Science.gov

Sample records for biogenic iron microminerals

  1. Formation and Reactivity of Biogenic Iron Microminerals

    SciTech Connect

    Beveridge, Terrance J.; Glasauer, Susan; Korenevsky, Anton; Ferris, F. Grant

    2000-08-08

    The overall purpose of the project is to explore and quantify the processes that control the formation and reactivity of biogenic iron microminerals and their impact on the solubility of metal contaminants. The research addresses how surface components of bacterial cells, extracellular organic material, and the aqueous geochemistry of the DIRB microenvironment impacts the mineralogy, chemical state and micromorphology of reduced iron phases.

  2. Formation and Reactivity of Biogenic Iron Microminerals

    SciTech Connect

    Beveridge, Terrance J.; Ferris, F. Grant

    2002-08-10

    Radionuclide and heavy metal contaminants at DOE sites pose immediate and long-term environmental problems. Under the NABIR program, bacteria are being considered for their role in the cycling of these contaminants because they influence many redox reactions in the subsurface. Dissimilatory metal reducing bacteria (DMRB) are particularly important to controlling the biogeochemistry of subsurface environments through enzymatic reduction of iron and manganese minerals. During reduction of FeIII, biogenic FeII phases form at the cell-mineral interface which may profoundly influence metal reduction.

  3. Nutritional care of premature infants: microminerals.

    PubMed

    Domellöf, Magnus

    2014-01-01

    Microminerals, including iron, zinc, copper, selenium, manganese, iodine, chromium and molybdenum, are essential for a remarkable array of critical functions and need to be supplied in adequate amounts to preterm infants. Very low birth weight (VLBW) infants carry a very high risk of developing iron deficiency which can adversely affect neurodevelopment. However, a too high iron supply in iron-replete VLBW infants may induce adverse effects such as increased infection risks and impaired growth. Iron needs are influenced by birth weight, growth rates, blood losses (phlebotomy) and blood transfusions. An enteral iron intake of 2 mg/kg/day for infants with a birth weight of 1,500-2,500 g and 2-3 mg/kg/day for VLBW infants is recommended. Higher doses up to 6 mg/kg/day are needed in infants receiving erythropoietin treatment. Regular monitoring of serum ferritin during the hospital stay is advisable. Routine provision of iron with parenteral nutrition for VLBW infants is not recommended. Less certainty exists for the advisable intakes of other microminerals. It appears prudent to provide enterally fed VLBW infants with daily amounts per kilogram body weight of 1.4-2.5 mg zinc, 100-230 μg copper, 5-10 μg selenium, 1-15 μg manganese, 10-55 μg iodine, 0.03-2.25 μg chromium, and 0.3-5 μg molybdenum. Future scientific findings may justify deviations from these suggested ranges. PMID:24751625

  4. The Irony of IronBiogenic Iron Oxides as an Iron Source to the Ocean

    PubMed Central

    Emerson, David

    2016-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157

  5. The Irony of Iron - Biogenic Iron Oxides as an Iron Source to the Ocean.

    PubMed

    Emerson, David

    2015-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157

  6. Comparative study of biogenic and abiotic iron-containing materials

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Shopska, M.; Paneva, D.; Kovacheva, D.; Kadinov, G.; Mitov, I.

    2016-12-01

    Series of iron-based biogenic materials prepared by cultivation of Leptothrix group of bacteria in different feeding media ( Sphaerotilus-Leptothrix group of bacteria isolation medium, Adler, Lieske and silicon-iron-glucose-peptone) were studied. Control samples were obtained in the same conditions and procedures but the nutrition media were not infected with bacteria, i.e. they were sterile. Room and low temperature Mössbauer spectroscopy, powder X-ray diffraction (XRD), and infrared spectroscopy (IRS) were used to reveal the composition and physicochemical properties of biomass and respective control samples. Comparative analysis showed differences in their composition and dispersity of present phases. Sample composition included different ratio of nanodimensional iron oxyhydroxide and oxide phases. Relaxation phenomena such as superparamagnetism or collective magnetic excitation behaviour were registered for some of them. The experimental data showed that the biogenic materials were enriched in oxyhydroxides of high dispersion. Catalytic behaviour of a selected biomass and abiotic material were studied in the reaction of CO oxidation. In situ diffuse-reflectance (DR) IRS was used to monitor the phase transformations in the biomass and CO conversion.

  7. Biogenic iron mineralization at Iron Mountain, CA with implications for detection with the Mars Curiosity rover

    USGS Publications Warehouse

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Campbell, Kate M.; Nordstrom, D Kirk

    2014-01-01

    (Introduction) Microbe-mineral interactions and biosignature preservation in oxidized sulfidic ore bodies (gossans) are prime candidates for astrobiological study. Such oxidized iron systems have been proposed as analogs for some Martian environments. Recent studies identified microbial fossils preserved as mineral-coated filaments. This study documents microbially-mediated mineral biosignatures in hydrous ferric oxide (HFO) and ferric oxyhydroxysulfates (FOHS) in three environments at Iron Mountain, CA. We investigated microbial community preservation via HFO and FOHS precipitation and the formation of filamentous mineral biosignatures. These environments included 1) actively precipitating (1000's yrs), naturally weathered HFO from in situ gossan, and 3) remobilized iron deposits, which contained lithified clastics and zones of HFO precipitate. We used published biogenicity criteria as guidelines to characterize the biogenicity of mineral filaments. These criteria included A) an actively precipitating environment where microbes are known to be coated in minerals, B) presence of extant microbial communities with carbon signatures, C) structures observable as a part of the host rock, and D) biological morphology, including cellular lumina, multiple member population, numerous taxa, variable and 3-D preservation, biological size ranges, uniform diameter, and evidence of flexibility. This study explores the relevance and detection of these biosignatures to possible Martian biosignatures. Similar filamentous biosignatures are resolvable by the Mars Hand Lens Imager (MAHLI) onboard the Mars Science Laboratory (MSL) rover, Curiosity, and may be identifiable as biogenic if present on Mars.

  8. Biogenicity of an Early Quaternary iron formation, Milos Island, Greece.

    PubMed

    Chi Fru, E; Ivarsson, M; Kilias, S P; Frings, P J; Hemmingsson, C; Broman, C; Bengtson, S; Chatzitheodoridis, E

    2015-05-01

    A ~2.0-million-year-old shallow-submarine sedimentary deposit on Milos Island, Greece, harbours an unmetamorphosed fossiliferous iron formation (IF) comparable to Precambrian banded iron formations (BIFs). This Milos IF holds the potential to provide clues to the origin of Precambrian BIFs, relative to biotic and abiotic processes. Here, we combine field stratigraphic observations, stable isotopes of C, S and Si, rock petrography and microfossil evidence from a ~5-m-thick outcrop to track potential biogeochemical processes that may have contributed to the formation of the BIF-type rocks and the abrupt transition to an overlying conglomerate-hosted IF (CIF). Bulk δ(13) C isotopic compositions lower than -25‰ provide evidence for biological contribution by the Calvin and reductive acetyl-CoA carbon fixation cycles to the origin of both the BIF-type and CIF strata. Low S levels of ~0.04 wt.% combined with δ(34) S estimates of up to ~18‰ point to a non-sulphidic depository. Positive δ(30) Si records of up to +0.53‰ in the finely laminated BIF-type rocks indicate chemical deposition on the seafloor during weak periods of arc magmatism. Negative δ(30) Si data are consistent with geological observations suggesting a sudden change to intense arc volcanism potentially terminated the deposition of the BIF-type layer. The typical Precambrian rhythmic rocks of alternating Fe- and Si-rich bands are associated with abundant and spatially distinct microbial fossil assemblages. Together with previously proposed anoxygenic photoferrotrophic iron cycling and low sedimentary N and C potentially connected to diagenetic denitrification, the Milos IF is a biogenic submarine volcano-sedimentary IF showing depositional conditions analogous to Archaean Algoma-type BIFs. PMID:25645266

  9. Arsenic Bioremediation by Biogenic Iron Oxides and Sulfides

    PubMed Central

    Couture, Raoul-Marie; Van Cappellen, Philippe; Corkhill, Claire L.; Charnock, John M.; Polya, David A.; Vaughan, David; Vanbroekhoven, Karolien; Lloyd, Jonathan R.

    2013-01-01

    Microcosms containing sediment from an aquifer in Cambodia with naturally elevated levels of arsenic in the associated groundwater were used to evaluate the effectiveness of microbially mediated production of iron minerals for in situ As remediation. The microcosms were first incubated without amendments for 28 days, and the release of As and other geogenic chemicals from the sediments into the aqueous phase was monitored. Nitrate or a mixture of sulfate and lactate was then added to stimulate biological Fe(II) oxidation or sulfate reduction, respectively. Without treatment, soluble As concentrations reached 3.9 ± 0.9 μM at the end of the 143-day experiment. However, in the nitrate- and sulfate-plus-lactate-amended microcosms, soluble As levels decreased to 0.01 and 0.41 ± 0.13 μM, respectively, by the end of the experiment. Analyses using a range of biogeochemical and mineralogical tools indicated that sorption onto freshly formed hydrous ferric oxide (HFO) and iron sulfide mineral phases are the likely mechanisms for As removal in the respective treatments. Incorporation of the experimental results into a one-dimensional transport-reaction model suggests that, under conditions representative of the Cambodian aquifer, the in situ precipitation of HFO would be effective in bringing groundwater into compliance with the World Health Organization (WHO) provisional guideline value for As (10 ppb or 0.13 μM), although soluble Mn release accompanying microbial Fe(II) oxidation presents a potential health concern. In contrast, production of biogenic iron sulfide minerals would not remediate the groundwater As concentration below the recommended WHO limit. PMID:23666325

  10. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils.

    PubMed

    Krepski, S T; Emerson, D; Hredzak-Showalter, P L; Luther, G W; Chan, C S

    2013-09-01

    Despite the abundance of Fe and its significance in Earth history, there are no established robust biosignatures for Fe(II)-oxidizing micro-organisms. This limits our ability to piece together the history of Fe biogeochemical cycling and, in particular, to determine whether Fe(II)-oxidizers played a role in depositing ancient iron formations. A promising candidate for Fe(II)-oxidizer biosignatures is the distinctive morphology and texture of extracellular Fe(III)-oxyhydroxide stalks produced by mat-forming microaerophilic Fe(II)-oxidizing micro-organisms. To establish the stalk morphology as a biosignature, morphologic parameters must be quantified and linked to the microaerophilic Fe(II)-oxidizing metabolism and environmental conditions. Toward this end, we studied an extant model organism, the marine stalk-forming Fe(II)-oxidizing bacterium, Mariprofundus ferrooxydans PV-1. We grew cultures in flat glass microslide chambers, with FeS substrate, creating opposing oxygen/Fe(II) concentration gradients. We used solid-state voltammetric microelectrodes to measure chemical gradients in situ while using light microscopy to image microbial growth, motility, and mineral formation. In low-oxygen (2.7-28 μm) zones of redox gradients, the bacteria converge into a narrow (100 μm-1 mm) growth band. As cells oxidize Fe(II), they deposit Fe(III)-oxyhydroxide stalks in this band; the stalks orient directionally, elongating toward higher oxygen concentrations. M. ferrooxydans stalks display a narrow range of widths and uniquely biogenic branching patterns, which result from cell division. Together with filament composition, these features (width, branching, and directional orientation) form a physical record unique to microaerophilic Fe(II)-oxidizer physiology; therefore, stalk morphology is a biosignature, as well as an indicator of local oxygen concentration at the time of formation. Observations of filamentous Fe(III)-oxyhydroxide microfossils from a ~170 Ma marine Fe

  11. Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

    PubMed Central

    Wrede, Christoph; Dreier, Anne; Heller, Christina; Reitner, Joachim; Hoppert, Michael

    2013-01-01

    The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates. PMID:23843725

  12. Sorption of ferric iron from ferrioxamine B to synthetic and biogenic layer type manganese oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, Owen W.; Bargar, John R.; Sposito, Garrison

    2008-07-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments that increase the bioavailability of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but scant information appears to be available about the potential roles of layer type manganese oxides, which are relatively abundant in soils and the oligotrophic marine water column. To probe the effects of layer type manganese oxides on the stability of aqueous Fe-siderophore complexes, we studied the sorption of ferrioxamine B [Fe(III)HDFOB +, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] to two synthetic birnessites [layer type Mn(III,IV) oxides] and a biogenic birnessite produced by Pseudomonas putida GB-1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB + at pH 8. Analysis of Fe K-edge EXAFS spectra indicated that a dominant fraction of Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to the mineral structure at multiple sites, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that layer type manganese oxides, including biogenic minerals, may sequester iron from soluble ferric complexes. We conclude that the sorption of iron-siderophore complexes may play a significant role in the bioavailability and biogeochemical cycling of iron in marine and terrestrial environments.

  13. Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; John, B.; Sposito, G.

    2006-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.

  14. Biogenic oxides from neutrophilic iron bacteria and possibilities for application in the nanotechnology

    NASA Astrophysics Data System (ADS)

    Angelova, R.; Blagoev, B.; Slavov, L.; Iliev, M.; Groudeva, V.; Nedkov, I.

    2014-11-01

    The aim of this study is to obtain and characterize the ferric oxides/(oxy)hydroxides formed after cultivation of bacteria under laboratory conditions. The pure cultures of these bacteria isolated from natural habitats are identified by the methods of classical and molecular taxonomy as strains of the Leptothrix genus. Adler (AM) and Silicon iron glucose peptone (SIGP) media are the most appropriate ones for obtaining the iron oxides. The characterization of the oxides and sheaths is performed by different physical methods. The sheaths are formed in a SIGP medium. Light micrograph images and SEM revealed the average size and diameter of the sheaths. The XRD measurements showed the composition of the oxides obtained, as well as the average size of the iron particles (up to 30 nm). The TEM micrographs showed the shape of the biogenic nanoparticles, while the magnetic measurements demonstrated the superparamagnetic character of the magnetic part of the biomaterials. The new biogenic materials are promising for application in magneto electronic for building biosensors.

  15. Interactions of proteins with biogenic iron oxyhydroxides and a new culturing technique to increase biomass yields of neutrophilic, iron-oxidizing bacteria

    PubMed Central

    Barco, Roman A.; Edwards, Katrina J.

    2014-01-01

    Neutrophilic, bacterial iron-oxidation remains one of the least understood energy-generating biological reactions to date. One of the reasons it remains under-studied is because there are inherent problems with working with iron-oxidizing bacteria (FeOB), including low biomass yields and interference from the iron oxides in the samples. In an effort to circumvent the problem of low biomass, a new large batch culturing technique was developed. Protein interactions with biogenic iron oxides were investigated confirming that such interactions are strong. Therefore, a protein extraction method is described to minimize binding of proteins to biogenic iron oxides. The combination of these two methods results in protein yields that are appropriate for activity assays in gels and for proteomic profiling. PMID:24910632

  16. Mineralogy and inorganic chemistry of naturally occurring biogenic iron oxyhydroxides: Spectroscopic evidence of thermal maturation

    NASA Astrophysics Data System (ADS)

    Haddad, A.; Fakra, S.; Orcutt, B. N.; Toner, B.; Edwards, K. J.

    2011-12-01

    Microbial mats were sampled at four sites at the Lo'ihi Seamount and examined for changes in mineralogy and inorganic chemistry via synchrotron-sourced X-ray Absorption Spectroscopy (XAS). These mats are rich in iron oxyhydroxides with morphologies similar to those produced by iron oxidizing microorganisms related to Zetaproteobacteria such as Mariprofundus ferroxydans, which have been shown to be present and active in all of these mat ecosystems. The same particle morphologies are observed consistently at all four sites, which range in temperature (4 - 40°C) and hydrothermal activity (dead to very active). Fe L-edge XAS reveals no significant differences in Fe speciation between the morphologies. Mineralogy, however, as reflected in O 1s XAS measurements, appears to be a function of thermal maturation with the hottest site harboring more crystalline particles. Morphology does not factor into the changes in mineralogy. These measurements are confirmed by Fe 1s XAS spectroscopy. The C 1s XAS spectroscopy is highly variable and may be related to overall maturation (age) or undetermined factors. Elucidating the effect of thermal maturation on biogenic iron oxhydroxide particles is essential to understanding the environmental influences on their preservation in the rock record.

  17. The effect of heat acclimation on sweat microminerals: Artifact of surface contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat acclimation (HA) reportedly conveys conservation in sweat micromineral concentrations when sampled from arm sweat, but time course is unknown. The observation that comprehensive cleaning of the skin surface negates sweat micromineral reductions during prolonged sweating raises the question of w...

  18. Rates of microbial sulfate reduction control the sizes of biogenic iron sulfide aggregates

    NASA Astrophysics Data System (ADS)

    Jin, Q.

    2005-12-01

    Sulfide minerals occur widely in freshwater and marine sediments as byproducts of microbial sulfate reduction and as end products of heavy metal bioremediation. They form when metals in the environments combine with sulfide produced from the metabolism of sulfate reducing bacteria. We used chemostat bioreactors to study sizes and crystal structures of iron sulfide (FeS) minerals produced by Desulfovibrio vulgaris, D. desulfuricans strain G20, and subspecies desulfuricans. FeS nanoparticles and their aggregates are characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and dynamic light scattering (DLS). FeS nanoparticles produced by sulfate reducing bacteria are extremely small, usually less than around 10 nm in diameter. Nanoparticles do not occur as individual nanoparticles, but as aggregates. The sizes of FeS aggregates are affected by sulfate reduction rates, Fe(II) concentration, pH, ionic strength, organic matter concentration, bacterial species, etc. Aggregate size ranges from about 500 nm at very large sulfate reduction rates to about 1,500 nm at very small rates. Variations in Fe(II) concentration also lead to a difference up to 500 nm in FeS aggregate size. Different bacterial species produce nanoparticle aggregates of different sizes under similar growth conditions. For example, D. vulgaris produces FeS aggregates with sizes 500 nm smaller than those by strain G20. The inverse relationship between FeS aggregate sizes and sulfate reduction rates is important in evaluating metal bioremediation strategies. Previous approaches have focused on stimulating microbial activities in natural environments. However, our experimental results suggest that increasing metabolic rates may decrease the aggregate size, increasing the mobility of colloidal aggregates. Therefore, the balance between microbial activities and sizes of biogenic aggregates may be an important consideration in the design and

  19. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge

    SciTech Connect

    Toner, Brandy M.; Santelli, Cara M.; Marcus, Matthew A.; Wirth, Richard; Chan, Clara S.; McCollom, Thomas; Bach, Wolfgang; Edwards, Katrina J.

    2008-05-22

    Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (mu XRF), X-ray absorption spectroscopy (mu EXAFS), and X-ray diffraction (mu XRD) in conjunction with focused ion beam (FIB) sectioning, and highresolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1-xS, 0<_ x<_ 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe mu EXAFS spectroscopy and mu XRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that

  20. Microbial Communities Associated with Biogenic Iron Oxide Mineralization in Circumneutral pH Environments

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; Banfield, J. F.

    2002-12-01

    Lithotrophic growth on iron is a metabolism that has been found in a variety of neutral pH environments and is likely important in sustaining life in microaerophilic solutions, especially those low in organics. The composition of the microbial communities, especially the organisms that are responsible for iron oxidation, and carbon and nitrogen fixation, are not known, yet the ability to recognize these contributions is vital to our understanding of iron cycling in natural environments. Our approach has been to study the microbial community structure, mineralogy, and geochemistry of ~20 cm thick, 100's meters long, fluffy iron oxide-encrusted biological mats growing in the Piquette Mine tunnel, and to compare the results to those from geochemically similar environments. In situ measurements (Hydrolab) and geochemical characterization of bulk water samples and peepers (dialysis sampling vials) indicate that the environment is microaerobic, with micromolar levels of iron, high carbonate and sulfate, and typical groundwater nitrate and nitrite concentrations. 16S rDNA clone libraries show that the microbial mat and water contain communities with considerable diversity within the Bacterial domain, a large proportion of Nitrospira and Betaproteobacteria, and no Archaea. Because clone library data are not necessarily indicative of actual abundance, fluorescence in-situ hybridization (FISH) was performed on water, mat, and sediment samples from the Piquette mine and two circumneutral iron- and carbonate-rich springs in the Oregon Cascade Range. Domain- and phylum-level probes were chosen based on the clone library results (Nitrospira, Beta- and Gammaproteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Planctomyces). FISH data reveal spatial associations between specific microbial groups and mineralized structures. The organisms responsible for making the mineralized sheaths that compose the bulk of the iron oxide mat are Betaproteobacteria (probably Leptothrix

  1. A comparison of biogenic iron quotas during a diatom spring bloom using multiple approaches

    NASA Astrophysics Data System (ADS)

    King, A. L.; Sañudo-Wilhelmy, S. A.; Boyd, P. W.; Twining, B. S.; Wilhelm, S. W.; Breene, C.; Ellwood, M. J.; Hutchins, D. A.

    2012-02-01

    Biogenic Fe quotas were determined using three distinct techniques on samples collected concurrently in the subtropical Pacific Ocean east of New Zealand. Fe quotas were measured using radioisotope uptake experiments (24 h incubation), bulk filtration and analysis by inductively-coupled plasma mass spectrometer (ICPMS), and single-cell synchrotron x-ray fluorescence (SXRF) analysis over a sixteen-day period (year days 263 to 278 of 2008) during a quasi-Lagrangian drifter experiment that tracked the evolution of the annual spring diatom bloom within a counter-clockwise open-ocean eddy. Overall, radioisotope uptake-determined Fe quotas (washed with oxalate reagent to remove extracellular Fe) were the lowest (0.5-1.0 mmol Fe:mol P; 4-8 μmol Fe:mol C), followed by single-cell Fe quotas (2.3-7.5 mmol Fe:mol P; 17-57 μmol Fe:mol C), and the highest and most variable quotas were from the bulk filtration ICPMS approach that used the oxalate reagent wash, corrected for lithogenic Fe using Al (0.8-21 mmol Fe:mol P; 4-136 μmol Fe:mol C). During the evolution of the spring bloom within the eddy (year days 263 to 272), the surface mixed layer inventories of particulate biogenic elements (C, N, P, Si) and chlorophyll increased while Fe quotas estimated from all three approaches exhibited a general decline. After the onset of the bloom decline, the drogued buoys exited the eddy center (days 273 to 277). Fe quotas returned to pre-bloom values during this part of the study. Our standardized and coordinated sampling protocols reveal the general observed trend in Fe quotas: ICPMS > SXRF > radioisotope uptake. We discuss the inherent differences between the techniques and argue that each technique has its individual merits and uniquely contributes to the characterization of the oceanic particulate Fe pool.

  2. Responses in Micro-Mineral Metabolism in Rainbow Trout to Change in Dietary Ingredient Composition and Inclusion of a Micro-Mineral Premix.

    PubMed

    Antony Jesu Prabhu, P; Geurden, Inge; Fontagné-Dicharry, Stéphanie; Veron, Vincent; Larroquet, Laurence; Mariojouls, Catherine; Schrama, Johan W; Kaushik, Sadasivam J

    2016-01-01

    Responses in micro-mineral metabolism to changes in dietary ingredient composition and inclusion of a micro-mineral premix (Fe, Cu, Mn, Zn and Se) were studied in rainbow trout. In a 2 x 2 factorial design, triplicate groups of rainbow trout (initial weight: 20 g) were fed over 12 weeks at 17°C a fishmeal-based diet (M) or a plant-ingredient based diet (V), with or without inclusion of a mineral premix. Trout fed the V vs. M diet had lower feed intake, growth, hepato-somatic index, apparent availability coefficient (AAC) of Fe, Cu, Mn and Zn and also lower whole body Se and Zn concentration, whereas whole body Fe and Cu and plasma Fe concentrations were higher. Feeding the V diet increased intestinal ferric reductase activity; at transcriptional level, hepatic hepcidin expression was down-regulated and ferroportin 1 was up-regulated. Transcription of intestinal Cu-transporting ATPases and hepatic copper transporter1 were higher in V0 compared to other groups. Among the hepatic metalo-enzyme activities assayed, only Se-dependent glutathione peroxidase was affected, being lower in V fed fish. Premix inclusion reduced the AAC of Fe, Cu and Zn; increased the whole body concentration of all micro- minerals; up-regulated hepatic hepcidin and down-regulated intestinal ferroportin 1 transcription; and reduced the transcription of Cu-transporting ATPases in the intestine. Overall, the regulation of micro-mineral metabolism in rainbow trout, especially Fe and Cu, was affected both by a change in ingredient composition and micro-mineral premix inclusion. PMID:26895186

  3. Responses in Micro-Mineral Metabolism in Rainbow Trout to Change in Dietary Ingredient Composition and Inclusion of a Micro-Mineral Premix

    PubMed Central

    Antony Jesu Prabhu, P.; Geurden, Inge; Fontagné-Dicharry, Stéphanie; Veron, Vincent; Larroquet, Laurence; Mariojouls, Catherine; Schrama, Johan W.; Kaushik, Sadasivam J.

    2016-01-01

    Responses in micro-mineral metabolism to changes in dietary ingredient composition and inclusion of a micro-mineral premix (Fe, Cu, Mn, Zn and Se) were studied in rainbow trout. In a 2 x 2 factorial design, triplicate groups of rainbow trout (initial weight: 20g) were fed over 12 weeks at 17°C a fishmeal-based diet (M) or a plant-ingredient based diet (V), with or without inclusion of a mineral premix. Trout fed the V vs. M diet had lower feed intake, growth, hepato-somatic index, apparent availability coefficient (AAC) of Fe, Cu, Mn and Zn and also lower whole body Se and Zn concentration, whereas whole body Fe and Cu and plasma Fe concentrations were higher. Feeding the V diet increased intestinal ferric reductase activity; at transcriptional level, hepatic hepcidin expression was down-regulated and ferroportin 1 was up-regulated. Transcription of intestinal Cu-transporting ATPases and hepatic copper transporter1 were higher in V0 compared to other groups. Among the hepatic metalo-enzyme activities assayed, only Se-dependent glutathione peroxidase was affected, being lower in V fed fish. Premix inclusion reduced the AAC of Fe, Cu and Zn; increased the whole body concentration of all micro- minerals; up-regulated hepatic hepcidin and down-regulated intestinal ferroportin 1 transcription; and reduced the transcription of Cu-transporting ATPases in the intestine. Overall, the regulation of micro-mineral metabolism in rainbow trout, especially Fe and Cu, was affected both by a change in ingredient composition and micro-mineral premix inclusion. PMID:26895186

  4. A comparison of biogenic iron quotas during a diatom spring bloom using multiple approaches

    NASA Astrophysics Data System (ADS)

    King, A. L.; Sañudo-Wilhelmy, S. A.; Boyd, P. W.; Twining, B. S.; Wilhelm, S. W.; Breene, C.; Ellwood, M. J.; Hutchins, D. A.

    2011-09-01

    Biogenic Fe quotas were determined using three distinct techniques on samples collected concurrently in the subtropical Pacific Ocean east of New Zealand. Fe quotas were measured using radioisotope uptake experiments (24 h incubation), bulk filtration and analysis by inductively-coupled plasma mass spectrometer (ICPMS), and single-cell synchrotron x-ray fluorescence (SXRF) analysis over a sixteen-day period (year days 263 to 278 of 2008) during a quasi-Lagrangian drifter experiment that tracked the evolution of the annual spring diatom bloom within a counter-clockwise open-ocean eddy. Overall, radioisotope uptake-determined Fe quotas (washed with oxalate reagent to remove extracellular Fe) were the lowest (0.5-1.0 mmol Fe:mol P; 4-8 μmol Fe:mol C), followed by single-cell Fe quotas (2.3-7.5 mmol Fe:mol P; 17-57 μmol Fe:mol C), and the highest and most variable quotas were from the bulk filtration ICPMS approach that used the oxalate reagent wash, corrected for lithogenic Fe using Al (0.8-21 mmol Fe:mol P; 4-136 μmol Fe:mol C). During the evolution of the spring bloom within the eddy (year days 263 to 272), the surface mixed layer inventories of particulate organic elements (C, N, P, Si) and chlorophyll increased while Fe quotas estimated from all three approaches exhibited a general decline. After the onset of the bloom decline, the drogued buoys exited the eddy center (days 273 to 277). Fe quotas returned to pre-bloom values during this part of the study. Our standardized and coordinated sampling protocols reveal the general observed trend in Fe quotas: ICPMS > SXRF > radioisotope uptake. We discuss the inherent differences between the techniques and argue that each technique has its individual merits and uniquely contributes to the characterization of the oceanic particulate Fe pool.

  5. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures.

    PubMed

    Nelson, Yarrow M; Lion, Leonard W; Shuler, Michael L; Ghiorse, William C

    2002-02-01

    The effects of iron and manganese (hydr)oxide formation processes on the trace metal adsorption properties of these metal (hydr)oxides and their mixtures was investigated by measuring lead adsorption by iron and manganese (hydr)oxides prepared by a variety of methods. Amorphous iron (hydr)oxide formed by fast precipitation at pH 7.5 exhibited greater Pb adsorption (gamma(max) = 50 mmol of Pb/mol of Fe at pH 6.0) than iron (hydr)oxide formed by slow, diffusion-controlled oxidation of Fe(II) at pH 4.5-7.0 or goethite. Biogenic manganese(III/IV) (hydr)oxide prepared by enzymatic oxidation of Mn(II) by the bacterium Leptothrix discophora SS-1 adsorbed five times more Pb (per mole of Mn) than an abiotic manganese (hydr)oxide prepared by oxidation of Mn(II) with permanganate, and 500-5000 times more Pb than pyrolusite oxides (betaMnO2). X-ray crystallography indicated that biogenic manganese (hydr)oxide and iron (hydr)oxide were predominantly amorphous or poorly crystalline and their X-ray diffraction patterns were not significantly affected by the presence of the other (hydr)oxide during formation. When iron and manganese (hydr)oxides were mixed after formation, or for Mn biologically oxidized with iron(III) (hydr)oxide present, observed Pb adsorption was similar to that expected for the mixture based on Langmuir parameters for the individual (hydr)oxides. These results indicate that interactions in iron/manganese (hydr)oxide mixtures related to the formation process and sequence of formation such as site masking, alterations in specific surface area, or changes in crystalline structure either did not occur or had a negligible effect on Pb adsorption by the mixtures. PMID:11871557

  6. INVESTIGATION OF THE TRANSFORMATION OF URANIUM UNDER IRON-REDUCING CONDITIONS: REDUCTION OF UVI BY BIOGENIC FEII/FEIII HYDROXIDE (GREEN RUST)

    SciTech Connect

    O'Loughlin, Edward J.; Scherer, Michelle M.; Kemner, Kenneth M.

    2006-12-31

    The recent identification of green rusts (GRs) as products of the reduction of FeIII oxyhydroxides by dissimilatory iron-reducing bacteria, coupled with the ability of synthetic (GR) to reduce UVI species to insoluble UO2, suggests that biogenic green rusts (BioGRs) may play an important role in the speciation (and thus mobility) of U in FeIII-reducing environments. The objective of our research was to examine the potential for BioGR to affect the speciation of U under FeIII-reducing conditions. To meet this objective, we designed and executed a hypothesis-driven experimental program to identify key factors leading to the formation of BioGRs as products of dissimilatory FeIII reduction, to determine the key factors controlling the reduction of UVI to UIV by GRs, and to identify the resulting U-bearing mineral phases. The results of this research significantly increase our understanding of the coupling of biotic and abiotic processes with respect to the speciation of U in iron-reducing environments. In particular, the reduction of UVI to UIV by BioGR with the subsequent formation of U-bearing mineral phases may be effective for immobilizing U in suboxic subsurface environments. This information has direct applications to contaminant transport modeling and bioremediation engineering for natural or enhanced in situ remediation of subsurface contamination.

  7. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    NASA Astrophysics Data System (ADS)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic

  8. Composition and arsenic-attenuating capacity of biogenic iron (hydr)oxide flocs at the Lava Cap Mine Superfund Site, Nevada County, CA.

    NASA Astrophysics Data System (ADS)

    Foster, A. L.; Ona-Nguema, G.; Tufano, K.; Brown, G. E.

    2008-12-01

    The Lava Cap Mine Site (LCMS) is on the National Priority List due to the elevated human health risk presented by the catastrophic release of several thousand cubic meters of arsenic (As) enriched tailings (average: 500 ppm As ) from the site. These tailings were released into a creek and lake (former tailings retention pond) in a low-density residential area where ground water is the primary source of drinking water. Although oxidation of iron (Fe) sulfides (pyrite and arsenopyrite) from tailings are the main sources of As and Fe, buffering by carbonate minerals prevents formation of acidic waters. Macroscopic accumulations of fluffy Fe (hydr)oxide are observed suspended in the water column or at the sediment-water interface in creeks, ponds, and seeps of the LCMS. Microscopic analysis indicates that the Fe (hydr)oxide is predominantly associated with the sheaths of bacteria identified as members of the genus Leptothrix, which are known to enzymatically oxidize Fe and manganese (Mn) under oligotrophic, near-neutral, sub oxic conditions. Both Fe- encrusted Leptothrix sheaths (which are largely devoid of cells) and free aggolmerations of Fe hydr(oxide) support morphologically distinct Eubacteria whose identity is currently under investigation. Dried biogenic Fe (hydr)oxide averages 4.4 % organic carbon, 20.2 % Fe, and 0.91% As (9100 ppm), making it attractive as a potential natural biosorbent for As and Fe. Water flow rate is a very important control on the amount of As retained in biogenic Fe (hydr)oxide flocs, based on monitoring of a natural passive bioreactor system. In addition, a pond with nearly stagnant water accumulated approximately one order of magnitude more As (dried) than a seep site with faster-running water, even though there was only a 5-fold difference in their median filtered (0.45 micron) arsenic concentrations. Most Probable Number estimates and analysis of PCR amplicons of Eubacterial DNA indicate that populations of Fe-, As-, and sulfate

  9. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    PubMed Central

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Pattrick, Richard A.D.; Thomas, Russell A.P.; Kalin, Robert; Lloyd, Jonathan R.

    2015-01-01

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  10. Investigation of the Transformation of Uranium under Iron-Reducing Conditions: Reduction of UVI by Biogenic FeII/FeIII Hydroxide (Green Rust)

    SciTech Connect

    Edward O’Loughlin; Michelle Scherer; Kenneth Kemner; Shelly Kelly

    2004-03-17

    The research we are proposing addresses fundamental aspects of the effects of coupled biotic and abiotic processes on U speciation in subsurface environments where Fe redox cycling is significant. The long-term objective of this research is to evaluate whether reduction of U{sup VI} by biogenic GRs is a significant immobilization mechanism in subsurface environments. Our preliminary experiments have shown that biogenic GRs can reduce U{sup VI} to U{sup IV}; however, little is known about how biogeochemical conditions (such as pH, U concentration, carbonate concentration, and the presence of cocontaminants) and GR composition affect the rate and products of U{sup VI} reduction by GRs. It is also unclear which biogeochemical conditions favor formation of GR over other non-reactive Fe-bearing biomineralization products from the reduction of Fe{sup III} by DIRB. To address these issues, the following objectives are proposed: (1) Identify the geochemical conditions that favor the formation of biogenic GRs from the reduction of Fe{sup III} oxyhydroxides by DIRB (e.g., Shewanella and Geobacter species). (2) Characterize the chemical composition of biogenic GRs (e.g., Fe{sup II}:Fe{sup III} ratios and interlayer anions) and the effects of compositional variability on the rate and extent of U{sup VI} reduction. (3) Evaluate the effects of variations in geochemical conditions--particularly pH, U concentration, carbonate concentration, the presence of organic ligands, and the presence of reducible co-contaminants--both on the kinetics of U{sup VI} reduction by biogenic GR and on the composition of U-bearing mineral phases. Particular attention will be given to examining geochemical conditions relevant to conditions at DOE field sites. (4) Determine the potential for coupling the reduction of Fe{sup III} by DIRB to the reduction of U{sup VI} via biogenic Fe{sup II} species (including biogenic GRs). The objectives outlined above will be achieved by testing the following

  11. Biogenic Iron-Rich Filaments in the Quartz Veins in the Uppermost Ediacaran Qigebulake Formation, Aksu Area, Northwestern Tarim Basin, China: Implications for Iron Oxidizers in Subseafloor Hydrothermal Systems.

    PubMed

    Zhou, Xiqiang; Chen, Daizhao; Tang, Dongjie; Dong, Shaofeng; Guo, Chuan; Guo, Zenghui; Zhang, Yanqiu

    2015-07-01

    Fe-(oxyhydr)oxide-encrusted filamentous microstructures produced by microorganisms have been widely reported in various modern and ancient extreme environments; however, the iron-dependent microorganisms preserved in hydrothermal quartz veins have not been explored in detail because of limited materials available. In this study, abundant well-preserved filamentous microstructures were observed in the hydrothermal quartz veins of the uppermost dolostones of the terminal-Ediacaran Qigebulake Formation in the Aksu area, northwestern Tarim Basin, China. These filamentous microstructures were permineralized by goethite and hematite as revealed by Raman spectroscopy and completely entombed in chalcedony and quartz cements. Microscopically, they are characterized by biogenic filamentous morphologies (commonly 20-200 μm in length and 1-5 μm in diameter) and structures (curved, tubular sheath-like, segmented, and mat-like filaments), similar to the Fe-oxidizing bacteria (FeOB) living in modern and ancient hydrothermal vent fields. A previous study revealed that quartz-barite vein swarms were subseafloor channels of low-temperature, silica-rich, diffusive hydrothermal vents in the earliest Cambrian, which contributed silica to the deposition of the overlying bedded chert of the Yurtus Formation. In this context, this study suggests that the putative filamentous FeOB preserved in the quartz veins might have thrived in the low-temperature, silica- and Fe(II)-rich hydrothermal vent channels in subseafloor mixing zones and were rapidly fossilized by subsequent higher-temperature, silica-rich hydrothermal fluids in response to waning and waxing fluctuations of diffuse hydrothermal venting. In view of the occurrence in a relatively stable passive continental margin shelf environment in Tarim Block, the silica-rich submarine hydrothermal vent system may represent a new and important geological niche favorable for FeOB colonization, which is different from their traditional

  12. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  13. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  14. Biogenic catalysis of soil formation on Mars?

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.

    1998-01-01

    The high iron abundance and the weak ferric iron spectral features of martian surface material are consistent with nanophase (nm-sized) iron oxide minerals as a major source of iron in the bright region soil on Mars. Nanophase iron oxide minerals, such as ferrihydrite and schwertmannite, and nanophase forms of hematite and goethite are formed by both biotic and abiotic processes on Earth. The presence of these minerals on Mars does not indicate biological activity on Mars, but it does raise the possibility. This work includes speculation regarding the possibility of biogenic soils on Mars based on previous observations and analyses. A remote sensing goal of upcoming missions should be to determine if nanophase iron oxide minerals, clay silicates and carbonates are present in the martian surface material. These minerals are important indicators for exobiology and their presence on Mars would invoke a need for further investigation and sample return from these sites.

  15. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  16. Biogenic green synthesis of monodispersed gum kondagogu (Cochlospermum gossypium) iron nanocomposite material and its application in germination and growth of mung bean (Vigna radiata) as a plant model.

    PubMed

    Raju, Dugyala; Mehta, Urmil J; Beedu, Sashidhar Rao

    2016-06-01

    An eco-friendly green and one-pot synthesis of highly monodispersed iron (Fe) nanoparticles (NPs) by using a natural biopolymer, gum kondagogu (GK) as reducing and capping agent is proposed. The NPs synthesised were characterised by ultra-violet-visible spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray diffraction. As the concentration of gum and time increases, the intensity of NPs formation increased. The NPs were highly monodispersed with uniform circular shapes of 2-6 nm in size. The formed NPs were crystalline in nature which was confirmed by diffraction analysis. The conversion ratio of Fe ionic form to NPs was 21% which was quantified by inductively coupled plasma mass spectroscopy (ICP-MS). Fe is essential for plant growth and development. A study was conducted to examine the effect of these NPs on the growth of mung bean (Vigna radiata). The radical length and biomass was increased in seeds exposed to Fe NPs than the ions. The uptake of Fe NPs by the sprouts was also quantified by ICP-MS, in which Fe was more in mung bean seeds exposed to NPs. The α-amylase activity was increased in the seeds exposed to NPs. The observed increase in the biomass by Fe NPs and seed germination may facilitate its application in the agriculture as an important cost-effective method for plant growth. PMID:27256894

  17. Biogenic Emissions Inventory System

    EPA Science Inventory

    ***BEIS3 is now embedded in the CMAQ model***

    The Biogenic Emissions Inventory System, Version 3 (BEIS3) is being developed to support the needs of regional and urban-scale air quality simulation models. BEIS3 is designed to be incorporated into the Sparse Matrix Op...

  18. Photochemistry of biogenic gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1989-01-01

    The relationship between the biosphere and the atmosphere is examined, emphasizing the composition and photochemistry and chemistry of the troposphere and stratosphere. The reactions of oxygen, ozone, and hydroxyl are reviewed and the fate of the biogenic gases ammonia, methane, reduced sulfur species, reduced halogen species, carbon monoxide, nitric oxide, nitrous oxide, nitrogen, and carbon dioxide are described. A list is given of the concentration and sources of the various gases.

  19. Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite

    SciTech Connect

    Veeramani, Harish; Scheinost, Andreas; Monsegue, Niven; Qafoku, Nikolla; Kukkadapu, Ravi K.; Newville, Mathew; Lanzirotti, Anthony; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F.

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in-situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U6+ reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe1+xS, x = 0 to 0.11) to reduce U6+ abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U6+ indicate the formation of nanoparticulate UO2. This study suggests the relevance of Fe(II) and sulfide bearing biogenic minerals in mediating abiotic U6+ reduction, an alternative pathway in addition to direct enzymatic U6+ reduction.

  20. Biogenic magnetite in the nematode caenorhabditis elegans.

    PubMed Central

    Cranfield, Charles G; Dawe, Adam; Karloukovski, Vassil; Dunin-Borkowski, Rafal E; de Pomerai, David; Dobson, Jon

    2004-01-01

    The nematode Caenorhabditis elegans is widely used as a model system in biological research. Recently, examination of the production of heat-shock proteins in this organism in response to mobile phone-type electromagnetic field exposure produced the most robust demonstration to date of a non-thermal, deleterious biological effect. Though these results appear to be a sound demonstration of non-thermal bioeffects, to our knowledge, no mechanism has been proposed to explain them. We show, apparently for the first time, that biogenic magnetite, a ferrimagnetic iron oxide, is present in C. elegans. Its presence may have confounding effects on experiments involving electromagnetic fields as well as implications for the use of this nematode as a model system for iron biomineralization in multi-cellular organisms. PMID:15801597

  1. Terrigenous Fe input and biogenic sedimentation in the glacial and interglacial equatorial Pacific Ocean

    SciTech Connect

    Murray, R.W.; Leinen, M.; Knowlton, C.W.

    1995-12-01

    This study was performed to determine the relationship of particulate iron from land erosion to the accumulation of biogenic matter in the equatorial Pacific Ocean. Sediment cores representing the last six glacial-interglacial cycles and previously published mineralogic records were used as data input. Total iron, terrigenous, and biogenic components were determined for three sediment cores. The study determined that there is no relationship between terrigenous iron input and sedimentary carbon sequestering. This is based on chemical, spectral, and stratigraphic anlyses which showed: (1) no consistent pattern of terrigenous input during glacial or interglacial periods, (2) a close relationshipe between the accumulation of particulate iron and the accumulation of terrigenous matter, (3) no coherent spectral correlations between glacial periodicity and iron input, (4) an inverse correlation of iron input and calcium carbonate, and (5) no spectral or linear relationship between iron accumulation and calcium carbonate, organic carbon, or opal. 55 refs., 6 figs., 3 tabs.

  2. The Moon: Biogenic elements

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K., Jr.; Chang, Sherwood

    1992-01-01

    The specific objectives of the organic chemical exploration of the Moon involve the search for molecules of possible biological or prebiological origin. Detailed knowledge of the amount, distribution, and exact structure of organic compounds present on the Moon is extremely important to our understanding of the origin and history of the Moon and to its relationship to the history of the Earth and solar system. Specifically, such knowledge is essential for determining whether life on the Moon exists, ever did exist, or could develop. In the absence of life or organic matter, it is still essential to determine the abundance, distribution, and origin of the biogenic elements (e.g., H, C, O, N, S, P) in order to understand how the planetary environment may have influenced the course of chemical evolution. The history and scope of this effort is presented.

  3. Biogenic Impact on Materials

    NASA Astrophysics Data System (ADS)

    Stephan, Ina; Askew, Peter; Gorbushina, Anna; Grinda, Manfred; Hertel, Horst; Krumbein, Wolfgang; Müller, Rolf-Joachim; Pantke, Michael; Plarre, Rüdiger (Rudy); Schmitt, Guenter; Schwibbert, Karin

    Materials as constituents of products or components of technical systems rarely exist in isolation and many must cope with exposure in the natural world. This chapter describes methods that simulate how a material is influenced through contact with living systems such as microorganisms and arthropods. Both unwanted and desirable interactions are considered. This biogenic impact on materials is intimately associated with the environment to which the material is exposed (Materials-Environment Interaction, Chap. 15). Factors such as moisture, temperature and availability of food sources all have a significant influence on biological systems. Corrosion (Chap. 12) and wear (Chap. 13) can also be induced or enhanced in the presence of microorganisms. Section 14.1 introduces the categories between desired (biodegradation) and undesired (biodeterioration) biological effects on materials. It also introduces the role of biocides for the protection of materials. Section 14.2 describes the testing of wood as a building material especially against microorganisms and insects. Section 14.3 characterizes the test methodologies for two other groups of organic materials, namely polymers (Sect. 14.3.1) and paper and textiles (Sect. 14.3.2). Section 14.4 deals with the susceptibility of inorganic materials such as metals (Sect. 14.4.1), concrete (Sect. 14.4.2) and ceramics (Sect. 14.4.3) to biogenic impact. Section 14.5 treats the testing methodology concerned with the performance of coatings and coating materials. In many of these tests specific strains of organisms are employed. It is vital that these strains retain their ability to utilize/attack the substrate from which they were isolated, even when kept for many years in the laboratory. Section 14.6 therefore considers the importance of maintaining robust and representative test organisms that are as capable of utilizing a substrate as their counterparts in nature such that realistic predictions of performance can be made.

  4. Biogenic nanomaterials from photosynthetic microorganisms.

    PubMed

    Jeffryes, Clayton; Agathos, Spiros N; Rorrer, Gregory

    2015-06-01

    The use of algal cell cultures represents a sustainable and environmentally friendly platform for the biogenic production of nanobiomaterials and biocatalysts. For example, advances in the production of biogeneic nanomaterials from algal cell cultures, such as crystalline β-chitin nanofibrils and gold and silver nanoparticles, could enable the 'green' production of biomaterials such as tissue-engineering scaffolds or drug carriers, supercapacitors and optoelectric materials. The in vivo functionalization, as well as newly demonstrated methods of production and modification, of biogenic diatom biosilica have led to the development of organic-inorganic hybrid catalytic systems as well as new biomaterials for drug delivery, biosensors and heavy-metal adsorbents. PMID:25445544

  5. BIOGENIC EMISSIONS INVENTORY SYSTEM (BEIS)

    EPA Science Inventory

    The Biogenic Emissions Inventory System (BEIS) is a computer algorithm used to generate emissions for air quality simulation models, such as EPAs Regional Acid Deposition Model (RADM). Emission sources that are modeled include volatile organic compound (VOC) emissions from vegeta...

