Science.gov

Sample records for biofuels waste derived

  1. Waste oil derived biofuels in China bring brightness for global GHG mitigation.

    PubMed

    Liang, Sai; Liu, Zhu; Xu, Ming; Zhang, Tianzhu

    2013-03-01

    This study proposed a novel way for global greenhouse gas reduction through reusing China's waste oil to produce biofuels. Life cycle greenhouse gas mitigation potential of aviation bio-kerosene and biodiesel derived from China's waste oil in 2010 was equivalent to approximately 28.8% and 14.7% of mitigation achievements on fossil-based CO2 emissions by Annex B countries of the Kyoto Protocol in the period of 1990-2008, respectively. China's potential of producing biodiesel from waste oil in 2010 was equivalent to approximately 7.4% of China's fossil-based diesel usage in terms of energy. Potential of aviation bio-kerosene derived from waste oil could provide about 43.5% of China's aviation fuel demand in terms of energy. Sectors key to waste oil generation are identified from both production and consumption perspectives. Measures such as technology innovation, government supervision for waste oil collection and financial subsidies should be introduced to solve bottlenecks. PMID:23340111

  2. Biofuels and bioenergy production from municipal solid waste commingled with agriculturally-derived biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA in partnership with Salinas Valley Solid Waste Authority (SVSWA) and CR3, a technology holding company from Reno, NV, has introduced a biorefinery concept whereby agriculturally- derived biomass is commingled with municipal solid waste (MSW) to produce bioenergy. This team, which originally...

  3. Algae Derived Biofuel

    SciTech Connect

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  4. Biofuels from food processing wastes.

    PubMed

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. PMID:26874262

  5. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    This review includes works published in the general scientific literature during 2014 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. Anothersection of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae are also discussed. PMID:26420094

  6. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided. PMID:27620098

  7. Promise and Challenges of Microalgal-Derived Biofuels

    SciTech Connect

    Pienkos, P. T.; Darzins, A.

    2009-01-01

    Microalgae offer great promise to contribute a significant portion of the renewable fuels that will be required by the Renewable Fuels Standard described in the 2007 Energy Independence and Security Act of the United States. Algal biofuels would be based mainly on the high lipid content of the algal cell and thus would be an ideal feedstock for high energy density transportation fuels, such as biodiesel as well as green diesel, green jet fuel and green gasoline. A comprehensive research and development program for the development of algal biofuels was initiated by the US Department of Energy (DoE) more than 30 years ago, and although great progress was made, the program was discontinued in 1996, because of decreasing federal budgets and low petroleum costs. Interest in algal biofuels has been growing recently due to increased concern over peak oil, energy security, greenhouse gas emissions, and the potential for other biofuel feedstocks to compete for limited agricultural resources. The high productivity of algae suggests that much of the US transportation fuel needs can be met by algal biofuels at a production cost competitive with the cost of petroleum seen during the early part of 2008. Development of algal biomass production technology, however, remains in its infancy. This perspective provides a brief overview of past algal research sponsored by the DoE, the potential of microalgal biofuels and a discussion of the technical and economic barriers that need to be overcome before production of microalgal-derived diesel-fuel substitutes can become a large-scale commercial reality.

  8. Biofuels

    NASA Video Gallery

    What’s green, slimy and packed full of energy? Algae, of course! This biofuel is just one of the many renewable energies NASA studies. Biofuels could generate and store energy for long-term human...

  9. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges.

    PubMed

    Munasinghe, Pradeep Chaminda; Khanal, Samir Kumar

    2010-07-01

    The conversion of biomass-derived synthesis gas (or syngas in brief) into biofuels by microbial catalysts (such as Clostridium ljungdahlii, Clostridium autoethanogenum, Acetobacterium woodii, Clostridium carboxidivorans and Peptostreptococcus productus) has gained considerable attention as a promising alternative for biofuel production in the recent past. The utilization of the whole biomass, including lignin, irrespective of biomass quality, the elimination of complex pre-treatment steps and costly enzymes, a higher specificity of biocatalysts, an independence of the H(2):CO ratio for bioconversion, bioreactor operation at ambient conditions, and no issue of noble metal poisoning are among the major advantages of this process. Poor mass transfer properties of the gaseous substrates (mainly CO and H(2)) and low ethanol yield of biocatalysts are the biggest challenges preventing the commercialization of syngas fermentation technology. This paper critically reviews the existing literature in biomass-derived syngas fermentation into biofuels, specifically, different biocatalysts, factors affecting syngas fermentation, and mass transfer. The paper also outlines the major challenges of syngas fermentation, key performance index and technology road map, and discusses the further research needs. PMID:20096574

  10. Quality of Rapeseed Bio-Fuel Waste: Optical Properties

    NASA Astrophysics Data System (ADS)

    Sujak, Agnieszka; Muszyñski, Siemowit; Kachel-Jakubowska, Magdalena

    2014-04-01

    The objective of the presented work was to examine the optical properties of selected bio-fuel waste. Three independent optical methods: UV-Vis spectroscopy, infrared spectroscopy and chromametric measurements were applied to establish the possible quality control test for the obtained substances. The following by-products were tested: distilled glycerine, technical glycerine and matter organic non glycerine fraction from rapeseed oil bio-fuel production. The results show that analysis of UV-Vis spectra can give rapid information about the purity of distilled glycerine, while no direct information can be obtained concerning the concentration and kind of impurities. Transmission mode is more useful as compared to absorption, concerning the detection abilities of average UV-Vis spectrometers. Infrared spectroscopy can be used as a complementary method for determining impurities/admixtures in samples. Measurements of chroma give the quickest data to compare the colour of biofuel by-products obtained by different producers. The condition is, however, that the products are received through the same or similar chemical processes. The other important factor is application of well defined measuring background. All the discussed analyses are quick, cheap and non-destructive, and can help to compare the quality of products.

  11. Global and Regional Potential for Biofuels From Residue and Waste

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Smith, S. J.

    2007-12-01

    As co-products, agricultural and forestry residues as well as municipal solid waste (MSW) represent potential low cost lignocellulosic biomass feedstocks for the production of second generation biofuels. For agriculture, the maximum supply is a function of crop-specific attributes (harvest index and energy content of residue) and total crop production (yield and total harvested area). For forestry, two potential residue streams are considered: residue left from timber harvesting (tree tops and branches), and residue from mills (wood scraps and sawdust). The harvest index, milling efficiencies, and energy content of wood are used to estimate the total potential supply of forestry residues. MSW is predicted as a function of GDP and the proportional waste composition indicative of various regions. Limiting factors for supply of biomass feedstock from these sources include agricultural and forest productivity, residue required to prevent soil erosion and maintain soil nutrients, and cost of aggregation and transport. Using the ObjECTS MiniCAM Integrated Assessment Model, the global role of residue biomass as a feedstock for biofuels is modeled for the next century under different climate policy scenarios.

  12. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis.

    PubMed

    Choi, Kwon-Young; Wernick, David G; Tat, Christine A; Liao, James C

    2014-05-01

    The non-recyclable use of nitrogen fertilizers in microbial production of fuels and chemicals remains environmentally detrimental. Conversion of protein wastes into biofuels and ammonia by engineering nitrogen flux in Escherichia coli has been demonstrated as a method to reclaim reduced-nitrogen and curb its environmental deposition. However, protein biomass requires a proteolysis process before it can be taken up and converted by any microbe. Here, we metabolically engineered Bacillus subtilis to hydrolyze polypeptides through its secreted proteases and to convert amino acids into advanced biofuels and ammonia fertilizer. Redirection of B. subtilis metabolism for amino-acid conversion required inactivation of the branched-chain amino-acid (BCAA) global regulator CodY. Additionally, the lipoamide acyltransferase (bkdB) was deleted to prevent conversion of branched-chain 2-keto acids into their acyl-CoA derivatives. With these deletions and heterologous expression of a keto-acid decarboxylase and an alcohol dehydrogenase, the final strain produced biofuels and ammonia from an amino-acid media with 18.9% and 46.6% of the maximum theoretical yield. The process was also demonstrated on several waste proteins. The results demonstrate the feasibility of direct microbial conversion of polypeptides into sustainable products. PMID:24566040

  13. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions.

    PubMed

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  14. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions

    PubMed Central

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  15. Biofuel feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are many forms of feedstocks for biofuel production. Animal manures and municipal solid wastes have been used to generate methane for on-farm and municipality energy uses. Fuel ethanol has been produced commercially using plant-derived starch and sugar feedstocks. Technologies for productio...

  16. Selection and Characterization of Biofuel-Producing Environmental Bacteria Isolated from Vegetable Oil-Rich Wastes

    PubMed Central

    Escobar-Niño, Almudena; Luna, Carlos; Luna, Diego; Marcos, Ana T.; Cánovas, David; Mellado, Encarnación

    2014-01-01

    Fossil fuels are consumed so rapidly that it is expected that the planet resources will be soon exhausted. Therefore, it is imperative to develop alternative and inexpensive new technologies to produce sustainable fuels, for example biodiesel. In addition to hydrolytic and esterification reactions, lipases are capable of performing transesterification reactions useful for the production of biodiesel. However selection of the lipases capable of performing transesterification reactions is not easy and consequently very few biodiesel producing lipases are currently available. In this work we first isolated 1,016 lipolytic microorganisms by a qualitative plate assay. In a second step, lipolytic bacteria were analyzed using a colorimetric assay to detect the transesterification activity. Thirty of the initial lipolytic strains were selected for further characterization. Phylogenetic analysis revealed that 23 of the bacterial isolates were Gram negative and 7 were Gram positive, belonging to different clades. Biofuel production was analyzed and quantified by gas chromatography and revealed that 5 of the isolates produced biofuel with yields higher than 80% at benchtop scale. Chemical and viscosity analysis of the produced biofuel revealed that it differed from biodiesel. This bacterial-derived biofuel does not require any further downstream processing and it can be used directly in engines. The freeze-dried bacterial culture supernatants could be used at least five times for biofuel production without diminishing their activity. Therefore, these 5 isolates represent excellent candidates for testing biofuel production at industrial scale. PMID:25099150

  17. Selection and characterization of biofuel-producing environmental bacteria isolated from vegetable oil-rich wastes.

    PubMed

    Escobar-Niño, Almudena; Luna, Carlos; Luna, Diego; Marcos, Ana T; Cánovas, David; Mellado, Encarnación

    2014-01-01

    Fossil fuels are consumed so rapidly that it is expected that the planet resources will be soon exhausted. Therefore, it is imperative to develop alternative and inexpensive new technologies to produce sustainable fuels, for example biodiesel. In addition to hydrolytic and esterification reactions, lipases are capable of performing transesterification reactions useful for the production of biodiesel. However selection of the lipases capable of performing transesterification reactions is not easy and consequently very few biodiesel producing lipases are currently available. In this work we first isolated 1,016 lipolytic microorganisms by a qualitative plate assay. In a second step, lipolytic bacteria were analyzed using a colorimetric assay to detect the transesterification activity. Thirty of the initial lipolytic strains were selected for further characterization. Phylogenetic analysis revealed that 23 of the bacterial isolates were Gram negative and 7 were Gram positive, belonging to different clades. Biofuel production was analyzed and quantified by gas chromatography and revealed that 5 of the isolates produced biofuel with yields higher than 80% at benchtop scale. Chemical and viscosity analysis of the produced biofuel revealed that it differed from biodiesel. This bacterial-derived biofuel does not require any further downstream processing and it can be used directly in engines. The freeze-dried bacterial culture supernatants could be used at least five times for biofuel production without diminishing their activity. Therefore, these 5 isolates represent excellent candidates for testing biofuel production at industrial scale. PMID:25099150

  18. Application of orange peel waste in the production of solid biofuels and biosorbents.

    PubMed

    Santos, Carolina Monteiro; Dweck, Jo; Viotto, Renata Silva; Rosa, André Henrique; de Morais, Leandro Cardoso

    2015-11-01

    This work aimed to study the potential use of pyrolyzed orange peels as solid biofuels and biosorption of heavy metals. The dry biomass and the biofuel showed moderate levels of carbon (44-62%), high levels of oxygen (30-47%), lower levels of hydrogen (3-6%), nitrogen (1-2.6%), sulfur (0.4-0.8%) and ash with a maximum of 7.8%. The activation energy was calculated using Kissinger method, involving a 3 step process: volatilization of water, biomass degradation and volatilization of the degradation products. The calorific value obtained was 19.3MJ/kg. The studies of metal biosorption based on the Langmuir model obtained the best possible data fits. The results obtained in this work indicated that the potential use of waste orange peel as a biosorbent and as a solid biofuel are feasible, this product could be used in industrial processes, favoring the world economy. PMID:26280099

  19. Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst.

    PubMed

    Li, Tao; Cheng, Jun; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2015-12-01

    Three types of zeolites (Meso-Y, SAPO-34, and HY) loaded with nickel were used to convert waste cooking oil to jet biofuel. Mesoporous zeolite Y exhibited a high jet range alkane selectivity of 53% and a proper jet range aromatic hydrocarbon selectivity of 13.4% in liquid fuel products. Reaction temperature was optimized to produce quality jet biofuel. Zeolite Meso-Y exhibited a high jet range alkane yield of 40.5% and a low jet range aromatic hydrocarbon yield of 11.3% from waste cooking oil at 400°C. The reaction pathway for converting waste cooking oil to jet biofuel was proposed. Experimental results showed that waste cooking oil mainly deoxygenated to heptadecane (C17H36) and pentadecane (C15H30) through the decarbonylation pathway for the first 3h. Long chain alkanes cracked into jet range alkanes (C8-C16). Cycloalkanes and aromatic hydrocarbons were produced through cyclization and dehydrogenation pathways. PMID:26342341

  20. Biofuels combustion*

    DOE PAGESBeta

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  1. Biofuels Combustion

    NASA Astrophysics Data System (ADS)

    Westbrook, Charles K.

    2013-04-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  2. Biofuels combustion*

    SciTech Connect

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.

  3. An assessment of biofuel use and burning of agricultural waste in the developing world

    NASA Astrophysics Data System (ADS)

    Yevich, Rosemarie; Logan, Jennifer A.

    2003-12-01

    We present an assessment of biofuel use and agricultural field burning in the developing world. We used information from government statistics, energy assessments from the World Bank, and many technical reports, as well as from discussions with experts in agronomy, forestry, and agro-industries. We estimate that 2060 Tg biomass fuel was used in the developing world in 1985; of this, 66% was burned in Asia, and 21% and 13% in Africa and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use in India and China. We find that 400 Tg of crop residues are burned in the fields, with the fraction of available residue burned in 1985 ranging from 1% in China, 16-30% in the Middle East and India, to about 70% in Indonesia; in Africa about 1% residue is burned in the fields of the northern drylands, but up to 50% in the humid tropics. We distributed this biomass burning on a spatial grid with resolution of 1° × 1°, and applied emission factors to the amount of dry matter burned to give maps of trace gas emissions in the developing world. The emissions of CO from biofuel use in the developing world, 156 Tg, are about 50% of the estimated global CO emissions from fossil fuel use and industry. The emission of 0.9 Pg C (as CO2) from burning of biofuels and field residues together is small, but nonnegligible when compared with the emissions of CO2 from fossil fuel use and industry, 5.3 Pg C. The biomass burning source of 10 Tg/yr for CH4 and 2.2 Tg N/yr of NOx are relatively small when compared with total CH4 and NOx sources; this source of NOx may be important on a regional basis.

  4. Agro-industrial waste to solid biofuel through hydrothermal carbonization.

    PubMed

    Basso, Daniele; Patuzzi, Francesco; Castello, Daniele; Baratieri, Marco; Rada, Elena Cristina; Weiss-Hortala, Elsa; Fiori, Luca

    2016-01-01

    In this paper, the use of grape marc for energy purposes was investigated. Grape marc is a residual lignocellulosic by-product from the winery industry, which is present in every world region where vine-making is addressed. Among the others, hydrothermal carbonization was chosen as a promising alternative thermochemical process, suitable for the treatment of this high moisture substrate. Through a 50 mL experimental apparatus, hydrothermal carbonization tests were performed at several temperatures (namely: 180, 220 and 250 °C) and residence times (1, 3, 8 h). Analyses on both the solid and the gaseous phases obtained downstream of the process were performed. In particular, solid and gas yields versus the process operational conditions were studied and the obtained hydrochar was evaluated in terms of calorific value, elemental analysis, and thermal stability. Data testify that hydrochar form grape marc presents interesting values of HHV (in the range 19.8-24.1 MJ/kg) and physical-chemical characteristics which make hydrochar exploitable as a solid biofuel. In the meanwhile, the amount of gases produced is very small, if compared to other thermochemical processes. This represents an interesting result when considering environmental issues. Statistical analysis of data allows to affirm that, in the chosen range of operational conditions, the process is influenced more by temperature than residence time. These preliminary results support the option of upgrading grape marc toward its energetic valorisation through hydrothermal carbonization. PMID:26031328

  5. Modern biofuel cells for waste recycling in life support systems

    NASA Technical Reports Server (NTRS)

    Chen, L.; Bockris, J. OM.

    1989-01-01

    Innovative ways of treating urea in waste water reprocessing for long duration space exploration are being considered. Urea is very stable and therefore there are few effective ways for its decomposition. The feasibility of the use of the enzyme urease is to catalyze the hydrolysis of urea to ammonia and carbon dioxide is discussed, including a methodology, potential problems, the capabilities and advantages of such a system.

  6. Modern biofuel cells for waste recycling in life support systems

    NASA Astrophysics Data System (ADS)

    Chen, L.; Bockris, J. Om.

    1989-09-01

    Innovative ways of treating urea in waste water reprocessing for long duration space exploration are being considered. Urea is very stable and therefore there are few effective ways for its decomposition. The feasibility of the use of the enzyme urease is to catalyze the hydrolysis of urea to ammonia and carbon dioxide is discussed, including a methodology, potential problems, the capabilities and advantages of such a system.

  7. Economic evaluation of technology for a new generation biofuel production using wastes.

    PubMed

    Koutinas, Athanasios; Kanellaki, Maria; Bekatorou, Argyro; Kandylis, Panagiotis; Pissaridi, Katerina; Dima, Agapi; Boura, Konstantina; Lappa, Katerina; Tsafrakidou, Panagiota; Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Gkini, Olga A; Papamichael, Emmanuel M

    2016-01-01

    An economic evaluation of an integrated technology for industrial scale new generation biofuel production using whey, vinasse, and lignocellulosic biomass as raw materials is reported. Anaerobic packed-bed bioreactors were used for organic acids production using initially synthetic media and then wastes. Butyric, lactic and acetic acid were predominately produced from vinasse, whey, and cellulose, respectively. Mass balance was calculated for a 16,000L daily production capacity. Liquid-liquid extraction was applied for recovery of the organic acids using butanol-1 as an effective extraction solvent which serves also as the alcohol for the subsequent enzyme-catalyzed esterification. The investment needed for the installation of the factory was estimated to about 1.7million€ with depreciation excepted at about 3months. For cellulosics, the installation investment was estimated to be about 7-fold higher with depreciation at about 1.5years. The proposed technology is an alternative trend in biofuel production. PMID:26492169

  8. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. PMID:26896823

  9. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste

    SciTech Connect

    Hedman, Bjoern . E-mail: bjorn.hedman@chem.umu.se; Burvall, Jan; Nilsson, Calle; Marklund, Stellan

    2005-07-01

    In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.

  10. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  11. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    PubMed Central

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  12. Fat, oil and grease waste from municipal wastewater: characterization, activation and sustainable conversion into biofuel.

    PubMed

    Pastore, Carlo; Pagano, Michele; Lopez, Antonio; Mininni, Giuseppe; Mascolo, Giuseppe

    2015-01-01

    Fat, oil and grease (FOG) recovered by the oil/water separator of a wastewater treatment plant (WWTP) were sampled, characterized, activated and converted into biofuel. Free acids (50-55%) and fatty soaps (26-32%) not only composed the main components, but they were also easily separable from the starting waste. The respective free fatty acid profiles were gas-chromatographically evaluated, interestingly verifying that free acids had a different profile (mainly oleic acid) with respect to the soapy fraction (saturated fatty acids were dominant). The inorganic composition was also determined for soaps, confirming that calcium is the most commonly present metal. The chemical activation of this fatty waste was made possible by converting the starting soaps into the respective free fatty acids by using formic acid as activator, coproducing the relevant formates. The activated fatty matter was then converted into biofuel through direct esterification under very mild conditions (345 K, atmospheric pressure) and obtaining thermodynamic conversion in less than 2 h. The process was easily scaled up, isolating at the end pure biodiesel (purity > 96%) through distillation under vacuum, providing a final product conformed to commercial purposes. PMID:25909724

  13. Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production.

    PubMed

    Liang, Shaobo; McDonald, Armando G

    2014-08-20

    The growing demand for renewable fuels has driven the interest in the utilization of alternative waste materials such as potato peel waste (PPW) which contains fermentable carbohydrate. Fermentation of PPW using a mixed microbial consortium yielded about 60% unreacted PPW fermentation residue (PPW-FR). The PPW and PPW-FR were characterized by a combination of Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, gas chromatography-mass spectrometry (GC-MS), and thermogravimetric analysis (TGA) to quantify changes after fermentation. Fermentation of PPW resulted in fermentation of starch and concentrating lignin plus suberin and lipids in PPW-FR. TGA analysis showed that decomposition peaks differed for PPW (423 °C) and PPW-FR (457 °C). Pyrolysis-GC/MS showed an increase in phenolic and long chain fatty acid compounds with a concomitant decrease in carbohydrate derived compounds in the PPW after fermentation. Both the PPW and PPW-FR have shown potential based on properties to be converted into crude biofuel via thermochemical processes. PMID:25093245

  14. Acceleration of Enzymatic conversion of Agricultural Waste Biomass into Bio-fuels by Low Intensity Uniform Ultrasound Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most critical stages of conversion of agricultural waste biomass into biofuels employs hydrolysis reactions between highly specific enzymes and matching substrates (e.g. corn stover cellulose with cellulase) that produce soluble sugars, which then could be converted into ethanol. Despite ...

  15. Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae.

    PubMed

    Zhou, Yongjin J; Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

    2014-01-01

    Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable, and cost-effective energy resources. Environment-friendly processes involving microbes can be used to synthesize advanced biofuels. These fuels have the potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. From an engineering perspective, the pathway for fatty acid biosynthesis is an attractive route for the production of advanced fuels such as fatty acid ethyl esters, fatty alcohols, and alkanes. The robustness and excellent accessibility to molecular genetics make the yeast Saccharomyces cerevisiae a suitable host for the purpose of bio-manufacturing. Recent advances in metabolic engineering, as well as systems and synthetic biology, have now provided the opportunity to engineer yeast metabolism for the production of fatty acid-derived fuels and chemicals. PMID:25225637

  16. Production of Biofuel from Waste Lignocellulosic Biomass Materials Based on Energy Saving Viewpoint

    NASA Astrophysics Data System (ADS)

    Takano, Maki; Hoshino, Kazuhiro

    To develop biofuel production from waste lignocellulosic biomass materials the rice straw was selected one of renewable material and the degradation condition about pretreatment and enzymatic hydrolysis to obtain effectively fermentable sugars was investigated. Rice straw was pretreated by five kinds of methods and then the components ratio of rice straw was examined. First, the steam explosion was selected based on the degradability and the requirement energy. In addition, the best suitable combination of two cellulases to effective and economical hydrolyze was determined from the degradability of these pretreated rice straws. In the simultaneous saccharification and fermentation of the steam explosion rice straw by combining cellulase cocktail and a novel fermenting fungus, 13.2 g/L ethanol was able to product for 96 h.

  17. Optical Properties of waste derived carbon dots

    NASA Astrophysics Data System (ADS)

    Sarswat, Prashant; Free, Michael

    Carbon dots (CDs) have been extensively examined recently, mainly due to their luminescence and excitation wavelength dependent emission behavior. These dots can be derived from a variety of carbonaceous sources. Some of the possible sources are carbonaceous waste materials. Although it is possible to synthesize CDs using waste and their applications in light source, few steps such as to purification of starting material and removal of other impurities during solvothermal processing can enhance the performance of CDs and associated devices. Our primary results suggest that carbonaceous waste in liquid form is easy to process. In contrast the solid carbonaceous wastes are relatively difficult to process, but their availability is higher. In this regard, a detailed study has been performed to formulate the appropriate processing parameters for best performing CDs.

  18. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.

    PubMed

    Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

    2011-11-01

    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. PMID:21924606

  19. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    PubMed

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals. PMID:23899824

  20. Kinetic parameters of red pepper waste as biomass to solid biofuel.

    PubMed

    Maia, Amanda Alves Domingos; de Morais, Leandro Cardoso

    2016-03-01

    This work aimed to study the kinetic of thermal degradation of red pepper waste as solid biofuel to bioenergy production. The thermal degradation experiments were conducted at three heating rates, 5°C/min, 7.5°C/min and 10°C/min in a thermogravimetric analyzer and oxidative atmosphere. The kinetic analysis was carried out applying the isoconversional model of Ozawa-Flynn-Wall. The activation energy was considerate low and varied 29.49-147.25k J/mol. The enthalpies revealed the energy difference between the reagent and the activated complex agreed with activation energies, the values of the pre-exponential factor indicated empirical first order reactions, Gibbs free energy varied from 71.77 kJ/mol to 207.03 kJ/mol and the changes of entropies had negative values, indicating that the degree of disorder of products formed through bond dissociations was lower than initial reactants. The calorific value was 19.5 MJ/kg, considered a relevant result for bioenergy production. PMID:26773950

  1. An efficient and scalable extraction and quantification method for algal derived biofuel.

    PubMed

    Lohman, Egan J; Gardner, Robert D; Halverson, Luke; Macur, Richard E; Peyton, Brent M; Gerlach, Robin

    2013-09-01

    Microalgae are capable of synthesizing a multitude of compounds including biofuel precursors and other high value products such as omega-3-fatty acids. However, accurate analysis of the specific compounds produced by microalgae is important since slight variations in saturation and carbon chain length can affect the quality, and thus the value, of the end product. We present a method that allows for fast and reliable extraction of lipids and similar compounds from a range of algae, followed by their characterization using gas chromatographic analysis with a focus on biodiesel-relevant compounds. This method determines which range of biologically synthesized compounds is likely responsible for each fatty acid methyl ester (FAME) produced; information that is fundamental for identifying preferred microalgae candidates as a biodiesel source. Traditional methods of analyzing these precursor molecules are time intensive and prone to high degrees of variation between species and experimental conditions. Here we detail a new method which uses microwave energy as a reliable, single-step cell disruption technique to extract lipids from live cultures of microalgae. After extractable lipid characterization (including lipid type (free fatty acids, mono-, di- or tri-acylglycerides) and carbon chain length determination) by GC-FID, the same lipid extracts are transesterified into FAMEs and directly compared to total biodiesel potential by GC-MS. This approach provides insight into the fraction of total FAMEs derived from extractable lipids compared to FAMEs derived from the residual fraction (i.e. membrane bound phospholipids, sterols, etc.). This approach can also indicate which extractable lipid compound, based on chain length and relative abundance, is responsible for each FAME. This method was tested on three species of microalgae; the marine diatom Phaeodactylum tricornutum, the model Chlorophyte Chlamydomonas reinhardtii, and the freshwater green alga Chlorella vulgaris

  2. Hydrolysis treatments of fruit and vegetable waste for production of biofuel precursors.

    PubMed

    Razaghi, Ali; Karthikeyan, O P; Hao, H T Nguyen; Heimann, Kirsten

    2016-10-01

    This study investigated hydrolysis approaches for cultivation of the oleaginous red yeast Rhodotorula glutinis for biodiesel production, whilst utilising the residual solids (RS) for biogas production. Macerated fruit and vegetable waste (FVW) (24h-4°C-leachate served as the control, Pcon) was hydrolysed chemically (Chem), thermally (Therm) and using a combined thermo-chemical treatment (T-Chem). All cleared hydrolysates supported growth of R. glutinis, which was nitrogen-limited. T-Chem hydrolysates yielded highest biomass, total fatty acids (TotFA) and RS-derived biogas yields, biomass TotFA failed to meet standards for fuel density and higher heating values, met by the other treatments. Even though Pcon-derived yields were slightly lower, it is recommended for FVW treatment for local biogas and biodiesel production due to energy and environmental impact considerations. PMID:27020125

  3. Limits to biofuels

    NASA Astrophysics Data System (ADS)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  4. Next generation biofuel engineering in prokaryotes

    PubMed Central

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  5. Physicochemical and thermal characterization of nonedible oilseed residual waste as sustainable solid biofuel.

    PubMed

    Doshi, Pooja; Srivastava, Gopal; Pathak, Gauri; Dikshit, Madhurima

    2014-10-01

    The present study aims to investigate the potential of nonedible oilseed Jatropha (Jatropha curcas) and Karanja (Pongamia pinnata) defatted residual biomasses (whole seed, kernel, and hull), as solid biofuel. These biomasses showed good carbon contents (39.8-44.5%), whereas, fewer amounts were observed for sulfur (0.15-0.90%), chlorine (0.64-1.76%), nitrogen (0.9-7.2%) and ash contents (4.0-8.7%). Their volatile matter (60.23-81.6%) and calorific values (17.68-19.98 MJ/kg) were found to be comparable to coal. FT-IR and chemical analyses supported the presence of good amount of cellulose, hemicellulose and lower lignin. The pellets prepared without any additional binder, showed better compaction ratio, bulk density and compressive strength. XRF analysis carried out for determination of slagging-fouling indices, suggested their ash deposition tendencies in boilers, which can be overcome significantly with the optimization of the blower operations and control of ash depositions. Thus, overall various chemical, physical properties, thermal decomposition, surface morphological studies and their high biofuel reactivity indicated that residual biomasses of Jatropha and Karanja seeds have high potential to be utilized as a solid biofuel. PMID:24462338

  6. Industrial utilization of waste derived energy

    NASA Astrophysics Data System (ADS)

    1981-06-01

    A technical and economic feasibility study of a partial oxidation unit was conducted. Major objectives of the program were: (1) disposal of both urban (municipal refuse and sewage sludge) and agricultural (dairy) wastes; and (2) the production of a medium-Btu fuel gas. The investigated wasteshed includes those portions of Western San Bernardino County, Eastern Los Angeles County, and Northwestern Riverside County. The available waste supply, transportation of these waste materials, product quantities and energy products of fuel gas steam, and electricity, markets, ferrous metals, aluminum, nonferrous metals, and slag are studied.

  7. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Curtis Jawdy

    2000-10-09

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

  8. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-07-13

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

  9. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.

    PubMed

    McGinn, Patrick J; Dickinson, Kathryn E; Bhatti, Shabana; Frigon, Jean-Claude; Guiot, Serge R; O'Leary, Stephen J B

    2011-09-01

    There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed. PMID:21461850

  10. A New Biofuels Technology Blooms in Iowa

    SciTech Connect

    Mathisen, Todd; Bruch, Don

    2010-01-01

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  11. A New Biofuels Technology Blooms in Iowa

    ScienceCinema

    Mathisen, Todd; Bruch, Don;

    2013-05-29

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  12. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    PubMed

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. PMID:25697838

  13. Sandia's Biofuels Program

    SciTech Connect

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  14. Sandia's Biofuels Program

    ScienceCinema

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  15. Biofuels: 1995 project summaries

    SciTech Connect

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  16. Methods for genetic optimization of biocatalysts for biofuel production from dairy waste through synthetic biology.

    PubMed

    Pasotti, Lorenzo; Zucca, Susanna; Casanova, Michela; Politi, Nicolo; Massaiu, Ilaria; Mazzini, Giuliano; Micoli, Giuseppina; Calvio, Cinzia; Cusella De Angelis, Maria Gabriella; Magni, Paolo

    2015-08-01

    Whey is an abundant by-product of cheese production process and it is considered a special waste due to its high nutritional load and hypertrophic potential. Technologies for whey valorization are available. They can convert such waste into high-value products, like whey proteins. However, the remaining liquid (called permeate) is still considered as a polluting waste due to its high lactose concentration. The alcoholic fermentation of lactose into ethanol will simultaneously achieve two important goals: safe disposal of a pollutant waste and green energy production. This methodology paper illustrates the workflow carried out to design and realize an optimized microorganism that can efficiently perform the lactose-to-ethanol conversion, engineered via synthetic biology experimental and computational approaches. PMID:26736421

  17. Study of investigation-derived waste management options. Master's thesis

    SciTech Connect

    Mountain, B.C.

    1993-09-01

    USAF is dedicated to the clean up of past releases of hazardous substances at its bases under the Installation Restoration Program (IRP) . Clean up decisions are based upon data produced from investigations. Large amounts of waste may be derived from investigations. Investigation-derived waste (IDW), especially that with a hazardous component, may pose significant health protection and regulatory compliance problems if neglected. This study identifies the status and the need for improvement of IDW management to avoid those problems. Information on the background of IDW management was collected through a review of environmental laws, waste management regulations, and existing guidance. Practical IDW management information was gleaned from conversations with iRP managers at twelve USAF bases around the country. This study revealed that IDW management needs improvement. All bases acknowledged IDW concerns and have adopted various methods to deal with them. However, current methods appear to rely more upon expediency rather than permanence. This study showed that critical protection and compliance issues are being overlooked. Development of specific IDW management guidance may better assure that critical issues are addressed. Waste minimization, Waste management, Environmental management, Nonhazardous wastes, Hazardous material, Solid wastes.

  18. CO2 emissions from crop residue-derived biofuels. [Letter to the Editor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The claim by Liska et al. that corn stover-derived ethanol can be worse than gasoline has generated lots of media interest, but offers little value to the research community or to policymakers. They have merely demonstrated that if you model an irresponsible and unsustainable scenario, the results...

  19. Gram-positive bacteria as biocatalysts to convert biomass derived sugars into biofuel and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microbial fermentation of biomass derived sugar mixtures is one of the barriers to the overall economic conversion process from lignocellulosic biomass to fuels and chemicals. Although the supply and characteristics of feedstocks vary, biomass hydrolysates usually contain mixed sugars, organic ...

  20. Biofuels and sustainability.

    PubMed

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria. PMID:20146765

  1. Biofuel Database

    National Institute of Standards and Technology Data Gateway

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  2. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories

    PubMed Central

    Zhou, Yongjin J.; Buijs, Nicolaas A.; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l−1 of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l−1) and fatty alcohols (1.5 g l−1), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value. PMID:27222209

  3. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.

    PubMed

    Zhou, Yongjin J; Buijs, Nicolaas A; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l(-1) of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l(-1)) and fatty alcohols (1.5 g l(-1)), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value. PMID:27222209

  4. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-10-14

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, the final technical design and cost estimate were submitted to Penn State by Foster Wheeler. In addition, Penn State initiated the internal site selection process to finalize the site for the boiler plant.

  5. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits

    2001-01-18

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, work focused on performing the design of the conceptual fluidized bed system and determining the system economics.

  6. Two stages catalytic pyrolysis of refuse derived fuel: production of biofuel via syncrude.

    PubMed

    Miskolczi, N; Buyong, F; Angyal, A; Williams, P T; Bartha, L

    2010-11-01

    Thermo-catalytic pyrolysis of refuse derived fuels with different catalysts had been conducted in a two stages process due to its important potential value as fuel. The first stage was a pure thermal pyrolysis in a horizontal tubular reactor with feed rate of 0.5kg hourly. The second stage was a semi-batch process in the presence of catalysts. Results showed that the tested catalysts significantly have affected the quantity of products. E.g. gas yield could be increased with 350% related to the catalyst free case using ZSM-5, while that of pyrolytic oil was 115% over Y-zeolite. Gases consisted of mainly CO and CO(2) obtained from the tubular reactor, while dominantly hydrocarbons from the second stage. Ni-Mo-catalyst and Co-Mo-catalyst had shown activity in pyrolytic oil upgrading via in-situ hydrogenation-dehydrogenation reactions. Sulphur, nitrogen and chlorine level in pyrolytic oils could be significantly declined by using of catalysts. PMID:20663664

  7. Fluidized bed gasification of waste-derived fuels

    SciTech Connect

    Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

    2010-07-15

    Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.

  8. Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research

    PubMed Central

    McIlwain, Sean J.; Peris, David; Sardi, Maria; Moskvin, Oleg V.; Zhan, Fujie; Myers, Kevin S.; Riley, Nicholas M.; Buzzell, Alyssa; Parreiras, Lucas S.; Ong, Irene M.; Landick, Robert; Coon, Joshua J.; Gasch, Audrey P.; Sato, Trey K.; Hittinger, Chris Todd

    2016-01-01

    The genome sequences of more than 100 strains of the yeast Saccharomyces cerevisiae have been published. Unfortunately, most of these genome assemblies contain dozens to hundreds of gaps at repetitive sequences, including transposable elements, tRNAs, and subtelomeric regions, which is where novel genes generally reside. Relatively few strains have been chosen for genome sequencing based on their biofuel production potential, leaving an additional knowledge gap. Here, we describe the nearly complete genome sequence of GLBRCY22-3 (Y22-3), a strain of S. cerevisiae derived from the stress-tolerant wild strain NRRL YB-210 and subsequently engineered for xylose metabolism. After benchmarking several genome assembly approaches, we developed a pipeline to integrate Pacific Biosciences (PacBio) and Illumina sequencing data and achieved one of the highest quality genome assemblies for any S. cerevisiae strain. Specifically, the contig N50 is 693 kbp, and the sequences of most chromosomes, the mitochondrial genome, and the 2-micron plasmid are complete. Our annotation predicts 92 genes that are not present in the reference genome of the laboratory strain S288c, over 70% of which were expressed. We predicted functions for 43 of these genes, 28 of which were previously uncharacterized and unnamed. Remarkably, many of these genes are predicted to be involved in stress tolerance and carbon metabolism and are shared with a Brazilian bioethanol production strain, even though the strains differ dramatically at most genetic loci. The Y22-3 genome sequence provides an exceptionally high-quality resource for basic and applied research in bioenergy and genetics. PMID:27172212

  9. Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research.

    PubMed

    McIlwain, Sean J; Peris, David; Sardi, Maria; Moskvin, Oleg V; Zhan, Fujie; Myers, Kevin S; Riley, Nicholas M; Buzzell, Alyssa; Parreiras, Lucas S; Ong, Irene M; Landick, Robert; Coon, Joshua J; Gasch, Audrey P; Sato, Trey K; Hittinger, Chris Todd

    2016-01-01

    The genome sequences of more than 100 strains of the yeast Saccharomyces cerevisiae have been published. Unfortunately, most of these genome assemblies contain dozens to hundreds of gaps at repetitive sequences, including transposable elements, tRNAs, and subtelomeric regions, which is where novel genes generally reside. Relatively few strains have been chosen for genome sequencing based on their biofuel production potential, leaving an additional knowledge gap. Here, we describe the nearly complete genome sequence of GLBRCY22-3 (Y22-3), a strain of S. cerevisiae derived from the stress-tolerant wild strain NRRL YB-210 and subsequently engineered for xylose metabolism. After benchmarking several genome assembly approaches, we developed a pipeline to integrate Pacific Biosciences (PacBio) and Illumina sequencing data and achieved one of the highest quality genome assemblies for any S. cerevisiae strain. Specifically, the contig N50 is 693 kbp, and the sequences of most chromosomes, the mitochondrial genome, and the 2-micron plasmid are complete. Our annotation predicts 92 genes that are not present in the reference genome of the laboratory strain S288c, over 70% of which were expressed. We predicted functions for 43 of these genes, 28 of which were previously uncharacterized and unnamed. Remarkably, many of these genes are predicted to be involved in stress tolerance and carbon metabolism and are shared with a Brazilian bioethanol production strain, even though the strains differ dramatically at most genetic loci. The Y22-3 genome sequence provides an exceptionally high-quality resource for basic and applied research in bioenergy and genetics. PMID:27172212

  10. Genome sequence and analysis of a stress-tolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research

    DOE PAGESBeta

    McIlwain, Sean J.; Peris, Davis; Sardi, Maria; Moskvin, Oleg V.; Zhan, Fujie; Myers, Kevin S.; Riley, Nicholas M.; Buzzell, Alyssa; Parreiras, Lucas S.; Ong, Irene M.; et al

    2016-04-20

    The genome sequences of more than 100 strains of the yeast Saccharomyces cerevisiae have been published. Unfortunately, most of these genome assemblies contain dozens to hundreds of gaps at repetitive sequences, including transposable elements, tRNAs, and subtelomeric regions, which is where novel genes generally reside. Relatively few strains have been chosen for genome sequencing based on their biofuel production potential, leaving an additional knowledge gap. Here, we describe the nearly complete genome sequence of GLBRCY22-3 (Y22-3), a strain of S. cerevisiae derived from the stress-tolerant wild strain NRRL YB-210 and subsequently engineered for xylose metabolism. After benchmarking several genome assemblymore » approaches, we developed a pipeline to integrate Pacific Biosciences (PacBio) and Illumina sequencing data and achieved one of the highest quality genome assemblies for any S. cerevisiae strain. Specifically, the contig N50 is 693 kbp, and the sequences of most chromosomes, the mitochondrial genome, and the 2-micron plasmid are complete. Our annotation predicts 92 genes that are not present in the reference genome of the laboratory strain S288c, over 70% of which were expressed. We predicted functions for 43 of these genes, 28 of which were previously uncharacterized and unnamed. Remarkably, many of these genes are predicted to be involved in stress tolerance and carbon metabolism and are shared with a Brazilian bioethanol production strain, even though the strains differ dramatically at most genetic loci. Lastly, the Y22-3 genome sequence provides an exceptionally high-quality resource for basic and applied research in bioenergy and genetics.« less

  11. An index for quantifying the aerobic reactivity of municipal solid wastes and derived waste products.

    PubMed

    Scaglia, Barbara; Adani, Fabrizio

    2008-05-01

    The organic matter contained in municipal solid waste (MSW) and in the MSW fractions obtained by mechanical separation has strong environmental impact when the waste is used as landfill. This is partly due to the biological activity that occurs under anaerobic conditions. Negative effects on the environment include unpleasant odors, biogas, leachate and biomass self-heating. Measuring the biological reactivity of waste with the help of indicators is an important tool to prevent waste impact. The aim of this study was to develop an index capable of describing the aerobic reactivity of waste, using both biological and chemical indicators. To develop this index, 71 MSW and MSW-product samples, including biologically treated MSW and mechanically separated MSW fractions, were analyzed. Fifty of the 71 samples analyzed represented MSWs and their derived products collected from a number of Italian waste plants and sites. The remaining 21 were MSW samples collected at different times during 8 different full-scale aerobic biological processes in four treatment plants used to reduce the biological reactivity of wastes. Five of these processes used the entire (unsorted) MSW, while the remaining three used the organic fraction of the MSW obtained by mechanical pre-treatment (waste sieving). Respirometric activity (Dynamic Respiration Index, DRI) and eluates characterization (chemical oxygen demand--COD, and 5 days biological oxygen demand--BOD5) were used as indicators of waste strength, as they had previously been reported to be indirect measures of waste impact on landfill. Summarizing all studied indicators, Principal Component Analysis (PCA) was used to develop the Putrescibility Index (Ip). The results revealed Ip index of 204+/-33 (mean+/-standard deviation) and 159+/-14 for the organic fraction of MSW and MSW untreated waste respectively, and of 106+/-16 and 101+/-22 for the corresponding biologically treated waste. PMID:18280541

  12. Investigation-Derived Waste Management Plan. Revision 2

    SciTech Connect

    Molen, G.

