by local artisanal fishers. Some of the species frequently captured as juveniles in the by-catch are economically important to small-scale fishers in the region, and are particularly sensitive to overexploitation due to their life histories. This study highlights the need for further research quantifying the impacts of high levels of by-catch upon small-scale fishing economies in the region and presents strong ecological and economic rationale for by-catch management within the shrimp fishery of the Gulf of California. Site-specific by-catch management plans should be piloted in the Bahía de Kino region to address the growing momentum in national and international fisheries policy regimes toward the reduction of by-catch in shrimp fisheries. PMID:22719827

  13. Management implications of the biodiversity and socio-economic impacts of shrimp trawler by-catch in Bahía de Kino, Sonora, México.

    PubMed

    Meltzer, Lorayne; Blinick, Naomi S; Fleishman, Abram B

    2012-01-01

    The shrimp fishery is the most economically important fishery in Mexico. The trawler-based portion of this fishery results in high rates of by-catch. This study quantifies and describes the biodiversity of by-catch associated with trawling in the Bahía de Kino region of Sonora, Mexico. Data were collected from 55 trawls, on six boats, over 14 nights, during November of 2003, 2004, 2006-2009. By-catch rates within trawl samples averaged 85.9% measured by weight. A total of 183 by-catch species were identified during the course of this study, including 97 species of bony fish from 43 families, 19 species of elasmobranchs from 12 families, 66 species of invertebrates from eight phyla, and one species of marine turtle; seven of the documented by-catch species are listed on the IUCN Red List, CITES, or the Mexican NOM-059-ECOL-2010; 35 species documented in the by-catch are also targeted by local artisanal fishers. Some of the species frequently captured as juveniles in the by-catch are economically important to small-scale fishers in the region, and are particularly sensitive to overexploitation due to their life histories. This study highlights the need for further research quantifying the impacts of high levels of by-catch upon small-scale fishing economies in the region and presents strong ecological and economic rationale for by-catch management within the shrimp fishery of the Gulf of California. Site-specific by-catch management plans should be piloted in the Bahía de Kino region to address the growing momentum in national and international fisheries policy regimes toward the reduction of by-catch in shrimp fisheries. PMID:22719827

  14. Core issues in the economics of biodiversity conservation.

    PubMed

    Tisdell, Clement A

    2011-02-01

    Economic evaluations are essential for assessing the desirability of biodiversity conservation. This article highlights significant advances in theories and methods of economic evaluation and their relevance and limitations as a guide to biodiversity conservation; considers the implications of the phylogenetic similarity principle for the survival of species; discusses consequences of the Noah's Ark problem for selecting features of biodiversity to be saved; analyzes the extent to which the precautionary principle can be rationally used to support the conservation of biodiversity; explores the impact of market extensions, market and other institutional failures, and globalization on biodiversity loss; examines the relationship between the rate of interest and biodiversity depletion; and investigates the implications of intergenerational equity for biodiversity conservation. The consequences of changes in biodiversity for sustainable development are given particular attention. PMID:21332494

  15. Biodiversity increases the resistance of ecosystem productivity to climate extremes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It remains unclear whether biodiversity buffers ecosystems against extreme climate events, which are becoming increasingly frequent worldwide. Although early results suggested that biodiversity might provide both resistance and resilience (sensu rapid recovery) of ecosystem productivity to drought, ...

  16. Against Reading Lists

    ERIC Educational Resources Information Center

    Davis, Lennard J.

    2012-01-01

    A course's reading list is the skeleton of a semester's body of thought, the inventory that a professor writes up for the departmental Web site and the schedule of courses that lists the goods. Despite the obvious utility of fixed reading lists, one should jettison them when possible. The author has been conducting an informal experiment using a…

  17. List mode multichannel analyzer

    DOEpatents

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  18. Acquisitions List No. 42.

    ERIC Educational Resources Information Center

    Planned Parenthood--World Population, New York, NY. Katherine Dexter McCormick Library.

    The "Acquisitions List" of demographic books and articles is issued every two months by the Katharine Dexter McCormick Library. Divided into two parts, the first contains a list of books most recently acquired by the Library, each one annotated and also marked with the Library call number. The second part consists of a list of annotated articles,…

  19. Acquisitions List No. 43.

    ERIC Educational Resources Information Center

    Planned Parenthood--World Population, New York, NY. Katherine Dexter McCormick Library.