  6. The biogenic approach to cognition.

    PubMed

    Lyon, Pamela

    2006-03-01

    After half a century of cognitive revolution we remain far from agreement about what cognition is and what cognition does. It was once thought that these questions could wait until the data were in. Today there is a mountain of data, but no way of making sense of it. The time for tackling the fundamental issues has arrived. The biogenic approach to cognition is introduced not as a solution but as a means of approaching the issues. The traditional, and still predominant, methodological stance in cognitive inquiry is what I call the anthropogenic approach: assume human cognition as the paradigm and work 'down' to a more general explanatory concept. The biogenic approach, on the other hand, starts with the facts of biology as the basis for theorizing and works 'up' to the human case by asking psychological questions as if they were biological questions. Biogenic explanations of cognition are currently clustered around two main frameworks for understanding biology: self-organizing complex systems and autopoiesis. The paper describes the frameworks and infers from them ten empirical principles--the biogenic 'family traits'--that constitute constraints on biogenic theorizing. Because the anthropogenic approach to cognition is not constrained empirically to the same degree, I argue that the biogenic approach is superior for approaching a general theory of cognition as a natural phenomenon. PMID:16628463

  7. Controlled cobalt doping in biogenic magnetite nanoparticles.

    PubMed

    Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D

    2013-06-01

    Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  8. Controlled cobalt doping in biogenic magnetite nanoparticles

    PubMed Central

    Byrne, J. M.; Coker, V. S.; Moise, S.; Wincott, P. L.; Vaughan, D. J.; Tuna, F.; Arenholz, E.; van der Laan, G.; Pattrick, R. A. D.; Lloyd, J. R.; Telling, N. D.

    2013-01-01

    Cobalt-doped magnetite (CoxFe3 −xO4) nanoparticles have been produced through the microbial reduction of cobalt–iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  9. Biogenic VOC and Climate

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2014-12-01

    Secondary organic aerosol (SOA) and ozone are short-lived contributors to radiative forcing that can drive relatively rapid changes in climate. They are not emitted into the atmosphere but are formed from precursors including biogenic volatile organic compounds (BVOC) that are emitted from terrestrial ecosystems. BVOC can also impact longer-lived climate-relevant compounds by acting as a sink for the oxidants that remove moderately reactive gases such as methane and by being a source of carbon dioxide. Emissions of BVOC are highly temperature sensitive, and some also respond to light, and so there is a potential feedback coupling between climate and BVOC emissions. Another potential feedback is associated with the water cycle since SOA can influence precipitation by serving as cloud condensation nuclei and because VOC emissions are sensitive to water availability. Anthropogenic air pollutants add to the complexity of this coupled system by enhancing the production of ozone and SOA from BVOC. The role of BVOC in the land-atmosphere-climate system and potential feedback couplings is conceptually clear but developing an accurate quantitative representation is challenging. Our current understanding of the role of BVOC in the climate system and potential feedback couplings will be presented and the major uncertainties will be discussed. Advances in observations for constraining models, including long-term measurements and recent multi-scale studies, will be presented and priorities for continued advances will be discussed.

  10. Hydropower's Biogenic Carbon Footprint.

    PubMed

    Scherer, Laura; Pfister, Stephan

    2016-01-01

    Global warming is accelerating and the world urgently needs a shift to clean and renewable energy. Hydropower is currently the largest renewable source of electricity, but its contribution to climate change mitigation is not yet fully understood. Hydroelectric reservoirs are a source of biogenic greenhouse gases and in individual cases can reach the same emission rates as thermal power plants. Little is known about the severity of their emissions at the global scale. Here we show that the carbon footprint of hydropower is far higher than previously assumed, with a global average of 173 kg CO2 and 2.95 kg CH4 emitted per MWh of electricity produced. This results in a combined average carbon footprint of 273 kg CO2e/MWh when using the global warming potential over a time horizon of 100 years (GWP100). Nonetheless, this is still below that of fossil energy sources without the use of carbon capture and sequestration technologies. We identified the dams most promising for capturing methane for use as alternative energy source. The spread among the ~1500 hydropower plants analysed in this study is large and highlights the importance of case-by-case examinations. PMID:27626943

  11. IMPROVING BIOGENIC EMISSION ESTIMATES WITH SATELLITE IMAGERY

    EPA Science Inventory

    This presentation will review how existing and future applications of satellite imagery can improve the accuracy of biogenic emission estimates. Existing applications of satellite imagery to biogenic emission estimates have focused on characterizing land cover. Vegetation dat...

  12. MEASUREMENT OF BIOGENIC EMISSION FROM CORN

    EPA Science Inventory

    A pilot study was conducted to determine whether techniques for measuring biogenic emissions from tree saplings, branches, and leaves could be adapted to the measurement of biogenic emissions from individual plants of agricultural species. easurements were then made to determine ...

  13. A preliminary study on the transport of biogenic nanoparticles in aquifer environments

    NASA Astrophysics Data System (ADS)

    Jin, Q.

    2007-12-01

    Immobilizing metals and radionuclides as minerals via microbial reduction and precipitation has been proposed as a cost-effective strategy for remediating contaminated aquifers. Biogenic minerals often occur as aggregates of nanoparticles with sizes as small as several to hundreds of nanometers. Because of relatively large chemical reactivity of the nanoparticles, the mobility of biogenic nanoparticles and aggregates are important in evaluating the efficacy and long-term impact of in situ bioremediation. To investigate the mobility of biogenic nanoparticles in aquifer environments, we take iron sulfide produced by pure cultures of sulfate reducing bacteria as an example and characterized the nanoparticles using Fourier transform inferred spectroscopy (FTIR). The FTIR spectra showed that extracellular polymeric substances on the surfaces of the nanoparticles were dominantly proteins and fatty acids. To explore how the surface organic coatings affect the interactions among nanoparticles, we characterized the growth kinetics of biogenic iron sulfide aggregates under various ionic strengths and microbial activities using chemostat reactors and dynamic light scattering. Contrary to the predictions of classical colloid theories, sizes of biogenic aggregates were controlled dominantly by the rates of sulfide production, but not the surface potentials of the nanoparticles. We further quantified the impact of the surface organic coatings on the interactions between the nanoparticle aggregates and aquifer sediments using flow-through column experiments. The experiments under various ionic strengths and aggregate sizes demonstrated that the ionic strength was not significant in controlling the mobility of biogenic aggregates. These preliminary results demonstrated that, because of the organic surface coatings, the production and mobility of biogenic nanoparticle aggregates in aquifers differ significantly from the predictions based on synthesized nanoparticles and colloids

  14. Ocean iron cycle

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.

    Interest in the biogeochemical cycle of iron has grown rapidly over the last two decades, due to the potential role of this element in modulating global climate in the geological past and ocean productivity in the present day. This trace metal has a disproportionately large effect (1 × 105 C:Fe) on photosynthetic carbon fixation by phytoplankton. In around one third of the open ocean, so-called high-nitrate low-chlorophyll (HNLC) regions, the resident phytoplankton have low growth rates despite an abundance of plant nutrients. This is due to the low supply of iron. Iron is present in the ocean in three phases, dissolved, colloidal, and particulate (biogenic and lithogenic). However, iron chemistry is complex with interactions between chemistry and biology such as the production of iron-binding siderophores by oceanic bacteria. This results in the interplay of inorganic chemistry, photochemistry, and organic complexation. Sources of new iron include dust deposition, upwelling of iron-rich deep waters, and the resuspension and lateral transport of sediments. Sinks for iron are mainly biological as evidenced by the vertical nutrient-like profile for dissolved iron in the ocean. Iron is rapidly recycled by the upper ocean biota within a so-called "ferrous wheel." The fe ratio [(new iron)/(new + regenerated iron)] provides an index of the relative supply of iron to the biota by new versus recycled iron. Over the last 15 years, interest in the potential role of iron in shaping climate in the geological past resulted in some of the most ambitious experiments in oceanography: large-scale (i.e., 50-1000 km2) iron enrichment of HNLC waters. They have provided valuable insights into how iron supply influences the biogeochemical cycles of elements such as carbon, sulfur, silicon, nitrogen, and phosphate.

  15. Biogenic Calcium Phosphate Transformation in Soils over Millennium Time Scales

    SciTech Connect

    Sato, S.; Neves, E; Solomon, D; Liang, B; Lehmann, J

    2009-01-01

    Changes in bioavailability of phosphorus (P) during pedogenesis and ecosystem development have been shown for geogenic calcium phosphate (Ca-P). However, very little is known about long-term changes of biogenic Ca-P in soil. Long-term transformation characteristics of biogenic Ca-P were examined using anthropogenic soils along a chronosequence from centennial to millennial time scales. Phosphorus fractionation of Anthrosols resulted in overall consistency with the Walker and Syers model of geogenic Ca-P transformation during pedogenesis. The biogenic Ca-P (e.g., animal and fish bones) disappeared to 3% of total P within the first ca. 2,000 years of soil development. This change concurred with increases in P adsorbed on metal-oxides surfaces, organic P, and occluded P at different pedogenic time. Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the crystalline and therefore thermodynamically most stable biogenic Ca-P was transformed into more soluble forms of Ca-P over time. While crystalline hydroxyapatite (34% of total P) dominated Ca-P species after about 600-1,000 years, {Beta}-tricalcium phosphate increased to 16% of total P after 900-1,100 years, after which both Ca-P species disappeared. Iron-associated P was observable concurrently with Ca-P disappearance. Soluble P and organic P determined by XANES maintained relatively constant (58-65%) across the time scale studied. Conclusions - Disappearance of crystalline biogenic Ca-P on a time scale of a few thousand years appears to be ten times faster than that of geogenic Ca-P.

  16. NEW BIOGENIC VOC EMISSIONS MODEL

    EPA Science Inventory

    We intend to develop new prognostic models for the prediction of biogenic volatile organic compound emissions from forest ecosystems in the face of possible future changes in the climate and the concentration of carbon dioxide in the atmosphere. These models will b...

  17. Products of abiotic U(VI) reduction by biogenic magnetite and vivianite

    NASA Astrophysics Data System (ADS)

    Veeramani, Harish; Alessi, Daniel S.; Suvorova, Elena I.; Lezama-Pacheco, Juan S.; Stubbs, Joanne E.; Sharp, Jonathan O.; Dippon, Urs; Kappler, Andreas; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-05-01

    Reductive immobilization of uranium by the stimulation of dissimilatory metal-reducing bacteria (DMRB) has been investigated as a remediation strategy for subsurface U(VI) contamination. In those environments, DMRB may utilize a variety of electron acceptors, such as ferric iron which can lead to the formation of reactive biogenic Fe(II) phases. These biogenic phases could potentially mediate abiotic U(VI) reduction. In this work, the DMRB Shewanella putrefaciens strain CN32 was used to synthesize two biogenic Fe(II)-bearing minerals: magnetite (a mixed Fe(II)-Fe(III) oxide) and vivianite (an Fe(II)-phosphate). Analysis of abiotic redox interactions between these biogenic minerals and U(VI) showed that both biogenic minerals reduced U(VI) completely. XAS analysis indicates significant differences in speciation of the reduced uranium after reaction with the two biogenic Fe(II)-bearing minerals. While biogenic magnetite favored the formation of structurally ordered, crystalline UO 2, biogenic vivianite led to the formation of a monomeric U(IV) species lacking U-U associations in the corresponding EXAFS spectrum. To investigate the role of phosphate in the formation of monomeric U(IV) such as sorbed U(IV) species complexed by mineral surfaces, versus a U(IV) mineral, uranium was reduced by biogenic magnetite that was pre-sorbed with phosphate. XAS analysis of this sample also revealed the formation of monomeric U(IV) species suggesting that the presence of phosphate hinders formation of UO 2. This work shows that U(VI) reduction products formed during in situ biostimulation can be influenced by the mineralogical and geochemical composition of the surrounding environment, as well as by the interfacial solute-solid chemistry of the solid-phase reductant.

  18. Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Alfarra, M. R.; Robinson, N.; Ward, M. W.; Lewis, A. C.; McFiggans, G. B.; Coe, H.; Allan, J. D.

    2013-11-01

    Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding these transformation processes has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a Southeast Asian tropical rainforest in Borneo were characterised using liquid chromatography-ion trap mass spectrometry, high-resolution aerosol mass spectrometry and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyl tetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.

  19. Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Alfarra, M. R.; Robinson, N.; Ward, M. W.; Lewis, A. C.; McFiggans, G. B.; Coe, H.; Allan, J. D.

    2013-07-01

    Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding the process of these transformations has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a South East Asian tropical rainforest in Borneo were characterised using liquid chromatography-ion trap mass spectrometry, high resolution aerosol mass spectrometry and fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyltetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.

  20. Unconventional shallow biogenic gas systems

    USGS Publications Warehouse

    Shurr, G.W.; Ridgley, J.L.

    2002-01-01

    Unconventional shallow biogenic gas falls into two distinct systems that have different attributes. Early-generation systems have blanketlike geometries, and gas generation begins soon after deposition of reservoir and source rocks. Late-generation systems have ringlike geometries, and long time intervals separate deposition of reservoir and source rocks from gas generation. For both types of systems, the gas is dominantly methane and is associated with source rocks that are not thermally mature. Early-generation biogenic gas systems are typified by production from low-permeability Cretaceous rocks in the northern Great Plains of Alberta, Saskatchewan, and Montana. The main area of production is on the southeastern margin of the Alberta basin and the northwestern margin of the Williston basin. The huge volume of Cretaceous rocks has a generalized regional pattern of thick, non-marine, coarse clastics to the west and thinner, finer grained marine lithologies to the east. Reservoir rocks in the lower part tend to be finer grained and have lower porosity and permeability than those in the upper part. Similarly, source beds in the units have higher values of total organic carbon. Patterns of erosion, deposition, deformation, and production in both the upper and lower units are related to the geometry of lineament-bounded basement blocks. Geochemical studies show that gas and coproduced water are in equilibrium and that the fluids are relatively old, namely, as much as 66 Ma. Other examples of early-generation systems include Cretaceous clastic reservoirs on the southwestern margin of Williston basin and chalks on the eastern margin of the Denver basin. Late-generation biogenic gas systems have as an archetype the Devonian Antrim Shale on the northern margin of the Michigan basin. Reservoir rocks are fractured, organic-rich black shales that also serve as source rocks. Although fractures are important for production, the relationships to specific geologic structures are

  1. Biogenic amines in seafood: a review.

    PubMed

    Biji, K B; Ravishankar, C N; Venkateswarlu, R; Mohan, C O; Gopal, T K Srinivasa

    2016-05-01

    The biogenic amines are low molecular weight organic bases present normally in the body with biological activity influencing important physiological functions. The physiological functions of these molecules are achieved by very low concentrations in the tissues. However, significantly high amounts of biogenic amines are produced during processing and storage of seafood as a result of microbial contamination and inadequate storage conditions. Microorganisms having decarboxylase enzyme activity convert amino acids to their respective biogenic amines. Biogenic amines in seafood have been implicated as a major causative agent of food borne illness, where intoxication results from the ingestion of foods containing higher amount of biogenic amines. Hence its identification, quantitation and awareness of this food borne toxin are important in relation to food safety and spoilage. The aim of this paper is to review the basic concepts of seafood quality and safety in relation to biogenic amines along with its control measures and future areas for research. PMID:27407186

  2. Discovery prospects for a supernova signature of biogenic origin

    NASA Astrophysics Data System (ADS)

    Bishop, S.; Egli, R.

    2011-04-01

    Approximately 2.8 Myr before the present our planet was subjected to the debris of a supernova explosion. The terrestrial proxy for this event was the discovery of live atoms of 60Fe in a deep-sea ferromanganese crust. The signature for this supernova event should also reside in magnetite (Fe 3O 4) microfossils produced by magnetotactic bacteria extant at the time of the Earth-supernova interaction, provided the bacteria preferentially uptake iron from fine-grained iron oxides and ferric hydroxides. Using estimates for the terrestrial supernova 60Fe flux, combined with our empirically derived microfossil concentrations in a deep-sea drill core, we deduce a conservative estimate of the 60Fe fraction as 60Fe/Fe ≈ 3.6 × 10 -15. This value sits comfortably within the sensitivity limit of present accelerator mass spectrometry capabilities. The implication is that a biogenic signature of this cosmic event is detectable in the Earth's fossil record.

  3. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    EPA Science Inventory

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  4. Improved dewatering of CEPT sludge by biogenic flocculant from Acidithiobacillus ferrooxidans.

    PubMed

    Wong, Jonathan W C; Murugesan, Kumarasamy; Yu, Shuk Man; Kurade, Mayur B; Selvam, Ammaiyappan

    2016-01-01

    Bioleaching using an iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, and its biogenic flocculants was evaluated to improve the dewaterability of chemically enhanced primary treatment (CEPT) sewage sludge. CEPT sludge in flasks was inoculated with A. ferrooxidans culture, medium-free cells and the cell-free culture filtrate with and without the energy substance Fe(2+), and periodically the sludge samples were analysed for the dewaterability. This investigation proves that bioleaching effectively improved the sludge dewaterability as evidenced from drastic reduction in capillary suction time (≤20 seconds) and specific resistance to filtration (≥90%); however, it requires an adaptability period of 1-2 days. On the other hand, the biogenic flocculant produced by A. ferrooxidans greatly decreased the time-to-filtration and facilitated the dewaterability within 4 h. Results indicate that rapid dewatering of CEPT sludge by biogenic flocculants provides an opportunity to replace the synthetic organic polymer for dewatering. PMID:26901727

  5. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Józefczak, A.; Leszczyński, B.; Skumiel, A.; Hornowski, T.

    2016-06-01

    Magnetic nanoparticles show unique properties and find many applications because of the possibility to control their properties using magnetic field. Magnetic nanoparticles are usually synthesized chemically and modification of the particle surface is necessary. Another source of magnetic nanoparticles are various magnetotactic bacteria. These biogenic nanoparticles (magnetosomes) represent an attractive alternative to chemically synthesized iron oxide particles because of their unique characteristics and a high potential for biotechnological and biomedical applications. This work presents a comparison between acoustic properties of biogenic and abiotic magnetite nanoparticle suspensions. Experimental studies have shown the influence of a biological membrane on the ultrasound properties of magnetosomes suspension. Finally the heat effect in synthetic and biogenic magnetite nanoparticles is also discussed. The experimental study shows that magnetosomes present good heating efficiency.

  6. Biogenic Methane and the Rise of Oxygen

    NASA Technical Reports Server (NTRS)

    Catling, David; McKay, Christopher

    2001-01-01

    Oxygenic photosynthesis does not make the rise of oxygen inevitable. What is required is that reductant and oxygen be separated and permanently segregated. The usual picture for Earth is that oxygenic photosynthesis split CO2 into carbon and oxygen, with the carbon buried in sediments and the oxygen mostly taken up by oxides of iron and sulfur. The relatively small atmospheric reservoir of O2 is regulated by the carbon burial rate, reaction with volcanic and metamorphic gases, and oxidation of reduced carbon released as old sediments weather. Absent from this picture is a distinction between the Archean and modern times: on average, carbon burial fluxes would have been matched by oxygen losses then as now. Separation of reductant from oxidant is only provisional. No net oxidation of the continents occurs, and so no change of diagenetic, metamorphic, or volcanic gases is expected. Nor would any change in oxidative weathering be expected. Something more than carbon burial is required to make the Archean different. The escape of hydrogen to space permanently separates the reductant from the oxidant. Hydrogen escape is widely believed to have led to the present highly oxidized states of Mars and Venus. Hydrogen escape has usually been thought small for Archaean Earth, because water vapor is cold-trapped at the troposphere and thus held to levels of a few ppmv in the stratosphere. This cold trapping renders hydrogen escape negligible. However, methane is not cold trapped, and its expected abundance in the Archaean, given low oxygen levels and a biogenic source, would have been high, probably more than 100 times present. At such levels methane would have driven geologically significant levels of hydrogen escape. Additional information is contained in the original extended abstract.

  7. Biogenic emissions modeling for Southeastern Texas

    SciTech Connect

    Estes, M.; Jacob, D.; Jarvie, J.

    1996-12-31

    The Texas Natural Resource Conservation Commission (TNRCC) modeling staff performed biogenic hydrocarbon emissions modeling in support of gridded photochemical modeling for ozone episodes in 1992 and 1993 for the Coastal Oxidant Assessment for Southeast Texas (COAST) modeling domain. This paper summarizes the results of the biogenic emissions modeling and compares preliminary photochemical modeling results to ambient air monitoring data collected during the 1993 COAST study. Biogenic emissions were estimated using BIOME, a gridded biogenic emissions model that uses region-specific land use and biomass density data, and plant species-specific emission factor data. Ambient air monitoring data were obtained by continuous automated gas chromatography at two sites, one-hour canister samples at 5 sites, and 24-hour canister samples at 13 other sites. The concentrations of Carbon Bond-IV species (as determined from urban airshed modeling) were compared to measured hydrocarbon concentrations. In this paper, we examined diurnal and seasonal variations, as well as spatial variations.

  8. RECENT BIOGENIC PHOSPHORITE: CONCRETIONS IN MOLLUSK KIDNEYS

    EPA Science Inventory

    Phosphorite concretions have been detected in the kidneys of two widespread species of mollusks. Mercenaria mercenaria and Argopecten irradians, which have relatively high population densities. These concretions are the first documentation of the direct biogenic formation of phos...

  9. Biogenic gas: Controls, habitats, and resource potential

    SciTech Connect

    Rice, D.D. )

    1993-01-01

    As much as 20 percent of the world's natural-gas resource is estimated to have been generated by the decomposition of organic matter by anaerobic microbes at low temperatures. This gas is commonly referred to as biogenic gas. Most biogenic gas was generated early in the burial history of sediments. Some biogenic gas was also generated in relatively recent geologic time and is associated with groundwater flow. The factors that favor significant generation of biogenic gas are anoxic conditions, low sulfate content, low temperature, abundant organic matter, and sufficient pore space for the microbes to thrive. Conditions beneficial for the accumulation of biogenic gas include stratigraphic or early structural traps, adequate seals, low permeability, low pressure, early dissolution of the gas, and formation of gas hydrates. Rapid sediment deposition is critical to both the generation and the accumulation of biogenic gas generated during the early stage. Biogenic gas is distinguished by its molecular and isotopic composition. The hydrocarbon fraction is generally more than 99 percent methane, and the diagnostic isotopic composition of the methane component is as follows: [delta][sup 13]C values are generally lighter than -55 parts per thousand (permil), and [delta]D values are usually in the range of -150 to -250 permil. This isotopic composition indicates that the methane generally resulted from CO[sub 2] reduction. Significant accumulations of ancient biogenic gas have been discovered in Africa, Asia, Europe, North America, and South America. These accumulations occur in Mississippian and younger rocks, at burial depths as much as 4,600 m. They are associated with a variety of rock types (carbonate, clastic, and coal), and occur in a variety of marine and nonmarine depositional settings generally characterized by rapid deposition. 111 refs., 13 figs., 3 tabs.

  10. Virus Removal by Biogenic Cerium

    SciTech Connect

    De Gusseme, B.; Du Laing, G; Hennebel, T; Renard, P; Chidambaram, D; Fitts, J; Bruneel, E; Van Driessche, I; Verbeken, K; et. al.

    2010-01-01

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L{sup -1} bio-Ce. Given the fact that virus removal with 50 mg L{sup -1} Ce(III) as CeNO{sub 3} was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal.

  11. Virus removal by biogenic cerium.

    PubMed

    De Gusseme, Bart; Du Laing, Gijs; Hennebel, Tom; Renard, Piet; Chidambaram, Dev; Fitts, Jeffrey P; Bruneel, Els; Van Driessche, Isabel; Verbeken, Kim; Boon, Nico; Verstraete, Willy

    2010-08-15

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L(-1) bio-Ce. Given the fact that virus removal with 50 mg L(-1) Ce(III) as CeNO(3) was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal. PMID:20704235

  12. Iron Test

    MedlinePlus

    ... detect and help diagnose iron deficiency or iron overload. In people with anemia , these tests can help ... also be ordered when iron deficiency or iron overload is suspected. Early iron deficiency often goes unnoticed. ...

  13. Potential of Cupriavidus metallidurans CH34 for in situ resource utilization from basalt by determining the molecular micro-mineral interactions

    NASA Astrophysics Data System (ADS)

    Byloos, Bo; Van Houdt, Rob; Boon, Nico; Leys, Natalie

    In order to maintain a persistent human presence in space, materials must either be provided from Earth or generated from material already present in space, in a process referred to as 'in situ resource utilization (ISRU)'. Microorganisms can biomine useful elements from extra-terrestrial materials for use as nutrients in a life support system or to aid in the creation of soil. To effectively use bacteria in an ISRU process more needs to be known about the molecular mechanisms behind microbe-mineral interaction and the influence of microgravity and radiation that affect bioleaching. The aim of this research project is to define the microbe-mineral interactions on basalt, which is a major constituent of Lunar or Martian regolith, the mechanisms that are important in bioleaching and how this process will be altered by space flight conditions. In particular, the research will be focussed on the determination of the genes and proteins involved in the biosynthesis of metallophores and exopolysaccharides (EPS), and biofilm formation. Iron, copper and phosphate uptake mechanisms are investigated in detail because these have been shown to be essential for life and bacteria are faced with limitation of these nutrients in the environment. In this study the bacterium Cupriavidus metallidurans CH34 is used to study these interactions. C. metallidurans CH34 is a soil bacterium which is resistant to up to 20 different heavy metal ions. Its behaviour in space has already been determined with earlier flight experiments to the ISS. It was recently discovered that C. metallidurans forms a biofilm and is capable of leaching calcium, magnesium and iron from basalt to sustain its growth First, C. metallidurans was grown in conditions with and without basalt, iron, copper and phosphate and the production of EPS and metallophores was examined. The iron, copper and phosphate concentrations which are limiting and optimal to allow C. metallidurans cell proliferation could be determined as

  14. Reactivity screening of microscale zerovalent irons and iron sulfides towards different CAHs under standardized experimental conditions.

    PubMed

    Velimirovic, Milica; Larsson, Per-Olof; Simons, Queenie; Bastiaens, Leen

    2013-05-15

    A standardized batch test procedure was developed and used to evaluate the reactivity of twelve newly designed microscale zerovalent iron (mZVI) particles and two biogenic iron sulfides towards a mixture of chlorinated aliphatic hydrocarbons (CAHs) and their breakdown products. For comparison, commercially available mZVIs, nanoscale zerovalent irons (nZVIs), iron sulfides (FeS) and granular zerovalent iron were also tested. Reactivity of the particles was based on observed (kobs) and mass normalized (kM) pseudo-first-order degradation rate constants, as well as specific surface area normalized reaction rate constants (kSA). Sorption characteristics of the particles were based on mass balance data. Among the new mZVIs, significant differences in reactivity were observed and the most reactive particles were identified. Based on kM data, nZVI degraded the examined contaminants one to two orders of magnitude faster than the mZVIs. kM values for biogenic iron sulfides were similar to the least reactive mZVIs. On the other hand, comparison of kSA data revealed that the reactivity of some newly designed mZVIs was similar to highly reactive nZVIs, and even up to one order of magnitude higher. kSA values for biogenic iron sulfides were one to two orders of magnitude lower than those reported for reactive mZVIs. PMID:23510992

  15. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    PubMed

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-01

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH<2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. PMID:26705889

  16. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity

    NASA Astrophysics Data System (ADS)

    Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

    2007-11-01

    Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

  17. The ABAG biogenic emissions inventory project

    NASA Technical Reports Server (NTRS)

    Carson-Henry, C. (Editor)

    1982-01-01

    The ability to identify the role of biogenic hydrocarbon emissions in contributing to overall ozone production in the Bay Area, and to identify the significance of that role, were investigated in a joint project of the Association of Bay Area Governments (ABAG) and NASA/Ames Research Center. Ozone, which is produced when nitrogen oxides and hydrocarbons combine in the presence of sunlight, is a primary factor in air quality planning. In investigating the role of biogenic emissions, this project employed a pre-existing land cover classification to define areal extent of land cover types. Emission factors were then derived for those cover types. The land cover data and emission factors were integrated into an existing geographic information system, where they were combined to form a Biogenic Hydrocarbon Emissions Inventory. The emissions inventory information was then integrated into an existing photochemical dispersion model.

  18. A Darwinian mechanism for biogenic ocean mixing

    NASA Astrophysics Data System (ADS)

    Katija, Kakani; Dabiri, John

    2009-11-01

    Recent observations of biogenic turbulence in the ocean have led to conflicting ideas regarding the contribution of animal swimming to ocean mixing. Previous measurements indicate elevated turbulent dissipation in the vicinity of large populations of planktonic animals swimming in concert. However, elevated turbulent dissipation is by itself insufficient proof of substantial biogenic mixing. We conducted field measurements of mixing efficiency by individual Mastigias sp. (a Palauan jellyfish) using a self-contained underwater velocimetry apparatus. These measurements revealed another mechanism that contributes to animal mixing besides wake turbulence. This mechanism was first described by Sir Charles Galton Darwin and is in fact the dominant mechanism of mixing by swimming animals. The efficiency of Darwin's mechanism (or drift) is dependent on animal shape rather than fluid length scale and, unlike turbulent wake mixing, is enhanced by the fluid viscosity. Therefore, it provides a means of biogenic mixing that can be equally effective in small plankton and large mammals.

  19. Sorption of Ferrioxime B to Synthetic and Biogenic layer type Mn Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O. W.; Bargar, J. R.; Sposito, G.

    2005-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effect of solid-phase Mn(IV), we studied the sorption reaction of ferrioxamine B [principally the species, Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore, desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over the pH range between 5 and 9. After 72 h equilibration time at pH 8, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-Ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the X-ray absorption spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed with DFOB, but instead is incorporated into the mineral structure, thus implying that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron.

  20. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  1. Formation of Biogenic Fe-Oxyhydroxides in an Extreme Thermal Environment

    NASA Astrophysics Data System (ADS)

    Peng, X.; Chen, S.; Xu, H.

    2014-12-01

    Biogenic Fe-oxyhydroxides have been widely found in freshwater and marine environments. Many studies have suggested a microbial role in iron precipitation in these settings, through either direct metabolic activities of bacteria or passive sorption and nucleation reaction. Due to the complex origin of biogenic Fe-oxyhydroxides, however, it is still a great challenge to ascertain the exact role of microorganisms in the formation of biogenic Fe-oxyhydroxides in nature environments, especially in Fe-rich neutral pH environments. Here, we report the geomicrobiological characterization of Fe-rich reddish precipitates from a high Fe, near-neutral pH hot spring with a temperature of 42 to 73°C located in the Rehai Geothermal Field, Tengchong, China. Abundant sheath-like Fe-oxyhydroxides, which are composed largely of Fe, Si, O and other trace elements, are scattered in the reddish precipitates and exhibit a diversity of morphologies and sizes. The sheath-like Fe-oxyhydroxides consist of ferrihydrites rather than more crystalline Fe oxides. Molecular evidences show that no chemolithotrophic Fe oxidizers were identified. Various thermophiles, mainly including cyanobacteria, Planctomycetes, β-proteobacteria, Deinococci-Thermus and Chlorobi, may be involved in the formation of the sheath-like Fe-oxyhydroxides, through simply acting as binding and nucleation surface for Fe-oxyhydroxides. The oxygen produced by cyanobacteria that dominate the microbial community may greatly accelerate the oxidization of Fe(II) in the spring. Biogenic sheath-like Fe-oxyhydroxides in such a hot, near-neutral pH, Fe-rich spring have important implications for geochemical cycles driven by microorganisms, the origin of microfossils and the formation of banded iron formations (BIFs) in the Archean ocean.

  2. Climate impacts of biogenic organic compounds

    NASA Astrophysics Data System (ADS)

    Sengupta, Kamalika; Gordon, Hamish; Almeida, Joao; Rap, Alex; Scott, Catherine; Pringle, Kirsty; Carslaw, Ken

    2016-04-01

    Currently the most uncertain driver of climate change, impact of anthropogenic aerosols on earth's radiative balance depends significantly on estimates of cloud condensation nuclei (CCN), representation of the pre-industrial atmosphere among others. Nearly 90% of aerosols in the tropics are organic in nature of which a major part comes from biogenic sources. About 45% of the CCN in the atmosphere are formed in-situ via nucleation. Understanding the role of biogenic organic compounds in particle formation and their subsequent growth is hence imperative in order to quantify the climate impact of aerosols. The CLOUD experiment at CERN, which measures particle formation and growth rates in a uniquely clean chamber under atmospherically relevant conditions, found evidence of a nucleation mechanism involving only biogenic organic compounds. This mechanism significantly changes our pre-industrial estimates. The experimental results have been parameterized and included in a global aerosol microphysics model, GLOMAP, to quantify the impact of pure biogenic nucleation on CCN formation and their climatic impact. Further the treatment of secondary organic compounds in GLOMAP has been improved and the sensitivity of our estimates of radiative forcing to the same has been evaluated.

  3. Organosulfate Formation in Biogenic Secondary Organic Aerosol

    EPA Science Inventory

    Organosulfates of isoprene, α-pinene, and β-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive seri...

  4. Content of biogenic amines in table olives.

    PubMed

    García-García, P; Brenes-Balbuena, M; Hornero-Méndez, D; García-Borrego, A; Garrido-Fernández, A

    2000-01-01

    Content of biogenic amines in flesh and brines of table olives was determined by high-pressure liquid chromatography analysis of their benzoyl derivatives. No biogenic amines were found in the flesh of fresh fruits at any stage of ripeness. Contents of biogenic amines in Spanish-style green or stored olives increased throughout the brining period but were always higher in the former. Putrescine was the amine found in the highest concentration. Small quantities of cadaverine were found in the samples taken after 3 months of brining. This compound and histamine, tyramine, and tryptamine were also found in samples taken after 12 months. Gordal cultivar showed the highest contents, followed by Manzanilla and Hojiblanca. No relationship was found between contents of biogenic amines and lactic acid production or table olive spoilages, although zapatera olives had considerably higher amounts than those brines that had undergone a normal process. Concentrations in directly brined olives were markedly lower than contents in Spanish-style olives. With respect to partition between flesh and brine, there was equilibrium between both media in the case of Spanish-style olives, whereas the contents in directly brined olives were higher in flesh than brine. PMID:10643779

  5. A survey of biogenic amines in vinegars.

    PubMed

    Ordóñez, J L; Callejón, R M; Morales, M L; García-Parrilla, M C

    2013-12-01

    This paper reports the determination of biogenic amines by high-performance liquid chromatography (HPLC) and fluorescence detection after derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) in balsamic, apple, and red, white, and Sherry wine vinegars. A solid-phase extraction (SPE) with mixed-mode resins method was used before analysis. The method was successfully validated obtaining adequate values of selectivity, response linearity, precision, accuracy, and low detection and quantification limits. The total content of biogenic amines in vinegars ranged from 23.35 to 1445.2 μg/L, being lower than those reported in wines. Putrescine was the amine that showed the highest concentrations in most samples. Methylamine and phenylethylamine were not determined in any vinegar. Balsamic and "Pedro Ximénez" Sherry vinegars reached the highest amounts of biogenic amines, while apple, white and Sherry wine vinegars had the lowest concentrations. Principal component analysis using the biogenic amines as variables, allowed to separate the different kind of vinegars, excepting red vinegars. PMID:23871015

  6. Biogenic Origin for Earth's Oldest Putative Microfossils

    SciTech Connect

    De Gregorio, B.; Sharp, T; Flynn, G; Wirick, S; Hervig, R

    2009-01-01

    Carbonaceous microbe-like features preserved within a local chert unit of the 3.5 Ga old Apex Basalt in Western Australia may represent some of the oldest evidence of life on Earth. However, the biogenicity of these putative microfossils has been called into question, primarily because the sample collection locality is a black, carbon-rich, brecciated chert dike representing an Archean submarine hydrothermal spring, suggesting a formation via an abiotic organic synthesis mechanism. Here we describe the macromolecular hydrocarbon structure, carbon bonding, functional group chemistry, and biotic element abundance of carbonaceous matter associated with these filamentous features. These characteristics are similar to those of biogenic kerogen from the ca. 1.9 Ga old Gunflint Formation. Although an abiotic origin cannot be entirely ruled out, it is unlikely that known abiotic synthesis mechanisms could recreate both the structural and compositional complexity of this ancient carbonaceous matter. Thus, we find that a biogenic origin for this material is more likely, implying that the Apex microbe-like features represent authentic biogenic organic matter.

  7. Biogenic UO_2 _ Characterization and Surface Reactivity

    SciTech Connect

    Singer, D.M.; Farges, F.; Brown, G.E.; Jr.

    2007-01-03

    Nano-scale biogenic UO{sub 2} is easier to oxidize and more reactive to aqueous metal ions than bulk UO{sub 2}. In an attempt to understand these differences in properties, we have used a suite of bulk and surface characterization techniques to examine differences in the reactivity of biogenic UO{sub 2} versus bulk UO{sub 2} with respect to aqueous Zn(II). Precipitation of biogenic UO{sub 2} was mediated by Shewanella putrefaciens CN32, and the precipitates were washed using two protocols: (1) 5% NaOH, followed by 4 mM KHCO{sub 3}/KCl (NA-wash; ''NAUO2'', to remove surface organic matter), and (2) 4 mM KHCO{sub 3}-KCl (BI-wash; ''BIUO2'', to remove soluble uranyl species). BET surface areas of biogenic-UO{sub 2} prepared using the two protocols are 128.63 m{sup 2}g{sup -1} and 92.56 m{sup 2}g{sup -1}, respectively; particle sizes range from 2-10 nm as determined by FEG-SEM. Surface composition was probed using XPS, which showed a strong carbon 1s signal for the BI-washed samples; surface uranium is > 90% U(IV) for both washing protocols. U L{sub III}-edge XANES spectra also indicate that U(IV) is the dominant oxidation state in the biogenic UO{sub 2} samples. Fits of the EXAFS spectra of these samples yielded half the number of uranium second-shell neighbors relative to bulk UO{sub 2}, and no detectable oxygen neighbors beyond the first shell. At pH 7, the sorption of Zn(II) onto both biogenic and bulk UO{sub 2} is independent of electrolyte concentration, suggesting that Zn(II) sorption complexes are dominantly inner-sphere. Fits of Zn K-edge EXAFS spectra for biogenic UO{sub 2} indicate that Zn(II) sorption is dependent on the washing protocol. Zn-U pair correlations are observed for the NA-washed samples, but not for the BI-washed ones, suggesting that Zn(II) sorbs directly to the UO{sub 2} surface in the first case, and possibly to organic matter in the latter. Further work is required to elucidate the binding mechanism of Zn(II) to bulk UO{sub 2}.

  8. Biogenic UO2 - Characterization and Surface Reactivity

    SciTech Connect

    Singer, David M.; Farges, Francois; Brown, Gordon E. Jr.

    2007-02-02

    Nano-scale biogenic UO2 is easier to oxidize and more reactive to aqueous metal ions than bulk UO2. In an attempt to understand these differences in properties, we have used a suite of bulk and surface characterization techniques to examine differences in the reactivity of biogenic UO2 versus bulk UO2 with respect to aqueous Zn(II). Precipitation of biogenic UO2 was mediated by Shewanella putrefaciens CN32, and the precipitates were washed using two protocols: (1) 5% NaOH, followed by 4 mM KHCO3/KCl (NA-wash; 'NAUO2', to remove surface organic matter), and (2) 4 mM KHCO3-KCl (BI-wash; 'BIUO2', to remove soluble uranyl species). BET surface areas of biogenic-UO2 prepared using the two protocols are 128.63 m2g-1 and 92.56 m2g-1, respectively; particle sizes range from 2-10 nm as determined by FEG-SEM. Surface composition was probed using XPS, which showed a strong carbon 1s signal for the BI-washed samples; surface uranium is > 90% U(IV) for both washing protocols. U LIII-edge XANES spectra also indicate that U(IV) is the dominant oxidation state in the biogenic UO2 samples. Fits of the EXAFS spectra of these samples yielded half the number of uranium second-shell neighbors relative to bulk UO2, and no detectable oxygen neighbors beyond the first shell. At pH 7, the sorption of Zn(II) onto both biogenic and bulk UO2 is independent of electrolyte concentration, suggesting that Zn(II) sorption complexes are dominantly inner-sphere. Fits of Zn K-edge EXAFS spectra for biogenic UO2 indicate that Zn(II) sorption is dependent on the washing protocol. Zn-U pair correlations are observed for the NA-washed samples, but not for the BI-washed ones, suggesting that Zn(II) sorbs directly to the UO2 surface in the first case, and possibly to organic matter in the latter. Further work is required to elucidate the binding mechanism of Zn(II) to bulk UO2.

  9. Recent biogenic phosphorite: Concretions in mollusk kidneys

    USGS Publications Warehouse

    Doyle, L.J.; Blake, N.J.; Woo, C.C.; Yevich, P.

    1978-01-01

    Phosphorite concretions have been detected in the kidneys of two widespread species ofmollusks, Mercenaria mercenaria and Argopecten irradians, which have relatively high population densities. These concretions are thefirst documentation of the direct biogenic formation of phosphorite grains. The concretions are principally amorphous calcium phosphate, which upon being heated yields an x-ray diffraction pattern which is essentially that of chlorapatite. These concretions appear to be a normal formation of the excretory process of mollusks under reproductive, environmental, or pollutant-induced stress. Biogenic production of phosphorite concretions over long periods of time and diagenetic change from amorphous to crystalline structure, coupled with secondary enrichment, may account for the formation of some marine phosphorite desposits which are not easily explained by the chemical precipitation- replacement hypothesis. Copyright ?? 1978 AAAS.

  10. Biogenic Mn-Oxides in Subseafloor Basalts

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G.

    2015-01-01

    The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments. PMID:26107948

  11. Formation temperatures of thermogenic and biogenic methane

    USGS Publications Warehouse

    Stolper, D.A.; Lawson, M.; Davis, C.L.; Ferreira, A.A.; Santos Neto, E. V.; Ellis, G.S.; Lewan, M.D.; Martini, A.M.; Tang, Y.; Schoell, M.; Sessions, A.L.; Eiler, J.M.

    2014-01-01

    Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a “clumped isotope” technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models.

  12. Biogenic Mn-Oxides in Subseafloor Basalts.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G

    2015-01-01

    The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments. PMID:26107948

  13. Relative Reactivity of Biogenic and Chemogenic Uraninite and Biogenic Non Crystalline U(IV)

    PubMed Central

    Cerrato, José M.; Ashner, Matthew N.; Alessi, Daniel S.; Lezama-Pacheco, Juan S.; Bernier-Latmani, Rizlan; Bargar, John R.; Giammar, Daniel E.

    2013-01-01

    Aqueous chemical extractions and X-ray absorption spectroscopy (XAS) analyses were conducted to investigate the reactivity of chemogenic uraninite, nanoparticulate biogenic uraninite, and biogenic monomeric U(IV) species. The analyses were conducted in systems containing a total U concentration that ranged from 1.48 to 2.10 mM. Less than 0.02% of the total U was released to solution in extractions that targeted water soluble and ion exchangeable fractions. Less than 5% of the total U was solubilized via complexation with a 0.1 M solution of NaF. Greater than 90% of the total U was extracted from biogenic uraninite and monomeric U(IV) after 6 hours of reaction in an oxidizing solution of 50 mM K2S2O8. Additional oxidation experiments with lower concentrations (2 mM and 10 mM) of K2S2O8 and 8.2 mg L−1 dissolved oxygen suggested that monomeric U(IV) species are more labile than biogenic uraninite; chemogenic uraninite was much less susceptible to oxidation than either form of biogenic U(IV). These results suggest that non-crystalline forms of U(IV) may be more labile than uraninite in subsurface environments. This work helps fill critical gaps in our understanding of the behavior of solid-associated U(IV) species in bioremediated sites and natural uranium ore deposits. PMID:23906226

  14. Biogenic Magnetite in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Bazylinski, Dennis; Wentworth, Susan J.; McKay, David S.; Kirschvink, Joseph L.; Clemett, Simon J.; Bell, Mary Sue; Golden, D. C.

    1999-01-01

    Fine-grained magnetite (Fe3O4) in martian meteorite ALH84001, generally less than 200 microns in size, is located primarily in the rims that surround the carbonate globules. There are two populations of ALH84001 magnets, which are likely formed at low temperature by inorganic and biogenic processes. Nearly 27/o of ALH84001 magnetite particles. also called elongated prisms, have characteristics which make them uniquely identifiable as biological precipitates.

  15. Biogenic Magnetite in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Bazylinski, Dennis; Wentworth, Susan J.; McKay, David S.; Kirschvink, Joseph L.; Clemett, SImon J.; Bell, Mary Sue; Golden, D. C.; Gibson, Everett K., Jr.

    1999-01-01

    Fine-grained magnetite (Fe3O4) in martian meteorite ALH84001, generally less than 200 nm in size, is located primarily in the rims that surround the carbonate globules. There are two populations of ALH84001 magnetites, which are likely formed at low temperature by inorganic and biogenic processes. Nearly 27% of ALH84001 magnetite particles, also called elongated prisms, have characteristics which make them uniquely identifiable as biological precipitates. Additional information is contained in the original extended abstract.

  16. biogenic aerosol precursors: volatile amines from agriculture

    NASA Astrophysics Data System (ADS)

    Kuhn, Uwe; Sintermann, Jörg; Spirig, Christoph; Ammann, Christof; Neftel, Albrecht

    2010-05-01

    Information on the occurrence of volatile biogenic amines in the atmosphere is marginal. This group of N-bearing organic compounds are assumed to be a small, though significant component of the atmospheric N-cycle, but are not accounted for in global assessments due to the scarceness of available data. There is increasing evidence for an important role of biogenic amines in the formation of new particulate matter, as well as for aerosol secondary growth. Volatile amines are ubiquitously formed by biodegradation of organic matter, and agriculture is assumed to dominantly contribute to their atmospheric burden. Here we show that the mixing ratios of volatile amines within livestock buildings scale about 2 orders of magnitude lower than NH3, confirming the few literature data available (e.g., Schade and Crutzen, J. Atm. Chem. 22, 319-346, 1995). Flux measurements after manure application in the field, mixing ratios in the headspace of manure storage pools, and concentrations in distilled manure all indicate major depletion of amines relative to NH3 during manure processing. We conclude that the agricultural source distribution of NH3 and amines is not similar. While for NH3 the spreading of manure in the field dominates agricultural emissions, the direct release from livestock buildings dominates the budget of volatile biogenic amines.

  17. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lima, R.; Feitosa, L. O.; Ballottin, D.; Marcato, P. D.; Tasic, L.; Durán, N.