    1995-05-24

    SRS has implemented a comprehensive environmental program to maintain compliance with environmental regulations and mitigate impacts to the environment. One element of the environmental program is the investigation of inactive waste units. Environmental Investigation-Derived Waste (IDW). IDW may include purge water , soil cuttings, drilling fluids, well pumping test and development water, decontamination solutions, contaminated equipment, and personal protection equipment (PPE). In cases where investigations confirm the presence of contamination and the IDW contains waste constituents in concentrations high enough to be of environmental or health concern, special management procedures are warranted. This IDW Management Plan describes specific SRS initiatives for IDW management. The goal is the development of a plan for prudent management of IDW from environmental investigations that is protective of human health and the environment.

  13. Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products.

    PubMed

    Lohrasbi, Mehdi; Pourbafrani, Mohammad; Niklasson, Claes; Taherzadeh, Mohammad J

    2010-10-01

    Process design and economic analysis of a biorefinery for the treatment of citrus wastes (CW) at different capacities was carried out. The CW is hydrolyzed using dilute sulfuric acid and then further processed to produce limonene, ethanol and biogas. The total cost of ethanol for base case process with 100,000 tons/year CW capacity was calculated as 0.91 USD/L, assuming 10 USD/ton handling and transportation cost of CW to the plant. However, this price is sensitive to the plant capacity. With constant price of methane and limonene, changing the plant capacity from 25,000 to 400,000 tons CW per year results in reducing ethanol costs from 2.55 to 0.46 USD/L in an economically feasible process. In addition, the ethanol production cost is sensitive to the transportation cost of CW. Increasing this cost from 10 to 30 USD/ton for the base case results in increasing the ethanol costs from 0.91 to 1.42 USD/L. PMID:20488693

  14. Effect of operating parameters on bio-fuel production from waste furniture sawdust.

    PubMed

    Uzun, Basak Burcu; Kanmaz, Gülin

    2013-04-01

    Fast pyrolysis is an effective technology for conversion of biomass into energy and value-added chemicals instead of burning them directly. In this study, fast pyrolysis of waste furniture sawdust (pine sawdust) was investigated under various reaction conditions (reaction time, pyrolysis temperature, heating rate, residence time and particle size) in a tubular reactor. The optimum reaction conditions for bio-oil production was found as reaction time of 5 min, pyrolysis temperature of 500 °C, heating rate of 300 °C min(-1) under nitrogen flow rate of 400 cm(3) min(-1). At these conditions, maximum bio-oil yield was obtained as 42.09%. Pyrolysis oils were characterized by using various elemental analyses, fourier - transformation infrared (FT-IR) spectrometry and gas chromatography-mass spectrometry (GC-MS). The results of the GC-MS showed that cracking of large molecular phenolics was followed by partial conversion into phenol and alkylated phenols (45%) during the pyrolysis. According to the experimental and characterization results; the liquid product could be used as feedstock for the chemical industry or petroleum crude for refinery. PMID:23235998

  15. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process.

    PubMed

    Neumann, Johannes; Meyer, Johannes; Ouadi, Miloud; Apfelbacher, Andreas; Binder, Samir; Hornung, Andreas

    2016-01-01

    Producing energy from biomass and other organic waste residues is essential for sustainable development. Fraunhofer UMSICHT has developed a novel reactor which introduces the Thermo-Catalytic Reforming (TCR®) process. The TCR® is a process which can convert any type of biomass and organic feedstocks into a variety of energy products (char, bio-oil and permanent gases). The aim of this work was to demonstrate this technology using digestate as the feedstock and to quantify the results from the post reforming step. The temperature of a post reformer was varied to achieve optimised fuel products. The hydrogen rich permanent gases produced were maximised at a post reforming temperature of 1023 K. The highly de-oxygenated liquid bio-oil produced contained a calorific value of 35.2 MJ/kg, with significantly improved fuel physical properties, low viscosity and acid number. Overall digestate showed a high potential as feedstock in the Thermo-Catalytic Reforming to produce pyrolysis fuel products of superior quality. PMID:26190827

  16. Synergetic sustainability enhancement via current biofuel infrastructure: waste-to-energy concept for biodiesel production.

    PubMed

    Kwon, Eilhann; Yi, Haakrho; Jeon, Young Jae

    2013-03-19

    The concept of waste-to-energy (WtE) with regards to the utilization of byproducts from the bioethanol industry (e.g., distiller's dried grain with solubles: DDGS) was employed to enhance the renewability of biodiesel, which would be an initiative stage of a biorefinery due to the conjunction between bioethanol and biodiesel. For example, DDGS is a strong candidate for use as a biodiesel feedstock due to the tremendous amount that is regularly generated. On the basis of an estimation of possible lipid recovery from DDGS, ∼30% of the biodiesel feedstock demand in 2010 could be supported by the total DDGS generation in the same year. Considering the future expansion of the bioethanol industry up to 2020, the possible lipid recovery from DDGS would provide more than 6 times the biodiesel feedstock demand in 2010. In order to enhance the renewability of biodiesel, the transformation of lipid extracted from DDGS into fatty acid ethyl ester (FAEE) via a noncatalytic transesterification reaction under ambient pressure was investigated in this work. The newly introduced method reported here enables the combination of the esterification of free fatty acids (FFAs) and the transesterification of triglycerides into a single step. This was achieved in the presence of a porous material (i.e., charcoal), and the optimal conditions for transformation into biodiesel via this noncatalytic method were assessed at the fundamental level. PMID:23410120

  17. Subcritical hydrothermal pretreatment of olive mill solid waste for biofuel production.

    PubMed

    Abu Tayeh, Hiba; Levy-Shalev, Odelia; Azaizeh, Hassan; Dosoretz, Carlos G

    2016-01-01

    The hydrothermal pretreatment of olive mill solid waste amended with 0.6M organic acids was studied at temperatures between 100 and 170°C. Acetic and formic acids which are endogenous intermediates of hemiacetyl splitting at subcritical conditions were tested. Formic acid, with smaller molecular size and lower pKa, was found to be more effective than acetic in the entire range of temperatures tested. Yield of enzymatic hydrolysis was significantly enhanced (>2 folds) at temperatures above 140°C. Concentration of aldehyde byproducts in the medium increased with temperature and pressure and addition of organic acids, however, the highest concentration detected (ca 1g/L) did not surpass values reported as inhibitory of sugars fermentation to ethanol by either yeast or bacteria. Aldehyde production was more affected by temperature than by acid addition. Concluding, addition of formic acid to hydrothermal pretreatment at relatively mild temperatures (140-170°C) and pressure (10-13 atm) improved saccharification yield while saving energy. PMID:26362463

  18. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-07-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

  19. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-10-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

  20. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  1. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate

    PubMed Central

    Smith, Keith A.; Mosier, Arvin R.; Crutzen, Paul J.; Winiwarter, Wilfried

    2012-01-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N2O). We obtained an N2O emission factor (EF) of 3–5%, and applied it to biofuel production. For ‘first-generation’ biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N2O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N2O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N2O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659–662.). However, by also including soil organic N mineralized following land-use change and NOx deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N2O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  2. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate.

    PubMed

    Smith, Keith A; Mosier, Arvin R; Crutzen, Paul J; Winiwarter, Wilfried

    2012-05-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N(2)O). We obtained an N(2)O emission factor (EF) of 3-5%, and applied it to biofuel production. For 'first-generation' biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N(2)O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N(2)O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N(2)O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659-662.). However, by also including soil organic N mineralized following land-use change and NO(x) deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N(2)O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  3. Biofuels and Biotechnology

    SciTech Connect

    Mielenz, Jonathan R

    2009-01-01

    The world obtains 86% of its energy from fossil fuels, 40% from petroleum, a majority of which goes to the transportation sector (www.IEA.gov). Well-recognized alternatives are fuels derived from renewable sources known as biofuels. There are a number of biofuels useful for transportation fuels, which include ethanol, biobutanol, mixed alcohols, biodiesel, and hydrogen. These biofuels are produced from biologically derived feedstock, almost exclusively being plant materials, either food or feed sources or inedible plant material called biomass. This chapter will discuss technologies for production of liquid transportation biofuels from renewable feedstocks, but hydrogen will not be included, as the production technology and infrastructure are not near term. In addition, a specific emphasis will be placed upon the research opportunities and potential for application of system biology tools to dissect and understand the biological processes central to production of these biofuels from biomass and biological materials. There are a number of technologies for production of each of these biofuels that range from fully mature processes such as grain-derived ethanol, emerging technology of ethanol form cellulose derived ethanol and immature processes such thermochemical conversion technologies and production of hydrogen all produced from renewable biological feedstocks. Conversion of biomass by various thermochemical and combustion technologies to produce thermochemical biodiesel or steam and electricity provide growing sources of bioenergy. However, these technologies are outside of the scope of this chapter, as is the use of biological processing for upgrading and conversion of fossil fuels. Therefore, this chapter will focus on the current status of production of biofuels produced from biological-derived feedstocks using biological processes. Regardless of the status of development of the biological process for production of the biofuels, each process can benefit from

  4. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste.

    PubMed

    Chen, D; Lawton, D; Thompson, M R; Liu, Q

    2012-09-01

    This study investigated the effectiveness of cellulose nanocrystals derived from potato peel waste as a reinforcement and vapor barrier additive. The nanocrystals were derived from cellulosic material in the potato peel by alkali treatment and subsequently acid hydrolysis. TEM images revealed the average fiber length of the nanocrystals was 410 nm with an aspect ratio of 41; its aspect ratio being considerably larger than cotton-derived nanocrystals prepared using similar reaction conditions. Cellulose nanocrystals (CNC)-filled polyvinyl alcohol (PVA) and thermoplastic starch (TPS) films were prepared by solution casting method to maintain uniform dispersion of the 1-2% (w/w) filler content. An increase of 19% and 33% (starch composite) and 38% and 49% (PVA composite) in tensile modulus was observed for the 1% and 2% CNC-reinforced composites, respectively. Water vapor transmission measurements showed a marginal reduction of water permeability for the PVA composite, whereas no effect was observed for the thermoplastic starch composite. PMID:24751097

  5. Designing the microturbine engine for waste-derived fuels.

    PubMed

    Seljak, Tine; Katrašnik, Tomaž

    2016-01-01

    Presented paper deals with adaptation procedure of a microturbine (MGT) for exploitation of refuse derived fuels (RDF). RDF often possess significantly different properties than conventional fuels and usually require at least some adaptations of internal combustion systems to obtain full functionality. With the methodology, developed in the paper it is possible to evaluate the extent of required adaptations by performing a thorough analysis of fuel combustion properties in a dedicated experimental rig suitable for testing of wide-variety of waste and biomass derived fuels. In the first part key turbine components are analyzed followed by cause and effect analysis of interaction between different fuel properties and design parameters of the components. The data are then used to build a dedicated test system where two fuels with diametric physical and chemical properties are tested - liquefied biomass waste (LW) and waste tire pyrolysis oil (TPO). The analysis suggests that exploitation of LW requires higher complexity of target MGT system as stable combustion can be achieved only with regenerative thermodynamic cycle, high fuel preheat temperatures and optimized fuel injection nozzle. Contrary, TPO requires less complex MGT design and sufficient operational stability is achieved already with simple cycle MGT and conventional fuel system. The presented approach of testing can significantly reduce the extent and cost of required adaptations of commercial system as pre-selection procedure of suitable MGT is done in developed test system. The obtained data can at the same time serve as an input for fine-tuning the processes for RDF production. PMID:26116004

  6. Biofuels and biodiversity.

    PubMed

    Wiens, John; Fargione, Joseph; Hill, Jason

    2011-06-01

    The recent increase in liquid biofuel production has stemmed from a desire to reduce dependence on foreign oil, mitigate rising energy prices, promote rural economic development, and reduce greenhouse gas emissions. The growth of this industry has important implications for biodiversity, the effects of which depend largely on which biofuel feedstocks are being grown and the spatial extent and landscape pattern of land requirements for growing these feedstocks. Current biofuel production occurs largely on croplands that have long been in agricultural production. The additional land area required for future biofuels production can be met in part by reclaiming reserve or abandoned croplands and by extending cropping into lands formerly deemed marginal for agriculture. In the United States, many such marginal lands have been enrolled in the Conservation Reserve Program (CRP), providing important habitat for grassland species. The demand for corn ethanOl has changed agricultural commodity economics dramatically, already contributing to loss of CRP lands as contracts expire and lands are returned to agricultural production. Nevertheless, there are ways in which biofuels can be developed to enhance their coexistence with biodiversity. Landscape heterogeneity can be improved by interspersion of land uses, which is easier around facilities with smaller or more varied feedstock demands. The development of biofuel feedstocks that yield high net energy returns with minimal carbon debts or that do not require additional land for production, such as residues and wastes, should be encouraged. Competing land uses, including both biofuel production and biodiversity protection, should be subjected to comprehensive cost-benefit analysis, so that incentives can be directed where they will do the most good. PMID:21774415

  7. Management of investigation-derived wastes during site inspections. Directive

    SciTech Connect

    Not Available

    1991-05-01

    The guidance presents a general regulatory background and options for management of investigation-derived wastes (IDW) generated during Superfund site inspections (SIs). These wastes include soil cuttings, drilling muds, purged ground water decontamination fluids (water and other fluids), disposable sampling equipment (DE), and disposable personal protective equipment (PPE). The National Contingency Plan (NCP) requires that management of IDW generated during SIs compiles with all applicable or relevant and appropriate requirements (ARARS) to the extent practicable. In addition, other legal and practical consideration may affect the handling of IDW. Therefore, site inspection managers and other involved parties should be familiar with this guidance, as well as the requirements of the NCP, ARARs, and EPA's interpretation of these requirements.

  8. Characteristics of and sorption to biochars derived from waste material

    NASA Astrophysics Data System (ADS)

    Sun, Huichao; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo

    2015-04-01

    Biochars can exhibit a high sorption potential towards heavy metals and organic contaminants in various environmental matrices (e.g., water, soil). They have therefore been proposed for environmental remediation purposes to sequester contaminants. To date, most studies have focused on the physicochemical and sorption properties of mineral phases poor biochars, which are typically produced from plant residues. Only little knowledge is available for biochars derived from human and animal waste material, which are typically characterized by high mineral contents (e.g., sewage sludge, manure). Using human and animal waste as source material to produce biochars would support the development of attractive combined strategies for waste management and remediation. The potential impact of mineral phases on the physicochemical and sorption properties of biochars requires further studies so that the potential as sorbent material can be evaluated. With this purpose, different source material biochars were produced at 200°C, 350°C and 500°C, to yield a series of biochars representing a range of mineral content. The derived biochars from wood shavings (<1% ash), sewage sludge (50-70% ash) and pig manure (30-60% ash), as well as a commercial biochar derived from grain husks (40% ash), were extensively characterized (e.g., element composition, surface area, porosity, Fourier transform infrared spectroscopy). The contents of potentially toxic elements (i.e., heavy metals and polycyclic aromatic hydrocarbons) of all materials were within the guidelines values proposed by the International Biochar Initiative, indicating their suitability for environmental application. Single point sorption coefficients for the model sorbate pyrene were measured to investigate the effect of mineral content, feedstock, pyrolysis temperature, particle size fractions and acid demineralization on sorption behavior. Overall, sorption of pyrene was strong for all materials (4 < Log Kd < 6.5 L

  9. Direct fuel cell - A high proficiency power generator for biofuels

    SciTech Connect

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-12-31

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products.

  10. Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: Experimental study and process modeling.

    PubMed

    Zaafouri, Kaouther; Ben Hassen Trabelsi, Aida; Krichah, Samah; Ouerghi, Aymen; Aydi, Abdelkarim; Claumann, Carlos Alberto; André Wüst, Zibetti; Naoui, Silm; Bergaoui, Latifa; Hamdi, Moktar

    2016-05-01

    Energy recovery from lignocellulosic solid marine wastes, Posidonia oceanica wastes (POW) with slow pyrolysis responds to the growing trend of alternative energies as well as waste management. Physicochemical, thermogravimetric (TG/DTG) and spectroscopic (FTIR) characterizations of POW were performed. POW were first converted by pyrolysis at different temperatures (450°C, 500°C, 550°C and 600°C) using a fixed-bed reactor. The obtained products (bio-oil, syngas and bio char) were analyzed. Since the bio-oil yield obtained from POW pyrolysis is low (2wt.%), waste frying oil (WFO) was added as a co-substrate in order to improve of biofuels production. The co-pyrolysis gave a better yield of liquid organic fraction (37wt.%) as well as syngas (CH4,H2…) with a calorific value around 20MJ/kg. The stoichiometric models of both pyrolysis and co-pyrolysis reactions were performed according to the biomass formula: CαHβOγNδSε. The thermal kinetic decomposition of solids was validated through linearized Arrhenius model. PMID:26897417

  11. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  12. Reevaluation of the global warming impacts of algae-derived biofuels to account for possible contributions of nitrous oxide.

    PubMed

    Bauer, Sarah K; Grotz, Lara S; Connelly, Elizabeth B; Colosi, Lisa M

    2016-10-01

    The environmental impacts of algae biofuels have been evaluated by life-cycle assessment (LCA); however, these analyses have overlooked nitrous oxide (N2O), a potent greenhouse gas. A literature analysis was performed to estimate algal N2O emissions and assess the impacts of growth conditions on flux magnitudes. Nitrogen source and dissolved oxygen concentration were identified as possible key contributors; therefore, their individual and combined impacts were evaluated using bench-scale experiments. It was observed that maximum N2O emissions (77.5μg/galgae/day) occur under anoxic conditions with nitrite. Conversely, minimum emissions (6.25μg/galgae/day) occur under oxic conditions with nitrate. Aggregated N2O flux estimates were then incorporated into a LCA framework for algae biodiesel. Accounting for "low" N2O emissions mediated no significant increase (<1%) compared to existing GWP estimates; however, "high" N2O emissions mediate an increase of roughly 25%, potentially jeopardizing the anticipated economic and environmental performances of algae biofuels. PMID:27367816

  13. Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels.

    PubMed

    Willis, Jonathan D; Mazarei, Mitra; Stewart, C Neal

    2016-01-01

    Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review. PMID:27303411

  14. Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels

    PubMed Central

    Willis, Jonathan D.; Mazarei, Mitra; Stewart, C. Neal

    2016-01-01

    Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review. PMID:27303411

  15. Estimates of US biofuels consumption, 1990

    SciTech Connect

    Not Available

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  16. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.

    PubMed

    Wang, Kuen-Sheng; Lin, Kae-Long; Lee, Ching-Hwa

    2009-02-15

    This work describes a novel approach for melting municipal solid waste incinerator (MSWI) fly ash, based on self-propagating reactions, by using energy-efficient simulated waste-derived thermite. The self-propagating characteristics, the properties of the recycled alloy and slag and the partitioning of heavy metals during the process are also studied. Experimental results demonstrate that the mix ratio of fly ash to the starting mixture of less than 30% supports the development of the self-propagating reaction with a melting temperature of 1350-2200 degrees C. Furthermore, metallic iron (or alloy) and the slag were retrieved after activation of the thermite reactions among the starting mixtures. It was noted that more than 91wt.% of iron was retrieved as alloy and the rest of non-reductive oxides as slag. During the thermite reactions, the partition of heavy metals to the SFA and flue gas varied with the characteristics of the target metals: Cd was mainly partitioned to flue gas (75-82%), and partition slightly increased with the increasing fly ash ratio; Pb and Zn, were mainly partitioned to the SFA, and the partition increased with increasing fly ash ratio; Cu was partitioned to the SFA (18-31%) and was not found in the flue gas; and moreover stable Cr and Ni were not identified in both the SFA and flue gas. On the other hand, the determined TCLP leaching concentrations were all well within the current regulatory thresholds, despite the various FA ratios. This suggests that the vitrified fly ash samples were environmental safe in heavy metal leaching. The results of this study suggested that melting of municipal solid waste incinerator fly ash by waste-derived thermite reactions was a feasible approach not only energy-beneficial but also environmental-safe. PMID:18573610

  17. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    PubMed

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to

  18. Deriving a Planting Medium from Solid Waste Compost and Construction, Demolition and Excavation Waste

    NASA Astrophysics Data System (ADS)

    Farajalla, Nadim; Assaf, Eleni; Bashour, Issam; Talhouk, Salma

    2014-05-01

    Lebanon's very high population density has been increasing since the end of the war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which were locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been followed by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste problem. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Matiolla, a native Lebanese plant and Zea mays, which is commonly known used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored

  19. Physical and chemical characterization of waste wood derived biochars.

    PubMed

    Yargicoglu, Erin N; Sadasivam, Bala Yamini; Reddy, Krishna R; Spokas, Kurt

    2015-02-01

    Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, including nutrients, organic contaminants, and some gases. Physical and chemical properties of biochars are dictated by the feedstock and production processes (pyrolysis or gasification temperature, conversion technology and pre- and post-treatment processes, if any), which vary widely across commercially produced biochars. In this study, several commercially available biochars derived from waste wood are characterized for physical and chemical properties that can signify their relevant environmental applications. Parameters characterized include: physical properties (particle size distribution, specific gravity, density, porosity, surface area), hydraulic properties (hydraulic conductivity and water holding capacity), and chemical and electrochemical properties (organic matter and organic carbon contents, pH, oxidation-reduction potential and electrical conductivity, zeta potential, carbon, nitrogen and hydrogen (CHN) elemental composition, polycyclic aromatic hydrocarbons (PAHs), heavy metals, and leachable PAHs and heavy metals). A wide range of fixed carbon (0-47.8%), volatile matter (28-74.1%), and ash contents (1.5-65.7%) were observed among tested biochars. A high variability in surface area (0.1-155.1g/m(2)) and PAH and heavy metal contents of the solid phase among commercially available biochars was also observed (0.7-83 mg kg(-1)), underscoring the importance of pre-screening biochars prior to application. Production conditions appear to dictate PAH content--with the highest PAHs observed in biochar produced via fast pyrolysis and lowest among the gasification

  20. Arsenic and lead leaching from the waste derived fertilizer ironite.

    PubMed

    Dubey, Brajesh; Townsend, Timothy

    2004-10-15

    The toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP) were performed on commercially purchased samples of the waste-derived soil amendment marketed as Ironite. Ten samples of the 1-0-0 grade (the most widely available in Florida) were tested. Two samples of the 12-10-10 grade and three samples of the 6-2-1 grade (a liquid version) were tested as well. TCLP leachate concentrations from the 1-0-0 grade samples ranged from 5.0 to 8.0 mg L(-1) for lead and 2.2 to 4.8 mg L(-1) for arsenic. SPLP concentrations from the 1-0-0 samples ranged from 0.62 to 3.1 mg L(-1) for lead and 1.9 to 8.2 mg L(-1) for arsenic. All of the 1-0-0 grade samples exceeded the U.S. hazardous waste toxicity characteristic (TC) limit for lead (5 mg L(-1)), while five of the 10 SPLP samples exceeded the TC limit for arsenic (5 mg L(-1)). The greater arsenic leachability in the SPLP relative to the TCLP was determined to be a result of lower pH conditions in the SPLP. A composite sample of the 1-0-0 grade was found to leach much greater concentrations of both arsenic and lead using California's waste extraction test (WET). Lead leachate concentrations were much lower in the two 12-10-10 samples (0.03 mg L(-1) or less); arsenic concentrations in these leachates (both TCLP and SPLP) exceeded 5 mg L(-1). None of the 6-2-1 samples contained lead or arsenic above TC limits. An experiment performed on the 1-0-0 grade which examined leachability as a function of pH found that at pH values in the range of what is encountered in the human digestive system (pH 4.0 to 1.5) lead leached 2-36% of its initial content, and arsenic leached 1-6% of its initial content. A simple gastric acid leaching experiment found 83 and 37% of the lead and arsenic present to leach, respectively. PMID:15543743

  1. A catalytic biofuel production strategy involving separate conversion of hemicellulose and cellulose using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents.

    PubMed

    Kim, Sunghoon; Han, Jeehoon

    2016-03-01

    A strategy in which the hemicellulose and cellulose fractions of lignocellulosic biomass are converted separately to jet fuel-range liquid hydrocarbon fuels (butene oligomers) through catalytic processes is developed. Dilute sulfuric acid (SA)-catalyzed pretreatment fractionates the first biomass into cellulose and hemicellulose-derived xylose, and these are then converted separately to levulinic acid (LA) using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents, respectively. LA is upgraded catalytically to butene oligomers via γ-valerolactone (GVL) and butene intermediates. Separation subsystems are designed to recover the alkylphenol solvents and biomass-derived intermediates (LA and GVL) for combination with the catalytic conversion subsystems of hemicellulose, cellulose, and lignin. In addition, a heat exchanger network (HEN) design is presented to satisfy the energy requirements of the integrated process from combustion of biomass residues (degradation products). Finally, a technoeconomic analysis shows that the proposed process ($3.37/gallon of gasoline) is an economically competitive alternative to current biofuel production approaches. PMID:26765845

  2. Green chemistry, biofuels, and biorefinery.

    PubMed

    Clark, James H; Luque, Rafael; Matharu, Avtar S

    2012-01-01

    In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery. PMID:22468603

  3. WASTE DERIVED PRODUCTS AS A SOURCE OF ENVIRONMENTAL CONTAMINATION

    EPA Science Inventory

    The sale of reusable waste from industrial and municipal activities can potentially lower the overall cost of manufacturing and reduce the amount of material sent to waste sites for disposal. Marketed finished products that contain, either partially or wholly, are called waste d...

  4. Land clearing and the biofuel carbon debt.

    PubMed

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-29

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages. PMID:18258862

  5. Extraction of cellulose from agricultural waste using Montmorillonite K-10/LiOH and its conversion to renewable energy: Biofuel by using Myrothecium gramineum.

    PubMed

    Das, Archana M; Hazarika, Manash P; Goswami, Monmi; Yadav, Archana; Khound, Pradip

    2016-05-01

    Cellulose was extracted from agricultural waste like Rice Husk (RH) a renewable resource of India as well as in the World. Cellulose was isolated from rice husk (RH) using eco-friendly method with Montmorillonite K-10/LiOH solution and bleaching with 2% H2O2. The reaction parameters like time, temperature, catalyst, acid and alkali were studied to evaluate the optimum reaction conditions 6h, 80°C, 20% maleic acid and 10% LiOH (in H2O) for time, temperature, acid and alkali, respectively. Renewable energy, biofuel from agricultural waste using Myrothecium gramineum was also investigated herein. Cellulose was converted to glucose by using acid hydrolysis and the optimum reaction conditions were 140°C for 60min. in presence of H2SO4 (5% v/v). It has been recognized significantly as potential sustainable sources of sugars for fermentation to bioethanol. So, our effort was given to obtain bioethanol from RH using new and novel renewable fungal strain M. gramineum. M. gramineum was isolated from acacia plant available in NE region of India. The results revealed that % yields of cellulose, glucose and bioethanol were 68%, 60% and 25%, respectively. Moreover, the bioethanol was compared with the standard ethanol (Laboratory grade) and also the ethanol produced from the known microb Aspergillus niger. The synthesized products were characterized with the help of analytical techniques like FT-IR, GC, TGA, DSC and XRD. PMID:26876992

  6. Structure-mechanics property relationship of waste derived biochars.

    PubMed

    Das, Oisik; Sarmah, Ajit K; Bhattacharyya, Debes

    2015-12-15

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X-ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900°C and 60min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01GPa, respectively. It was shown that a combination of higher heat treatment (≥500°C) temperature and longer residence time (~60min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. PMID:26322726

  7. Biofuel on contaminated land

    NASA Astrophysics Data System (ADS)

    Suer, Pascal; Andersson-Sköld, Yvonne; Blom, Sonja; Bardos, Paul; Polland, Marcel; Track, Thomas

    2010-05-01

    Desktop studies of two Swedish contaminated sites has indicated that growing biofuel crops on these sites may be more environmentally beneficial than alternative risk management approaches such as excavation / removal or containment The demand for biofuel increases pressure on the cultivatable soil of the world. While contaminated land is not very suitable for food production, cultivation of low and medium contaminated soil may remove some pressure from agricultural soils. For larger sites, biofuel cultivation may be economically viable without a remediation bonus. Suitable sites have topographic conditions that allow agricultural machinery, are not in urgent need of remediation, and contamination levels are not plant toxic. Life cycle assessment (LCA) was done for two cases. The (desk top) case studies were - Case K, a 5000 m2 site where salix (willow) was cultivated with hand-held machinery and the biofuel harvest was left on site, and - Case F, a 12 ha site were on site ensuring was being considered, and were salix might have rented an economic profit if the remediation had not been urgent due to exploitation pressure. Some selected results for biofuel K; biofuel F; excavation K; and on site ensuring F respectively: Energy: 0,05; 1,4; 3,5; 19 TJ Waste: 1; 9; 1200; 340 ton Land use off-site: 190; 3 500; 200 000; 1 400 000 m² a Global warming: 3; 86; 230; 1 200 ton CO2 eq Acidification: 25; 1 000; 2 600; 14 000 kg SO2 eq Photochemical smog: 10; 180; 410; 2 300 kg ethene eq Human health: 2; 51; 150; 620 index The environmental impact of the traditional remediation methods of excavation and on-site ensuring was mainly due to the transport of contaminated soil and replacement soil, and landfilling of the contaminated soil. Biofuel cultivation avoids these impacts, while fertiliser production and agricultural machinery would have a lower environmental impact than moving large volumes of soil around. Journeys of a controller to check on the groundwater quality also

  8. National markets for organic waste-derived fertilizers and soil amendments

    SciTech Connect

    Logan, T.J.; Pierzynski, G.M.; Pepperman, R.E.

    1995-12-31

    The last decade has seen enormous growth in the U.S. in the recycling of organic waste materials like sewage sludge, manures, yard waste, solid waste and various industrial wastes. This has been prompted by real or perceived shortages of landfill capacity, state and federal regulations favoring beneficial use of organic wastes, and public support for recycling. Use of fertilizers and soil amendments derived from these wastes has been stimulated by favorable supply-side economics, a shift to organic/sustainable agriculture, and water quality concerns that favor slow-release nutrient sources. This paper summarizes the properties and beneficial use attributes of the various wastes and their derived products, markets for these materials, and constraints/strategies for market penetration.

  9. Food and agricultural waste: Sources of carbon for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, wastes derived from agriculture products have met with limited success in the production of biofuels. Our objective in this report is to showcase a new and meaningful concept (called “avoidance”), to measure the environmental importance of converting these waste streams into energy. Agr...

  10. [Biofuels, food security and transgenic crops].

    PubMed

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology. PMID:19722000

  11. Investigation of the photochemical reactivity of soot particles derived from biofuels toward NO2. A kinetic and product study.

    PubMed

    Romanías, Manolis N; Dagaut, Philippe; Bedjanian, Yuri; Andrade-Eiroa, Auréa; Shahla, Roya; Emmanouil, Karafas S; Papadimitriou, Vassileios C; Spyros, Apostolos

    2015-03-12

    In the current study, the heterogeneous reaction of NO2 with soot and biosoot surfaces was investigated in the dark and under illumination relevant to atmospheric conditions (J(NO2) = 0.012 s(-1)). A flat-flame burner was used for preparation and collection of soot samples from premixed flames of liquid fuels. The biofuels were prepared by mixing 20% v/v of (i) 1-butanol (CH3(CH2)3OH), (ii) methyl octanoate (CH3(CH2)6COOCH3), (iii) anhydrous diethyl carbonate (C2H5O)2CO and (iv) 2,5 dimethyl furan (CH3)2C4H2O additive compounds in conventional kerosene fuel (JetA-1). Experiments were performed at 293 K using a low-pressure flow tube reactor (P = 9 Torr) coupled to a quadrupole mass spectrometer. The initial and steady-state uptake coefficients, γ0 and γ(ss), respectively, as well as the surface coverage, N(s), were measured under dry and humid conditions. Furthermore, the branching ratios of the gas-phase products NO (∼80-100%) and HONO (<20%) were determined. Soot from JetA-1/2,5-dimethyl furan was the most reactive [γ0 = (29.1 ± 5.8) × 10(-6), γ(ss)(dry) = (9.09 ± 1.82) × 10(-7) and γ(ss)(5.5%RH) = (14.0 ± 2.8)(-7)] while soot from JetA-1/1-butanol [γ0 = (2.72 ± 0.544) × 10(-6), γ(ss)(dry) = (4.57 ± 0.914) × 10(-7), and γ(ss)(5.5%RH) = (3.64 ± 0.728) × 10(-7)] and JetA-1/diethyl carbonate [γ0 = (2.99 ± 0.598) × 10(-6), γ(ss)(dry) = (3.99 ± 0.798) × 10(-7), and γ(ss)(5.5%RH) = (4.80 ± 0.960) × 10(-7)] were less reactive. To correlate the chemical reactivity with the physicochemical properties of the soot samples, their chemical composition was analyzed employing Raman spectroscopy, NMR, and high-performance liquid chromatography. In addition, the Brunauer-Emmett-Teller adsorption isotherms and the particle size distributions were determined employing a Quantachrome Nova 2200e gas sorption analyzer. The analysis of the results showed that factors such as (i) soot mass collection rate, (ii) porosity of the particles formed, (iii

  12. Biofuels and biodiversity: principles for creating better policies for biofuel production.

    PubMed

    Groom, Martha J; Gray, Elizabeth M; Townsend, Patricia A

    2008-06-01

    Biofuels are a new priority in efforts to reduce dependence on fossil fuels; nevertheless, the rapid increase in production of biofuel feedstock may threaten biodiversity. There are general principles that should be used in developing guidelines for certifying biodiversity-friendly biofuels. First, biofuel feedstocks should be grown with environmentally safe and biodiversity-friendly agricultural practices. The sustainability of any biofuel feedstock depends on good growing practices and sound environmental practices throughout the fuel-production life cycle. Second, the ecological footprint of a biofuel, in terms of the land area needed to grow sufficient quantities of the feedstock, should be minimized. The best alternatives appear to be fuels of the future, especially fuels derived from microalgae. Third, biofuels that can sequester carbon or that have a negative or zero carbon balance when viewed over the entire production life cycle should be given high priority. Corn-based ethanol is the worst among the alternatives that are available at present, although this is the biofuel that is most advanced for commercial production in the United States. We urge aggressive pursuit of alternatives to corn as a biofuel feedstock. Conservation biologists can significantly broaden and deepen efforts to develop sustainable fuels by playing active roles in pursuing research on biodiversity-friendly biofuel production practices and by helping define biodiversity-friendly biofuel certification standards. PMID:18261147

  13. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  14. Relative radiological risks derived from different TENORM wastes in Malaysia.

    PubMed

    Ismail, B; Teng, I L; Muhammad Samudi, Y

    2011-11-01

    In Malaysia technologically enhanced naturally occurring radioactive materials (TENORM) wastes are mainly the product of the oil and gas industry and mineral processing. Among these TENORM wastes are tin tailing, tin slag, gypsum and oil sludge. Mineral processing and oil and gas industries produce large volume of TENORM wastes that has become a radiological concern to the authorities. A study was carried out to assess the radiological risk related to workers working at these disposal sites and landfills as well as to the members of the public should these areas be developed for future land use. Radiological risk was assessed based on the magnitude of radiation hazard, effective dose rates and excess cancer risks. Effective dose rates and excess cancer risks were estimated using RESRAD 6.4 computer code. All data on the activity concentrations of NORM in wastes and sludges used in this study were obtained from the Atomic Energy Licensing Board, Malaysia, and they were collected over a period of between 5 and 10 y. Results obtained showed that there was a wide range in the total activity concentrations (TAC) of nuclides in the TENORM wastes. With the exception of tin slag and tin tailing-based TENORM wastes, all other TENORM wastes have TAC values comparable to that of Malaysia's soil. Occupational Effective Dose Rates estimated in all landfill areas were lower than the 20 mSv y(-1) permissible dose limit. The average Excess Cancer Risk Coefficient was estimated to be 2.77×10(-3) risk per mSv. The effective dose rates for residents living on gypsum and oil sludge-based TENORM wastes landfills were estimated to be lower than the permissible dose limit for members of the public, and was also comparable to that of the average Malaysia's ordinary soils. The average excess cancer risk coefficient was estimated to be 3.19×10(-3) risk per mSv. Results obtained suggest that gypsum and oil sludge-based TENORM wastes should be exempted from any radiological regulatory

  15. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production.

    PubMed

    da Silva, Teresa Lopes; Gouveia, Luísa; Reis, Alberto

    2014-02-01

    The production of microbial biofuels is currently under investigation, as they are alternative sources to fossil fuels, which are diminishing and their use has a negative impact on the environment. However, so far, biofuels derived from microbes are not economically competitive. One way to overcome this bottleneck is the use of microorganisms to transform substrates into biofuels and high value-added products, and simultaneously taking advantage of the various microbial biomass components to produce other products of interest, as an integrated process. In this way, it is possible to maximize the economic value of the whole process, with the desired reduction of the waste streams produced. It is expected that this integrated system makes the biofuel production economically sustainable and competitive in the near future. This review describes the investigation on integrated microbial processes (based on bacteria, yeast, and microalgal cultivations) that have been experimentally developed, highlighting the importance of this approach as a way to optimize microbial biofuel production process. PMID:24337249

  16. Physical and chemical characterization of waste wood derived biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties, such as its high surface area and...

  17. Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels.

    PubMed

    Romero, M J A; Pizzi, A; Toscano, G; Busca, G; Bosio, B; Arato, E

    2016-01-01

    Deoxygenation of waste cooking vegetable oil and Jatropha curcas oil under nitrogen atmosphere was performed in batch and semi-batch experiments using CaO and treated hydrotalcite (MG70) as catalysts at 400 °C. In batch conditions a single liquid fraction (with yields greater than 80 wt.%) was produced containing a high proportion of hydrocarbons (83%). In semi-batch conditions two liquid fractions (separated by a distillation step) were obtained: a light fraction and an intermediate fraction containing amounts of hydrocarbons between 72-80% and 85-88% respectively. In order to assess the possible use of the liquid products as alternative fuels a complete chemical characterization and measurement of their properties were carried out. PMID:25869843

  18. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    NASA Astrophysics Data System (ADS)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  19. Crystalline plutonium hosts derived from high-level waste formulations.

    SciTech Connect

    O'Holleran, T. P.