    The "Acquisitions List" of demographic books and articles is issued every two months by the Katharine Dexter McCormick Library. Divided into two parts, the first contains a list of books most recently acquired by the Library, each one annotated and also marked with the Library call number. The second part consists of a list of annotated articles,…

  20. Biodiversity Risks from Atmospheric Nitrogen Deposition in California

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2004-12-01

    Atmospheric nitrogen deposition alters structure and function of terrestrial ecosystems, because nitrogen availability is often limits overall productivity. These alterations can drive losses of biodiversity, as nitrophilous species increase in abundance and outcompete species adapted to more oligotrophic conditions. California is recognized as a "biodiversity hotspot," with a high fraction of endemic taxa with narrow ranges. A state-wide risk screening includes: 1) a 36 x 36 km map of total N-deposition for 2002, developed from the Community Multiscale Air Quality Model (CMAQ); 2) identification of sensitive habitat types from literature and local expertise; 3) overlay of a statewide vegetation map (FRAP); 4) overlay of species occurrence data from the California Natural Diversity Data Base (CNDDB); and 5)species life-history and habitat requirements. The CMAQ model indicates that 55,000 km2 (total area 405,205 km2) are exposed to >5 kg-N ha -1 year -1, and 10,000 km2 are exposed to >10 kg-N ha -1 year -1. Deposition hotspots include coastal urban areas (Los Angeles-San Diego, and the San Francisco Bay Area), the agricultural Central Valley, and parts of the Sierra Nevada foothills. The major known impact of N-deposition in California is increased growth and dominance of invasive annual grasses in low biomass ecosystems, such as coastal sage scrub, serpentine grassland, desert scrub, and vernal pools. For example, 800 km2 out of a total 6300 km2 of coastal sage scrub are exposed to more than 10 kg-N ha -1 year -1, primarily in Southern California. Of 225 federal and state "Threatened" and "Endangered" plant taxa, 101 are exposed on average to >5 kg-N ha -1 year -1. Of an additional 1022 plant taxa listed as "rare," 288 are exposed to >5 kg-N ha -1 year -1. Many of these highly exposed taxa are associated with sensitive habitat types and are vulnerable to annual grass invasions. This broad-scale screening outlines potential impacts on California's biodiversity, and

  1. Biodiversity, conservation biology, and rational choice.

    PubMed

    Frank, David

    2014-03-01

    This paper critically discusses two areas of Sahotra Sarkar's recent work in environmental philosophy: biodiversity and conservation biology and roles for decision theory in incorporating values explicitly in the environmental policy process. I argue that Sarkar's emphasis on the practices of conservation biologists, and especially the role of social and cultural values in the choice of biodiversity constituents, restricts his conception of biodiversity to particular practical conservation contexts. I argue that life scientists have many reasons to measure many types of diversity, and that biodiversity metrics could be value-free. I argue that Sarkar's emphasis on the limitations of normative decision theory is in tension with his statement that decision theory can "put science and ethics together." I also challenge his claim that multi-criteria decision tools lacking axiomatic foundations in preference and utility theory are "without a rational basis," by presenting a case of a simple "outranking" multi-criteria decision rule that can violate a basic normative requirement of preferences (transitivity) and ask whether there may nevertheless be contexts in which such a procedure might assist decision makers. PMID:24216191

  2. Temperature impacts on deep-sea biodiversity.

    PubMed

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. PMID:25523624

  3. Frontiers in research on biodiversity and disease

    PubMed Central

    Johnson, Pieter T. J.; Ostfeld, Richard S.; Keesing, Felicia

    2016-01-01

    Global losses of biodiversity have galvanised efforts to understand how changes to communities affect ecological processes, including transmission of infectious pathogens. Here, we review recent research on diversity–disease relationships and identify future priorities. Growing evidence from experimental, observational and modelling studies indicates that biodiversity changes alter infection for a range of pathogens and through diverse mechanisms. Drawing upon lessons from the community ecology of free-living organisms, we illustrate how recent advances from biodiversity research generally can provide necessary theoretical foundations, inform experimental designs, and guide future research at the interface between infectious disease risk and changing ecological communities. Dilution effects are expected when ecological communities are nested and interactions between the pathogen and the most competent host group(s) persist or increase as biodiversity declines. To move beyond polarising debates about the generality of diversity effects and develop a predictive framework, we emphasise the need to identify how the effects of diversity vary with temporal and spatial scale, to explore how realistic patterns of community assembly affect transmission, and to use experimental studies to consider mechanisms beyond simple changes in host richness, including shifts in trophic structure, functional diversity and symbiont composition. PMID:26261049

  4. In vitro genebanks for preserving tropical biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation of plant biodiversity can be accomplished in many ways. Tropical plants often cannot be stored as seeds and must be conserved as growing plants. These plants are at risk from disease and environmental factors such as climate change so it is important to provide secondary backups of any ...