    2013-04-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (- 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 μg/mL with no significant differences of response in 5 and 10 μg/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 μg/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 μg/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  18. Rett syndrome - Stimulation of endogenous biogenic amines

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Norton, R. D.; Wilkinson, R.; Leon, H. A.; Matson, W. R.

    1992-01-01

    Transient hypercapnic hyperoxemia was induced in two Rett syndrome children by the administration of a gaseous mixture of 80 percent O2 and 20 percent CO2. Time course studies of neurotransmitters and their metabolites showed an immediate and marked increase in central biogenic amine turnover following inhalation of the gas mixture. The increased turnover of biogenic amines was associated with improved clinical changes. This suggests a coupled relationship and provides further support for an etiological role of neurotransmitter dysfunction in Rett syndrome. In a complementary study, elevation of pulmonary CO2 by application of a simple rebreathing device resulted in improvement of abnormal blood gases and elimination of the Cheyne-Stokes-like respiratory pattern of the Rett syndrome. Near normalization of the EEG occurred when a normal respiratory pattern was imposed by means of a respirator. Taken together, these results lead to the preliminary conclusion that cerebral hypoxemia secondary to abnormal respiratory function may contribute to diminished production of biogenic amines in Rett syndrome.

  19. Enhanced reductive degradation of carbon tetrachloride by biogenic vivianite and Fe(II)

    NASA Astrophysics Data System (ADS)

    Bae, Sungjun; Lee, Woojin

    2012-05-01

    We demonstrated that reductive dechlorination of carbon tetrachloride (CT) can be enhanced by iron-bearing soil minerals (IBSMs) in the presence of Shewanella putrefaciens CN32 (CN32) due to the formation of biogenic vivianite and Fe(II). The bioreduction efficiency of magnetite was the highest (51.1%), followed by lepidocrocite (25.7%), goethite (3.6%), and hematite (1.8%). The dechlorination kinetic of CT by lepidocrocite (0.043 d-1) in the presence of CN32 was three times faster than that by microbial transformation with CN32 (0.014 d-1). Chloroform (16.1-29.4%), carbon monoxide (2.4-23.8%), and formate (0-58.0%) were measured as main products for the degradation of CT by magnetite and lepidocrocite in the presence of CN32. X-ray diffraction and electron microscope analyses revealed that the biogenic vivianite can form during the CT degradation in magnetite and lepidocrocite suspensions with CN32. The dechlorination kinetics of CT by chemogenic vivianite was much faster than that by magnetite and lepidocrocite with CN32. The highest formate production (84.2%) was observed during a full degradation of CT by the chemogenic vivianite. The experimental results showed that biogenic vivianite and sorbed Fe(II) formed during the bioreduction of IBSMs played a pivotal role for the reductive dechlorination of CT.

  20. Evidence for the biogenic origin of manganese-enriched layers in Lake Superior sediments.

    PubMed

    Palermo, Christine; Dittrich, Maria

    2016-04-01

    Manganese (Mn) and iron (Fe)-enriched sediment layers were discovered in Lake Superior within, above and below the oxic-anoxic interface. While the role of bacteria in redox reactions with Mn is known to be significant, little information exists about indigenous microbial communities in many freshwater environments. This study examined the bacterial communities of Mn-enriched layers in Lake Superior to identify the potential Mn(II) oxidizers responsible for the formation of Mn oxides. Anaerobic Mn(II) oxidation occurring in the Mn-enriched layers at the oxic-anoxic interface was investigated using Mn(II)-enriched cultures. High-resolution microscopic and spectroscopic investigations provided evidence of the biogenic formation of Mn oxides on cell surfaces. Spectroscopic mapping confirmed high levels of Mn in structures resembling biogenic Mn oxides. These structures were observed in enrichment cultures and in Mn-enriched layer sediment samples, indicating the significance of biogenic Mn oxidation occurring in situ. 16S ribosomal DNA pyrosequencing was used to identify the bacteria potentially responsible for Mnoxide formation in the enrichment cultures and Mn-enriched layers, revealing that the Mn-enriched layer contains classes with known Mn(II)-oxidizing members. Pyrosequencing of bacterial cultures suggested that these bacteria may be Bacillus strains, and that anaerobic microbial-mediated Mn(II) oxidation contributes to the formation of the layers. PMID:26636960

  1. Iron overdose

    MedlinePlus

    Iron is an ingredient in many mineral and vitamin supplements. Iron supplements are also sold by themselves. Types include: Ferrous sulfate (Feosol, Slow Fe) Ferrous gluconate (Fergon) Ferrous fumarate (Femiron, Feostat) Other products may also contain iron.

  2. Biosafety of the application of biogenic nanometal powders in husbandry

    NASA Astrophysics Data System (ADS)

    Anatolievna Nazarova, Anna; Dmitrievna Polischuk, Svetlana; Anatolievna Stepanova, Irina; Ivanovich Churilov, Gennady; Chau Nguyen, Hoai; Buu Ngo, Quoc

    2014-03-01

    Effects of iron and copper nanopowders (particle size of 20-40 nm) were investigated on rabbits of 1 month age and heifers of 6 months. For introduction of nanometals into the animal's ration, the mixed fodder was treated with the nanometal powder suspension in such a way: 0.08 mg of nanoiron per kg of animal's body weight and 0.04 mg kg-1 for nanocopper. The weight gain of the heifers who received nanoiron and nanocopper after 8 months was 22.4 and 10.7% higher than that of the control, respectively. For the rabbits who received nano Fe and Cu after 3 months, the weight gain was 11.7 and 7.3% compared to the control, respectively. Under the action of metal nanopowders morphological indices of blood were changed in comparison with the control: after 8 months the quantity of erythrocytes increased by 19.6%, hemoglobin by 17.1% and leukocytes by 7.6%. There was a realignment in leukocytic formula: the quantity of lymphocytes increased by 9% compared to the control. Biogenic metals in superdispersive state were able to stimulate immune, enzymatic and humoral systems of the animal's organism, promoting metabolism. Adding Co and Cu metal nanopowders to the bull-calves’ fodder rations increased content of Ca by 31.8 and 0%, Fe by 38.8 and 37.5%, K by 19.2 and 15.3%, Mg by 17.6 and 23.5%, Mn by 9.8 and 45% and Na by 20.5 and 8.8%, respectively, compared to control. Metal nanopowders improved the quality indices and meat productivity of black-white bull-calves, expressed in intensive growth of muscle, tissue and more nutritious meat. The conducted veterinary-sanitary expertise showed that the supplements based on iron, cobalt and copper nanopowders can be used as safe bioactive supplements in animal husbandry.

  3. The Clumped Isotope Composition of Biogenic Methane.

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.; Douglas, P. M.; Eiler, J. M.; Stolper, D. A.

    2015-12-01

    The excess or lack of 13CH3D, a doubly substituted ("clumped") isotopologue of methane, relative to that expected for a random distribution of isotopes across molecules, is a function of the processes that generated the methane. For high-temperature thermogenic methane, which typically achieves internal equilibrium, an excess of 13CH3D is expected and the amount of excess can serve as a thermometer. In contrast, biogenic methane often - though not always - has a smaller excess of clumped isotopologues, and sometimes even a deficit of clumped species ("anti-clumped"). The effect presumably arises from kinetic isotope effects accompanying enzymatic reactions in the methanogenic pathway, though the particular reaction(s) has not yet been positively identified. The decrease in clumping is also known to correlate with both the reversibility of the pathway and the methane flux. In this talk, we will present recent data bearing on the origin and utility of biologic fractionations of clumped isotopologues in methane. Preliminary data suggest that methane deriving from the fermentative pathway is enriched in D-bearing isotopologues, at the same level of clumping, relative to that derived from the CO2-reductive pathway. This property offers another potential means to distinguish biogenic methane sources in the environment. Recently, we have also begun to measure the 12CH2D2 isotopologue, for which equilibrium and kinetic isotope effects are predicted to be distinct from 13CH3D. Preliminary data suggest that the combination of both doubly-substituted isotopologues will be especially useful for disentangling mixtures containing biogenic gas.

  4. Carbonate Biogenic Structures in Storrs Lake, Bahamas

    NASA Technical Reports Server (NTRS)

    Byrne, Monica; Morris, Penny A.; Wentworth, Susan J.; Brigmon, Robin L.; McKay, David S.

    2001-01-01

    Storr's Lake, an inland hypersaline lake on San Salvador Island, Bahamas, contains calcium carbonate-rich lithified mats of filamentous microorganisms, diatoms, associated photosynthetic and chemotrophic bacteria, and trapped sediment. In addition, 16S rRNA analysis indicates the presence of five sulfur-reducing genera of bacteria. These microbes are potential modern-day analogs to some ancient stromatolitic structures. The goals of this study are to identify unique compositional and biogenic features, possibly correlating some of these with some of the sulfate-reducing bacteria. Additional information is contained in the original extended abstract.

  5. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  6. Determination of Biogenic Amines with HPLC-APCI-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of biogenic amines in fish samples can be used as a quality attribute and are commonly performed using a derivatization step followed by high pressure liquid chromatography (HPLC) and UV detection. Over estimation and misidentification of biogenic amines can occur when interfering comp...

  7. Evidence of structural variability among synthetic and biogenic vaterite.

    PubMed

    Falini, Giuseppe; Fermani, Simona; Reggi, Michela; Njegić Džakula, Branka; Kralj, Damir

    2014-12-18

    Recently, the results of experimental and theoretical investigations have revealed that, in vaterite, two or even more crystalline structures coexist. In this communication we report evidence of diverse vaterite structures in biogenic samples of different origin. In addition, it is shown that the synthetic vaterite precipitated in the presence of poly-l-aspartate has structures similar to those of biogenic samples. PMID:25350140

  8. Removal of colloidal biogenic selenium from wastewater.

    PubMed

    Staicu, Lucian C; van Hullebusch, Eric D; Oturan, Mehmet A; Ackerson, Christopher J; Lens, Piet N L

    2015-04-01

    Biogenic selenium, Se(0), has colloidal properties and thus poses solid-liquid separation problems, such as poor settling and membrane fouling. The separation of Se(0) from the bulk liquid was assessed by centrifugation, filtration, and coagulation-flocculation. Se(0) particles produced by an anaerobic granular sludge are normally distributed, ranging from 50 nm to 250 nm, with an average size of 166±29 nm and a polydispersity index of 0.18. Due to its nanosize range and protein coating-associated negative zeta potential (-15 mV to -23 mV) between pH 2 and 12, biogenic Se(0) exhibits colloidal properties, hampering its removal from suspension. Centrifugation at different centrifugal speeds achieved 22±3% (1500 rpm), 73±2% (3000 rpm) and 91±2% (4500 rpm) removal. Separation by filtration through 0.45 μm filters resulted in 87±1% Se(0) removal. Ferric chloride and aluminum sulfate were used as coagulants in coagulation-flocculation experiments. Aluminum sulfate achieved the highest turbidity removal (92±2%) at a dose of 10(-3) M, whereas ferric chloride achieved a maximum turbidity removal efficiency of only 43±4% at 2.7×10(-4) M. Charge repression plays a minor role in particle neutralization. The sediment volume resulting from Al2(SO3)4 treatment is three times larger than that produced by FeCl3. PMID:25559175

  9. Biogenic amines in submicron marine aerosol (Invited)

    NASA Astrophysics Data System (ADS)

    Facchini, M.

    2010-12-01

    Ammonium salts of dimethyl and diethyl amine (DMA+ and DEA+) have been detected in size segregated marine samples collected in the North Atlantic over open ocean and at a coastal site. DMA+ and DEA+ peak in the accumulation mode range while very low concentration, close to detection limit, are observed in the coarse size fractions, as well as in sea spray aerosol artificially generated in the laboratory using sea water. These results indicate a secondary formation pathway. DMA+ and DEA+ represent up to 20% of secondary organic aerosol (SOA) in our samples , and to our knowledge they are the most abundant organic species besides MSA ever detected in clean marine aerosol . Maximum concentrations have been observed during spring and summer when the biological activity is high and in clean marine air masses, thus indicating biogenic sources. Total organic nitrogen (ON) concentration also peaks in the accumulation mode range and represents in our samples a fraction from 32 to 54 % of the total SOA. Ammonium salt formation from biogenic amines might be an important source of marine SOA and atmospheric nitrogen at the global scale with a seasonal variation connected to the oceanic biological productivity and an atmospheric cycle parallel to that of the organosulfur species.

  10. Phase transitions in biogenic amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Gong, Yutao

    Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.

  11. Title: Biogenic Magnetite Prevails in Oxic Pelagic Red Clay Core in the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Shimono, T.; Yamazaki, T.

    2012-12-01

    Magnetotactic bacteria have been observed in wide variety of environments, including soils, freshwater lakes, and marine sediments, since Blakemore (1975) first described in 1975. Magnetotactic bacteria, which most commonly live within the oxic-anoxic transition zone (OATZ) of aquatic environments, produce intracellular crystals of magnetic minerals, specifically magnetite or greigite. It is considered that the magnetite/greigite crystals facilitate the bacteria's search for optimal conditions within the sharp chemical gradients of the OATZ. Petermann and Bleil (1993) reported living magnetotactic bacteria in pelagic and hemipelagic sediments near OATZ in the eastern South Atlantic at water depths to about 3,000 m, but they couldn't find actively swimming magnetotactic bacteria in sediments of deeper water depths. The South Pacific Gyre (SPG) is far from continents and the lowest productivity region on Earth. IODP site U1365 (water depth ~5,700 m) cored pelagic red clay of 75.5 m thick above ~100 Ma basement (except for the chart layer from ~42 to 63.5 m) in the western edge of the SPG. The core mainly consists of iron rich clay. The color is dark reddish and/or dark brown throughout the core. We conducted a paleomagnetic and environmental rock magnetic study of the pelagic clay core. The magnetostratigraphy revealed the top 5 m sediments cover the last 5 My, and sedimentation rate decreases downward from 1.7 to 0.6 m/m.y. Geochemical measurements of pore water indicate that dissolved oxygen was present throughout the core (>50 μM). Thus oxygen penetrates through the entire sediment column to the sediment/basalt interface, and there is no OATZ. Magnetic mineral assemblage of this core is dominated by biogenic magnetite despite no OATZ. First-order reversal curve (FORC) diagrams of all specimens have a narrow central ridge along the Hc axis with very small vertical spread. This indicates very weak magnetostatic interaction (Roberts et al., 2000), and is the

  12. Biogenic and synthetic polyamines bind cationic dendrimers.

    PubMed

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of K(spm-mPEG-G3) = 7.6 × 10(4) M(-1), K(spm-mPEG-PAMAM-G4) = 4.6 × 10(4) M(-1), K(spm-PAMAM-G4) = 6.6 × 10(4) M(-1), K(spmd-mPEG-G3) = 1.0 × 10(5) M(-1), K(spmd-mPEG-PAMAM-G4) = 5.5 × 10(4) M(-1), K(spmd-PAMAM-G4) = 9.2 × 10(4) M(-1), K(BE-333-mPEG-G3) = 4.2 × 10(4) M(-1), K(Be-333-mPEG-PAMAM-G4) = 3.2 × 10(4) M(-1), K(BE-333-PAMAM-G4) = 3.6 × 10(4) M(-1), K(BE-3333-mPEG-G3) = 2.2 × 10(4) M(-1), K(Be-3333-mPEG-PAMAM-G4) = 2.4 × 10(4) M(-1), K(BE-3333-PAMAM-G4) = 2.3 × 10(4) M(-1). Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: -3.2 (spermine), -3.5 (spermidine) and -3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues

  13. Controls on biogenic silica burial in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Chase, Zanna; Kohfeld, Karen E.; Matsumoto, Katsumi

    2015-10-01

    Understanding the controls on opal export in the Southern Ocean can inform both the prediction of how the leakage of silicic acid from the Southern Ocean responds to climate and the interpretation of paleo-proxies. We have compiled a database of 185 230Thorium-normalized opal burial rates and 493 opal concentration measurements in Southern Ocean sediments and matched these with environmental climatologies. By subdividing the Southern Ocean on the basis of oceanographic regions and interpolating the opal burial rates, we estimate a total biogenic Si burial south of 40°S of 2.3 ± 1.0 Tmol Si yr-1. In both the seasonally ice-covered and permanently ice-free regions we can explain 73% of opal burial variability from surface ocean properties. Where sea ice is present for at least part of the year, the length of the ice-free season determines the upper limit of opal burial in the underlying sediments. In the ice-free regions of the Southern Ocean, the supply of silicic acid through winter mixing is the most important factor. Our results do not support a strong role of iron in controlling opal burial. We do however find that satellite-derived net primary production increases with increasing (modeled) dust delivery. These findings support the decoupling between carbon and opal fluxes in the Southern Ocean. When corrected for opal dissolution, the observed opal fluxes are in reasonable agreement with fluxes simulated using an ocean biogeochemical model. However, the results suggest current preservation algorithms for opal could be improved by incorporating the composition of particle flux, not only its magnitude.

  14. On the Biogenic Origins of Homochirality

    NASA Astrophysics Data System (ADS)

    Sojo, Victor

    2015-06-01

    Homochirality, the single-handedness of optically asymmetric chemical structures, is present in all major biological macromolecules. Terrestrial life's preference for one isomer over its mirror image in D-sugars and L-amino acids has both fascinated and puzzled biochemists for over a century. But the contrasting case of the equally fundamental phospholipids has received less attention. Although the phospholipid glycerol headgroups of archaea and bacteria are both exclusively homochiral, the stereochemistries between the two domains are opposite. Here I argue that the reason for this "dual homochirality" was a simple evolutionary choice at the independent origin of the two synthesizing enzymes. More broadly, this points to a trivial biogenic cause for the evolution of homochirality: the enzymatic processes that produce chiral biomolecules are stereospecific in nature. Once an orientation has been favored, shifting to the opposite is both difficult and unnecessary. Homochirality is thus the simplest and most parsimonious evolutionary case.

  15. Effect of Nitrate on Biogenic Sulfide Production

    PubMed Central

    Jenneman, Gary E.; McInerney, M. J.; Knapp, Roy M.

    1986-01-01

    The addition of 59 mM nitrate inhibited biogenic sulfide production in dilute sewage sludge (10% [vol/vol]) amended with 20 mM sulfate and either acetate, glucose, or hydrogen as electron donors. Similar results were found when pond sediment or oil field brines served as the inoculum. Sulfide production was inhibited for periods of at least 6 months and was accompanied by the oxidation of resazurin from its colorless reduced state to its pink oxidized state. Lower amounts of nitrate (6 or 20 mM) and increased amounts of sewage sludge resulted in only transient inhibition of sulfide production. The addition of 156 mM sulfate to bottles with 59 mM nitrate and 10% (vol/vol) sewage sludge or pond sediment resulted in sulfide production. Nitrate, nitrite, and nitrous oxide were detected during periods where sulfide production was inhibited, whereas nitrate, nitrite, and nitrous oxide were below detectable levels at the time sulfide production began. The oxidation of resazurin was attributed to an increase in nitrous oxide which persisted in concentration of about 1.0 mM for up to 5 months. The numbers of sulfate-reducing organisms decreased from 106 CFU ml−1 sludge to less than detectable levels after prolonged incubation of oxidized bottles. The addition of 10 mM glucose to oxidized bottles after 14.5 weeks of incubation resulted in rereduction of the resazurin and subsequent sulfide production. The prolonged inhibition of sulfide production was attributed to an increase in oxidation-reduction potential due to biogenic production of nitrous oxide, which appeared to have a cytotoxic effect on sulfate-reducing populations. PMID:16347078

  16. 76 FR 80368 - Notification of Teleconferences of the Science Advisory Board Biogenic Carbon Emissions Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... draft report and accounting framework. As noticed in 76 FR 61100-61101, the SAB Biogenic Carbon... AGENCY Notification of Teleconferences of the Science Advisory Board Biogenic Carbon Emissions Panel... Biogenic Carbon Emissions Panel to review EPA's draft Accounting Framework for Biogenic CO2 Emissions...

  17. BIOGENIC HYDROCARBONS IN THE ATMOSPHERIC BOUNDARY LAYER: A REVIEW

    EPA Science Inventory

    Nonmethane hydrocarbons are ubiquitous trace atmospheric constituents yet they control the oxidation capacity of the atmosphere. Both anthropogenic and biogenic processes contribute to the release of hydrocarbons to the atmosphere. In this manuscript, the state of the science ...

  18. To What Extent Can Biogenic SOA Be Controlled?

    EPA Science Inventory

    Anthropogenic pollution facilitates transformation of naturally emitted volatile organic compounds (VOCs) to the particle phase, enhancing the ambient concentrations of material commonly referred to as biogenic secondary organic aerosol (SOA). It is therefore conceivable that som...

  19. A BIOGENIC ROLE IN EXPOSURE TO TWO TOXIC COMPOUNDS

    EPA Science Inventory

    Biogenic sources play an important role in ozone and particulate concentrations through emissions of volatile organic compounds. The same emissions also contribute to chronic toxic exposures from formaldehyde and acetaldehyde because each compound arises through primary and se...

  20. Biogenic Silver for Disinfection of Water Contaminated with Viruses▿

    PubMed Central

    De Gusseme, Bart; Sintubin, Liesje; Baert, Leen; Thibo, Ellen; Hennebel, Tom; Vermeulen, Griet; Uyttendaele, Mieke; Verstraete, Willy; Boon, Nico

    2010-01-01

    The presence of enteric viruses in drinking water is a potential health risk. Growing interest has arisen in nanometals for water disinfection, in particular the use of silver-based nanotechnology. In this study, Lactobacillus fermentum served as a reducing agent and bacterial carrier matrix for zerovalent silver nanoparticles, referred to as biogenic Ag0. The antiviral action of biogenic Ag0 was examined in water spiked with an Enterobacter aerogenes-infecting bacteriophage (UZ1). Addition of 5.4 mg liter−1 biogenic Ag0 caused a 4.0-log decrease of the phage after 1 h, whereas the use of chemically produced silver nanoparticles (nAg0) showed no inactivation within the same time frame. A control experiment with 5.4 mg liter−1 ionic Ag+ resulted in a similar inactivation after 5 h only. The antiviral properties of biogenic Ag0 were also demonstrated on the murine norovirus 1 (MNV-1), a model organism for human noroviruses. Biogenic Ag0 was applied to an electropositive cartridge filter (NanoCeram) to evaluate its capacity for continuous disinfection. Addition of 31.25 mg biogenic Ag0 m−2 on the filter (135 mg biogenic Ag0 kg−1 filter medium) caused a 3.8-log decline of the virus. In contrast, only a 1.5-log decrease could be obtained with the original filter. This is the first report to demonstrate the antiviral efficacy of extracellular biogenic Ag0 and its promising opportunities for continuous water disinfection. PMID:20038697

  1. Dissolution Kinetics of Biogenic Magnesian Calcites

    NASA Astrophysics Data System (ADS)

    Thompson, R.; Guidry, M.; Mackenzie, F. T.; De Carlo, E. H.

    2014-12-01

    Ocean acidification (OA) is a serious concern for the health of calcifying ecosystems in the near future. During the past century, surface ocean pH has decreased by ~0.1 pH units, and is expected to decrease further by 0.3-0.4 pH units by the end of this century. The process of OA will likely result in both decreased calcification rates and increased rates of carbonate mineral dissolution, particularly involving the magnesian calcite (Mg-calcite) calcifiers found in shallow-water reef and other carbonate environments. Many Mg-calcite compositions are the most soluble of the carbonate phases commonly found in reef environments (often comprising much of the cementation and structure within a reef), and are therefore potentially the most susceptible to dissolution processes associated with OA. However, the dissolution kinetics of these phases is poorly known, limiting our ability to understand their behavior in nature. Laboratory experiments designed to investigate the mechanisms and dissolution rates of biogenic Mg-calcite mineral phases in distilled water and seawater over a range of CO2 and T conditions were conducted employing both batch and fluidized-bed reactor systems and using a variety of cleaned and annealed biogenic Mg-calcite phases. Our initial results have shown that the dissolution rate at 298 K and a pCO2 of ~350 ppm of the crustose coralline alga Amphiroa rigida (~20 mol% MgCO3) in seawater undersaturated with respect to this phase is 3.6 μmol g-1 hr-1, nearly 50% greater than that under similar conditions for aragonite. This rate and the derived experimental rate law are consistent with the preliminary findings of Walter and Morse (1985). Additional kinetic (and also solubility) data will be presented for the following species: Chiton tuberculatus (~0-4 mol% MgCO3); Echinometra mathei and/or Lytechinus variegatus (~8-12 mol% MgCO3); Homotrema rubrum (12-16 mol% MgCO3); and Lithothamnion sp. (~18-24 mol% MgCO3). Quantification of the rates of

  2. Biogenic Amines in Italian Pecorino Cheese

    PubMed Central

    Schirone, Maria; Tofalo, Rosanna; Visciano, Pierina; Corsetti, Aldo; Suzzi, Giovanna

    2012-01-01

    The quality of distinctive artisanal cheeses is closely associated with the territory of production and its traditions. Pedoclimatic characteristics, genetic autochthonous variations, and anthropic components create an environment so specific that it would be extremely difficult to reproduce elsewhere. Pecorino cheese is included in this sector of the market and is widely diffused in Italy (∼62.000t of production in 2010). Pecorino is a common name given to indicate Italian cheeses made exclusively from pure ewes’ milk characterized by a high content of fat matter and it is mainly produced in the middle and south of Italy by traditional procedures from raw or pasteurized milk. The microbiota plays a major role in the development of the organoleptic characteristics of the cheese but it can also be responsible for the accumulation of undesirable substances, such as biogenic amines (BA). Bacterial amino acid decarboxylase activity and BA content have to be investigated within the complex microbial community of raw milk cheese for different cheese technologies. The results emphasize the necessity of controlling the indigenous bacterial population responsible for high production of BA and the use of competitive adjunct cultures could be suggested. Several factors can contribute to the qualitative and quantitative profiles of BA’s in Pecorino cheese such as environmental hygienic conditions, pH, salt concentration, water activity, fat content, pasteurization of milk, decarboxylase microorganisms, starter cultures, temperature and time of ripening, storage, part of the cheese (core, edge), and the presence of cofactor (pyridoxal phosphate, availability of aminases and deaminases). In fact physico-chemical parameters seem to favor biogenic amine-positive microbiota; both of these environmental factors can easily be modulated, in order to control growth of undesirable microorganisms. Generally, the total content of BA’s in Pecorino cheeses can range from about 100

  3. Biogenic mineralformation of platinoids in plants

    NASA Astrophysics Data System (ADS)

    Kovalevskii, A. L.; Kovalevskaya, O. M.; Prokopchuk, S. I.

    The data obtained by present on mineral particles being likely microbioliths of all 6 platinoids Pt, Pd, Ir, Os, Rh and Ru in plants are considered for the first time. Microbioliths of the studied platinoids are peculiar for "old" parts of wood plants, i.e. wood of old, including rotten stumps of pine ordinary (Pinus silvestris), larch dahurian (Larix dahurica) and plane-leaved birch (Betula platyphylla), corked cones of pine and outer crust layers of trunks, branches, roots of pine, larch and birch; roots of aspen (Populus tremula). All six platinoids form mineral particles (microbioliths) 0,5-20 mkm in size in these bioobjects that are easily registered by modern scintillation emission spectral analysis (SESA) The mentioned bioobjects are high informative and non-barrier related to bulk and mineral forms of platinoids that makes it possible to use high productive and economic, recently automatized scintillation emission spectral analysis (SESA) for mass analyses of these bioobjects for platinoids The data obtained by SESA allow to suggest predomination of monoelement microbioliths Pt, Pd, Ir, Rh, Os, Au in plant ash and much more rare bi-platinoid biogenic minerals including Pt+Pd, Pd+Rh and Pt+Rh. The maximum size of biogenic platinoid minerals can reach 15-20 mkm by SESA data. The minimum size of these microbioliths registered by standard SESA equals 2-3 mkm for Pd, 3-4 mkm for Pt, Os and Rh, 4 mkm for Ru and 3-4 mkm for Ir. Small mineral particles 0,5-10 mkm in size i.e. microbioliths of platinoids have been found in plant ash by SESA in the mentioned "old" parts of wood plants and some parts of middle age, for instance, in branches. Their distribution in various bioobjects of plants is similar to that of Au microbioliths. Average size of platinoid microbioliths in plant ash is less than that of corresponding mineral particles in lithogeochemical samples. There fore reproducibility of various analytical methods of plant ash is better than lithogeochemical

  4. Biogenic amine metabolism in juvenile neurocardiogenic syncope with dysautonomia

    PubMed Central

    Butler, Ian J; Lankford, Jeremy E; Hashmi, Syed Shahrukh; Numan, Mohammed T

    2014-01-01

    Objective Biogenic amine brain levels and their cerebral metabolism are frequently studied by quantitation of biogenic amine metabolites in cerebrospinal fluid (CSF) compared to age-matched controls. There is a paucity of studies in adolescents and young adults investigating the potential role of disordered cerebral biogenic amine metabolism in young patients who have dysautonomia based on abnormal head-up tilt table (HUTT). Methods In a cohort of juvenile patients with neurocardiogenic syncope and dysautonomia documented by abnormal HUTT, biogenic amine metabolites of dopamine and serotonin were quantitated in 18 patients (15 females). HUTT testing is an effective clinical method to evaluate posturally induced physiological events in patients suspected of neurocardiogenic syncope with dysautonomia. Results Levels of the dopamine metabolite (homovanillic acid: HVA) and/or the serotonin metabolite (5-hydroxyindoleacetic acid: 5HIAA) were significantly reduced in 13 patients compared to age-matched controls. Interpretation Peripheral biogenic amines and their metabolites have been extensively studied in adults with dysautonomia due to various neurodegenerative disorders (Parkinson disease, multiple system atrophy, primary autonomic failure). Our findings indicate that more than two-thirds of this cohort of young patients with dysautonomia of variable severity have a defect in cerebral biogenic amines, particularly in dopamine and serotonin metabolism. PMID:25590038

  5. Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum.

    PubMed

    Schumann, Dirk; Raub, Timothy D; Kopp, Robert E; Guerquin-Kern, Jean-Luc; Wu, Ting-Di; Rouiller, Isabelle; Smirnov, Aleksey V; Sears, S Kelly; Lücken, Uwe; Tikoo, Sonia M; Hesse, Reinhard; Kirschvink, Joseph L; Vali, Hojatollah

    2008-11-18

    We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene-Eocene Thermal Maximum (PETM) in a borehole at Ancora, NJ. Aside from previously described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 microm long and hexaoctahedral prisms up to 1.4 microm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition, lattice perfection, and oxygen isotopes consistent with an aquatic origin. Electron holography indicates single-domain magnetization despite their large crystal size. We suggest that the development of a thick suboxic zone with high iron bioavailability--a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming--drove diversification of magnetite-forming organisms, likely including eukaryotes. PMID:18936486

  6. Gigantism in unique biogenic magnetite at the Paleocene–Eocene Thermal Maximum

    PubMed Central

    Schumann, Dirk; Raub, Timothy D.; Kopp, Robert E.; Guerquin-Kern, Jean-Luc; Wu, Ting-Di; Rouiller, Isabelle; Smirnov, Aleksey V.; Sears, S. Kelly; Lücken, Uwe; Tikoo, Sonia M.; Hesse, Reinhard; Kirschvink, Joseph L.; Vali, Hojatollah

    2008-01-01

    We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene–Eocene Thermal Maximum (PETM) in a borehole at Ancora, NJ. Aside from previously described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 μm long and hexaoctahedral prisms up to 1.4 μm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition, lattice perfection, and oxygen isotopes consistent with an aquatic origin. Electron holography indicates single-domain magnetization despite their large crystal size. We suggest that the development of a thick suboxic zone with high iron bioavailability—a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming—drove diversification of magnetite-forming organisms, likely including eukaryotes. PMID:18936486

  7. Biogenic Amines in Raw and Processed Seafood

    PubMed Central

    Visciano, Pierina; Schirone, Maria; Tofalo, Rosanna; Suzzi, Giovanna

    2012-01-01

    The presence of biogenic amines (BAs) in raw and processed seafood, associated with either time/temperature conditions or food technologies is discussed in the present paper from a safety and prevention point of view. In particular, storage temperature, handling practices, presence of microbial populations with decarboxylase activity and availability of free amino acids are considered the most important factors affecting the production of BAs in raw seafood. On the other hand, some food technological treatments such as salting, ripening, fermentation, or marination can increase the levels of BAs in processed seafood. The consumption of high amount of BAs, above all histamine, can result in food borne poisoning which is a worldwide problem. The European Regulation established as maximum limits for histamine, in fishery products from fish species associated with high histidine amounts, values ranging from 100 to 200 mg/kg, while for products which have undergone enzyme maturation treatment in brine, the aforementioned limits rise to 200 and 400 mg/kg. Preventive measures and emerging methods aiming at controlling the production of BAs are also reported for potential application in seafood industries. PMID:22675321

  8. Marine aerosol formation from biogenic iodine emissions.

    PubMed

    O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten

    2002-06-01

    The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing. PMID:12050661

  9. Iron refractory iron deficiency anemia

    PubMed Central

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  10. Biogenic and non-biogenic Si pools in terrestrial ecosystems: results from a novel analysis method

    NASA Astrophysics Data System (ADS)

    Barao, Lucia; Vandevenne, Floor; Clymans, Wim; Meire, Patrick; Frings, Patrick; Conley, Daniel; Struyf, Eric

    2015-04-01

    Silicon (Si) is a chemical element frequently associated with highly abundant silicate minerals in the Earth crust. Over millions of years, the interaction of such minerals with the atmosphere and hydrosphere produces a myriad of processed compounds, and the mineral weathering consumes CO2 during the process. The weathering of minerals also triggers the export of dissolved Si (DSi) to coastal waters and the ocean. Here, DSi is deposited in diatom frustules, in an amorphous biogenic form (BSi). Diatoms account for 50% of the primary production and are crucial for the export of carbon into the deep sea. In recent years, it was acknowledged that terrestrial systems filter the Si transition from the terrestrial mineral to the marine and coastal biological pool, by the incorporation of DSi into plants. In this process, DSi is taken up by roots together with other nutrients and precipitates in plant cells in amorphous structures named phytoliths. After dead, plant tissues become mixed in the top soil, where BSi is available for dissolution and will control the DSi availability in short time scales. Additionally, Si originated from soil forming processes can also significantly interfere with the global cycle. The Si cycle in terrestrial ecosystems is a key factor to coastal ecology, plant ecology, biogeochemistry and agro-sciences, but the high variability of different biogenic and non-biogenic Si pools remains as an obstacle to obtain accurate measurements. The traditional methods, developed to isolate diatoms in ocean sediments, only account for simple mineral corrections. In this dissertation we have adapted a novel continuous analysis method (during alkaline extraction) that uses Si-Al ratios and reactivity to differ biogenic from non-biogenic fractions. The method was originally used in marine sediments, but we have developed it to be applicable in a wide range of terrestrial, aquatic and coastal ecosystems. We first focused on soils under strong human impact in

  11. Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA

    USGS Publications Warehouse

    Foster, Andrea L.; Ashley, Roger P.; Rytuba, James J.

    2011-01-01

    Sub- to anoxic conditions minimize dissolution of arsenopyrite at the LCMS site, but may accelerate the dissolution of As-bearing secondary iron phases such as Fe3+-oxyhydroxides and arseniosiderite, if sufficient organic matter is present to spur anaerobic microbial activity. Oxidizing, dry conditions favor the stabilization of secondary phases, while promoting oxidative breakdown of the primary sulfides. The stability of both primary and secondary As phases is likely to be at a minimum under cyclic wet-dry conditions. Biogenic iron (hydr)oxide flocs can sequester significant amounts of arsenic; this property may be useful for treatment of perpetual sources of As such as mine adit water, but the fate of As associated with natural accumulations of floc material needs to be assessed.

  12. Measuring biogenic silica in marine sediments and suspended matter

    NASA Astrophysics Data System (ADS)

    DeMaster, David J.

    Measuring the biogenic silica content of marine sediments and suspended matter is essential for a variety of geochemical, biological, and sedimentological studies. Biota forming siliceous skeletal material account for as much as one third of the primary productivity in the ocean [Lisitzin, 1972] and a significant portion (2 to 70% by weight) of open-ocean sediments. Biogenic silica measurements reveal important information concerning the bulk chemistry of suspended material or sediment and are essential in any type of silica flux study in the water column or seabed. Analyses of this biogenic phase in marine plankton are useful in characterizing the basic types of biota present and in comparing the distributions of particulate and dissolved silicate when evaluating nutrient dynamics [Nelson and Smith, 1986]. In the marine environment, diatoms, radiolaria, sponges, and silicoflagellates are the common types of siliceous biota.

  13. Technologies for the utilisation of biogenic waste in the bioeconomy.

    PubMed

    O'Callaghan, Kenneth

    2016-05-01

    A brief review has been done of technologies involved in the exploitation of biogenic wastes, in order to provide an introduction to the subject from the technological perspective. Biogenic waste materials and biomass have historically been utilised for thousands of years, but a new conversation is emerging on the role of these materials in modern bioeconomies. Due to the nature of the products and commodities now required, a modern bioeconomy is not simply a rerun of former ones. This new dialogue needs to help us understand how technologies for managing and processing biogenic wastes--both established and novel--should be deployed and integrated (or not) to meet the requirements of the sustainability, closed-loop and resource-security agendas that evidently sit behind the bioeconomy aspirations now being voiced in many countries and regions of the world. PMID:26769498

  14. High Arctic Biogenic Volatile Organic Compound emissions

    NASA Astrophysics Data System (ADS)

    Schollert, Michelle; Buchard, Sebrina; Faubert, Patrick; Michelsen, Anders; Rinnan, Riikka

    2013-04-01

    Biogenic volatile organic compounds (BVOCs) emitted from terrestrial vegetation participate in oxidative reactions, affecting the tropospheric ozone concentration and the lifetimes of greenhouse gasses such as methane. Also, they affect the formation of secondary organic aerosols. BVOCs thus provide a strong link between the terrestrial biosphere, the atmosphere and the climate. Global models of BVOC emissions have assumed minimal emissions from the high latitudes due to low temperatures, short growing seasons and sparse vegetation cover. However, measurements from this region of the world are lacking and emissions from the High Arctic have not been published yet. The aim of this study was to obtain the first estimates for BVOC emissions from the High Arctic. Hereby, we wish to add new knowledge to the understanding of global BVOC emissions. Measurements were conducted in NE Greenland (74°30' N, 20°30' W) in four vegetation communities in the study area. These four vegetation communities were dominated by Cassiope tetragona, Salix arctica, Vaccinium uliginosum and Kobresia myosuroides/Dryas octopetela/Salix arctica, respectively. Emissions were measured by enclosure technique and collection of volatiles into adsorbent cartridges in August 2009. The volatiles were analyzed by gas chromatography-mass spectrometry following thermal desorption. Isoprene showed highest emissions in S. arctica-dominated heath, where it was the dominant single BVOC. However, isoprene emission decreased below detection limit in the end of August when the temperature was at or below 10°C. According to a principal component analysis, monoterpene and sesquiterpene emissions were especially associated with C. tetragona-dominated heath. Especially S. arctica and C. tetragona dominated heaths showed distinct patterns of emitted BVOCs. Emissions of BVOC from the studied high arctic heaths were clearly lower than the emissions observed previously in subarctic heaths with more dense vegetation

  15. Seasonal trends of biogenic terpene emissions.

    PubMed

    Helmig, Detlev; Daly, Ryan Woodfin; Milford, Jana; Guenther, Alex

    2013-09-01

    Biogenic volatile organic compound (BVOC) emissions from six coniferous tree species, i.e. Pinus ponderosa (Ponderosa Pine), Picea pungens (Blue Spruce), Pseudotsuga menziesii (Rocky Mountain Douglas Fir) and Pinus longaeva (Bristlecone Pine), as well as from two deciduous species, Quercus gambelii (Gamble Oak) and Betula occidentalis (Western River Birch) were studied over a full annual growing cycle. Monoterpene (MT) and sesquiterpene (SQT) emissions rates were quantified in a total of 1236 individual branch enclosure samples. MT dominated coniferous emissions, producing greater than 95% of BVOC emissions. MT and SQT demonstrated short-term emission dependence with temperature. Two oxygenated MT, 1,8-cineol and piperitone, were both light and temperature dependent. Basal emission rates (BER, normalized to 1000μmolm(-2)s(-1) and 30°C) were generally higher in spring and summer than in winter; MT seasonal BER from the coniferous trees maximized between 1.5 and 6.0μgg(-1)h(-1), while seasonal lows were near 0.1μgg(-1)h(-1). The fractional contribution of individual MT to total emissions was found to fluctuate with season. SQT BER measured from the coniferous trees ranged from <0.01 to 0.15μgg(-1)h(-1). BER of up to 1.2μgg(-1)h(-1) of the SQT germacrene B were found from Q. gambelii, peaking in late summer. The β-factor, used to define temperature dependence in emissions modeling, was not found to exhibit discernible growth season trends. A seasonal correction factor proposed by others in previous work to account for a sinusoidal shaped emission pattern was applied to the data. Varying levels of agreement were found between the data and model results for the different plant species seasonal data sets using this correction. Consequently, the analyses on this extensive data set suggest that it is not feasible to apply a universal seasonal correction factor across different vegetation species. A modeling exercise comparing two case scenarios, (1) without and (2

  16. Biogenic emissions from Citrus species in California

    NASA Astrophysics Data System (ADS)

    Fares, Silvano; Gentner, Drew R.; Park, Jeong-Hoo; Ormeno, Elena; Karlik, John; Goldstein, Allen H.

    2011-09-01

    Biogenic Volatile Organic Compounds (BVOC) emitted from plants are the dominant source of reduced carbon chemicals to the atmosphere and are important precursors to the photochemical production of ozone and secondary organic aerosols. Considering the extensive land used for agriculture, cultivated Citrus plantations may play an important role in the chemistry of the atmosphere especially in regions such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized in detail and more species-specific inputs for regional models of BVOC emissions are needed. In this study, we measured the physiological parameters and emissions of the most relevant BVOC (oxygenated compounds, monoterpenes, and sesquiterpenes) for four predominant Citrus species planted in California ( Citrus sinensis var. 'Parent Navel', Citrus limon var. 'Meyer', Citrus reticulata var. 'W. Murcott' and 'Clementine'). We used two analytical techniques to measure a full range of BVOC emitted: Proton Transfer Reaction Mass Spectrometry (PTR-MS) and gas chromatography with mass spectrometry. Methanol, followed by acetone and acetaldehyde, were the dominant BVOC emitted from lemon and mandarin trees (basal emission rates up to 300 ng(C) g(DW) -1 h -1), while oxygenated monoterpenes, monoterpenes, and sesquiterpenes were the main BVOC emitted from orange trees (basal emission rates up to = 2500 ng(C) g(DW) -1 h -1). Light and temperature-dependent algorithms were better predictors of methanol, acetaldehyde, acetone, isoprene and monoterpenes for all the Citrus species. Whereas, temperature-dependent algorithms were better predictors of oxygenated monoterpenes, and sesquiterpenes. We observed that flowering increased emissions from orange trees by an order of magnitude with the bulk of BVOC emissions being comprised of monoterpenes, sesquiterpenes, and oxygenated monoterpenes. Chemical speciation of BVOC emissions show that the various classes of terpene

  17. Biogenic amines in dry fermented sausages: a review.

    PubMed

    Suzzi, Giovanna; Gardini, Fausto

    2003-11-15

    Biogenic amines are compounds commonly present in living organisms in which they are responsible for many essential functions. They can be naturally present in many foods such as fruits and vegetables, meat, fish, chocolate and milk, but they can also be produced in high amounts by microorganisms through the activity of amino acid decarboxylases. Excessive consumption of these amines can be of health concern because their not equilibrate assumption in human organism can generate different degrees of diseases determined by their action on nervous, gastric and intestinal systems and blood pressure. High microbial counts, which characterise fermented foods, often unavoidably lead to considerable accumulation of biogenic amines, especially tyramine, 2-phenylethylamine, tryptamine, cadaverine, putrescine and histamine. However, great fluctuations of amine content are reported in the same type of product. These differences depend on many variables: the quali-quantitative composition of microbial microflora, the chemico-physical variables, the hygienic procedure adopted during production, and the availability of precursors. Dry fermented sausages are worldwide diffused fermented meat products that can be a source of biogenic amines. Even in the absence of specific rules and regulations regarding the presence of these compounds in sausages and other fermented products, an increasing attention is given to biogenic amines, especially in relation to the higher number of consumers with enhanced sensitivity to biogenic amines determined by the inhibition of the action of amino oxidases, the enzymes involved in the detoxification of these substances. The aim of this paper is to give an overview on the presence of these compounds in dry fermented sausages and to discuss the most important factors influencing their accumulation. These include process and implicit factors as well as the role of starter and nonstarter microflora growing in the different steps of sausage production

  18. Processes occurring in reservoirs receiving biogenic and polluting substances

    SciTech Connect

    Vasil'ev, Yu.S.; Rolle, N.N.

    1988-04-01

    Various aspects of biogenic pollution on the water quality of reservoirs and its effect on ichthyofauna were analyzed. The effects of fertilizer runoffs and other pollutant pathways, such as the decay of flooded vegetation, into reservoirs were addressed. The dependence of fish survival times on nitrite concentrations was charted. On the basis of an optimization model for the economic development of drainage basins with ecological limitations, the Leningrad Polytechnic Institute developed instructions for calculating the removal of biogenic elements and selecting water protection measures which were tested on a number of streams of the Lake Ladoga Basin and other areas and which provide engineering means for evaluating and controlling the eutrophication of reservoirs.

  19. Ratios of Biogenic Elements for Distinguishing Recent from Fossil Microorganisms

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2007-01-01

    The ability to distinguish possible microfossils from recent biological contaminants is of great importance to Astrobiology. In this paper we discuss the application of the ratios of life critical biogenic elements (C/O; C/N; and C/S) as determined by Energy Dispersive X-ray Spectroscopy (EDS) to this problem. Biogenic element ratios will be provided for a wide variety of living cyanobacteria and other microbial extremophiles, preserved herbarium materials, and ancient biota from the Antarctic Ice Cores and Siberian and Alaskan Permafrost for comparison with megafossils and microfossils in ancient terrestrial rocks and carbonaceous meteorites.

  20. Spectral features of biogenic calcium carbonates and implications for astrobiology

    NASA Astrophysics Data System (ADS)

    Berg, B. L.; Ronholm, J.; Applin, D. M.; Mann, P.; Izawa, M.; Cloutis, E. A.; Whyte, L. G.