    1998-04-24

    The Department of Energy has selected immobilization for disposal in a repository as one approach for disposing of excess plutonium (1). Materials for immobilizing weapons-grade plutonium for repository disposal must meet the ''spent fuel standard'' by providing a radiation field similar to spent fuel (2). Such a radiation field can be provided by incorporating fission products from high-level waste into the waste form. Experiments were performed to evaluate the feasibility of incorporating high-level waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) into plutonium dispositioning materials to meet the spent fuel standard. A variety of materials and preparation techniques were evaluated based on prior experience developing waste forms for immobilizing HLW. These included crystalline ceramic compositions prepared by conventional sintering and hot isostatic pressing (HIP), and glass formulations prepared by conventional melting. Because plutonium solubility in silicate melts is limited, glass formulations were intentionally devitrified to partition plutonium into crystalline host phases, thereby allowing increased overall plutonium loading. Samarium, added as a representative rare earth neutron absorber, also tended to partition into the plutonium host phases. Because the crystalline plutonium host phases are chemically more inert, the plutonium is more effectively isolated from the environment, and its attractiveness for proliferation is reduced. In the initial phase of evaluating each material and preparation method, cerium was used as a surrogate for plutonium. For promising materials, additional preparation experiments were performed using plutonium to verify the behavior of cerium as a surrogate. These experiments demonstrated that cerium performed well as a surrogate for plutonium. For the most part, cerium and plutonium partitioned onto the same crystalline phases, and no anomalous changes in oxidation state were observed. The only observed

  20. Scope of Algae as Third Generation Biofuels

    PubMed Central

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2015-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  1. Scope of algae as third generation biofuels.

    PubMed

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2014-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  2. Environmental implications of municipal solid waste-derived ethanol.

    PubMed

    Kalogo, Youssouf; Habibi, Shiva; MacLean, Heather L; Joshi, Satish V

    2007-01-01

    We model a municipal solid waste (MSW)-to-ethanol facility that employs dilute acid hydrolysis and gravity pressure vessel technology and estimate life cycle energy use and air emissions. We compare our results, assuming the ethanol is utilized as E85 (blended with 15% gasoline) in a light-duty vehicle, with extant life cycle assessments of gasoline, corn-ethanol, and energy crop-cellulosic-ethanol fueled vehicles. We also compare MSW-ethanol production, as a waste management alternative, with landfilling with gas recovery options. We find that the life cycle total energy use per vehicle mile traveled for MSW-ethanol is less than that of corn-ethanol and cellulosic-ethanol; and energy use from petroleum sources for MSW-ethanol is lower than for the other fuels. MSW-ethanol use in vehicles reduces net greenhouse gas (GHG) emissions by 65% compared to gasoline, and by 58% when compared to corn-ethanol. Relative GHG performance with respect to cellulosic ethanol depends on whether MSW classification is included or not. Converting MSW to ethanol will result in net fossil energy savings of 397-1830 MJ/MT MSW compared to net fossil energy consumption of 177-577 MJ/MT MSW for landfilling. However, landfilling with LFG recovery either for flaring or for electricity production results in greater reductions in GHG emissions compared to MSW-to-ethanol conversion. PMID:17265924

  3. Plasticizer and surfactant formation from food-waste- and algal biomass-derived lipids.

    PubMed

    Pleissner, Daniel; Lau, Kin Yan; Zhang, Chengwu; Lin, Carol Sze Ki

    2015-05-22

    The potential of lipids derived from food-waste and algal biomass (produced from food-waste hydrolysate) for the formation of plasticizers and surfactants is investigated herein. Plasticizers were formed by epoxidation of double bonds of methylated unsaturated fatty acids with in situ generated peroxoformic acid. Assuming that all unsaturated fatty acids are convertible, 0.35 and 0.40 g of plasticizer can be obtained from 1 g of crude algae- or food-waste-derived lipids, respectively. Surfactants were formed by transesterification of saturated and epoxidized fatty acid methyl esters (FAMEs) with polyglycerol. The addition of polyglycerol would result in a complete conversion of saturated and epoxidized FAMEs to fatty acid polyglycerol esters. This study successfully demonstrates the conversion of food-waste into value-added chemicals using simple and conventional chemical reactions. PMID:25425530

  4. Biofuels Issues and Trends

    EIA Publications

    2012-01-01

    This report presents data on biofuels consumption, production, imports and exports, including data collected by others than the U.S. Energy Information Administration. It also discusses important developments in biofuels markets.

  5. Constructed wetlands as biofuel production systems

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wu, Xu; Chang, Jie; Gu, Baojing; Min, Yong; Ge, Ying; Shi, Yan; Xue, Hui; Peng, Changhui; Wu, Jianguo

    2012-03-01

    Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Progress has been made in reducing greenhouse-gas (GHG) emissions and nitrogen fertilizer consumption through biofuel production. Here we advocate an alternative approach that efficiently produces cellulosic biofuel and greatly reduces GHG emissions using waste nitrogen through wastewater treatment with constructed wetlands in China. Our combined experimental and literature data demonstrate that the net life-cycle energy output of constructed wetlands is higher than that of corn, soybean, switchgrass, low-input high-diversity grassland and algae systems. Energy output from existing constructed wetlands is ~237% of the input for biofuel production and can be enhanced through optimizing the nitrogen supply, hydrologic flow patterns and plant species selection. Assuming that all waste nitrogen in China could be used by constructed wetlands, biofuel production can account for 6.7% of national gasoline consumption. We also find that constructed wetlands have a greater GHG reduction than the existing biofuel production systems in a full life-cycle analysis. This alternative approach is worth pursuing because of its great potential for straightforward operation, its economic competitiveness and many ecological benefits.

  6. Valorization of biomass: deriving more value from waste.

    PubMed

    Tuck, Christopher O; Pérez, Eduardo; Horváth, István T; Sheldon, Roger A; Poliakoff, Martyn

    2012-08-10

    Most of the carbon-based compounds currently manufactured by the chemical industry are derived from petroleum. The rising cost and dwindling supply of oil have been focusing attention on possible routes to making chemicals, fuels, and solvents from biomass instead. In this context, many recent studies have assessed the relative merits of applying different dedicated crops to chemical production. Here, we highlight the opportunities for diverting existing residual biomass--the by-products of present agricultural and food-processing streams--to this end. PMID:22879509

  7. The benefits of biofuels

    SciTech Connect

    Hinman, N.D.

    1997-07-01

    This article discusses the economic, environmental, and national security advantages of using biofuels instead of petroleum products in vehicles. Smog and carbon monoxide, two of the most trouble-some urban air pollutants, are largely caused by combustion of conventional petroleum based fuels. Topics include sustainable transportation fuels, emphasis on ethanol, the process of producing biofuels, and the growing market for biofuels. 1 tab.

  8. Biofuel from "humified" biomass

    NASA Astrophysics Data System (ADS)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  9. MINERALOGY AND CHARACTERIZATION OF ARSENIC, IRON, AND LEAD IN A MINE WASTE-DERIVED FERTILIZER

    EPA Science Inventory

    The solid-state speciation of arsenic (As), iron (Fe), and lead (Pb) was studied in the mine waste-derived fertilizer Ironite using X-ray absorption spectroscopy, Mössbauer spectroscopy, and aging studies. Arsenic was primarily associated with ferrihydrite (60-70%) with the rema...

  10. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks

    SciTech Connect

    Xiao Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang Qingyuan; Poon, Chi-Sun

    2011-08-15

    Highlights: > Solved the scientific and technological challenges impeding use of waste rubble derived from earthquake, by providing an alternative solution of recycling the waste in moulded concrete block products. > Significant requirements for optimum integration on the utilization of the waste aggregates in the production of concrete blocks are investigated. > A thorough understanding of the mechanical properties of concrete blocks made with waste derived from earthquake is reported. - Abstract: Utilization of construction and demolition (C and D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C and D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.

  11. Sorption of mercury onto waste material derived low-cost activated carbon

    NASA Astrophysics Data System (ADS)

    Bhakta, Jatindra N.; Rana, Sukanta; Lahiri, Susmita; Munekage, Yukihiro

    2014-11-01

    The present study was performed to develop the low-cost activated carbon (AC) from some waste materials as potential mercury (Hg) sorbent to remove high amount of Hg from aqueous phase. The ACs were prepared from banana peel, orange peel, cotton fiber and paper wastes by pyrolysis and characterized by analyzing physico-chemical properties and Hg sorption capacity. The Brunauer Emmett and Teller surface areas (cotton 138 m2/g; paper 119 m2/g), micropore surface areas (cotton 65 m2/g; paper 54 m2/g) and major constituent carbon contents (cotton 95.04 %; paper 94.4 %) were higher in ACs of cotton fiber and paper wastes than the rest two ACs. The Hg sorption capacities and removal percentages were greater in cotton and paper wastes-derived ACs compared to those of the banana and orange peels. The results revealed that elevated Hg removal ability of cotton and paper wastes-derived ACs is largely regulated by their surface area, porosity and carbon content properties. Therefore, ACs of cotton and paper wastes were identified as potential sorbent among four developed ACs to remove high amount of Hg from aqueous phase. Furthermore, easily accessible precursor material, simple preparation process, favorable physico-chemical properties and high Hg sorption capacity indicated that cotton and paper wastes-derived ACs could be used as potential and low-cost sorbents of Hg for applying in practical field to control the severe effect of Hg contamination in the aquatic environment to avoid its human and environmental health risks.

  12. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Health-Based Limits for Exclusion of Waste-Derived Residues* VII Appendix VII to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS...

  13. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  14. Characteristics of mechanically sorted municipal wastes and their suitability for production of refuse derived fuel

    NASA Astrophysics Data System (ADS)

    Arina, Dace; Orupe, Ausma

    2012-11-01

    The article presents the results of experimental work in the first waste mechanical Pre-treatment Centre in Latvia Daibe. The goal - to detect the main parameters for sorted waste parts and to compare them with parameters stated for refuse derived fuel (RDF) in a cement plant in Latvia (Cemex). Samples were taken in four fractions - coarse, medium, fine, metal. The parameters - upper, lower heating values, moisture, ash content, S, Cl, metals were determined. Results - coarse fraction has greater potential of the production of the RDF, but reduction of its content of Cl would be necessary.

  15. Biofuels in China

    NASA Astrophysics Data System (ADS)

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  16. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    PubMed

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work. PMID:26154033

  17. NREL biofuels program overview

    SciTech Connect

    Mielenz, J.R.

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  18. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes.

    PubMed

    Nakagawa, Kyuya; Namba, Akio; Mukai, Shin R; Tamon, Hajime; Ariyadejwanich, Pisit; Tanthapanichakoon, Wiwut

    2004-04-01

    Activated carbons were produced from several solid wastes, namely, waste PET, waste tires, refuse derived fuel and wastes generated during lactic acid fermentation from garbage. Activated carbons having various pore size distributions were obtained by the conventional steam-activation method and via the pre-treatment method (i.e., mixture of raw materials with a metal salt, carbonization and acid treatment prior to steam-activation) that was proposed by the authors. The liquid-phase adsorption characteristics of organic compounds from aqueous solution on the activated carbons were determined to confirm the applicability of these carbons, where phenol and a reactive dye, Black5, were employed as representative adsorbates. The hydrophobic surface of the carbons prepared was also confirmed by water vapor adsorption. The characteristics of a typical commercial activated carbon were also measured and compared. It was found that the activated carbons with plentiful mesopores prepared from PET and waste tires had quite high adsorption capacity for large molecules. Therefore they are useful for wastewater treatment, especially, for removal of bulky adsorbates. PMID:15026233

  19. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications.

    PubMed

    Konikkara, Niketha; Kennedy, L John; Vijaya, J Judith

    2016-11-15

    Utilization of crust leather waste (CLW) as precursors for the preparation of hierarchical porous carbons (HPC) were investigated. HPCs were prepared from CLW by pre-carbonization followed by chemical activation using KOH at relatively high temperatures. Textural properties of HPC's showed an extent of micro-and mesoporosity with maximum BET surface area of 716m(2)/g. Inducements of graphitic planes in leather waste derived carbons were observed from X-ray diffraction and HR-TEM analysis. Microstructure, thermal behavior and surface functional groups were identified using FT-Raman, thermo gravimetric analysis and FT-IR techniques. HPCs were evaluated for electrochemical properties by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) by three electrode system. CLC9 sample showed a maximum capacitance of 1960F/g in 1M KCl electrolyte. Results achieved from rectangular curves of CV, GCD symmetric curves and Nyquist plots show that the leather waste carbon is suitable to fabricate supercapacitors as it possess high specific capacitance and electrochemical cycle stability. The present study proposes an effective method for solid waste management in leather industry by the way of converting toxic leather waste to new graphitic porous carbonaceous materials as a potential candidate for energy storage devices. PMID:27420389

  20. High-temperature thermal destruction of poultry derived wastes for energy recovery in Australia.

    PubMed

    Florin, N H; Maddocks, A R; Wood, S; Harris, A T

    2009-04-01

    The high-temperature thermal destruction of poultry derived wastes (e.g., manure and bedding) for energy recovery is viable in Australia when considering resource availability and equivalent commercial-scale experience in the UK. In this work, we identified and examined the opportunities and risks associated with common thermal destruction techniques, including: volume of waste, costs, technological risks and environmental impacts. Typical poultry waste streams were characterised based on compositional analysis, thermodynamic equilibrium modelling and non-isothermal thermogravimetric analysis coupled with mass spectrometry (TG-MS). Poultry waste is highly variable but otherwise comparable with other biomass fuels. The major technical and operating challenges are associated with this variability in terms of: moisture content, presence of inorganic species and type of litter. This variability is subject to a range of parameters including: type and age of bird, and geographical and seasonal inconsistencies. There are environmental and health considerations associated with combustion and gasification due to the formation of: NO(X), SO(X), H(2)S and HCl gas. Mitigation of these emissions is achievable through correct plant design and operation, however, with significant economic penalty. Based on our analysis and literature data, we present cost estimates for generic poultry-waste-fired power plants with throughputs of 2 and 8 tonnes/h. PMID:19046863

  1. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  2. Biofuels Research at EPA

    EPA Science Inventory

    The development of sustainable and clean biofuels is a national priority. To do so requires a life-cycle approach that includes consideration of feedstock production and logistics, and biofuel production, distribution, and end use. The US Environmental Protection Agency is suppor...

  3. Alternative disposal for Investigation Derived Wastes (IDW) containing low activity source material

    SciTech Connect

    Downey, H.T.; Majer, T.

    2007-07-01

    As part of a Remedial Investigation (RI) at a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Site, approximately 77,111 kg (85 tons) I would use the actual tons of investigation derived wastes (IDW) were generated from exploratory soil borings and as part of removal activities at a former drum burial area. Characterization of these materials indicated elevated concentrations of metals including uranium and thorium (source material). Concentrations of uranium and thorium were at levels less than 0.05% by mass, which is the threshold for exempt source material under Nuclear Regulatory Commission (NRC) regulations. Disposal of this material was evaluated as low-level radioactive waste and as exempt radioactive waste. The NRC has established a process for evaluation and review of exempt source material transfer and direct disposal in a Resource Conservation and Recovery Act (RCRA) landfill. These requests are normally approved if the dose to a member of the general public is unlikely to exceed 0.25 mSv per year (25 milli-rem per year). The soil was evaluated for disposal as exempt radioactive waste at a RCRA landfill, which included dose modeling to workers during transportation and disposal as well as potential dose to members of the public after closure of the disposal facility. These evaluations determined that the potential dose was very small, and review by the agreement state regulatory agency indicated that this disposal process should not result in any undue hazard to public health and safety or property. The advantage of this approach is that disposal of 77,111 kg (85 tons) of IDW at a RCRA landfill is estimated to result in a savings of $80,000 as compared to disposal as low-level radioactive waste. Alternative waste disposal of exempt source material provides more disposal options and can lead to significant cost savings. (authors)

  4. Poultry feed based on protein hydrolysate derived from chrome-tanned leather solid waste: creating value from waste.

    PubMed

    Chaudhary, Rubina; Pati, Anupama

    2016-04-01

    Leather industry generates huge amount of chrome-containing leather solid waste which creates major environment problems to tanners worldwide. Chrome-tanned leather solid waste is primarily chromium complex of collagen protein. The presence of chromium limits its protein application in animal feed industry. The purified protein hydrolysate with zero chromium could be used in poultry feed. In this study, an attempt has been made to assess performance of poultry with purified protein hydrolysate as a feed derived from chrome-tanned leather waste as partial replacement of soyabean meal as a sole source of protein for growing broiler chickens. Growth study was conducted to evaluate the effect of feeding protein hydrolysate on performance and physiochemical characteristics of meat of broiler chickens. Two experimental diets containing various levels of protein hydrolysate (EI-20 % and EII-30 %) were evaluated. The comparative study was performed as control with soyabean meal. Daily feed intake, body weight gain and feed conversion ratio were measured from day 8 to day 35. At the end of the study, birds were randomly selected and slaughtered to evaluate for physiochemical characteristics of meat. Diet had significant effects on feed intake and body weight gain. Birds fed with 20 and 30 % protein hydrolysate consumed 9.5 and 17.5 % higher amount of feed and gained 6.5 and 16.6 % higher than soyabean meal-fed birds. The current study produced evidence that protein hydrolysate can replace up to 75 % of soyabean meal in broiler diets without affecting either growth performance or meat characteristics. PMID:26931657

  5. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. PMID:26057718

  6. Characterising the composition of waste-derived fuels using a novel image analysis tool.

    PubMed

    Peddireddy, S; Longhurst, P J; Wagland, S T

    2015-06-01

    An experimental study was completed using a previously developed and innovative image analysis approach, which has been applied here to shredded waste materials representative of waste-derived fuels. Waste components were collected from source-segregated recycling containers and shredded to <150 mm. These materials were then used to produce 3× samples of different composition. The samples were spread to represent materials on a conveyor belt, and multiple images of each sample were captured using 10×10 cm and 20×20 cm quadrats. The images were processed using ERDAS Imagine software to determine the area covered by each waste component. This coverage was converted into a mass using density data determined as part of this study, yielding a determined composition which was then compared with the known composition of the samples. The image analysis results indicated a strong correlation with the actual values (mean r=0.89). The area coverage of the sample (10×10 cm or 20×20 cm) contributes to the accuracy as the dot-grid approach used with the particle size within the samples may result in components not being sufficiently monitored. This manuscript presents initial results of the application of an adapted innovative image-based method, and critically assesses how the technique could be improved and developed in the future. PMID:25827256

  7. Treatment of nitrate-rich water in a baffled membrane bioreactor (BMBR) employing waste derived materials.

    PubMed

    Basu, Subhankar; Singh, Saurabh K; Tewari, Prahlad K; Batra, Vidya S; Balakrishnan, Malini

    2014-12-15

    Nitrate removal in submerged membrane bioreactors (MBRs) is limited as intensive aeration (for maintaining adequate dissolved oxygen levels and for membrane scouring) deters the formation of anoxic zones essential for biological denitrification. The present study employs baffled membrane bioreactor (BMBR) to overcome this constraint. Treatment of nitrate rich water (synthetic and real groundwater) was investigated. Sludge separation was achieved using ceramic membrane filters prepared from waste sugarcane bagasse ash. A complex external carbon source (leachate from anaerobic digestion of food waste) was used to maintain an appropriate C/N ratio. Over 90% COD and 95% NO3-N reduction was obtained. The bagasse ash filters produced a clear permeate, free of suspended solids. Sludge aggregates were observed in the reactor and were linked to the high extracellular polymeric substances (EPS) content. Lower sludge volume index (40 mL/g compared to 150 mL/g for seed sludge), higher settling velocity (47 m/h compared to 10 m/h for seed sludge) and sludge aggregates (0.7 mm aggregates compared to <0.2 mm for seed sludge) was observed. The results demonstrate the potential of waste-derived materials viz. food waste leachate and bagasse ash filters in water treatment. PMID:25151111

  8. Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis.

    PubMed

    Galvagno, S; Casciaro, G; Casu, S; Martino, M; Mingazzini, C; Russo, A; Portofino, S

    2009-02-01

    In the field of waste management, thermal disposal is a treatment option able to recover resources from "end of life" products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products. PMID:18657408

  9. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    SciTech Connect

    Ragsdale, R.G., Jr

    1994-12-01

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented.

  10. Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis

    SciTech Connect

    Galvagno, S. Casciaro, G.; Casu, S.; Martino, M.; Mingazzini, C.; Russo, A.; Portofino, S.

    2009-02-15

    In the field of waste management, thermal disposal is a treatment option able to recover resources from 'end of life' products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products.

  11. A mini review on renewable sources for biofuel.

    PubMed

    Ho, Dang P; Ngo, Huu Hao; Guo, Wenshan

    2014-10-01

    Rapid growth in both global energy demand and carbon dioxide emissions associated with the use of fossil fuels has driven the search for alternative sources which are renewable and have a lower environmental impact. This paper reviews the availability and bioenergy potentials of the current biomass feedstocks. These include (i) food crops such as sugarcane, corn and vegetable oils, classified as the first generation feedstocks, and (ii) lignocellulosic biomass derived from agricultural and forestry residues and municipal waste, as second generation feedstocks. The environmental and socioeconomic limitations of the first generation feedstocks have placed greater emphasis on the lignocellulosic biomass, of which the conversion technologies still faces major constraints to full commercial deployment. Key technical challenges and opportunities of the lignocellulosic biomass-to-bioenergy production are discussed in comparison with the first generation technologies. The potential of the emerging third generation biofuel from algal biomass is also reviewed. PMID:25115598

  12. Mineralogy and characterization of arsenic, iron, and lead in a mine waste-derived fertilizer

    SciTech Connect

    Williams, A.G.B.; Scheckel, K.G.; Tolaymat, T.; Impellitteri, C.A.

    2008-06-09

    The solid-state speciation of arsenic (As), iron (Fe), and lead (Pb) was studied in the mine waste-derived fertilizer Ironite using X-ray absorption spectroscopy, Moessbauer spectroscopy, and aging studies. Arsenic was primarily associated with ferrihydrite (60-70%), with the remainder found in arsenopyrite (30-40%). Lead was observed almost exclusively as anglesite (PbSO{sub 4}), with <1% observed as galena (PbS). The identification of As in oxidized Fe oxides and Pb as PbSO{sub 4} is in disagreement with the dominant reduced phases previously reported and suggests As and Pb contained within the mine waste-derived product are more bioavailable than previously considered. Aging studies in solution result in Ironite granules separating into two distinct fractions, an orange oxide precipitate and a crystalline fraction with a metallic luster. The orange oxide fraction contained As adsorbed/precipitated with ferrihydrite that is released into solution when allowed to equilibrate with water. The fraction with a metallic luster contained pyrite and arsenopyrite. A complete breakdown of arsenopyrite was observed in Ironite aged for 1 month in buffered deionized water. The observations from this study indicate As and Pb exist as oxidized phases that likely develop from the beneficiation and processing of mine tailings for commercial sale. The potential release of As and Pb has important implications for water quality standards and human health. Of particular concern is the quantity of As released from mine waste-derived products due to the new As regulation applied in 2006, limiting As levels to 10 {micro}g L{sup -1} in drinking water.

  13. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  14. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-01

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential. PMID:22681590

  15. Biofuels: Project summaries. Research summaries, Fiscal year 1992

    SciTech Connect

    Not Available

    1993-05-01

    Domestic transportation fuels are almost exclusively derived from petroleum and account for about two-thirds of total US petroleum consumption. In 1990, more than 40% of the petroleum used domestically was imported. Because the United States has only 5% of the world`s petroleum reserves, and the countries of the Middle East have about 75%, US imports are likely to continue to increase. With our heavy reliance on oil and without suitable substitutes for petroleum-based transportation fuels, the United States is extremely vulnerable, both strategically and economically, to fuel supply disruptions. In addition to strategic and economic affairs, the envirorunental impacts of our use of petroleum are becoming increasingly evident and must be addressed. The US Department of Energy`s (DOE`s) Office of Energy Efficiency and Renewable Energy (EE), through its Biofuels Systems Division (BSD), is addressing these issues. The BSD is aggressively pursuing research on biofuels-liquid and gaseous fuels produced from renewable domestic feedstocks such as forage grasses, oil seeds, short-rotation tree crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams.

  16. Biofuel Ethanol Transport Risk

    EPA Science Inventory

    Ethanol production has increased rapidly over the last 10 years and many communities lack awareness of the increased and growing extent of biofuel transportation through their jurisdictions. These communities and their emergency responders may not have the information and resour...

  17. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks.

    PubMed

    Xiao, Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang, Qingyuan; Poon, Chi-Sun

    2011-08-01

    Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates. PMID:21570277

  18. Infrared and Electronic Spectroscopy of the Jet-Cooled 5-Methyl-2-furanylmethyl Radical Derived from the Biofuel 2,5-Dimethylfuran.

    PubMed

    Kidwell, Nathanael M; Mehta-Hurt, Deepali N; Korn, Joseph A; Zwier, Timothy S

    2016-08-18

    The electronic and infrared spectra of the 5-methyl-2-furanylmethyl (MFM) radical have been characterized under jet-cooled conditions in the gas phase. This resonance-stabilized radical is formed by H atom loss from one of the methyl groups of 2,5-dimethylfuran (DMF), a promising second-generation biofuel. As a resonance-stabilized radical, it plays an important role in the flame chemistry of DMF. The D0-D1 transition was studied using two-color resonant two-photon ionization (2C-R2PI) spectroscopy. The electronic origin is in the middle of the visible spectrum (21934 cm(-1) = 455.9 nm) and is accompanied by Franck-Condon activity involving the hindered methyl rotor. The frequencies and intensities are fit to a one-dimensional methyl rotor potential, using the calculated form of the ground state potential. The methyl rotor reports sensitively on the local electronic environment and how it changes with electronic excitation, shifting from a preferred ground state orientation with one CH in-plane and anti to the furan oxygen, to an orientation in the excited state in which one CH group is axial to the plane of the furan ring. Ground and excited state alkyl CH stretch infrared spectra are recorded using resonant ion-dip infrared (RIDIR) spectroscopy, offering a complementary view of the methyl group and its response to electronic excitation. Dramatic changes in the CH stretch transitions with electronic state reflect the changing preference for the methyl group orientation. PMID:27456434

  19. Improving the quality of waste-derived char by removing ash.

    PubMed

    Hwang, I H; Nakajima, D; Matsuto, T; Sugimoto, T

    2008-01-01

    This study characterized and removed ash from waste-derived char to improve the quality of char as fuel. Municipal solid waste (MSW) and automobile shredder residue (ASR) were carbonized at 450 degrees C and at 500 degrees C, respectively, in a rotary kiln with a nitrogen atmosphere for 1h. MSW and ASR char were subjected to sieving and pulverization-sieving to screen incombustibles and the ash-rich fraction, after which float-sink separation, froth floatation, and oil agglomeration were applied to remove ash from the char. The established target quality was (1) less than 30% ash content and (2) more than 20,000 kJ/kg heating value. However, the rate of combustibles recovery had to be lowered to produce a good quality of char along with a high heating value. MSW char attained the targeted quality level using froth floatation or oil agglomeration, whereas, neither separation method was able to make ASR-derived char satisfy the target. Based on the assumption that particle properties of char are determined by the weight ratio of combustibles and ash, the densities of combustibles and ash in char were estimated using the results of float-sink separation, X-ray diffraction (XRD) analysis, and elemental content. To verify the above assumption, an energy dispersive X-ray/scanning electron microscope (EDX/SEM) analyzer was used to observe char particles. PMID:17317141

  20. Biofuels: A win-win strategy

    SciTech Connect

    1997-12-31

    This article looks at the overall goal of stabilizing global climate change while achieving a sustainable energy future. On Earth Day 1993, President Clinton announced that the U.S. would comply with the Rio accord and bring U.S. greenhouse gas emissions back to 1990 levels by the year 2000. Since the transportation sector accounts for over 30 percent of domestic CO{sub 2} emissions, the large-scale use and deployment of biofuels would be a useful tool in achieving the Administration`s goals of limiting greenhouse gases. Biofuels such as ethanol, methanol, and biodiesel are expected to have lower emissions of greenhouse gases than those derived from petroleum or other fossil fuels. This marked difference is due to the {open_quotes}CO{sub 2} recycling effect{close_quotes} associated with the growth process of biomass renewable resources such as trees and grasses. This article covers the following topics: global climate change an future energy consumption, reducing greenhouse transportation sector emissions: improving fuel economy and switching to low-carbon emission fuel sources; integration of fuel economy and alternative fuels; biofuels as a transportation strategy for mitigating global climate change; a win-win strategy: biofuels reduce carbon dioxide while promoting sustainable economic growth; increasing biofuels utilization through government and industry cooperation. 5 figs.

  1. Assessing the addition of mineral processing waste to green waste-derived compost: an agronomic, environmental and economic appraisal.

    PubMed

    Jones, D L; Chesworth, S; Khalid, M; Iqbal, Z

    2009-01-01

    The overall aim of this study was to evaluate the benefit of mixing two large volume wastes, namely mineral processing waste and source-segregated green waste compost, on the growth performance of plants targeted towards high (horticulture/agriculture) and low (amenity/restoration) value markets. The secondary aims were to evaluate the influence of mineral waste type on plant growth performance and to undertake a simple economic analysis of the use of mineral-compost mixtures in land restoration. Our results showed that in comparison to organic wastes, mineral wastes contained a low available nutrient content which reduces compost quality. This is supported by growth trials with tomato, wheat and grass which showed that, irrespective of mineral source, plants performed poorly in compost blended with mineral waste in comparison to those grown in green waste or peat-based compost alone. In terms of consumer confidence, unlike other wastes (e.g. biosolids and construction/demolition waste) the mineral quarry wastes can be expected to be free of potentially toxic elements, however, the production costs of compost-mineral waste mixtures and subsequent transport costs may limit its widespread use. In addition, handling of the material can be difficult under wet conditions and effective blending may require the purchase of specialist equipment. From our results, we conclude that mineral fines may prove useful for low quality, low value landscaping activities close to the source of production but are unsuited to high value markets. PMID:18809319

  2. Biofuels program summary. Volume 2: Research summaries

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The Federal government has supported research on biomass technology and energy from municipal waste since 1975. Separate research programs were conducted until 1985 when the two were merged into biofuels and municipal waste technology to take advantage of their many similarities in conversion requirements and research needs. The purpose of the biofuels program is to provide focus, direction, coordination, and funding for the development of technologies that produce tailored energy crops and convert these crops and wastes to fuels. The FY 1989 program includes research on the production (growth) of biomass and its conversion to fuels. Research on biomass production involves the development and use of genetically improved trees and grasses specifically for their energy conversion characteristics (terrestrial energy crops). The Biofuels Program Summary is prepared each year and consists of a two-volume reference set describing the technological advances, current projects, and future research and development (R and D) directions of the program. This volume (Volume 2-Research Summaries) is a compilation of detailed descriptions of the R and D projects performed by the national laboratories and their subcontractors from industry, universities, and nonprofit research institutions.

  3. Sustainable biofuel contributions to carbon mitigation and energy independence

    SciTech Connect

    Lippke, Bruce; Gustafson, Richard; Venditti, Richard; Volk, Timothy; Oneil, Elaine; Johnson, Leonard; Puettmann, Maureen; Steele, Phillip

    2011-10-19

    The growing interest in US biofuels has been motivated by two primary national policy goals, (1) to reduce carbon emissions and (2) to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle data for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Furthermore, substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.

  4. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. PMID:27038264

  5. World Biofuels Study

    SciTech Connect

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over

  6. Policy options to support biofuel production.

    PubMed

    Mabee, W E

    2007-01-01

    Biofuels for use in the transportation sector have been produced on a significant scale since the 1970s, using a variety of technologies. The biofuels widely available today are predominantly sugar- and starch-based bioethanol, and oilseed- and waste oil-based biodiesel, although new technologies under development may allow the use of lignocellulosic feedstocks. Measures to promote the use of biofuels include renewable fuel mandates, tax incentives, and direct funding for capital projects or fleet upgrades. This paper provides a review of the policies behind the successful establishment of the biofuel industry in countries around the world. The impact of direct funding programs and excise tax exemptions are examined using the United States as a case study. It is found that the success of five major bioethanol producing states (Illinois, Iowa, Nebraska, South Dakota, and Minnesota) is closely related to the presence of funding designed to support the industry in its start-up phase, while tax exemptions on bioethanol use do not influence the development of production capacity. The study concludes that successful policy interventions can take many forms, but that success is equally dependent upon external factors, which include biomass availability, an active industry, and competitive energy prices. PMID:17846726

  7. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using combined biochemical and thermochemical processes in a multi-stage biorefinery concept

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental impact of agricultural waste from processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the...

  8. Enzymatic deconstruction of xylan for biofuel production

    PubMed Central

    DODD, DYLAN; CANN, ISAAC K. O.

    2010-01-01

    The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO2) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction. PMID:20431716

  9. BioFuels Atlas (Presentation)

    SciTech Connect

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  10. Activated carbon derived from waste coffee grounds for stable methane storage

    NASA Astrophysics Data System (ADS)

    Kemp, K. Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M.; Kim, Kwang S.

    2015-09-01

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m2 g-1 and a micropore volume of 0.574 cm3 g-1 and exhibits a stable CH4 adsorption capacity of ˜4.2 mmol g-1 at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  11. Internal curing with lightweight aggregate produced from biomass-derived waste

    SciTech Connect

    Lura, Pietro; Wyrzykowski, Mateusz; Tang, Clarence; Lehmann, Eberhard

    2014-05-01

    Shrinkage of concrete may lead to cracking and ultimately to a reduction of the service life of concrete structures. Among known methods for shrinkage mitigation, internal curing with porous aggregates was successfully utilized in the last couple of decades for decreasing autogenous and drying shrinkage. In this paper, the internal curing performance of pre-saturated lightweight aggregates produced from biomass-derived waste (bio-LWA) was studied. In the first part of this paper, the microstructure of the bio-LWA is investigated, with special focus on their pore structure and on their water absorption and desorption behavior. The bio-LWA has large porosity and coarse pore structure, which allows them to release the entrained water at early age and counteract self-desiccation and autogenous shrinkage. In the second part, the efficiency of internal curing in mortars incorporating the bio-LWA is examined by neutron tomography, internal relative humidity and autogenous deformation measurements.

  12. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.

    PubMed

    Karpe, Avinash V; Beale, David J; Godhani, Nainesh B; Morrison, Paul D; Harding, Ian H; Palombo, Enzo A

    2015-12-16

    Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate. PMID:26611372

  13. Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life

    DOE PAGESBeta

    Boota, M.; Paranthaman, Mariappan Parans; Naskar, Amit K.; Gogotsi, Yury; Li, Yunchao; Akato, Kokouvi

    2015-09-25

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m2/g–1) is synthesized using waste tires as the precursor and used as supercapacitor electrode. The narrow pore size distribution (PSD) and high surface area led to a good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI/TC). The composite film was highly flexible, conductive and exhibited a capacitance of 480 F/g–1 at 1 mV/s–1 with excellent capacitance retention up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life weremore » ascribed to the short diffusional paths, uniform PANI coating and tight confinement of the PANI in the inner pores of the tire-derived carbon via - interactions, which minimized the degradation of the PANI upon cycling. Here, we anticipate that the same strategy can be applied to deposit other pseudocapacitive materials with low-cost TC to achieve even higher electrochemical performance and longer cycle life, a key challenge for redox active polymers.« less

  14. Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life

    SciTech Connect

    Boota, M.; Paranthaman, Mariappan Parans; Naskar, Amit K.; Gogotsi, Yury; Li, Yunchao; Akato, Kokouvi

    2015-09-25

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m2/g–1) is synthesized using waste tires as the precursor and used as supercapacitor electrode. The narrow pore size distribution (PSD) and high surface area led to a good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI/TC). The composite film was highly flexible, conductive and exhibited a capacitance of 480 F/g–1 at 1 mV/s–1 with excellent capacitance retention up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating and tight confinement of the PANI in the inner pores of the tire-derived carbon via - interactions, which minimized the degradation of the PANI upon cycling. Here, we anticipate that the same strategy can be applied to deposit other pseudocapacitive materials with low-cost TC to achieve even higher electrochemical performance and longer cycle life, a key challenge for redox active polymers.

  15. Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life.

    PubMed

    Boota, M; Paranthaman, M Parans; Naskar, Amit K; Li, Yunchao; Akato, Kokouvi; Gogotsi, Y

    2015-11-01

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m(2)  g(-1)) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g(-1) at 1 mV s(-1) with excellent capacitance retention of up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π-π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life-a key challenge for redox active polymers. PMID:26404735

  16. [Adsorption and desorption of dyes by waste-polymer-derived activated carbons].

    PubMed

    Lian, Fei; Liu, Chang; Li, Guo-Guang; Liu, Yi-Fu; Li, Yong; Zhu, Ling-Yan

    2012-01-01

    Mesoporous activated carbons with high surface area were prepared from three waste polymers, i. e., tire rubber, polyvinyl chloride (PVC) and polyethyleneterephtalate (PET), by KOH activation. The adsorption/desorption characteristics of dyes (methylene blue and methyl orange) on the carbons were studied. The effects of pH, ionic strength and surface surfactants in the solution on the dye adsorption were also investigated. The results indicated that the carbons derived from PVC and PET exhibited high surface area of 2 666 and 2 831 m2 x g(-1). Their mesopore volume were as high as 1.06 and 1.30 cm3 g(-1), respectively. 98.5% and 97.0% of methylene blue and methyl orange were removed in 15 min by PVC carbon, and that of 99.5% and 95.0% for PET carbon. The Langmuir maximum adsorption capacity to these dyes was more than 2 mmol x g(-1), much higher than that of commercial activated carbon F400. Compared with Freundlich model, the adsorption data was fitted better by Langmiur model, indicating monolayer coverage on the carbons. The adsorption was highly dependent on solution pH, ionic strength and concentration of surface surfactants. The activated carbons exhibited higher adsorption to methylene blue than that of methyl orange, and it was very hard for both of the dyes to be desorbed. The observation in this study demonstrated that activated carbons derived from polymer waste could be effective adsorbents for the treatment of wastewater with dyes. PMID:22452203

  17. Cyanobacterial biofuel production.

    PubMed

    Machado, Iara M P; Atsumi, Shota

    2012-11-30

    The development of new technologies for production of alternative fuel became necessary to circumvent finite petroleum resources, associate rising costs, and environmental concerns due to rising fossil fuel CO₂ emissions. Several alternatives have been proposed to develop a sustainable industrial society and reduce greenhouse emissions. The idea of biological conversion of CO₂ to fuel and chemicals is receiving increased attention. In particular, the direct conversion of CO₂ with solar energy to biofuel by photosynthetic microorganisms such as microalgae and cyanobacteria has several advantages compared to traditional biofuel production from plant biomass. Photosynthetic microorganisms have higher growth rates compared with plants, and the production systems can be based on non-arable land. The advancement of synthetic biology and genetic manipulation has permitted engineering of cyanobacteria to produce non-natural chemicals typically not produced by these organisms in nature. This review addresses recent publications that utilize different approaches involving engineering cyanobacteria for production of high value chemicals including biofuels. PMID:22446641

  18. Microalgae biofuel potentials (review).

    PubMed

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable. PMID:22586908

  19. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  20. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K; Perlack, Robert D; Dale, Virginia H

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of

  1. The Brazilian biofuels industry

    PubMed Central

    Goldemberg, José

    2008-01-01

    Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion. PMID:18471272

  2. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska.

    PubMed

    Sesmero, Juan P

    2014-11-01

    This study develops a model of crop residue (i.e. stover) supply and derived demand for irrigation water accounting for non-linear effects of soil organic matter on soil's water holding capacity. The model is calibrated for typical conditions in central Nebraska, United States, and identifies potential interactions between water and biofuel policies. The price offered for feedstock by a cost-minimizing plant facing that stover supply response is calculated. Results indicate that as biofuel production volumes increase, soil carbon depletion per unit of biofuel produced decreases. Consumption of groundwater per unit of biofuel produced first decreases and then increases (after a threshold of 363 dam(3) of biofuels per year) due to plants' increased reliance on the extensive margin for additional biomass. The analysis reveals a tension between biofuel and water policies. As biofuel production raises the economic benefits of relaxing water conservation policies (measured by the "shadow price" of water) increase. PMID:24956467

  3. Biofuels and the role of space in sustainable innovation journeys.

    PubMed

    Raman, Sujatha; Mohr, Alison

    2014-02-15

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  4. Biofuels and the role of space in sustainable innovation journeys☆

    PubMed Central

    Raman, Sujatha; Mohr, Alison

    2014-01-01

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970–80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  5. Near-zero emissions combustor system for syngas and biofuels

    SciTech Connect

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on

  6. Sustainable Biofuels Redux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown, and thus need to be explicitly considered using a framework that allows the outcomes of alternative systems to be consistently eva...

  7. PNNL Aviation Biofuels

    SciTech Connect

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  8. Agriculture - Sustainable biofuels Redux

    SciTech Connect

    Robertson, G. Phillip; Dale, Virginia H; Doering, Otto C.; Hamburg, Steven P; Melillo, Jerry M; Wander, Michele M; Parton, William

    2008-10-01

    Last May's passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences. This time, however, the subsidy is for both the refiners ($1.01 per gallon) and the growers ($45 per ton of biomass), which will rapidly accelerate adoption and place hard-to-manage pressures on efforts to design and implement sustainable production practices - as will a 2007 legislative mandate for 16 billion gallons of cellulosic ethanol per year by 2022. Similar directives elsewhere, e.g., the European Union's mandate that 10% of all transport fuel in Europe be from renewable sources by 2020, make this a global issue. The European Union's current reconsideration of this target places even more emphasis on cellulosic feedstocks (1). The need for knowledge- and science-based policy is urgent. Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown and, thus, need to be explicitly considered by using a framework that allows the outcomes of alternative systems to be consistently evaluated and compared. A cellulosic biofuels industry could have many positive social and environmental attributes, but it could also suffer from many of the sustainability issues that hobble grain-based biofuels, if not implemented the right way.