  5. Calculating Biodiversity in the Real World

    ERIC Educational Resources Information Center

    Schen, Melissa; Berger, Leslie

    2014-01-01

    One of the standards for life science addressed in the "Next Generation Science Standards" (NGSS Lead States 2013) is "Ecosystems: Interactions, Energy, and Dynamics" (HS-LS2). A critical concept included in this core idea is biodiversity. To show competency, students are expected to design investigations, collect data, and…

  6. Insect Biodiversity in the Palearctic Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect biodiversity in the Palearctic Region is described. Palearctic occupies cold, temperate, and subtropical regions of Eurasia and Africa north of the Sahara Desert together with islands of the Arctic, Atlantic and Pacific oceans. Based on currently available data, there are about 200,000 speci...

  7. Drivers of Pontocaspian Biodiversity Rise and Demise

    NASA Astrophysics Data System (ADS)

    Wesselingh, Frank; Flecker, Rachel; Wilke, Thomas; Leroy, Suzanne; Krijgsman, Wout; Stoica, Marius

    2015-04-01

    In the past two million years, the region of the Black Sea Basin, Caspian Basin and adjacent Anatolia and the Balkans were the stage of the evolution of a unique brackish water fauna, the so-called Pontocaspian fauna. The fauna is the result of assembly of genera with a Paratethyan origin and Anatolian origins during the Early Pleistocene. The rapid diversification of the Pontocaspian fauna is the result of the very dynamic nature of the lakes (the Caspian Sea is technically a lake) and seas in the region in the past two million years. In most times the various lake basins were isolated (like today), but in other episodes connections existed. Regional and global climate as well as the regional tectonic regimes were main drivers of lake basin evolution. Over the past 80 years a major biodiversity crisis is hitting the Pontocaspian faunas due to environmental degradation, pollution and invasive species. In the new EU-ETN PRIDE (Drivers of Pontocaspian Biodiversity Rise and Demise)we will be documenting the geological context of past diversifications and turnover events. We present examples of rapid turnover (biodiversity crises) in the Quaternary, assess driving forces and draw implications for the nature of the current human-mediated biodiversity crisis in the region.

  8. VBioindex: A Visual Tool to Estimate Biodiversity

    PubMed Central

    Yoo, Seung Hwa

    2015-01-01

    Biological diversity, also known as biodiversity, is an important criterion for measuring the value of an ecosystem. As biodiversity is closely related to human welfare and quality of life, many efforts to restore and maintain the biodiversity of species have been made by government agencies and non-governmental organizations, thereby drawing a substantial amount of international attention. In the fields of biological research, biodiversity is widely measured using traditional statistical indices such as the Shannon-Wiener index, species richness, evenness, and relative dominance of species. However, some biologists and ecologists have difficulty using these indices because they require advanced mathematical knowledge and computational techniques. Therefore, we developed VBioindex, a user-friendly program that is capable of measuring the Shannon-Wiener index, species richness, evenness, and relative dominance. VBioindex serves as an easy to use interface and visually represents the results in the form of a simple chart and in addition, VBioindex offers functions for long-term investigations of datasets using time-series analyses. PMID:26525645

  9. Improving consideration of biodiversity in NEPA assessments

    SciTech Connect

    Hirsch, A. )

    1993-01-01

    Loss of biological diversity is a major national, as well as global, environmental problem. Several federal agencies have begun to develop strategies to conserve biodiversity, but most agencies have not done so. The National Environmental Policy Act (NEPA) can play an important role in assessing losses and identifying mitigating measures. In most cases, environmental impact assessments have addressed components of biodiversity, such as endangered species, rather than provided the more comprehensive assessments that will be required over the long run. Strategies to conserve biodiversity must be developed on a regional, landscape, or ecosystem scale, taking into account cumulative effects of development. Such strategies can also provide the framework for project-specific NEPA assessments. Progress in applying the pragmatic methods, techniques, and strategies that are now emerging will be limited by the recognition and priority agencies are willing to assign to biodiversity conservation in their programs. Despite current efforts, a more specific legislative mandate probably will be needed to assure adequate action to minimize losses of biological resources.

  10. Life on earth: Why biodiversity varies

    SciTech Connect

    Krause, C.

    1996-12-31

    This article provides a summary of the theory of biodiversity which has been developed by Michael Huston. At the heart of this theory is the idea that species diversity is regulated by nonequilibrium processes rather than equilibrium processes. The paper looks at work which was instrumental to the development of this theory, and examples from different ecosystems which lend credance to the theory.