    2014-09-01

    The ability to discriminate biogenic from abiogenic calcium carbonate (CaCO3) would be useful in the search for extant or extinct life, since CaCO3 can be produced by both biotic and abiotic processes on Earth. Bioprecipitated CaCO3 material was produced during the growth of heterotrophic microbial isolates on medium enriched with calcium acetate or calcium citrate. These biologically produced CaCO3, along with natural and synthetic non-biologically produced CaCO3 samples, were analysed by reflectance spectroscopy (0.35-2.5 μm), Raman spectroscopy (532 and 785 nm), and laser-induced fluorescence spectroscopy (365 and 405 nm excitation). Optimal instruments for the discrimination of biogenic from abiogenic CaCO3 were determined to be reflectance spectroscopy, and laser-induced fluorescence spectroscopy. Multiple absorption features in the visible light region occurred in reflectance spectra for most biogenic CaCO3 samples, which are likely due to organic pigments. Multiple fluorescence peaks occurred in emission spectra (405 nm excitation) of biogenic CaCO3 samples, which also are best attributed to the presence of organic compounds; however, further analyses must be performed in order to better determine the cause of these features to establish criteria for confirming the origin of a given CaCO3 sample. Raman spectroscopy was not useful for discrimination since any potential Raman peaks in spectra of biogenic carbonates collected by both the 532 and 785 nm lasers were overwhelmed by fluorescence. However, this also suggests that biogenic carbonates may be identified by the presence of this organic-associated fluorescence. No reliable spectroscopic differences in terms of parameters such as positions or widths of carbonate-associated absorption bands were found between the biogenic and abiogenic carbonate samples. These results indicate that the presence or absence of organic matter intimately associated with carbonate minerals is the only potentially useful

  1. Ratios of biogenic elements for distinguishing recent from fossil microorganisms

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2007-09-01

    The ability to distinguish possible microfossils from recent biological contaminants is of great importance to Astrobiology. In this paper we discuss the application of the ratios of life critical biogenic elements (C/O; C/N; and C/S) as determined by Energy Dispersive X-ray Spectroscopy (EDS) to this problem. Biogenic element ratios are provided for a wide variety of living cyanobacteria and other microbial extremophiles, preserved herbarium materials, and ancient biota from the Antarctic Ice Cores and Siberian and Alaskan Permafrost for comparison with macrofossils and microfossils in ancient terrestrial rocks and carbonaceous meteorites.

  2. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  3. Biogenic volatile organic compounds - small is beautiful

    NASA Astrophysics Data System (ADS)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to <2m above ground level. Emissions at leaf scale are well documented and widely presented, and are not discussed here. Instead we describe some details of recent research on rhizosphere bVOCs, and bVOCs associated with pollination of flowers. Although bVOC emissions from soil surfaces are small, bVOCs are exuded by roots of some plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the

  4. Nickel partitioning in biogenic and abiogenic ferrihydrite: The influence of silica and implications for ancient environments

    NASA Astrophysics Data System (ADS)

    Eickhoff, Merle; Obst, Martin; Schröder, Christian; Hitchcock, Adam P.; Tyliszczak, Tolek; Martinez, Raul E.; Robbins, Leslie J.; Konhauser, Kurt O.; Kappler, Andreas

    2014-09-01

    Fe(III) (oxyhydr)oxides are ubiquitous in modern soils and sediments, and their large surface area leads to scavenging of trace elements. Experimental trace element partitioning between Fe(III) (oxyhydr)oxides and aqueous solutions have been used to elucidate the geochemical composition of the Precambrian oceans based on the trace element concentrations in Precambrian banded iron formations (BIFs). However, previous partitioning experiments did not consider the potential influence of microbially-derived organic material, even though it is widely believed that bacterial phytoplankton was involved in Fe(II) oxidation and the deposition of BIF primary minerals. Therefore, the present study focuses on sorption of Ni to, and co-precipitation of Ni with, both biogenic ferrihydrite precipitated by the freshwater photoferrotroph Rhodobacter ferrooxidans SW2 and the marine photoferrotroph Rhodovulum iodosum, as well as chemically synthesized ferrihydrite. We considered the influence of cellular organic material, medium composition and the availability of dissolved silica. Our results show a preferential association of Ni with ferrihydrite, and not with the microbial cells or extracellular organic substances. We found that the addition of silica (2 mM) did not influence Ni partitioning but led to the encrustation of some cells with ferrihydrite and amorphous silica. The two- to threefold lower Ni/Fe ratio in biogenic as compared to abiogenic ferrihydrite is probably due to a competition between Ni and organic matter for sorption sites on the mineral surface. Additionally, the competition of ions present at high concentrations in marine medium for sorption sites led to decreased Ni sorption or co-precipitation. Based on our data we conclude that, if the Fe(III) minerals deposited in BIFs were - at least to some extent - biological, then the Ni concentrations in the early ocean would have been higher than previously suggested. This study shows the importance of considering the

  5. Induction of Biogenic Magnetization and Redox Control by a Component of the Target of Rapamycin Complex 1 Signaling Pathway

    PubMed Central

    Nishida, Keiji; Silver, Pamela A.

    2012-01-01

    Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply. PMID:22389629

  6. MMPI and MIT Discriminators of Biogenic and Psychogenic Impotence

    ERIC Educational Resources Information Center

    Beutler, Larry E.; And Others

    1975-01-01

    Male patients complaining of impotence (N=32) were administered the Male Impotence Test (MIT) and the Minnesota Multiphasic Personality Inventory (MMPI). The results suggested that the MIT is without value for differentiating between psychogenic and biogenic impotence, whereas two rules from the MMPI appropriately classified 90 percent of the…

  7. Assessment of biogenic secondary organic aerosol in the Himalayas

    NASA Astrophysics Data System (ADS)

    Stone, B. A.; Nguyen, T.; Pradhan, B.; Dangol, P.

    2012-12-01

    Biogenic contributions to secondary organic aerosol (SOA) in the Southeast Asian regional haze were assessed by measurement of particle-phase isoprene, monoterpene, and sesquiterpene photooxidation products in fine particles (PM2.5) at Godavari, Nepal, located in the Himalayas at an elevation of 1600 meters. Organic species were measured in solvent-extracts of filter samples using gas chromatography mass spectrometry (GCMS) and chemical derivatization. Molecular markers for primary aerosol sources—including motor vehicles, biomass burning, and detritus—and SOA tracers were measured. High concentrations of isoprene derivatives, particularly in the late summer months, point to biogenic SOA as a significant source of organic carbon in the Himalayan region. First-generation SOA products from alpha-pinene were detected in all samples, whereas multi-generation products were not, suggesting that monoterpenes were at an early stage of oxidation at Godavari. Biogenic SOA contributions to PM2.5 organic carbon in the 2005 monsoon and post-monsoon season ranged from 2-19% for isoprene, 1-5% for monoterpenes, and 1-4% for sesquiterpenes. Primary and secondary biogenic sources combined accounted for approximately half of observed organic aerosol, suggesting additional aerosol sources and/or precursors are significant in this region.

  8. BIOGENIC CONTRIBUTIONS TO ATMOSPHERIC VOLATILE ORGANIC COMPOUNDS IN AZUSA CA

    EPA Science Inventory

    An objective of the 1997 Southern California Ozone Study (SCOS97) was to provide an up-to-date assessment of the importance of biogenic emissions for tropospheric ozone production in the South Coast Air Basin. To this end ambient air samples were collected during September 199...

  9. BIOGENIC SOURCES FOR FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER MONTHS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  10. BIOGENIC SULFUR COMPOUNDS IN COASTAL ATMOSPHERES OF NORTH CAROLINA

    EPA Science Inventory

    Atmospheric H2S, SO2, and particulate SO4(-2), Na(+), C1(-), NH4(-), and NO3(-) were measured in two experiments on the North Carolina coast to determine the levels of biogenic sulfur species at marsh and estuarine locations where dissimilatory bacterial sulfate reduction produce...

  11. Iron Fertilization in the Southern Ocean Deduced From Environmental Magnetism of Sediment Cores

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Ikehara, M.

    2012-12-01

    With rock-magnetic technique, biogenic magnetites in sediments can be detected utilizing the characteristics of almost no magnetostatic interactions and narrow coercivity distribution, reflecting occurrence of single-domain magnetites in a chain (e.g., Egli et al., 2010; Roberts et al., 2011). Magnetic mineral assemblages in pelagic sediments of Pacific and Indian Oceans often have two distinctive constituents; the first is characterized by non-interacting on first-order reversal curve (FORC) diagrams and low-coercivity (~40 mT) with small dispersion on isothermal remanent magnetization (IRM) component analyses, and the second is characterized by interacting and middle-coercivity (~100 mT). The former is interpreted as biogenic magnetites and the latter is terrigenous maghemites (Yamazaki, 2009; 2012). The ratio of anhysteretic remanent magnetization susceptibility to saturation IRM reflects relative abundance of the biogenic and terrigenous components. In the Southern Ocean, magnetic mineral concentration increases in glacial periods. The variation pattern closely resembles eolian dust flux records from Antarctic ice cores, but the cause of the linkage was unclear, as the dust flux is too small for the source of terrigenous materials in the Southern Ocean. Our environmental magnetic study of late Pleistocene sediments from the south Indian Ocean revealed that biogenic magnetites are a dominant constituent of the magnetic minerals. In glacials, the abundance of both biogenic and terrigenous components increased with increased proportions of the latter. Increased ocean productivity in glacials is suggested from increased proportions of biogenic magnetites with elongated morphologies, indicative of less-oxic conditions, and increased sedimentation rates. These observations suggest that the increased magnetic concentration in glacials in the Southern Ocean may be explained by iron fertilization; the production of biogenic magnetites was enhanced associated with

  12. Formation of Nano-crystalline Todorokite from Biogenic Mn Oxides

    SciTech Connect

    Feng, X.; Zhu, M; Ginder-Vogel, M; Ni, C; Parikh, S; Sparks, D

    2010-01-01

    Todorokite, as one of three main Mn oxide phases present in oceanic Mn nodules and an active MnO{sub 6} octahedral molecular sieve (OMS), has garnered much interest; however, its formation pathway in natural systems is not fully understood. Todorokite is widely considered to form from layer structured Mn oxides with hexagonal symmetry, such as vernadite ({delta}-MnO{sub 2}), which are generally of biogenic origin. However, this geochemical process has not been documented in the environment or demonstrated in the laboratory, except for precursor phases with triclinic symmetry. Here we report on the formation of a nanoscale, todorokite-like phase from biogenic Mn oxides produced by the freshwater bacterium Pseudomonas putida strain GB-1. At long- and short-range structural scales biogenic Mn oxides were transformed to a todorokite-like phase at atmospheric pressure through refluxing. Topotactic transformation was observed during the transformation. Furthermore, the todorokite-like phases formed via refluxing had thin layers along the c* axis and a lack of c* periodicity, making the basal plane undetectable with X-ray diffraction reflection. The proposed pathway of the todorokite-like phase formation is proposed as: hexagonal biogenic Mn oxide {yields} 10-{angstrom} triclinic phyllomanganate {yields} todorokite. These observations provide evidence supporting the possible bio-related origin of natural todorokites and provide important clues for understanding the transformation of biogenic Mn oxides to other Mn oxides in the environment. Additionally this method may be a viable biosynthesis route for porous, nano-crystalline OMS materials for use in practical applications.

  13. Formation of nano-crystalline todorokite from biogenic Mn oxides

    NASA Astrophysics Data System (ADS)

    Feng, Xiong Han; Zhu, Mengqiang; Ginder-Vogel, Matthew; Ni, Chaoying; Parikh, Sanjai J.; Sparks, Donald L.

    2010-06-01

    Todorokite, as one of three main Mn oxide phases present in oceanic Mn nodules and an active MnO 6 octahedral molecular sieve (OMS), has garnered much interest; however, its formation pathway in natural systems is not fully understood. Todorokite is widely considered to form from layer structured Mn oxides with hexagonal symmetry, such as vernadite (δ-MnO 2), which are generally of biogenic origin. However, this geochemical process has not been documented in the environment or demonstrated in the laboratory, except for precursor phases with triclinic symmetry. Here we report on the formation of a nanoscale, todorokite-like phase from biogenic Mn oxides produced by the freshwater bacterium Pseudomonas putida strain GB-1. At long- and short-range structural scales biogenic Mn oxides were transformed to a todorokite-like phase at atmospheric pressure through refluxing. Topotactic transformation was observed during the transformation. Furthermore, the todorokite-like phases formed via refluxing had thin layers along the c∗ axis and a lack of c∗ periodicity, making the basal plane undetectable with X-ray diffraction reflection. The proposed pathway of the todorokite-like phase formation is proposed as: hexagonal biogenic Mn oxide → 10-Å triclinic phyllomanganate → todorokite. These observations provide evidence supporting the possible bio-related origin of natural todorokites and provide important clues for understanding the transformation of biogenic Mn oxides to other Mn oxides in the environment. Additionally this method may be a viable biosynthesis route for porous, nano-crystalline OMS materials for use in practical applications.

  14. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  15. Reducing Biogenic-Amine-Producing Bacteria, Decarboxylase Activity, and Biogenic Amines in Raw Milk Cheese by High-Pressure Treatments

    PubMed Central

    Calzada, Javier; del Olmo, Ana; Picón, Antonia; Gaya, Pilar

    2013-01-01

    Biogenic amines may reach concentrations of public health concern in some cheeses. To minimize biogenic amine buildup in raw milk cheese, high-pressure treatments of 400 or 600 MPa for 5 min were applied on days 21 and 35 of ripening. On day 60, counts of lactic acid bacteria, enterococci, and lactobacilli were 1 to 2 log units lower in cheeses treated at 400 MPa and 4 to 6 log units lower in cheeses treated at 600 MPa than in control cheese. At that time, aminopeptidase activity was 16 to 75% lower in cheeses treated at 400 MPa and 56 to 81% lower in cheeses treated at 600 MPa than in control cheese, while the total free amino acid concentration was 35 to 53% higher in cheeses treated at 400 MPa and 3 to 15% higher in cheeses treated at 600 MPa, and decarboxylase activity was 86 to 96% lower in cheeses treated at 400 MPa and 93 to 100% lower in cheeses treated at 600 MPa. Tyramine, putrescine, and cadaverine were the most abundant amines in control cheese. The total biogenic amine concentration on day 60, which reached a maximum of 1.089 mg/g dry matter in control cheese, was 27 to 33% lower in cheeses treated at 400 MPa and 40 to 65% lower in cheeses treated at 600 MPa. On day 240, total biogenic amines attained a concentration of 3.690 mg/g dry matter in control cheese and contents 11 to 45% lower in cheeses treated at 400 MPa and 73 to 76% lower in cheeses treated at 600 MPa. Over 80% of the histidine and 95% of the tyrosine had been converted into histamine and tyramine in control cheese by day 60. Substrate depletion played an important role in the rate of biogenic amine buildup, becoming a limiting factor in the case of some amino acids. PMID:23241980

  16. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  17. Iron and iron derived radicals

    SciTech Connect

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  18. Biogenic nitrogen and carbon in Fe-Mn-oxyhydroxides from an Archean chert, Marble Bar, Western Australia

    NASA Astrophysics Data System (ADS)

    Pinti, Daniele L.; Hashizume, Ko; Orberger, Beate; Gallien, Jean-Paul; Cloquet, Christophe; Massault, Marc

    2007-02-01

    To quantify and localize nitrogen (N) and carbon (C) in Archean rocks from the Marble Bar formation, Western Australia, and to gain insights on their origin and potential biogenicity, we conducted nuclear reaction analyses (NRA) and carbon and nitrogen isotope ratio measurements on various samples from the 3460-Myr-old Fe-rich Marble Bar chert. The Marble Bar chert formed during the alteration of basaltic volcanoclastic rocks with Fe- and Si-rich hydrothermal fluids, and the subsequent precipitation of magnetite, carbonates, massive silica, and, locally, sulfides. At a later stage, the magnetite, sulfides, and carbonates were replaced by Fe-Mn-oxyhydroxides. Nuclear reaction analyses indicate that most of the N and C resides within these Fe-Mn-oxyhydroxides, but a minor fraction is found in K-feldspars and Ba-mica dispersed in the silica matrix. The N and C isotopic composition of Fe-oxides suggests the presence of a unique biogenic source with δ 15NAIR values from +6.0 +/- 0.5‰ to 7.3 +/- 1.1‰ and a δ 13CPDB value of -19.9 +/- 0.1‰. The C and N isotope ratios are similar to those observed in Proterozoic and Phanerozoic organic matter. Diffusion-controlled fractionation of N and C released during high combustion temperatures indicates that these two elements are firmly embedded within the iron oxides, with activation energies of 18.7 +/- 3.7 kJ/mol for N and 13.0 +/- 3.8 kJ/mol for C. We propose that N and C were chemisorbed on iron and were subsequently embedded in the crystals during iron oxidation and crystal growth. The Fe-isotopic composition of the Marble Bar chert (δ 56Fe = -0.38 +/- 0.02‰) is similar to that measured in iron oxides formed by direct precipitation of iron from hydrothermal plumes in contact with oxygenated waters. To explain the N and C isotopic composition of Marble Bar chert, we propose either (1) a later addition of N and C at the end of Archean when oxygen started to rise or (2) an earlier development of localized oxygenated

  19. Quantifying Rates of Complete Microbial Iron Redox Cycling in Acidic Hot Springs

    NASA Astrophysics Data System (ADS)

    St Clair, B.; Pottenger, J. W.; Shock, E.

    2013-12-01

    Large accumulations of iron oxide commonly occur in shallow outflows of acidic hot springs, and culturing, molecular techniques, and microscopy by others indicate that this iron oxide (often ferrihydrite) is largely biogenic in Yellowstone National Park. The hot springs that support iron mats have several consistent geochemical features including combinations of pH, temperature, sulfide, dissolved oxygen, depth and ferrous iron concentration appropriate to support iron oxidation. These springs nearly always have a point source leading to a large shallow outflow apron. Microbial zones often, but not always, include a small clear zone near the source, followed by a sulfide oxidation zone, iron mat, and finally photosynthesis. The yellow sulfide oxidation zone is separated from the red iron mat by a sharp transition resulting from increasing dissolved oxygen from atmospheric contact and microbial depletion of sulfide. The iron mat is typically the largest microbial zone in the feature by area. Further down the outflow, iron oxidation appears to be outcompeted by phototrophs as the temperature cools. Occasionally there is overlap in these zones, but one metabolism always appears dominant. Our experiments at diverse hot springs indicate that microbial reduction is less geochemically restricted than oxidation, requiring only organic carbon, ferric minerals and an anoxic environment. With iron oxidizers fixing carbon and producing layers of ferric minerals that become rapidly anoxic with depth, iron reduction is invariably proximal to where biogenic iron oxides are forming. To characterize the interplay of oxidation and reduction rates that permit oxide accumulation, we conducted rate experiments at geochemically diverse Yellowstone hot springs featuring visible iron oxides in thermal areas throughout the park. These experiments were performed during two summer field seasons to determine in situ and maximum rates of iron oxidation and reduction by measuring changing

  20. Hexagonal Platelet-like Magnetite as a Biosignature of Thermophilic Iron-Reducing Bacteria and Its Applications to the Exploration of the Modern Deep, Hot Biosphere and the Emergence of Iron-Reducing Bacteria in Early Precambrian Oceans

    PubMed Central

    2012-01-01

    Abstract Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life. Key Words: Biosignatures—Magnetite—Iron-reducing bacteria—Deep subsurface biosphere—Banded iron formation. Astrobiology 12, 1100–1108. PMID:23145573

  1. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California.

    PubMed

    Williams, Amy J; Sumner, Dawn Y; Alpers, Charles N; Karunatillake, Suniti; Hofmann, Beda A

    2015-08-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  2. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California

    PubMed Central

    Sumner, Dawn Y.; Alpers, Charles N.; Karunatillake, Suniti; Hofmann, Beda A.

    2015-01-01

    Abstract A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses

  3. Preserved filamentous microbial biosignatures in the Brick Flat gossan, Iron Mountain, California

    USGS Publications Warehouse

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Karunatillake, Suniti; Hofmann, Beda A

    2015-01-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  4. Contributions of biogenic and anthropogenic hydrocarbons to photochemical smog formation

    SciTech Connect

    Paulson, S.E.

    1991-01-01

    Photochemical oxidation of biogenic (Isoprene) and anthropogenic (1-octene) hydrocarbons are examined. Experiments studied the individual daylight reactions of both isoprene and 1-octene, including those of OH, O{sub 3}, O({sup 3}P), and NO{sub 2}. The O{sub 3} reactions are found to produce significant quantities of OH, O({sup 3}P), and carbonyl yields that total about 100%. Isomerization is found to be an important channel for both isoprene and 1-octene. O({sup 3}P) reactions are found to have relatively minor decomposition pathways, resulting instead in epoxide formation. Results from both the smog chamber experiments and computer kinetic modeling were then used to develop photochemical oxidation mechanisms for each hydrocarbon. Aerosol formed by isoprene and another biogenic, {beta}-pinene, are characterized.

  5. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    NASA Technical Reports Server (NTRS)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  6. Manganese in biogenic magnetite crystals from magnetotactic bacteria.

    PubMed

    Keim, Carolina N; Lins, Ulysses; Farina, Marcos

    2009-03-01

    Magnetotactic bacteria produce either magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4)) crystals in cytoplasmic organelles called magnetosomes. Whereas greigite magnetosomes can contain up to 10 atom% copper, magnetite produced by magnetotactic bacteria was considered chemically pure for a long time and this characteristic was used to distinguish between biogenic and abiogenic crystals. Recently, it was shown that magnetosomes containing cobalt could be produced by three strains of Magnetospirillum. Here we show that magnetite crystals produced by uncultured magnetotactic bacteria can incorporate manganese up to 2.8 atom% of the total metal content (Fe+Mn) when manganese chloride is added to microcosms. Thus, chemical purity can no longer be taken as a strict prerequisite to consider magnetite crystals to be of biogenic origin. PMID:19187208

  7. Biogenic hydrocarbon contribution to the ambient air of selected areas

    NASA Astrophysics Data System (ADS)

    Arnts, Robert R.; Meeks, Sarah A.

    In response to suggestions that biogenic emissions are responsible for high hydrocarbon concentrations described in several reports, a short-term sampling program was initiated in the reported areas to test this hypothesis. Limited numbers of whole-air samples were collected in Tedlar bags and analyzed by gas chromatography (GC) with flame ionization detection. Tulsa air was found to contain an average of 0.2% isoprene of the total nonmethane hydrocarbon (TNMHC) load. Rio Blanco County, Colorado, and Smoky Mountain air, respectively, averaged about 2 % and 4 % biogenic hydrocarbon of the total nonmethane hydrocarbon loads. Isoprene appears to be a dominant olefin in rural and remote areas. Although the tests were of short duration, results suggest monoterpenes and isoprene constitute only minor components in these areas relative to anthropogenic hydrocarbons.

  8. [Effect of 7-hydroxygluacine on brain biogenic monoamines].

    PubMed

    Petkov, V D; Grakhoska, T; Konstantinova, E; Petkov, V V

    1985-01-01

    In experiments on male albino rats it was established that the aporphine alkaloid 7-hydroxyglaucine injected i.p. at a dose of 1/10 of the LD50 induced many changes in the brain level of biogenic amines. Serotonin content was significantly increased in all brain structures studied (whole brain. cortex, striatum, and hypothalamus) Dopamine level was increased in the whole brain and cortex and was decreased in the hypothalamus; noradrenaline level was increased in the cortex and was decreased in the whole brain and hypothalamus. These effects are thought to be due to the 7-hydroxyglaucine-facilitated transport of amino acids, precursors of biogenic amines, and to neurotransmitter interactions in the different brain structures. PMID:4029374

  9. Gas formation. Formation temperatures of thermogenic and biogenic methane.

    PubMed

    Stolper, D A; Lawson, M; Davis, C L; Ferreira, A A; Santos Neto, E V; Ellis, G S; Lewan, M D; Martini, A M; Tang, Y; Schoell, M; Sessions, A L; Eiler, J M

    2014-06-27

    Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a "clumped isotope" technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models. PMID:24970083

  10. An amorphous solid state of biogenic secondary organic aerosol particles.

    PubMed

    Virtanen, Annele; Joutsensaari, Jorma; Koop, Thomas; Kannosto, Jonna; Yli-Pirilä, Pasi; Leskinen, Jani; Mäkelä, Jyrki M; Holopainen, Jarmo K; Pöschl, Ulrich; Kulmala, Markku; Worsnop, Douglas R; Laaksonen, Ari

    2010-10-14

    Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90 billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate. PMID:20944744

  11. The degree of biogenicity of micrites and terrestrial Mars analogues .

    NASA Astrophysics Data System (ADS)

    D'Elia, M.; Blanco, A.; Orofino, V.; Fonti, S.; Mastandrea, A.; Guido, A.; Tosti, F.; Russo, F.

    A number of indications, as the past presence of water, a denser atmosphere and a mild climate on early Mars, suggest that environmental conditions favorable to the emergence of life must have been present on that planet in the first hundred million years, or even more recently. If life actually existed on Mars, biomarkers could be still preserved with some degree of degradation. In previous laboratory works we have investigated the infrared spectral modifications induced by thermal processing on different carbonate samples, in the form of recent shells and fossils of different ages, whose biogenic origin is indisputable. The goal was to develop a method able to discriminate carbonate biogenic samples from their abiogenic counterparts. The method has been successfully applied to microbialites, i.e. bio-induced carbonates deposits, and particularly to stromatolites, the laminated fabric of microbialites, some of which can be ascribed among the oldest traces of biological activity known on Earth. This result is of valuable importance since such carbonates are linked to primitive living organisms which can be considered as good analogues for putative Martian life forms. In this work we show that, studying different parts of the same carbonate rock sample, we are able to distinguish, on the base of the degree of biogenicity, the various micrite types (i.e. detrital vs autochthonous).

  12. BAECC Biogenic Aerosols - Effects on Clouds and Climate

    SciTech Connect

    Petäjä, Tuukka; Moisseev, Dmitri; Sinclair, Victoria; O'Connor, Ewan J.; Manninen, Antti J.; Levula, Janne; Väänänen, Riikka; Heikkinen, Liine; Äijälä, Mikko; Aalto, Juho; Bäck, Jaana

    2015-11-01

    Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, featured the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program’s 2nd Mobile Facility (AMF2) in Hyytiälä, Finland. It operated for an 8-month intensive measurement campaign from February to September 2014. The main research goal was to understand the role of biogenic aerosols in cloud formation. One of the reasons to perform BAECC study in Hyytiälä was the fact that it hosts SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), which is one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. The BAECC enables combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations and allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. With the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations of AMF2 and SMEAR-II provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes. The BAECC dataset will initiate new opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures.

  13. `Guanigma': the revised structure of biogenic anhydrous guanine

    NASA Astrophysics Data System (ADS)

    Hirsch, Anna; Gur, Dvir; Polishchuk, Iryna; Levy, Davide; Pokroy, Boaz; Cruz-Cabeza, Aurora J.; Addadi, Lia; Kronik, Leeor; Leiserowitz, Leslie

    Living organisms display a spectrum of colors, produced by pigmentation, structural coloration, or both. A relatively well-studied system, which produces colors via an array of alternating anhydrous guanine crystals and cytoplasm, is responsible for the metallic luster of many fish. The structure of biogenic anhydrous guanine was believed to be the same as that of the synthetic one - a monoclinic polymorph. Here we re-examine the structure of biogenic guanine, using experimental X-ray and electron diffraction (ED) data exposing troublesome inconsistencies - namely, a 'guanigma'. To address this, we sought alternative candidate polymorphs using symmetry and packing considerations, then used first principles calculations to determine whether the selected candidates could be energetically stable. We identified theoretically a different monoclinic polymorph, were able to synthesize it, and to confirm using X-ray diffraction that it is this polymorph that occurs in biogenic samples. However, the ED data were still not consistent with this polymorph, but rather with a theoretically generated orthorhombic polymorph. This apparent inconsistency was resolved by showing how the ED pattern could be affected by crystal structural faults composed of offset molecular layers.

  14. Paleoproductivity and paleoceanography of the last 4.3 Myrs at IODP Expedition 323 Site U1341 in the Bering Sea based on biogenic opal content

    NASA Astrophysics Data System (ADS)

    Iwasaki, Shinya; Takahashi, Kozo; Kanematsu, Yoshiyuki; Asahi, Hirofumi; Onodera, Jonaotaro; Ravelo, A. C.

    2016-03-01

    Site U1341 in the southern Bering Sea was drilled and cored down to 600 meters below sea-floor (mbsf) during Integrated Ocean Drilling Program (IODP) Expedition 323, covering a nearly complete record of the last 4.3 million years (Myrs). Analyses of the biogenic opal content of sediments at the site provide detailed and useful information on past biological productivity and paleoceanographic changes that occurred in the region including shifts in the oceanographic condition during the intensification of the Northern Hemisphere Glaciation (NHG) and the Mid-Pleistocene Transition (MPT). An overall decreasing trend in the %biogenic opal record, combined with evidence from microfossil assemblages, indicates a gradual shift in environmental conditions during the last 4.3 Myrs, from warm and nutrient-rich conditions to cool conditions with sea-ice. On the other hand, biogenic opal mass accumulation rates (MAR) were high during 2.6-2.1 Ma after the intensification of the NHG, unlike in the western North Pacific. High biological productivity during this specific interval is consistent with the results of previous studies in the other Marginal Seas, possibly suggesting that iron leakage from the Bering Continental Shelf occurred. After the MPT, the data suggest that there was sea-ice expansion and discharge of lithogenic matter during glacial periods, and high productivity during interglacial periods.

  15. Global Biogenic Emission of Carbon Dioxide from Landfills

    NASA Astrophysics Data System (ADS)

    Lima, R.; Nolasco, D.; Meneses, W.; Salazar, J.; Hernández, P.; Pérez, N.

    2002-12-01

    Human-induced increases in the atmospheric concentrations of greenhouse gas components have been underway over the past century and are expected to drive climate change in the coming decades. Carbon dioxide was responsible for an estimated 55 % of the antropogenically driven radiactive forcing of the atmosphere in the 1980s and is predicted to have even greater importance over the next century (Houghton et al., 1990). A highly resolved understanding of the sources and sinks of atmospheric CO2, and how they are affected by climate and land use, is essential in the analysis of the global carbon cycle and how it may be impacted by human activities. Landfills are biochemical reactors that produce CH4 and CO2 emissions due to anaerobic digestion of solid urban wastes. Estimated global CH4 emission from landfills is about 44 millions tons per year and account for a 7.4 % of all CH4 sources (Whiticar, 1989). Observed CO2/CH4 molar ratios from landfill gases lie within the range of 0.7-1.0; therefore, an estimated global biogenic emission of CO2 from landfills could reach levels of 11.2-16 millions tons per year. Since biogas extraction systems are installed for extracting, purifying and burning the landfill gases, most of the biogenic gas emission to the atmosphere from landfills occurs through the surface environment in a diffuse and disperse form, also known as non-controlled biogenic emission. Several studies of non-controlled biogenic gas emission from landfills showed that CO2/CH4 weight ratios of surface landfill gases, which are directly injected into the atmosphere, are about 200-300 times higher than those observed in the landfill wells, which are usually collected and burned by gas extraction systems. This difference between surface and well landfill gases is mainly due to bacterial oxidation of the CH4 to CO2 inducing higher CO2/CH4 ratios for surface landfill gases than those well landfill gases. Taking into consideration this observation, the global biogenic

  16. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  17. FeCycle: Attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters

    NASA Astrophysics Data System (ADS)

    Boyd, P. W.; Law, C. S.; Hutchins, D. A.; Abraham, E. R.; Croot, P. L.; Ellwood, M.; Frew, R. D.; Hadfield, M.; Hall, J.; Handy, S.; Hare, C.; Higgins, J.; Hill, P.; Hunter, K. A.; Leblanc, K.; Maldonado, M. T.; McKay, R. M.; Mioni, C.; Oliver, M.; Pickmere, S.; Pinkerton, M.; Safi, K.; Sander, S.; Sanudo-Wilhelmy, S. A.; Smith, M.; Strzepek, R.; Tovar-Sanchez, A.; Wilhelm, S. W.

    2005-12-01

    An improved knowledge of iron biogeochemistry is needed to better understand key controls on the functioning of high-nitrate low-chlorophyll (HNLC) oceanic regions. Iron budgets for HNLC waters have been constructed using data from disparate sources ranging from laboratory algal cultures to ocean physics. In summer 2003 we conducted FeCycle, a 10-day mesoscale tracer release in HNLC waters SE of New Zealand, and measured concurrently all sources (with the exception of aerosol deposition) to, sinks of iron from, and rates of iron recycling within, the surface mixed layer. A pelagic iron budget (timescale of days) indicated that oceanic supply terms (lateral advection and vertical diffusion) were relatively small compared to the main sink (downward particulate export). Remote sensing and terrestrial monitoring reveal 13 dust or wildfire events in Australia, prior to and during FeCycle, one of which may have deposited iron at the study location. However, iron deposition rates cannot be derived from such observations, illustrating the difficulties in closing iron budgets without quantification of episodic atmospheric supply. Despite the threefold uncertainties reported for rates of aerosol deposition (Duce et al., 1991), published atmospheric iron supply for the New Zealand region is ˜50-fold (i.e., 7- to 150-fold) greater than the oceanic iron supply measured in our budget, and thus was comparable (i.e., a third to threefold) to our estimates of downward export of particulate iron. During FeCycle, the fluxes due to short term (hours) biological iron uptake and regeneration were indicative of rapid recycling and were tenfold greater than for new iron (i.e. estimated atmospheric and measured oceanic supply), giving an "fe" ratio (uptake of new iron/uptake of new + regenerated iron) of 0.17 (i.e., a range of 0.06 to 0.51 due to uncertainties on aerosol iron supply), and an "Fe" ratio (biogenic Fe export/uptake of new + regenerated iron) of 0.09 (i.e., 0.03 to 0.24).

  18. Biogenic amines in commercially produced Yulu, a Chinese fermented fish sauce.

    PubMed

    Jiang, Wei; Xu, Ying; Li, Chunsheng; Dong, Xiaoyan; Wang, Dongfeng

    2014-01-01

    Seven biogenic amines were determined in 35 commercially produced Yulu samples from three provinces of China by pre-column derivatisation with dansyl chloride (Dns-Cl) and high-performance liquid chromatography with fluorescence detection (HPLC-FLD). Putrescine, cadaverine, histamine and tyramine were the major biogenic amines (more than 100 mg kg(-1)), while tryptamine, spermidine and spermine were regarded as minor biogenic amines (less than 25 mg kg(-1)). Twenty samples contained more than 50 mg kg(-1) histamine (the limit for histamine in seafood products as suggested by the Food and Drug Administration). Twenty-one samples contained more than 100 mg kg(-1) tyramine and 10 contained more than 1000 mg kg(-1) total biogenic amines. This study provided data on biogenic amine levels in Chinese fermented fish sauce. The results suggested that biogenic amine content should be monitored in commercially produced Yulu. PMID:24779975

  19. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    SciTech Connect

    Mikhaylova, A.; Davidson, M.; Toastmann, H.; Channell, J.E.T.; Guyodo, Y.; Batich, C.; Dobson, J.

    2008-06-16

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 {micro}m. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders - a problem which has vexed researchers for 50 years.

  20. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    PubMed Central

    Mikhaylova, A; Davidson, M; Toastmann, H; Channell, J.E.T; Guyodo, Y; Batich, C; Dobson, J

    2005-01-01

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 μm. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders—a problem which has vexed researchers for 50 years. PMID:16849161

  1. Ferrous iron content of intravenous iron formulations.

    PubMed

    Gupta, Ajay; Pratt, Raymond D; Crumbliss, Alvin L

    2016-06-01

    The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose. PMID:26956439

  2. Significant Biogenic Silica Retention from Reverse Weathering in Non-deltaic Sediments

    NASA Astrophysics Data System (ADS)

    Krause, J. W.; Larson, A. M.; Darrow, E. S.; Carmichael, R. H.

    2014-12-01

    Coastal biogeochemical processes exert important controls on the net delivery of silicon to the ocean. Reverse weathering of biogenic silica by authigenic transformation has been suggested to be an important processes for silicon retention in coastal sediments. Many reported sediment biogenic silica measurements may underestimate this authigenically-transformed fraction; for example, the incorporation of metal hydroxides with the biogenic silica matrix suppresses the ability to distinguish it from mineral silica when using a traditional alkaline leach. Most studies demonstrating the importance of reverse weathering on biogenic silica have examined deltaic sediments in river dominated systems (e.g. Mississippi, Amazon), but this has not been examined in sediments which lack strong fluvial input. Using sediment cores from the outside the Mississippi River plume, we adapted a method which lessens the interference of metal hydroxides on biogenic silica by using an initial acid leach. The addition of this step increased the measured biogenic silica up to five-fold above that detected using a traditional alkaline digestion method. The magnitude of authigenically-altered biogenic silica in these cores was significant, representing a majority of the sediment biogenic silica pool at most depths. These findings confirm the importance of reverse-weathered biogenic silica as a mechanism for silicon retention and suggest the significance of this process may be more widespread.

  3. Control of Biogenic Amines in Fermented Sausages: Role of Starter Cultures

    PubMed Central

    Latorre-Moratalla, M.L.; Bover-Cid, Sara; Veciana-Nogués, M.T.; Vidal-Carou, M.C.

    2012-01-01

    Biogenic amines show biological activity and exert undesirable physiological effects when absorbed at high concentrations. Biogenic amines are mainly formed by microbial decarboxylation of amino acids and thus are usually present in a wide range of foods, fermented sausages being one of the major biogenic amine sources. The use of selected starter cultures is one of the best technological measures to control aminogenesis during meat fermentation. Although with variable effectiveness, several works show the ability of some starters to render biogenic amine-free sausages. In this paper, the effect of different starter culture is reviewed and the factors determining their performance discussed. PMID:22586423

  4. Targeting polyamines and biogenic amines by green tea epigallocatechin-3-gallate.

    PubMed

    Melgarejo, Esther; Urdiales, José Luis; Sánchez-Jiménez, Francisca; Medina, Miguel Angel

    2010-02-01

    Biogenic amines and polyamines are organic polycations derived from aromatic or cationic amino acids. They exert pleiotropic effects, more related to intercellular communication in the case of biogenic amines, and to intracellular signaling in the case of polyamines. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target key enzyme of biogenic amine and polyamine metabolic pathways. Herein, we review the specific effects of EGCG on concrete molecular targets of both biogenic amine and polyamine metabolic pathways, and discuss the relevance of these data to support the potential therapeutic interest of this compound. PMID:19956995

  5. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments.

    PubMed

    Wang, Zhendi; Yang, C; Kelly-Hooper, F; Hollebone, B P; Peng, X; Brown, C E; Landriault, M; Sun, J; Yang, Z

    2009-02-13

    "Total petroleum hydrocarbons" (TPHs) or "petroleum hydrocarbons" (PHCs) are one of the most widespread soil pollutants in Canada, North America, and worldwide. Clean-up of PHC-contaminated soils and sediments costs the Canadian economy hundreds of million of dollars annually. Much of this activity is driven by the need to meet regulated levels of PHC in soil. These PHC values are legally required to be assessed using standard methods. The method most commonly used in Canada, specified by the Canadian Council of Ministers of the Environment (CCME), measures the total hydrocarbon concentrations in a soil by carbon range (Fraction 1: C(6)-C(10); Fraction 2: C(10)-C(16), Fraction 3: C(16)-C(34): and Fraction 4: C(34)+). Using the CCME method, all of the materials extractible by a mixture of 1:1 hexane:acetone are considered to be petroleum hydrocarbon contaminants. Many hydrocarbon compounds and other extractible materials in soil, however, may originate from non-petroleum sources. Biogenic organic compounds (BOCs) is a general term used to describe a mixture of organic compounds, including alkanes, sterols and sterones, fatty acids and fatty alcohols, and waxes and wax esters, biosynthesized by living organisms. BOCs are also produced during the early stages of diagenesis in recent aquatic sediments. BOC sources could include vascular plants, algae, bacteria and animals. Plants and algae produce BOCs as protective wax coating that are released back into the sediment at the end of their life cycle. BOCs are natural components of thriving plant communities. Many solvent-extraction methods for assessing soil hydrocarbons, however, such as the CCME method, do not differentiate PHCs from BOCs. The naturally occurring organics present in soils and wet sediments can be easily misidentified and quantified as regulated PHCs during analysis using such methods. In some cases, biogenic interferences can exceed regulatory levels, resulting in remediation of petroleum impacts that

  6. Isolation of iron bacteria from terrestrial and aquatic environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Bertram; Szewzyk, Ulrich

    2010-05-01

    Bacteria, which are capable of iron oxidation or at least iron deposition are widely distributed in environments where zones of dissolved ferrous iron and oxygen gradients are overlapping [1]. They take part in the biological cycling of iron and influence other cycles of elements for example carbon [2]. Manganese can be used for similar metabolic purposes as iron, because it can be biologically oxidized by chemolithotrophs or can be reduced by respirating bacteria as well [3, 4]. Bacterial activity is responsible for the accumulation of ferric iron compounds in their surroundings. The formation of bog ore is a well known example for a soil horizon, with an extreme enrichment of biogenic ferric iron [5]. We focused on the isolation of neutrophilic iron bacteria and bacteria capable of manganese oxidation. We used samples from Tierra del Fuego (Argentina) the National Park "Unteres Odertal" (Germany) and Berlin ground water wells. Microscopic examination of the samples revealed a considerable diversity of iron encrusted structures of bacterial origin. Most of these morphologic types are already well known. The taxonomic classification of many of these organisms is based on morphologic features and is not reliable compared to recent methods of molecular biology. That is mainly due to the fact, that most of these bacteria are hardly culturable or do not show their characteristic morphologic features under culture conditions. We established a collection of more than 300 iron depositing strains. Phylogenetic analyses showed that we have many yet uncultured strains in pure culture. We obtained many isolates which form distinct branches within long known iron bacteria groups like the Sphaerotilus-Leptothrix cluster. But some of the strains belong to groups, which have not yet been associated with iron oxidation activity. The strains deposit high amounts of oxidized iron and manganese compounds under laboratory conditions. However it is unclear if these precipitations are

  7. Hepatic iron metabolism.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2005-11-01

    The liver performs three main functions in iron homeostasis. It is the major site of iron storage, it regulates iron traffic into and around the body through its production of the peptide hepcidin, and it is the site of synthesis of major proteins of iron metabolism such as transferrin and ceruloplasmin. Most of the iron that enters the liver is derived from plasma transferrin under normal circumstances, and transferrin receptors 1 and 2 play important roles in this process. In pathological situations, non-transferrin-bound iron, ferritin, and hemoglobin/haptoglobin and heme/hemopexin complexes assume greater importance in iron delivery to the organ. Iron is stored in the liver as ferritin and, with heavy iron loading, as hemosiderin. The liver can divest itself of iron through the plasma membrane iron exporter ferroportin 1, a process that also requires ceruloplasmin. Hepcidin can regulate this iron release through its interaction with ferroportin. PMID:16315136

  8. Iron Sucrose Injection

    MedlinePlus

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in people with chronic kidney disease (damage to the kidneys which may worsen over ...

  9. Formation of magnetite and iron-rich carbonates by thermophilic iron-reducing bacteria

    SciTech Connect

    Zhang, C.; Liu, S.; Roh, Y.; Cole, D.; Phelps, T.; Vali, H.; Kirschvink, J.L.; Onsttot, T.; McKay, D.

    1997-06-01

    Laboratory experiments were performed to study the formation of iron minerals by a thermophilic (45 to 75 C) fermentative iron-reducing bacterial culture (TOR39) obtained from the deep subsurface. Using amorphous Fe(III) oxyhydroxide as an electron acceptor and glucose as an electron donor, TOR39 produced magnetite and iron-rich carbonates at conditions consistent, on a thermodynamic basis, with Eh ({minus}200 mV to {minus}415 mV) and pH (6.2 to 7.7) values determined for these experiments. Analyses of the precipitating solid phases by X-ray diffraction showed that the starting amorphous Fe(III) oxyhydroxide was nearly completely converted to magnetite and Fe-rich carbonate after 20 days of incubation. Increasing bicarbonate concentration in the chemical milieu resulted in increased proportions of siderite relative to magnetite and the addition of MgCl{sub 2} caused the formation of magnesium-rich carbonate in addition to siderite. The results suggest that the TOR39 bacterial culture may have the capacity to form magnetite and iron-rich carbonates in a variety of geochemical conditions. These results may have significant implications for studying the past biogenic activities in the Martian meteorite ALH84001.

  10. Formation of magnetite and iron-rich carbonates by thermophilic iron-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanlun; Vali, Hojatollah; Liu, Shi; Roh, Yul; Cole, Dave; Kirschvink, Joseph L.; Onstott, Tullis C.; McKay, David S.; Phelps, Tommy J.

    1997-07-01

    Laboratory experiments were performed to study the formation of iron minerals by a thermophilic (45 - 75 degree(s)C) fermentative iron-reducing bacterial culture (TOR39) obtained from the deep subsurface. Using amorphous Fe(III) oxyhydroxide as an electron acceptor and glucose as an electron donor, TOR39 produced magnetite and iron-rich carbonates at conditions consistent, on a thermodynamic basis, with Eh (-200 mV to -415 mV) and pH (6.2 to 7.7) values determined for these experiments. Analyses of the precipitating solid phases by X-ray diffraction showed that the starting amorphous Fe(III) oxyhydroxide was nearly completely converted to magnetite and Fe-rich carbonate after 20 days of incubation. Increasing bicarbonate concentration in the chemical milieu resulted in increased proportions of siderite relative to magnetite and the addition of MgCl2 caused the formation of magnesium-rich carbonate in addition to siderite. The results suggest that the TOR39 bacterial culture may have the capacity to form magnetite and iron-rich carbonates in a variety of geochemical conditions. These results may have significant implications for studying the past biogenic activities in the Martian meteorite ALH84001.

  11. Post-speleogenetic biogenic modification of Gomantong Caves, Sabah, Borneo

    NASA Astrophysics Data System (ADS)

    Lundberg, Joyce; McFarlane, Donald A.

    2012-07-01

    The Gomantong cave system of eastern Sabah, Malaysia, is well-known as an important site for harvesting edible bird-nests and, more recently, as a tourist attraction. Although the biology of the Gomantong system has been repeatedly studied, very little attention has been given to the geomorphology. Here, we report on the impact of geobiological modification in the development of the modern aspect of the cave, an important but little recognized feature of tropical caves. Basic modeling of the metabolic outputs from bats and birds (CO2, H2O, heat) reveals that post-speleogenetic biogenic corrosion can erode bedrock by between ~ 3.0 mm/ka (1 m/~300 ka) and ~ 4.6 mm/ka (1 m/~200 ka). Modeling at high densities of bats yields rates of corrosion of ~ 34 mm/ka (or 1 m/~30 ka). Sub-aerial corrosion creates a previously undescribed speleological feature, the apse-flute, which is semicircular in cross-section and ~ 80 cm wide. It is vertical regardless of rock properties, developing in parallel but apparently completely independently, and often unbroken from roof to floor. They end at a blind hemi-spherical top with no extraneous water source. Half-dome ceiling conch pockets are remnants of previous apse-fluting. Sub-cutaneous corrosion creates the floor-level guano notch formed by organic acid dissolution of bedrock in contact with guano. Speleogenetic assessment suggests that as much as 70-95% of the total volume of the modern cave may have been opened by direct subaerial biogenic dissolution and biogenically-induced collapse, and by sub-cutaneous removal of limestone, over a timescale of 1-2 Ma.