  9. Biofuels from urban landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass from urban landscapes is an untapped resource. Lawn thatch and clippings, fallen leaves and tree limbs are all potential sources of biofuels. Most cities already collect and transport these materials to disposal sites; but, alternatively could collect and transport these materials to a loc...

  10. Beetles, Biofuel, and Coffee

    SciTech Connect

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  11. Biofuel impacts on water.

    SciTech Connect

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  12. Biofuels: Report to Congress

    EPA Science Inventory

    Section 204 of the Energy Independence and Security Act of 2007 (EISA 2007) requires EPA to assess and report to Congress on the impacts to date and likely future impacts of the increased use of biofuels as required by the Clean Air Act, section 211(0). Environmental issues (...

  13. MUNICIPAL WASTE COMBUSTION, MULTIPOLLUTANT STUDY, EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME I

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  14. The U. S. Department of Energy biofuels research program

    SciTech Connect

    Bull, S.R. )

    1991-01-01

    This paper reports that biomass encompasses agricultural and forestry residues, woody and herbaceous energy crops, municipal solid waste, and underutilized traditional forests. The contribution of biomass to the nation's energy supply stands at 3.1 quads per year and is continuing to grow. Increasing our use of fuels derived from biomass can improve air quality, mitigate global warming, reduce dependency on foreign oil imports, and strengthen a weak farm economy. The U.S. Department of Energy's (DOE) Biofuels and Municipal Waster Technology Program has focuses mainly on liquid fuels such as ethanol, methanol, biocrude-derived gasoline, and plant-oil-derived diesel fuel, with some emphasis on gaseous fuels such as biogas. Researchers have improved the economics of the wood to ethanol process to approximately $1.35/gas by developing a method to ferment ethanol from the xylose fraction of wood with greater than 70% efficiency. The program goal of $0.60/gal would provide ethanol at a competitive cost without tax credits. Doe has increased the emphasis on cooperative ventures with industry and it developing plans for a cost-shared project to scale up gasification technologies for both syngas and methanol fuel production testing.

  15. Energy crops for biofuel feedstocks: facts and recent patents on genetic manipulation to improve biofuel crops.

    PubMed

    Kumar, Suresh

    2013-12-01

    Burning fossil-fuels to meet the global energy requirements by human being has intensified the concerns of increasing concentrations of greenhouse gases. Therefore, serious efforts are required to develop nonfossil-based renewable energy sources. Plants are more efficient in utilizing solar energy to convert it into biomass which can be used as feedstocks for biofuel production. Hence with the increasing demands of energy and the needs of cost-effective, sustainable production of fuels, it has become necessary to switch over to plant biomass as a renewable source of energy. Biofuels derived from more sustainable biological materials such as lignocellulosic plant residues, considered as second generation biofuels, are more dependable. However, there are technical challenges such as pretreatment and hydrolysis of lignocellulosic biomass to convert it into fermentable sugars. Plant genetic engineering has already proven its potential in modifying cell wall composition of plants for enhancing the efficiency of biofuel production. Interest and potential in the area are very much evident from the growing number of patents in the recent years on the subject. In this review, recent trends in genetic engineering of energy crops for biofuel production have been introduced, and strategies for the future developments have been discussed. PMID:24456235

  16. Arid Lands Biofuel

    NASA Astrophysics Data System (ADS)

    Neupane, B. P.

    2013-05-01

    Dependence on imported petroleum, as well as consequences from burning fossil fuels, has increased the demand for biofuel sources in the United States. Competition between food crops and biofuel crops has been an increasing concern, however, since it has the potential to raise prices for US beef and grain products due to land and resource competition. Biofuel crops that can be grown on land not suitable for food crops are thus attractive, but also need to produce biofuels in a financially sustainable manner. In the intermountain west of Nevada, biofuel crops need to survive on low-organic soils with limited precipitation when grown in areas that are not competing with food and feed. The plants must also yield an oil content sufficiently high to allow economically viable fuel production, including growing and harvesting the crop as well as converting the hydrocarbons into a liquid fuel. Gumweed (Grindelia squarrosa) currently appears to satisfy all of these requirements and is commonly observed throughout the west. The plant favors dry, sandy soils and is most commonly found on roadsides and other freshly disturbed land. A warm season biennial, the gumweed plant is part of the sunflower family and normally grows 2-4 feet high with numerous yellow flowers and curly leaves. The gumweed plant contains a large store of diterpene resins—most abundantly grindelic acid— similar to the saps found on pine trees that are used to make inks and adhesives. The dry weight harvest on the experimental field is 5130 lbs/acre. Whole plant biomass yields between 11-15% (average 13%) biocrude when subjected to acetone extraction whereas the buds alone contains up to a maximum of 35% biocrude when harvested in 'white milky' stage. The extract is then converted to basic form (sodium grindelate) followed by extraction of nonpolar constituents (mostly terpenes) with hexane and extracted back to ethyl acetate in acidified condition. Ethyl acetate is removed under vacuum to leave a dark

  17. Lifecycle Assessment of Biofuel Production from Wood Pyrolysis Technology

    ERIC Educational Resources Information Center

    Manyele, S. V.

    2007-01-01

    Due to a stronger dependency on biomass for energy, there is a need for improved technologies in biomass-to-energy conversion in Tanzania. This paper presents a life cycle assessment (LCA) of pyrolysis technology used for conversion of wood and wood waste to liquid biofuel. In particular, a survey of environmental impacts of the process is…

  18. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  19. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  20. Activated carbon derived from waste coffee grounds for stable methane storage.

    PubMed

    Kemp, K Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M; Kim, Kwang S

    2015-09-25

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m(2) g(-1) and a micropore volume of 0.574 cm(3) g(-1) and exhibits a stable CH4 adsorption capacity of ∼4.2 mmol g(-1) at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon. PMID:26329310

  1. Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes.

    PubMed

    Su, Yuh-fan; Cheng, Yu-ling; Shih, Yang-hsin

    2013-11-15

    Activated carbon (AC) and zerovalent iron (ZVI) have been widely used in the adsorption and dehalogenation process, respectively, for the removal of organic compounds in environmental treatments. This study aims to prepare ZVI/AC derived from an agricultural waste, coir pith, through simple one-step pyrolysis. The effect of activation temperature and time on the surface area, iron content, and zerovalent iron ratio of ZVI/AC was systemically investigated. The results indicated that the activation of AC by FeSO4 significantly increased surface area of AC and distributed elemental iron over the AC. The X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA), and X-ray absorption near edge structure (XANES) spectra of ZVI/AC revealed that zerovalent iron was present. As compared to AC without FeSO4 activation, ZVI/AC increased the trichloroethylene removal rate constant by 7 times. The dechlorination ability of ZVI/AC was dominated by the zerovalent iron content. We have shown that lab-made ZVI/AC from coir pith can effectively adsorb and dehalogenate the chlorinated compounds in water. PMID:23994578

  2. Waste Water Derived Electroactive Microbial Biofilms: Growth, Maintenance, and Basic Characterization

    PubMed Central

    Gimkiewicz, Carla; Harnisch, Falk

    2013-01-01

    The growth of anodic electroactive microbial biofilms from waste water inocula in a fed-batch reactor is demonstrated using a three-electrode setup controlled by a potentiostat. Thereby the use of potentiostats allows an exact adjustment of the electrode potential and ensures reproducible microbial culturing conditions. During growth the current production is monitored using chronoamperometry (CA). Based on these data the maximum current density (jmax) and the coulombic efficiency (CE) are discussed as measures for characterization of the bioelectrocatalytic performance. Cyclic voltammetry (CV), a nondestructive, i.e. noninvasive, method, is used to study the extracellular electron transfer (EET) of electroactive bacteria. CV measurements are performed on anodic biofilm electrodes in the presence of the microbial substrate, i.e. turnover conditions, and in the absence of the substrate, i.e. nonturnover conditions, using different scan rates. Subsequently, data analysis is exemplified and fundamental thermodynamic parameters of the microbial EET are derived and explained: peak potential (Ep), peak current density (jp), formal potential (Ef) and peak separation (ΔEp). Additionally the limits of the method and the state-of the art data analysis are addressed. Thereby this video-article shall provide a guide for the basic experimental steps and the fundamental data analysis. PMID:24430581

  3. Adsorption of methylene blue on biochar microparticles derived from different waste materials.

    PubMed

    Lonappan, Linson; Rouissi, Tarek; Das, Ratul Kumar; Brar, Satinder K; Ramirez, Antonio Avalos; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-03-01

    Biochar microparticles were prepared from three different types of biochar, derived from waste materials, such as pine wood (BC-PW), pig manure (BC-PM) and cardboard (BC-PD) under various pyrolysis conditions. The microparticles were prepared by dry grinding and sequential sieving through various ASTM sieves. Particle size and specific surface area were analyzed using laser particle size analyzer. The particles were further characterized using scanning electron microscope (SEM). The adsorption capacity of each class of adsorbent was determined by methylene blue adsorption tests in comparison with commercially available activated carbon. Experimental results showed that dye adsorption increased with initial concentration of the adsorbate and biochar dosage. Biochar microparticles prepared from different sources exhibited improvement in adsorption capacity (7.8±0.5 mg g(-1) to 25±1.3 mg g(-1)) in comparison with raw biochar and commercially available activated carbon. The adsorption capacity varied with source material and method of production of biochar. The maximum adsorption capacity was 25 mg g(-1) for BC-PM microparticles at 25°C for an adsorbate concentration of 500 mg L(-1) in comparison with 48.30±3.6 mg g(-1) for activated carbon. The equilibrium adsorption data were best described by Langmuir model for BC-PM and BC-PD and Freundlich model for BC-PW. PMID:26818183

  4. Emissions of SO2 and NOx from biofuels in India

    NASA Astrophysics Data System (ADS)

    Gadi, Ranu; Kulshrestha, U. C.; Sarkar, A. K.; Garg, S. C.; Parashar, D. C.

    2003-07-01

    Concentrations of oxides of S and N in the atmosphere are strongly influenced by the emissions taking place from the burning of biofuels. This is particularly important in the developing countries where most of the energy requirement in the rural sector is met from biofuels. An experimental setup has been built to carry out controlled biomass burning and to derive emission factors for SO2 and NOx (NO and NO2) from various biofuels commonly used in India. Using these emission factors and the consumption data obtained from Tata Energy Research Institute's (TERI) Energy Data Directory and Yearbook 1998-99, the budget of SO2 and NOx from biofuels used in India has been estimated as 0.4 ± 0.3 and 1.0 ± 0.4 Tg, respectively, for the year 1990.

  5. Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue.

    PubMed

    Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin

    2014-10-01

    An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d. PMID:25043346

  6. Plant-based biofuels

    PubMed Central

    Hood, Elizabeth E.

    2016-01-01

    This review is a short synopsis of some of the latest breakthroughs in the areas of lignocellulosic conversion to fuels and utilization of oils for biodiesel. Although four lignocellulosic ethanol factories have opened in the USA and hundreds of biodiesel installations are active worldwide, technological improvements are being discovered that will rapidly evolve the biofuels industry into a new paradigm. These discoveries involve the feedstocks as well as the technologies to process them. PMID:26949525

  7. Engineering microbes to produce biofuels

    SciTech Connect

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  8. Biofuels from microbes.

    PubMed

    Antoni, Dominik; Zverlov, Vladimir V; Schwarz, Wolfgang H

    2007-11-01

    Today, biomass covers about 10% of the world's primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future. PMID:17891391

  9. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    PubMed

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. PMID:21334872

  10. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons

    SciTech Connect

    Hajizadeh, Yaghoub; Onwudili, Jude A.; Williams, Paul T.

    2011-06-15

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275 deg. C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 {mu}g I-TEQ kg{sup -1} toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 {mu}g I-TEQ kg{sup -1} in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases.

  11. Calcium oxide derived from waste shells of mussel, cockle, and scallop as the heterogeneous catalyst for biodiesel production.

    PubMed

    Buasri, Achanai; Chaiyut, Nattawut; Loryuenyong, Vorrada; Worawanitchaphong, Phatsakon; Trongyong, Sarinthip

    2013-01-01

    The waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesterification to produce biodiesel (methyl ester). The economic and environmen-friendly catalysts were prepared by a calcination method at 700-1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol. PMID:24453854

  12. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production

    PubMed Central

    Chaiyut, Nattawut; Worawanitchaphong, Phatsakon

    2013-01-01

    The waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesterification to produce biodiesel (methyl ester). The economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol. PMID:24453854

  13. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.

    1976-01-01

    The anticipated depletion of our resources of natural gas and petroleum in a few decades has caused a search for renewable sources of fuel. Among the possibilities is the chemical conversion of waste and grown organic matter into gaseous or liquid fuels. The overall feasibility of such a system is considered from the technical, economic, and social viewpoints. Although there are a number of difficult problems to overcome, this preliminary study indicates that this option could provide between 4 and 10 percent of the U.S. energy needs. Estimated costs of fuels derived from grown organic material are appreciably higher than today's market price for fossil fuel. The cost of fuel derived from waste organics is competitive with fossil fuel prices. Economic and social reasons will prohibit the allocation of good food producing land to fuel crop production.

  14. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Health-Based Limits for Exclusion of...-Based Limits for Exclusion of Waste-Derived Residues* Metals—TCLP Extract Concentration Limits...-chloroethyl) ether 111-44-4 3xE−04 Bis(chloromethyl) ether 542-88-1 2xE−06 Bis(2-ethylhexyl) phthalate...

  15. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Health-Based Limits for Exclusion of...-Based Limits for Exclusion of Waste-Derived Residues* Metals—TCLP Extract Concentration Limits...-chloroethyl) ether 111-44-4 3xE−04 Bis(chloromethyl) ether 542-88-1 2xE−06 Bis(2-ethylhexyl) phthalate...

  16. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Health-Based Limits for Exclusion of...-Based Limits for Exclusion of Waste-Derived Residues* Metals—TCLP Extract Concentration Limits...-chloroethyl) ether 111-44-4 3xE−04 Bis(chloromethyl) ether 542-88-1 2xE−06 Bis(2-ethylhexyl) phthalate...

  17. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Health-Based Limits for Exclusion of...-Based Limits for Exclusion of Waste-Derived Residues* Metals—TCLP Extract Concentration Limits...-chloroethyl) ether 111-44-4 3xE−04 Bis(chloromethyl) ether 542-88-1 2xE−06 Bis(2-ethylhexyl) phthalate...

  18. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  19. Biofuels: Project summaries

    SciTech Connect

    Not Available

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  20. Transporter-mediated biofuel secretion.

    PubMed

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-01

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance. PMID:23613592

  1. Transporter-mediated biofuel secretion

    PubMed Central

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-01-01

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as “plug-and-play” biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance. PMID:23613592

  2. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  3. Analysis of advanced biofuels.

    SciTech Connect

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  4. First generation biofuels compete.

    PubMed

    Martin, Marshall A

    2010-11-30

    Rising petroleum prices during 2005-2008, and passage of the 2007 U.S. Energy Independence and Security Act with a renewable fuel standard of 36 billion gallons of biofuels by 2022, encouraged massive investments in U.S. ethanol plants. Consequently, corn demand increased dramatically and prices tripled. This created a strong positive correlation between petroleum, corn, and food prices resulting in an outcry from U.S. consumers and livestock producers, and food riots in several developing countries. Other factors contributed to higher grain and food prices. Economic growth, especially in Asia, and a weaker U.S. dollar encouraged U.S. grain exports. Investors shifted funds into the commodity's future markets. Higher fuel costs for food processing and transportation put upward pressure on retail food prices. From mid-2008 to mid-2009, petroleum prices fell, the U.S. dollar strengthened, and the world economy entered a serious recession with high unemployment, housing market foreclosures, collapse of the stock market, reduced global trade, and a decline in durable goods and food purchases. Agricultural commodity prices declined about 50%. Biotechnology has had modest impacts on the biofuel sector. Seed corn with traits that help control insects and weeds has been widely adopted by U.S. farmers. Genetically engineered enzymes have reduced ethanol production costs and increased conversion efficiency. PMID:20601265

  5. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    PubMed

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application

  6. Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes.

    PubMed

    Chatzifragkou, Afroditi; Papanikolaou, Seraphim

    2012-07-01

    The rapid development of biodiesel production technology has led to the generation of tremendous quantities of glycerol wastes, as the main by-product of the process. Stoichiometrically, it has been calculated that for every 100 kg of biodiesel, 10 kg of glycerol are produced. Based on the technology imposed by various biodiesel plants, glycerol wastes may contain numerous kinds of impurities such as methanol, salts, soaps, heavy metals, and residual fatty acids. This fact often renders biodiesel-derived glycerol unprofitable for further purification. Therefore, the utilization of crude glycerol though biotechnological means represents a promising alternative for the effective management of this industrial waste. This review summarizes the effect of various impurities-contaminants that are found in biodiesel-derived crude glycerol upon its conversion by microbial strains in biotechnological processes. Insights are given concerning the technologies that are currently applied in biodiesel production, with emphasis to the impurities that are added in the composition of crude glycerol, through each step of the production process. Moreover, extensive discussion is made in relation with the impact of the nature of impurities upon the performances of prokaryotic and eukaryotic microorganisms, during crude glycerol bioconversions into a variety of high added-value metabolic products. Finally, aspects concerning ways of crude glycerol treatment for the removal of inhibitory contaminants as reported in the literature are given and comprehensively discussed. PMID:22581036

  7. Recovery of plastic wastes from dumpsite as refuse-derived fuel and its utilization in small gasification system.

    PubMed

    Chiemchaisri, Chart; Charnnok, Boonya; Visvanathan, Chettiyappan

    2010-03-01

    An effort to utilize solid wastes at dumpsite as refuse-derived fuel (RDF) was carried out. The produced RDF briquette was then utilized in the gasification system. These wastes were initially examined for their physical composition and chemical characteristics. The wastes contained high plastic content of 24.6-44.8%, majority in polyethylene plastic bag form. The plastic wastes were purified by separating them from other components through manual separation and trommel screen after which their content increased to 82.9-89.7%. Subsequently, they were mixed with binding agent (cassava root) and transformed into RDF briquette. Maximum plastic content in RDF briquette was limit to 55% to maintain physical strength and maximum chlorine content. The RDF briquette was tested in a down-draft gasifier. The produced gas contained average energy content of 1.76 MJ/m(3), yielding cold gas efficiency of 66%. The energy production cost from this RDF process was estimated as USD0.05 perkWh. PMID:19758801

  8. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    PubMed

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  9. Historical perspectives on biofuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter summarizes the history through about the 1940’s of biomass-derived fuels, particularly ethanol as replacement for gasoline and vegetable oil-derived diesel fuels, including biodiesel, as replacement for petroleum-derived diesel fuels....

  10. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must...

  11. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must...

  12. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.

    PubMed

    Al-Rahbi, Amal S; Onwudili, Jude A; Williams, Paul T

    2016-03-01

    Chars produced from the pyrolysis of different waste materials have been investigated in terms of their use as a catalyst for the catalytic cracking of biomass pyrolysis gases during the two-stage pyrolysis-gasification of biomass. The chars were produced from the pyrolysis of waste tyres, refused derived fuel and biomass in the form of date stones. The results showed that the hydrocarbon tar yields decreased significantly with all the char materials used in comparison to the non-char catalytic experiments. For example, at a cracking temperature of 800°C, the total product hydrocarbon tar yield decreased by 70% with tyre char, 50% with RDF char and 9% with biomass date stones char compared to that without char. There was a consequent increase in total gas yield. Analysis of the tar composition showed that the content of phenolic compounds decreased and polycyclic aromatic hydrocarbons increased in the product tar at higher char temperatures. PMID:26773946

  13. Secondary phases formed during nuclear waste glass-water interactions: Thermodynamic and derived properties

    SciTech Connect

    McKenzie, W.F.

    1992-08-01

    The thermodynamic properties of secondary phases observed to form during nuclear waste glass-water interactions are of particular interest as it is with the application of these properties together with the thermodynamic properties of other solid phases, fluid phases, and aqueous species that one may predict the environmental consequences of introducing radionuclides contained in the glass into groundwater at a high-level nuclear waste repository. The validation of these predicted consequences can be obtained from laboratory experiments and field observations at natural analogue sites. The purpose of this report is to update and expand the previous compilation (McKenzie, 1991) of thermodynamic data retrieved from the literature and/or estimated for secondary phases observed to form (and candidate phases from observed chemical compositions) during nuclear waste glass-water interactions. In addition, this report includes provisionally recommended thermodynamic data of secondary phases.

  14. Characterization of MSW and related waste-derived compost in Zanzibar municipality.

    PubMed

    Vuai, Said Ali Hamad

    2010-02-01

    The spread of municipal solid waste (MSW) in Zanzibar municipality has been associated with environmental pollution, unpleasant city conditions, contamination of water sources and coastal areas together with harbouring of malaria vectors. The contamination has a close relationship with eruption of diarrhoea, cholera and typhoid which claim the lives of the residents. Most of the wastes are of domestic and market origin and have the potential for compost production. This study examined the possibility of composting MSW from Zanzibar municipality as an alternative way of SW management and assessed the nutrient contents of the compost for application in agricultural production. Two major classes of SW were selected for the study: municipal solid waste and rice milling by-products. The samples were composted aerobically and anaerobically. The results showed that aerobic composting reduced about 60% of the waste volume. This volume reduction suggests that composting can be a promising SW management technique by reducing the large demand of space for landfilling. Municipal solid waste composted under anaerobic conditions produced compost with relatively higher concentrations of dissolved species than that produced under aerobic conditions. The trace metal contents were higher in MSW than in rice milling by-products. It was found that the unmanaged compost collected from the dumping site had low nutrient contents and was enriched with trace metals. Generally, physico-chemical characteristics, nutrients and trace metal levels suggest that Zanzibar municipal solid waste can produce high-quality compost for application to a wide range of soil types to improve their fertility, under proper management. PMID:19748949

  15. International Trade of Biofuels (Brochure)

    SciTech Connect

    Not Available

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  16. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  17. PNNL delivers expertise, technology to biofuels start-up, InEnTec

    ScienceCinema

    None

    2012-12-31

    Initially through its Entrepreneurial Leave of Absence Program, PNNL gives biofuels innovators a start in opening up a new business based on technology developed for incinerating waste on the Hanford Site. Today, the companies Plasma Enhanced Melters are in operation around the world converting organic waste into valuable, clean fuels.

  18. PNNL delivers expertise, technology to biofuels start-up, InEnTec

    SciTech Connect

    2009-10-01

    Initially through its Entrepreneurial Leave of Absence Program, PNNL gives biofuels innovators a start in opening up a new business based on technology developed for incinerating waste on the Hanford Site. Today, the companies Plasma Enhanced Melters are in operation around the world converting organic waste into valuable, clean fuels.

  19. Preliminary assessment of systems for deriving liquid and gaseous fuels from waste or grown organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.

    1976-01-01

    The overall feasibility of the chemical conversion of waste or grown organic matter to fuel is examined from the technical, economic, and social viewpoints. The energy contribution from a system that uses waste and grown organic feedstocks is estimated as 4 to 12 percent of our current energy consumption. Estimates of today's market prices for these fuels are included. Economic and social issues are as important as technology in determining the feasibility of such a proposal. An orderly program of development and demonstration is recommended to provide reliable data for an assessment of the viability of the proposal.

  20. Spatially Explicit Life Cycle Assessment of Biofuel Feedstock Production

    EPA Science Inventory

    Biofuels derived from renewable resources have gained increased research and development priority due to increasing energy demand and national security concerns. In the US, the Energy Independence and Security Act (EISA) of 2007 mandated the annual production of 56.8 billion L of...

  1. Improving Biofuel Recovery Processes For Efficiency and Sustainability

    EPA Science Inventory

    The 2007 Energy Independence and Security Act (EISA) provided for increased production of biofuels with, among other provisions, a specified share to be derived from non-sugar or cellulose feedstocks. The EISA further established standards for renewable fuels achieving 20, 50, a...

  2. Fermentative Polyhydroxybutyrate Production from a Novel Feedstock Derived from Bakery Waste

    PubMed Central

    Lam, Wan Chi; Han, Wei; Lau, Kin Yan; Lei, Ho Man; Lo, Kin Yu; Ng, Wai Yee; Melikoglu, Mehmet

    2014-01-01

    In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB) production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w) were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation. These include: (1) use of crude enzyme extracts from Aspergillus awamori, (2) Aspergillus awamori solid mashes, and (3) commercial glucoamylase. In the first method, the resultant free amino nitrogen (FAN) concentration in hydrolysates was 150 and 250 mg L−1 after 20 hours at enzyme-to-solid ratios of 6.9 and 13.1 U g−1, respectively. In both cases, the final glucose concentration was around 130–150 g L−1. In the second method, the resultant FAN and glucose concentrations were 250 mg L−1 and 150 g L−1, respectively. In the third method, highest glucose and lowest FAN concentrations of 170–200 g L−1 and 100 mg L−1, respectively, were obtained in hydrolysates after only 5 hours. The present work has generated promising information contributing to the sustainable production of bioplastic using bakery waste hydrolysate. PMID:25136626

  3. Fermentative polyhydroxybutyrate production from a novel feedstock derived from bakery waste.

    PubMed

    Pleissner, Daniel; Lam, Wan Chi; Han, Wei; Lau, Kin Yan; Cheung, Lai Chun; Lee, Ming Wui; Lei, Ho Man; Lo, Kin Yu; Ng, Wai Yee; Sun, Zheng; Melikoglu, Mehmet; Lin, Carol Sze Ki

    2014-01-01

    In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB) production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w) were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation. These include: (1) use of crude enzyme extracts from Aspergillus awamori, (2) Aspergillus awamori solid mashes, and (3) commercial glucoamylase. In the first method, the resultant free amino nitrogen (FAN) concentration in hydrolysates was 150 and 250 mg L(-1) after 20 hours at enzyme-to-solid ratios of 6.9 and 13.1 U g(-1), respectively. In both cases, the final glucose concentration was around 130-150 g L(-1). In the second method, the resultant FAN and glucose concentrations were 250 mg L(-1) and 150 g L(-1), respectively. In the third method, highest glucose and lowest FAN concentrations of 170-200 g L(-1) and 100 mg L(-1), respectively, were obtained in hydrolysates after only 5 hours. The present work has generated promising information contributing to the sustainable production of bioplastic using bakery waste hydrolysate. PMID:25136626

  4. Solution-Derived, Chloride-Containing Minerals as a Waste Form for Alkali Chlorides

    SciTech Connect

    Riley, Brian J.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Lepry, William C.

    2012-10-01

    Sodalite [Na8(AlSiO4)6Cl2] and cancrinite [(Na,K)6Ca2Al6Si6O24Cl4] are environmentally stable, chloride-containing minerals and are a logical waste form option for the mixed alkali chloride salt waste stream that is generated from a proposed electrochemical separations process during nuclear fuel reprocessing. Due to the volatility of chloride salts at moderate temperatures, the ideal processing route for these salts is a low-temperature approach such as the sol-gel process. The sodalite structure can be easily synthesized by the sol-gel process; however, it is produced in the form of a fine powder with particle sizes on the order of 1–10 µm. Due to the small particle size, these powders require additional treatment to form a monolith. In this study, the sol-gel powders were pressed into pellets and fired to achieve > 90% of theoretical density. The cancrinite structure, identified as the best candidate mineral form in terms of waste loading capacity, was only produced on a limited basis following the sol-gel process and converted to sodalite upon firing. Here we discuss the sol-gel process specifics, chemical durability of select waste forms, and the steps taken to maximize chloride-containing phases, decrease chloride loss during pellet firing, and increase pellet densities.

  5. Technical approach for the management of UMTRA ground water investigation-derived wastes

    SciTech Connect

    Not Available

    1994-02-01

    During characterization, remediation, or monitoring activities of the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project, ground water samples are collected to assess the extent and amount of waterborne contamination that might have come from the mill tailings. This sampling sometimes occurs in contaminated areas where ground water quality has been degraded. Ground water sampling activities may result in field-generated wastes that must be disposed of in a manner protective of human health and the environment. During ground water sampling, appropriate measures must be taken to dispose of presampling purge water and well development water that is pumped to flush out any newly constructed wells. Additionally, pumping tests may produce thousands of gallons of potentially contaminated ground water that must be properly managed. In addition to the liquid wastes, there is the potential for bringing contaminated soils to the ground surface during the drilling and installation of water wells in areas where the subsurface soils may be contaminated. These soils must be properly managed as well. This paper addresses the general technical approach that the UMTRA Project will follow in managing field-generated wastes from well drilling, development, sampling, and testing. It will provide guidance for the preparation of Technical Assistance Contractor (TAC) Standard Operating Procedures (SOP) for the management and disposal of field-generated wastes from ground water monitoring and remediation activities.

  6. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant

  7. Removing antinutrients from rapeseed press-cake and their benevolent role in waste cooking oil-derived biodiesel: conjoining the valorization of two disparate industrial wastes.

    PubMed

    Das Purkayastha, Manashi; Das, Subrata; Manhar, Ajay Kumar; Deka, Dhanapati; Mandal, Manabendra; Mahanta, Charu Lata

    2013-11-13

    Valorization of oilseed processing wastes is thwarted due to the presence of several antinutritional factors such as phenolics, tannins, glucosinolates, allyl isothiocyanates, and phytates; moreover, literature reporting on their simultaneous extraction and subsequent practical application is scanty. Different solvent mixtures containing acetone or methanol pure or combined with water or an acid (hydrochloric, acetic, perchloric, trichloroacetic, phosphoric) were tested for their efficiency for extraction of these antinutritive compounds from rapeseed press-cake. Acidified extraction mixtures (nonaqueous) were found to be superior to the nonacidified ones. The characteristic differences in the efficacy of these wide varieties of solvents were studied by principal component analysis, on the basis of which the mixture 0.2% perchloric acid in methanol/acetone (1:1 v/v) was deemed as "the best" for detoxification of rapeseed meal. Despite its high reductive potential, hemolytic activity of the extract from this solvent mixture clearly indicated the toxicity of the above-mentioned compounds on mammalian erythrocytes. Because of the presence of a high amount of antinutritive antioxidants, the study was further extended to examine the influence of this solvent extract on the stability of waste cooking oil-derived biodiesel. Treatment with the extract harbored significant improvement (p < 0.05) in the induction periods and pronounced reduction in microbial load of stored biodiesel investigated herein. Thus, a suitable solvent system was devised for removing the major antinutrients from rapeseed press-cake, and the solvent extract can, thereafter, be used as an effective exogenous antioxidant for biodiesel. In other words, integrated valorization of two different industrial wastes was successfully achieved. PMID:24134775

  8. Chemistry and combustion of fit-for-purpose biofuels.

    PubMed

    Rothamer, David A; Donohue, Timothy J

    2013-06-01

    From the inception of internal combustion engines, biologically derived fuels (biofuels) have played a role. Nicolaus Otto ran a predecessor to today's spark-ignition engine with an ethanol fuel blend in 1860. At the 1900 Paris world's fair, Rudolf Diesel ran his engine on peanut oil. Over 100 years of petroleum production has led to consistency and reliability of engines that demand standardized fuels. New biofuels can displace petroleum-based fuels and produce positive impacts on the environment, the economy, and the use of local energy sources. This review discusses the combustion, performance and other requirements of biofuels that will impact their near-term and long-term ability to replace petroleum fuels in transportation applications. PMID:23664492

  9. Plant-Derived Oils Reduce Pathogens and Gaseous Emissions from Stored Cattle Waste

    PubMed Central

    Varel, Vincent H.; Miller, Daniel N.

    2001-01-01

    Carvacrol and thymol in combination at 6.7 mM each completely inhibited the production of short-chain volatile fatty acids and lactate from cattle waste in anoxic flasks over 23 days. Fecal coliforms were reduced from 4.6 × 106 to 2.0 × 103 cells per ml 2 days after treatment and were nondetectable within 4 days. Total anaerobic bacteria were reduced from 8.4 × 1010 to 1.5 × 107 cells per ml after 2 days and continued to be suppressed to that level after 14 days. If the concentration of carvacrol or thymol were doubled (13.3 mM), either could be used to obtain the same inhibitory fermentation effect. We conclude that carvacrol or thymol may be useful as an antimicrobial chemical to control pathogens and odor in stored livestock waste. PMID:11229933

  10. Influence of feedstock on the copper removal capacity of waste-derived biochars.

    PubMed

    Arán, Diego; Antelo, Juan; Fiol, Sarah; Macías, Felipe

    2016-07-01

    Biochar samples were generated by low temperature pyrolysis of different types of waste. The physicochemical characteristics of the different types of biochar affected the copper retention capacity, by determining the main mechanism involved. The capacity of the biochar to retain copper present in solution depended on the size of the inorganic fraction and varied in the following order: rice biochar>chicken manure biochar>olive mill waste biochar>acacia biochar>eucalyptus biochar>corn cob biochar. The distribution of copper between the forms bound to solid biochar, dissolved organic matter and free organic matter in solution also depended on the starting material. However, the effect of pH on the adsorption capacity was independent of the nature of the starting material, and the copper retention of all types of biochar increased with pH. PMID:27099945

  11. Sustainable biofuel contributions to carbon mitigation and energy independence

    DOE PAGESBeta

    Lippke, Bruce; Gustafson, Richard; Venditti, Richard; Volk, Timothy; Oneil, Elaine; Johnson, Leonard; Puettmann, Maureen; Steele, Phillip

    2011-10-19

    The growing interest in US biofuels has been motivated by two primary national policy goals, (1) to reduce carbon emissions and (2) to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle datamore » for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Furthermore, substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.« less

  12. Greenhouse-gas payback times for crop-based biofuels

    NASA Astrophysics Data System (ADS)

    Elshout, P. M. F.; van Zelm, R.; Balkovic, J.; Obersteiner, M.; Schmid, E.; Skalsky, R.; van der Velde, M.; Huijbregts, M. A. J.

    2015-06-01

    A global increase in the demand for crop-based biofuels may be met by cropland expansion, and could require the sacrifice of natural vegetation. Such land transformation alters the carbon and nitrogen cycles of the original system, and causes significant greenhouse-gas emissions, which should be considered when assessing the global warming performance of crop-based biofuels. As an indicator of this performance we propose the use of greenhouse-gas payback time (GPBT), that is, the number of years it takes before the greenhouse-gas savings due to displacing fossil fuels with biofuels equal the initial losses of carbon and nitrogen stocks from the original ecosystem. Spatially explicit global GPBTs were derived for biofuel production systems using five different feedstocks (corn, rapeseed, soybean, sugarcane and winter wheat), cultivated under no-input and high-input farm management. Overall, GPBTs were found to range between 1 and 162 years (95% range, median: 19 years) with the longest GPBTs occurring in the tropics. Replacing no-input with high-input farming typically shortened the GPBTs by 45 to 79%. Location of crop cultivation was identified as the primary factor driving variation in GPBTs. This study underscores the importance of using spatially explicit impact assessments to guide biofuel policy.

  13. Supply Chain Sustainability Analysis of Three Biofuel Pathways

    SciTech Connect

    Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

    2013-11-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

  14. Next-generation biofuels: a new challenge for yeast.

    PubMed

    Petrovič, Uroš

    2015-09-01

    Economic growth depends strongly on the availability and price of fuels. There are various reasons in different parts of the world for efforts to decrease the consumption of fossil fuels, but biofuels are one of the main solutions considered towards achieving this aim globally. As the major bioethanol producer, the yeast Saccharomyces cerevisiae has a central position among biofuel-producing organisms. However, unprecedented challenges for yeast biotechnology lie ahead, as future biofuels will have to be produced on a large scale from sustainable feedstocks that do not interfere with food production, and which are generally not the traditional carbon source for S. cerevisiae. Additionally, the current trend in the development of biofuels is to synthesize molecules that can be used as drop-in fuels for existing engines. Their properties should therefore be more similar to those of oil-derived fuels than those of ethanol. Recent developments and challenges lying ahead for cost-effective production of such designed biofuels, using S. cerevisiae-based cell factories, are presented in this review. PMID:26108577

  15. Mixing Construction, Demolition and Excavation Waste and Solid Waste Compost for the Derivation of a Planting Medium for Use in the Rehabilitation of Quarries

    NASA Astrophysics Data System (ADS)

    Assaf, Eleni

    2015-04-01

    Lebanon's very high population density has been increasing since the end of the civil war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which are locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been interrupted by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Mathiolla crassifolia, a native Lebanese plant and Zea mays (Corn), which is commonly

  16. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    NASA Astrophysics Data System (ADS)

    Sattar, A.; Arslan, C.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-08-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under mesophilic temperature condition. Most of the production was observed during 48 h of incubation that continued till 72 h of incubation, and a decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS-1, 131.38 mL COD-1, and 44.90 mL glucose-1 were obtained from mesophilic food waste, thermophilic noodle waste and mesophilic rice waste respectively. The production of volatile fatty acids increased with an increase in time and temperature from food waste and noodle waste reactors whereas it decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2) for each waste type when it was opted for the study of cumulative hydrogen production, glucose consumption and volatile fatty acid production. The 3-D response surface plots developed by the statistical models helped a lot in developing better understanding of the impact of temperature and incubation time.

  17. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    NASA Astrophysics Data System (ADS)

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-11-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under thermophilic temperature condition. Most of the production was observed during the first 48 h of incubation, which continued until 72 h of incubation. The decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of the glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS-1, 131.38 mL COD-1, and 44.90 mL glucose-1 were obtained from thermophilic food waste, thermophilic noodle waste and mesophilic rice waste, respectively. The production of volatile fatty acids increased with an increase in time and temperature in food waste and noodle waste reactors whereas they decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2) for each waste type and 3-D response surface plots developed by using models developed. These plots developed a better understanding regarding the impact of temperature and incubation time on bio-hydrogen production trend, glucose consumption during incubation and volatile fatty acids production.

  18. Estimation of Hanford SX tank waste compositions from historically derived inventories

    SciTech Connect

    Lichtner, Peter C.; Felmy, Andrew R.

    2003-04-01

    Migration of radionuclides under the SX-tankfarm at the Hanford nuclear waste complex involves interaction of sediments with concentrated NaOHNaNO3NaNO2 solutions that leaked from the tanks. This study uses a reaction path calculation to estimate tanksupernatant compositions from historical tankinventory data. The Pitzer activity coefficient algorithm based on the computer code GMIN is combined with the reactive transport code FLOTRAN to

  19. Hawaii integrated biofuels research program, phase 1

    NASA Astrophysics Data System (ADS)

    Takahashi, Patrick K.

    1989-10-01

    Hawaii provides a unique environment for production of biomass resources that can be converted into renewable energy products. The purpose of this work is to evaluate the potential of several biomass resources, including sugarcane, eucalyptus, and leucaena, particularly for utilization in thermochemical conversion processes to produce liquid or gaseous transportation fuels. This research program supports ongoing efforts of the Biofuels and Municipal Solid Waste Technology (BMWT) Program of the Department of Energy (DOE) and has goals that are consistent with BMWT. The Hawaii Natural Energy Institute (HNEI) work completed here consists of research activities that support two of the five renewable fuel cycles being pursued by DOE researchers. The results are directly applicable in the American territories throughout the Pacific Basin and the Caribbean, and also to many parts of the United States and worldwide. The Hawaii Integrated Biofuels Research Program is organized into the following six research tasks, which are presented as appendices in report form: Biomass Resource Assessment and System Modeling (Task 1); Bioenergy Tree Research (Task 2); Breeding, Culture, and Selection of Tropical Grasses for Increased Energy Potential (Task 3); Study of Eucalyptus Plantations for Energy Production in Hawaii (Task 4); Fundamental Solvolysis Research (Task 5); and Effects of Feedstock Composition on Pyrolysis Products (Task 6).

  20. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    SciTech Connect

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-02-25

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities.

  1. Hexachlorocyclohexane derivatives in industrial waste and samples from a contaminated riverine system.

    PubMed

    Berger, M; Löffler, D; Ternes, T; Heininger, P; Ricking, M; Schwarzbauer, J

    2016-05-01

    Side and initial degradation products of the persistent organic pollutant hexachlorocyclohexane (HCH) were largely neglected in environmental analysis so far. However, these compounds can be indicative for biodegradation or emission sources. Thus, several samples from a contaminated riverine system in vicinity to a former HCH production site in Central Germany were analyzed. This area adjacent to the industrial megasite Bitterfeld-Wolfen is known for elevated concentrations of various organic industrial pollutants as legacy of decades of industrial activity and subsequent deposition of chemical waste and emission of waste effluents. In environmental compartments of this riverine system, several isomers of HCH related compounds were detected comprising the two lower chlorinated species tetrachlorocyclohexene (TeCCH) and pentachlorocyclohexene (PeCCH) and the higher chlorinated species heptachlorocyclohexane (HpCCH). Except for the uppermost soil of an analyzed riparian wetland, concentrations of these compounds were low. Detected isomers in sediment, water, and soil samples correlated and dominant isomers of PeCCH and HpCCH were observed in the alluvial deposits. Comparisons with industrial HCH waste revealed isomeric patterns similar to patterns found in soil samples. Therefore, the application of HpCCH as an indicator of industrial HCH pollution is suggested. PMID:26901479

  2. Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications.