  12. Soil Moisture Characterization for Biogenic Emissions Modeling in Texas

    NASA Astrophysics Data System (ADS)

    McGaughey, G.; Sun, Y.; Kimura, Y.; Huang, L.; Fu, R.; McDonald-Buller, E.

    2014-12-01

    The role of isoprene and other biogenic volatile organic compounds (BVOCs) in the formation of tropospheric ozone has been recognized as critical for air quality planning in Texas. In the southwestern United States, drought has become a recurring phenomenon and, in addition to other extreme weather events, can impose profound and complex effects on human populations and the environment. Understanding these effects on vegetation and biogenic emissions is important as Texas concurrently faces requirements to achieve and maintain attainment with the National Ambient Air Quality Standard (NAAQS) for ozone in several large metropolitan areas. This research evaluated the impact of soil moisture through the use of simulated and observational datasets on emissions estimates of isoprene. Soil moisture measurements (e.g., Climate Reference Network, Soil Climate Analysis Network) at limited locations in eastern Texas during 2006-2011 showed spatial and temporal variability associated with environmental drivers such as meteorology and physical soil characteristics; low volumetric soil moisture values (< 0.05 m3/m3) were observed during 2011, a year characterized by all-time record drought over the majority of Texas. Comparisons of soil moisture observations in the upper one meter to predictions from the North American Land Data Assimilation System (NLDAS) indicated a tendency towards a dry bias for NLDAS especially at depths greater than 10 cm. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was used to explore the sensitivity of biogenic emissions estimates to alternative soil moisture representations for year 2011. A range of soil moisture inputs over eastern Texas informed by the observed to simulated comparisons demonstrated that the impact on predicted isoprene emissions was affected by both the soil moisture and specific wilting point datasets employed.

  13. Redefining the isotopic boundaries of biogenic methane: Methane from endoevaporites

    NASA Astrophysics Data System (ADS)

    Tazaz, Amanda M.; Bebout, Brad M.; Kelley, Cheryl A.; Poole, Jennifer; Chanton, Jeffrey P.

    2013-06-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleoenvironments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption, particularly in hypersaline environments. Methane in the atmosphere of Mars may be an indication of extant life, but it may also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. On Earth these methane sources can be distinguished using stable isotopic analyses and the ratio of methane (C1) to C2 and C3 alkanes present in the gas source (C1/(C2 + C3)). We report here that methane produced in hypersaline environments on Earth has an isotopic composition and alkane content outside the values presently considered to indicate a biogenic origin. Methane-rich bubbles released from sub-aqueous substrates contained δ13CCH4 and δ2HCH4 values ranging from -65‰ to -35‰ and -350‰ to -140‰ respectively. Higher salinity endoevaporites yielded what would be considered non-biogenic methane based upon stable isotopic and alkane content, however incubation of crustal and algal mat samples resulted in methane production with similar isotopic values. Radiocarbon analysis indicated that the production of the methane was from recently fixed carbon. An extension of the isotopic boundaries of biogenic methane is necessary in order to avoid the possibility of false negatives returned from measurements of methane on Mars and other planetary bodies.

  14. Biogenic Emissions of Light Alkenes from a Coniferous Forest

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Turnipseed, A. A.; Martinez, L.; Shen, S.; De Gouw, J. A.; Warneke, C.; Koss, A.; Lerner, B. M.; Miller, B. R.; Smith, J. N.; Guenther, A. B.

    2014-12-01

    Alkenes are reactive hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. The light alkenes (C2-C4) originate from both biogenic and anthropogenic sources and include C2H4 (ethene), C3H6 (propene) and C4H8 (1-butene, 2-butene, 2-methylpropene). Light alkenes are used widely as chemical feedstocks because their double bond makes them versatile for industrial reactions. Their biogenic sources are poorly characterized, with most global emissions estimates relying on laboratory-based studies; net ecosystem emissions have been measured at only one site thus far. Here we report net ecosystem fluxes of light alkenes and isoprene from a semi-arid ponderosa pine forest in the Rocky Mountains of Colorado, USA. Canopy scale fluxes were measured using relaxed eddy accumulation (REA) techniques on the 28-meter NCAR tower in the Manitou Experimental Forest Observatory. Updrafts and downdrafts were determined by sonic anemometry and segregated into 'up' and 'down' reservoirs over the course of an hour. Samples were then measured on two separate automated gas chromatographs (GCs). The first GC measured light hydrocarbons (C2-C6 alkanes and C2-C5 alkenes) by flame ionization detection (FID). The second GC measured halocarbons (methyl chloride, CFC-12, and HCFC-22) by electron capture detection (ECD). Additional air measurements from the top of the tower included hydrocarbons and their oxidation products by Proton Transfer Reaction Mass Spectrometry (PTR-MS). Three field intensives were conducted during the summer of 2014. The REA flux measurements showed that ethene, propene and the butene emissions have significant diurnal cycles, with maximum emissions at midday. The light alkenes contribute significantly to the overall biogenic source of reactive hydrocarbons and have a temporal variability that may be associated with physical and biological parameters. These ecosystem scale measurements

  15. Genetics Home Reference: iron-refractory iron deficiency anemia

    MedlinePlus

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  16. Iron requirement for Mn(II) oxidation by Leptothrix discophora SS-1.

    PubMed

    El Gheriany, Iman A; Bocioaga, Daniela; Hay, Anthony G; Ghiorse, William C; Shuler, Michael L; Lion, Leonard W

    2009-03-01

    A common form of biocatalysis of Mn(II) oxidation results in the formation of biogenic Mn(III, IV) oxides and is a key reaction in the geochemical cycling of Mn. In this study, we grew the model Mn(II)-oxidizing bacterium Leptothrix discophora SS-1 in media with limited iron (0.1 microM iron/5.8 mM pyruvate) and sufficient iron (0.2 microM iron/5.8 mM pyruvate). The influence of iron on the rate of extracellular Mn(II) oxidation was evaluated. Cultures in which cell growth was limited by iron exhibited reduced abilities to oxidize Mn(II) compared to cultures in medium with sufficient iron. While the extracellular Mn(II)-oxidizing factor (MOF) is thought to be a putative multicopper oxidase, Mn(II) oxidation in the presence of zero added Cu(II) was detected and the decrease in the observed Mn(II) oxidation rate in iron-limited cultures was not relieved when the medium was supplemented with Cu(II). The decline of Mn(II) oxidation under iron-limited conditions was not accompanied by siderophore production and is unlikely to be an artifact of siderophore complex formation with Mn(III). The temporal variations in mofA gene transcript levels under conditions of limited and abundant iron were similar, indicating that iron limitation did not interfere with the transcription of the mofA gene. Our quantitative PCR results provide a step forward in understanding the regulation of Mn(II) oxidation. The mechanistic role of iron in Mn(II) oxidation is uncertain; the data are consistent with a direct requirement for iron as a component of the MOF or an indirect effect of iron resulting from the limitation of one of many cellular functions requiring iron. PMID:19114505

  17. Iron Requirement for Mn(II) Oxidation by Leptothrix discophora SS-1▿

    PubMed Central

    El Gheriany, Iman A.; Bocioaga, Daniela; Hay, Anthony G.; Ghiorse, William C.; Shuler, Michael L.; Lion, Leonard W.

    2009-01-01

    A common form of biocatalysis of Mn(II) oxidation results in the formation of biogenic Mn(III, IV) oxides and is a key reaction in the geochemical cycling of Mn. In this study, we grew the model Mn(II)-oxidizing bacterium Leptothrix discophora SS-1 in media with limited iron (0.1 μM iron/5.8 mM pyruvate) and sufficient iron (0.2 μM iron/5.8 mM pyruvate). The influence of iron on the rate of extracellular Mn(II) oxidation was evaluated. Cultures in which cell growth was limited by iron exhibited reduced abilities to oxidize Mn(II) compared to cultures in medium with sufficient iron. While the extracellular Mn(II)-oxidizing factor (MOF) is thought to be a putative multicopper oxidase, Mn(II) oxidation in the presence of zero added Cu(II) was detected and the decrease in the observed Mn(II) oxidation rate in iron-limited cultures was not relieved when the medium was supplemented with Cu(II). The decline of Mn(II) oxidation under iron-limited conditions was not accompanied by siderophore production and is unlikely to be an artifact of siderophore complex formation with Mn(III). The temporal variations in mofA gene transcript levels under conditions of limited and abundant iron were similar, indicating that iron limitation did not interfere with the transcription of the mofA gene. Our quantitative PCR results provide a step forward in understanding the regulation of Mn(II) oxidation. The mechanistic role of iron in Mn(II) oxidation is uncertain; the data are consistent with a direct requirement for iron as a component of the MOF or an indirect effect of iron resulting from the limitation of one of many cellular functions requiring iron. PMID:19114505

  18. Pulmonary extraction of biogenic amines during septic shock

    SciTech Connect

    Kerstein, M.D.; Kohler, J.; Gould, S.; Moseley, P.

    1982-10-01

    The effect of live Escherichia coli on the pulmonary extraction of the biogenic amines /sup 14/C 5-hydroxytryptamine, (5-HT) and /sup 3/H-epinephrine was investigated. The labeled isotopes were injected into a central venous catheter and collected from an aortic catheter. One hundred per cent of the labeled epinephrine was recovered in the control and septic state. Only 32.8 +/- 3.6% SEM of the 5-hydroxytryptamine was recovered before sepsis and 42.5 +/- 4.9% SEM after sepsis. During sepsis, mean arterial pressure fell to 58 mm Hg from 121 mm Hg. Pulmonary shunt increased from .7 +/- .05 SEM to .33 +/- .09 SEM.

  19. Extracellular Proteins Limit the Dispersal of BiogenicNanoparticles

    SciTech Connect

    Moreau, John W.; Weber, Peter K.; Martin, Michael C.; Gilbert,Benjamin; Hutcheon, Ian D.; Banfield, Jillian F.

    2007-04-27

    High spatial-resolution secondaryion microprobespectrometry, synchrotron radiation Fourier-transform infraredspectroscopy and polyacrylamide gel analysis demonstrate the intimateassociation of proteins with spheroidal aggregates of biogenic zincsulfide nanocrystals, an example of extracellular biomineralization.Experiments involving synthetic ZnS nanoparticles and representativeamino acids indicate a driving role for cysteine in rapid nanoparticleaggregation. These findings suggest that microbially-derivedextracellular proteins can limit dispersal of nanoparticulatemetal-bearing phases, such as the mineral products of bioremediation,that may otherwise be transported away from their source by subsurfacefluid flow.

  20. The influence of marine biogenic particles on ice phase initiation

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Aller, J. Y.; Knopf, D. A.

    2011-12-01

    Aerosol particles vary in composition with many being biogenic and of terrestrial or marine origin. Efficient ice forming biogenic particles are typically thought to be of terrestrial origin; however, recent data demonstrate that marine biogenic particles can act as ice nuclei (IN) in both immersion and deposition modes, with and without association of NaCl. These results are significant given that ocean derived particles including phytoplankton, microorganisms, transparent exopolymers, and colloidal gels become aerosolized from the sea surface microlayer through wave breaking and bubble bursting. Such particles typically include sea salt, but in situ observations of air masses associated with phytoplankton blooms have identified organic compounds as significant mass contributors to aerosol loading. Here we present results from experiments with Thalassiosira pseudonana, Emiliania huxleyi, and Nanochloris atomus, phytoplankton with distinctly different cell walls: silica, calcite, and cellulose fibrils, respectively, as efficient IN in immersion and deposition modes at typical tropospheric conditions. In a separate set of experiments, submicron size particles with and without organics are generated through bubble bursting in a custom built seawater tank. Subsequently collected, these particles are observed using a coupled cooling stage/optical microscope, for their ice nucleation potential as a function of particle temperature (T), water activity (aw), relative humidity with respect to ice (RHice), droplet volume, and particle surface area. In the immersion mode, fragmented and intact cells of T. pseudonana and N. atomus enhance ice nucleation in aqueous NaCl solution droplets by ~10-30 K and 10-20 K above the homogeneous freezing limit, and for a range of aw of 1.0-0.8, while E. huxleyi do not enhance freezing temperatures. In the deposition mode, all three species nucleate ice for RHice as low as ~120%, however, for each, different nucleation modes occur at warmer

  1. Biogenic amines and acute thermal stress in the rat

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Moberg, G. P.

    1975-01-01

    A study is summarized which demonstrates that depletion of the biogenic amines 5-hydroxytryptamine (5-HT) or norepinephrine (NE) alters the normal thermoregulatory responses to acute temperature stress. Specifically, NE depletion caused a significant depression in equilibrium rectal temperature at 22 C and a greater depression in rectal temperature than controls in response to cold (6 C) stress; NE depletion also resulted in a significantly higher rectal temperature response to acute heat (38 C) stress. Depletion of 5-HT had less severe effects. It remains unclear whether the primary site of action of these agents is central or peripheral.

  2. Extracellular proteins limit the dispersal of biogenic nanoparticles

    USGS Publications Warehouse

    Moreau, J.W.; Weber, P.K.; Martin, M.C.; Gilbert, B.; Hutcheon, I.D.; Banfield, J.F.

    2007-01-01

    High-spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation-based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.

  3. Iron-refractory iron deficiency anemia.

    PubMed

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-03-01

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  4. Genome Sequence Analysis of the Biogenic Amine-Degrading Strain Lactobacillus casei 5b.

    PubMed

    Ladero, Victor; Herrero-Fresno, Ana; Martinez, Noelia; Del Río, Beatriz; Linares, Daniel M; Fernández, María; Martín, María Cruz; Alvarez, Miguel A

    2014-01-01

    We here report a 3.02-Mbp annotated draft assembly of the Lactobacillus casei 5b genome. The sequence of this biogenic amine-degrading dairy isolate may help identify the mechanisms involved in the catabolism of biogenic amines and perhaps shed light on ways to reduce the presence of these toxic compounds in food. PMID:24435875

  5. DEVELOPMENT OF SEASONAL AND ANNUAL BIOGENIC EMISSIONS INVENTORIES FOR THE U.S. AND CANADA

    EPA Science Inventory

    The report describes the development of a biogenic emissions inventory for the U.S. and Canada, to assess the role of biogenic emissions in ozone formation. Emission inventories were developed at hourly and grid (1/4 x 116 degree) level from input data at the same scales. Emissio...

  6. CO2 EMISSIONS FROM BIOENERGY AND OTHER BIOGENIC SOURCES IN STATIONARY SOURCES

    EPA Science Inventory

    On January 12, 2011, EPA announced a series of steps to address the treatment of biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with accounting for biogenic carbon dioxide emissions from stationary sour...

  7. The BOND project: Biogenic aerosols and air quality in Athens and Marseille greater areas

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, R. E. P.; Tagaris, E.; Pilinis, C.; Andronopoulos, S.; Sfetsos, A.; Bartzis, J. G.

    2004-03-01

    The role of Secondary Biogenic Organic Aerosol in aerosol budget is examined using the Atmospheric Dispersion of Pollutants over Complex Terrain-Urban Airshed Model-Aerosols (ADREA-I/UAM-AERO) modeling system in two representative Mediterranean areas. The areas have been selected, because of their elevated biogenic emission levels and the sufficient degree of meteorological and land use diversity characterizing the locations. Comparison of the model results with and without biogenic emissions reveals the significant role biogenic emissions play in modulating ozone and aerosol concentrations. Biogenic emissions are predicted to affect the concentrations of organic aerosol constituents through the reactions of terpenes with O3, OH and NO3. The ozonolysis of terpenes is predicted to cause an increase in OH radical concentrations that ranges from 10% to 78% for Athens, and from 20% to 95% for Marseilles, depending on the location, compared to the predictions without biogenic emissions. The reactions of this extra hydroxyl radical with SO2 and NOx have as final products increased concentrations of sulfates and nitrates in the particulate phase. As a result, biogenic emissions are predicted to affect the concentrations not only of organic aerosols, but those of inorganic aerosols as well. Thus biogenic emissions should be taken into consideration when models for the prediction and enforcement of abatement strategies of atmospheric pollution are applied.

  8. 78 FR 50135 - Soil Biogenics Ltd., File No. 500-1; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Soil Biogenics Ltd., File No. 500-1; Order of Suspension of Trading August 14, 2013. It appears to... concerning the securities of Soil Biogenics Ltd. because it has not filed ] any periodic reports since...

  9. USER'S GUIDE TO THE PERSONAL COMPUTER VERSION OF THE BIOGENIC EMISSIONS INVENTORY SYSTEM (PC-BEIS)

    EPA Science Inventory

    The Personal Computer Version of the Biogenic Emissions Inventory System (PC-BEIS) has been developed to allow users to estimate hourly emissions of biogenic non-methane hydrocarbon emissions for any county in the contiguous United States. PC-BEIS has been compiled using Microsof...

  10. Genome Sequence Analysis of the Biogenic Amine-Degrading Strain Lactobacillus casei 5b

    PubMed Central

    Ladero, Victor; Herrero-Fresno, Ana; Martinez, Noelia; del Río, Beatriz; Linares, Daniel M.; Fernández, María; Martín, María Cruz

    2014-01-01

    We here report a 3.02-Mbp annotated draft assembly of the Lactobacillus casei 5b genome. The sequence of this biogenic amine-degrading dairy isolate may help identify the mechanisms involved in the catabolism of biogenic amines and perhaps shed light on ways to reduce the presence of these toxic compounds in food. PMID:24435875

  11. Biogenic reefs as structuring factor in Pleuronectes platessa (Plaice) nursery

    NASA Astrophysics Data System (ADS)

    Rabaut, M.; Van de Moortel, L.; Vincx, M.; Degraer, S.

    2010-07-01

    The structural distribution of juvenile flatfish in nursery areas is generally studied on a larger scale on which the effects of abiotic factors such as sediment characteristics, beach profile, tides, and turbidity dominate. The biotic structuring factor has never before been investigated from a very small scale-perspective. The latter is the subject of the present study. In an in situ experimental sampling design, the structuring effect of biogenic reefs on the distribution of Pleuronectes platessa (Plaice) in an intertidal nursery area is investigated. The density distribution of this flatfish species is significantly ( p < 0.0001) explained by the presence of reefs built up by the polychaete Lanice conchilega. The importance of this reef builder has been highlighted before in other studies but present study demonstrates that not only the benthic biodiversity is affected by L. conchilega reefs, but that the distribution pattern of P. platessa is structured by them as well. This structuring impact of small-scale benthic reefs creating a patchy environment in nursery areas potentially plays an important role in other marine environments and indicates the need for further research on the ecological function of benthic reef environments for several flatfish species. Further modification of these biogenic habitats may lead to a loss of one or more ecosystem functions which flatfish species depend on.

  12. A biogenic volatile organic compounds emission inventory for Yunnan Province.

    PubMed

    Wang, Zhi-Hui; Bai, Yu-Hua; Zhang, Shu-Yu

    2005-01-01

    The first detailed inventory for volatile organic compounds (VOC) emissions from vegetation over Yunnan Province, China was presented. The spatially and temporally resolved inventory was developed based on a geographic information system (GIS), remote sensing (RS) data and field measurement data, such as digitized land-use data, normalized difference vegetation index (NDVI) and temperature data from direct real-time measurement. The inventory has a spatial resolution of 5 km x 5 km and a time resolution of 1 h. Urban, agriculture, and natural land-use distributions in Yunnan Province were combined with biomass factors for each land-use category to produce a spatially resolved biomass inventory. A biogenic emission inventory was developed by combining the biomass inventory with hourly emission rates for tree, shrub and ground cover species of the study area. Correcting for environmental factors, including light intensity and temperature, a value of 1.1 x 10(12) gC for total annual biogenic VOC emissions from Yunnan Province, including 6.1 x 10(11) gC for isoprene, 2.1 x 10(11) gC for monoterpenes, and 2.6 x 10(11) gC for OVOC was obtained. The highest VOC emissions occurred in the northwestern, southwestern and north region of Yunnan Province. Some uncertainties were also discussed in this study. PMID:16083102

  13. Biogenic and anthropogenic trace gases in the atmosphere

    NASA Technical Reports Server (NTRS)

    Brasseur, G. P.; Prinn, R. G.

    1992-01-01

    This paper illustrates the importance of biogenic and anthropogenic trace gases for the global environment and for the climate system. The paper briefly reviews the currently available estimates of sources and strengths of the biogenic and anthropogenic gases on the global scale. One of the major concerns for the global environment is the rapid increase in the concentration of long-lived trace gases such as CO2, CH4, N2O and the chlorofluorocarbons. The trend in the carbon dioxide concentration, as a result of fossil-fuel burning, is of the order of 0.4 percent per year, and this trend is related to the CO2 uptake by the ocean and by terrestrial ecosystems, which are likely to be modified if the planet warms up in the forthcoming decades. The concentrations of methane and nitrous oxide are increasing by 0.9 and 0.25 percent per year, respectively. In the case of the most widely used chlorofluorocarbons, trends as large as 10 percent per year or more are being measured.

  14. Analysis of biogenic amines using corona discharge ion mobility spectrometry.

    PubMed

    Hashemian, Z; Mardihallaj, A; Khayamian, T

    2010-05-15

    A new method based on corona discharge ion mobility spectrometry (CD-IMS) was developed for the analysis of biogenic amines including spermidine, spermine, putrescine, and cadaverine. The ion mobility spectra of the compounds were obtained with and without n-Nonylamine used as the reagent gas. The high proton affinity of n-Nonylamine prevented ion formation from compounds with a proton affinity lower than that of n-Nonylamine and, therefore, enhanced its selectivity. It was also realized that the ion mobility spectrum of n-Nonylamine varied with its concentration. A sample injection port of a gas chromatograph was modified and used as the sample introduction system into the CD-IMS. The detection limits, dynamic ranges, and analytical parameters of the compounds with and without using the reagent gas were obtained. The detection limits and dynamic ranges of the compounds were about 2ng and 2 orders of magnitude, respectively. The wide dynamic range of CD-IMS originates from the high current of the corona discharge. The results revealed the high capability of the CD-IMS for the analysis of biogenic amines. PMID:20298897

  15. Manganese carbonates as possible biogenic relics in Archean settings

    NASA Astrophysics Data System (ADS)

    Rincón-Tomás, Blanca; Khonsari, Bahar; Mühlen, Dominik; Wickbold, Christian; Schäfer, Nadine; Hause-Reitner, Dorothea; Hoppert, Michael; Reitner, Joachim

    2016-07-01

    Carbonate minerals such as dolomite, kutnahorite or rhodochrosite are frequently, but not exclusively generated by microbial processes. In recent anoxic sediments, Mn(II)carbonate minerals (e.g. rhodochrosite, kutnahorite) derive mainly from the reduction of Mn(IV) compounds by anaerobic respiration. The formation of huge manganese-rich (carbonate) deposits requires effective manganese redox cycling in an oxygenated atmosphere. However, putative anaerobic pathways such as microbial nitrate-dependent manganese oxidation, anoxygenic photosynthesis and oxidation in ultraviolet light may facilitate manganese cycling even in an early Archean environment, without the availability of oxygen. In addition, manganese carbonates precipitate by microbially induced processes without change of the oxidation state, e.g. by pH shift. Hence, there are several ways how these minerals could have been formed biogenically and deposited in Precambrian sediments. We will summarize microbially induced manganese carbonate deposition in the presence and absence of atmospheric oxygen and we will make some considerations about the biogenic deposition of manganese carbonates in early Archean settings.

  16. Analytical electron microscopy of biogenic and inorganic carbonates

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    1989-01-01

    In the terrestrial sedimentary environment, the mineralogically predominant carbonates are calcite-type minerals (rhombohedral carbonates) and aragonite-type minerals (orthorhombic carbonates). Most common minerals precipitating either inorganically or biogenically are high magnesium calcite and aragonite. High magnesium calcite (with magnesium carbonate substituting for more than 7 mole percent of the calcium carbonate) is stable only at temperatures greater than 700 C or thereabouts, and aragonite is stable only at pressures exceeding several kilobars of confining pressure. Therefore, these carbonates are expected to undergo chemical stabilization in the diagenetic environment to ultimately form stable calcite and dolomite. Because of the strong organic control of carbonate deposition in organisms during biomineralization, the microchemistry and microstructure of invertebrate skeletal material is much different than that present in inorganic carbonate cements. The style of preservation of microstructural features in skeletal material is therefore often quite distinctive when compared to that of inorganic carbonate even though wholesale recrystallization of the sediment has taken place. Microstructural and microchemical comparisons are made between high magnesium calcite echinoderm skeletal material and modern inorganic high magnesium calcite inorganic cements, using analytical electron microscopy and related techniques. Similar comparisons are made between analogous materials which have undergone stabilization in the diagenetic environment. Similar analysis schemes may prove useful in distinguishing between biogenic and inorganic carbonates in returned Martian carbonate samples.

  17. Factors Influencing Biogenic Amines Accumulation in Dairy Products

    PubMed Central

    Linares, Daniel M.; del Río, Beatriz; Ladero, Victor; Martínez, Noelia; Fernández, María; Martín, María Cruz; Álvarez, Miguel A.

    2012-01-01

    Fermented foods are among the food products more often complained of having caused episodes of biogenic amines (BA) poisoning. Concerning milk-based fermented foods, cheese is the main product likely to contain potentially harmful levels of BA, specially tyramine, histamine, and putrescine. Prompted by the increasing awareness of the risks related to dietary uptake of high biogenic amine loads, in this review we report all those elaboration and processing technological aspects affecting BA biosynthesis and accumulation in dairy foods. Improved knowledge of the factors involved in the synthesis and accumulation of BA should lead to a reduction in their incidence in milk products. Synthesis of BA is possible only when three conditions converge: (i) availability of the substrate amino acids; (ii) presence of microorganisms with the appropriate catabolic pathway activated; and (iii) environmental conditions favorable to the decarboxylation activity. These conditions depend on several factors such as milk treatment (pasteurization), use of starter cultures, NaCl concentration, time, and temperature of ripening and preservation, pH, temperature, or post-ripening technological processes, which will be discussed in this chapter. PMID:22783233

  18. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early precambrian oceans.

    PubMed

    Li, Yi-Liang

    2012-12-01

    Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life. PMID:23145573

  19. Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA

    PubMed Central

    2011-01-01

    Background A realistic estimation of the health risk of human exposure to solid-phase arsenic (As) derived from historic mining operations is a major challenge to redevelopment of California's famed "Mother Lode" region. Arsenic, a known carcinogen, occurs in multiple solid forms that vary in bioaccessibility. X-ray absorption fine-structure spectroscopy (XAFS) was used to identify and quantify the forms of As in mine wastes and biogenic solids at the Lava Cap Mine Superfund (LCMS) site, a historic "Mother Lode" gold mine. Principal component analysis (PCA) was used to assess variance within water chemistry, solids chemistry, and XAFS spectral datasets. Linear combination, least-squares fits constrained in part by PCA results were then used to quantify arsenic speciation in XAFS spectra of tailings and biogenic solids. Results The highest dissolved arsenic concentrations were found in Lost Lake porewater and in a groundwater-fed pond in the tailings deposition area. Iron, dissolved oxygen, alkalinity, specific conductivity, and As were the major variables in the water chemistry PCA. Arsenic was, on average, 14 times more concentrated in biologically-produced iron (hydr)oxide than in mine tailings. Phosphorous, manganese, calcium, aluminum, and As were the major variables in the solids chemistry PCA. Linear combination fits to XAFS spectra indicate that arsenopyrite (FeAsS), the dominant form of As in ore material, remains abundant (average: 65%) in minimally-weathered ore samples and water-saturated tailings at the bottom of Lost Lake. However, tailings that underwent drying and wetting cycles contain an average of only 30% arsenopyrite. The predominant products of arsenopyrite weathering were identified by XAFS to be As-bearing Fe (hydr)oxide and arseniosiderite (Ca2Fe(AsO4)3O3•3H2O). Existence of the former species is not in question, but the presence of the latter species was not confirmed by additional measurements, so its identification is less certain. The

  20. Mg coordination in biogenic carbonates constrained by theoretical and experimental XANES

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshihiro; Tamenori, Yusuke; Takahashi, Osamu; Nguyen, Luan T.; Hasegawa, Hiroshi; Iwasaki, Nozomu; Kuroyanagi, Azumi; Suzuki, Atsushi; Kawahata, Hodaka

    2015-07-01

    Incorporation of magnesium into biogenic calcium carbonate is widely used to infer the conditions of mineral growth. From a mineralogical perspective, the dominant chemical environment of Mg and whether Mg replaces calcium by ideal substitution in biogenic CaCO3 are still debated, however. Here we show that energy positions and resonance features in experimental and theoretical XANES spectra can be used to identify the dominant molecular host site. In all biogenic calcite, which is produced by foraminifera, corals, bivalves, and brachiopods, the local environment of Mg indicated that it is incorporated primarily as a structural substitute for calcium in the crystal lattice, but in aragonitic coral and bivalves a pronounced effect of the organic fraction or disordered phases was observed. These differences among CaCO3 polymorphs suggest that physicochemical parameters affect the final composition of biogenic calcite, but in aragonite-secreting organisms, there may be physiological controls on Mg concentrations in biogenic aragonite.

  1. [Iron-refractory iron deficiency anemia].

    PubMed

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked. PMID:26935626

  2. Iron deficiency anemia

    MedlinePlus

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  3. Occurrence of gigantic biogenic magnetite during the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Schumann, D.; Raub, T. D.; Kopp, R. E.; Guerquin-Kern, J. L.; Wu, T. D.; Rouiller, I.; Smirnov, A. V.; Sears, S. K.; Lücken, U.; Tikoo, S. M.; Hesse, R.; Kirschvink, J. L.; Vali, H.

    2009-04-01

    crystals up to 4 μm long (eight times larger than magnetite produced by magnetotactic bacteria) and elongated hexaoctahedra up to 1.4 μm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition and lattice perfection consistent with a biogenic origin. The oxygen isotopic composition of indiviual particles supports a low temperature aquatic origin. Electron holography indicates single-domain magnetization despite the large crystal size. In a few cases, we observed apparently intact, tip-outward spherical assemblages of spearhead-like particles that possibly represent the preserved original biological arrangement of these crystals in a hitherto unknown magnetite producing organism. The discovery of these exceptionally large biogenic magnetite crystals that possibly represent the remains of a new microorganism that appeared and disappeared with the PETM sheds some light upon the ecological response to biogeochemical changes that occurred during this warming event. The abundance of fossil magnetotactic bacteria on the Atlantic Coastal Plain during the PETM could be explained by enhanced production, enhanced preservation, or both. The presence of novel magnetofossils, however, argues that changes in growth conditions are a major part of the explanation. Considering that other bacterial magnetofossils are present (although less abundant) and well-preserved in sediments below and above the PETM clay, as well as in a sand lens within the PETM clay [Kopp et al., 2007], suggests that the new magnetofossils are unlikely to be a preservation artefact. We conclude, therefore, that the development of a thick suboxic zone with high iron bioavailability - a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming - resulted in diversification of magnetite-forming organisms, likely including eukaryotes. In this study we extended the search for these new magnetofossils [Schumann

  4. Mammalian iron transport.

    PubMed

    Anderson, Gregory Jon; Vulpe, Christopher D

    2009-10-01

    Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma. PMID:19484405

  5. 76 FR 61100 - Notification of a Public Meeting of the Science Advisory Board Biogenic Carbon Emissions Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... serve on a review panel to advise the Agency on April 27, 2011 (76 FR 23587-23588). The SAB Staff Office... AGENCY Notification of a Public Meeting of the Science Advisory Board Biogenic Carbon Emissions Panel... of the SAB Biogenic Carbon Emissions Panel to review EPA's draft Accounting Framework for Biogenic...

  6. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters

    NASA Astrophysics Data System (ADS)

    Takeda, Shigenobu

    1998-06-01

    The major nutrients (nitrate, phosphate and silicate) needed for phytoplankton growth are abundant in the surface waters of the subarctic Pacific, equatorial Pacific and Southern oceans, but this growth is limited by the availability of iron. Under iron-deficient conditions, phytoplankton exhibit reduced uptake of nitrate and lower cellular levels of carbon, nitrogen and phosphorus. Here I describe seawater and culture experiments which show that iron limitation can also affect the ratio of consumed silicate to nitrate and phosphate. In iron-limited waters from all three of the aforementioned environments, addition of iron to phytoplankton assemblages in incubation bottles halved the silicate:nitrate and silicate:phosphate consumption ratios, in spite of the preferential growth of diatoms (silica-shelled phytoplankton). The nutrient consumption ratios of the phytoplankton assemblage from the Southern Ocean were similar to those of an iron-deficient laboratory culture of Antarctic diatoms, which exhibit increased cellular silicon or decreased cellular nitrogen and phosphorus in response to iron limitation. Iron limitation therefore increases the export of biogenic silicon, relative to nitrogen and phosphorus, from the surface to deeper waters. These findings suggest how the sedimentary records of carbon and silicon deposition in the glacial Southern Ocean can be consistent with the idea that changes in productivity, and thus in drawdown of atmospheric CO2, during the last glaciation were stimulated by changes in iron inputs from atmospheric dust.

  7. Pathways of iron absorption.

    PubMed

    Conrad, Marcel E; Umbreit, Jay N

    2002-01-01

    Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

  8. Influence of iron sulfides on abiotic oxidation of UO2 by nitrite and dissolved oxygen in natural sediments.

    PubMed

    Carpenter, Julian; Bi, Yuqiang; Hayes, Kim F

    2015-01-20

    Iron sulfide precipitates formed under sulfate reducing conditions may buffer U(IV) insoluble solid phases from reoxidation after oxidants re-enter the reducing zone. In this study, sediment column experiments were performed to quantify the effect of biogenic mackinawite on U(IV) stability in the presence of nitrite or dissolved oxygen (DO). Two columns, packed with sediment from an abandoned U contaminated mill tailings site near Rifle, CO, were biostimulated for 62 days with an electron donor (3 mM acetate) in the presence (BRS+) and absence (BRS−) of 7 mM sulfate. The bioreduced sediment was supplemented with synthetic uraninite (UO2(s)), sterilized by gamma-irradiation, and then subjected to a sequential oxidation by nitrite and DO. Biogenic iron sulfides produced in the BRS+ column, mostly as mackinawite, inhibited U(IV) reoxidation and mobilization by both nitrite and oxygen. Most of the influent nitrite (0.53 mM) exited the columns without oxidizing UO2, while a small amount of nitrite was consumed by iron sulfides precipitates. An additional 10-day supply of 0.25 mM DO influent resulted in the release of about 10% and 49% of total U in BRS+ and BRS– columns, respectively. Influent DO was effectively consumed by biogenic iron sulfides in the BRS+ column, while DO and a large U spike were detected after only a brief period in the effluent in the BRS– column. PMID:25525972

  9. Sedimentary Redox Conditions, Biogenic Production, and Oxygenation of Southeast Pacific Intermediate Waters Over the Past 30 ky.

    NASA Astrophysics Data System (ADS)

    Muratli, J.; Mix, A.; Chase, Z.; McManus, J.

    2007-12-01

    We present data from SE Pacific sediments in an effort to characterize the paleo-redox conditions of shallow (~400-1000 m) subsurface sediments, and the water masses that overlie them, over the past 30 ky. The sediments were recovered during ODP Leg 202, and come from three sites: 1233, 1234, and 1235; together these three sites constitute a vertical transect of Antarctic Intermediate Water (AAIW). Site 1233, at 41°S, sits in the core of AAIW at 838 m depth. Site 1234, at 36°S, is located between AAIW and the Pacific Central Water (PCW) mass. Site 1235 (489 m) is located close to Site 1234, but is between AAIW and the overlying low- dissolved-oxygen Gunther Undercurrent (GUC) water mass. Recent sediments for sites 1234 and 1235 contain a rich signature of biogenic opal production and enrichments of iron and the authigenic metals U, Mo, and Re. At site 1234 there is a minimum in biogenic Si at approximately 20 ky followed by a slight increase and a second minimum between 12 and 5 ky. At both sites 1233 and 1234 the trace metals exhibit more structure during the period of roughly 15 to 30 ky as compared to the most recent 15 ky. The trace metal data at site 1234 shows a sharp reducing signature at ~17 ky (higher Mo, lower U:Mo ratios), bracketed by periods of more oxygenated conditions (lower Mo, higher U:Mo) back to ~22 ky, and forward to ~12 ky. This combination of low biological production and more oxygenated bottom water may suggest a period of increased AAIW ventilation as far north as site 1234. Although it is difficult at this point to unequivocally separate the impact of ventilation from production using our current data base, it does appear that some of the observed changes in sedimentary character may be ventilation-driven rather than driven by local production.

  10. Emissions of biogenic sulfur gases from Alaskan tundra

    SciTech Connect

    Hines, M.E.; Morrison, M.C.

    1992-10-30

    Fluxes of the biogenic sulfur gases carbonyl sulfide (COS), dimethyl sulfide (DMS), methyl mercaptan (MeSH), and carbon disulfide (CS{sub 2}) were determined from several freshwater and coastal marine tundra habitats using a dynamic enclosure method and gas chromatography. In the freshwater tundra sites, highest emissions, with a mean of 6.0 nmol m{sup {minus}2}h{sup {minus}1} (1.5-10) occurred in the water-saturated wet meadow areas inhabited by grasses, sedges, and Shpagnum mosses. In the drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol m{sup {minus}2}h{sup {minus}1} (0-8.3) and lowest fluxes were from lichen-dominated areas at 0.8 nmol m{sup {minus}2}h{sup {minus}1}. Sulfur emissions from a lake surface were also low at 0.8 nmol m{sup {minus}2}h{sup {minus}1}. Of the compounds measured, DMS was the dominant gas emitted from all of these sites. Sulfur emissions from the marine sites were up to 20-fold greater than fluxes in the freshwater habitats and were also dominated by DMS. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea. This Carex sp. was grazed thoroughly by geese and DMS fluxes doubled when goose feces were left within the flux chamber. Emissions were much lower from other types of vegetation which were more spatially dominant. Sulfur emissions from tundra were among the lowest reported in the literature. When emission data were extrapolated to include all tundra globally, the global flux of biogenic sulfur from this biome is 2-3 x 10{sup 8} g yr{sup {minus}1}. This represents less than 0.001% of the estimated annual global flux of biogenic sulfur and <0.01% of the estimated terrestrial flux. The low emissions are attributed to the low availability of sulfate, certain hydrological characteristics of tundra, and the tendency for tundra to accumulate organic matter. 31 refs., 1 fig., 2 tabs.

  11. Offline identification and characterization of biogenic primary emissions

    NASA Astrophysics Data System (ADS)

    Bozzetti, Carlo; El-Haddad, Imad; Dällenbach, Kaspar Rudolf; Sciare, Jean; Kasper-Giebl, Anne; Hueglin, Christoph; Canonaco, Francesco; Flasch, Mira; Wolf, Robert; Krepelova, Adela; Gates Slowik, Jay; Baltensperger, Urs; Prévôt, André Stéphan Henry

    2014-05-01

    Primary biological particles (e.g. pollen, spores) are known to have adverse influence on human health. Several studies illustrated also their ice-nuclei activity (Vali et al., 1976) showing their potential role in the climate changes. Nevertheless, the contribution and the chemical characterization of the biogenic emissions are poorly understood. The Aerodyne aerosol mass spectrometer (AMS, Aerodyne) has significantly advanced real-time PM1 monitoring. The AMS provides both quantitative measurements of the non-refractory (NR) components (organic aerosol (OA), Cl-, NO3-, NH4+, SO42-) and organic fraction mass spectra of the submicron fraction. Application of the positive matrix factorization (PMF) and other statistical tools such as ME-2 (Paatero, 1999; Canonaco et al., 2013) demonstrated that OA AMS mass spectra contain enough information to differentiate several factors subsequently associated with different aerosol sources (Jimenez et al., 2009). However, AMS measurements are restricted to the PM1 fraction and the AMS deployment remains complex and expensive, limiting long-term sampling and the spatial coverage. We explored a novel offline AMS application (Dällenbach et al., 2014) including a water extraction of the particulate matter from quartz filters by sonication. The resulting liquid extracts are nebulized generating an aerosol analyzed by High-Resolution-Time-of-Flight-AMS. The approach allows registering mass spectra and monitoring different particle size fractions not available by normal online AMS measurement (e.g. PM10). Moreover it broadens the sampling coverage since the filters are relatively easy and inexpensive to be collected and stored, furthermore filter samples are already routinely collected at many air quality stations worldwide. PM1, PM2.5, and PM10 filter samples from Payerne (a rural site on the Swiss Plateau)were collected both in summer and in winter. We clearly identified using PMF the contribution of biogenic primary emissions in

  12. A biogenic source of oxalic acid in marine aerosol

    NASA Astrophysics Data System (ADS)

    Facchini, M.; Rinaldi, M.; Ceburnis, D.; O'Dowd, C.; Sciare, J.; Burrows, J. P.

    2010-12-01

    Oxalic acid has been often observed in marine aerosol, nevertheless, given the ubiquitous character and the high concentrations found in polluted environments, its origin has often been attributed to continental sources. In this work, we present the results of oxalic acid analyses, on aerosol samples collected at Mace Head (Ireland, 53°20’N, 9°54’W) and Amsterdam Island (Indian Ocean, 37°48’S, 77°34’E), supporting the existence of a biogenic source of oxalic acid over the oceans. Measurements cover the year 2006, at the Northern Hemisphere site, and the period 2003-2007, at the Southern Hemisphere one. Aerosol oxalic acid was detected in clean marine air masses in concentrations ranging from 2.7 to 39 ng m-3, at Mace Head, and from 0.31 to 17 ng m-3, at Amsterdam Island. In both hemispheres, oxalic acid concentration showed a clear seasonal trend, with maxima in spring-summer and minima in the fall-winter period, in analogy with other marine biogenic aerosol components (e.g., MSA and amines). Oxalic acid was distributed along the whole aerosol size spectrum, with the major contribution given by the 1.0-2.0 µm size range, and by the lower accumulation mode (0.25-0.5 µm). Given the observed size distributions, marine aerosol oxalic acid can be assumed as the result of the combination of different formation processes, among which in-cloud oxidation of gaseous precursors [1] and photochemical degradation of biogenic unsaturated fatty acids [2] are likely the most important. Among aerosol oxalic acid precursors, glyoxal is the most likely candidate in the marine boundary layer, as a source of glyoxal over the oceans has recently been discovered by satellite observations [3] and confirmed by in situ measurements [4]. In support of this hypothesis, SCIAMACHY satellite retrieved glyoxal column concentrations, over the two sampling sites, resulted characterized by a clear seasonal trend, resembling the aerosol oxalic acid one. [1] Warneck, Atmospheric

  13. Emissions of biogenic sulfur gases from Alaskan tundra

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Fluxes of the biogenic sulfur gases carbonyl sulfide (COS), dimethyl sulfide (DMS), methyl mercaptan (MeSH), and carbon disulfide (CS2) were determined for several freshwater and coastal marine tundra habitats using a dynamic enclosure method and gas chromatography. In the freshwater tundra sites, highest emissions, with a mean of 6.0 nmol/m(sup -2)H(sup -1) (1.5-10) occurred in the water-saturated wet meadow areas inhabited by grasses, sedges, and Sphagnum mosses. In the drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/m(sup -2)h(sup -1) (0-8.3) and lowest fluxes were from lichen-dominated areas at 0.9 nmol/m(sup -2)h(sup -1). Sulfur emissions from a lake surface were also low at 0.8 nmol/m(sup -2)h(sup -1). Of the compounds measured, DMS was the dominant gas emitted from all of these sites. Sulfure emissions from the marine sites were up to 20-fold greater than fluxes in the freshwater habitats and were also dominated by DMS. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea (150-250 nmol/m(sup -2)h(sup -1)). This Carex sp. was grazed thoroughly by geese and DMS fluxes doubled when goose feces were left within the flux chamber. Emissions were much lower from other types of vegetation which were more spatially dominant. Sulfure emissions from tundra were among the lowest reported in the literature. When emission data were extrapolated to include all tundra globally, the global flux of biogenic sulfur from this biome is 2-3 x 10(exp 8) g/yr. This represents less than 0.001 percent of the estimated annual global flux (approximately 50 Tg) of biogenic sulfur and less than 0.01 percent of the estimated terrestrial flux. The low emissions are attributed to the low availability of sulfate, certain hydrological characteristics of tundra, and the tendency for tundra to accumulate organic matter.

  14. The Radiative Forcing from Biogenic Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Scott, C. E.; Forster, P.; Spracklen, D. V.; Carslaw, K. S.; Arnold, S.; Rap, A.

    2012-12-01

    Vegetation emits biogenic volatile organic compounds (BVOCs), such as monoterpenes, isoprene and sesquiterpenes, into the atmosphere. Once emitted, BVOCs rapidly undergo reactions with the hydroxyl radical, ozone and the nitrate radical to yield a range of lower volatility oxidation products. These compounds are of sufficiently low volatility to partition into the aerosol phase, forming secondary organic aerosol (SOA). Increasingly, there are indications that organic compounds, specifically the oxidation products of terpenes, may contribute to the process of new particle formation as well as the growth of existing particles. The formation of SOA can influence the Earth's radiative balance by absorbing and scattering radiation (the direct effect) and by altering the properties of clouds (the indirect effect), via their action as cloud condensation nuclei (CCN). Biogenic SOA formed from the oxidation products of isoprene and monoterpenes has been shown to be CCN active under atmospherically relevant conditions, indicating that complex climate feedbacks may result from the emission of BVOCs. Using a global aerosol microphysics model (GLOMAP), and offline radiative transfer code, we simulate a present day aerosol indirect radiative forcing of between -0.07 and - 0.81 W.m-2, for the emission of BVOCs, due to a simulated increase in the number of particles able to act as CCN. The forcing obtained per emission is not spatially uniform, with monoterpenes in the southern hemisphere being most efficient at inducing a radiative change. We find a strong sensitivity to the treatment of concurrent anthropogenic emissions. In the present day, biogenic secondary organic material is more efficient at perturbing CCN number concentrations, but when anthropogenic emissions from 1750 are included in our simulations, the lower background aerosol concentration results in a more significant radiative response. The largest uncertainty in the forcing obtained however, comes from the

  15. Deducing a Canopy Reduction Factor for Biogenic Emission Modeling

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guenther, A.