    PubMed

    Park, So Young; Lee, Hyun Uk; Park, Eun Sik; Lee, Soon Chang; Lee, Jae-Won; Jeong, Soon Woo; Kim, Chi Hyun; Lee, Young-Chul; Huh, Yun Suk; Lee, Jouhahn

    2014-03-12

    We have developed a simple approach for the large-scale synthesis of water-soluble green carbon nanodots (G-dots) from many kinds of large food waste-derived sources. About 120 g of G-dots per 100 kg of food waste can be synthesized using our simple and environmentally friendly synthesis approach. The G-dots exhibit a high degree of solubility in water because of the abundant oxygen-containing functional groups around their surface. The narrow band of photoluminescence emission (400-470 nm) confirms that the size of the G-dots (∼4 nm) is small because of a similar quantum effects and emission traps on the surfaces. The G-dots have excellent photostability; their photoluminescence intensity decreases slowly (∼8%) under continuous excitation with a Xe lamp for 10 days. We carried out cell viability assay to assess the effect of cytotoxicity by introducing G-dots in cells such as Chinese hamster ovary cells (CHO-K1), mouse muscle cells (C2C12), and African green monkey kidney cells (COS-7), up to a concentration of 2 mg mL(-1) for 24 h. Due to their high photostability and low cytotoxicity, these G-dots are excellent probes for in vitro bioimaging. Moreover, the byproducts (not including G-dots) of G-dot synthesis from large food-waste derived sources promoted the growth and development of seedlings germinated on 3DW-supplemented gauze. Because of the combined advantages of green synthesis, high aqueous stability, high photostability, and low cytotoxicity, the G-dots show considerable promise in various areas, including biomedical imaging, solution state optoelectronics, and plant seed germination and/or growth. PMID:24512145

  3. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies.

    PubMed

    Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan

    2011-06-01

    To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant. PMID:21507625

  4. Sustainable Biofuels Development Center

    SciTech Connect

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  5. Chemical Kinetic Modeling of Biofuel Combustion

    NASA Astrophysics Data System (ADS)

    Sarathy, Subram Maniam

    Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular

  6. Algae Biofuels Co-Location Assessment Tool for Canada

    SciTech Connect

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  7. Algae Biofuels Co-Location Assessment Tool for Canada

    Energy Science and Technology Software Center (ESTSC)

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated betweenmore » points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.« less

  8. Characterisation of waste derived biochar added biocomposites: chemical and thermal modifications.

    PubMed

    Das, Oisik; Sarmah, Ajit K; Zujovic, Zoran; Bhattacharyya, Debes

    2016-04-15

    A step towards sustainability was taken by incorporating waste based pyrolysed biochar in wood and polypropylene biocomposites. The effect of biochar particles on the chemistry and thermal makeup of the composites was determined by characterising them through an array of characterisation techniques such as 3D optical profiling, X-ray diffraction, transmission electron microscopy, electron spin/nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. It was observed that addition of biochar increased the presence of free radicals in the composite while also improving its thermal conductivity. Biochar particles did not interfere with the melting behaviour of polymer in the thermal regime. However, wood and biochar acted as nucleation agents consequently increasing the crystallisation temperature. The crystal structure of polypropylene was not disrupted by biochar inclusion in composite. Transmission electron microscopy images illustrated the aggregated nature of the biochar particles at higher loading levels. Nuclear magnetic resonance studies revealed the aromatic nature of biochar and the broadening of peak intensities of composites with increasing biochar levels due to its amorphous nature and presence of free radicals. Thus, this insight into the chemical and thermal modification of biochar added composites would allow effective engineering to optimise their properties while simultaneously utilising wastes. PMID:26808404

  9. Infant exposure assessment for breast milk dioxins and furans derived from waste incineration emissions

    SciTech Connect

    Smith, A.H.

    1987-09-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) have been detected in human milk samples obtained in several countries. Possible sources include emissions from incineration of municipal waste in resource recovery facilities. A formula is presented for calculating the infant daily dose of dioxin equivalents from breast milk on the basis of the maternal daily intake. Application of the formula suggests that an infant breast-fed for 12 months would receive around 10% of the cumulative exposure dose per body weight that would be received by an adult with 50 years of exposure. Further analysis indicated that the contribution of dioxin equivalents from breast milk to an infant's body concentration at the end of 12 months of breast feeding would amount to 1.7 times the concentration in the mother. However, dioxin and furan emissions from a source calculated to result in worst-case lifetime cancer risks of the order of 1 in 100,000 are only likely to increase breast milk concentrations by around 1%-10% of the levels that have been detected in several countries. This finding suggests that there are major sources of dioxins and furans other than from municipal solid waste incineration that need to be identified.

  10. Derivation of Geometry Factors for Internal Gamma Dose Calculations for a Cylindrical Radioactive Waste Package

    SciTech Connect

    Lewis, Brent J.; Husain, Aamir

    2002-12-15

    A general methodology was developed to estimate geometry factors for internal gamma dose rate calculations within a cylindrical radioactive waste container. In particular, an average geometry factor is needed to calculate the average energy deposition rate within the container for determination of the internal gas generation rate. Such a calculation is required in order to assess the potential for radioactive waste packages to radiolytically generate combustible gases.This work therefore provides a method for estimating the point and average geometry factors for internal dose assessment for a cylindrical geometry. This analysis is compared to other results where it is shown that the classical work of Hine and Brownell do not correspond to the average geometry factors for a cylindrical body but rather to values at the center of its top or bottom end. The current treatment was further developed into a prototype computer code (PC-CAGE) that calculates the geometry factors numerically for a cylindrical body of any size and material, accounting both for gamma absorption and buildup effects.

  11. Tire derived fuel and thermal waste incineration commercial operation in coal fired cyclone units

    SciTech Connect

    Costello, P.A.; Waldron, R.G.; Diewald, D.J.; Witts, W.H.

    1995-12-31

    In an effort to clean up and dispose of former manufactured gas plant site wastes, the Illinois Environmental Protection Agency issued an experimental permit to Illinois Power to conduct a test burn of coal tar and coal tar impacted soil. An experimental permit was required because this was the first time in Illinois that gas manufacturing residues had been burned in a power plant boiler, even though it has been done in other states with great success. The USEPA, the Illinois EPA, and Illinois Power believe the most efficient way to clean up these wastes is to use a method that permanently reduces or removes threats to health and the environment. After completing successful test burns and providing results to the Illinois EPA and USEPA, Illinois Power petitioned for and was granted an environmental permit to construct and operate a commercial incineration facility to supplement the fuel on two coal fired cyclone units. This technical paper examines the processing, testing and effectiveness of the commercial operation to date. A comprehensive health and safety plan along with a results study to establish an improved permanent operation at the Baldwin Plant will be contained.

  12. Relationship between anaerobic digestion of biodegradable solid waste and spectral characteristics of the derived liquid digestate.

    PubMed

    Zheng, Wei; Lü, Fan; Phoungthong, Khamphe; He, Pinjing

    2014-06-01

    The evolution of spectral properties during anaerobic digestion (AD) of 29 types of biodegradable solid waste was investigated to determine if spectral characteristics could be used for assessment of biological stabilization during AD. Biochemical methane potential tests were conducted and spectral indicators (including the ratio of ultraviolet-visible absorbance at 254nm to dissolved organic carbon concentration (SUVA254), the ratio of ultraviolet-visible absorbance measured at 465nm and 665nm (E4/E6), and the abundance of fluorescence peaks) were measured at different AD phases. Inter-relationship between organic degradation and spectral indicators were analyzed by principle component analysis. The results shows that from methane production phase to the end of methane production phase, SUVA254 increased by 0.16-10.93 times, the abundance of fulvic acid-like compounds fluorescence peak increased by 0.01-0.54 times, the abundance of tyrosine fluorescence peak decreased by 0.03-0.64 times. Therefore, these indicators were useful to judge the course of mixed waste digestion. PMID:24686373

  13. Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers.

    PubMed

    Qiao, W M; Yoon, S H; Mochida, I; Yang, J H

    2007-01-01

    Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs. PMID:17157493

  14. Improving the feasibility of producing biofuels from microalgae using wastewater.

    PubMed

    Rawat, I; Bhola, V; Kumar, R Ranjith; Bux, F

    2013-01-01

    Biofuels have received much attention recently owing to energy consumption and environmental concerns. Despite many of the technologies being technically feasible, the processes are often too costly to be commercially viable. The major stumbling block to full-scale production of algal biofuels is the cost of upstream and downstream processes and environmental impacts such as water footprint and indirect greenhouse gas emissions from chemical nutrient production. The technoeconomics of biofuels production from microalgae is currently unfeasible due to the cost of inputs and productivities achieved. The use of a biorefinery approach sees the production costs reduced greatly due to utilization of waste streams for cultivation and the generation of several potential energy sources and value-added products while offering environmental protection. The use of wastewater as a production media, coupled with CO2 sequestration from flue gas greatly reduces the microalgal cultivation costs. Conversion of residual biomass and by-products, such as glycerol, for fuel production using an integrated approach potentially holds the key to near future commercial implementation of biofuels production. PMID:24350433

  15. "Trojan Horse" strategy for deconstruction of biomass for biofuels production.

    SciTech Connect

    Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James; Whalen, Maureen; Thilmony, Roger; Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

    2008-08-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used

  16. REMOVAL OF WOOD-DERIVED TOXICS FROM PULPING AND BLEACHING WASTES

    EPA Science Inventory

    Wood-derived compounds known to possess toxicity toward fish and to be present in pulp mill effluents include resin and unsaturated fatty acids, their chlorinated analogs, chlorinated guaiacols, and epoxystearic acid. The objective of this investigation has been to assess the ext...

  17. Cost goals for biofuels technologies

    SciTech Connect

    Gaines, L.L.; Flaim, S.J.

    1987-01-01

    Federally funded energy research seeks to demonstrate that alternative fuels can be produced and then to induce private sector involvement by showing that they can be produced profitably. Prices for fossil fuels may be used as cost goals for biofuels to determine when profitability may be achieved. Achieving equality with fossil fuel prices drives out the highest-cost sources of supply and enables initial market penetration; as costs decrease, biofuels can potentially gain a greater market share. However, achieving competitive costs is not a sufficient condition for success unless prices of conventional substitutes are expected to rise. Cost goals are used for research planning purposes, as a common denominator to allow comparisons among many biofuels options. Application of standard investment criteria to biofuels R and D would require that benefits from their use pay back research costs. These benefits must be discounted because they are realized in the future. Furthermore, realization of future savings is uncertain, so risks must be accounted for. Research may be justified if the expected value of the discounted benefits is greater than the discounted cost of the research. Cost goals satisfying this condition might be substantially lower than projected fuel prices. This paper examines recent fossil fuel price projections and discusses the challenges biofuels research faces just to produce competitive products. In light of the difficult goals, researchers should adopt a strategy targeting major technological breakthroughs rather than incremental improvements. Production of ethanol from wood is used as an example of this strategy. 35 refs., 8 figs., 7 tabs.

  18. Removal of atrazine from water by low cost adsorbents derived from agricultural and industrial wastes.

    PubMed

    Sharma, Rajendra Kumar; Kumar, Anoop; Joseph, P E

    2008-05-01

    In the present study six adsorbents viz. wood charcoal, fly ash, coconut charcoal, saw dust, coconut fiber and baggasse charcoal were studied for their capacity to remove atrazine from water. The removal efficiency of different adsorbents varied from 76.5% to 97.7% at 0.05 ppm concentration and 78.5% to 95.5% at 0.1 ppm concentration of atrazine solution, which was less than removal efficiency of activated charcoal reported as 98% for atrazine (Adams and Watson, J Environ Eng ASCE 39:327-330, 1996). Wood charcoal was a cheap (Rs 15 kg(-1)) and easily available material in house holds. Since wood charcoal was granular in nature, it could be used for the removal of atrazine from water to the extent of 95.5%-97.7%. Fly ash is a waste product of thermal plant containing 40%-50% silica, 20%-35% alumina, 12%-30% carbon and unburnt minerals having a high pH of 9-10. It is very cheap and abundant material and has comparatively good adsorption capacity. It was found that fly ash effectively removed about 84.1%-88.5% atrazine from water at 0.05 and 0.1 ppm levels. Coconut shell is also waste product. Therefore, both are inexpensive. The removal efficiency of atrazine from water was 92.4%-95.2% by coconut shell charcoal and 85.9%-86.3% by coconut fiber. Sawdust is generally used as domestic fuel and found everywhere. It is also very cheap (Re. 1 kg(-1)). Baggasse charcoal is a waste product of sugar mill and abundant material. Its cost is due to transport expense, which depends upon distance from the sugar mill. The removal efficiency of sawdust and baggasse charcoal was found 78.5-80.5 and 76.5-84.6, respectively. The efficacy of chemically treated adsorbents for the removal of atrazine from water is in the order: wood charcoal > coconut shell charcoal > fly ash > coconut fiber charcoal > baggasse charcoal > sawdust. PMID:18357400

  19. Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

    PubMed Central

    Erdem, Murat; Ucar, Suat; Karagöz, Selhan; Tay, Turgay

    2013-01-01

    The removal of lead (II) ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II) ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS) analysis after adsorption reveals the accumulation of lead (II) ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous. PMID:23853528

  20. Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes.

    PubMed

    Voon, Lee Ken; Pang, Suh Cem; Chin, Suk Fun

    2016-05-20

    Cellulose extracted from printed paper wastes were selectively depolymerized under controlled conditions into cello-oligomers of controllable chain lengths via dissolution in an ionic liquid, 1-allyl-3-methylimidazolium chloride (AMIMCl), and in the presence of an acid catalyst, Amberlyst 15DRY. The depolymerization process was optimized against reaction temperature, concentration of acid catalyst, and reaction time. Despite rapid initial depolymerization process, the rate of cellulose depolymerization slowed down gradually upon prolonged reaction time, with 75.0wt% yield of regenerated cello-oligomers (mean Viscosimetric Degree of Polymerization value of 81) obtained after 40min. The depolymerization of cellulose fibers at 80°C appeared to proceed via a second-order kinetic reaction with respect to the catalyst concentration of 0.23mmol H3O(+). As such, the cellulose depolymerization process could afford some degree of control on the degree of polymerization or chain lengths of cello-oligomers formed. PMID:26917370

  1. Study of Candida ingens grown on the supernatant derived from the anaerobic fermentation of monogastric animal wastes.

    PubMed Central

    Henry, D P; Thomson, R H; Sizemore, D J; O'Leary, J A

    1976-01-01

    A pellicle-forming yeast, identified as Candida ingens, was found to grow on substrates derived from the anerobic fermentation of monogastric animal wastes. The organism used volatile fatty acids C2 to C6 and ammonia nitrogen. It had a preferential uptake of the acids in increasing order of molecular weight, removing 90% of the total titratable volatile acid. The nonwrinkled pellicle had a doubling time of 3.2 h, and the doubling time of the wrinkled pellicle was 4.2 h. Proximate amino acid and nucleic acid analyses suggested that the organism might be acceptable as a source of single cell protein. Its vitamin B group content compared favorably with that of other yeasts. It contained 6% calcium and 7% phosphorus. It could be useful in removing these minerals from effluents as well as in providing them as nutrients in livestock rations. PMID:945718

  2. Biofuels from Microalgae and Seaweeds

    SciTech Connect

    Huesemann, Michael H.; Roesijadi, Guritno; Benemann, John; Metting, F. Blaine

    2010-03-01

    8.1 Introduction: Seaweeds and microalgae have a long history of cultivation as sources of commercial products (McHugh 2003; Pulz and Gross 2004). They also have been the subject of extensive investigations related to their potential as fuel source since the 1970s (Chynoweth 2002). As energy costs rise, these photosynthetic organisms are again a focus of interest as potential sources of biofuels, particularly liquid transportation fuels. There have been many recent private sector investments to develop biofuels from microalgae, in part building on a U.S. Department of Energy (DOE) program from 1976 to 1996 which focused on microalgal oil production (Sheehan et al. 1998). Seaweed cultivation has received relatively little attention as a biofuel source in the US, but was the subject of a major research effort by the DOE from 1978 to 1983 (Bird and Benson 1987), and is now the focus of significant interest in Japan, Europe and Korea...

  3. Derivation of soil screening thresholds to protect chisel-toothed kangaroo rat from uranium mine waste in northern Arizona

    USGS Publications Warehouse

    Hinck, Jo E.; Linder, Greg L.; Otton, James K.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.

    2013-01-01

    Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.

  4. Adsorption of Cu(2+) and methyl orange from aqueous solutions by activated carbons of corncob-derived char wastes.

    PubMed

    Hou, Xiao-Xu; Deng, Qing-Fang; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2013-12-01

    Corncob-derived char wastes (CCW) obtained from biomass conversion to syngas production through corncob steam gasification, which were often discarded, were utilized for preparation of activated carbon by calcination, and KOH and HNO3 activation treatments, on the view of environment protection and waste recycling. Their adsorption performance in the removal of heavy metal ions and dye molecules from wastewater was evaluated by using Cu(2+) and methyl orange (MO) as the model pollutant. The surface and structure characteristics of the CCW-based activated carbons (CACs) were investigated by N2 adsorption, CO2 adsorption, FT-IR, and He-TPD. The adsorption capacity varied with the activation methods of CACs and different initial solution concentrations, indicating that the adsorption behavior was influenced by not only the surface area and porosity but also the oxygen functional groups on the surface of the CACs. The equilibrium adsorption data were analyzed with the Langmuir, Freundlich, and Temkin isotherm models, and the adsorption kinetics was evaluated by the pseudo-first-order and pseudo-second-order models. PMID:23666685

  5. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste

    SciTech Connect

    Garg, A.; Smith, R.; Hill, D.; Simms, N.J.

    2009-08-15

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  6. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.

    PubMed

    Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J

    2009-08-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues. PMID:19443201

  7. Overview on Biofuels from a European Perspective

    ERIC Educational Resources Information Center

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  8. Assessing the environmental sustainability of biofuels.

    PubMed

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. PMID:25281367

  9. Nutrient management studies in biofuel cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of nutrient management practices on biofuel crop production, and to evaluate long term effects of biofuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on biofuel crop production were esta...

  10. Biofuel supply chain, market, and policy analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies

  11. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    PubMed

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  12. Treatment of oilfield produced water by waste stabilization ponds: biodegradation of petroleum-derived materials.

    PubMed

    Shpiner, R; Liu, G; Stuckey, D C

    2009-12-01

    This study evaluated the biological treatability of produced water (PW), the water separated from oil at the wellhead which contains both dispersed oil and low levels of heavy metals, using waste stabilisation ponds (WSPs). We examined both chemical oxygen demand (COD) and oil and grease (O&G) removal using different process configurations (hydraulic retention time (HRT), aerobic and anaerobic conditions, oil skimming, effluent recycle) in a small (10 L) reactor being fed a synthetic PW (COD=1050-1350 mg L(-1), O&G=400-500 microL L(-1), 6 g NaCl/L). The reactor was operated for 6 months, and at a HRT of 6 days (8 with evaporation) COD removals were greater than 85%, and improved over time to >90%, while O&G removals (measured with a newly developed method) were greater than 82% and also improved with time. Operating with an anaerobic section, oil skimming and 300% recycling were all found to enhance COD removal. PMID:19695873

  13. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    PubMed

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  14. Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties.

    PubMed

    Das, Oisik; Sarmah, Ajit K; Bhattacharyya, Debes

    2016-03-01

    To identify a route for organic wastes utilisation, biochar made from various feedstocks (landfill pine saw dust, sewage sludge, and poultry litter) and at diverse pyrolysis conditions, were collected. These biochars were used to fabricate wood and polypropylene biocomposites with a loading level of 24 mass%. The composites were tested for their mechanical, chemical, thermal, morphological, and fire properties. The poultry litter biochar biocomposite, with highest ash content, was found to have high values of tensile/flexural strength, tensile/flexural modulus, and impact strength, compared to other composites. In general, addition of all the biochars enhanced the tensile/flexural moduli of the composites. The crystal structure of polypropylene in the composite was intact after the incorporation of all the biochars. The final chemical and crystal structure of the composite were an additive function of the individual components. The biochar particles along with wood acted as nucleating agents for the recrystallization of polypropylene in composite. Each component in the composites was found to decompose individually under thermal regime. The electron microscopy revealed the infiltration of polypropylene into the biochar pores and a general good dispersion in most composites. The poultry litter composite was found to have lower heat release rate under combustion regime. PMID:26724232

  15. Ground-water contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, Wilfred E.; Rostad, Colleen E.; Garbarino, John R.; Hult, Marc F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed.

  16. Groundwater contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Garbarino, J.R.; Hult, M.F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed. ?? 1983.

  17. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    PubMed Central

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  18. Hydrophobization potential of organic compounds deriving from olive oil production waste water

    NASA Astrophysics Data System (ADS)

    Egerer, Sina E.; Bandow, Nicole; Marschner, Bernd; Schaumann, Gabriele E.

    2010-05-01

    Olive oil production waste water (OPWW) is rich in dissolved organic carbon and nutrients (e.g. potassium). In order to use it as organic fertilizer, small-scale and family run olive oil production farms in Israel and Palestine often discharge it directly onto agricultural land without any previous treatment. One unwanted side effect that can be observed is the development of soil water repellency (SWR) which is probably induced by amphiphilic substances. Previous studies on the composition of OPWW have shown that it contains oil components such as phenols, fats and large-molecular organic compounds (e.g. Gonzalezvila et al., 1995), some of which have been reported to induce water repellency on soil mineral surfaces (e.g. Ma'shum et al., 1988; Leelamanie and Karube, 2007). For prioritization of compounds the individual hydrophobization potential of 16 common OPWW components was systematically evaluated using the sessile drop and the Wilhelmy plate method. Acid-washed sand was taken as model soil mineral material. In a batch experiment OPWW samples from Israel and Palestine were applied to sand and two different soils in order to investigate their hydrophobization potential under different temperature and humidity conditions. To facilitate the identification of the chemicals responsible for inducing SWR, a fractionation procedure was applied to fraction the OPWW samples using solvents of different polarity. The prioritized compounds were analyzed by GC-MS. First results of this identification will be presented as well.

  19. Bio-waste derived dialdehyde cellulose ethers as supports for α-chymotrypsin immobilization.

    PubMed

    Kumari, Sapana; Chauhan, Ghanshyam S; Ahn, Jou-Hyeon; Reddy, N S

    2016-04-01

    Enzyme immobilization is an important technique to enhance stability, storability and reusability of enzymes. In the present work, pine needles, a forest bio-waste, were used as a feedstock of cellulose to synthesize new materials as supports for immobilization of α-chymotrypsin (CT) enzyme. The extracted cellulose from pine needles was etherified with different alkyl bromides (RBr) and etherified products were further modified to dialdehyde via oxidation with NaIO4 to get the desired products, dialdehyde cellulose ethers (ROcellCHO). CT was then covalently immobilized onto as-synthesized dialdehyde cellulose ethers via Schiff-base formation, i.e., imine linkage. The synthesized products and enzyme immobilization were confirmed by different characterization techniques and the activity assay of the free and the immobilized CT was carried out using standard protocol with variation of different parameters such as temperature, pH and substrate concentration. The storage stability and reusability of the immobilized CT were also investigated. CT activity was also studied in simulated physiological conditions in the artificial gastric fluid and artificial intestinal fluid. Artificial neural network (ANN) model was employed to correlate the relationship with% relative activity and time, temperature and pH affecting enzyme activity. A good correlation of experimental data was predicted by ANN model. PMID:26723248

  20. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change

    NASA Astrophysics Data System (ADS)

    Searchinger, Timothy; Heimlich, Ralph; Houghton, R. A.; Dong, Fengxia; Elobeid, Amani; Fabiosa, Jacinto; Tokgoz, Simla; Hayes, Dermot; Yu, Tun-Hsiang

    2008-02-01

    Most prior studies have found that substituting biofuels for gasoline will reduce greenhouse gases because biofuels sequester carbon through the growth of the feedstock. These analyses have failed to count the carbon emissions that occur as farmers worldwide respond to higher prices and convert forest and grassland to new cropland to replace the grain (or cropland) diverted to biofuels. By using a worldwide agricultural model to estimate emissions from land-use change, we found that corn-based ethanol, instead of producing a 20% savings, nearly doubles greenhouse emissions over 30 years and increases greenhouse gases for 167 years. Biofuels from switchgrass, if grown on U.S. corn lands, increase emissions by 50%. This result raises concerns about large biofuel mandates and highlights the value of using waste products.

  1. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash.

    PubMed

    Lucchini, P; Quilliam, R S; Deluca, T H; Vamerali, T; Jones, D L

    2014-03-01

    Recycled waste wood is being increasingly used for energy production; however, organic and metal contaminants in by-products produced from the combustion/pyrolysis residue may pose a significant environmental risk if they are disposed of to land. Here we conducted a study to evaluate if highly polluted biochar (from pyrolysis) and ash (from incineration) derived from Cu-based preservative-treated wood led to different metal (e.g., Cu, As, Ni, Cd, Pb, and Zn) bioavailability and accumulation in sunflower (Helianthus annuus L.). In a pot experiment, biochar at a common rate of 2 % w/w, corresponding to ∼50 t ha(-1), and an equivalent pre-combustion dose of wood ash (0.2 % w/w) were added to a Eutric Cambisol (pH 6.02) and a Haplic Podzol (pH 4.95), respectively. Both amendments initially raised soil pH, although this effect was relatively short-term, with pH returning close to the unamended control within about 7 weeks. The addition of both amendments resulted in an exceedance of soil Cu statutory limit, together with a significant increase of Cu and plant nutrient (e.g., K) bioavailability. The metal-sorbing capacity of the biochar, and the temporary increase in soil pH caused by adding the ash and biochar were insufficient to offset the amount of free metal released into solution. Sunflower plants were negatively affected by the addition of metal-treated wood-derived biochar and led to elevated concentration of metals in plant tissue, and reduced above- and below-ground biomass, while sunflower did not grow at all in the Haplic Podzol. Biochar and ash derived from wood treated with Cu-based preservatives can lead to extremely high Cu concentrations in soil and negatively affect plant growth. Identifying sources of contaminated wood in waste stream feedstocks is crucial before large-scale application of biochar or wood ash to soil is considered. PMID:24217969

  2. Sorption of Co2+ and Sr2+ by waste-derived 11 A tobermorite.

    PubMed

    Coleman, Nichola J; Brassington, David S; Raza, Atiya; Mendham, Andrew P

    2006-01-01

    Newsprint recycling gives rise to significant volumes of waste sludge which can be de-watered and combusted for energy-recovery. The residual combustion ash, whose primary crystalline constituents are; gehlenite (Ca2Al2SiO7), åkermanite (Ca2MgSi2O7), beta-dicalcium silicate (Ca2SiO4) and anorthite (CaAl2Si2O8), is currently consigned to landfill disposal. It is demonstrated herein that a mixed product of Al-substituted 11 tobermorite (Ca5Si6O18H2 * 4H2O) and katoite (Ca3Al2SiO12H8) can be synthesised from newsprint recycling combustion ash via a hydrothermal route. Batch sorption studies confirm that this mixed product is an effective sorbent for the exclusion of Co2+ and Sr2+ from acidic aqueous media. Kinetic sorption data are analysed in accordance with the pseudo-first- and pseudo-second-order models, and steady-state data is fitted to the Langmuir and Freundlich isotherms. The Langmuir and pseudo-second-order models are found to provide the most appropriate descriptions of the sorption processes. The maximum uptake capacities for Co2+ and Sr2+ at 20 degrees C are 10.47 and 1.52 mg g(-1), respectively, and the respective apparent pseudo-second-order rate constants are estimated to be 5.08 x 10(-3) and 6.96 x 10(-3) g mg(-1) min(-1). PMID:16387240

  3. Estimation of Hanford SX tank waste compositions from historically derived inventories

    NASA Astrophysics Data System (ADS)

    Lichtner, Peter C.; Felmy, Andrew R.

    2003-04-01

    Migration of radionuclides under the SX-tank farm at the Hanford nuclear waste complex involves interaction of sediments with concentrated NaOH-NaNO 3-NaNO 2 solutions that leaked from the tanks. This study uses a reaction path calculation to estimate tank supernatant compositions from historical tank inventory data. The Pitzer activity coefficient algorithm based on the computer code GMIN is combined with the reactive transport code FLOTRAN to carry out the simulations. An extended version of the GMIN database is used which includes Al and Si species. In order for the reaction path calculations to converge, a pseudo-kinetic approach employing a rate limiter for precipitation kinetics is introduced. The rate limiter enables calculations to be carried out with the reaction path approach which previously could only be accomplished using a Gibbs free energy minimization technique. Because the final equilibrium state is independent of the reaction path, the value used for the rate limiter does not affect the calculation for the tank supernatant composition. Three different tanks are considered: SX-108, SX-109 and SX-115, with supernatant compositions ranging from extremely to moderately concentrated. Results of the simulations indicate that sodium concentrations much higher than previously expected are possible for the SX-108 tank. This result has important implications for the migration of cesium released from the tank within the vadose zone. The mineral cancrinite was predicted to form in all three tanks consistent with recent experiments. The calculated supernatant pH ranged from 14 to 12.8 for the tanks considered and Eh was mildly reducing determined by the redox couple NO 3-NO 2.

  4. Lignocellulosic-derived modified agricultural waste: development, characterisation and implementation in sequestering pyridine from aqueous solutions.

    PubMed

    Ahmed, Md Juned K; Ahmaruzzaman, M; Reza, Ruhul A

    2014-08-15

    The development and characterisation of modified agricultural waste (MAW) by H3PO4 activation is addressed in this study for sequestering pyridine from aqueous solutions. The adsorbent is characterised by carbon, hydrogen and nitrogen content of 55.53%, 3.28% and 0.98% respectively. The adsorbent also shows acidic (carboxylic, lactonic, phenolic groups) and basic carbon surface functionalities, functional groups viz. hydroxyl, carboxylic acid and bounded water molecules, BET surface area of 1254.67 m(2) g(-1), heterogeneous surface morphology and graphite like XRD patterns. Adsorption of pyridine is executed to evaluate the adsorptive uptake in batch (q(e)=107.18 mg g(-1)) as well as in column system (q(e)=140.94 mg g(-1)). The adsorption process followed the pseudo-second-order kinetics with the Langmuir isotherm best representing the equilibrium adsorption data. The thermodynamic parameters (ΔH(o)=9.39 kJ mol(-1), ΔG(o)=-5.99 kJ mol(-1), ΔS(o)=50.76 J K(-1) mol(-1)) confirm the endothermic and spontaneous nature of the adsorption process with increase in randomness at solid/solution interface. The adsorption mechanism is governed by electrostatic and π-π dispersive interactions as well as by a two stage diffusion phenomena. Thermally regenerated spent MAW exhibited better adsorption efficiency for five adsorption-desorption cycles than chemically regenerated. The low-cost of MAW (USD 10.714 per kg) and favourable adsorption parameters justifies its use in the adsorptive removal of pyridine. PMID:24910057

  5. Advancing Biofuels: Balancing for Sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with most technologies, use of biofuels has both benefits and risks, which vary by feedstock. Expected benefits include increased energy independence, reduced consumption of fossil fuels, reduced emission of greenhouse gases and invigorated rural economies. Anticipated risks include potential com...

  6. Driving forces for import of waste for energy recovery in Sweden.

    PubMed

    Olofsson, Mattias; Sahlin, Jenny; Ekvall, Tomas; Sundberg, Johan

    2005-02-01

    Between 1996 and 2002, the Swedish import of so-called yellow waste for energy recovery increased. The import mainly consisted of separated wood waste and mixes of used wood and paper and/or plastics that was combusted in district heat production plants (DHPPs). Some mixed waste was imported to waste incineration plants for energy recovery (10% of the import of yellow waste for energy recovery in 2002). The import came primarily from Germany, the Netherlands, Norway, Denmark and Finland. We identified six underlying driving forces for this recent increase of imported waste which are outlined and their interactive issues discussed. --The energy system infrastructure, which enables high energy recovery in Sweden. --The energy taxation, where high Swedish taxes on fossil fuels make relatively expensive solid biofuels the main alternative for base load production of district heat. --The quality of the waste-derived fuels, which has been higher in the exporting countries than in Sweden. --The bans on landfilling within Europe and the shortage of waste treatment capacity. --Taxes on waste management in Europe. --Gate fee differences between exporting countries and Sweden. In the future, the overall strength of these driving forces will probably be weakened. A Swedish tax on waste incineration is being investigated. In other European countries, the ambition to reach the Kyoto targets and increase the renewable electricity production could improve the competitiveness of waste-derived fuels in comparison with fossil fuels. Swedish DHPPs using waste-derived fuels will experience higher costs after the Waste Incineration Directive is fully implemented. The uncertainty about European waste generation and treatment capacity, however, might have a large influence on the future gate fees and thus also on the yellow waste import into Sweden. PMID:15751390

  7. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. PMID:23201905

  8. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME II: APPENDICES A-F

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  9. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME III: APPENDICES G-N

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  10. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, RE- FUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME I: SUMMARY OF RESULTS

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  11. MUNICIPAL WASTE COMSUTION, MULTIPOLLUTANT STUDY, EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME II: APPENDICES A-F

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  12. MUNICIPAL WASTE COMBUSTION, MULTIPOLLUTANT STUDY, EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME III: APENDICES G-N

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  13. Sonochemical effect on size reduction of CaCO3 nanoparticles derived from waste eggshells.

    PubMed

    Hassan, Tarig A; Rangari, Vijay K; Rana, Rohit K; Jeelani, Shaik

    2013-09-01

    A novel combination of mechanochemical and sonochemical techniques was developed to produce high-surface-area, bio-based calcium carbonate (CaCO3) nanoparticles from eggshells. Size reduction of eggshell achieved via mechanochemical and followed by sonochemical method. First, eggshells were cleaned and ground, then ball milled in wet condition using polypropylene glycol for ten hours to produce fine particles. The ball milled eggshell particles were then irradiated with a high intensity ultrasonic horn (Ti-horn, 20 kHz, and 100 W/cm(2)) in the presence of N,N-dimethylformamide (DMF); decahydronaphthalene (Decalin); or tetrahydrofuran (THF). The ultrasonic irradiation times varied from 1 to 5 h. Transmission electron microscopic (TEM) studies showed that the resultant particle shapes and sizes were different from each solvent. The sonochemical effect of DMF is more pronounced and the particles were irregular platelets of ~10 nm. The BET surface area (43.687 m(2)/g) of these nanoparticles is much higher than that of other nanoparticles derived from eggshells. PMID:23473569

  14. Chemical transformation of CO2 during its capture by waste biomass derived biochars.

    PubMed

    Xu, Xiaoyun; Kan, Yue; Zhao, Ling; Cao, Xinde

    2016-06-01

    Biochar is a porous carbonaceous material with high alkalinity and rich minerals, making it possible for CO2 capture. In this study, biochars derived from pig manure, sewage sludge, and wheat straw were evaluated for their CO2 sorption behavior. All three biochars showed high sorption abilities for CO2, with the maximum capacities reaching 18.2-34.4 mg g(-1) at 25 °C. Elevating sorption temperature and moisture content promoted the transition of CO2 uptake from physical to chemical process. Mineral components such as Mg, Ca, Fe, K, etc. in biochar induced the chemical sorption of CO2 via the mineralogical reactions which occupied 17.7%-50.9% of the total sorption. FeOOH in sewage sludge biochar was transformed by sorbed CO2 into Fe(OH)2CO3, while the sorbed CO2 in pig manure biochar was precipitated as K2Ca(CO3)2 and CaMg(CO3)2, which resulted in a dominant increase of insoluble inorganic carbon in both biochars. For wheat straw biochar, sorbed CO2 induced CaCO3 transformed into soluble Ca(HCO3)2, which led to a dominant increase of soluble inorganic carbons. The results obtained from this study demonstrated that biochar as a unique carbonaceous material could distinctly be a promising sorbent for CO2 capture in which chemical sorption induced by mineralogical reactions played an important role. PMID:26995449

  15. Characterization of a soil amendment derived from co-composting of agricultural wastes and biochar

    NASA Astrophysics Data System (ADS)

    Curaqueo, Gustavo; Ángel Sánchez-Monedero, Miguel; Meier, Sebastián; Medina, Jorge; Panichini, Marcelo; Borie, Fernando; Navia, Rodrigo

    2016-04-01

    P contents increased in BC10 treatment, while the K contents were similar in all treatments as well as C/N ratio (around 15). The organic matter content was BC10>BC5>BC0 and the dissolved organic C content was lower than 8.3 g kg‑1 for all piles confirming the maturity of compost. The germination test showed a non-toxic effect of all amendments in the species assayed obtaining a germination index between 55% and 80.7% indicating maturity of the amendments evaluated. Our results indicated that the combined use of agricultural wastes and biochar by mean of a co-composting process is a suitable option for generating good quality amendments for improving soil condition and optimizing nutrient cycling at farm scale. Financial support for this research was provided by the National Commission for Scientific and Technological Research through FONDECYT 11140508 Project

  16. Adsorption and transport of methane in biochars derived from waste wood.

    PubMed

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-09-01

    Mitigation of landfill gas (LFG) is among the critical aspects considered in the design of a landfill cover in order to prevent atmospheric pollution and control global warming. In general, landfill cover soils can partially remove methane (CH4) through microbial oxidation carried out by methanotrophic bacteria present within them. The oxidizing capacity of these landfill cover soils may be improved by adding organic materials, such as biochar, which increase adsorption and promote subsequent or simultaneous oxidation of CH4. In this study, seven wood-derived biochars and granular activated carbon (GAC) were characterized for their CH4 adsorption capacity by conducting batch and small-scale column studies. The effects of influential factors, such as exposed CH4 concentration, moisture content and temperature on CH4 adsorption onto biochars, were determined. The CH4 transport was modeled using a 1-D advection-dispersion equation that accounted for sorption. The effects of LFG inflow rates and moisture content on the combined adsorption and transport properties of biochars were determined. The maximum CH4 adsorption capacity of GAC (3.21mol/kg) was significantly higher than that of the biochars (0.05-0.9mol/kg). The CH4 gas dispersion coefficients for all of the biochars ranged from 1×10(-3) to 3×10(-3)m(2)s(-1). The presence of moisture significantly suppressed the extent of methane adsorption onto the biochars and caused the methane to break through within shorter periods of time. Overall, certain biochar types have a high potential to enhance CH4 adsorption and transport properties when used as a cover material in landfills. However, field-scale studies need to be conducted in order to evaluate the performance of biochar-based cover system under a more dynamic field condition that captures the effect of seasonal and temporal changes. PMID:26005190

  17. Global methane emissions from minor anthropogenic sources and biofuel combustion in residential stoves

    NASA Astrophysics Data System (ADS)

    Piccot, Stephen D.; Beck, Lee; Srinivasan, Sridhar; Kersteter, Sharon L.

    1996-10-01

    Most global methane (CH4) budgets have failed to include emissions from a diverse group of minor anthropogenic sources. Individually, these minor sources emit small quantities of CH4, but collectively, their contributions to the budget may be significant. In this paper, CH4 emissions are estimated for a wide variety of individual minor emissions sources on a country-specific basis. Emissions from biomass combustion in the residential sector are also examined. The minor sources examined include fuel combustion in furnaces, vehicles, aircraft, ship, rail systems, industrial waste treatment and combustion processes, various industrial manufacturing processes (e.g., chemical manufacturing), on-site residential waste burning, forest wildfires, and prescribed burning activities, oil refining, and the storage/distribution of oil-derived products, coke production, and charcoal production. Country-specific emissions associated with residential wood, charcoal, and dung combustion are also estimated. The total annual CH4 emissions from all sources examined here are estimated to be about 40 Tg. Almost half of this total is due to residential fossil fuel and biofuels combustion.

  18. From first generation biofuels to advanced solar biofuels.

    PubMed

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories. PMID:26667057

  19. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons.

    PubMed

    Anirudhan, T S; Sreekumari, S S

    2011-01-01

    Activated carbon (AC) derived from waste coconut buttons (CB) was investigated as a suitable adsorbent for the removal of heavy metal ions such as Pb(II), Hg(II) and Cu(II) from industrial effluents through batch adsorption process. The AC was characterized by elemental analysis, fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal gravimetric and differential thermal analysis, surface area analyzer and potentiometric titrations. The effects of initial metal concentration, contact time, pH and adsorbent dose on the adsorption of metal ions were studied. The adsorbent revealed a good adsorption potential for Pb(II) and Cu(II) at pH 6.0 and for Hg(II) at pH 7.0. The experimental kinetic data were a better fit with pseudo second-order equation rather than pseudo first-order equation. The Freundlich isotherm model was found to be more suitable to represent the experimental equilibrium isotherm results for the three metals than the Langmuir model. The adsorption capacities of the AC decreased in the order: Pb(II) > Hg(II) > Cu(II). PMID:22432329

  20. Bio-lubricants derived from waste cooking oil with improved oxidation stability and low-temperature properties.

    PubMed

    Li, Weimin; Wang, Xiaobo

    2015-01-01

    Waste cooking oil (WCO) was chemically modified via epoxidation using H2O2 followed by transesterification with methanol and branched alcohols (isooctanol, isotridecanol and isooctadecanol) to produce bio-lubricants with improved oxidative stability and low temperature properties. Physicochemical properties of synthesized bio-lubricants such as pour point (PP), cloud point (CP), viscosity, viscosity index (VI), oxidative stability, and corrosion resistant property were determined according to standard methods. The synthesized bio-lubricants showed improved low temperature flow performances compared with WCO, which can be attributing to the introduction of branched chains in their molecular structures. What's more, the oxidation stability of the WCO showed more than 10 folds improvement due to the elimination of -C=C-bonds in the WCO molecule. Tribological performances of these bio-lubricants were also investigated using four-ball friction and wear tester. Experimental results showed that derivatives of WCO exhibited favorable physicochemical properties and tribological performances which making them good candidates in formulating eco-friendly lubricants. PMID:25766933

  1. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture. PMID:22070039

  2. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  3. Next-generation biofuels: Survey of emerging technologies and sustainability issues.