    2005-12-01

    The IPCC 2001 report states that "there is a serious discrepancy between the isoprene emissions derived by [Guenther et al., 1995] based on a global scaling of emission" . and "highlights a key uncertainty in global modeling of highly reactive trace gases: namely, what fraction of primary emissions escapes immediate reaction/removal in the vegetation canopy or immediate boundary layer and participates in the chemistry on the scales represented by global models?". A recent modeling study [Makar et al., 1999] suggested that up to 40 % of isoprene can be lost due to in-canopy chemistry. However, up to date only limited experimental datasets have been used to constrain canopy reduction factors (CRF) . Based on our recent CELTIC (Chemistry, Emission, Loss and Transformation in Canopies) initiative we measured VOC emissions above tropical, deciduous and evergreen ecosystems. In this paper we infer a new parameterization for modeling a CRF due to chemically short-lived biogenic compounds of the form: CRF = h/(a x u* x tau +h) (h: canopy height [m], u*: friction velocity [m/s], tau: lifetime [s], a: dimensionless fitting parameter a=1.5 +/- 0.1). This parameterization is based on results obtained during recent field studies in combination with a random walk model. For isoprene we find that the CRF is on the order of 2-5 % for typical daytime conditions. Loss rates for isoprene are somewhat smaller but within the range of previously reported values [Strong et al., 2004], [Stroud et al., 2005]. Many reactive terpenoid compounds (such as beta-caryophellene) with lifetimes on the order of minutes can be substantially reduced (e.g. up to 60-80 %) before they escape the forest canopy. References: Guenther, A., C.N. Hewitt, D. Erickson, and R. Fall, A global model of natural volatile organic compound emissions, Journal of geophysical research, 100 (D/5), 8873-8892, 1995. Makar, P., J. Fuentes, D. Wang, R. Staebler, and H. Wiebe, Chemical processing of biogenic hydrocarbons within

  16. Biogenic magnetite, detrital hematite, and relative paleointensity in Quaternary sediments from the Southwest Iberian Margin

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.; Hodell, D. A.; Margari, V.; Skinner, L. C.; Tzedakis, P. C.; Kesler, M. S.

    2013-08-01

    Magnetic properties of late Quaternary sediments on the SW Iberian Margin are dominated by bacterial magnetite, observed by transmission electron microscopy (TEM), with contributions from detrital titanomagnetite and hematite. Reactive hematite, together with low organic matter concentrations and the lack of sulfate reduction, lead to dissimilatory iron reduction and availability of Fe(II) for abundant magnetotactic bacteria. Magnetite grain-size proxies (κARM/κ and ARM/IRM) and S-ratios (sensitive to hematite) vary on stadial/interstadial timescales, contain orbital power, and mimic planktic δ18O. The detrital/biogenic magnetite ratio and hematite concentration are greater during stadials and glacial isotopic stages, reflecting increased detrital (magnetite) input during times of lowered sea level, coinciding with atmospheric conditions favoring hematitic dust supply. Magnetic susceptibility, on the other hand, has a very different response being sensitive to coarse detrital multidomain (MD) magnetite associated with ice-rafted debris (IRD). High susceptibility and/or magnetic grain-size coarsening, mark Heinrich stadials (HS), particularly HS2, HS3, HS4, HS5, HS6 and HS7, as well as older Heinrich-like detrital layers, indicating the sensitivity of this region to fluctuations in the position of the polar front. Relative paleointensity (RPI) records have well-constrained age models based on planktic δ18O correlation to ice-core chronologies, however, they differ from reference records (e.g. PISO) particularly in the vicinity of glacial maxima, mainly due to inefficient normalization of RPI records in intervals of enhanced hematite input.

  17. Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories

    NASA Astrophysics Data System (ADS)

    Warneke, C.; de Gouw, J. A.; Del Negro, L.; Brioude, J.; McKeen, S.; Stark, H.; Kuster, W. C.; Goldan, P. D.; Trainer, M.; Fehsenfeld, F. C.; Wiedinmyer, C.; Guenther, A. B.; Hansel, A.; Wisthaler, A.; Atlas, E.; Holloway, J. S.; Ryerson, T. B.; Peischl, J.; Huey, L. G.; Hanks, A. T. Case

    2010-04-01

    During the NOAA Southern Oxidant Study 1999 (SOS1999), Texas Air Quality Study 2000 (TexAQS2000), International Consortium for Atmospheric Research on Transport and Transformation (ICARTT2004), and Texas Air Quality Study 2006 (TexAQS2006) campaigns, airborne measurements of isoprene and monoterpenes were made in the eastern United States and in Texas, and the results are used to evaluate the biogenic emission inventories BEIS3.12, BEIS3.13, MEGAN2, and WM2001. Two methods are used for the evaluation. First, the emissions are directly estimated from the ambient isoprene and monoterpene measurements assuming a well-mixed boundary layer and are compared with the emissions from the inventories extracted along the flight tracks. Second, BEIS3.12 is incorporated into the detailed transport model FLEXPART, which allows the isoprene and monoterpene mixing ratios to be calculated and compared to the measurements. The overall agreement for all inventories is within a factor of 2 and the two methods give consistent results. MEGAN2 is in most cases higher, and BEIS3.12 and BEIS3.13 lower than the emissions determined from the measurements. Regions with clear discrepancies are identified. For example, an isoprene hot spot to the northwest of Houston, Texas, was expected from BEIS3 but not observed in the measurements. Interannual differences in emissions of about a factor of 2 were observed in Texas between 2000 and 2006.

  18. Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME.

    PubMed

    Zini, C A; Augusto, F; Christensen, T E; Smith, B P; Caramão, E B; Pawliszy, J

    2001-10-01

    A procedure to monitor BVOC emitted by living plants using SPME technique is presented. For this purpose, a glass sampling chamber was designed. This device was employed for the characterization of biogenic volatile compounds emitted by leaves of Eucalyptus citriodora. After extraction with SPME fibers coated with PDMS/ DVB, it was possible to identify or detect 33 compounds emitted by this plant. A semiquantitative approach was applied to monitor the behavior of the emitted BVOC during 9 days. Circadian profiles of the variation in the concentration of isoprene were plotted. Using diffusion-based SPME quantitation, a recently introduced analytical approach, with extraction times as short as 15 s, it was possible to quantify subparts-per-billion amounts of isoprene emitted by this plant. PMID:11605854

  19. Emissions of biogenic sulfur gases from northern bogs and fens

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in tropic status was investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed which yielded similar results. Dissolved S gases and methane were determined by gas stripping followed by GC.

  20. Magnetic properties of iron minerals produced by natural iron- and manganese-reducing groundwater bacteria

    NASA Astrophysics Data System (ADS)

    Abrajevitch, Alexandra; Kondratyeva, Lubov M.; Golubeva, Evgeniya M.; Kodama, Kazuto; Hori, Rie S.

    2016-08-01

    Understanding the contribution of biogenic magnetic particles into sedimentary assemblages is a current challenge in palaeomagnetism. It has been demonstrated recently that magnetic particles produced through biologically controlled mineralization processes, such as magnetosomes from magnetotactic bacteria, contribute to the recording of natural remanent magnetization in marine and lacustrian sediments. Contributions from other, biologically induced, mineralization types, which are known from multiple laboratory experiments to include magnetic minerals, remain largely unknown. Here, we report magnetic properties of iron minerals formed by a community of iron- and manganese-reducing bacteria isolated from a natural groundwater deposit during a 2 yr long incubation experiment. The main iron phases of the biomineralized mass are lepidocrocite, goethite and magnetite, each of which has environmental significance. Unlike the majority of the previous studies that reported superparamagnetic grain size, and thus no remanence carrying capacity of biologically induced magnetite, hysteresis and first-order reversal curves measurements in our study have not detected significant superparamagnetic contribution. The biomineralized mass, instead, contains a mixture of single-domain to pseudo-single-domain and multidomain magnetite particles that are capable of carrying a stable chemical remanent magnetization. Isothermal remanent magnetization acquisition parameters and first-order reversal curves signatures of the biomineralized samples deviate from previously proposed criteria for the distinction of extracellular (biologically induced) magnetic particles in mixtures. Given its potential significance as a carrier of natural remanent magnetization, environmental requirements, distribution in nature and the efficiency in the geomagnetic field recording by biologically induced mineralization need comprehensive investigation.

  1. Magnetic properties of iron minerals produced by natural iron- and manganese-reducing groundwater bacteria

    NASA Astrophysics Data System (ADS)

    Abrajevitch, Alexandra; Kondratyeva, Lubov M.; Golubeva, Evgeniya M.; Kodama, Kazuto; Hori, Rie S.

    2016-06-01

    Understanding the contribution of biogenic magnetic particles into sedimentary assemblages is a current challenge in paleomagnetism. It has been demonstrated recently that magnetic particles produced through biologically controlled mineralization processes, such as magnetosomes from magnetotactic bacteria, contribute to the recording of natural remanent magnetization in marine and lacustrian sediments. Contributions from other, biologically induced, mineralization types, which are known from multiple laboratory experiments to include magnetic minerals, remain largely unknown. Here, we report magnetic properties of iron minerals formed by a community of iron- and manganese-reducing bacteria isolated from a natural groundwater deposit during a two year long incubation experiment. The main iron phases of the biomineralized mass are lepidocrocite, goethite and magnetite, each of which has environmental significance. Unlike the majority of the previous studies that reported superparamagnetic grain size, and thus no remanence carrying capacity of biologically induced magnetite, hysteresis and first order reversal curves measurements in our study have not detected significant superparamagnetic contribution. The biomineralized mass, instead, contains a mixture of single-domain to pseudo-single-domain and multi-domain magnetite particles that are capable of carrying a stable chemical remanent magnetization. Isothermal remanent magnetization acquisition parameters and first order reversal curves signatures of the biomineralized samples deviate from previously proposed criteria for the distinction of extracellular (biologically induced) magnetic particles in mixtures. Given its potential significance as a carrier of natural remanent magnetization, environmental requirements, distribution in nature and the efficiency in the geomagnetic field recording by biologically induced mineralization need comprehensive investigation.

  2. [Neutrophilic lithotrophic iron-oxidizing prokaryotes and their role in the biogeochemical processes of the iron cycle].

    PubMed

    Dubinina, G A; Sorokina, A Iu

    2014-01-01

    Biology of lithotrophic neutrophilic iron-oxidizing prokaryotes and their role in the processes of the biogeochemical cycle of iron are discussed. This group of microorganisms is phylogenetically, taxonomically, and physiologically heterogeneous, comprising three metabolically different groups: aerobes, nitrate-dependent anaerobes, and phototrophs; the latter two groups have been revealed relatively recently. Their taxonomy and metabolism are described. Materials on the structure and functioning of the electron transport chain in the course of Fe(II) oxidation by members of various physiological groups are discussed. Occurrence of iron oxidizers in freshwater and marine ecosystems, thermal springs, areas of hydrothermal activity, and underwater volcanic areas are considered. Molecular genetic techniques were used to determine the structure of iron-oxidizing microbial communities in various natural ecosystems. Analysis of stable isotope fractioning of 56/54Fe in pure cultures and model experiments revealed predominance of biological oxidation over abiotic ones in shallow aquatic habitats and mineral springs, which was especially pronounced under microaerobic conditions at the redox zone boundary. Discovery of anaerobic bacterial Fe(II) oxidation resulted in development of new hypotheses concerning the possible role of microorganisms and the mechanisms of formation of the major iron ore deposits in Precambrian and early Proterozoic epoch. Paleobiological data are presented on the microfossils and specific biomarkers retrieved from ancient ore samples and confirming involvement of anaerobic biogenic processes in their formation. PMID:25423717

  3. [Neutrophilic lithotrophic iron-oxidizing prokaryotes and their role in the biogeochemical processes of the iron cycle].

    PubMed

    2014-01-01

    Biology of lithotrophic neutrophilic iron-oxidizing prokaryotes and their role in the processes of the biogeochemical cycle of iron are discussed. This group of microorganisms is phylogenetically, taxonomically, and physiologically heterogeneous, comprising three metabolically different groups: aerobes, nitrate-dependent anaerobes, and phototrophs; the latter two groups have been revealed relatively recently. Their taxonomy and metabolism are described. Materials on the structure and functioning of the electron transport chain in the course of Fe(II) oxidation by members of various physiological groups are discussed. Occurrence of iron oxidizers in freshwater and marine ecosystems, thermal springs, areas of hydrothermal activity, and underwater volcanic areas are considered. Molecular genetic techniques were used to determine the structure of iron-oxidizing microbial communities in various natural ecosystems. Analysis of stable isotope fractioning of 56/54Fe in pure cultures and model experiments revealed predominance of biological oxidation over abiotic ones in shallow aquatic habitats and mineral springs, which was especially pronounced under microaerobic conditions at the redox zone boundary. Discovery of anaerobic bacterial Fe(II) oxidation resulted in development of new hypotheses concerning the possible role of microorganisms and the mechanisms of formation of the major iron ore deposits in Precambrian and early Proterozoic epoch. Paleobiological data are presented on the microfossils and specific biomarkers retrieved from ancient ore samples and confirming involvement of anaerobic biogenic processes in their formation. PMID:25507440

  4. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates

    SciTech Connect

    Vengosh, A. Hebrew Univ., Jerusalem ); Chivas, A.R.; McCulloch, M.T. ); Kolodny, Y.; Starinsky, A. )

    1991-10-01

    The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The variations of {delta}{sup 11}B may be controlled by isotopic exchange of boron species in which {sup 10}B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in the calcium carbonates. The B content and {delta}{sup 11}B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 {plus minus} 0.9 {times} 10{sup 10} g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 {times} 10{sup 10} g/yr) and approximately half that of altered oceanic crust (14 {times} 10{sup 10} g/yr). Thus, carbonates are an important sink for B in the oceans being {approximately}20% of the total sinks. The preferential incorporation of {sup 10}B into calcium carbonate results in oceanic {sup 11}B-enrichment, estimated as 1.2 {plus minus} 0.3 {times} 10{sup 12} per mil {center dot} g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record.

  5. Constraining Anthropogenic and Biogenic Emissions Using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Spencer, Kathleen M.

    Numerous gas-phase anthropogenic and biogenic compounds are emitted into the atmosphere. These gases undergo oxidation to form other gas-phase species and particulate matter. Whether directly or indirectly, primary pollutants, secondary gas-phase products, and particulate matter all pose health and environmental risks. In this work, ambient measurements conducted using chemical ionization mass spectrometry are used as a tool for investigating regional air quality. Ambient measurements of peroxynitric acid (HO2NO2) were conducted in Mexico City. A method of inferring the rate of ozone production, PO3, is developed based on observations of HO2NO 2, NO, and NO2. Comparison of this observationally based PO3 to a highly constrained photochemical box model indicates that regulations aimed at reducing ozone levels in Mexico City by reducing NOx concentrations may be effective at higher NO x levels than predicted using accepted photochemistry. Measurements of SO2 and particulate sulfate were conducted over the Los Angeles basin in 2008 and are compared to measurements made in 2002. A large decrease in SO2 concentration and a change in spatial distribution are observed. Nevertheless, only a modest reduction in sulfate concentration is observed at ground sites within the basin. Possible explanations for these trends are investigated. Two techniques, single and triple quadrupole chemical ionization mass spectrometry, were used to quantify ambient concentrations of biogenic oxidation products, hydroxyacetone and glycolaldehyde. The use of these techniques demonstrates the advantage of triple quadrupole mass spectrometry for separation of mass analogues, provided the collision-induced daughter ions are sufficiently distinct. Enhancement ratios of hydroxyacetone and glycolaldehyde in Californian biomass burning plumes are presented as are concentrations of these compounds at a rural ground site downwind of Sacramento.

  6. Rapid Detection and Identification of Biogenic Aerosol Releases and Sources

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Macher, J.; Ghosal, S.; Ahmed, K.; Hemati, K.; Wall, S.; Kumagai, K.

    2011-12-01

    Biogenic aerosols can be important contributors to aerosol chemistry, cloud droplet and ice nucleation, absorption and scattering of radiation, human health and comfort, and plant, animal, and microbial ecology. Many types of bioaerosols, e.g., fungal spores, are released into the atmosphere in response to specific climatological and meteorological conditions. The rapid identification of bioaerosol releases is thus important for better characterization of the above phenomena, as well as enabling public officials to respond quickly and appropriately to releases of infectious agents or biological toxins. One approach to rapid and accurate bioaerosol detection is to employ sequential, automated samples that can be fed directly into an image acquisition and data analysis device. Raman spectroscopy-based identification of bioaerosols, automated analysis of microscopy images, and automated detection of near-monodisperse peaks in aerosol size-distribution data were investigated as complementary approaches to traditional, manual methods for the identification and counting of fungal and actinomycete spores. Manual light microscopy is a widely used analytical technique that is compatible with a number of air sample formats and requires minimal sample preparation. However, a major drawback is its dependence on a human analyst's ability to distinguish particles and accurately count, size, and identify them. Therefore, automated methods, such as those evaluated in this study, have the potential to provide cost-effective and rapid alternatives if demonstrated to be accurate and reliable. An exploratory examination of individual spores for several macro- and microfungi (those with and without large fruiting bodies) by Raman microspectroscopy found unique spectral features that were used to identify fungi to the genus level. Automated analyses of digital spore images accurately recognized and counted single fungal spores and clusters. An automated procedure to discriminate near

  7. CO2 Biogenic vs Anthropogenic Sectoral Contribution for INFLUX

    NASA Astrophysics Data System (ADS)

    Lopez-Coto, I.; Prasad, K.; Hu, H.; Whetstone, J. R.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Davis, K. J.; Turnbull, J. C.; Karion, A.; Sweeney, C.; Brewer, A.; Hardesty, M.; Cambaliza, M. O. L.; Shepson, P. B.; Patarasuk, R.; Gurney, K. R.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. This project is an experimental test bed which is intended to establish reliable methods for quantifying and validating GHG emissions independently of the inventory methods typically used for Measurement, Reporting and Verification (MRV) of pollution sources. Analyzing the contribution of different source types or sectors is a fundamental step in order to achieve an accuracy level desired for such MRV applications. This is especially challenging when attempting to determine anthropogenic emissions during the growing season since biological GHG fluxes reach a maximum at this time. To this end, the Weather Research and Forecasting Model (WRF-ARW) version 3.5.1 was used along with a modified version of the Green House Gases chemistry module for simulating the CO2 mole fraction transport during September and October 2013. Sectoral anthropogenic CO2 emissions were obtained from Hestia 2012 and from Vulcan 2002 beyond the spatial coverage of Hestia. Biogenic CO2 emissions were simulated by using an augmented version of the "Vegetation Photosynthesis and Respiration Model" (VPRM) included in WRF-CHEM. An implementation of the unconstrained nonlinear global optimization method of Nelder and Mead was employed to find the optimum values for the VPRM parameters for each vegetation category by using data from Ameriflux eddy covariance flux towers. Here we present a preliminary assessment of the relative contribution of biological vs sectoral anthropogenic CO2 fluxes on the INFLUX measurements network. The simulations are compared to tower and aircraft measurements that include trace gases with the capacity to distinguish observationally anthropogenic and biogenic CO2 sources and sinks. In addition, an evaluation of the sensitivity of the sectoral attribution to meteorological

  8. Biophysics of Magnetic Orientation: Radical Pairs, Biogenic Magnetite, or both?

    NASA Astrophysics Data System (ADS)

    Kirschvink, Joe

    2011-03-01

    Two major biophysical mechanisms for magnetoreception in terrestrial animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, have been the subject of experiment and debate for the past 30 years. The magnetite hypothesis has stood the test of time: biogenic magnetite is synthesized biochemically in Bacteria, Protists, and numerous Animal phyla, as well as in some plants. Chains of single-domain crystals have been detected by clean-lab based SQUID magnetometry in animal tissues in all major phyla, followed by high-resolution TEM in selected model organisms, as well as by electrophysiological studies demonstrating the role of the ophthalmic branch of the trigeminal nerve in the magnetoreceptive process. Pulse-remagnetization - configured to uniquely flip the polarity of single-domain ferromagnets - has dramatic effects on the behavior of many birds, honeybees, mole rats, turtles, and bats, to cite a growing list. Magnetite-containing cells in the vicinity of these neurons in fish are now the subject of intense study by our consortium. The existence of a specialized class of magnetite-containing magnetoreceptor cells in animal tissues is no longer controversial. In contrast, less success has been achieved in gaining experimental support across a range of taxa for the radical-pair hypothesis. Although this mechanism was proposed to explain an early observation that birds would not respond to complete inversion of the magnetic vector, many organisms (even some birds) do indeed respond to the field polarity. We also note that few, if any, of these critical experiments have been done using fully double-blind methods. This is joint work with: M. M. Walker (University of Auckland, New Zealand) and M. Winklhofer (LMU Munich, Germany).

  9. An intercomparison of biogenic emissions estimates from BEIS2 and BIOME: Reconciling the differences

    SciTech Connect

    Wilkinson, J.G.; Emigh, R.A.; Pierce, T.E.

    1996-12-31

    Biogenic emissions play a critical role in urban and regional air quality. For instance, biogenic emissions contribute upwards of 76% of the daily hydrocarbon emissions in the Atlanta, Georgia airshed. The Biogenic Emissions Inventory System-Version 2.0 (BEIS2) and the Biogenic Model for Emissions (BIOME) are two models that compute biogenic emissions estimates. BEIS2 is a FORTRAN-based system, and BIOME is an ARC/INFO{reg_sign} - and SAS{reg_sign}-based system. Although the technical formulations of the models are similar, the models produce different biogenic emissions estimates for what appear to be essentially the same inputs. The goals of our study are the following: (1) Determine why BIOME and BEIS2 produce different emissions estimates; (2) Attempt to understand the impacts that the differences have on the emissions estimates; (3) Reconcile the differences where possible; and (4) Present a framework for the use of BEIS2 and BIOME. In this study, we used the Coastal Oxidant Assessment for Southeast Texas (COAST) biogenics data which were supplied to us courtesy of the Texas Natural Resource Conservation Commission (TNRCC), and we extracted the BEIS2 data for the same domain. We compared the emissions estimates of the two models using their respective data sets BIOME Using TNRCC data and BEIS2 using BEIS2 data.

  10. Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.

    NASA Astrophysics Data System (ADS)

    Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.

    2015-12-01

    Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).

  11. Iron and Diabetes Risk

    PubMed Central

    Simcox, Judith A.; McClain, Donald A.

    2013-01-01

    Iron overload is a risk factor for diabetes. The link between iron and diabetes was first recognized in pathologic conditions—hereditary hemochromatosis and thalassemia—but high levels of dietary iron also impart diabetes risk. Iron plays a direct and causal role in diabetes pathogenesis mediated both by β-cell failure and insulin resistance. Iron is also a factor in the regulation of metabolism in most tissues involved in fuel homeostasis, with the adipocyte in particular serving an iron-sensing role. The underlying molecular mechanisms mediating these effects are numerous and incompletely understood, but include oxidant stress and modulation of adipokines and intracellular signal transduction pathways. PMID:23473030

  12. Iron deficiency in Europe.

    PubMed

    Hercberg, S; Preziosi, P; Galan, P

    2001-04-01

    In Europe, iron deficiency is considered to be one of the main nutritional deficiency disorders affecting large fractions of the population, particularly such physiological groups as children, menstruating women and pregnant women. Some factors such as type of contraception in women, blood donation or minor pathological blood loss (haemorrhoids, gynaecological bleeding...) considerably increase the difficulty of covering iron needs. Moreover, women, especially adolescents consuming low-energy diets, vegetarians and vegans are at high risk of iron deficiency. Although there is no evidence that an absence of iron stores has any adverse consequences, it does indicate that iron nutrition is borderline, since any further reduction in body iron is associated with a decrease in the level of functional compounds such as haemoglobin. The prevalence of iron-deficient anaemia has slightly decreased in infants and menstruating women. Some positive factors may have contributed to reducing the prevalence of iron-deficiency anaemia in some groups of population: the use of iron-fortified formulas and iron-fortified cereals; the use of oral contraceptives and increased enrichment of iron in several countries; and the use of iron supplements during pregnancy in some European countries. It is possible to prevent and control iron deficiency by counseling individuals and families about sound iron nutrition during infancy and beyond, and about iron supplementation during pregnancy, by screening persons on the basis of their risk for iron deficiency, and by treating and following up persons with presumptive iron deficiency. This may help to reduce manifestations of iron deficiency and thus improve public health. Evidence linking iron status with risk of cardiovascular disease or cancer is unconvincing and does not justify changes in food fortification or medical practice, particularly because the benefits of assuring adequate iron intake during growth and development are well established

  13. What, Where, When, Who and How: Accounting for Biogenic CO2 Emissions Fluxes

    NASA Astrophysics Data System (ADS)

    Ohrel, S. B.

    2013-12-01

    The world is facing a future with a changing climate as well as increasing energy needs. Many countries, including the United States, are therefore considering an increased role of biomass in domestic energy portfolios. Accounting for emissions related to biomass production and use for energy is a complex issue: determining the extent to which biomass utilization can contribute to meeting energy needs while not contributing additional GHG emissions to the atmosphere necessitates further research. Such analysis becomes more challenging when evaluating biogenic feedstocks with long rotations (i.e., woody biomass). Detailed analysis and new accounting methods are needed in order to better assess and understand the potential implications of increased bioenergy utilization in the United States energy portfolio. In response to the EPA's 2011 Draft Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, the Biogenic Carbon Emissions Panel (BCE Panel) appointed by the Science Advisory Board (2013) found that 'Carbon neutrality cannot be assumed for all biomass energy a priori. There are circumstances in which biomass is grown, harvested and combusted in a carbon neutral fashion but carbon neutrality is not an appropriate a priori assumption; it is a conclusion that should be reached only after considering a particular feedstock's production and consumption cycle. There is considerable heterogeneity in feedstock types, sources and production methods and thus net biogenic carbon emissions will vary considerably.' In that light, this study discusses the current policy discussion on biogenic feedstock use for energy in the United States. It then evaluates the question: how can we account for stationary source biogenic CO2 emissions while considering the biological cycling of carbon on the biogenic feedstock production landscape? The analysis discusses current biogenic feedstock usage in the U.S. and potential future impacts of increased biogenic feedstock

  14. Iron losses in sweat

    SciTech Connect

    Brune, M.; Magnusson, B.; Persson, H.; Hallberg, L.

    1986-03-01

    The losses of iron in whole body cell-free sweat were determined in eleven healthy men. A new experimental design was used with a very careful cleaning procedure of the skin and repeated consecutive sampling periods of sweat in a sauna. The purpose was to achieve a steady state of sweat iron losses with minimal influence from iron originating from desquamated cells and iron contaminating the skin. A steady state was reached in the third sauna period (second sweat sampling period). Iron loss was directly related to the volume of sweat lost and amounted to 22.5 micrograms iron/l sweat. The findings indicate that iron is a physiological constituent of sweat and derived not only from contamination. Present results imply that variations in the amount of sweat lost will have only a marginal effect on the variation in total body iron losses.

  15. Iron Sucrose Injection

    MedlinePlus

    ... stop working). Iron sucrose injection is in a class of medications called iron replacement products. It works ... hands, feet, ankles, or lower legs; loss of consciousness; or seizures. If you experience a severe reaction, ...

  16. Serum iron test

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  17. Total iron binding capacity

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  18. Iron and Your Child

    MedlinePlus

    ... 24 months old. Serve iron-rich foods alongside foods containing vitamin C — such as tomatoes, broccoli, oranges, and strawberries — which improves the body's absorption of iron. Avoid serving coffee ...

  19. Iron supplements (image)

    MedlinePlus

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  20. Iron in diet

    MedlinePlus

    Diet - iron; Ferric acid; Ferrous acid; Ferritin ... The human body needs iron to make the oxygen-carrying proteins hemoglobin and myoglobin. Hemoglobin is found in red blood cells and myoglobin is found ...

  1. Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Heim, Christine; Simon, Klaus; Ionescu, Danny; Reimer, Andreas; De Beer, Dirk; Quéric, Nadia-Valérie; Reitner, Joachim; Thiel, Volker

    2015-02-01

    Microbial iron oxyhydroxides are common deposits in natural waters, recent sediments and mine drainage systems and often contain significant accumulations of trace and rare earth elements (TREE). TREE patterns are widely used to characterize minerals and rocks, and to elucidate their evolution and origin. Whether and which characteristic TREE signatures distinguish between a biological and an abiological origin of iron minerals is still not well understood. Long-term flow reactor studies were performed in the Äspö Hard Rock Laboratory to investigate the development of microbial mats dominated by iron-oxidizing bacteria, namely Mariprofundus sp. and Gallionella sp. The experiments investigated the accumulation and fractionation of TREE under controlled conditions and enabled us to assess potential biosignatures evolving within the microbial iron oxyhydroxides. Concentrations of Be, Y, Zn, Zr, Hf, W, Th, Pb, and U in the microbial mats were 1e3- to 1e5-fold higher than in the feeder fluids whereas the rare earth elements and Y (REE+Y) contents were 1e4 and 1e6 fold enriched. Except for a hydrothermally induced Eu anomaly, the normalized REE+Y patterns of the microbial iron oxyhydroxides were very similar to published REE+Y distributions of Archaean Banded Iron Formations. The microbial iron oxyhydroxides from the flow reactors were compared to iron oxyhydroxides that were artificially precipitated from the same feeder fluid. These abiotic and inorganic iron oxyhydroxides show the same REE+Y distribution patterns. Our results indicate that the REE+Y mirror quite exactly the water chemistry, but they do not allow to distinguish microbially mediated from inorganic iron precipitates. All TREE studied showed an overall similar fractionation behavior in biogenic, abiotic and inorganic iron oxyhydroxides. Exceptions are Ni and Tl, which were only accumulated in the microbial iron oxyhydroxides and may point to a potential usage of these elements as microbial biosignatures.

  2. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  3. BIOGENIC CONTRIBUTION TO PM-2.5 AMBIENT AEROSOL FROM RADIOCARBON MEASUREMENTS

    EPA Science Inventory

    Knowledge of the relative contributions of biogenic versus anthropogenic sources to ambient aerosol is of great interest in the formulation of strategies to achieve nationally mandated air quality standards. Radiocarbon (Carbon-14) measurements provide a means to quantify the ...

  4. Sludge conditioning using biogenic flocculant produced by Acidithiobacillus ferrooxidans for enhancement in dewaterability.

    PubMed

    Kurade, Mayur B; Murugesan, Kumarasamy; Selvam, Ammaiyappan; Yu, Shuk-Man; Wong, Jonathan W C

    2016-10-01

    Biogenic flocculant produced by Acidithiobacillus ferrooxidans was used for sludge conditioning to improve the dewaterability of anaerobically-digested sludge, and its efficiency was compared with commercial cationic polyacrylamide (PAM). Biogenic flocculant rapidly reduced the pH and increased the oxidation-reduction potential of sludge. Capillary suction time (CST) and specific resistant to filtration (SRF) of sludge was decreased by 74% and 89%, respectively, compared with control; and the reductions were 58% CST and 67% SRF higher when compared with commercial polymer. Biogenic treatment improved the sludge calorific value by 13%, and also reduced the unpleasant odor. The small-scale mechanical filter press study showed that the biogenic flocculant can reduce the moisture content of sludge to 70%, and improve the clarity of the filtrate in terms of removal of total suspended solids and total dissolved solids when compared with synthetic polymer treatment. PMID:27020124

  5. ROLE OF BIOGENIC ORGANICS IN THE SOUTHEAST OZONE PROBLEM. PRELIMINARY ASSESSMENTS AND IMPLICATIONS

    EPA Science Inventory

    Literature review and modeling studies were performed to assess the role of biogenic VOC emissions in the uhotochemical ozone problem of urban areas. he assessment effort focussed specifically on recent research results reported by Georgia Institute of Technology (GIT) scientists...

  6. Identification and Validation of Biogenic Preservation: Defining Constraints Within Martian Mineralogy

    NASA Astrophysics Data System (ADS)

    Perl, S. M.; Vaishampayan, P. A.; Corsetti, F. A.; Piazza, O.; Ahmed, M.; Willis, P.; Creamer, J. S.; Williford, K. W.; Flannery, D. T.; Tuite, M. L.; Ehlmann, B. L.; Bhartia, R.; Baxter, B. K.; Butler, J.; Hodyss, R.; Berelson, W. M.; Nealson, K. H.

    2016-05-01

    This investigation seeks to confine the limits of preservation potential within evaporate minerals by performing analyses to determine the extent of biological retention, in-situ validation of biogenic matter, and volumetric examination of clays.

  7. Effect of intense magnetic fields on the convection of biogenic guanine crystals in aqueous solution

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Mizukawa, Y.

    2015-05-01

    In this study, the basic magneto-optic properties of biogenic microcrystals in aqueous media were investigated. Microcrystals, mica plates, silica, and microcrystals from a diatom cell and biogenic guanine crystals from goldfish showed light scattering inhibition when the crystals were observed in water under a 5 T magnetic field and dark-field illumination. In particular, in 50% ethanol/water medium, convection of the biogenic guanine particle aggregates was reversibly inhibited when the microcrystal suspension was exposed to a 5 T magnetic field. Microscopic observation comparing the biogenic guanine crystals in water with 95% ethanol or 99% acetone revealed that light flickering on the surface of the crystals was affected by the surface interaction of the crystal with the surrounding medium. By considering both the magnetic orientation of the microcrystals and the possible interactions of crystals with the surrounding medium, a magnetically controllable fluidic tracer was suggested.

  8. Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite

    NASA Astrophysics Data System (ADS)

    Pucéat, E.; Joachimski, M. M.; Bouilloux, A.; Monna, F.; Bonin, A.; Motreuil, S.; Morinière, P.; Hénard, S.; Mourin, J.; Dera, G.; Quesne, D.

    2010-09-01

    Oxygen isotopes of biogenic apatite have been widely used to reassess anomalous temperatures inferred from oxygen isotope ratios of ancient biogenic calcite, more prone to diagenetic alteration. However, recent studies have highlighted that oxygen isotope ratios of biogenic apatite differ dependent on used analytical techniques. This questions the applicability of the phosphate-water fractionation equations established over 25 years ago using earlier analytical techniques to more recently acquired data. In this work we present a new phosphate-water oxygen isotope fractionation equation based on oxygen isotopes determined on fish raised in aquariums at controlled temperature and with monitored water oxygen isotope composition. The new equation reveals a similar slope, but an offset of about + 2‰ to the earlier published equations. This work has major implications for paleoclimatic reconstructions using oxygen isotopes of biogenic apatite since calculated temperatures have been underestimated by about 4 to 8 °C depending on applied techniques and standardization of the analyses.

  9. A32A-0126: A BIOGENIC ROLE IN EXPOSURE TO TWO TOXIC COMPOUNDS

    EPA Science Inventory

    Biogenic sources play an important role in ozone and particulate concentrations through emissions of volatile organic compounds. The same emissions also contribute to chronic toxic exposures from formaldehyde and acetaldehyde because each compound arises through primary and sec...

  10. Rn-222 tracing and stable isotope measurements of biogenic gas fluxes from methane saturated sediments

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Green, C. D.; Blair, Neal; Chanton, J. P.

    1985-01-01

    Transport of reduced biogenic gases from anoxic sediments and soils to the atmosphere can be quantitatively studied through measurement of radon-222/radium-226 disequilibrium. In previous work, seasonal variations in biogenic gas transport mechanisms, net fluxes and overall composition were documented. Now presented are direct field measurements of radon-222 activity in gases exiting organic rich sediments which show their usefulness for tracing of the stripping of dissolved biogenic gases from within the sediment column and transport via bubble ebullition. Methane is depleted in deuterium during the summer as compared with winter months and is in general lighter than in most marine sediments signaling the probable importance of acetate as an important precursor molecule. The significant seasonal isotopic variations observed illustrate the importance of understanding mechanisms and rates of biogenic gas production in order to interpret observed tropospheric isotopic data.

  11. AEROSOL OPTICAL PROPERTIES AND BIOGENIC SOA: EFFECT ON HYGROSCOPIC PROPERTIES AND LIGHT ABSORPTION

    EPA Science Inventory

    This study will provide a comprehensive characterization of optical properties of biogenic SOA and their sensitivity to anthropogenic influence. Several parameters critical for climate modeling, such as absorption cross-section, single scattering albedo and sensitivity to R...

  12. Airborne flux measurements of biogenic isoprene over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-10-01

    Biogenic isoprene fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne Biogenic volatile organic compound (BVOC) Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a proton transfer reaction mass spectrometer (PTR-MS) and a wind radome probe to directly determine fluxes of isoprene over 7400 km of flight paths focusing on areas of California predicted to have the largest emissions. The fast Fourier transform (FFT) approach was used to calculate fluxes of isoprene over long transects of more than 15 km, most commonly between 50 and 150 km. The continuous wavelet transformation (CWT) approach was used over the same transects to also calculate instantaneous isoprene fluxes with localization of both frequency and time independent of non-stationarities. Fluxes were generally measured by flying consistently at 400 m ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence determined in the racetrack-stacked profiles. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to basal emission factor (BEF) land-cover data sets used to drive BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. Even though the isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, observations at the Walnut Grove tower south of Sacramento demonstrate that isoprene oxidation products from the high emitting regions in the surrounding oak woodlands accumulate at night in

  13. Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by Sulfate Reducing Bacteria

    SciTech Connect

    Rittman, Bruce; Zhou, Chen; Vannela, Raveender

    2013-12-31

    This four-year project’s overarching aim was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. As stated in this final report, significant progress was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM).

  14. Applications of Satellite Remote Sensing Data for Biogenic Emission Estimates in Southeastern Texas

    NASA Astrophysics Data System (ADS)

    Feldman, M. S.; Howard, T.; Mullins, G.; McDonald-Buller, E.; Allen, D. T.

    2007-12-01

    Biogenic hydrocarbons, including isoprene, monoterpenes, and oxygenated compounds, are emitted in substantial quantities by vegetation and dominate the overall volatile organic compound emission inventory in Southeastern Texas. Spatial distributions of biogenic emissions in Texas are heterogeneous, and biogenic emission processes are affected by the characterization of land cover, leaf area index, drought stress, and surface temperatures. On a regional scale, biogenic emissions, particularly isoprene, in the presence of high levels of nitrogen oxides (NOx), will produce elevated ground-level ozone concentrations. The sensitivity of biogenic emission estimates and air quality model predictions to the characterization of land use/land cover (LULC) in southeastern Texas is examined. A LULC database has been developed for the region based on source imagery collected by the Landsat 7 Enhanced Thematic Mapper-Plus sensor between 1999 and 2003, and data from field studies used for species identification and quantification of biomass densities. This database and the LULC database currently used in regulatory air quality models by the State of Texas are compared. Effects of the LULC data on biogenic emission estimates and modeled ozone concentrations are examined using the Global Biosphere Emissions and Interactions System and the Comprehensive Air Quality Model with extensions during an August 22-September 6, 2000 episode developed for the Houston/Galveston area. These results are also compared to biogenic emission estimates from the recently created Model of Emissions of Gases and Aerosols from Nature (MEGAN), which includes a global vegetation map compiled from recent satellite data and ecosystem inventories. Biogenic emissions estimated from the new LULC dataset showed good general spatial agreement with those from the currently used LULC dataset but significantly lower emissions (~40% less hourly emissions across the modeling domain), primarily due to differences in

  15. Validation of an HPLC Analytical Method for Determination of Biogenic Amines in Agricultural Products and Monitoring of Biogenic Amines in Korean Fermented Agricultural Products.

    PubMed

    Yoon, Hyeock; Park, Jung Hyuck; Choi, Ari; Hwang, Han-Joon; Mah, Jae-Hyung

    2015-09-01

    An HPLC analytical method was validated for the quantitative determination of biogenic amines in agricultural products. Four agricultural foods, including apple juice, Juk, corn oil and peanut butter, were selected as food matrices based on their water and fat contents (i.e., non-fatty liquid, non-fatty solid, fatty liquid and fatty solid, respectively). The precision, accuracy, recovery, limit of detection (LOD) and quantification (LOQ) were determined to test the validity of an HPLC procedure for the determination of biogenic amines, including tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine, in each matrix. The LODs and LOQs for the biogenic amines were within the range of 0.01~0.10 mg/kg and 0.02~0.31 mg/kg, respectively. The relative standard deviation (RSD) of intraday for biogenic amine concentrations ranged from 1.86 to 5.95%, whereas the RSD of interday ranged from 2.08 to 5.96%. Of the matrices spiked with biogenic amines, corn oil with tyramine and Juk with putrescine exhibited the least accuracy of 84.85% and recovery rate of 89.63%, respectively, at the lowest concentration (10 mg/kg). Therefore, the validation results fulfilled AOAC criteria and recommendations. Subsequently, the method was applied to the analysis of biogenic amines in fermented agricultural products for a total dietary survey in Korea. Although the results revealed that Korean traditional soy sauce and Doenjang contained relatively high levels of histamine, the amounts are of no concern if these fermented agricultural products serve as condiments. PMID:26483889

  16. Validation of an HPLC Analytical Method for Determination of Biogenic Amines in Agricultural Products and Monitoring of Biogenic Amines in Korean Fermented Agricultural Products

    PubMed Central

    Yoon, Hyeock; Park, Jung Hyuck; Choi, Ari; Hwang, Han-Joon

    2015-01-01

    An HPLC analytical method was validated for the quantitative determination of biogenic amines in agricultural products. Four agricultural foods, including apple juice, Juk, corn oil and peanut butter, were selected as food matrices based on their water and fat contents (i.e., non-fatty liquid, non-fatty solid, fatty liquid and fatty solid, respectively). The precision, accuracy, recovery, limit of detection (LOD) and quantification (LOQ) were determined to test the validity of an HPLC procedure for the determination of biogenic amines, including tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine, in each matrix. The LODs and LOQs for the biogenic amines were within the range of 0.01~0.10 mg/kg and 0.02~0.31 mg/kg, respectively. The relative standard deviation (RSD) of intraday for biogenic amine concentrations ranged from 1.86 to 5.95%, whereas the RSD of interday ranged from 2.08 to 5.96%. Of the matrices spiked with biogenic amines, corn oil with tyramine and Juk with putrescine exhibited the least accuracy of 84.85% and recovery rate of 89.63%, respectively, at the lowest concentration (10 mg/kg). Therefore, the validation results fulfilled AOAC criteria and recommendations. Subsequently, the method was applied to the analysis of biogenic amines in fermented agricultural products for a total dietary survey in Korea. Although the results revealed that Korean traditional soy sauce and Doenjang contained relatively high levels of histamine, the amounts are of no concern if these fermented agricultural products serve as condiments. PMID:26483889

  17. Antioxidants, Enzyme Inhibitors, and Biogenic Compounds in Grain Extracts of Barleys.

    PubMed

    Maliar, Tibor; Slaba, Gabriela; Nemeček, Peter; Maliarová, Mária; Benková, Michaela; Havrlentová, Michaela; Ondrejovič, Miroslav; Kraic, Ján

    2015-11-01

    The content of biogenic compounds and the biological activities of barley (Hordeum vulgare L.)-grain extracts was evaluated. The sufficiently large and heterogeneous set of barley genotypes (100 accessions) enabled the selection of special genotypes interesting for potential industrial, pharmaceutical, and medicinal applications. Barley genotypes with the highest contents of phenols, phenolic acids, flavonoids, biogenic thiols, and amines, radical-scavenging activity, as well as inhibitory activities of trypsin, thrombin, collagenase, urokinase, and cyclooxygenase were identified. PMID:26567946

  18. Biogenic caliches in Texas: The role of organisms and effect of climate

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Chafetz, Henry S.

    2009-12-01

    Biogenic constituents are ubiquitous and abundant in the caliches of Texas. Investigation of 51 caliche profiles on various host strata (alluvium, limestone, igneous rocks, etc.) across approximately 900 km of Texas from subhumid east to arid west has shown that 43 of these profiles exhibit prominent biogenic constituents. These profiles exhibit significant differences in thickness (varying from centimeters to meters) and maturity (varying from I to VI). All of the different caliche facies are composed of low-Mg calcite. Biogenic features generally occur in the upper part of the profiles, including the uppermost portion of massive caliche horizons, platy horizons, laminar crusts, and pisoids. The main biogenic caliche facies include rhizoliths (calcified root structures), stromatolite-like laminar crusts, and coated grains. Compared to the abiogenic massive micritic to microsparitic calcite groundmass, biogenic constituents are morphologically distinct. These biogenic constituents are composed of several microscopic mineral components, including calcified filaments, needle fiber calcite (e.g., single crystalline needles and needle pairs, triangular crystals, and polycrystalline chains of rhombohedrons), spherulites, micro-rods, and nano-spheres. A large number of calcified root cellular structures and micro-organisms, e.g., fungal filaments, actinomycetes, and rod-like bacteria, are also present. Plant roots as well as soil biota produce distinctive structures and also enhance lithification by inducing calcite precipitation in the caliches, i.e., biologically controlled or influenced processes. Host strata did not significantly influence the abundance nor type of biogenic features in the caliches. In contrast, climate had an evident effect on the development of biogenic constituents in these caliches in terms of the amount as well as type. The thickness of laminar crusts and grain coatings and the abundance of biotic constituents within those facies decrease as the

  19. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite

    NASA Astrophysics Data System (ADS)

    Wombacher, F.; Eisenhauer, A.; Böhm, F.; Gussone, N.; Regenberg, M.; Dullo, W.-Chr.; Rüggeberg, A.

    2011-10-01

    This survey of magnesium stable isotope compositions in marine biogenic aragonite and calcite includes samples from corals, sclerosponges, benthic porcelaneous and planktonic perforate foraminifera, coccolith oozes, red algae, and an echinoid and brachiopod test. The analyses were carried out using MC-ICP-MS with an external repeatability of ±0.22‰ (2SD for δ 26Mg; n = 37), obtained from a coral reference sample (JCp-1). Magnesium isotope fractionation in calcitic corals and sclerosponges agrees with published data for calcitic speleothems with an average Δ 26Mg calcite-seawater = -2.6 ± 0.3‰ that appears to be weakly related to temperature. With one exception ( Vaceletia spp.), aragonitic corals and sclerosponges also display uniform Mg isotope fractionations relative to seawater with Δ 26Mg biogenic aragonite-seawater = -0.9 ± 0.2. Magnesium isotopes in high-Mg calcites from red algae, echinoids and perhaps some porcelaneous foraminifera as well as in all low-Mg calcites (perforate foraminifera, coccoliths and brachiopods) display significant biological influences. For planktonic foraminifera, the Mg isotope data is consistent with the fixation of Mg by organic material under equilibrium conditions, but appears to be inconsistent with Mg removal from vacuoles. Our preferred model, however, suggests that planktonic foraminifera synthesize biomolecules that increase the energetic barrier for Mg incorporation. In this model, the need to remove large quantities of Mg from vacuole solutions is avoided. For the high-Mg calcites from echinoids, the precipitation of amorphous calcium carbonate may be responsible for their weaker Mg isotope fractionation. Disregarding superimposed biological effects, it appears that cation light isotope enrichments in CaCO 3 principally result from a chemical kinetic isotope effect, related to the incorporation of cations at kink sites. In this model, the systematics of cation isotope fractionations in CaCO 3 relate to the

  20. Biogenic hardparts: Difficult archives of the geological past (Invited)

    NASA Astrophysics Data System (ADS)

    Immenhauser, A.; Schone, B. R.; Hoffmann, R.; Niedermayr, A.