    PubMed

    Zinoviev, Sergey; Müller-Langer, Franziska; Das, Piyali; Bertero, Nicolás; Fornasiero, Paolo; Kaltschmitt, Martin; Centi, Gabriele; Miertus, Stanislav

    2010-10-25

    Next-generation biofuels, such as cellulosic bioethanol, biomethane from waste, synthetic biofuels obtained via gasification of biomass, biohydrogen, and others, are currently at the center of the attention of technologists and policy makers in search of the more sustainable biofuel of tomorrow. To set realistic targets for future biofuel options, it is important to assess their sustainability according to technical, economical, and environmental measures. With this aim, the review presents a comprehensive overview of the chemistry basis and of the technology related aspects of next generation biofuel production, as well as it addresses related economic issues and environmental implications. Opportunities and limits are discussed in terms of technical applicability of existing and emerging technology options to bio-waste feedstock, and further development forecasts are made based on the existing social-economic and market situation, feedstock potentials, and other global aspects. As the latter ones are concerned, the emphasis is placed on the opportunities and challenges of developing countries in adoption of this new industry. PMID:20922754

  4. Toward nitrogen neutral biofuel production.

    PubMed

    Huo, Yi-Xin; Wernick, David G; Liao, James C

    2012-06-01

    Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements. PMID:22054644

  5. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. PMID:23499181

  6. Old boilers to profitable use with local biofuels

    SciTech Connect

    Hankala, J.

    1998-07-01

    To convert an old plant is often an economically advantageous alternative for a new boiler. The most important sources of biomass in industrial countries are residues from forestry, industry and agriculture. Sludges and wastes from industry, communities and households also contain useful energy. Still in many places there are existing power plants which can be converted to burn biofuels with low investment costs. An efficient and proven way is to convert an existing boiler to fluidized bed combustion (FBC) or use atmospheric circulating fluidized bed biofuel gasification connected to an existing boiler. Modern Fluidized Bed Combustion and Gasification gives us a possibility to burn biomass, sludges and many kinds of wastes in an efficient way with low emissions. Fluidized bed technologies are divided into bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) solutions. When making a boiler conversion to fluidized bed combustion, lower furnace of an existing boiler is converted and fuel receiving, handling and transportation system is installed. In many cases most of the existing boiler heating surfaces and a majority of the existing auxiliary equipment can be utilized. The circulating fluidized bed gasifier consists of the inside refractory-lined steel vessel, where fuel is gasified in a hot fluidized gas solid particle suspension. In the gasifier, the biofuels will be converted to combustible gas at atmospheric pressure at the temperature 800--900 C. The hot gas from the gasifier will be cooled down to 650--750 C in the air preheater. The hot gas is led directly to separate burners, which are located in the existing boiler furnace. The gas is burned in the boiler and replaces a part of the coal used in the boiler. Typical fuels for the FBC-boilers are wet fuels such as bark, wood waste, peat and sludges. These fuels normally contain 40--70% water.

  7. %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    SciTech Connect

    Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora; Timlin, Jerilyn Ann; Hadi, Masood Z.; Tran-Gyamfi, Mary

    2011-02-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing dedicated energy crops

  8. Biofuel from biomass via photo-electrochemical reactions: An overview

    NASA Astrophysics Data System (ADS)

    Ibrahim, N.; Kamarudin, S. K.; Minggu, L. J.

    2014-08-01

    Biomass is attracting a great deal of attention as a renewable energy resource to reduce carbon dioxide (CO2) emissions. Converting biomass from municipal, agricultural and livestock into biofuel and electrical power has significant environmental and economic advantages. The conversion of biomass into practical energy requires elegant designs and further investigation. Thus, biomass is a promising renewable energy source due to its low production cost and simple manufacturing processes. Biofuel (hydrogen and methanol) from biomass will be possible to be used for transportation with near-zero air pollution, involves efficient uses of land and major contribution to reduce dependence on insecure source of petroleum. Photoelectrochemical (PEC) reactions study has potential pathway for producing fuel from biomass and bio-related compound in the near future. This review highlights recent work related to the PEC conversion of biomass and bio-related compounds into useful biofuels and electricity. This review covers different types of photochemical reaction cells utilizing various types of organic and inorganic waste. It also presents recent developments in photoelectrodes, photocatalysts and electrolytes as well as the production of different types of fuel from PEC cells and highlights current developments and problems in PEC reactions.

  9. Economic Viability of Brewery Spent Grain as a Biofuel

    SciTech Connect

    Morrow, Charles

    2016-01-01

    This report summarizes an investigation into the technical feasibility and economic viability of use grain wastes from the beer brewing process as fuel to generate the heat needed in subsequent brewing process. The study finds that while use of spent grain as a biofuel is technically feasible, the economics are not attractive. Economic viability is limited by the underuse of capital equipment. The investment in heating equipment requires a higher utilization that the client brewer currently anticipates. It may be possible in the future that changing factors may swing the decision to a more positive one.

  10. An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes.

    PubMed

    Redwood, Mark D; Orozco, Rafael L; Majewski, Artur J; Macaskie, Lynne E

    2012-09-01

    An Integrated Biohydrogen Refinery (IBHR) and experimental net energy analysis are reported. The IBHR converts biomass to electricity using hydrothermal hydrolysis, extractive biohydrogen fermentation and photobiological hydrogen fermentation for electricity generation in a fuel cell. An extractive fermentation, developed previously, is applied to waste-derived substrates following hydrothermal pre-treatment, achieving 83-99% biowaste destruction. The selective separation of organic acids from waste-fed fermentations provided suitable substrate for photofermentative hydrogen production, which enhanced the gross energy generation up to 11-fold. Therefore, electrodialysis provides the key link in an IBHR for 'waste to energy'. The IBHR compares favourably to 'renewables' (photovoltaics, on-shore wind, crop-derived biofuels) and also emerging biotechnological options (microbial electrolysis) and anaerobic digestion. PMID:22763044

  11. Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond.

    PubMed

    George, Kevin W; Alonso-Gutierrez, Jorge; Keasling, Jay D; Lee, Taek Soon

    2015-01-01

    Isoprenoids have been identified and used as natural pharmaceuticals, fragrances, solvents, and, more recently, advanced biofuels. Although isoprenoids are most commonly found in plants, researchers have successfully engineered both the eukaryotic and prokaryotic isoprenoid biosynthetic pathways to produce these valuable chemicals in microorganisms at high yields. The microbial synthesis of the precursor to artemisinin--an important antimalarial drug produced from the sweet wormwood Artemisia annua--serves as perhaps the most successful example of this approach. Through advances in synthetic biology and metabolic engineering, microbial-derived semisynthetic artemisinin may soon replace plant-derived artemisinin as the primary source of this valuable pharmaceutical. The richness and diversity of isoprenoid structures also make them ideal candidates for advanced biofuels that may act as "drop-in" replacements for gasoline, diesel, and jet fuel. Indeed, the sesquiterpenes farnesene and bisabolene, monoterpenes pinene and limonene, and hemiterpenes isopentenol and isopentanol have been evaluated as fuels or fuel precursors. As in the artemisinin project, these isoprenoids have been produced microbially through synthetic biology and metabolic engineering efforts. Here, we provide a brief review of the numerous isoprenoid compounds that have found use as pharmaceuticals, flavors, commodity chemicals, and, most importantly, advanced biofuels. In each case, we highlight the metabolic engineering strategies that were used to produce these compounds successfully in microbial hosts. In addition, we present a current outlook on microbial isoprenoid production, with an eye towards the many challenges that must be addressed to achieve higher yields and industrial-scale production. PMID:25577395

  12. Third Generation Biofuels via Direct Cellulose Fermentation

    PubMed Central

    Carere, Carlo R.; Sparling, Richard; Cicek, Nazim; Levin, David B.

    2008-01-01

    Consolidated bioprocessing (CBP) is a system in which cellulase production, substrate hydrolysis, and fermentation are accomplished in a single process step by cellulolytic microorganisms. CBP offers the potential for lower biofuel production costs due to simpler feedstock processing, lower energy inputs, and higher conversion efficiencies than separate hydrolysis and fermentation processes, and is an economically attractive near-term goal for “third generation” biofuel production. In this review article, production of third generation biofuels from cellulosic feedstocks will be addressed in respect to the metabolism of cellulolytic bacteria and the development of strategies to increase biofuel yields through metabolic engineering. PMID:19325807

  13. Towards Sustainable Production of Biofuels from Microalgae

    PubMed Central

    Patil, Vishwanath; Tran, Khanh-Quang; Giselrød, Hans Ragnar

    2008-01-01

    Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel. PMID:19325798

  14. Water Use Efficiency for Establishing Biofuel Crops in Central Illinois

    NASA Astrophysics Data System (ADS)

    Bernacchi, C. J.; Zeri, M.; Hussain, M. Z.; Anderson-Teixeira, K. J.; Masters, M.; DeLucia, E. H.

    2012-12-01

    The production of biofuels from cellulosic plant material is expected to increase worldwide as countries look for alternative sources of energy. The choice of feedstocks suitable for ethanol production from cellulosic material must take into account several factors, such as productivity, response to local climate, and environmental impacts on the carbon, nitrogen and water cycles. With regards to the carbon cycle, the best options for biofuel crops are species that are highly productive in terms of harvestable biomass, but without depleting the soil carbon pools by requiring annual tillage before planting, as is the case of corn (Zea mays), the current dominant biofuel in the US. Perennial species such as miscanthus (Miscanthus × giganteus) and switchgrass (Panicum virgatum L.) have many advantages over annual crops due to the reduced use of fertilizer and less irrigation requirements relative to maize. The efficiency of plants in using water while accumulating biomass is an important factor when choosing the best biofuel crop to be planted in a certain location. Water use efficiency (WUE) is the term generally used to refer to the ratio of carbon accumulated over water used during a certain period of time. Water use efficiency is an important metric when cellulosic biofuels are considered, since it takes into account the benefits (carbon accumulated in soils or harvested) and the environmental impact (the use of water). This quantity is derived in many ways based on the metric of carbon for an ecosystem. Net ecosystem production (NEP) is the net balance of carbon derived from GPP - Re, where GPP is the gross primary production and Re is the ecosystem respiration. The ratio of NEP over total water used during the year (TWU) will be referred as EWUE, from "ecosystem" WUE. The value of EWUE represents ecological benefit of the feedstock, since it accounts for the carbon that might be accumulated in soils. Another metric is the HWUE, after "harvest" WUE, which

  15. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    PubMed Central

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society. PMID:21318120

  16. Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp.

    SciTech Connect

    Huesemann, Michael H.; Benemann, John R.

    2009-12-31

    There is currently great interest in using microalgae for the production of biofuels, mainly due to the fact that microalgae can produce biofuels at a much higher productivity than conventional plants and that they can be cultivated using water, in particular seawater, and land not competing for resources with conventional agriculture. However, at present such microalgae-based technologies are not yet developed and the economics of such processes are uncertain. We review power generation by direct combustion, production of hydrogen and other fuel gases and liquids by gasification and pyrolysis, methane generation by anaerobic digestion, ethanol fermentations, and hydrogen production by dark and light-driven metabolism. We in particular discuss the production of lipids, vegetable oils and hydrocarbons, which could be converted to biodiesel. Direct combustion for power generation has two major disadvantages in that the high N-content of algal biomass causes unacceptably high NOx emissions and losses of nitrogen fertilizer. Thus, the use of sun-dried microalgal biomass would not be cost-competitive with other solid fuels such as coal and wood. Thermochemical conversion processes such as gasification and pyrolysis have been successfully demonstrated in the laboratory but will be difficult to scale up commercially and suffers from similar, though sometimes not as stringent, limitations as combustion. Anaerobic digestion of microalgal cells yields only about 0.3 L methane per g volatile solids destroyed, about half of the maximum achievable, but yields can be increased by adding carbon rich substrates to circumvent ammonia toxicity caused by the N-rich algal biomass. Anaerobic digestion would be best suited for the treatment of algal biomass waste after value-added products have been separated. Algae can also be grown to accumulate starches or similar fermentable products, and ethanol or similar (e.g., butanol) fermentations could be applied to such biomass, but research

  17. The adsorptive capacity of vapor-phase mercury chloride onto powdered activated carbon derived from waste tires

    SciTech Connect

    Hsun-Yu Lin; Chung-Shin Yuan; Chun-Hsin Wu; Chung-Hsuang Hung

    2006-11-15

    Injection of powdered activated carbon (PAC) upstream of particulate removal devices (such as electrostatic precipitator and baghouses) has been used effectively to remove hazardous air pollutants, particularly mercury containing pollutants, emitted from combustors and incinerators. Compared with commercial PACs (CPACs), an alternative PAC derived from waste tires (WPAC) was prepared for this study. The equilibrium adsorptive capacity of mercury chloride (HgCl{sub 2}) vapor onto the WPAC was further evaluated with a self-designed bench-scale adsorption column system. The adsorption temperatures investigated in the adsorption column were controlled at 25 and 150{sup o}C. The superficial velocity and residence time of the flow were 0.01 m/sec and 4 sec, respectively. The adsorption column tests were run under nitrogen gas flow. Experimental results showed that WPAC with higher Brunauer Emmett Teller (BET) surface area could adsorb more HgCl{sub 2} at room temperature. The equilibrium adsorptive capacity of HgCl{sub 2} for WPAC measured in this study was 1.49 x 10{sup -1} mg HgCl{sub 2}/g PAC at 25{sup o}C with an initial HgCl{sub 2} concentration of 25 {mu}g/m{sup 3}. With the increase of adsorption temperature {le} 150{sup o}C, the equilibrium adsorptive capacity of HgCl{sub 2} for WPAC was decreased to 1.34 x 10{sup -1} mg HgCl{sub 2}/g PAC. Furthermore, WPAC with higher sulfur contents could adsorb even more HgCl{sub 2}. It was demonstrated that the mechanisms for adsorbing HgCl{sub 2} onto WPAC were physical adsorption and chemisorption at 25 and 150{sup o}C, respectively. 35 refs., 4 figs., 4 tabs.

  18. Biofuels 2020: Biorefineries based on lignocellulosic materials.

    PubMed

    Valdivia, Miguel; Galan, Jose Luis; Laffarga, Joaquina; Ramos, Juan-Luis

    2016-09-01

    The production of liquid biofuels to blend with gasoline is of worldwide importance to secure the energy supply while reducing the use of fossil fuels, supporting the development of rural technology with knowledge-based jobs and mitigating greenhouse gas emissions. Today, engineering for plant construction is accessible and new processes using agricultural residues and municipal solid wastes have reached a good degree of maturity and high conversion yields (almost 90% of polysaccharides are converted into monosaccharides ready for fermentation). For the complete success of the 2G technology, it is still necessary to overcome a number of limitations that prevent a first-of-a-kind plant from operating at nominal capacity. We also claim that the triumph of 2G technology requires the development of favourable logistics to guarantee biomass supply and make all actors (farmers, investors, industrial entrepreneurs, government, others) aware that success relies on agreement advances. The growth of ethanol production for 2020 seems to be secured with a number of 2G plants, but public/private investments are still necessary to enable 2G technology to move on ahead from its very early stages to a more mature consolidated technology. PMID:27470921

  19. Mannan biotechnology: from biofuels to health.

    PubMed

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted. PMID:25025271

  20. ASSESSMENT OF BACTERIA AND VIRUS EMISSIONS AT A REFUSE DERIVED FUEL PLANT AND OTHER WASTE HANDLING FACILITIES

    EPA Science Inventory

    The report is an executive summary of results of a program to compare relative levels of selected airborne bacteria and viruses within and around various waste handling facilities. Facilities included were an incinerator, a waste transfer station, a wastewater treatment plant, a ...

  1. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect

    Sastri, B.; Lee, A.

    2008-09-15

    . Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  2. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect

    Buell, Carol Robin; Childs, Kevin L

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  3. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  4. Fibre optic grating sensors for biofuels

    NASA Astrophysics Data System (ADS)

    Muller, M.; Fabris, J. L.; Kalinowski, H. J.

    2010-09-01

    Biofuels will have more intense impact on the energetic grid of the planet, because known fossil fuels reserves are being exhausted. The biofuel production relies on the transformation process of some organic material in the desired hydrocarbon product. Because of the natural characteristics of the related processes, fibre optic sensors appear to be adequate candidates to be used.

  5. Sustainable production of grain crops for biofuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  6. Biofuels and Fisheries: Risks and Opportunities .

    EPA Science Inventory

    A rapidly developing biofuels industry in the U.S. and around the globe poses novel environmental challenges and opportunities, with implications for teh health and sustainability of fisheries. Changes in land uses and agricultural practices for production of biofuel feedstocks ...

  7. Microbial Stress Tolerance for Biofuels: Systems Biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book provides comprehensive up-to-date understanding and frontier research addressing mechanisms of microbial stress tolerance involved in biofuels using a systems biology approach. It ties closely with the cutting edge technology with a focus on the challenging subject of biofuels. The develo...

  8. Modern biofuels life-cycle effects on black carbon emissions and impacts

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Spak, S.; Mena-Carrasco, M.; Carmichael, G. R.; Chen, Y.; Tsao, C.

    2010-12-01

    The rapid growth of modern biofuels production (primarily ethanol) contributes to increased black carbon and co-pollutant emissions, particularly due to the field burning of agriculture wastes and the indirect land use impacts of forest clearing. U.S. bioenergy policy has already mandated life-cycle emissions thresholds for greenhouse gases from biofuels but there is still a need to incorporate black carbon and other short-lived climate forcers into these metrics. Thus, an understanding of the biofuels sector for black carbon and co-pollutant emissions and impacts remains a critical knowledge gap. Here we combine high-resolution agronomic data and regional chemical transport modeling to consider the life-cycle emissions of black carbon from sugarcane ethanol production in Brazil. Furthermore, we explore the potential for significant radiative forcing from the pre-harvest burning of sugarcane fields and the indirect land use emissions associated with deforestation.

  9. Climate regulation enhances the value of second generation biofuel technology

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Steinbuks, J.; Tyner, W.

    2014-12-01

    Commercial scale implementation of second generation (2G) biofuels has long been 'just over the horizon - perhaps a decade away'. However, with recent innovations, and higher oil prices, we appear to be on the verge of finally seeing commercial scale implementations of cellulosic to liquid fuel conversion technologies. Interest in this technology derives from many quarters. Environmentalists see this as a way of reducing our carbon footprint, however, absent a global market for carbon emissions, private firms will not factor this into their investment decisions. Those interested in poverty and nutrition see this as a channel for lessening the biofuels' impact on food prices. But what is 2G technology worth to society? How valuable are prospective improvements in this technology? And how are these valuations affected by future uncertainties, including climate regulation, climate change impacts, and energy prices? This paper addresses all of these questions. We employ FABLE, a dynamic optimization model for the world's land resources which characterizes the optimal long run path for protected natural lands, managed forests, crop and livestock land use, energy extraction and biofuels over the period 2005-2105. By running this model twice for each future state of the world - once with 2G biofuels technology available and once without - we measure the contribution of the technology to global welfare. Given the uncertainty in how these technologies are likely to evolve, we consider a range cost estimates - from optimistic to pessimistic. In addition to technological uncertainty, there is great uncertainty in the conditions characterizing our baseline for the 21st century. For each of the 2G technology scenarios, we therefore also consider a range of outcomes for key drivers of global land use, including: population, income, oil prices, climate change impacts and climate regulation. We find that the social valuation of 2G technologies depends critically on climate change

  10. Biofuels and the conundrum of sustainability.

    PubMed

    Sheehan, John J

    2009-06-01

    Sustainable energy is the problem of the 21st century. If biofuels want to be part of the solution they must accept a degree of scrutiny unprecedented in the development of a new industry. That is because sustainability deals explicitly with the role of biofuels in ensuring the well-being of our planet, our economy, and our society both today and in the future. Life cycle assessment (LCA) has been the standard framework for assessing sustainability of biofuels. These assessments show that corn ethanol has a marginally lower fossil energy and greenhouse gas footprint compared to petroleum fuel. Sugarcane ethanol and some forms of biodiesel offer substantially lower footprints. New biofuels may offer low footprints. The science of LCA is being stretched to its limits as policy makers consider direct and indirect effects of biofuels on global land and water resources, global ecosystems, air quality, public health, and social justice. PMID:19553101

  11. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  12. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    PubMed Central

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-01-01

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. PMID:16837571

  13. From the Cover: Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    NASA Astrophysics Data System (ADS)

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-07-01

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. corn | soybean | life-cycle accounting | agriculture | fossil fuel

  14. Closing the Carbon Budget in Perennial Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Anderson-Teixeira, K. J.; Bernacchi, C.; Hudiburg, T. W.; Masters, M. D.; DeLucia, E. H.

    2013-12-01

    At present, some 40% of corn grown in the United States, accounting for more than 26 million acres of farmland, is processed for bioethanol. Interest has arisen in converting biofuel production from corn grain ethanol to cellulosic ethanol, derived primarily from cellulose from dedicated energy crops. As many cellulosic biofuel feedstocks are perennial grasses, conversion from annual corn cropping to perennials represents a substantial change in farming practices with the potential to alter the plant-soil relationship in the Midwestern United States. Elimination of annual tillage preserves soils structure, conserving soil carbon and maintaining plant root systems. Five years of perennial grass establishment in former agricultural land in Illinois has shown a significant change in soil carbon pools and fluxes. Atmospheric carbon exchange monitoring combined with vegetation and soil sampling and respiration measurements confirm that in the first 3 years (establishment phase), perennial giant grasses Miscanthus x giganteus and Panicum virgatum rapidly increased belowground carbon allocation >400% and belowground biomass 400-750% compared to corn. Following establishment, perennial grasses maintained below- and aboveground annual biomass production, out-performing corn in both average and drought conditions. Here we offer a quantitative comparison of the carbon allocation pathways of corn and perennial biofuel crops in Midwestern landscapes, demonstrating the carbon benefits of perennial cropping through increased C allocation to root and rhizome structures. Long rotation periods in perennial grasses combined with annual carbon inputs to the soil system are expected to convert these agricultural soils from atmospheric carbon sources to carbon sinks.

  15. Genetic Engineering of Algae for Enhanced Biofuel Production ▿

    PubMed Central

    Radakovits, Randor; Jinkerson, Robert E.; Darzins, Al; Posewitz, Matthew C.

    2010-01-01

    There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes. PMID:20139239

  16. Greenhouse-gas emissions from biofuel use in Asia.

    SciTech Connect

    Streets, D. G.; Waldhoff, S. T.

    1999-07-06

    Biomass is a primary fuel for much of the world's population. In some developing countries it can contribute 80-90% of total primary energy consumption. In Asia as a whole we estimate that biomass contributes about 22 EJ, almost 24% of total energy use. Much of this biomass is combusted in inefficient domestic stoves and cookers, enhancing the formation of products of incomplete combustion (PIC), many of which are greenhouse gases. An inventory of the combustion of biofuels (fuelwood, crop residues, and dried animal waste) in Asia is used to develop estimates of the emissions of carbon-containing greenhouse gases (CO{sub 2},CO, CH{sub 4}, and NMHC) in Asian countries. The data are examined from two perspectives: total carbon released and total global warming potential (GWP) of the gases. We estimate that blofuels contributed 573 Tg-C in 1990, about 28% of the total carbon emissions from energy use in Asia. China (259 Tg-C) and India (187 Tg-C) were the largest emitting countries by far. The majority of the emissions, 504 Tg-C, are in the form of CO{sub 2}; however, emissions of non-CO{sub 2} greenhouse gases are significant: 57 Tg-C as CO, 6.4 Tg-C as CH{sub 4}, and 5.9 Tg-C as NMHC. Because of the high rate of incomplete combustion in typical biofuel stoves and the high GWP coefficients of the products of incomplete combustion, biofuels comprise an even larger share of energy-related emissions when measured in terms of global warming potential (in CO{sub 2} equivalents): 38% over a 20-year time frame and 31% over 100 years. Even when the biofuel is assumed to be harvested on a completely sustainable basis (all CO{sub 2} emissions are reabsorbed in the following growing season), PIC emissions from biofuel combustion account for almost 5% of total carbon emissions and nearly 25% of CO{sub 2} equivalents in terms of short-term (20-year) GWP.

  17. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    PubMed

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels. PMID:22779440

  18. Global Biofuel Use, 1850-2000.

    SciTech Connect

    Fernandes, S. D.; Trautmann, N. M.; Streets, D. G.; Roden, C. A.; Bond, T. C.; Decision and Information Sciences; Univ. of Illinois

    2007-05-30

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, {approx}220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, {approx}180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at {approx}1200 {+-} 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  19. Europe report discloses biofuels' embarrassing secret

    SciTech Connect

    2010-06-15

    According to a recently released European Union (EU) internal document, biofuels can produce up to four times more greenhouse gas emissions than the conventional diesel or gasoline they are intended to replace. Conventional gasoline and diesel emit around 85 kilograms of CO2-equivalent per gigajoule of energy. For biofuels to make any sense, they have to beat this by a margin, or else why bother given all the negative externalities associated with growing biofuels? The EU study suggests that the carbon footprint of typical European biofuels is in the range of 100--150 and North American soybeans score around 340 -- at least four times higher than conventional transportation fuels. By contrast, Latin American sugar cane and bioethanol from palm oil from Southeast Asia, is relatively better at 82 and 74 kilograms per gigajoule, respectively. But even in these cases, it is far from clear if biofuels are superior to conventional fuels due to the many externalities associated with biofuels, including clearing of virgin forests and loss of habitat and biodiversity. Moreover, biofuel production in many regions competes directly with food production, resulting in higher food costs.

  20. Indirect land use change and biofuel policy

    NASA Astrophysics Data System (ADS)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  1. The Third Pacific Basin Biofuels Workshop: Proceedings

    NASA Astrophysics Data System (ADS)

    Among the many compelling reasons for the development of biofuels on remote Pacific islands, several of the most important include: (1) a lack of indigenous fossil fuels necessitates their import at great economic loss to local island economics, (2) ideal conditions for plant growth exist on many Pacific islands to produce yields of biomass feedstocks, (3) gaseous and liquid fuels such as methane, methanol and ethanol manufactured locally from biomass feedstocks are the most viable alternatives to gasoline and diesel fuels for transportation, and (4) the combustion of biofuels is cleaner than burning petroleum products and contributes no net atmospheric CO2 to aggravate the greenhouse effect and the subsequent threat of sea level rise to low islands. Dr. Vic Phillips, HNEI Program Manager of the Hawaii Integrated Biofuels Research Program welcomed 60 participants to the Third Pacific Basin Biofuels Workshop at the Sheraton Makaha Hotel, Waianae, Oahu, on March 27 and 28, 1989. The objectives of the workshop were to update progress since the Second Pacific Basin Biofuels Workshop in April 1987 and to develop a plan for action for biofuels R and D, technology transfer, and commercialization now (immediate attention), in the near-term (less than two years), in the mid-term (three to five years), and in the long-term (more than six years). An emerging theme of the workshop was how the production, conversion, and utilization of biofuels can help increase environmental and economic security locally and globally. Individual papers are processed separately for the data base.

  2. Metabolomics of Clostridial Biofuel Production

    SciTech Connect

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  3. Performance assessment of biofuel production in an algae-based remediation system.

    PubMed

    Wuang, Shy Chyi; Luo, Yanpei Darren; Wang, Simai; Chua, Pei Qiang Danny; Tee, Pok Siang

    2016-03-10

    The production of biofuel from microalgae has been an area of great interest as microalgae have higher productivities than land plants, and certain species have high lipid constituents which are the major feedstock for biodiesel production. One way to enhance the economic feasibility of algal-based biofuel is to couple it with waste remediation. This study investigated the technical feasibility of cultivating Chlorella sp. and Nannochloropsis sp. with fish water for biofuel production. The remediation potential of Chlorella sp. was found to be higher but the lipid yield is lower, when compared to Nannochloropsis sp. Lipid productivities were found to be similar for both types of algae at 1.1-1.3mgL(-1)h(-1). The fatty acid profiles of the obtained lipids were found suitable for biofuel production, and the calorific values were high at 30-32MJ/kg. The results provide insights into lipid production in Chlorella sp. and Nannochloropsis sp., when coupled with waste remediation. PMID:26808868

  4. Contrasts and synergies in different biofuel reports.

    PubMed

    Michalopoulos, A; Landeweerd, L; Van der Werf-Kulichova, Z; Puylaert, P G B; Osseweijer, P

    2011-04-01

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on

  5. Contrasts and synergies in different biofuel reports

    PubMed Central

    Michalopoulos, A.; Landeweerd, L.; Van der Werf-Kulichova, Z.; Puylaert, P. G. B.; Osseweijer, P.

    2011-01-01

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on

  6. Study of combustion and emission characteristics of fuel derived from waste plastics by various waste to energy (W-t-E) conversion processes

    NASA Astrophysics Data System (ADS)

    Hazrat, M. A.; Rasul, M. G.; Khan, M. M. K.

    2016-07-01

    Reduction of plastic wastes by means of producing energy can be treated as a good investment in the waste management and recycling sectors. In this article, conversion of plastics into liquid fuel by two thermo-chemical processes, pyrolysis and gasification, are reviewed. The study showed that the catalytic pyrolysis of homogenous waste plastics produces better quality and higher quantity of liquefied fuel than that of non-catalytic pyrolysis process at a lower operating temperature. The syngas produced from gasification process, which occurs at higher temperature than the pyrolysis process, can be converted into diesel by the Fischer-Tropsch (FT) reaction process. Conducive bed material like Olivine in the gasification conversion process can remarkably reduce the production of tar. The waste plastics pyrolysis oil showed brake thermal efficiency (BTE) of about 27.75%, brake specific fuel consumption (BSFC) of 0.292 kg/kWh, unburned hydrocarbon emission (uHC) of 91 ppm and NOx emission of 904 ppm in comparison with the diesel for BTE of 28%, BSFC of 0.276 kg/kWh, uHC of 57 ppm and NOx of 855 ppm. Dissolution of Polystyrene (PS) into biodiesel also showed the potential of producing alternative transport fuel. It has been found from the literature that at higher engine speed, increased EPS (Expanded Polystyrene) quantity based biodiesel blends reduces CO, CO2, NOx and smoke emission. EPS-biodiesel fuel blend increases the brake thermal efficiency by 7.8%, specific fuel consumption (SFC) by 7.2% and reduces brake power (Pb) by 3.2%. More study using PS and EPS with other thermoplastics is needed to produce liquid fuel by dissolving them into biodiesel and to assess their suitability as a transport fuel. Furthermore, investigation to find out most suitable W-t-E process for effective recycling of the waste plastics as fuel for internal combustion engines is necessary to reduce environmental pollution and generate revenue which will be addressed in this article.

  7. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  8. Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots).

    PubMed

    Jung, Kyung-Won; Kim, Kipal; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-01-01

    The collected roots of Undaria pinnatifida, the main waste in farming sites, accounting for 40-60% of annual production, was pyrolyzed under temperature ranging from 200 to 800°C to evaluate the influence of pyrolysis temperature on biochar properties and phosphate adsorption capacity. It was confirmed that an increase in the pyrolysis temperature led to a decrease of the yield of biochar, while ash content remained almost due to carbonization followed by mineralization. Elemental analysis results indicated an increase in aromaticity and decreased polarity at a high pyrolysis temperature. When the pyrolysis temperature was increased up to 400°C, the phosphate adsorption capacity was enhanced, while a further increase in the pyrolysis temperature lowered the adsorption capacity due to blocked pores in the biochar during pyrolysis. Finally, a pot experiment revealed that biochar derived from waste-marine macroalgae is a potent and eco-friendly alternative material for fertilizer after phosphate adsorption. PMID:26482944

  9. Biofuels: A Solution for Climate Change

    SciTech Connect

    Woodward, S.

    1999-10-04

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  10. Downstream Processing of Synechocystis for Biofuel Production

    NASA Astrophysics Data System (ADS)

    Sheng, Jie

    Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without preextraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant

  11. Biofuel Potential of Cellulosic Double Crops Across the U.S. Corn-Soybean Belt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts by researchers and policy makers to reduce U.S. dependence on imported oil include investigation of biofuels derived from plant biomass, which raises concern over fuel vs. food competition. One solution that addresses the concern of fuel crops displacing food crops is to raise cellulosic dou...

  12. Conventional and molecular breeding for improvement of biofuel crops: past, present and future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    First-generation biofuels are derived from food and feed crops rich in sugar, starch, or oil, such as sugarcane (Saccharum hyb.), maize (Zea mays), or soybean (Glycine max), as these are easily converted into liquid fuels. However, these crops alone cannot meet the projected demand for fuel, so sec...

  13. Sub-surface soil carbon changes affects biofuel greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in direct soil organic carbon (SOC) can have a major impact on overall greenhouse gas (GHG) emissions from biofuels when using life-cycle assessment (LCA). Estimated changes in SOC, when accounted for in an LCA, are typically derived from near-surface soil depths (<30 cm). Changes in subsurf...

  14. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes

    SciTech Connect

    Kania, John; Qiao, Ming; Woods, Elizabeth M.; Cortright, Randy D.; Myren, Paul

    2015-12-15

    The present invention includes improved systems and methods for producing biomass-derived feedstocks for biofuel and biochemical manufacturing processes. The systems and methods use components that are capable of transferring relatively high concentrations of solid biomass utilizing pressure variations between vessels, and allows for the recovery and recycling of heterogeneous catalyst materials.

  15. Hydrothermal liquefaction of municipal wastewater cultivated algae: Increasing overall sustainability and value streams of algal biofuels

    NASA Astrophysics Data System (ADS)

    Roberts, Griffin William

    The forefront of the 21st century presents ongoing challenges in economics, energy, and environmental remediation, directly correlating with priorities for U.S. national security. Displacing petroleum-derived fuels with clean, affordable renewable fuels represents a solution to increase energy independence while stimulating economic growth and reducing carbon-based emissions. The U.S. government embodied this goal by passing the Energy Independence and Security Act (EISA) in 2007, mandating 36 billion gallons of annual biofuel production by 2022. Algae possess potential to support EISA goals and have been studied for the past 30-50 years as an energy source due to its fast growth rates, noncompetitive nature to food markets, and ability to grow using nutrient waste streams. Algae biofuels have been identified by the National Research Council to have significant sustainability concerns involving water, nutrient, and land use. Utilizing municipal wastewater to cultivate algae provides both water and nutrients needed for growth, partially alleviating these concerns. This dissertation demonstrates a pathway for algae biofuels which increases both sustainability and production of high-value products. Algae are cultivated in pilot-scale open ponds located at the Lawrence Wastewater Treatment Plant (Lawrence, KS) using solely effluent from the secondary clarifier, prior to disinfection and discharge, as both water and nutrient sources. Open ponds were self-inoculated by wastewater effluent and produced a mixed-species culture of various microalgae and macroalgae. Algae cultivation provided further wastewater treatment, removing both nitrogen and phosphorus, which have devastating pollution effects when discharged to natural watersheds, especially in large draining watersheds like the Gulf Coast. Algae demonstrated significant removal of other trace metals such as iron, manganese, barium, aluminum, and zinc. Calcium did not achieve high removal rate but did present a

  16. Selection, breeding and engineering of microalgae for bioenergy and biofuel production.

    PubMed

    Larkum, Anthony W D; Ross, Ian L; Kruse, Olaf; Hankamer, Ben

    2012-04-01

    Microalgal production technologies are seen as increasingly attractive for bioenergy production to improve fuel security and reduce CO(2) emissions. Photosynthetically derived fuels are a renewable, potentially carbon-neutral and scalable alternative reserve. Microalgae have particular promise because they can be produced on non-arable land and utilize saline and wastewater streams. Furthermore, emerging microalgal technologies can be used to produce a range of products such as biofuels, protein-rich animal feeds, chemical feedstocks (e.g. bioplastic precursors) and higher-value products. This review focuses on the selection, breeding and engineering of microalgae for improved biomass and biofuel conversion efficiencies. PMID:22178650

  17. NASA Now: Biology: Extreme Green Biofuels

    NASA Video Gallery

    Learn what makes something a “green” technology, how scientists are using climactic adaptation in their research and what aspects of plants NASA is most interested in for generating biofuel.

  18. Future of Liquid Biofuels for APEC Economies

    SciTech Connect

    Milbrandt, A.; Overend, R. P.

    2008-05-01

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  19. Graphene based enzymatic bioelectrodes and biofuel cells

    NASA Astrophysics Data System (ADS)

    Karimi, Anahita; Othman, Ali; Uzunoglu, Aytekin; Stanciu, Lia; Andreescu, Silvana

    2015-04-01

    The excellent electrical conductivity and ease of functionalization make graphene a promising material for use in enzymatic bioelectrodes and biofuel cells. Enzyme based biofuel cells have attracted substantial interest due to their potential to harvest energy from organic materials. This review provides an overview of the functional properties and applications of graphene in the construction of biofuel cells as alternative power sources. The review covers the current state-of-the-art research in graphene based nanomaterials (physicochemical properties and surface functionalities), the role of these parameters in enhancing electron transfer, the stability and activity of immobilized enzymes, and how enhanced power density can be achieved. Specific examples of enzyme immobilization methods, enzyme loading, stability and function on graphene, functionalized graphene and graphene based nanocomposite materials are discussed along with their advantages and limitations. Finally, a critical evaluation of the performance of graphene based enzymatic biofuel cells, the current status, challenges and future research needs are provided.

  20. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  1. A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation.

    PubMed

    Zhong, Yuan; Ruan, Zhenhua; Zhong, Yingkui; Archer, Steven; Liu, Yan; Liao, Wei

    2015-03-01

    High energy demand hinders the development and application of aerobic microbial biofuel production from lignocellulosic materials. In order to address this issue, this study focused on developing an integrated system including anaerobic digestion and aerobic fungal fermentation to convert corn stover, animal manure and food wastes into microbial lipids for biodiesel production. Dairy manure and food waste were first anaerobically digested to produce energy and solid digestate (AD fiber). AD fiber and corn stover were then processed by a combined alkali and acid hydrolysis, followed by fungal lipid accumulation. The integrated process can generate 1L biodiesel and 1.9 kg methane from 12.8 kg dry dairy manure, 3.1 kg dry food wastes and 12.2 kg dry corn stover with a positive net energy of 57 MJ, which concludes a self-sustaining lignocellulosic biodiesel process and provides a new route to co-utilize corn stover and organic wastes for advanced biofuel production. PMID:25543542

  2. Hydrothermal liquefaction of municipal wastewater cultivated algae: Increasing overall sustainability and value streams of algal biofuels

    NASA Astrophysics Data System (ADS)

    Roberts, Griffin William

    The forefront of the 21st century presents ongoing challenges in economics, energy, and environmental remediation, directly correlating with priorities for U.S. national security. Displacing petroleum-derived fuels with clean, affordable renewable fuels represents a solution to increase energy independence while stimulating economic growth and reducing carbon-based emissions. The U.S. government embodied this goal by passing the Energy Independence and Security Act (EISA) in 2007, mandating 36 billion gallons of annual biofuel production by 2022. Algae possess potential to support EISA goals and have been studied for the past 30-50 years as an energy source due to its fast growth rates, noncompetitive nature to food markets, and ability to grow using nutrient waste streams. Algae biofuels have been identified by the National Research Council to have significant sustainability concerns involving water, nutrient, and land use. Utilizing municipal wastewater to cultivate algae provides both water and nutrients needed for growth, partially alleviating these concerns. This dissertation demonstrates a pathway for algae biofuels which increases both sustainability and production of high-value products. Algae are cultivated in pilot-scale open ponds located at the Lawrence Wastewater Treatment Plant (Lawrence, KS) using solely effluent from the secondary clarifier, prior to disinfection and discharge, as both water and nutrient sources. Open ponds were self-inoculated by wastewater effluent and produced a mixed-species culture of various microalgae and macroalgae. Algae cultivation provided further wastewater treatment, removing both nitrogen and phosphorus, which have devastating pollution effects when discharged to natural watersheds, especially in large draining watersheds like the Gulf Coast. Algae demonstrated significant removal of other trace metals such as iron, manganese, barium, aluminum, and zinc. Calcium did not achieve high removal rate but did present a

  3. Assessing Biofuel Crop Invasiveness: A Case Study

    PubMed Central

    Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti

    2009-01-01

    Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412

  4. INEL cold test pit demonstration of improvements in information derived from non-intrusive geophysical methods over buried waste sites. Phase 1, Final report

    SciTech Connect

    Not Available

    1993-09-08

    The objectives of this research project were to lay the foundation for further improvement in the use of geophysical methods for detection of buried wastes, and to increase the information content derived from surveys. Also, an important goal was to move from mere detection to characterization of buried wastes. The technical approach to achieve these objectives consisted of: (1) Collect a data set of high spatial density; (2) Acquire data with multiple sensors and integrate the interpretations inferred from the various sensors; (3) Test a simplified time domain electromagnetic system; and (4) Develop imaging and display formats of geophysical data readily understood by environmental scientists and engineers. The breadth of application of this work is far reaching. Not only are uncontrolled waste pits and trenches, abandoned underground storage tanks, and pipelines found throughout most US DOE facilities, but also at military installations and industrial facilities. Moreover, controlled land disposal sites may contain ``hot spots`` where drums and hazardous material may have been buried. The technologies addressed by the R&D will benefit all of these activities.

  5. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    NASA Astrophysics Data System (ADS)

    Kou, Nannan

    Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn

  6. Biological nitrate removal using a food waste-derived carbon source in synthetic wastewater and real sewage.

    PubMed

    Zhang, Haowei; Jiang, Jianguo; Li, Menglu; Yan, Feng; Gong, Changxiu; Wang, Quan

    2016-01-15

    The production of volatile fatty acids (VFAs) from food waste to improve biological nutrient removal has drawn much attention. In this study, acidogenic liquid from food waste was used as an alternative carbon source for synthetic wastewater treatment. C/N ratios of 5 and 6 were suitable for denitrification, and the change in acidogenic liquid composition had no negative effect on denitrification. The denitrification rates using optimal carbon-to-nitrate ratios of acidogenic liquid were more than 25 mg NO3-N/(gVSS·h). At the same time, acidogenic liquid was used to improve nutrient removal from summer and winter sewage. C/N ratios of 5 and 6 were acceptable for summer sewage treatment. Total nitrogen in the final effluent was less than 7 mg/L. Two additional hours were required for winter sewage treatment, and the C/N ratio had to be >6. PMID:26547269

  7. Potential for transfer of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Senftenberg from contaminated food waste derived compost and anaerobic digestate liquid to lettuce plants.

    PubMed

    Murphy, Suzannah; Gaffney, Michael T; Fanning, Seamus; Burgess, Catherine M

    2016-10-01

    The diversion of food wastes from landfill to sustainable disposal methods, such as composting and anaerobic digestion, has led to an increase in the soil amendment products that are now commercially available and which are derived from both of these processes. The use of such products as soil amendments during the production of ready-to-eat (RTE) crops is increasing worldwide. The aim of this study was to investigate the potential of three well-recognised bacterial pathogens of importance to public health, namely Escherichia coli O157:H7, Salmonella Senftenberg and Listeria monocytogenes, to become internalised in lettuce plants from peat growing media amended with contaminated food waste derived compost and anaerobic digestion liquid. The results demonstrated both S. Senftenberg and E. coli O157:H7 are capable of internalisation at lower inoculation levels, compared to previous studies. The internalisation was visualised through confocal microscopy. Internalisation of L. monocytogenes did not occur, however significant levels of L. monocytogenes contamination occurred on the non-sterilised plant surface. Assessing the internalisation potential for each of these pathogens, through the compost and anaerobic digestate matrices, allows for better risk assessment of the use of these products in a horticultural setting. PMID:27375239

  8. Comparative in vitro cytotoxicity assessment of airborne particulate matter emitted from stationary engine fuelled with diesel and waste cooking oil-derived biodiesel

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Pavagadhi, Shruti; Sethu, Swaminathan; Hande, M. Prakash; Balasubramanian, Rajasekhar

    2012-12-01

    Biodiesel derived from waste cooking oil (WCO) is gaining increased attention as an alternative fuel due to lower particulate emissions and other beneficial factors such as low cost and utilization of waste oil. However, very little information is available on toxicity of airborne particulate matter (PM) emitted from biodiesel combustion. In this study, PM emitted from WCO-derived biodiesel (B100) was analyzed for its toxic potential together with ultra low sulphur diesel (ULSD) as a reference fuel and their blend (B50). Human lung epithelial carcinoma cells (A549) were used for this comparative toxicity study. Results indicate that cytotoxicity and oxidative stress were higher for B100 relative to ULSD. Furthermore, caspase 3/7 activity indicates that cell death induced by B100 was due to either caspase independent apoptotic process or other programmed cell death pathways. The toxicity was also evaluated for different engine load conditions. It was observed that at lower loads there was no significant difference in the toxicological response of B100 and ULSD. However, with increase in the engine load, B100 and B50 showed significantly higher toxicity and oxidative stress compared to ULSD.

  9. Essays concerning the cellulosic biofuel industry

    NASA Astrophysics Data System (ADS)

    Rosburg, Alicia Sue

    Despite market-based incentives and mandated production, the U.S. cellulosic biofuel industry has been slow to develop. This dissertation explores the economic factors that have limited industry development along with important economic tradeoffs that will be encountered with commercial-scale production. The first essay provides an overview of the policies, potential, and challenges of the biofuel industry, with a focus on cellulosic biofuel. The second essay considers the economics of cellulosic biofuel production. Breakeven models of the local feedstock supply system and biofuel refining process are constructed to develop the Biofuel Breakeven (BioBreak) program, a stochastic, Excel-based program that evaluates the feasibility of local biofuel and biomass markets under various policy and market scenarios. An application of the BioBreak program is presented using expected market conditions for 14 local cellulosic biofuel markets that vary by feedstock and location. The economic costs of biofuel production identified from the BioBreak application are higher than frequently anticipated and raise questions about the potential of cellulosic ethanol as a sustainable and economical substitute for conventional fuels. Program results also are extended using life-cycle analysis to evaluate the cost of reducing GHG emissions by substituting cellulosic ethanol for conventional fuel. The third essay takes a closer look at the economic trade-offs within the biorefinery industry and feedstock production processes. A long-run biomass production through bioenergy conversion cost model is developed that incorporates heterogeneity of biomass suppliers within and between local markets. The model builds on previous literature by treating biomass as a non-commoditized feedstock and relaxes the common assumption of fixed biomass density and price within local markets. An empirical application is provided for switchgrass-based ethanol production within U.S. crop reporting districts

  10. Liquid biofuels - can they meet our expectations?

    NASA Astrophysics Data System (ADS)

    Glatzel, G.

    2012-04-01

    Liquid biofuels are one of the options for reducing the emission of greenhouse gases and the dependence on fossil fuels. This is reflected in the DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of biofuels or other renewable fuels for transport. The promotion of E10, an automotive fuel containing 10 percent bioethanol, is based on this directive. At present almost all bioethanol is produced from agricultural crops such as maize, corn or sugar beet and sugar cane in suitable climates. In view of shortages and rising prices of food, in particular in developing countries, the use of food and feed crops for biofuel production is increasingly criticized. Alternative sources of biomass are perennial grasses and wood, whose cellulose fraction can be converted to alcohol by the so called "second generation" processes, which seem to be close to commercial deployment. The use of the total plant biomass increases the biofuel yield per hectare as compared to conventional crops. Of special interest for biofuel production is woody biomass from forests as this avoids competition with food production on arable land. Historically woody biomass was for millennia the predominant source of thermal energy. Before fossil fuels came into use, up to 80 percent of a forest was used for fuel wood, charcoal and raw materials such as potash for trade and industry. Now forests are managed to yield up to 80 percent of high grade timber for the wood industry. Replacing sophisticatedly managed forests by fast growing biofuel plantations could make economic sense for land owners when a protected market is guaranteed by politics, because biofuel plantations would be highly mechanized and cheap to operate, even if costs for certified planting material and fertilizer are added. For forest owners the decision to clear existing long rotation forests for biofuel plantations would still be weighty because of the extended time of decades required to rebuild a

  11. Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics

    ERIC Educational Resources Information Center

    Montefrio, Marvin Joseph F.

    2012-01-01

    Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

  12. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  13. Terrestrial and unmanned aerial system imagery for deriving photogrammetric three-dimensional point clouds and volume models of mass wasting sites

    NASA Astrophysics Data System (ADS)

    Hämmerle, Martin; Schütt, Fabian; Höfle, Bernhard

    2016-04-01

    Three-dimensional (3-D) geodata of mass wasting sites are important to model surfaces, volumes, and their changes over time. With a photogrammetric approach commonly known as structure from motion, 3-D point clouds can be derived from image collections in a straightforward way. The quality of point clouds covering a quarry dump derived from terrestrial and aerial imagery is compared and assessed. A comprehensive set of quality indicators is calculated and compared to surveyed reference data and to a terrestrial LiDAR point cloud. The examined indicators are completeness of coverage, point density, vertical accuracy, multiscale point cloud distance, scaling accuracy, and dump volume. It is found that the photogrammetric datasets generally represent the examined dump well with, for example, an area coverage of up to 90% and 100% in case of terrestrial and aerial imagery, respectively, a maximum scaling difference of 0.62%, and volume estimations reaching up to 100% of the LiDAR reference. Combining the advantages of 3-D geodata derived from terrestrial (high detail, accurate volume calculation even with a small number of input images) and aerial images (high coverage) can be a promising method to further improve the quality of 3-D geodata derived with low-cost approaches.

  14. Assessment of the Fluorescence Spectra Characteristics of Dissolved Organic Matter Derived from Organic Waste Composting Based on Projection Pursuit Classification (PPC).

    PubMed

    Wei, Zi-min; Wang, Xing-lei; Pan, Hong-wei; Zhao, Yue; Xie, Xin-yu; Zhao, Yi; Zhang, Lin-xue; Zhao, Tao-zhi

    2015-10-01

    The characteristics of fluorescence spectra of dissolved organic matter (DOM) derived from composting is one of the key ways to assess the compost maturity. However, the existing methods mainly focus on the qualitative description for the humification degree of compost. In this paper, projection pursuit classification (PPC) was conducted to quantitative assess the grades of compost maturity, based on the characteristics of fluorescence spectra of DOM. Eight organic wastes (chicken manure, swine manure, kitchen waste, lawn waste, fruits and vegetables waste, straw, green waste, and municipal solid waste) composting were conducted, the germination percentage (GI) and fluorescence spectra of DOM were measured during composting. Statistic analysis with all fluorescence parameters of DOM indicated that I436/I383 (a ratio between the fluorescence intensities at 436 and 383 nm in excitation spectra), FLR (an area ratio between fulvic-like region from 308 to 363 nm and total region in emission spectra), P(HA/Pro) (a regional integration ratio between humic acid-like region to protein-like region in excitation emission matrix (EEM) spectra), A4/A1 (an area ratio of the last quarter to the first quarter in emission spectra), r(A,C) (a ratio between the fluorescence intensities of peak A and peak C in EEM spectra) were correlated with each other (p < 0.01), suggesting that this fluorescence parameters could be considered as comprehensive evaluation index system of PPC. Subsequently, the four degrades of compost maturity included the best degree of maturity (I, GI > 80%), better degree of compost maturity (II, 60% < GI < 80%), maturity (III, 50% < GI < 60%), and immaturity (IV, GI < 50%) were divided according the GI value during composting. The corresponding fluorescence parameter values were calculated at each degrade of compost maturity. Then the projection values were calculated based on PPC considering the above fluorescence parameter values. The projection value was 2

  15. Plant sciences and biofuels production

    SciTech Connect

    Ranney, J.W.; Cushman, J.H.

    1987-04-01

    Integrating the production of lignocellulosic energy crops with conversion into efficient biofuel pathways requires the identification and prioritization of plant qualities that affect the conversion processes. When desirable or undesirable characteristics have been identified, potential crop species must be evaluated to determine how much genetic improvement is possible while maintaining a thriving fast-growing plant. Lignin, as an example, can be important in both thermochemical and biochemical conversion systems. Lignin's chemical composition is complex and varies among species. Lignin is energetically expensive for plants to produce, and it plays an important role in plant viability. To improve biomass feedstocks, lignin may be desired in increased or decreased amounts depending on the fuel pathway involved. Changes in chemical composition may also be desirable. The lignin component of biomass feedstocks can be significantly affected, both in amount and in chemical composition, by species selection. Changing lignin content or chemical composition of a species is possible but will be more difficult, more expensive, and may affect plant growth and survival. Other biomass components are similar. Such considerations will strongly affect the choice and efficiency of breeding and bioengineering strategies. The selection of traits for improvement in energy crops is an important decision which must be made by plant scientists and investigators developing conversion technologies working as a team. 5 figs.

  16. Developments and perspectives of photobioreactors for biofuel production.

    PubMed

    Morweiser, Michael; Kruse, Olaf; Hankamer, Ben; Posten, Clemens

    2010-07-01

    The production of biofuels from microalgae requires efficient photobioreactors in order to meet the tight constraints of energy efficiency and economic profitability. Current cultivation systems are designed for high-value products rather than for mass production of cheap energy carriers. Future bioreactors will imply innovative solutions in terms of energy efficiency, light and gas transfer or attainable biomass concentration to lower the energy demand and cut down production costs. A new generation of highly developed reactor designs demonstrates the enormous potential of photobioreactors. However, a net energy production with microalgae remains challenging. Therefore, it is essential to review all aspects and production steps for optimization potential. This includes a custom process design according to production organism, desired product and production site. Moreover, the potential of microalgae to synthesize valuable products additionally to the energetic use can be integrated into a production concept as well as waste streams for carbon supply or temperature control. PMID:20535467

  17. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    PubMed

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems. PMID:19878969

  18. Quantitative uncertainty analysis of Life Cycle Assessment for algal biofuel production.

    PubMed

    Sills, Deborah L; Paramita, Vidia; Franke, Michael J; Johnson, Michael C; Akabas, Tal M; Greene, Charles H; Tester, Jefferson W

    2013-01-15

    As a result of algae's promise as a renewable energy feedstock, numerous studies have used Life Cycle Assessment (LCA) to quantify the environmental performance of algal biofuels, yet there is no consensus of results among them. Our work, motivated by the lack of comprehensive uncertainty analysis in previous studies, uses a Monte Carlo approach to estimate ranges of expected values of LCA metrics by incorporating parameter variability with empirically specified distribution functions. Results show that large uncertainties exist at virtually all steps of the biofuel production process. Although our findings agree with a number of earlier studies on matters such as the need for wet lipid extraction, nutrients recovered from waste streams, and high energy coproducts, the ranges of reported LCA metrics show that uncertainty analysis is crucial for developing technologies, such as algal biofuels. In addition, the ranges of energy return on (energy) invested (EROI) values resulting from our analysis help explain the high variability in EROI values from earlier studies. Reporting results from LCA models as ranges, and not single values, will more reliably inform industry and policy makers on expected energetic and environmental performance of biofuels produced from microalgae. PMID:23237457

  19. Mapping grasslands suitable for cellulosic biofuels in the Greater Platte River Basin, United States

    USGS Publications Warehouse

    Wylie, Bruce K.; Gu, Yingxin

    2012-01-01

    Biofuels are an important component in the development of alternative energy supplies, which is needed to achieve national energy independence and security in the United States. The most common biofuel product today in the United States is corn-based ethanol; however, its development is limited because of concerns about global food shortages, livestock and food price increases, and water demand increases for irrigation and ethanol production. Corn-based ethanol also potentially contributes to soil erosion, and pesticides and fertilizers affect water quality. Studies indicate that future potential production of cellulosic ethanol is likely to be much greater than grain- or starch-based ethanol. As a result, economics and policy incentives could, in the near future, encourage expansion of cellulosic biofuels production from grasses, forest woody biomass, and agricultural and municipal wastes. If production expands, cultivation of cellulosic feedstock crops, such as switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus species), is expected to increase dramatically. The main objective of this study is to identify grasslands in the Great Plains that are potentially suitable for cellulosic feedstock (such as switchgrass) production. Producing ethanol from noncropland holdings (such as grassland) will minimize the effects of biofuel developments on global food supplies. Our pilot study area is the Greater Platte River Basin, which includes a broad range of plant productivity from semiarid grasslands in the west to the fertile corn belt in the east. The Greater Platte River Basin was the subject of related U.S. Geological Survey (USGS) integrated research projects.

  20. The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience

    NASA Astrophysics Data System (ADS)

    Jäger, Alexander; Ortner, Tina; Kahr, Heike

    2015-04-01

    The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience The successful use of bioethanol as a fuel requires its widespread acceptance by consumers. Due to the planned introduction of a 10 per cent proportion of bioethanol in petrol in Austria, the University of Applied Sciences Upper Austria carried out a representative opinion poll to collect information on the population's acceptance of biofuels. Based on this survey, interviews with important stakeholders were held to discuss the results and collect recommendations on how to increase the information level and acceptance. The results indicate that there is a lack of interest and information about biofuels, especially among young people and women. First generation bioethanol is strongly associated with the waste of food resources, but the acceptance of the second generation, produced from agricultural remnants like straw from wheat or corn, is considerably higher. The interviewees see more transparent, objective and less technical information about biofuels as an essential way to raise the information level and acceptance rate. As the production of bioethanol from straw is now economically feasible, there is one major scientific question to answer: In which way does the withdrawal of straw from the fields affect the formation of humus and, therefore, the quality of the soil? An interdisciplinary approach of researchers in the fields of bioethanol production, geoscience and agriculture in combination with political decision makers are required to make the technologies of renewable bioenergy acceptable to the population.

  1. A resilience perspective on biofuel production.

    PubMed

    Mu, Dongyan; Seager, Thomas P; Rao, P Suresh C; Park, Jeryang; Zhao, Fu

    2011-07-01

    The recent investment boom and collapse of the corn ethanol industry calls into question the long-term sustainability of traditional approaches to biofuel technologies. Compared with petroleum-based transportation fuels, biofuel production systems are more closely connected to complex and variable natural systems. Especially as biofeedstock production itself becomes more independent of fossil fuel-based supports, stochasticity will become an increasingly important, inherent feature of biofuel feedstock production systems. Accordingly, a fundamental change in design philosophy is necessary to ensure the long-term viability of the biofuels industry. To respond effectively to unexpected disruptions, the new approach will require systems to be designed for resilience (indicated by diversity, efficiency, cohesion, and adaptability) rather than more narrowly defined measures of efficiency. This paper addresses important concepts in the design of coupled engineering-ecological systems (resistance, resilience, adaptability, and transformability) and examines biofuel conversion technologies from a resilience perspective. Conversion technologies that can accommodate multiple feedstocks and final products are suggested to enhance the diversity and flexibility of the entire industry. PMID:21309075

  2. Biofuel combustion chemistry: from ethanol to biodiesel.

    PubMed

    Kohse-Höinghaus, Katharina; Osswald, Patrick; Cool, Terrill A; Kasper, Tina; Hansen, Nils; Qi, Fei; Westbrook, Charles K; Westmoreland, Phillip R

    2010-05-10

    Biofuels, such as bio-ethanol, bio-butanol, and biodiesel, are of increasing interest as alternatives to petroleum-based transportation fuels because they offer the long-term promise of fuel-source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibility of these substances with current fuel-delivery infrastructure and engine performance, and the competition between biofuel and food production. However, the combustion chemistry of the compounds that constitute typical biofuels, including alcohols, ethers, and esters, has not received similar public attention. Herein we highlight some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels. The discussion focuses on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions, with an emphasis on transportation fuels. New insights into the vastly diverse and complex chemical reaction networks of biofuel combustion are enabled by recent experimental investigations and complementary combustion modeling. Understanding key elements of this chemistry is an important step towards the intelligent selection of next-generation alternative fuels. PMID:20446278

  3. Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis.

    PubMed

    Islam, Mohammad Rofiqul; Parveen, Momtaz; Haniu, Hiroyuki

    2010-06-01

    Agricultural waste in the form of sugarcane bagasse was pyrolyzed in a fixed-bed fire-tube heating reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and feed size on the product yields. Final temperature range studied was between 375 and 575 degrees C and the highest liquid product yield was obtained at 475 degrees C. Liquid products obtained under the most suitable conditions were characterized by physical properties, elemental analysis, GCV, FT-IR, (1)H NMR analysis and distillation. The empirical formula of the bio-oil with heating value of 23.5MJ/kg was established as CH(1.68)O(0.557)N(0.012). Comparison with other approaches showed that the liquid product yield by this simpler reactor system was higher with better physico-chemical properties as fuel. These findings show that fixed-bed fire-tube heating pyrolysis is a good option for production of bio-oils from biomass solid wastes. PMID:20133132

  4. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize.

    PubMed

    Eyheraguibel, B; Silvestre, J; Morard, P

    2008-07-01

    A physico-chemical process has been developed to transform and enhance lignocellulosic waste in liquid humic extracts: humic-like substances (HLS). The aim of this study was to determine the effects of HLS on plant physiology in order to consider their agricultural use as organic fertilizers. The effects of HLS were evaluated on maize seed germination, and their impact on growth, development and mineral nutrition was studied on maize plants cultivated under hydroponic conditions. The experimental results showed that HLS do not increase the percentage and rate of germination but enhance the root elongation of seeds thus treated. Positive effects were also observed on the whole plant growth as well as on root, shoot and leaf biomass. These effects can be related to the high water and mineral consumption of plants undergoing this treatment. The high water efficiency indicated that such plants produce more biomass than non-treated plants for the same consumption of the nutrient solution. Furthermore, the use of HLS induced a flowering precocity and modified root development suggesting a possible interaction of HLS with developmental processes. Considering the beneficial effect of HLS on different stages of plant growth, their use may present various scientific and economic advantages. The physico-chemical transformation of sawdust is an interesting way of enhancing organic waste materials. PMID:17962015

  5. Theoretical lessons for increasing algal biofuel: Evolution of oil accumulation to avert carbon starvation in microalgae.

    PubMed

    Akita, Tetsuya; Kamo, Masashi

    2015-09-01

    Microalgae-derived oil is considered as a feasible alternative to fossil-derived oil. To produce more algal biomass, both algal population size and oil accumulation in algae must be maximized. Most of the previous studies have concentrated on only one of these issues, and relatively little attention has been devoted to considering the tradeoff between them. In this paper, we first theoretically investigated evolutionary reasons for oil accumulation and then by coupling population and evolutionary dynamics, we searched for conditions that may provide better yields. Using our model, we assume that algae allocate assimilated carbon to growth, maintenance, and carbon accumulation as biofuel and that the amount of essential materials (carbon and nitrate) are strongly linked in fixed proportions. Such stoichiometrically explicit models showed that (i) algae with more oil show slower population growth; therefore, the use of such algae results in lower total yields of biofuel and (ii) oil accumulation in algae is caused by carbon and not nitrate starvation. The latter can be interpreted as a strategy for avoiding the risk of increased death rate by carbon starvation. Our model also showed that both strong carbon starvation and moderately limited nitrate will promote total biofuel production. Our results highlight considering the life-history traits for a higher total yields of biofuel, which leads to insight into both establishing a prolonged culture and collection of desired strains from a natural environment. PMID:26047852

  6. Production of biofuel using molluscan pseudofeces derived from algal cells

    SciTech Connect

    Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

    2012-08-28

    Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

  7. Impacts of Climate Change on Biofuels Production

    SciTech Connect

    Melillo, Jerry M.

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  8. Economics of Current and Future Biofuels

    SciTech Connect

    Tao, L.; Aden, A.

    2009-06-01

    This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

  9. Omics in Chlamydomonas for Biofuel Production.

    PubMed

    Aucoin, Hanna R; Gardner, Joseph; Boyle, Nanette R

    2016-01-01

    In response to demands for sustainable domestic fuel sources, research into biofuels has become increasingly important. Many challenges face biofuels in their effort to replace petroleum fuels, but rational strain engineering of algae and photosynthetic organisms offers a great deal of promise. For decades, mutations and stress responses in photosynthetic microbiota were seen to result in production of exciting high-energy fuel molecules, giving hope but minor capability for design. However, '-omics' techniques for visualizing entire cell processing has clarified biosynthesis and regulatory networks. Investigation into the promising production behaviors of the model organism C. reinhardtii and its mutants with these powerful techniques has improved predictability and understanding of the diverse, complex interactions within photosynthetic organisms. This new equipment has created an exciting new frontier for high-throughput, predictable engineering of photosynthetically produced carbon-neutral biofuels. PMID:27023246

  10. In Defense of Biofuels, Done Right

    SciTech Connect

    Kline, Keith L; Dale, Virginia H; Lee, Russell; Leiby, Paul Newsome

    2009-01-01

    Recent claims attibuting rising fuel costs and deforestation to biofuels are examined. Given a priority to protect biodiversity and ecosystem services, it is important to further explore the drivers for conversion of land at the frontier and to consider the effects, positive and negative, that U.S. biofuel policies could have in these areas. This means it is critical to distinguish between valid concerns calling for caution and alarmist criticisms that attribute complex problems solely to biofuels. This article discusses how plant-based fuels developed in economically and environmentally sensible ways can contribute significantly to the nation s indeed, the world s energy security while providing other benefits and reducing pressures on native ecosystems.

  11. Biofuel-Promoted Polychlorinated Dibenzodioxin/furan Formation in an Iron-Catalyzed Diesel Particle Filter.

    PubMed

    Heeb, Norbert V; Rey, Maria Dolores; Zennegg, Markus; Haag, Regula; Wichser, Adrian; Schmid, Peter; Seiler, Cornelia; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Bürki, Samuel; Zimmerli, Yan; Czerwinski, Jan; Mayer, Andreas

    2015-08-01

    Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 μg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels. PMID:26176879

  12. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y.-Y.

    1976-01-01

    An estimate is obtained of the yearly supply of organic material for conversion to fuels, the energy potential is evaluated, and the fermentation and pyrolysis conversion processes are discussed. An investigation is conducted of the estimated cost of fuel from organics and the conclusions of an overall evaluation are presented. It is found that climate, land availability and economics of agricultural production and marketing, food demand, fertilizer shortage, and water availability combine to cast doubts on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. Less controversial is the utilization of agricultural, industrial, and domestic waste as a conversion feedstock. The evaluation of a demonstration size system is recommended.

  13. Removal of azo dye by a highly graphitized and heteroatom doped carbon derived from fish waste: Adsorption equilibrium and kinetics.

    PubMed

    Liu, Zhengang; Zhang, Fang; Liu, Tingting; Peng, Nana; Gai, Chao

    2016-11-01

    A highly graphitized and heteroatom doped porous carbon was prepared from fish waste in the present study. The morphology and chemical composition of the resultant porous carbon were characterized by SEM-EDS, TEM, BET, XRD and Raman measurement. The prepared porous carbon was employed as an adsorbent for acid orange 7, a typical azo dye, removal from aqueous solution. The results showed that the porous carbon had ultrahigh surface area of 2146 m(2)/g, a high degree of graphitization structure and naturally doped with nitrogen and phosphorous. The maximum adsorption capacity of acid orange 7 reached 285.71 mg/g due to unique property of the prepared porous carbon. In addition, acid orange 7 adsorption onto the porous carbon well followed pseudo-second-order kinetics model and acid orange 7 diffusion in micropores was the potential rate controlling step. PMID:27526082

  14. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell.

    PubMed

    Birla, Ashish; Singh, Bhaskar; Upadhyay, S N; Sharma, Y C

    2012-02-01

    Waste frying oil was used to produce biodiesel using calcined snail shell as a heterogeneous base catalyst. Trans esterification reactions were carried out and the yield and conversion of the product were optimized by varying the methanol to oil molar ratio, catalyst amount, reaction temperature, and time. A biodiesel conversion of 99.58% was obtained with a yield of 87.28%. The reaction followed first order kinetics. The activation energy (E(A)) was 79kJ/mol and the frequency factor (A) was 2.98×10(10)min(-1). The fuel properties of the biodiesel were measured according to ASTM D 6751 and found to be within the specifications. Snail shell is a novel source for the production of heterogeneous base catalyst that can be successfully utilized for synthesis of biodiesel of high purity. PMID:22206916

  15. Water Consumption for Biofuel Feedstock Cultivation

    NASA Astrophysics Data System (ADS)

    Fingerman, K. R.; Torn, M. S.

    2008-12-01

    Water use may prove to be a central issue in the global and local development of the biofuel industry. While most literature on biofuel water use only considers the biorefinery phase, we studied water consumption for biofuel feedstock cultivation in major feedstock-producing regions of the United States. Using a spatially explicit Penman-Monteith model informed by field-level eddy covariance measurements, distributed climate data, and land use figures, we estimated water consumption and net water use for a number of scenarios of feedstock, location, and refining processes for biofuel development. We find that in California, for example, average water consumption for biofuels from different feedstocks ranges from about 900 to over 1500 gallons per gallon of fuel produced. Cellulosic feedstocks are found to be less water-intensive on average. Furthermore, we find feedstock cultivation to account for more than 99% of the life-cycle embedded water for fuels in California. In some regions and for some feedstock options, a shift to biofuel feedstock cultivation would reduce the strain on water resources, while in others we project it would greatly increase water demand. We are expanding this analysis to better capture both base-line ET from natural systems and ET of some of the less-studied cellulosic feedstocks, as well as to incorporate other regions in the U.S. and internationally. Thus far, we conclude that while water demand for processing is important for plant location and pollution, water consumption for feedstock growth may be (along with land resources) the limiting factor for bioenergy production in many regions.

  16. INEL cold test pit demonstration of improvements in information derived from non-intrusive geophysical methods over buried waste sites. Phase 2, Final report

    SciTech Connect

    Not Available

    1994-04-29

    Under Contract between US DOE Idaho National Engineering Laboratory (INEL) and the Blackhawk Geosciences Division of Coleman Research Corporation (BGD-CRC), geophysical investigations were conducted to improve the detection of buried wastes. Site characterization is a costly and time consuming process with the most costly components being drilling, sampling, and chemical analysis of samples. There is a focused effort at US DOE and other agencies to investigate methodologies that reduce costs and shorten the time between characterization and clean-up. These methodologies take the form of employing non-invasive (geophysical) and minimal invasive (e.g., cone penetrometer driving) techniques of characterization, and implementing a near real-time, rational decision-making process (Expedited Site Characterization). Over the Cold Test Pit (CTP) at INEL, data were acquired with multiple sensors on a dense grid. Over the CTP the interpretations inferred from geophysical data are compared with the known placement of various waste forms in the pit. The geophysical sensors employed were magnetics, frequency and time domain electromagnetics, and ground penetrating radar. Also, because of the high data density acquired, filtering and other data processing and imaging techniques were tested. The conclusions derived from the geophysical surveys were that pit boundaries, berms between cells within the pit, and individual objects placed in the pit were best mapped by the new Geonics EM61 time domain EM metal detector. Part of the reason for the effectiveness of the time domain metal detector is that objects buried in the pit are dominantly metallic. Also, the utility of geophysical data is significantly enhanced by dimensional and 3-dimensional imaging formats. These images will particularly assist remediation engineers in visualizing buried wastes.

  17. Improving Sugarcane for Biofuel: Engineering for an even better feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane is a proven biofuel feedstock and accounts for about half the biofuel production worldwide. It has a more favorable energy input/output ratio than that of corn, the other major biofuel feedstock. The rich resource of genetic diversity and the plasticity of autopolyploid genomes offer a wea...

  18. 76 FR 24343 - Advanced Biofuel Payment Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Service Rural Utilities Service 7 CFR Part 4288 RIN 0570-AA75 Advanced Biofuel Payment Program; Correction... Advanced Biofuel Payment Program authorized under the Food, Conservation, and Energy Act of 2008. This... contracts with advanced biofuel producers to pay such producers for the production of eligible...

  19. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    EPA Science Inventory

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  20. Bio-fuel Cropping Systems Effects on Soil Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of nutrient management practices on bio-fuel crop production, and to evaluate long term effects of bio-fuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on bio-fuel crops production were ...

  1. Derivation of soil-screening thresholds to protect the chisel-toothed kangaroo rat from uranium mine waste in northern Arizona.

    PubMed

    Hinck, Jo Ellen; Linder, Greg; Otton, James K; Finger, Susan E; Little, Edward; Tillitt, Donald E

    2013-08-01

    Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes. PMID:23604138

  2. Effects of Organic and Waste-Derived Fertilizers on Yield, Nitrogen and Glucosinolate Contents, and Sensory Quality of Broccoli (Brassica oleracea L. var. italica).

    PubMed

    Øvsthus, Ingunn; Breland, Tor Arvid; Hagen, Sidsel Fiskaa; Brandt, Kirsten; Wold, Anne-Berit; Bengtsson, Gunnar B; Seljåsen, Randi

    2015-12-23

    Organic vegetable production attempts to pursue multiple goals concerning influence on environment, production resources, and human health. In areas with limited availability of animal manure, there is a need for considering various off-farm nutrient resources for such production. Different organic and waste-derived fertilizer materials were used for broccoli production at two latitudes (58° and 67°) in Norway during two years. The fertilizer materials were applied at two rates of total N (80 and 170 kg ha(-1)) and compared with mineral fertilizer (170 kg ha(-1)) and no fertilizer. Broccoli yield was strongly influenced by fertilizer materials (algae meal < unfertilized control < sheep manure < extruded shrimp shell < anaerobically digested food waste < mineral fertilizer). Yield, but not glucosinolate content, was linearly correlated with estimated potentially plant-available N. However, extruded shrimp shell and mineral NPK fertilizer gave higher glucosinolate contents than sheep manure and no fertilizer. Sensory attributes were less affected by fertilizer material and plant-available N. PMID:26553169

  3. Photodegradation of Orange II using waste paper sludge-derived heterogeneous catalyst in the presence of oxalate under ultraviolet light emitting diode irradiation.

    PubMed

    Zhou, Guoqiang; Guo, Jinyi; Zhou, Guowang; Wan, Xiankai; Shi, Huixiang

    2016-09-01

    A waste paper sludge-derived heterogeneous catalyst (WPS-Fe-350) was synthesized via a facile method and successfully applied for the degradation of Orange II in the presence of oxalic acid under the illumination of ultraviolet light emitting diode (UV-LED) Powder X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electronic microscopy and N2 sorption isotherm analysis indicated the formation of α-Fe2O3 in the mesoporous nanocomposite. The degradation test showed that WPS-Fe-350 exhibited rapid Orange II (OII) degradation and mineralization in the presence of oxalic acid under the illumination of UV-LED. The effects of pH, oxalic acid concentration and dosage of the catalyst on the degradation of OII were evaluated, respectively. Under the optimal conditions (1g/L catalyst dosage, 2mmol/L oxalic acid and pH3.0), the degradation percentage for a solution containing 30mg/L OII reached 83.4% under illumination by UV-LED for 80min. Moreover, five cyclic tests for OII degradation suggested that WPS-Fe-350 exhibited excellent stability of catalytic activity. Hence, this study provides an alternative environmentally friendly way to reuse waste paper sludge and an effective and economically viable method for degradation of azo dyes and other refractory organic pollutants in water. PMID:27593273

  4. Water use implications of biofuel scenarios

    NASA Astrophysics Data System (ADS)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes

  5. Experimental approaches for evaluating the invasion risk of biofuel crops

    NASA Astrophysics Data System (ADS)

    Flory, S. Luke; Lorentz, Kimberly A.; Gordon, Doria R.; Sollenberger, Lynn E.

    2012-12-01

    There is growing concern that non-native plants cultivated for bioenergy production might escape and result in harmful invasions in natural areas. Literature-derived assessment tools used to evaluate invasion risk are beneficial for screening, but cannot be used to assess novel cultivars or genotypes. Experimental approaches are needed to help quantify invasion risk but protocols for such tools are lacking. We review current methods for evaluating invasion risk and make recommendations for incremental tests from small-scale experiments to widespread, controlled introductions. First, local experiments should be performed to identify conditions that are favorable for germination, survival, and growth of candidate biofuel crops. Subsequently, experimental introductions in semi-natural areas can be used to assess factors important for establishment and performance such as disturbance, founder population size, and timing of introduction across variable habitats. Finally, to fully characterize invasion risk, experimental introductions should be conducted across the expected geographic range of cultivation over multiple years. Any field-based testing should be accompanied by safeguards and monitoring for early detection of spread. Despite the costs of conducting experimental tests of invasion risk, empirical screening will greatly improve our ability to determine if the benefits of a proposed biofuel species outweigh the projected risks of invasions.

  6. AN OVERVIEW OF BIOFUELS PROCESS DEVELOPMENT IN SOUTH CAROLINA

    SciTech Connect

    Sherman, S.; French, T.

    2010-02-03

    The South Carolina Bio-Energy Research Collaborative is working together on the development and demonstration of technology options for the production of bio-fuels using renewable non-food crops and biomass resources that are available or could be made available in abundance in the southeastern United States. This collaboration consists of Arborgen LLC, Clemson University, Savannah River National Laboratory, and South Carolina State University, with support from Dyadic, Fagen Engineering, Renewed World Energies, and Spinx. Thus far, most work has centered on development of a fermentation-based process to convert switchgrass into ethanol, with the concomitant generation of a purified lignin stream. The process is not feed-specific, and the work scope has recently expanded to include sweet sorghum and wood. In parallel, the Collaborative is also working on developing an economical path to produce oils and fuels from algae. The Collaborative envisions an integrated bio-fuels process that can accept multiple feedstocks, shares common equipment, and that produces multiple product streams. The Collaborative is not the only group working on bio-energy in South Carolina, and other companies are involved in producing biomass derived energy products at an industrial scale.

  7. Transgenic Plants Lower the Costs of Cellulosic Biofuels (Fact Sheet)

    SciTech Connect

    Not Available

    2011-11-01

    A new transgenic maize was observed to be less recalcitrant than wild-type biomass, as manifested through lower severity requirements to achieve comparable levels of conversion. Expression of a single gene derived from bacteria in plants has resulted in transgenic plants that are easier and cheaper to convert into biofuels. Part of the high production cost of cellulosic biofuels is the relatively poor accessibility of substrates to enzymes due to the strong associations between plant cell wall components. This biomass recalcitrance makes costly thermochemical pretreatment necessary. Scientists at the National Renewable Energy Laboratory (NREL) have created transgenic maize expressing an active glycosyl hydrolase enzyme, E1 endoglucanase, originally isolated from a thermophilic bacterium, Acidothermus cellulolyticus. This engineered feedstock was observed to be less recalcitrant than wild-type biomass when subjected to reduced severity pretreatments and post-pretreatment enzymatic hydrolysis. This reduction in recalcitrance was manifested through lower severity requirements to achieve comparable levels of conversion of wild-type biomass. The improvements observed are significant enough to positively affect the economics of the conversion process through decreased capital construction costs and decreased degradation products and inhibitor formation.

  8. CO2 Extraction from Ambient Air Using Alkali-Metal Hydroxide Solutions Derived from Concrete Waste and Steel Slag

    NASA Astrophysics Data System (ADS)

    Stolaroff, J. K.; Lowry, G. V.; Keith, D. W.

    2003-12-01

    To mitigate global climate change, deep reductions in CO2 emissions are required in the coming decades. Carbon sequestration will play a crucial role in this reduction. Early adoption of carbon sequestration in low-cost niche markets will help develop the technology and experience required for large-scale deployment. One such niche may be the use of alkali metals from industrial waste streams to form carbonate minerals, a safe and stable means of sequestering carbon. In this research, the potential of using two industrial waste streams---concrete and steel slag---for sequestering carbon is assessed. The scheme is outlined as follows: Ca and Mg are leached with water from a finely ground bed of steel slag or concrete. The resulting solution is sprayed through air, capturing CO2 and forming solid carbonates, and collected. The feasibility of this scheme is explored with a combination of experiments, theoretical calculations, cost accounting, and literature review. The dissolution kinetics of steel slag and concrete as a function of particle size and pH is examined. In stirred batch reactors, the majority of Ca which dissolved did so within the first hour, yielding between 50 and 250 (mg; Ca)/(g; slag) and between 10 and 30 (mg; Ca)/(g; concrete). The kinetics of dissolution are thus taken to be sufficiently fast to support the type of scheme described above. As proof-of-concept, further experiments were performed where water was dripped slowly through a stagnant column of slag or concrete and collected at the bottom. Leachate Ca concentrations in the range of 15 mM were achieved --- sufficient to support the scheme. Using basic physical principles and numerical methods, the quantity of CO2 captured by falling droplets is estimated. Proportion of water loss and required pumping energy is similarly estimated. The results indicate that sprays are capable of capturing CO2 from the air and that the water and energy requirements are tractable. An example system for

  9. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    SciTech Connect

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  10. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  11. Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste.