    2013-12-01

    Biomineralized exo- or endoskeletons of fossil marine invertebrates are widespread and diverse components of the Phanerozoic rock record of Earth's past and present oceans. Exoskeletons serve as protection against environmental pressure or predators, whilst endoskeletons can act as support or serve as an attachment for muscles and ligaments and hence as a mechanism for transmitting muscular forces. Biogenic hard parts represent sophisticated products resulting from the hierarchical interaction of inorganic minerals (95%) and macromolecular organic matrices, forming commonly less than 5%. The significance of many biogenic carbonate archives lies in the time-resolved growth patterns and their ability to record ambient environmental conditions in the form of multiple geochemical properties (multi-proxy archives) that have been widely used to assess past oceanic seawater properties. Here, we compile and review published work dealing with crystallization pathways of skeletal hard parts secreted by mollusks (i.e., bivalves and cephalopods) as well as brachiopods as widely used archives of ancient neritic epeiric settings. Bivalves and cephalopods (e.g., extinct ammonoids and belemnites and extant Sepia, Nautilus and Spirula) all form accretionary calcitic, aragonitic or vateritic skeletal hard parts. Despite the fact that mollusks and brachiopods form part of very different branches of the animal phylogenetic tree, their biomineralization strategies are surprisingly similar. Our main focus lies in a critical assessment of the complex pathways of ions and aquo-complexes from their source (seawater) to the final product (biomineral). We do this as an attempt to critically test the commonly held hypothesis that many fossil hard parts precipitated (under favorable conditions and pending subsequent diagenetic alteration) in equilibrium with seawater. Two main observations stand out: (1) the present knowledge on pathways and mechanisms (e.g., ion channel trans-membrane or

  1. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  2. Anthropogenic impact on biogenic Si pools in temperate soils

    NASA Astrophysics Data System (ADS)

    Clymans, W.; Struyf, E.; Govers, G.; Vandevenne, F.; Conley, D. J.

    2011-05-01

    Human land use changes directly affect silica (Si) mobilisation and Si storage in terrestrial ecosystems and influence Si export from the continents, although the magnitudes of the impact are unknown. Yet biogenic silica (BSi) in soils is an understudied aspect. We have quantified and compared total biogenic (PSia) and easily soluble (PSie) Si pools at four sites along a gradient of disturbance in southern Sweden. An estimate of the magnitude of change in temperate continental BSi pools due to human disturbance is provided. Land use clearly affects BSi pools and their distribution. Total PSia and PSie for a continuous forested site at Siggaboda Nature Reserve (66 900 ± 22 800 kg SiO2 ha-1 and 952 ± 16 kg SiO2 ha-1) are significantly higher than disturbed land use types from the Råshult Culture Reserve including arable land (28 800 ± 7200 kg SiO2 ha-1 and 239 ± 91 kg SiO2 ha-1), pasture sites (27 300 ± 5980 kg SiO2 ha-1 and 370 ± 129 kg SiO2 ha-1) and grazed forest (23 600 ± 6370 kg SiO2 ha-1 and 346 ± 123 kg SiO2 ha-1). Vertical PSia and PSie profiles show significant (p<0.05) variation among the sites. These differences in size and distribution are interpreted as the long-term effect of reduced BSi replenishment and increased mobilisation of the PSia in disturbed soils. In temperate regions, total PSia showed a 10 % decline since agricultural development (3000BCE). Recent agricultural expansion (after 1700CE) has resulted in an average export of 1.1 ± 0.8 Tmol Si yr-1, leading to an annual contribution of ca. 20 % to the global land-ocean Si flux carried by rivers. Human activities clearly exert a long-term influence on Si cycling in soils and contribute significantly to the land-ocean Si flux.

  3. Sub-Antarctic marine aerosol: significant contributions from biogenic sources

    NASA Astrophysics Data System (ADS)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-03-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea salt sulfate 2% nitrate, 7% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea salt signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acids/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 40%), a sea salt OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (C : N ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea salt aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated to sea

  4. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    NASA Astrophysics Data System (ADS)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-09-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 41%), a sea spray OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated

  5. Characteristics of aerosolized ice forming marine biogenic particles

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.

    atomus and Emiliania huxleyi, cells and cell fragments efficiently nucleate ice in the deposition mode, however, only T. pseudonana and N. atomus form ice in the immersion mode, presumably due to different cell wall compositions. This further corroborates the role of phytoplanktonic species for aerosolization of marine biogenic cloud active particles. Experimental data are used to parameterize marine biogenic particle fluxes and heterogeneous ice nucleation as a function of biological activity. The atmospheric implications of the results and their implementation into cloud and climate models are discussed.

  6. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.

    PubMed

    Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz

    2011-12-15

    The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels. PMID:22044020

  7. Study on biogenic amines in various dry salted fish consumed in China

    NASA Astrophysics Data System (ADS)

    Wu, Yanyan; Chen, Yufeng; Li, Laihao; Yang, Xianqing; Yang, Shaoling; Lin, Wanling; Zhao, Yongqiang; Deng, Jianchao

    2016-08-01

    This study was carried out to investigate the biogenic amines (BAs), physicochemical property and microorganisms in dry salted fish, a traditional aquatic food consumed in China. Forty three samples of dry salted fish were gathered from retail and wholesale markets and manufacturers, which had been produced in various regions in China. Cadaverine (CAD) and putrescine (PUT) were quantitatively the most common biogenic amines. About 14% of the samples exceeded the histamine content standards established by the FDA and/or EU. The highest histamine content was found in Silver pomfret ( Pampus argenteus) (347.79 mg kg-1). Five of forty three samples exceeded the acceptable content of TYR (100 mg kg-1), and 23.26% of dried-salted fish contained high contents of biogenic amines (above 600 mg kg-1). In addition, species, regions, pickling processes and drying methods made the physicochemical property, microorganisms and biogenic amines in dry salted fish to be different to some extents. The total plate count (TPC) was much higher than that of total halophilic bacteria in all samples. The biogenic amines, physicochemical property and microbiological counts exhibited large variations among samples. Furthermore, no significant correlation between biogenic amines and physicochemical property and TPC was observed. This study indicated that dry salted fish may still present healthy risk for BAs, depending on the processing methods, storage conditions among others.

  8. Study on biogenic amines in various dry salted fish consumed in China

    NASA Astrophysics Data System (ADS)

    Wu, Yanyan; Chen, Yufeng; Li, Laihao; Yang, Xianqing; Yang, Shaoling; Lin, Wanling; Zhao, Yongqiang; Deng, Jianchao

    2016-05-01

    This study was carried out to investigate the biogenic amines (BAs), physicochemical property and microorganisms in dry salted fish, a traditional aquatic food consumed in China. Forty three samples of dry salted fish were gathered from retail and wholesale markets and manufacturers, which had been produced in various regions in China. Cadaverine (CAD) and putrescine (PUT) were quantitatively the most common biogenic amines. About 14% of the samples exceeded the histamine content standards established by the FDA and/or EU. The highest histamine content was found in Silver pomfret (Pampus argenteus) (347.79 mg kg-1). Five of forty three samples exceeded the acceptable content of TYR (100 mg kg-1), and 23.26% of dried-salted fish contained high contents of biogenic amines (above 600 mg kg-1). In addition, species, regions, pickling processes and drying methods made the physicochemical property, microorganisms and biogenic amines in dry salted fish to be different to some extents. The total plate count (TPC) was much higher than that of total halophilic bacteria in all samples. The biogenic amines, physicochemical property and microbiological counts exhibited large variations among samples. Furthermore, no significant correlation between biogenic amines and physicochemical property and TPC was observed. This study indicated that dry salted fish may still present healthy risk for BAs, depending on the processing methods, storage conditions among others.

  9. Dissolution of Biogenic and Synthetic UO2 under Varied Reducing Conditions

    PubMed Central

    ULRICH, KAI – UWE; SINGH, ABHAS; SCHOFIELD, ELEANOR J.; BARGAR, JOHN R.; VEERAMANI, HARISH; SHARP, JONATHAN O.; LATMANI, RIZLAN BERNIER -; GIAMMAR, DANIEL E.

    2008-01-01

    The chemical stability of biogenic UO2, a nanoparticulate product of environmental bioremediation, may be impacted by the particles’ surface free energy, structural defects, and compositional variability in analogy to abiotic UO2+x (0 ≤ x ≤ 0.25). This study quantifies and compares intrinsic solubility and dissolution rate constants of biogenic nano-UO2 and synthetic bulk UO2.00, taking molecular-scale structure into account. Rates were determined under anoxic conditions as a function of pH and dissolved inorganic carbon in continuous-flow experiments. The dissolution rates of biogenic and synthetic UO2 solids were lowest at near neutral pH and increased with decreasing pH. Similar surface area-normalized rates of biogenic and synthetic UO2 suggest comparable reactive surface site densities. This finding is consistent with the identified structural homology of biogenic UO2 and stoichiometric UO2.00. Compared to carbonate-free anoxic conditions, dissolved inorganic carbon accelerated the dissolution rate of biogenic UO2 by 3 orders of magnitude. This phenomenon suggests continuous surface oxidation of U(IV) to U(VI), with detachment of U(VI) as the rate-determining step in dissolution. Although reducing conditions were maintained throughout the experiments, the UO2 surface can be oxidized by water and radiogenic oxidants. Even in anoxic aquifers, UO2 dissolution may be controlled by surface U(VI) rather than U(IV) phases. PMID:18754482

  10. Iron, radiation, and cancer.

    PubMed Central

    Stevens, R G; Kalkwarf, D R

    1990-01-01

    Increased iron content of cells and tissue may increase the risk of cancer. In particular, high available iron status may increase the risk of a radiation-induced cancer. There are two possible mechanisms for this effect: iron can catalyze the production of oxygen radicals, and it may be a limiting nutrient to the growth and development of a transformed cell in vivo. Given the high available iron content of the western diet and the fact that the world is changing to the western model, it is important to determine if high iron increases the risk of cancer. PMID:2269234

  11. Iron deficiency anemia

    PubMed Central

    Naigamwalla, Dinaz Z.; Webb, Jinelle A.; Giger, Urs

    2012-01-01

    Iron is essential to virtually all living organisms and is integral to multiple metabolic functions. The most important function is oxygen transport in hemoglobin. Iron deficiency anemia in dogs and cats is usually caused by chronic blood loss and can be discovered incidentally as animals may have adapted to the anemia. Severe iron deficiency is characterized by a microcytic, hypochromic, potentially severe anemia with a variable regenerative response. Iron metabolism and homeostasis will be reviewed, followed by a discussion of diagnostic testing and therapeutic recommendations for dogs and cats with iron deficiency anemia. PMID:22942439

  12. Favourable Locations of Possible Periodic Biogen Activity On Mars

    NASA Astrophysics Data System (ADS)

    Kereszturi, A.

    In aur approach the basic assumptions were the following. 1. If once liquid water- loving organisms developed on ancient Mars, 2. during the later global cooling they tried to follow the location of the liquid water. 3. If there were no continuous exis- tence of liquid water on Mars, 4. but there were warm periods because of the climate changes, 6. locally liquid water appeared at some places like in lakes, subsurface reser- voires, water outbreaks. 6. The living organisms on the ancient probably wet Mars may have interrupted their biogen activity during the frozen periods. 7. The best chance for their reactivation during the next warm period is at that regions where the wet periods was the most frequent and longest. We looked for these possible places and analyzed from this point of view the possibility of repeated watery periods and astrobiological consequences at the equatorial regions (because of high temperature during thicker atmosphere) at volcanic centers (long lasted hot spot activity), in subsurface water basins, and at regions of frequent basal melting of the cryosphere.

  13. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmao; Kawamura, Kimitaka; Fukuda, Yasuro; Mochida, Michihiro; Iwamoto, Yoko

    2016-06-01

    Both primary biological aerosol particles (PBAPs) and oxidation products of biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosols (OAs) in forested regions. However, little is known about their relative importance in diurnal timescales. Here, we report biomarkers of PBAP and secondary organic aerosols (SOAs) for their diurnal variability in a temperate coniferous forest in Wakayama, Japan. Tracers of fungal spores, trehalose, arabitol and mannitol, showed significantly higher levels in nighttime than daytime (p < 0.05), resulting from the nocturnal sporulation under near-saturated relative humidity. On the contrary, BVOC oxidation products showed higher levels in daytime than nighttime, indicating substantial photochemical SOA formation. Using tracer-based methods, we estimated that fungal spores account for 45 % of organic carbon (OC) in nighttime and 22 % in daytime, whereas BVOC oxidation products account for 15 and 19 %, respectively. To our knowledge, we present for the first time highly time-resolved results that fungal spores overwhelmed BVOC oxidation products in contributing to OA especially in nighttime. This study emphasizes the importance of both PBAPs and SOAs in forming forest organic aerosols.

  14. Ion-induced nucleation of pure biogenic particles

    NASA Astrophysics Data System (ADS)

    Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, Antonio; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A. D.; Riipinen, Ilona; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L.; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S.; Curtius, Joachim

    2016-05-01

    Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.

  15. Biogenic volatile organic compound emissions from vegetation fires

    PubMed Central

    CICCIOLI, PAOLO; CENTRITTO, MAURO; LORETO, FRANCESCO

    2014-01-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  16. Technological Factors Affecting Biogenic Amine Content in Foods: A Review.

    PubMed

    Gardini, Fausto; Özogul, Yesim; Suzzi, Giovanna; Tabanelli, Giulia; Özogul, Fatih

    2016-01-01

    Biogenic amines (BAs) are molecules, which can be present in foods and, due to their toxicity, can cause adverse effects on the consumers. BAs are generally produced by microbial decarboxylation of amino acids in food products. The most significant BAs occurring in foods are histamine, tyramine, putrescine, cadaverine, tryptamine, 2-phenylethylamine, spermine, spermidine, and agmatine. The importance of preventing the excessive accumulation of BAs in foods is related to their impact on human health and food quality. Quality criteria in connection with the presence of BAs in food and food products are necessary from a toxicological point of view. This is particularly important in fermented foods in which the massive microbial proliferation required for obtaining specific products is often relater with BAs accumulation. In this review, up-to-date information and recent discoveries about technological factors affecting BA content in foods are reviewed. Specifically, BA forming-microorganism and decarboxylation activity, genetic and metabolic organization of decarboxylases, risk associated to BAs (histamine, tyramine toxicity, and other BAs), environmental factors influencing BA formation (temperature, salt concentration, and pH). In addition, the technological factors for controlling BA production (use of starter culture, technological additives, effects of packaging, other non-thermal treatments, metabolizing BA by microorganisms, effects of pressure treatments on BA formation and antimicrobial substances) are addressed. PMID:27570519

  17. Pharmacological potential of biogenic amine–polyamine interactions beyond neurotransmission

    PubMed Central

    Sánchez-Jiménez, F; Ruiz-Pérez, M V; Urdiales, J L; Medina, M A

    2013-01-01

    Histamine, serotonin and dopamine are biogenic amines involved in intercellular communication with multiple effects on human pathophysiology. They are products of two highly homologous enzymes, histidine decarboxylase and l-aromatic amino acid decarboxylase, and transmit their signals through different receptors and signal transduction mechanisms. Polyamines derived from ornithine (putrescine, spermidine and spermine) are mainly involved in intracellular effects related to cell proliferation and death mechanisms. This review summarizes structural and functional evidence for interactions between components of all these amine metabolic and signalling networks (decarboxylases, transporters, oxidases, receptors etc.) at cellular and tissue levels, distinct from nervous and neuroendocrine systems, where the crosstalk among these amine-related components can also have important pathophysiological consequences. The discussion highlights aspects that could help to predict and discuss the effects of intervention strategies. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1 PMID:23347064

  18. HOx Radical Behavior in Urban, Biogenic and Mixed Environments

    NASA Astrophysics Data System (ADS)

    Cantrell, C. A.; Mauldin, L.; Schardt, N.; Mukherjee, A. D.

    2014-12-01

    The importance of HOx radicals in tropospheric chemistry is well-recognized. These roles include control of the lifetimes of a wide variety of trace gases, and control of photochemical ozone formation. The continued advance in understanding comes from laboratory investigations and field observations especially as part of comprehensive measurement campaigns. We participated in two recent observational campaigns aboard the NSF/NCAR C-130 aircraft platform: NOMADSS (Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks) and FRAPPE (Front Range Atmospheric Pollution and Photochemistry Experiment). During these studies, a wide varieties of air masses were sampled ranging from fresh urban to rural both without and without biogenic influence to marine, and including the impacts of emissions from oil and gas extraction and animal production. Among the wide variety of parameters and species related to tropospheric chemistry that were measured, our group made observations of HOx and related species: OH, HO2, HO2+RO2, H2SO4, and stabilized Criegee intermediates (sCIs) using selected ion chemical ionization mass spectrometry. The paper discusses the functional dependence of these species on other measures of the chemical environment (e.g. NO, VOCs, j-values) as well as comparison of model estimates with the observations.

  19. Cluster analysis on mass spectra of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Spindler, C.; Kiendler-Scharr, A.; Kleist, E.; Mensah, A.; Mentel, T.; Tillmann, R.; Wildt, J.

    2009-04-01

    Biogenic secondary organic aerosols (BSOA) are of high importance in the atmosphere. The formation of SOA from the volatile organic compound (VOC) emissions of selected trees was investigated in the JPAC (Jülich Plant Aerosol Chamber) facility. The VOC (mainly monoterpenes) were transferred into a reaction chamber where vapors were photo-chemically oxidized and formed BSOA. The aerosol was characterized by aerosol mass spectrometry (Aerodyne Quadrupol-AMS). Inside the AMS, flash-vaporization of the aerosol particles and electron impact ionization of the evaporated molecules cause a high fragmentation of the organic compounds. Here, we present a classification of the aerosol mass spectra via cluster analysis. Average mass spectra are produced by combination of related single mass spectra to so-called clusters. The mass spectra were similar due to the similarity of the precursor substances. However, we can show that there are differences in the BSOA mass spectra of different tree species. Furthermore we can distinguish the influence of the precursor chemistry and chemical aging. BSOA formed from plants exposed to stress can be distinguished from BSOA formed under non stressed conditions. Significance and limitations of the clustering method for very similar mass spectra will be demonstrated and discussed.

  20. Biogenic selenium nanoparticles: current status and future prospects.

    PubMed

    Wadhwani, Sweety A; Shedbalkar, Utkarsha U; Singh, Richa; Chopade, Balu A

    2016-03-01

    Selenium nanoparticles (SeNPs) are gaining importance in the field of medicine owing to their antibacterial and anticancer properties. SeNPs are biocompatible and non-toxic compared to the counterparts, selenite (SeO3 (-2)) and selenate (SeO4 (-2)). They can be synthesized by physical, chemical, and biological methods and have distinct bright orange-red color. Biogenic SeNPs are stable and do not aggregate owing to natural coating of the biomolecules. Various hypotheses have been proposed to describe the mechanism of microbial synthesis of SeNPs. It is primarily a two-step reduction process from SeO4 (-2) to SeO3 (-2) to insoluble elemental selenium (Se(0)) catalyzed by selenate and selenite reductases. Phenazine-1-carboxylic acid and glutathione are involved in selenite reduction. Se factor A (SefA) and metalloid reductase Rar A present on the surface of SeNPs confer stability to the nanoparticles. SeNPs act as potent chemopreventive and chemotherapeutic agents. Conjugation with antibiotics enhances their anticancer efficacy. These also have applications in nanobiosensors and environmental remediation. PMID:26801915

  1. A marine biogenic source of atmospheric ice-nucleating particles

    SciTech Connect

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  2. Ion-induced nucleation of pure biogenic particles.

    PubMed

    Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, Antonio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A D; Riipinen, Ilona; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S; Curtius, Joachim

    2016-05-26

    Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution. PMID:27225125

  3. Emissions of biogenic sulfur gases from Alaskan tundra

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Results of sulfur emission measurements made in freshwater and marine wetlands in Alaskan tundra during the Arctic Boundary Layer Expedition 2A (ABLE 3A) in July 1988 are presented. The data indicate that this type of tundra emits very small amounts of gaseous sulfur and, when extrapolated globally, accounts for a very small percentage of the global flux of biogenic sulfur to the atmosphere. Sulfur emissions from marine sites are up to 20-fold greater than fluxes from freshwater habitats and are dominated by dimethyl sulfide (DMS). Highest emissions, with a mean of 6.0 nmol/sq m/h, occurred in water-saturated wet meadow areas. In drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/sq m/h and lowest fluxes were from lichen-dominated areas at 0.9 nmol/sq m/h. DMS was the dominant gas emitted from all these sites. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea.

  4. A marine biogenic source of atmospheric ice-nucleating particles.

    PubMed

    Wilson, Theodore W; Ladino, Luis A; Alpert, Peter A; Breckels, Mark N; Brooks, Ian M; Browse, Jo; Burrows, Susannah M; Carslaw, Kenneth S; Huffman, J Alex; Judd, Christopher; Kilthau, Wendy P; Mason, Ryan H; McFiggans, Gordon; Miller, Lisa A; Nájera, Juan J; Polishchuk, Elena; Rae, Stuart; Schiller, Corinne L; Si, Meng; Temprado, Jesús Vergara; Whale, Thomas F; Wong, Jenny P S; Wurl, Oliver; Yakobi-Hancock, Jacqueline D; Abbatt, Jonathan P D; Aller, Josephine Y; Bertram, Allan K; Knopf, Daniel A; Murray, Benjamin J

    2015-09-10

    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice. Sea-spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice-nucleating material is probably biogenic and less than approximately 0.2 micrometres in size. We find that exudates separated from cells of the marine diatom Thalassiosira pseudonana nucleate ice, and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice-nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol, in combination with our measurements, suggest that marine organic material may be an important source of ice-nucleating particles in remote marine environments such as the Southern Ocean, North Pacific Ocean and North Atlantic Ocean. PMID:26354482

  5. Lossless compression of stromatolite images: a biogenicity index?

    PubMed

    Corsetti, Frank A; Storrie-Lombardi, Michael C

    2003-01-01

    It has been underappreciated that inorganic processes can produce stromatolites (laminated macroscopic constructions commonly attreibuted to microbiological activity), thus calling into question the long-standing use of stromatolites as de facto evidence for ancient life. Using lossless compression on unmagnified reflectance red-green-blue (RGB) images of matched stromatolite-sediment matrix pairs as a complexity metric, the compressibility index (delta(c), the log ratio of the ratio of the compressibility of the matrix versus the target) of a putative abiotic test stromatolite is significantly less than the delta(c) of a putative biotic test stromatolite. There is a clear separation in delta(c) between the different stromatolites discernible at the outcrop scale. In terms of absolute compressibility, the sediment matrix between the stromatolite columns was low in both cases, the putative abiotic stromatolite was similar to the intracolumnar sediment, and the putative biotic stromatolite was much greater (again discernible at the outcrop scale). We propose tht this metric would be useful for evaluating the biogenicity of images obtained by the camera systems available on every Mars surface probe launched to date including Viking, Pathfinder, Beagle, and the two Mars Exploration Rovers. PMID:14994715

  6. Observational constraints on biogenic VOC emission model estimates (Invited)

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2013-12-01

    Chemistry and transport models require accurate estimates of biogenic volatile organic compound (BVOC) emissions in order to simulate the atmospheric constituents controlling air quality and climate, such as ozone and particles, and so the uncertainties associated with BVOC estimates may be limiting the development of effective air quality and climate management strategies. BVOC emission models include driving variables and algorithms that span scales from the leaf level to entire landscapes. While considerable effort has been made to improve BVOC emission models in the past decades, there have been relatively few attempts to quantify the uncertainties associated with these estimates or to rigorously assess emission modeling approaches. This presentation will summarize the availability of observations that can be used to constrain BVOC emission models including flux measurements (leaf enclosure, above canopy tower, and aircraft platforms) and ambient concentrations of BVOC and their products. Results from studies targeting specific BVOC emission processes (e.g., the response of isoprene emission to drought and the response of monoterpene emissions to bark beetle attack) will be shown and the application of these observations for BVOC model evaluation will be discussed. In addition, the results from multi-scale BVOC emission studies (leaf enclosure, whole canopy flux tower, regional aircraft eddy covariance) will be presented and a approach for incorporating these observations into a community model testbed will be described and used to evaluate regional BVOC emission models.

  7. Photochemistry of biogenic emissions over the Amazon forest

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Wofsy, Steven C.

    1988-01-01

    The boundary layer chemistry over the Amazon forest during the dry season is simulated with a photochemical model. Results are in good agreement with measurements of isoprene, NO, ozone, and organic acids. Photochemical reactions of biogenic isoprene and NOx can supply most of the ozone observed in the boundary layer. Production of ozone is very sensitive to the availability of NOx, but is insensitive to the isoprene source strength. High concentrations of total odd nitrogen (NOy) are predicted for the planetary boundary layer, about 1 ppb in the mixed layer and 0.75 ppb in the convective cloud layer. Most of the odd nitrogen is present as PAN-type species, which are removed by dry deposition to the forest. The observed daytime variations of isoprene are explained by a strong dependence of the isoprene emission flux on sun angle. Nighttime losses of isoprene exceed rates of reaction with NO3 and O3 and appear to reflect dry-deposition processes. The 24-hour averaged isoprene emission flux is calculated to be 38 mg/sq m per day. Photooxidation of isoprene could account for a large fraction of the CO enrichment observed in the boundary layer under unpolluted conditions and could constitute an important atmospheric source of formic acid, methacrylic acid, and pyruvic acid.

  8. Biogenic volatile organic compound emissions from vegetation fires.

    PubMed

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  9. Technological Factors Affecting Biogenic Amine Content in Foods: A Review

    PubMed Central

    Gardini, Fausto; Özogul, Yesim; Suzzi, Giovanna; Tabanelli, Giulia; Özogul, Fatih

    2016-01-01

    Biogenic amines (BAs) are molecules, which can be present in foods and, due to their toxicity, can cause adverse effects on the consumers. BAs are generally produced by microbial decarboxylation of amino acids in food products. The most significant BAs occurring in foods are histamine, tyramine, putrescine, cadaverine, tryptamine, 2-phenylethylamine, spermine, spermidine, and agmatine. The importance of preventing the excessive accumulation of BAs in foods is related to their impact on human health and food quality. Quality criteria in connection with the presence of BAs in food and food products are necessary from a toxicological point of view. This is particularly important in fermented foods in which the massive microbial proliferation required for obtaining specific products is often relater with BAs accumulation. In this review, up-to-date information and recent discoveries about technological factors affecting BA content in foods are reviewed. Specifically, BA forming-microorganism and decarboxylation activity, genetic and metabolic organization of decarboxylases, risk associated to BAs (histamine, tyramine toxicity, and other BAs), environmental factors influencing BA formation (temperature, salt concentration, and pH). In addition, the technological factors for controlling BA production (use of starter culture, technological additives, effects of packaging, other non-thermal treatments, metabolizing BA by microorganisms, effects of pressure treatments on BA formation and antimicrobial substances) are addressed. PMID:27570519

  10. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    PubMed

    Hertwich, Edgar G

    2013-09-01

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated. PMID:23909506

  11. Levels of biogenic amines in retail market fermented meat products.

    PubMed

    Papavergou, Ekaterini J; Savvaidis, Ioannis N; Ambrosiadis, Ioannis A

    2012-12-15

    The qualitative and quantitative profile of biogenic amines (BA) in 50 samples of dry fermented sausages sold in Greek retail markets were determined by HPLC. Putrescine, cadaverine, tryptamine, β-phenylethylamine spermidine, spermine were analysed by UV detection after pre-column derivatization with benzoyl chloride, whereas tyramine and histamine were analysed by fluorescence detection after post-column derivatization with o-phthaldialdehyde (OPA). With the exception of spermidine and spermine a wide variation of BA levels was observed among the samples. Of the BA examined, tyramine, putrescine, histamine and cadaverine showed high concentrations ranging from: 0 to 510 mg/kg (median: 197.7 mg/kg), 0 to 505 mg/kg (median: 96.5mg/kg), 0 to 515 mg/kg (median: 7.0mg/kg) and 0 to 690 mg/kg (median: 3.6 mg/kg), respectively. The histamine content of 28% of the samples exceeded the toxicity limit of 100mg/kg set for histamine in some fish species. Levels of tryptamine and β-phenyl-ethylamine never exceeded 50 and 29 mg/kg, respectively. Results of the present study suggest that the amounts of BA in dry fermented sausages, sold in Greek retail markets, may pose a potential health risk for sensitive individuals or for those undergoing classical monoamine oxidase inhibiting (MAOI) drug therapy. PMID:22980868

  12. Iron toxicity in yeast.

    PubMed

    Wiśnicka, R; Krzepiłko, A; Wawryn, J; Biliński, T

    1997-01-01

    It has been found that yeast cells are sensitive to iron overload only when grown on glucose as a carbon source. Effective concentration of ferrous iron is much higher than that found in natural environments. Effects of ferrous iron are strictly oxygen dependent, what suggest that the formation of hydroxyl radicals in the Fenton reaction is a cause of the toxicity. Respiratory deficiency and pretreatment of cells with antimycin A prevent toxic effects in the late exponential phase of growth, whereas uncouplers and 2mM magnesium salts completely protect even the most vulnerable exponential cells. Generally, toxic effects correlate with the ability of cells to take up this metal. The results presented suggest that during ferrous iron overload iron is transported through the unspecific divalent cation uptake system which is known in fungi. The data suggest that recently described high and low affinity systems of iron uptake in yeast are the only source of iron in natural environments. PMID:9516981

  13. [Iron function and carcinogenesis].

    PubMed

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models. PMID:27455808

  14. The ubiquity of iron.

    PubMed

    Frey, Perry A; Reed, George H

    2012-09-21

    The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth. PMID:22845493

  15. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment. PMID:26314490

  16. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Martini, A. M.; Clog, M.; Douglas, P. M.; Shusta, S. S.; Valentine, D. L.; Sessions, A. L.; Eiler, J. M.

    2015-07-01

    Sources of methane to sedimentary environments are commonly identified and quantified using the stable isotopic compositions of methane. The methane "clumped-isotope geothermometer", based on the measurement of multiply substituted methane isotopologues (13CH3D and 12CH2D2), shows promise in adding new constraints to the sources and formational environments of both biogenic and thermogenic methane. However, questions remain about how this geothermometer behaves in systems with mixtures of biogenic and thermogenic gases and different biogenic environments. We have applied the methane clumped-isotope thermometer to a mixed biogenic-thermogenic system (Antrim Shale, USA) and to biogenic gas from gas seeps (Santa Barbara and Santa Monica Basin, USA), a pond on the Caltech campus, and methanogens grown in pure culture. We demonstrate that clumped-isotope based temperatures add new quantitative constraints to the relative amounts of biogenic vs. thermogenic gases in the Antrim Shale indicating a larger proportion (∼50%) of thermogenic gas in the system than previously thought. Additionally, we find that the clumped-isotope temperature of biogenic methane appears related to the environmental settings in which the gas forms. In systems where methane generation rates appear to be slow (e.g., the Antrim Shale and gas seeps), microbial methane forms in or near both internal isotopic equilibrium and hydrogen-isotope equilibrium with environmental waters. In systems where methane forms rapidly, microbial methane is neither in internal isotopic equilibrium nor hydrogen-isotope equilibrium with environmental waters. A quantitative model of microbial methanogenesis that incorporates isotopes is proposed to explain these results.

  17. Airborne flux measurements of Biogenic Isoprene over California

    SciTech Connect

    Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.

    2014-10-10

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  18. Mineralization of Bacteria in Terrestrial Basaltic Rocks: Comparison With Possible Biogenic Features in Martian Meteorite Allan Hills 84001

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; McKay, D. S.; Wentworth, S. J.; Stevens, T. O.; Taunton, A. E.; Allen, C. C.; Gibson, E. K., Jr.; Romanek, C. S.

    1998-01-01

    The identification of biogenic features altered by diagenesis or mineralization is important in determining whether specific features in terrestrial rocks and in meteorites may have a biogenic origin. Unfortunately, few studies have addressed the formation of biogenic features in igneous rocks, which may be important to these phenomena, including the controversy over possible biogenic features in basaltic martian meteorite ALH84001. To explore the presence of biogenic features in igneous rocks, we examined microcosms growing in basaltic small-scale experimental growth chambers or microcosms. Microbial communities were harvested from aquifers of the Columbia River Basalt (CRB) group and grown in a microcosm containing unweathered basalt chips and groundwater (technique described in. These microcosms simulated natural growth conditions in the deep subsurface of the CRB, which should be a good terrestrial analog for any putative martian subsurface ecosystem that may have once included ALH84001. Here we present new size measurements and photomicrographs comparing the putative martian fossils to biogenic material in the CRB microcosms. The range of size and shapes of the biogenic features on the CRB microcosm chips overlaps with and is similar to those on ALH84001 chips. Although this present work does not provide evidence for the biogenicity of ALH84001 features, we believe that, based on criteria of size, shape, and general morphology, a biogenic interpretation for the ALH84001 features remains plausible.

  19. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  20. Atmospheric DMS and Biogenic Sulfur aerosol measurements in the Arctic

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Wentworth, G.; Burkart, J.; Leaitch, W. R.; Abbatt, J.; Sharma, S.; Desiree, T. S.

    2014-12-01

    Dimethyl Sulfide (DMS) and its oxidation products were measured on the board of the Canadian Coast Guard Ship (CCGS) Amundsen and above melt ponds in the Arctic during July 2014 in the context of the NETCARE study which seeks to understand the effect of DMS and its oxidation products with respect to aerosol nucleation, as well as its effect on cloud and precipitation properties. The objective of this study is to quantify the role of DMS in aerosol growth and activation in the Arctic atmosphere. Atmospheric DMS samples were collected from different altitudes, from 200 to 9500 feet, aboard the POLAR6 aircraft expedition to determine variations in the DMS concentration and a comparison was made to shipboard DMS measurements and its effects on aerosol size fractions. The chemical and isotopic composition of sulfate aerosol size fractions was studied. Sulfur isotope ratios (34S/32S) offer a way to determine the oceanic DMS contribution to aerosol growth. The results are expected to address the contribution of anthropogenic as well as biogenic sources of aerosols to the growth of the different aerosol size fractions. In addition, aerosol sulfate concentrations were measured at the same time within precipitation and fogs to compare with the characteristics of aerosols in each size fraction with the characteristics of the sulfate in each medium. This measurement is expected to explain the contribution of DMS oxidation in aerosol activation in the Arctic summer. Preliminary results from the measurement campaign for DMS and its oxidation products in air, fog and precipitation will be presented.

  1. Biogenic emission from the Mediterranean pseudosteppe ecosystem present in Castelporziano

    NASA Astrophysics Data System (ADS)

    Ciccioli, Paolo; Fabozzi, Concetta; Brancaleoni, Enzo; Cecinato, Angelo; Frattoni, Massimiliano; Cieslik, Stanislaw; Kotzias, Dimitrios; Seufert, Guenther; Foster, Panayotis; Steinbrecher, Rainer

    Emission rates and fluxes of biogenic components emitted by a Mediterranean Pseudosteppe were measured in the BEMA test site of Castelporziano during the 1993 and 1994 field campaigns. Enclosure and micrometeorological techniques were used. Although the emission was comprised of isoprene, semi-volatile aldehydes, acetic acid and monoterpenes at trace levels, the most relevant compound in air was isoprene. Basal emission rates for isoprene (normalized at 30°C and 1000 μE PAR) as defined by Guenther et al. (1991, J. geophys. Res.96, 10,799-10,808) were obtained for this ecosystem by combining experimental observations and predictions based on the Guenther algorithm. It is shown that the Mediterranean Pseudosteppe is a strong isoprene emitter with a basal emission rate of 0.45 μg m -2 s -1 during the flowering season. At the end of the maximum physiologically active season basal emission rate ranged only in 0.1-0.15 μg m -2 s -1. A close dependence from light and temperature for the isoprene emission is observed. The decline in emission rates seems to be associated with a reduction in photosynthetic activity linked to senescence of the vegetation present in this ecosystem. The results obtained indicate that the Mediterranean Pseudosteppe is an ecosystem characterized by a rapid and strong variability in isoprene emission. It represents a source of isoprene comparable to deciduous forest areas only during the flowering season (from the middle of March to the middle of May) whereas it becomes a minor source during the end of the maximum physiologically active season.

  2. Hyperspectral observation of anthropogenic and biogenic pollution in coastal zone

    NASA Astrophysics Data System (ADS)

    Lavrova, Olga; Loupian, Evgeny; Mityagina, Marina; Uvarov, Ivan

    The work presents results of anthropogenic and biogenic pollution detection in coastal zones of the Black and Caspian Seas based on satellite hyperspetral data provided by the Hyperion and HICO instruments. Techniques developed on the basis of the analysis of spectral characteristics calculated in special points were employed to address the following problems: (a) assessment of the blooming intensity of cyanobacteria and their distribution in bays of western Crimea and discrimination between anthropogenic pollutant discharge events and algae bloom; (b) detection of anthropogenic pollution in Crimean lakes utilized as industrial liquid discharge reservoirs; (c) detection of oil pollution in areas of shelf oil production in the Caspian Sea. Information values of different spectral bands and their composites were estimated in connection with the retrieval of the main sea water components: phytoplankton, suspended matter and colored organic matter, and also various anthropogenic pollutants, including oil. Software tools for thematic hyperspectral data processing in application to the investigation of sea coastal zones and internal water bodies were developed on the basis of the See the Sea geoportal created by the Space Research Institute RAS. The geoportal is focused on the study of processes in the world ocean with the emphasis on the advantages of satellite systems of observation. The tools that were introduced into the portal allow joint analysis of quasi-simultaneous satellite data, in particular data from the Hyperion, HICO, OLI Landsat-8, ETM Landsat-7 and TM Landsat-5 instruments. Results of analysis attempts combining data from different sensors are discussed. Their strong and weak points are highlighted. The study was completed with partial financial support from The Russian Foundation for Basic Research grants # 14-05-00520-a and 13-07-12017.

  3. Biogenic silver nanoparticles: efficient and effective antifungal agents

    NASA Astrophysics Data System (ADS)

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Domdi, Latha; Gaddam, Susmila Aparna; Bobbu, Pushpalatha; Venkata, Sucharitha K.; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2016-04-01

    Biogenic synthesis of silver nanoparticles (AgNPs) by exploiting various plant materials is an emerging field and considered green nanotechnology as it involves simple, cost effective and ecofriendly procedure. In the present study AgNPs were successfully synthesized using aqueous callus extract of Gymnema sylvestre. The aqueous callus extract treated with 1nM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs showed a peak at 437 nm in the UV Visible spectrum. The synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and X-ray diffraction spectroscopy (XRD). FTIR spectra showed the peaks at 3333, 2928, 2361, 1600, 1357 and 1028 cm-1 which revealed the role of different functional groups possibly involved in the synthesis and stabilization of AgNPs. TEM micrograph clearly revealed the size of the AgNPs to be in the range of 3-30 nm with spherical shape and poly-dispersed nature; it is further confirmed by Particle size analysis that the stability of AgNPs is due its high negative Zeta potential (-36.1 mV). XRD pattern revealed the crystal nature of the AgNPs by showing the braggs peaks corresponding to (111), (200), (220) and (311) planes of face-centered cubic crystal phase of silver. Selected area electron diffraction pattern showed diffraction rings and confirmed the crystalline nature of synthesized AgNPs. The synthesized AgNPs exhibited effective antifungal activity against Candida albicans, Candida nonalbicans and Candida tropicalis.

  4. Ice Formation Potential of Field-Collected Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Carrion-Matta, A.; Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    Marine biogenic particles composed mainly of sea salt and organic material aerosolized from a mesocosm in laboratory experiments have recently been found to act as ice nuclei. How these particles relate to those collected from sea spray under ambient conditions in the field is unknown. This study reports on the heterogeneous ice nucleation potential of particles collected during the marine aerosol characterization experiment (MACE) on the south shore of Long Island, New York. Ambient aerosol size distributions were measured and particles were collected on hydrophobically coated substrates and subsequently used for ice nucleation experiments using an ice nucleation cell coupled to an optical microscope. This technique allows detection of ice formation for temperatures between 200 and 273 K and for relative humidity with respect to ice (RHice) from 100% up to water saturation. Individual ice nucleating particles were identified for subsequent chemical and physical characterization using both X-ray and electron micro-spectroscopic techniques. Concentrations of bacteria, viruses, and transparent exopolymer particles (TEP) in the bulk seawater, sea-surface microlayer (SML), and in sea spray were determined using established methods and related to airborne sea spray particles and their ice nucleation potential. Onshore aerosol size distribution measurements taken at 5 m height and 10 m away from the breaking waves, revealed a peak maximum at 100 nm and Ntot = 6.8 x 10^2 cm^-3. Bacterial, viral, and TEP were found to be enriched in the SML. Ambient particles collected during MACE were found to nucleate ice efficiently, e. g. at 215 K, ice nucleation occurred on average at 125% RHice. Results of aerosol size distributions and ice nucleation efficiencies are compared to laboratory bubble bursting experiments in which natural seawater was used. The goal of this study is to understand the connection between sea spray aerosolization and atmospheric ice cloud formation and to

  5. Biogenic Carbon on Mars: A Subsurface Chauvinistic Viewpoint

    NASA Astrophysics Data System (ADS)

    Onstott, T. C.; Lau, C. Y. M.; Magnabosco, C.; Harris, R.; Chen, Y.; Slater, G.; Sherwood Lollar, B.; Kieft, T. L.; van Heerden, E.; Borgonie, G.; Dong, H.

    2015-12-01

    A review of 150 publications on the subsurface microbiology of the continental subsurface provides ~1,400 measurements of cellular abundances down to 4,800 meter depth. These data suggest that the continental subsurface biomass is comprised of ~1016-17 grams of carbon, which is higher than the most recent estimates of ~1015 grams of carbon (1 Gt) for the marine deep biosphere. If life developed early in Martian history and Mars sustained an active hydrological cycle during its first 500 million years, then is it possible that Mars could have developed a subsurface biomass of comparable size to that of Earth? Such a biomass would comprise a much larger fraction of the total known Martian carbon budget than does the subsurface biomass on Earth. More importantly could a remnant of this subsurface biosphere survive to the present day? To determine how sustainable subsurface life could be in isolation from the surface we have been studying subsurface fracture fluids from the Precambrian Shields in South Africa and Canada. In these environments the energetically efficient and deeply rooted acetyl-CoA pathway for carbon fixation plays a central role for chemolithoautotrophic primary producers that form the base of the biomass pyramid. These primary producers appear to be sustained indefinitely by H2 generated through serpentinization and radiolytic reactions. Carbon isotope data suggest that in some subsurface locations a much larger population of secondary consumers are sustained by the primary production of biogenic CH4 from a much smaller population of methanogens. These inverted biomass and energy pyramids sustained by the cycling of CH4 could have been and could still be active on Mars. The C and H isotopic signatures of Martian CH4 remain key tools in identifying potential signatures of an extant Martian biosphere. Based upon our results to date cavity ring-down spectroscopic technologies provide an option for making these measurements on future rover missions.

  6. Historical anthropogenic radiative forcing of changes in biogenic secondary aerosol

    NASA Astrophysics Data System (ADS)

    Acosta Navarro, Juan; D'Andrea, Stephen; Pierce, Jeffrey; Ekman, Annica; Struthers, Hamish; Zorita, Eduardo; Guenther, Alex; Arneth, Almut; Smolander, Sampo; Kaplan, Jed; Farina, Salvatore; Scott, Catherine; Rap, Alexandru; Farmer, Delphine; Spracklen, Domink; Riipinen, Ilona

    2016-04-01

    Human activities have lead to changes in the energy balance of the Earth and the global climate. Changes in atmospheric aerosols are the second largest contributor to climate change after greenhouse gases since 1750 A.D. Land-use practices and other environmental drivers have caused changes in the emission of biogenic volatile organic compounds (BVOCs) and secondary organic aerosol (SOA) well before 1750 A.D, possibly causing climate effects through aerosol-radiation and aerosol-cloud interactions. Two numerical emission models LPJ-GUESS and MEGAN were used to quantify the changes in aerosol forming BVOC emissions in the past millennium. A chemical transport model of the atmosphere (GEOS-Chem-TOMAS) was driven with those BVOC emissions to quantify the effects on radiation caused by millennial changes in SOA. We found that global isoprene emissions decreased after 1800 A.D. by about 12% - 15%. This decrease was dominated by losses of natural vegetation, whereas monoterpene and sesquiterpene emissions increased by about 2% - 10%, driven mostly by rising surface air temperatures. From 1000 A.D. to 1800 A.D, isoprene, monoterpene and sesquiterpene emissions decline by 3% - 8% driven by both, natural vegetation losses, and the moderate global cooling between the medieval climate anomaly and the little ice age. The millennial reduction in BVOC emissions lead to a 0.5% to 2% reduction in climatically relevant aerosol particles (> 80 nm) and cause a direct radiative forcing between +0.02 W/m² and +0.07 W/m², and an indirect radiative forcing between -0.02 W/m² and +0.02 W/m².

  7. Biogenic carbon fluxes from global agricultural production and consumption

    SciTech Connect

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  8. Emissions of biogenic volatile organic compounds & their photochemical transformation

    NASA Astrophysics Data System (ADS)

    Yu, Zhujun; Hohaus, Thorsten; Tillmann, Ralf; Andres, Stefanie; Kuhn, Uwe; Rohrer, Franz; Wahner, Andreas; Kiendler-Scharr, Astrid

    2015-04-01

    Natural and anthropogenic activities emit volatile organic compounds (VOC) into the atmosphere. While it is known that land vegetation accounts for 90% of the global VOC emissions, only a few molecules' emission factors are understood. Through VOCs atmospheric oxidation intermediate products are formed. The detailed chemical mechanisms involved are insufficiently known to date and need to be understood for air quality management and climate change predictions. In an experiment using a PTR-ToF-MS with the new-built plant chamber SAPHIR-PLUS in Forschungszentrum Juelich, biogenic emissions of volatile organic compounds (BVOC) from Quercus ilex trees were measured. The BVOC emissions were dominated by monoterpenes, minor emissions of isoprene and methanol were also observed with the overall emission pattern typical for Quercus ilex trees in the growing season. Monoterpenes and isoprene emissions showed to be triggered by light. Additionally, their emissions showed clear exponential temperature dependence under constant light condition as reported in literature. As a tracer for leaf growth, methanol emission showed an abrupt increase at the beginning of light exposure. This is explained as instantaneous release of methanol produced during the night once stomata of leaves open upon light exposure. Emission of methanol showed a near linear increase with temperature in the range of 10 to 35 °C. BVOC were transferred from the plant chamber PLUS to the atmospheric simulation chamber SAPHIR, where their oxidation products from O3 oxidation were measured with PTR-ToF-MS. Gas phase oxidation products such as acetone and acetaldehyde were detected. A quantitative analysis of the data will be presented, including comparison of observations to the Master Chemical Mechanism model.