    PubMed

    Zheng, Wei; Li, Xiao-ming; Yang, Qi; Zeng, Guang-ming; Shen, Xiang-xin; Zhang, Ying; Liu, Jing-jin

    2007-08-17

    Carbonate hydroxylapatite (CHAP) synthesized by using eggshell waste as raw material has been investigated as metal adsorption for Cd(II) and Cu(II) from aqueous solutions. The effect of various parameters on adsorption process such as contact time, solution pH, amount of CHAP and initial concentration of metal ions was studied at room temperature to optimize the conditions for maximum adsorption. The results showed that the removal efficiency of Cd(II) and Cu(II) by CHAP could reach 94 and 93.17%, respectively, when the initial Cd(II) concentration 80 mg/L and Cu(II) 60 mg/L and the liquid/solid ratio was 2.5 g/L. The equilibrium sorption data for single metal systems at room temperature could be described by the Langmuir and Freundlich isotherm models. The highest value of Langmuir maximum uptake, (b), was found for cadmium (111.1mg/g) and copper (142.86 mg/g). Similar Freundlich empirical constants, K, were obtained for cadmium (2.224) and copper (7.925). Ion exchange and surface adsorption might be involved in the adsorption process of cadmium and copper. Desorption experiments showed that CaCl2, NaCl, acetic acid and ultrasonic were not efficient enough to desorb substantial amount of metal ions from the CHAP. The results obtained show that CHAP has a high affinity to cadmium and copper. PMID:17368932

  12. Performance of the heavy fraction of pyrolysis oil derived from waste printed circuit boards in modifying asphalt.

    PubMed

    Yang, Fan; Sun, Shuiyu; Zhong, Sheng; Li, Shenyong; Wang, Yi; Wu, Jiaqi

    2013-09-15

    The focus of this research was the development of efficient and affordable asphalt modifiers. Pyrolysis oil was produced as a byproduct from the pyrolysis of waste printed circuit boards (WPCBs). The high boiling point fraction was separated from the pyrolysis oil through distillation and is referred to as the heavy fraction of pyrolysis oil (HFPO). The HFPO was tested as an asphalt modifier. Three asphalt modifiers were tested: HFPO; styrene-butadiene rubber (SBR); and HFPO + SBR (1:1). The physical properties and road performance of the three modified asphalts were measured and evaluated. The results have shown that when the amount of modifier was less than 10%, the HFPO modified asphalt had the highest softening point of the three. The dynamic stability (DS) and water resistance of the asphalt mixture with the HFPO modified asphalt was 10,161 cycles/mm and 87.2%, respectively. The DS was much larger than for the HFPO + SBR and SBR modified asphalt mixtures. These results indicate that using HFPO as an asphalt modifier has significant benefits not only for road engineering but also for resource recycling. PMID:23644664

  13. Waste materials derived bio-effectors used as growth promoters for strawberry plants. An agronomic and metabolomic study

    NASA Astrophysics Data System (ADS)

    Vasileva, Brankica; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    Recently, a novel concept of bio-effectors has emerged to describe a group of products that are able to improve plant performance more than fertilizers. In this study, three different agro-industrial residues, i.e. brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as potential bio-effectors. A greenhouse soilless pot experiment was conducted on strawberry plants (Fragaria x ananassa var. Festival) in order to study the effect of BSG, FPR and LPR water extracts, at different concentrations, on plant growth and fruit quality. Their effect was compared with humic-like substances as a positive/reference control (Ctrl+) and with Hoagland solution as a negative control (Ctrl-). Agronomic parameters and the nutrient uptake were measured on shoots, roots and fruits. Metabolomic profiling tests were carried out on leaves, roots and fruit juices through the NMR technique. Plants treated with the FPR extract showed better vegetative growth, while plants treated with the BSG extract gave higher yield and better fruit size. Metabolomic profiling showed that fruits and roots of plants treated with FPR and LPR extracts had higher concentrations of sucrose, malate and acetate, while BSG treated plants had higher concentrations of citrate and β-glucose. In conclusion, according to the results achieved, the bio-effectors used in this study promote plant growth and fruit quality regardless of their nutritional content. Keywords: bio-effectors, agro-industrial waste, nuclear magnetic resonance (NMR), strawberry, growth promotion, fruit quality.

  14. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Juan; Xing, Zhen-Jiao; Duan, Zheng-Kang; Li, Meng; Wang, Yin

    2014-10-01

    The effects of steam activation on the pore structure evolution and surface chemistry of activated carbon (AC) obtained from bamboo waste were investigated. Nitrogen adsorption-desorption isotherms revealed that higher steam activation temperatures and/or times promoted the creation of new micropores and widened the existing micropores, consequently decreasing the surface area and total pore volume. Optimum conditions included an activation temperature of 850 °C, activation time of 120 min, and steam flush generated from deionized water of 0.2 cm3 min-1. Under these conditions, AC with a BET surface area of 1210 m2 g-1 and total pore volume of 0.542 cm-3 g-1was obtained. Changes in surface chemistry were determined through Boehm titration, pH measurement, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Results revealed the presence of a large number of basic groups on the surface of the pyrolyzed char and AC. Steam activation did not affect the species of oxygen-containing groups but changed the contents of these species when compared with pyrolyzed char. Scanning electron microscopy was used to observe the surface morphology of the products. AC obtained under optimum conditions showed a monolayer adsorption capacity of 330 mg g-1 for methylene blue (MB), which demonstrates its excellent potential for MB adsorption applications.

  15. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    NASA Astrophysics Data System (ADS)

    Wicakso, Doni Rahmat; Sutijan, Rochmadi, Budiman, Arief

    2016-06-01

    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 - 600 °C and catalyst weight between 0 - 40 gram. The first step, tar was evaporated at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H2 productivity increased and calorimetric value of bio-oil increased.

  16. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    PubMed

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. PMID:21184529

  17. A Survey of Biofuel Production potentials in Russia

    NASA Astrophysics Data System (ADS)

    Lykova, Natalya; Gustafsson, Jan-Erik

    2010-01-01

    Due to the abundance of fossil fuel resources in Russia, the development of the renewable energy market there was delayed. Recent technological advancement has led to an increasing interest in biofuel production. The aim of research was to evaluate how biofuels are introduced into the current energy scheme of the country. The potential production of biofuels was estimated based on sustainable approaches which provide solution for carbon emission reduction and environmental benefits. Russia still requires biofuel policy to make biofuels compatible with traditional fossil fuels.

  18. Determining the life cycle energy efficiency of six biofuel systems in China: a Data Envelopment Analysis.

    PubMed

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun; Mazzi, Anna; Scipioni, Antonio; Sovacool, Benjamin K

    2014-06-01

    This aim of this study was to use Data Envelopment Analysis (DEA) to assess the life cycle energy efficiency of six biofuels in China. DEA can differentiate efficient and non-efficient scenarios, and it can identify wasteful energy losses in biofuel production. More specifically, the study has examined the efficiency of six approaches for bioethanol production involving a sample of wheat, corn, cassava, and sweet potatoes as feedstocks and "old," "new," "wet," and "dry" processes. For each of these six bioethanol production pathways, the users can determine energy inputs such as the embodied energy for seed, machinery, fertilizer, diesel, chemicals and primary energy utilized for manufacturing, and outputs such as the energy content of the bioethanol and byproducts. The results indicate that DEA is a novel and feasible method for finding efficient bioethanol production scenarios and suggest that sweet potatoes may be the most energy-efficient form of ethanol production for China. PMID:24727398

  19. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  20. Modulation of the Expression of the Proinflammatory IL-8 Gene in Cystic Fibrosis Cells by Extracts Deriving from Olive Mill Waste Water

    PubMed Central

    Lampronti, Ilaria; Borgatti, Monica; Vertuani, Silvia; Manfredini, Stefano; Gambari, Roberto

    2013-01-01

    A persistent recruitment of neutrophils in the bronchi of cystic fibrosis (CF) patients contributes to aggravate the airway tissue damage, suggesting the importance of modulating the expression of chemokines, including IL-8 during the management of the CF patients. Polyphenols rich extracts derived from waste water from olive mill, obtained by a molecular imprinting approach, have been investigated in order to discover compounds able to reduce IL-8 expression in human bronchial epithelial cells (IB3-1 cells), derived from a CF patient with a ΔF508/W1282X mutant genotype and stimulated with TNF-alpha. Initially, electrophoretic mobility shift assays (EMSAs) were performed to determine whether the different active principles were able to inhibit the binding between transcription factor (TF) NF-kappaB and DNA consensus sequences. Among different representative active principles present in the extract, three compounds were selected, apigenin, oleuropein, and cyanidin chloride, which displayed remarkable activity in inhibiting NF-kappaB/DNA complexes. Utilizing TNF-alpha-treated IB3-1 cells as experimental model system, we demonstrated that apigenin and cyanidin chloride are able to modulate the expression of the NF-kappaB-regulated IL-8 gene, while oleuropein showed no effect in regulating the expression of the gene IL-8. PMID:23935691

  1. Designing Sustainable Supply Chains for Biofuels

    EPA Science Inventory

    Driven by the Energy and Independence Act of 2007 mandate to increase production of alternative fuels and to ensure that this increase causes minimal environmental impact, a project to design sustainable biofuel supply chains has been developed. This effort uses life cycle asses...

  2. Characterizing Emissions from the Combustion of Biofuels

    EPA Science Inventory

    Emissions from two biofuels, a soy-based biodiesel and an animal-based biodiesel, were measured and compared to emissions from a distillate petroleum fuel oil. The three fuels were burned in a small fire tube boiler designed for use in institutional, commercial, and light industr...

  3. Integrated Biorefineries: Biofuels, Biopower, and Bioproducts

    SciTech Connect

    2013-05-06

    This fact sheet describes integrated biorefineries and the Program's work with them. A crucial step in developing the U.S. bioindustry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other bioproducts.

  4. Environmental impacts of biofuel production and use

    EPA Science Inventory

    The 2007 Energy Independence and Security Act (EISA) required a significant increase in the production and use of renewable fuels. Given the current state of technology and infrastructure, nearly all of the projected volume of biofuel consumption over the foreseeable future is ex...

  5. Role of Escherichia coli in Biofuel Production.

    PubMed

    Koppolu, Veerendra; Vasigala, Veneela Kr

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  6. Biofuels and the Greenhouse Gas Factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels have been scrutinized for their potential to be used as a fuel substitute to offset a portion of the greenhouse gas (GHG) emissions produced by fossil fuel combustion. But quantifying that offset is complex. Bioenergy crops offset their greenhouse-gas contributions in three key ways: by rem...

  7. Sustainability Research: Biofuels, Processes and Supply Chains

    EPA Science Inventory

    Presentation will talk about sustainability at the EPA, summarily covering high level efforts and focusing in more detail on research in metrics for liquid biofuels and tools to evaluate sustainable processes. The presentation will also briefly touch on a new area of research, t...

  8. 76 FR 7935 - Advanced Biofuel Payment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... Federal Register on April 16, 2010 (75 FR 20085), with a 60-day comment period that ended June 15, 2010... must be produced from renewable biomass, excluding corn kernel starch, in a biofuel facility located in a State. In addition, this interim rule establishes new program requirements for applicants...

  9. Transgenic Biofuel Feedstocks and Strategies for Biocontainment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are several reasons to believe that transgenic plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels. Much of the commercialization potential for the use of transgenic plant cellulosic feedstocks may be impacted by regulatio...

  10. Lawn Clippings as a Biofuel Source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass yield from urban landscapes is an untapped resource. Lawn clippings, fallen leaves and tree limbs are all potential sources of biofuels and most cities already collect and transport these materials to disposal sites. Cities could alternatively collect and transport these biomass materials ...

  11. Role of Escherichia coli in Biofuel Production

    PubMed Central

    Koppolu, Veerendra; Vasigala, Veneela KR

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  12. Novel biofuel formulations for enhanced vehicle performance

    SciTech Connect

    Miller, Dennis; Narayan, Ramani; Berglund, Kris; Lira, Carl; Schock, Harold; Jaberi, Farhad; Lee, Tonghun; Anderson, James; Wallington, Timothy; Kurtz, Eric; Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion

  13. Using wastewater and high-rate algal ponds for nutrient removal and the production of bioenergy and biofuels.

    PubMed

    Batten, David; Beer, Tom; Freischmidt, George; Grant, Tim; Liffman, Kurt; Paterson, David; Priestley, Tony; Rye, Lucas; Threlfall, Greg

    2013-01-01

    This paper projects a positive outcome for large-scale algal biofuel and energy production when wastewater treatment is the primary goal. Such a view arises partly from a recent change in emphasis in wastewater treatment technology, from simply oxidising the organic matter in the waste (i.e. removing the biological oxygen demand) to removing the nutrients - specifically nitrogen and phosphorus - which are the root cause of eutrophication of inland waterways and coastal zones. A growing need for nutrient removal greatly improves the prospects for using new algal ponds in wastewater treatment, since microalgae are particularly efficient in capturing and removing such nutrients. Using a spreadsheet model, four scenarios combining algae biomass production with the making of biodiesel, biogas and other products were assessed for two of Australia's largest wastewater treatment plants. The results showed that super critical water reactors and anaerobic digesters could be attractive pathway options, the latter providing significant savings in greenhouse gas emissions. Combining anaerobic digestion with oil extraction and the internal economies derived from cheap land and recycling of water and nutrients on-site could allow algal oil to be produced for less than US$1 per litre. PMID:23306273

  14. One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

    DOE PAGESBeta

    Davis, Ryan Wesley; Wu, Weihua

    2016-01-01

    In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteinsmore » as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).« less

  15. One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

    SciTech Connect

    Davis, Ryan Wesley; Wu, Weihua

    2016-01-01

    In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteins as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).

  16. Biofuels, vehicle emissions, and urban air quality.

    PubMed

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel. PMID:27112132

  17. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels

    PubMed Central

    Healey, Adam L.; Lee, David J.; Furtado, Agnelo; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077

  18. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    PubMed

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077

  19. Stochastic techno-economic evaluation of cellulosic biofuel pathways.

    PubMed

    Zhao, Xin; Brown, Tristan R; Tyner, Wallace E

    2015-12-01

    This study evaluates the economic feasibility and stochastic dominance rank of eight cellulosic biofuel production pathways (including gasification, pyrolysis, liquefaction, and fermentation) under technological and economic uncertainty. A techno-economic assessment based financial analysis is employed to derive net present values and breakeven prices for each pathway. Uncertainty is investigated and incorporated into fuel prices and techno-economic variables: capital cost, conversion technology yield, hydrogen cost, natural gas price and feedstock cost using @Risk, a Palisade Corporation software. The results indicate that none of the eight pathways would be profitable at expected values under projected energy prices. Fast pyrolysis and hydroprocessing (FPH) has the lowest breakeven fuel price at 3.11$/gallon of gasoline equivalent (0.82$/liter of gasoline equivalent). With the projected energy prices, FPH investors could expect a 59% probability of loss. Stochastic dominance is done based on return on investment. Most risk-averse decision makers would prefer FPH to other pathways. PMID:26454041

  20. Importance of biophysical effects on climate warming mitigation potential of biofuel crops over the conterminous United Sta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current quantification of Climate Warming Mitigation Potential (CWMP) of biomass-derived energy has focused primarily on its biogeochemical effects. This study used site-level observations of carbon, water, and energy fluxes of biofuel crops to parameterize and evaluate the Community Land Model (CLM...

  1. Clash of the Titans: Comparing productivity via radiation use efficiency for two grass giants of the biofuel field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The comparative productivity of switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) is of critical importance to the biofuel industry. The radiation use efficiency (RUE), when derived in an environment with non-limiting soil water and soil nutrients, provides one metric of re...

  2. Projecting future grassland productivity to assess the sustainability of potential biofuel feedstock areas in the Greater Platte River Basin

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Phyual, Khem

    2014-01-01

    This study projects future (e.g., 2050 and 2099) grassland productivities in the Greater Platte River Basin (GPRB) using ecosystem performance (EP, a surrogate for measuring ecosystem productivity) models and future climate projections. The EP models developed from a previous study were based on the satellite vegetation index, site geophysical and biophysical features, and weather and climate drivers. The future climate data used in this study were derived from the National Center for Atmospheric Research Community Climate System Model 3.0 ‘SRES A1B’ (a ‘middle’ emissions path). The main objective of this study is to assess the future sustainability of the potential biofuel feedstock areas identified in a previous study. Results show that the potential biofuel feedstock areas (the more mesic eastern part of the GPRB) will remain productive (i.e., aboveground grassland biomass productivity >2750 kg ha−1 year−1) with a slight increasing trend in the future. The spatially averaged EPs for these areas are 3519, 3432, 3557, 3605, 3752, and 3583 kg ha−1 year−1 for current site potential (2000–2008 average), 2020, 2030, 2040, 2050, and 2099, respectively. Therefore, the identified potential biofuel feedstock areas will likely continue to be sustainable for future biofuel development. On the other hand, grasslands identified as having no biofuel potential in the drier western part of the GPRB would be expected to stay unproductive in the future (spatially averaged EPs are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha−1 year−1 for site potential, 2020, 2030, 2040, 2050, and 2099). These areas should continue to be unsuitable for biofuel feedstock development in the future. These future grassland productivity estimation maps can help land managers to understand and adapt to the expected changes in future EP in the GPRB and to assess the future sustainability and feasibility of potential biofuel feedstock areas.

  3. 76 FR 13345 - Notice of Contract Proposal (NOCP) for Payments to Eligible Advanced Biofuel Producers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ...This Notice announces the acceptance of applications to enter into Contracts to make payments to eligible advanced biofuel producers under the Bioenergy Program for Advanced Biofuels to support and ensure an expanding production of advanced biofuels. To be eligible for payments, advanced biofuels must be produced from renewable biomass, excluding corn kernel starch, in a biofuel facility......

  4. Growing duckweed for biofuel production: a review.

    PubMed

    Cui, W; Cheng, J J

    2015-01-01

    Duckweed can be utilised to produce ethanol, butanol and biogas, which are promising alternative energy sources to minimise dependence on limited crude oil and natural gas. The advantages of this aquatic plant include high rate of nutrient (nitrogen and phosphorus) uptake, high biomass yield and great potential as an alternative feedstock for the production of fuel ethanol, butanol and biogas. The objective of this article is to review the published research on growing duckweed for the production of the biofuels, especially starch enrichment in duckweed plants. There are mainly two processes affecting the accumulation of starch in duckweed biomass: photosynthesis for starch generation and metabolism-related starch consumption. The cost of stimulating photosynthesis is relatively high based on current technologies. Considerable research efforts have been made to inhibit starch degradation. Future research need in this area includes duckweed selection, optimisation of duckweed biomass production, enhancement of starch accumulation in duckweeds and use of duckweeds for production of various biofuels. PMID:24985498

  5. A perspective on microfluidic biofuel cells

    PubMed Central

    Lee, Jin wook; Kjeang, Erik

    2010-01-01

    This review article presents how microfluidic technologies and biological materials are paired to assist in the development of low cost, green energy fuel cell systems. Miniaturized biological fuel cells, employing enzymes or microorganisms as biocatalysts in an environmentally benign configuration, can become an attractive candidate for small-scale power source applications such as biological sensors, implantable medical devices, and portable electronics. State-of-the-art biofuel cell technologies are reviewed with emphasis on microfabrication compatibility and microfluidic fuel cell designs. Integrated microfluidic biofuel cell prototypes are examined with comparisons of their performance achievements and fabrication methods. The technical challenges for further developments and the potential research opportunities for practical cell designs are discussed. PMID:21139699

  6. National Biofuels Action Plan, October 2008

    SciTech Connect

    none,

    2008-10-01

    To help industry achieve the aggressive national goals, Federal agencies will need to continue to enhance their collaboration. The Biomass Research and Development (R&D) Board was created by Congress in the Biomass Research and Development Act of 2000. The National Biofuels Action Plan outlines areas where interagency cooperation will help to evolve bio-based fuel production technologies from promising ideas to competitive solutions.

  7. Primary productivity and the prospects for biofuels in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Lawson, G. J.; Callaghan, T. V.

    1983-09-01

    Estimates of land use and plant productivity are combined to predict total annual primary production in the UK as 252 million tonnes dry matter (10.5 t ha-1yr-1). Annual above ground production is predicted to be 165 Mt (6.9 t ha-1yr-1). Within these totals, intensive agriculture contributes 60%, productive woodland 8%, natural vegetation 26% and urban vegetation 5%. However, only 25% of total plant production is cropped by man and animals, and most of this is subsequently discarded as wastes and residues. 2112 PJ of organic material is available for fuel without reducing food or fibre production, but since much of this could not be economically collected, 859 PJ is calculated as a more realistic biofuel contribution by the year 2000. After deducting 50% conversion losses, this could save P1 billion (1979 prices) in oil imports. Short rotation energy plantations, forest residues, coppice woodlands, animal and crop wastes, industrial and domestic wastes, catch crops, natural vegetation and urban vegetation all have immediate or short term potential as biofuel sources. Sensitive planning is required to reduce environmental impact, but in some cases more diverse wildlife habitats may be created.

  8. Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Feng, Haobin; Hu, Hang; Dong, Hanwu; Xiao, Yong; Cai, Yijin; Lei, Bingfu; Liu, Yingliang; Zheng, Mingtao

    2016-01-01

    Bagasse-derived hierarchical structured carbon (BDHSC) with tunable porosity and improved electrochemical performance is prepared via simple and efficient hydrothermal carbonization combined with KOH activation. Experimental results show that sewage sludge acts as a cheap and efficient structure-directing agent to regulate the morphology, adjust the porosity, and thus improve the supercapacitive performance of BDHSC. The as-resulted BDHSC exhibits an interconnected framework with high specific surface area (2296 m2 g-1), high pore volume (1.34 cm3 g-1), and hierarchical porosity, which offer a more favorable pathway for electrolyte penetration and transportation. Compared to the product obtained from bagasse without sewage sludge, the unique interconnected BDHSC exhibits enhanced supercapacitive performances such as higher specific capacitance (320 F g-1), and better rate capability (capacitance retention over 70.8% at a high current density of 50 A g-1). Moreover, the BDHSC-based symmetric supercapacitor delivers a maximum energy density of over 20 Wh kg-1 at 182 W kg-1 and presents an excellent long-term cycling stability. The developed approach in the present work can be useful not only in production of a variety of novel hierarchical structured carbon with promising applications in high-performance energy storage devices, but also in high-value utilization of biomass wastes and high-ash-content sewage sludge.

  9. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments.

    PubMed

    Zornoza, R; Moreno-Barriga, F; Acosta, J A; Muñoz, M A; Faz, A

    2016-02-01

    We aimed to study the influence of feedstock properties, pyrolysis temperature and holding time on stability, nutrient contents and hydrophobicity of biochars derived from pig manure, crop residues and municipal solid waste. Biochars were prepared at 300 °C, 400 °C, 500 °C and 700 °C for 1 h, 2 h, 4 h and 5 h. All properties were influenced by feedstock except for pH and hydrophobicity. Temperature influenced all properties, whereas no effect of holding time was observed except for hydrophobicity and thermal stability. Increasing temperature increased aromatization and stability. Low temperatures provided higher cation exchange capacity and available nutrients, and lower salinity and alkalinity. Precipitation of phosphates and carbonates occurred with charring, explaining the decrease of available nutrients. Biochars produced at 300 °C showed high hydrophobity, which disappeared over 500 °C owing to the loss of labile aliphatic compounds. The high pH and carbonates contents at >500 °C resulted in suitable biochars for soil liming and decreasing soil metals availability. PMID:26347934

  10. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    PubMed

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. PMID:20471819

  11. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    SciTech Connect

    Muenster, M.; Meibom, P.

    2010-12-15

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  12. Estimating Nitrogen Load Resulting from Biofuel Mandates.

    PubMed

    Alshawaf, Mohammad; Douglas, Ellen; Ricciardi, Karen

    2016-01-01

    The Energy Policy Act of 2005 and the Energy Independence and Security Act (EISA) of 2007 were enacted to reduce the U.S. dependency on foreign oil by increasing the use of biofuels. The increased demand for biofuels from corn and soybeans could result in an increase of nitrogen flux if not managed properly. The objectives of this study are to estimate nitrogen flux from energy crop production and to identify the catchment areas with high nitrogen flux. The results show that biofuel production can result in an increase of nitrogen flux to the northern Gulf of Mexico from 270 to 1742 thousand metric tons. Using all cellulosic (hay) ethanol or biodiesel to meet the 2022 mandate is expected to reduce nitrogen flux; however, it requires approximately 25% more land when compared to other scenarios. Producing ethanol from switchgrass rather than hay results in three-times more nitrogen flux, but requires 43% less land. Using corn ethanol for 2022 mandates is expected to have double the nitrogen flux when compared to the EISA-specified 2022 scenario; however, it will require less land area. Shifting the U.S. energy supply from foreign oil to the Midwest cannot occur without economic and environmental impacts, which could potentially lead to more eutrophication and hypoxia. PMID:27171101

  13. Rapidly evolving microorganisms with high biofuel tolerance

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh; Zhang, Qiucen; Lang, Wendy; Austin, Robert

    2012-02-01

    Replacing non-renewable energy sources is one of the biggest and most exciting challenges of our generation. Algae and bacteria are poised to become major renewable biofuels if strains can be developed that provide a high,consistent and robust yield of oil. One major stumbling block towards this goal is the lack of tolerance to high concentrations of biofuels like isobutanol. Using traditional bioengineering techniques to remedy this face the hurdle of identifying the correct pathway or gene to modify. But the multiplicity of interactions inside a cell makes it very hard to determine what to modify a priori. Instead, we propose a technology that does not require prior knowledge of the genes or pathways to modify. In our approach that marries microfabrication and ecology, spatial heterogeneity is used as a knob to speed up evolution in the desired direction. Recently, we have successfully used this approach to demonstrate the rapid emergence of bacterial antibiotic resistance in as little as ten hours. Here, we describe our experimental results in developing new strains of micro-organisms with high oil tolerance. Besides biofuel production, our work is also relevant to oil spill clean-ups.

  14. Estimating Nitrogen Load Resulting from Biofuel Mandates

    PubMed Central

    Alshawaf, Mohammad; Douglas, Ellen; Ricciardi, Karen

    2016-01-01

    The Energy Policy Act of 2005 and the Energy Independence and Security Act (EISA) of 2007 were enacted to reduce the U.S. dependency on foreign oil by increasing the use of biofuels. The increased demand for biofuels from corn and soybeans could result in an increase of nitrogen flux if not managed properly. The objectives of this study are to estimate nitrogen flux from energy crop production and to identify the catchment areas with high nitrogen flux. The results show that biofuel production can result in an increase of nitrogen flux to the northern Gulf of Mexico from 270 to 1742 thousand metric tons. Using all cellulosic (hay) ethanol or biodiesel to meet the 2022 mandate is expected to reduce nitrogen flux; however, it requires approximately 25% more land when compared to other scenarios. Producing ethanol from switchgrass rather than hay results in three-times more nitrogen flux, but requires 43% less land. Using corn ethanol for 2022 mandates is expected to have double the nitrogen flux when compared to the EISA-specified 2022 scenario; however, it will require less land area. Shifting the U.S. energy supply from foreign oil to the Midwest cannot occur without economic and environmental impacts, which could potentially lead to more eutrophication and hypoxia. PMID:27171101

  15. Plant biotechnology for lignocellulosic biofuel production.

    PubMed

    Li, Quanzi; Song, Jian; Peng, Shaobing; Wang, Jack P; Qu, Guan-Zheng; Sederoff, Ronald R; Chiang, Vincent L

    2014-12-01

    Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production. PMID:25330253

  16. Engineering microbes for tolerance to next-generation biofuels

    PubMed Central

    2011-01-01

    A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production. PMID:21936941

  17. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels.

    PubMed

    Janßen, Helge Jans; Steinbüchel, Alexander

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  18. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    PubMed Central

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  19. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    DOE PAGESBeta

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  20. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    SciTech Connect

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting the simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.

  1. Limitation of Biofuel Production in Europe from the Forest Market

    NASA Astrophysics Data System (ADS)

    Leduc, Sylvain; Wetterlund, Elisabeth; Dotzauer, Erik; Kindermann, Georg

    2013-04-01

    The European Union has set a 10% target for the share of biofuel in the transportation sector to be met by 2020. To reach this target, second generation biofuel is expected to replace 3 to 5% of the transport fossil fuel consumption. But the competition on the feedstock is an issue and makes the planning for the second generation biofuel plant a challenge. Moreover, no commercial second generation biofuel production plant is under operation, but if reaching commercial status, this type of production plants are expected to become very large. In order to minimize the tranportation costs and to takle the competetion for the feedstock against the existing woody based industries, the geographical location of biofuel production plants becomes an issue. This study investigates the potential of second generation biofuel economically feasible in Europe by 2020 in regards with the competition for the feedsstock with the existing woody biomass based industries (CHP, pulp and paper mills, sawmills...). To assess the biofuel potential in Europe, a techno-economic, geographically explicit model, BeWhere, is used. It determines the optimal locations of bio-energy production plants by minimizing the costs and CO2 emissions of the entire supply chain. The existing woody based industries have to first meet their wood demand, and if the amount of wood that remains is suficiant, new bio-energy production plants if any can be set up. Preliminary results show that CHP plants are preferably chosen over biofuel production plants. Strong biofuel policy support is needed in order to consequently increase the biofuel production in Europe. The carbon tax influences the emission reduction to a higher degree than the biofuel support. And the potential of second generation biofuel would at most reach 3% of the European transport fuel if the wood demand does not increase from 2010.

  2. WASTE CONTAINMENT OVERVIEW

    EPA Science Inventory

    BSE waste is derived from diseased animals such as BSE (bovine spongiform encepilopothy, also known as Mad Cow) in cattle and CWD (chronic wasting disease) in deer and elk. Landfilling is examined as a disposal option and this presentation introduces waste containment technology...

  3. Energy properties of solid fossil fuels and solid biofuels

    NASA Astrophysics Data System (ADS)

    Holubcik, Michal; Kolkova, Zuzana; Jandacka, Jozef

    2016-06-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  4. [Progress in synthesis technologies and application of aviation biofuels].

    PubMed

    Sun, Xiaoying; Liu, Xiang; Zhao, Xuebing; Yang, Ming; Liu, Dehua

    2013-03-01

    Development of aviation biofuels has attracted great attention worldwide because that the shortage of fossil resources has become more and more serious. In the present paper, the development background, synthesis technologies, current application status and existing problems of aviation biofuels were reviewed. Several preparation routes of aviation biofuels were described, including Fischer-Tropsch process, catalytic hydrogenation and catalytic cracking of bio-oil. The status of flight tests and commercial operation were also introduced. Finally the problems for development and application of aviation biofuels were stated, and some accommodation were proposed. PMID:23789270

  5. Synthetic biology for microbial production of lipid-based biofuels.

    PubMed

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. PMID:26479184

  6. Cultivation of Chlorella vulgaris in wastewater with waste glycerol: Strategies for improving nutrients removal and enhancing lipid production.

    PubMed

    Ma, Xiaochen; Zheng, Hongli; Addy, Min; Anderson, Erik; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-05-01

    To improve nutrients removal from wastewater and enhance lipid production, cultivation of Chlorella vulgaris in wastewater with waste glycerol generated from biodiesel production using scum derived oil as feedstock was studied. The results showed that nutrients removal was improved and lipid production of C. vulgaris was enhanced with the addition of waste glycerol into wastewater to balance its C/N ratio. The optimal concentration of the pretreated glycerol for C. vulgaris was 10gL(-1) with biomass concentration of 2.92gL(-1), lipid productivity of 163mgL(-1)d(-1), and the removal of 100% ammonia and 95% of total nitrogen. Alkaline conditions prompted cell growth and lipid accumulation of C. vulgaris while stimulating nutrients removal. The application of the integration process can lower both wastewater treatment and biofuel feedstock costs. PMID:26894565

  7. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    NASA Astrophysics Data System (ADS)

    Kou, Nannan

    Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn

  8. Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review

    DOE PAGESBeta

    Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.; Laurens, Lieve M. L.

    2016-06-15

    Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. Furthermore, this paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention tomore » cell disruption and lipid mass transfer to support extraction from wet biomass.« less

  9. Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria.

    PubMed

    Bertsch, Johannes; Müller, Volker

    2015-01-01

    Synthesis gas (syngas) is a gas mixture consisting mainly of H2, CO, and CO2 and can be derived from different sources, including renewable materials like lignocellulose. The fermentation of syngas to certain biofuels, using acetogenic bacteria, has attracted more and more interest over the last years. However, this technology is limited by two things: (1) the lack of complete knowledge of the energy metabolism of acetogenic bacteria, and (2) the lack of sophisticated genetic tools for the modification of acetogens. In this review, we discuss the bioenergetic constraints for the conversion of syngas to different biofuels. We will mainly focus on Acetobacterium woodii, which is the best understood acetogen in terms of energy conservation. Syngas fermentation with Clostridium autoethanogenum will also be discussed, since this organism is well suited to convert syngas to certain products and already used in large-scale industrial processes. PMID:26692897

  10. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels.

    PubMed

    Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie H D

    2015-01-01

    Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. PMID:25647728

  11. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    DOE PAGESBeta

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-01-16

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimentalmore » and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2-eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.« less

  12. Decision support model for evaluating biofuel development along the U.S.-Mexico border.

    SciTech Connect

    Tidwell, Vincent Carroll; Correa, Alberto; Maxwell, Paul; Malczynski, Leonard A.

    2010-04-01

    Recently, Sandia National Laboratories and General Motors cooperated on the development of the Biofuels Deployment Model (BDM) to assess the feasibility, implications, limitations, and enablers of producing 90 billion gallons of ethanol per year by 2030. Leveraging the past investment, a decision support model based on the BDM is being developed to assist investors, entrepreneurs, and decision makers in evaluating the costs and benefits associated with biofuels development in the U.S.-Mexico border region. Specifically, the model is designed to assist investors and entrepreneurs in assessing the risks and opportunities associated with alternative biofuels development strategies along the U.S.-Mexico border, as well as, assist local and regional decision makers in understanding the tradeoffs such development poses to their communities. The decision support model is developed in a system dynamics framework utilizing a modular architecture that integrates the key systems of feedstock production, transportation, and conversion. The model adopts a 30-year planning horizon, operating on an annual time step. Spatially the model is disaggregated at the county level on the U.S. side of the border and at the municipos level on the Mexican side. The model extent includes Luna, Hildalgo, Dona Anna, and Otero counties in New Mexico, El Paso and Hudspeth counties in Texas, and the four munipos along the U.S. border in Chihuahua. The model considers a variety of feedstocks; specifically, algae, gitropha, castor oil, and agricultural waste products from chili and pecans - identifying suitable lands for these feedstocks, possible yields, and required water use. The model also evaluates the carbon balance for each crop and provides insight into production costs including labor demands. Finally, the model is fitted with an interactive user interface comprised of a variety of controls (e.g., slider bars, radio buttons), descriptive text, and output graphics allowing stakeholders to

  13. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    SciTech Connect

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-01-16

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2-eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.

  14. Life cycle assessment of microalgae to biofuel: Thermochemical processing through hydrothermal liquefaction or pyrolysis

    NASA Astrophysics Data System (ADS)

    Bennion, Edward P.

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae-to-biofuel process through life cycle assessment. A system boundary of a "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development, and a comparison of results to literature.

  15. Optimization of thermo-chemical hydrolysis of kitchen wastes.

    PubMed

    Vavouraki, Aikaterini Ioannis; Angelis, Evangelos Michael; Kornaros, Michael

    2013-03-01

    Municipal Solid Wastes (MSWs) in Greece consist mainly of fermentable organic material such as food scraps (∼50%) and paper residuals (∼20%). The aim of this work was to study the thermo-chemical pretreatment of the kitchen waste (KW) fraction of MSW focusing on biotechnological exploitation of pretreated wastes for biofuel production. A representative sample of municipal food residues was derived by combining weighted amounts of each individual type of residue recognized in daily samples obtained from the University of Patras' students restaurant located at the Students Residence Hall (Greece). Chemical pretreatment experiments of the representative KW sample were performed using several types of chemical solutions (i.e. H2SO4, HCl, NaOH, H2SO3) of different solute concentration (0.7%, 1.5%, 3%) at three temperatures (50, 75, 120°C) and a range of residence times (30-120min). Optimized results proved that chemical pretreatment of KW, using either 1.12% HCl for 94min or 1.17% HCl for 86min (at 100°C), increased soluble sugars concentration by 120% compared to untreated KW. The increase of soluble sugars was mainly attributed to the mono-sugars glucose and fructose. PMID:22883686

  16. Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know?

    PubMed

    Williams, Pamela R D; Inman, Daniel; Aden, Andy; Heath, Garvin A

    2009-07-01

    In this paper, we assess what is known or anticipated about environmental and sustainability factors associated with next-generation biofuels relative to the primary conventional biofuels (i.e., corn grain-based ethanol and soybean-based diesel) in the United States during feedstock production and conversion processes. Factors considered include greenhouse (GHG) emissions, air pollutant emissions, soil health and quality, water use and water quality, wastewater and solid waste streams, and biodiversity and land-use changes. Based on our review of the available literature, we find that the production of next-generation feedstocks in the U.S. (e.g., municipal solid waste, forest residues, dedicated energy crops, microalgae) are expected to fare better than corn-grain or soybean production on most of these factors, although the magnitude of these differences may vary significantly among feedstocks. Ethanol produced using a biochemical or thermochemical conversion platform is expected to result in fewer GHG and air pollutant emissions, but to have similar or potentially greater water demands and solid waste streams than conventional ethanol biorefineries in the U.S. However, these conversion-related differences are likely to be small, particularly relative to those associated with feedstock production. Modeling performed for illustrative purposes and to allow for standardized quantitative comparisons across feedstocks and conversion technologies generally confirms the findings from the literature. Despite current expectations, significant uncertainty remains regarding how well next-generation biofuels will fare on different environmental and sustainability factors when produced on a commercial scale in the U.S. Additional research is needed in several broad areas including quantifying impacts, designing standardized metrics and approaches, and developing decision-support tools to identify and quantify environmental trade-offs and ensure sustainable biofuels production

  17. Synthesis, Characterization, and Catalytic Activity of Sulfonated Carbon-Based Catalysts Derived From Rubber Tree Leaves and Pulp and Paper Mill Waste

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Sinin, E.; Hiew, S. F.; Kong, A. M. T.; Lahin, F. A.

    2016-06-01

    Sulfonated carbon-based catalysts derived from rubber tree leaves, and pulp and paper mill waste were synthesized and characterized. Three types of catalyst synthesized were sulfonated rubber tree leaves (S-RTL), pyrolysed sludge char (P-SC) and sulfonated sludge char (S-SC). Sulfonated rubber tree leaves (S-RTL) and sulfonated sludge char (S-SC) were prepared through pyrolysis followed by functionalization via sulfonation process whereas, P- SC was only pyrolyzed without sulfonation. The characterization results indicated sulfonic acids, hydroxyl, and carboxyl moieties were detected in S-RTL and S-SC, but no sulfonic acid was detected in P-SC. Total acidity test showed S-RTL had the highest value followed by S-SC and P-SC. The thermal stability of S-RTL and S-SC were up to 230oC as the loss was associated with the decomposition of sulfonic acid group, whereas, P-SC showed higher stability than the S-RTL and S-SC. Morphology analysis showed that S-RTL consisted of an amorphous carbon structure, and a crystalline structure for P-SC and S-SC. Furthermore, traces of metal components were also detected on all of the catalysts. The catalyst catalytic activity was tested through esterification of oleic acid with methanol. The results showed that the reaction using S-RTL catalyst produced the highest conversion (99.9%) followed by P-SC (88.4%) and lastly S-SC (82.7%). The synthesized catalysts showed high potential to be used in biodiesel production.

  18. Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses.

    PubMed

    Metsoviti, Maria; Zeng, An-Ping; Koutinas, Apostolis A; Papanikolaou, Seraphim

    2013-02-20

    The production of 1,3-propanediol (PD) by a newly isolated Citrobacter freundii strain [FMCC-B 294 (VK-19)] was investigated. Different grades of biodiesel-derived glycerol were employed. Slightly lower PD biosynthesis was observed in batch experiments only when crude glycerol from waste-cooking oil trans-esterification was utilized and only at elevated initial substrate concentrations employed. Batch bioreactor cultures revealed the capability of the strain to tolerate elevated amounts of substrate (glycerol up to 170 g/L) and produce quantities of PD in such high substrate concentrations. Nevertheless, maximum PD quantities (45.9 g/L) were achieved at lower initial glycerol concentrations (∼100 g/L) employed, suggesting some inhibition exerted due to the increased initial substrate concentrations. In order to improve PD production, a fed-batch fermentation was carried out and 68.1g/L of PD were produced (the highest PD quantity achieved by C. freundii strains so far) with yield per glycerol consumed ∼0.40 g/g and volumetric productivity 0.79 g/L/h. Aiming to perform a more economical and eco-friendlier procedure, batch and fed-batch fermentations under completely non-sterile conditions were carried out. During non-sterilized fed-batch process, 176 g/L of raw glycerol were converted to 66.3g/L of PD, suggesting the potentiality of the non-sterile fermentation by C. freundii FMCC-B 294. PMID:23220217

  19. Development of biological platform for the autotrophic production of biofuels

    NASA Astrophysics Data System (ADS)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  20. Cyanobacteria as a Platform for Biofuel Production

    PubMed Central

    Nozzi, Nicole E.; Oliver, John W. K.; Atsumi, Shota

    2013-01-01

    Cyanobacteria have great potential as a platform for biofuel production because of their fast growth, ability to fix carbon dioxide gas, and their genetic tractability. Furthermore they do not require fermentable sugars or arable land for growth and so competition with cropland would be greatly reduced. In this perspective we discuss the challenges and areas for improvement most pertinent for advancing cyanobacterial fuel production, including: improving genetic parts, carbon fixation, metabolic flux, nutrient requirements on a large scale, and photosynthetic efficiency using natural light. PMID:25022311