  9. Biogenic carbon fluxes from global agricultural production and consumption

    NASA Astrophysics Data System (ADS)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick; Kyle, G. Page; Zhang, Xuesong; Collatz, G. James; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange and spatially distributed to 0.05° resolution using Moderate Resolution Imaging Spectroradiometer satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which was respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of approximately 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  10. A marine biogenic source of atmospherically relevant ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Wilson, Theodore W.; Ladino, Luis A.; Alpert, Peter A.; Chance, Rosie; Whale, Thomas F.; Vergara Temprado, Jesús; Burrows, Susannah M.; Breckels, Mark N.; Kilthau, Wendy P.; Browse, Jo; Bertram, Allan K.; Miller, Lisa A.; Carpenter, Lucy J.; Hamilton, Jacqui F.; Carslaw, Kenneth S.; Brooks, Ian M.; Abbatt, Jonathan P. D.; Aller, Josephine Y.; Knopf, Daniel A.; Murray, Benjamin J.

    2016-04-01

    There are limited observations describing marine sources of ice nucleating particles (INPs), despite sea spray aerosol being one of the dominant sources of atmospheric particles globally. Evidence indicates that some marine aerosol particles act as INPs, but the source of these particles is unclear. The sea surface microlayer is enriched in surface active organic material representative of that found in sub-micron sea-spray aerosol. We show that the sea surface microlayer is enriched in INPs that nucleate ice under conditions pertinent to both high-altitude ice clouds and low to mid-altitude mixed-phase clouds. The INPs pass through 0.2 μm pore filters, are heat sensitive and spectroscopic analysis indicates the presence of material consistent with phytoplankton exudates. Mass spectrometric analysis of solid phase extracted dissolved organic material from microlayer and sub-surface water samples showed that the relative abundance of certain ions correlated with microlayer ice nucleation activity. However, these ions were not themselves directly responsible for ice nucleation. We propose that material associated with phytoplankton exudates is a candidate for the observed activity of the microlayer samples. We show that laboratory produced exudate from a ubiquitous marine diatom contains INPs despite its separation from diatom cells. Finally we use a parameterisation of our field data to estimate the atmospheric INP contribution from primary marine organic emissions using a global model and test the model against existing INP measurements in the remote oceans. We find that biogenic marine INPs can be dominant in remote marine environments, such as the Southern Ocean.

  11. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2007-08-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ester formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes are estimated to potentially produce greater than 2.5 μg m-3 of SOA from the various biogenic hydrocarbons under atmospheric conditions, which can be highly significant given the large array of atmospheric olefins.

  12. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2008-04-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ether formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes may potentially lead to a considerable amount of SOA from the various biogenic hydrocarbons under acidic conditions, which can be highly significant for freshly nucleated aerosols, particularly given the large array of atmospheric olefins.

  13. Iron ochre – a pre-catalyst for the cracking of methane

    PubMed Central

    Alharthi, Abdulrahman; Blackley, Ross A; Flowers, T Hugh; Hargreaves, Justin S J; Pulford, Ian D; Wigzell, James; Zhou, Wuzong

    2014-01-01

    BACKGROUND Iron ochres are gelatinous sludges that can cause problems in terms of water management. In this work, the application of iron ochre obtained from a river has been applied to catalytically crack methane – another potential waste product – into two useful products, hydrogen and a magnetic carbon-containing composite. RESULTS The powder X-ray diffraction (XRD) pattern of the iron ochre was found to be consistent with the expected 2-line ferrihydrite, and energy dispersive X-ray (EDX) analysis showed Fe to be a major component although some Si and Ca were present. The sample was observed to contain a fraction with a tubular morphology consistent with the presence of extra-cellular biogenic iron oxide formed by leptothrix. Upon exposure to methane at elevated temperatures, the material was found to transform into an active catalyst for hydrogen production yielding a magnetic carbon-containing composite material comprising filamentous carbon and encapsulating graphite. CONCLUSION The application of two waste products – iron ochre and methane – to generate two useful products – hydrogen and a magnetic carbon-containing composite – has been demonstrated. Furthermore, the ochre has been shown to comprise tubular morphology extra-cellular biogenic iron oxide which may be of interest in terms of other applications. © 2014 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25558121

  14. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  15. Iron and transfusion medicine.

    PubMed

    Waldvogel-Abramovski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M; Favrat, Bernard; Tissot, Jean-Daniel

    2013-11-01

    Blood bankers have focused their energy to secure blood transfusion, and only recently have studies been published on the effect of blood donation on iron metabolism. In many facilities, hemoglobin measurement is only performed just before or even during blood donation, but the determination of iron stores is largely ignored. The 2013 paradox of transfusion medicine is due to the fact that blood donation may be harmful and leads to iron deficiency with or without anemia, but for other individuals, it may be a healthy measure preventing type 2 diabetes. The purpose of this review is to discuss iron metabolism in the perspective of blood donation, notably regarding their possible genetic profiles that eventually will discriminate "good" iron absorbers from "bad" iron responders. PMID:24148756

  16. IRON IN MULTIPLE MYELOMA

    PubMed Central

    VanderWall, Kristina; Daniels-Wells, Tracy R; Penichet, Manuel; Lichtenstein, Alan

    2013-01-01

    Multiple myeloma is a non-curable B cell malignancy in which iron metabolism plays an important role. Patients with this disorder almost universally suffer from a clinically significant anemia, which is often symptomatic, and which is due to impaired iron utilization. Recent studies indicate that the proximal cause of dysregulated iron metabolism and anemia in these patients is cytokine-induced upregulation of hepcidin expression. Malignant myeloma cells are dependent on an increased influx of iron and therapeutic efforts are being made to target this requirement. The studies detailing the characteristics and biochemical abnormalities in iron metabolism causing anemia and the initial attempts to target iron therapeutically are described in this review. PMID:23879589

  17. Cellular iron transport.

    PubMed

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research. PMID:19344751

  18. Austempered Ductile Iron Machining

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Šajgalík, Michal; Holubják, Jozef; Piešová, Marianna; Zaušková, Lucia; Babík, Ondrej; Kuždák, Viktor; Rákoci, Jozef

    2015-12-01

    This article deals with the machining of cast iron. In industrial practice, Austempered Ductile Iron began to be used relatively recently. ADI is ductile iron that has gone through austempering to get improved properties, among which we can include strength, wear resistance or noise damping. This specific material is defined also by other properties, such as high elasticity, ductility and endurance against tenigue, which are the properties, that considerably make the tooling characteristic worse.

  19. Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm

    NASA Astrophysics Data System (ADS)

    Toner, Brandy; Manceau, Alain; Webb, Samuel M.; Sposito, Garrison

    2006-01-01

    Biofilm-embedded Mn oxides exert important controls on trace metal cycling in aquatic and soil environments. The speciation and mobility of Zn in particular has been linked to Mn oxides found in streams, wetlands, soils, and aquifers. We investigated the mechanisms of Zn sorption to a biogenic Mn oxide within a biofilm produced by model soil and freshwater Mn II-oxidizing bacteria Pseudomonas putida. The biogenic Mn oxide is a c-disordered birnessite with hexagonal layer symmetry. Zinc adsorption isotherm and Zn and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy experiments were conducted at pH 6.9 to characterize Zn sorption to this biogenic Mn oxide, and to determine whether the bioorganic components of the biofilm affect metal sorption properties. The EXAFS data were analyzed by spectral fitting, principal component analysis, and linear least-squares fitting with reference spectra. Zinc speciation was found to change as Zn loading to the biosorbent [bacterial cells, extracellular polymeric substances (EPS), and biogenic Mn oxide] increased. At low Zn loading (0.13 ± 0.04 mol Zn kg -1 biosorbent), Zn was sorbed to crystallographically well-defined sites on the biogenic oxide layers in tetrahedral coordination to structural O atoms. The fit to the EXAFS spectrum was consistent with Zn sorption above and below the Mn IV vacancy sites of the oxide layers. As Zn loading increased to 0.72 ± 0.04 mol Zn kg -1 biosorbent, Zn was also detected in octahedral coordination to these sites. Overall, our results indicate that the biofilm did not intervene in Zn sorption by the Mn-oxide because sorption to the organic material was observed only after all Mn vacancy sites were capped by Zn. The organic functional groups present in the biofilm contributed significantly to Zn removal from solution when Zn concentrations exceeded the sorption capacity of the biooxide. At the highest Zn loading studied, 1.50 ± 0.36 mol Zn kg -1 biosorbent, the proportion

  20. An in situ iron-enrichment experiment in the western subarctic Pacific (SEEDS): Introduction and summary

    NASA Astrophysics Data System (ADS)

    Takeda, Shigenobu; Tsuda, Atsushi

    2005-02-01

    of the carbon fixed by the diatom bloom remained in the surface mixed layer as biogenic particulate matter. Our findings support the hypothesis that iron limits phytoplankton growth and biomass in a ‘bottom up’ manner in this area, but the fate of algal carbon remains unknown.

  1. Physics of iron

    SciTech Connect

    Anderson, O.

    1993-10-01

    This volume comprises papers presented at the AIRAPT Conference, June 28 to July 1993. The iron sessions at the meeting were identified as the Second Ironworkers Convention. The renewal of interest stems from advances in technologies in both diamond-anvil cell (DAC) and shock wave studies as well as from controversies arising from a lack of consensus among both experimentalists and theoreticians. These advances have produced new data on iron in the pressure-temperature regime of interest for phase diagrams and for temperatures of the core/mantle and inner-core/outer-core boundaries. Particularly interesting is the iron phase diagram inferred from DAC studies. A new phase, {beta}, with a {gamma}-{beta}-{epsilon} triple point at about 30 GPa and 1190 K, and possible sixth phase, {omega}, with an {epsilon}-{Theta}-melt triple point at about 190 GPa and 4000 K are deemed possible. The importance of the equation of state of iron in consideration of Earth`s heat budget and the origin of its magnetic field invoke the interest of theoreticians who argue on the basis of molecular dynamics and other first principles methods. While the major thrust of both meetings was on the physics of pure iron, there was notable contributions on iron alloys. Hydrogen-iron alloys, iron-sulfur liquids, and the comparability to rhenium in phase diagram studies are discussed. The knowledge of the physical properties of iron were increased by several contributions.

  2. Physiology of Iron Metabolism

    PubMed Central

    Waldvogel-Abramowski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M.; Favrat, Bernard; Tissot, Jean-Daniel

    2014-01-01

    Summary A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. ‘Ironomics’ certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism. PMID:25053935

  3. 35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE CASTINGS WITH SHOT TO REMOVE AND SURFACE OXIDES AND REMAINING EXCESS METALS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  4. Field studies of biogenic sulfur aerosols in inland and coastal wetlands

    SciTech Connect

    Dill, J.A.

    1983-01-01

    Two separate field studies were conducted, each of which was designed to address a specific objective. One study was conducted around a known source of biogenic H/sub 2/S at an inland location in Monroe County, NY. The objective of the Monroe County Experiment was to determine whether or not biogenic H/sub 2/S emissions in that area contribute significantly to local atmospheric concentration levels of sulfur oxides such as SO/sub 2/ and sulfate. A second study was conducted in a coastal location at Wallops Island, Virginia, where biogenic H/sub 2/S emissions have been shown to contribute to local atmospheric concentrations of sulfur oxide species. The objective of the Wallops Island study was to investigate the properties and behavior of these biogenic sulfur gases and particulates in an attempt to ascertain which factors govern their formation. From the Monroe County field study, the properties and behavior of the collected species indicated that the sulfur oxide species were primarily of anthropogenic origin. Although it is possible that biogenic sulfur oxides could have been present in the immediate vicinity of one of the five sites, the spatial orientation of the other sites was not conducive to demonstrating that such was the case. From the Wallops Island field study, these measurements were not found to contain useful information with respect to achieving the goals of the Wallops Island Experiment. This negative result was attributed to two factors.

  5. Conditions for supplemental biogenic substrates to enhance activated sludge degradation of xenobiotic.

    PubMed

    Nguyen, Lan Huong; Chong, Nyuk-Min

    2015-10-01

    The effects of biogenic presence on the degradation of xenobiotic organics by natural microbial populations have been reported as either advantageous or disadvantageous. The inconsistency of the reports implies there could be a turning point from disadvantageous to advantageous outcomes so that conditions may exist that could bring an optimum advantage. This study tested the supplementations of varying concentrations of sucrose and peptone, separately and combined, to acclimated activated sludge degradation of xenobiotic 2,4-D, while other operational and microbiological conditions were held constant. Our test results showed that biogenic may indeed enhance or slow down xenobiotic degradation rates. The highest enhancements exist at concentrations of 50 and 80 mg/L, respectively, for sucrose and peptone when supplemented separately, and 20 mg/L sucrose and 40 mg/L peptone combined. Conditions for advantageous biogenic supplementation were identified for activated sludge degradation of a xenobiotic; specifically, the highest degradation rate enhancements occurred when biogenic supplementation was approximately 0.5 to 0.7 the concentration of 2,4-D base on chemical oxygen demand (COD), which brought a biomass yield of approximately double that yielded by 2,4-D. Kinetics analyses provided clues for the possible causes of advantageous and disadvantageous effects due to biogenic supplementation. PMID:26062533

  6. Methyl Chavicol: Characterization of its Biogenic Emission Rate, Abundance, and Oxidation Products in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J.; Kuster, W.; Degouw, J.; Cahill, T. M.; Holzinger, R.

    2008-12-01

    We report quantitative measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments: gas chromatograph with mass spectrometer detector (GC-MS), proton transfer reaction mass spectrometer (PTR-MS), and thermal desorption aerosol GC-MS (TAG). Previously identified as a potential bark beetle disruptant, methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light and temperature dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68 % of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μ gCg-1h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many species. We propose this newly- characterized biogenic compound should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  7. Biogenic silica in Lake Baikal sediments: results from 1990-1992 American cores

    USGS Publications Warehouse

    Carter, Susan J.; Colman, Steven M.

    1994-01-01

    The Lake Baikal Paleoclimate Project is a joint Russian-American program established to study the paleoclimate of Central Asia. During three summer field seasons, duplicate Russian and American cores were taken at a number of sites in different sedimentary environments in the lake. Eight cores returned to the U.S. were quantitatively analyzed for biogenic silica using a single-step 5-hour alkaline leach, followed by dissolved silicon analysis by inductively-coupled-plasma atomic-emission spectroscopy. Sediments of Holocene age in these cores have biogenic silica maxima that range from about 15 to 80 percent. An underlying zone in each core with low biogenic-silica concentrations (0 to 5 percent) dates from the last glacial maximum. The transition from the last glaciation to the present interglaciation, recorded by biogenic silica, began about 13,000 years ago. Biogenic silica profiles from these cores appear to be a good measure of past diatom productivity and a useful basis for paleoclimatic interpretations.

  8. Antropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Bratton, J.F.

    2003-01-01

    Sediment cores as long as 20 m, dated by 14C, 210Pb, and 137Cs methods and pollen stratigraphy, provide a history of diatom productivity and sediment-accumulation rates in Chesapeake Bay. We calculated the flux of biogenic silica and total sediment for the past 1500 yr for two high-sedimentation-rate sites in the mesohaline section of the bay. The data show that biogenic silica flux to sediments, an index of diatom productivity in the bay, as well as its variability, were relatively low before European settlement of the Chesapeake Bay watershed. In the succeeding 300-400 yr, the flux of biogenic silica has increased by a factor of 4 to 5. Biogenic silica fluxes still appear to be increasing, despite recent nutrient-reduction efforts. The increase in diatom-produced biogenic silica has been partly masked (in concentration terms) by a similar increase in total sediment flux. This history suggests the magnitude of anthropogenic disturbance of the estuary and indicates that significant changes had occurred long before the twentieth century.

  9. Anthropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Bratton, John F.

    2003-01-01

    Sediment cores as long as 20 m, dated by 14C, 210Pb, and 137Cs methods and pollen stratigraphy, provide a history of diatom productivity and sediment-accumulation rates in Chesapeake Bay. We calculated the flux of biogenic silica and total sediment for the past 1500 yr for two high-sedimentation-rate sites in the mesohaline section of the bay. The data show that biogenic silica flux to sediments, an index of diatom productivity in the bay, as well as its variability, were relatively low before European settlement of the Chesapeake Bay watershed. In the succeeding 300–400 yr, the flux of biogenic silica has increased by a factor of 4 to 5. Biogenic silica fluxes still appear to be increasing, despite recent nutrient-reduction efforts. The increase in diatom-produced biogenic silica has been partly masked (in concentration terms) by a similar increase in total sediment flux. This history suggests the magnitude of anthropogenic disturbance of the estuary and indicates that significant changes had occurred long before the twentieth century.

  10. Characterization of Highly Oxidized Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol.

    PubMed

    Tu, Peijun; Hall, Wiley A; Johnston, Murray V

    2016-04-19

    In this work, highly oxidized multifunctional molecules (HOMs) in fresh and aged secondary organic aerosol (SOA) derived from biogenic precursors are characterized with high-resolution mass spectrometry. Fresh SOA was generated by mixing ozone with a biogenic precursor (β-pinene, limonene, α-pinene) in a flow tube reactor. Aging was performed by passing the fresh SOA through a photochemical reactor where it reacted with hydroxyl radicals. Although these aerosols were as a whole not highly oxidized, molecular analysis identified a significant number of HOMs embedded within it. HOMs in fresh SOA consisted mostly of monomers and dimers, which is consistent with condensation of extremely low-volatility organic compounds (ELVOCs) that have been detected in the gas phase in previous studies and linked to SOA particle formation. Aging caused an increase in the average number of carbon atoms per molecule of the HOMs, which is consistent with particle phase oxidation of (less oxidized) oligomers already existing in fresh SOA. HOMs having different combinations of oxygen-to-carbon ratio, hydrogen-to-carbon ratio and average carbon oxidation state are discussed and compared to low volatility oxygenated organic aerosol (LVOOA), which has been identified in ambient aerosol based on average elemental composition but not fully understood at a molecular level. For the biogenic precursors and experimental conditions studied, HOMs in fresh biogenic SOA have molecular formulas more closely resembling LVOOA than HOMs in aged SOA, suggesting that aging of biogenic SOA is not a good surrogate for ambient LVOOA. PMID:27000653

  11. Safety assessment of the biogenic amines in fermented soya beans and fermented bean curd.

    PubMed

    Yang, Juan; Ding, Xiaowen; Qin, Yingrui; Zeng, Yitao

    2014-08-01

    To evaluate the safety of biogenic amines, high performance liquid chromatography (HPLC) was used to evaluate the levels of biogenic amines in fermented soya beans and fermented bean curd. In fermented soya beans, the total biogenic amines content was in a relatively safe range in many samples, although the concentration of histamine, tyramine, and β-phenethylamine was high enough in some samples to cause a possible safety threat, and 8 of the 30 samples were deemed unsafe. In fermented bean curd, the total biogenic amines content was more than 900 mg/kg in 19 white sufu amples, a level that has been determined to pose a safety hazard; putrescine was the only one detected in all samples and also had the highest concentration, which made samples a safety hazard; the content of tryptamine, β-phenethylamine, tyramine, and histamine had reached the level of threat to human health in some white and green sufu samples, and that may imply another potential safety risk; and 25 of the 33 samples were unsafe. In conclusion, the content of biogenic amines in all fermented soya bean products should be studied and appropriate limits determined to ensure the safety of eating these foods. PMID:25029555

  12. The Effects of Drought on Predictions of Air Quality in Texas: Vegetation and Biogenic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    McDonald-Buller, E.; Huang, L.; McGaughey, G.; Kimura, Y.; Allen, D.

    2014-12-01

    Biogenic hydrocarbons, primarily isoprene and monoterpenes, are important precursors for tropospheric ozone and secondary organic aerosol formation. Annual biogenic emissions in Texas ranked first within the continental United States in the 2011 National Emission Inventory. In recent years, the effects of drought in Texas have been among the most severe in the southern United States; during 2011, more than 80% of the state was under exceptional drought. Understanding the effects of drought on vegetation and biogenic emissions is important as the state concurrently faces requirements to achieve and maintain attainment with the National Ambient Air Quality Standard (NAAQS) for ozone in several large metropolitan areas. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) has been utilized extensively for the estimation of biogenic emissions on global and regional scales. This research investigates the interannual variability in leaf area index and isoprene and monoterpene emissions estimates from MEGAN in eastern Texas climate regions with diverse climatology and land cover. In MEGAN, the adjustment to emissions from a standardized set of environmental conditions is determined using a multiplication of individual activity factors for leaf age, soil moisture, and the canopy environment. The research also interprets and quantifies differences in environmental activity factors between years with extreme to exceptional drought and average to above average precipitation in eastern Texas and identifies influences on biogenic emissions estimates from MEGAN.

  13. Control of Biogenic Amines in Food—Existing and Emerging Approaches

    PubMed Central

    Naila, Aishath; Flint, Steve; Fletcher, Graham; Bremer, Phil; Meerdink, Gerrit

    2010-01-01

    Biogenic amines have been reported in a variety of foods, such as fish, meat, cheese, vegetables, and wines. They are described as low molecular weight organic bases with aliphatic, aromatic, and heterocyclic structures. The most common biogenic amines found in foods are histamine, tyramine, cadaverine, 2-phenylethylamine, spermine, spermidine, putrescine, tryptamine, and agmatine. In addition octopamine and dopamine have been found in meat and meat products and fish. The formation of biogenic amines in food by the microbial decarboxylation of amino acids can result in consumers suffering allergic reactions, characterized by difficulty in breathing, itching, rash, vomiting, fever, and hypertension. Traditionally, biogenic amine formation in food has been prevented, primarily by limiting microbial growth through chilling and freezing. However, for many fishing based subsistence populations, such measures are not practical. Therefore, secondary control measures to prevent biogenic amine formation in foods or to reduce their levels once formed need to be considered as alternatives. Such approaches to limit microbial growth may include hydrostatic pressures, irradiation, controlled atmosphere packaging, or the use of food additives. Histamine may potentially be degraded by the use of bacterial amine oxidase or amine-negative bacteria. Only some will be cost-effective and practical for use in subsistence populations. PMID:21535566

  14. Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials

    SciTech Connect

    Bischoff, W.D.; Mackenzie, F.T.; Bishop, F.C.

    1987-06-01

    Free-drift dissolution data and inverse time plots were used to evaluate the stabilities of synthetic and biogenic magnesian calcites in aqueous solutions at 25/sup 0/C and 1 atm total pressure. Synthetic phases with MgCO/sub 3/ concentrations below 6 mole percent have stoichiometric ion activity products that are less than the value for calcite, whereas the values for phases with higher concentrations are greater than that of calcite. For synthetic phases, stability is a smooth function of composition, and all phases have values of ion activity products less than that for aragonite. Average sea water at 25/sup 0/ and 1 atm total pressure is supersaturated with respect to all synthetic phases in the compositional range studied. The difference in stability between biogenic materials and synthetic phases is due to greater variation in chemical and physical heterogeneities found for the biogenic samples. If it is assumed that the results of the dissolution experiments reflect only differences in Gibbs free energies of formation between synthetic phases and biogenic materials of similar Mg concentration, the biogenic materials are 200-850 j/mol less stable than the synthetic phases. Only the results of synthetic dissolution experiments should be used to model the thermodynamic behavior of the magnesian calcite solid solution. The results for the synthetic phases, however, may not be appropriate to use for interpreting diagenetic reaction pathways for magnesian calcites in modern sediments, except as a basis of comparison with the behavior of natural minerals.

  15. Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness.

    PubMed

    Buchs, Benjamin; Evangelou, Michael W H; Winkel, Lenny H E; Lenz, Markus

    2013-03-01

    Microbial selenium (Se) bioremediation is based on conversion of water soluble, toxic Se oxyanions to water insoluble, elemental Se. Formed biogenic elemental Se is of nanometer size, hampering straightforward separation from the aqueous phase. This study represents the first systematic investigation on colloidal properties of pure biogenic Se suspensions, linking electrophoretic mobility (ζ-potential) to column settling behavior. It was demonstrated that circumneutral pH, commonly applied in bioremediation, is not appropriate for gravitational separation due to the negative ζ-potential preventing agglomeration. Mono/di/trivalent counter cations and acidity (protons) were used to screen efficiently the intrinsic negative charge of biogenic Se suspensions at circumneutral pH. Fast settling was induced by La(3+) addition in the micromolar range (86.2 ± 3.5% within 0.5 h), whereas considerably higher concentrations were needed when Ca(2+) or Na(+) was used. Colloidal stability was furthermore studied in different model waters. It was demonstrated that surface waters as such represent a fragile system regarding colloidal stability of biogenic Se suspensions (ζ-potential ∼ -30 mV), whereas dissolved organic matter increases colloidal stability. In marine waters, biogenic Se is colloidally destabilized and is thus expected to settle, representing a potential sink for Se during transport in the aquatic environment. PMID:23363320

  16. Neurodegeneration with Brain Iron Accumulation

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Neurodegeneration with Brain Iron Accumulation Information Page Synonym(s): Hallervorden-Spatz Disease, ... done? Clinical Trials Organizations What is Neurodegeneration with Brain Iron Accumulation? Neurodegeneration with brain iron accumulation (NBIA) ...

  17. Perspectives on nutritional iron deficiency.

    PubMed

    Hallberg, L

    2001-01-01

    Nutritional iron deficiency (ID) is caused by an intake of dietary iron insufficient to cover physiological iron requirements. Studies on iron absorption from whole diets have examined relationships between dietary iron bioavailability/absorption, iron losses, and amounts of stored iron. New insights have been obtained into regulation of iron absorption and expected rates of changes of iron stores or hemoglobin iron deficits when bioavailability or iron content of the diet has been modified and when losses of iron occur. Negative effects of ID are probably related to age, up to about 20 years, explaining some of earlier controversies. Difficulties in establishing the prevalence of mild ID are outlined. The degree of underestimation of the prevalence of mild ID when using multiple diagnostic criteria is discussed. It is suggested that current low-energy lifestyles are a common denominator for the current high prevalence not only of ID but also of obesity, diabetes, and osteoporosis. PMID:11375427

  18. Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector

    PubMed Central

    Dhanasekaran, Dharumadurai; Thangaraj, Ramasamy

    2013-01-01

    Objective To evaluate the larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Methods The synthesized AgNPs were characterized by UV-vis. spectrum, Fourier transform infrared and X-ray diffraction. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 10 min. The different concentrations of 5, 2.5, 1.25, 0.625 and 0.312 mg/L silver nanoparticles were tested against the Culex larvae. Results The mortality rate of Agaricus bisporus biogenic nanoparticles against Culex larvae are 5 mg/L (100%), 2.5 mg/L (81%), 1.25 mg/L (62%), 0.625 mg/L (28%) and 0.312 mg/L (11%). Conclusions These results suggest that the synthesized biogenic AgNPs have the potential to be used as an ideal eco-friendly approach for controlling Culex larvae.

  19. BOREAS TGB-5 Biogenic Soil Emissions of NO and N2O

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Winstead, E. L.; Parsons, D. A. B.; Scholes, M. C.; Cofer, W. R.; Cahoon, D. R.; Sebacher, D. I.; Scholes, R. J.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-5 team made several measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains biogenic soil emissions of nitric oxide and nitrous oxide that were measured over a wide range of spatial and temporal site parameters. Since very little is known about biogenic soil emissions of nitric oxide and nitrous oxide from the boreal forest, the goal of the measurements was to characterize the biogenic soil fluxes of nitric oxide and nitrous oxide from black spruce and jack pine areas in the boreal forest. The diurnal variation and monthly variation of the emissions was examined as well as the impact of wetting through natural or artificial means. Temporally, the data cover mid-August 1993, June to August 1994, and mid-July 1995. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  20. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    NASA Technical Reports Server (NTRS)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  1. Simultaneous determination of selected biogenic amines in alcoholic beverage samples by isotachophoretic and chromatographic methods.

    PubMed

    Jastrzębska, Aneta; Piasta, Anna; Szłyk, Edward

    2014-01-01

    A simple and useful method for the determination of biogenic amines in beverage samples based on isotachophoretic separation is described. The proposed procedure permitted simultaneous analysis of histamine, tyramine, cadaverine, putrescine, tryptamine, 2-phenylethylamine, spermine and spermidine. The data presented demonstrate the utility, simplicity, flexibility, sensitivity and environmentally friendly character of the proposed method. The precision of the method expressed as coefficient of variations varied from 0.1% to 5.9% for beverage samples, whereas recoveries varied from 91% to 101%. The results for the determination of biogenic amines were compared with an HPLC procedure based on a pre-column derivatisation reaction of biogenic amines with dansyl chloride. Furthermore, the derivatisation procedure was optimised by verification of concentration and pH of the buffer, the addition of organic solvents, reaction time and temperature. PMID:24350674

  2. The Ge/Si ratio as a tool to recognize biogenic silica in chert

    NASA Astrophysics Data System (ADS)

    Tribovillard, Nicolas

    2013-03-01

    Germanium and silicon, dissolved in seawater, are considered to be incorporated into biogenic opal with no or little fractionation, which permitted to use diatoms as reliable recorders of seawater Ge/Si. Does some fractionation occur during diagenesis, preventing the use of Ge/Si in ancient sediments? We examined the Ge/Si ratio of fossil sponges and flint nodules of the Cretaceous Chalk Formation of northern France. Though disputed, silica in this formation is considered to originate from sponges. No fractionation is observed between sponges and diagenetic flints, which allows us to observe whether Ge/Si bears a biogenic or detrital signature. We may thus confirm that sponges were the main silica supplier during the chalk deposition. The Ge/Si ratio may be used to identify a biogenic signature in cherts where the origin of silica is dubious.

  3. Fluorous affinity-based separation techniques for the analysis of biogenic and related molecules.

    PubMed

    Hayama, Tadashi; Yoshida, Hideyuki; Yamaguchi, Masatoshi; Nohta, Hitoshi

    2014-12-01

    Perfluoroalkyl-containing compounds have a unique 'fluorous' property that refers to the remarkably specific affinity they share. Fluorous compounds can be easily isolated from non-fluorous species on the perfluoroalkyl-functionalized stationary phases used in fluorous solid-phase extraction and fluorous liquid chromatography by means of fluorous-fluorous interactions (fluorophilicity). Recently, this unique specificity has been applied to the highly selective enrichment and analysis of different classes of biogenic and related compounds in complex samples. Because the biogenic compounds are generally not 'fluorous', they must be derivatized with appropriate perfluoroalkyl group-containing reagent in order to utilize fluorous interaction. In this review, we introduce the application of fluorous affinity techniques including derivatization methods to biogenic sample analysis. PMID:24865313

  4. Triple oxygen isotopes in biogenic and sedimentary carbonates

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  5. The Li isotope composition of modern biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Dellinger, M.; West, A. J.; Adkins, J. F.; Paris, G.; Eagle, R.; Freitas, P. S.; Bagard, M. L.; Ries, J. B.; Corsetti, F. A.; Pogge von Strandmann, P.; Ullmann, C. V.

    2015-12-01

    The lithium stable isotope composition (δ7Li) of sedimentary carbonates has great potential to unravel weathering rates and intensity in the past, with implications for understanding the carbon cycle over geologic time. However, so far very little is known about the potential influence of fractionation of the stable Li isotope composition of biogenic carbonates. Here, we investigate the δ7Li of various organisms (particularly mollusks, echinoderms and brachiopods) abundant in the Phanerozoic record, in order to understand which geologic archives might provide the best targets for reconstructing past seawater composition. The range of measured samples includes (i) modern calcite and aragonite shells from variable natural environments, (ii) shells from organisms grown under controlled conditions (temperature, salinity, pCO2), and (iii) fossil shells from a range of species collected from Miocene deposits. When possible, both the inner and outer layers of bivalves were micro-sampled to assess the intra-shell heterogeneity. For calcitic shells, the measured δ7Li of bivalve species range from +32 to +41‰ and is systematically enriched in the heavy isotope relative to seawater (31 ‰) and to inorganic calcite, which is characterized by Δ7Licalcite-seawater = -2 to -5‰ [1]. The Li isotope composition of aragonitic bivalves, ranging from +16 to +22‰, is slightly fractionated to both high and low δ7Li relative to inorganic aragonite. The largest intra-shell Li isotope variability is observed for mixed calcite-aragonite shells (more than 20‰) whereas in single mineralogy shells, intra-shell δ7Li variability is generally less than 3‰. Overall, these results suggest a strong influence of vital effects on Li isotopes during bio-calcification of bivalve shells. On the contrary, measured brachiopods systematically exhibit fractionation that is very similar to inorganic calcite, with a mean δ7Li of 27.0±1.5‰, suggesting that brachiopods may provide good

  6. Taking iron supplements

    MedlinePlus

    ... The stools are tarry-looking as well as black If they have red streaks Cramps, sharp pains, or soreness in the stomach occur Liquid forms of iron may stain your teeth. Try mixing the iron with water or other liquids (such as fruit juice or ...

  7. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  8. Mineral ecophysiological evidence for microbial activity in banded iron formation

    SciTech Connect

    Li, Dr. Yi-Liang; Konhauser, Dr, Kurt; Cole, David R; Phelps, Tommy Joe

    2011-01-01

    The phosphorus composition of banded-iron formations (BIFs) has been used as a proxy for Precambrian seawater composition and the paleoeredox state of Earth's surface environment. However, it is unclear whether the phosphorus in BIFs originally entered the sediment as a sorbed component of the iron oxyhydroxide particles, or whether it was incorporated into the biomass of marine phytoplankton. We conducted high-resolution mineral analyses and report here the first detection of an Fe(III) acetate salt, as well as nanocrystals of apatite in association with magnetite, in the 2.48 Ga Dales Gorge Member of the Brockman Iron Formation (a BIF), Hamersley, Western Australia. The clusters of apatite are similar in size and morphology to biogenic apatite crystals resulting from biomass decay in Phanerozoic marine sediments, while the formation of an Fe(III) acetate salt and magnetite not only implies the original presence of biomass in the BIF sediments, but also that organic carbon likely served as an electron donor during bacterial Fe(III) reduction. This study is important because it suggests that phytoplankton may have played a key role in the transfer of phosphorus (and other trace elements) from the photic zone to the seafloor.

  9. Boron in chert and Precambrian siliceous iron formations

    NASA Astrophysics Data System (ADS)

    Truscott, Marilyn G.; Shaw, Denis M.

    1984-11-01

    In order to assess the importance of siliceous sediments as a sink for oceanic B and to determine the effect of diagenesis on the mobilization of B, samples were analysed from chert nodules, bedded cherts, and siliceous banded iron formations from a variety of sedimentary environments and geologic ages. Boron analyses on bulk samples were made by prompt gamma neutron activation analysis. The distribution of B in rocks was mapped using α-track methods. Nodular Phanerozoic cherts typically contain 50-150 ppm B, and bedded cherts somewhat less. The B is initially concentrated in tests of silica-secreting organisms, but some is lost in early diagenesis as silica progressively recrystallises to quartz. Banded iron formation silica of Archean and Proterozoic age usually contains < 2 ppm B. This conforms with the view that such silica is not of biogenic origin but, since many iron formations are undoubtedly of marine origin, raises the question whether Precambrian oceans were impoverished in B. Analyses of Precambrian marine argillaceous sediments, averaging 70 ppm B, do not resolve this question.

  10. Uncertainty in biogenic isoprene emissions and its impacts on tropospheric chemistry in East Asia.

    PubMed

    Han, K M; Park, R S; Kim, H K; Woo, J H; Kim, J; Song, C H

    2013-10-01

    In this study, the accuracy of biogenic isoprene emission fluxes over East Asia during two summer months (July and August) was examined by comparing two tropospheric HCHO columns (ΩHCHO) obtained from the SCIAMACHY sensor and the Community Multi-scale Air Quality (CMAQ v4.7.1) model simulations, using three available biogenic isoprene emission inventories over East Asia: i) GEIA, ii) MEGAN and iii) MOHYCAN. From this comparative analysis, the tropospheric HCHO columns from the CMAQ model simulations, using the MEGAN and MOHYCAN emission inventories (Ω(CMAQ, MEGAN) and Ω(CMAQ, MOHYCAN)), were found to agree well with the tropospheric HCHO columns from the SCIAMACHY observations (Ω(SCIA)). Secondly, the propagation of such uncertainties in the biogenic isoprene emission fluxes to the levels of atmospheric oxidants (e.g., OH and HO2) and other atmospheric gaseous/particulate species over East Asia during the two summer months was also investigated. As the biogenic isoprene emission fluxes decreased from the GEIA to the MEGAN emission inventories, the levels of OH radicals increased by factors of 1.39 and 1.75 over Central East China (CEC) and South China, respectively. Such increases in the OH radical mixing ratios subsequently influence the partitioning of HO(y) species. For example, the HO2/OH ratios from the CMAQ model simulations with GEIA isoprene emissions were 2.7 times larger than those from the CMAQ model simulations based on MEGAN isoprene emissions. The large HO2/OH ratios from the CMAQ model simulations with the GEIA biogenic emission were possibly due to the overestimation of GEIA biogenic isoprene emissions over East Asia. It was also shown that such large changes in HO(x) radicals created large differences on other tropospheric compounds (e.g., NO(y) chemistry) over East Asia during the summer months. PMID:23867846

  11. Insights into Methane Formation Temperatures, Biogenic Methanogenesis, and Natural Methane Emissions from Clumped Isotopes

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Stolper, D. A.; Walter Anthony, K. M.; Dallimore, S.; Paull, C. K.; Wik, M.; Crill, P. M.; Winterdahl, M.; Smith, D. A.; Luhmann, A. J.; Ding, K.; Seyfried, W. E., Jr.; Eiler, J. M.; Ponton, C.; Sessions, A. L.

    2015-12-01

    Multiply substituted isotopologues of methane are a valuable new tool for characterizing and understanding the source of methane in different Earth environments. Here we present methane clumped isotope results from natural gas wells, hydrothermal vents, marine and lacustrine methane seeps, and culture experiments. We observe a wide range of formation temperatures for thermogenic methane. Methane samples from low-maturity reservoirs indicate formation temperatures between 102-144° C, high-maturity conventional and shale gasses indicate temperatures between 158-246 °C, and thermogenic coal gases indicate temperatures between 174-267 °C. Methane formation temperatures generally correlate positively with δ13C, and negatively with gas wetness indices. Methane samples from a set of marine hydrothermal vents indicate a formation temperature of 290-350 °C. Methane sampled from subsurface and marine biogenic sources typically indicate temperatures consistent with the formation environment (0-64° C). In contrast, freshwater biogenic methane samples, and cultures of hydrogenotrophic and methylotrophic methanogens, express low levels of isotopic clumping inconsistent with their formation temperature. These data and complementary models suggest that kinetic isotope effects, likely modulated by rates and pathways of methanogenesis, affect biogenic methane in cultures and freshwater environments. Alternatively, non-equilibrium signatures may result from mixing of methane with widely differing δD and δ13C values. Analyses of biogenic methane emissions from lakes indicate a correlation between methane flux and non-equilibrium clumped isotope fractionations in a given lake. Results from large methane seeps in Alaskan lakes confirm that some seeps emit thermogenic methane, but also indicate that other seeps emit subsurface biogenic methane or variable mixtures of biogenic and thermogenic methane. These results point to diverse sources for large Arctic methane seeps.

  12. Effects of Spartina alterniflora invasion on biogenic elements in a subtropical coastal mangrove wetland.

    PubMed

    Yu, Xiaoqing; Yang, Jun; Liu, Lemian; Tian, Yuan; Yu, Zheng

    2015-02-01

    The invasion by exotic cordgrass (Spartina alterniflora) has become one of the most serious and challenging environmental and ecological problems in coastal China because it can have adverse effects on local native species, thereby changing ecosystem processes, functions, and services. In this study, 300 surface sediments were collected from 15 stations in the Jiulong River Estuary, southeast China, across four different seasons, in order to reveal the spatiotemporal variability of biogenic elements and their influencing factors in the subtropical coastal mangrove wetland. The biogenic elements including carbon, nitrogen, and sulfur (C, N, and S) were determined by an element analyzer, while the phosphorus (P) was determined by a flow injection analyzer. The concentrations of biogenic elements showed no significant differences among four seasons except total phosphorus (TP); however, our ANOVA analyses revealed a distinct spatial pattern which was closely related with the vegetation type and tidal level. Values of total carbon (TC) and total nitrogen (TN) in the surface sediment of mangrove vegetation zones were higher than those in the cordgrass and mudflat zones. The concentrations of TC, TN, TP, and total sulfur (TS) in the high tidal zones were higher than those in the middle and low tidal zones. Redundancy analysis (RDA) revealed that tidal level, vegetation type, and season had some significant influence on the distribution of biogenic elements in the Jiulong River Estuary, by explaining 18.2, 7.7, and 4.9 % of total variation in the four biogenic elements, respectively. In conclusion, S. alterniflora invasion had substantial effects on the distributions of biogenic elements in the subtropical coastal wetland. If regional changes in the Jiulong River Estuary are to persist and much of the mangrove vegetation was to be replaced by cordgrass, there would be significant decreases on the overall storage of C and N in this coastal zone. Therefore, the native

  13. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments.

    PubMed

    Durán, Nelson; Nakazato, Gerson; Seabra, Amedea B

    2016-08-01

    The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols. PMID:27289481

  14. Biogenic contribution to PM-2.5 ambient aerosol from radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    Lewis, C.; Klouda, G.; Ellenson, W.

    2003-04-01

    Knowledge of the relative contributions of biogenic versus anthropogenic sources to ambient aerosol is of great interest in the formulation of strategies to achieve nationally mandated air quality standards. Radiocarbon (14C) measurements provide a means to quantify the biogenic fraction of any carbon-containing sample of ambient aerosol. In the absence of an impact from biomass burning (e.g., during summertime) such measurements can provide an estimate of the contribution of biogenic secondary organic aerosol, from biogenic volatile organic compound precursors. Radiocarbon results for 11.5-h PM-2.5 samples collected near Nashville, Tennessee, USA, during summer 1999 will be presented. On average the measured biogenic fraction was surprisingly large (more than half), with the average biogenic fraction for night samples being only slightly smaller than for day samples. Discussion will include (a) description of the radiocarbon methodology, (b) use of radiocarbon measurements on local vegetation and fuel samples as calibration data, (c) concurrent measurements of organic carbon and elemental carbon ambient concentrations, (d) assessment of organic aerosol sampling artifact through use of organic vapor denuders, variable face velocities, and filter extraction, and (e) comparison with published radiocarbon results obtained in Houston, Texas in a similar study. Disclaimer: This work has been funded wholly or in part by the United States Environmental Protection Agency under Interagency Agreement No. 13937923 to the National Institute of Standards and Technology, and Contract No. 68-D5-0049 to ManTech Environmental Tecnology, Inc. It has been subjected to Agency review and approved for publication.

  15. Iron budgets for three distinct biogeochemical sites around the Kerguelen archipelago (Southern Ocean) during the natural fertilisation experiment KEOPS-2

    NASA Astrophysics Data System (ADS)

    Bowie, A. R.; van der Merwe, P.; Quéroué, F.; Trull, T.; Fourquez, M.; Planchon, F.; Sarthou, G.; Chever, F.; Townsend, A. T.; Obernosterer, I.; Sallée, J.-B.; Blain, S.

    2014-12-01

    Iron availability in the Southern Ocean controls phytoplankton growth, community composition and the uptake of atmospheric CO2 by the biological pump. The KEOPS-2 experiment took place around the Kerguelen plateau in the Indian sector of the Southern Ocean, a region naturally fertilised with iron at the scale of hundreds to thousands of square kilometres, producing a mosaic of spring blooms which showed distinct biological and biogeochemical responses to fertilisation. This paper presents biogeochemical iron budgets (incorporating vertical and lateral supply, internal cycling, and sinks) for three contrasting sites: an upstream high-nutrient low-chlorophyll reference, over the plateau, and in the offshore plume east of Kerguelen Island. These budgets show that distinct regional environments driven by complex circulation and transport pathways are responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. Iron supply from "new" sources to surface waters of the plume was double that above the plateau and 20 times greater than at the reference site, whilst iron demand (measured by cellular uptake) in the plume was similar to the plateau but 40 times greater than the reference. "Recycled" iron supply by bacterial regeneration and zooplankton grazing was a relative minor component at all sites (<8% of "new" supply), in contrast to earlier findings from other biogeochemical iron budgets in the Southern Ocean. Over the plateau, a particulate iron dissolution term of 2.5% was invoked to balance the budget; this approximately doubled the standing stock of dissolved iron in the mixed layer. The exchange of iron between dissolved, biogenic and lithogenic particulate pools was highly dynamic in time and space, resulting in a decoupling of iron supply and carbon export and, importantly, controlling the efficiency of fertilisation.

  16. Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study, KEOPS-2

    NASA Astrophysics Data System (ADS)

    Bowie, A. R.; van der Merwe, P.; Quéroué, F.; Trull, T.; Fourquez, M.; Planchon, F.; Sarthou, G.; Chever, F.; Townsend, A. T.; Obernosterer, I.; Sallée, J.-B.; Blain, S.

    2015-07-01

    Iron availability in the Southern Ocean controls phytoplankton growth, community composition and the uptake of atmospheric CO2 by the biological pump. The KEOPS-2 (KErguelen Ocean and Plateau compared Study 2) "process study", took place around the Kerguelen Plateau in the Indian sector of the Southern Ocean. This is a region naturally fertilised with iron on the scale of hundreds to thousands of square kilometres, producing a mosaic of spring blooms which show distinct biological and biogeochemical responses to fertilisation. This paper presents biogeochemical iron budgets (incorporating vertical and lateral supply, internal cycling, and sinks) for three contrasting sites: an upstream high-nutrient low-chlorophyll reference, over the plateau and in the offshore plume east of the Kerguelen Islands. These budgets show that distinct regional environments driven by complex circulation and transport pathways are responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. Iron supply from "new" sources (diffusion, upwelling, entrainment, lateral advection, atmospheric dust) to the surface waters of the plume was double that above the plateau and 20 times greater than at the reference site, whilst iron demand (measured by cellular uptake) in the plume was similar to that above the plateau but 40 times greater than at the reference site. "Recycled" iron supply by bacterial regeneration and zooplankton grazing was a relatively minor component at all sites (< 8 % of new supply), in contrast to earlier findings from other biogeochemical iron budgets in the Southern Ocean. Over the plateau, a particulate iron dissolution term of 2.5 % was invoked to balance the budget; this approximately doubled the standing stock of dissolved iron in the mixed layer. The exchange of iron between dissolved, biogenic particulate and lithogenic particulate pools was highly dynamic in time and space

  17. Hypersensitivity from intravenous iron products.

    PubMed

    Bircher, Andreas J; Auerbach, Michael

    2014-08-01

    In the last several years, intravenous therapy with iron products has been more widely used. Although it has been a standard procedure in dialysis-associated anemia since the early 1990s, its use is expanding to a host of conditions associated with iron deficiency, especially young women with heavy uterine bleeding and pregnancy. Free iron is associated with unacceptable high toxicity inducing severe, hemodynamically significant symptoms. Subsequently, formulations that contain the iron as an iron carbohydrate nanoparticle have been designed. With newer formulations, including low-molecular-weight iron dextran, iron sucrose, ferric gluconate, ferumoxytol, iron isomaltoside, and ferric carboxymaltose, serious adverse events are rare. PMID:25017687

  18. Microbes: mini iron factories.

    PubMed

    Joshi, Kumar Batuk

    2014-12-01

    Microbes have flourished in extreme habitats since beginning of the Earth and have played an important role in geological processes like weathering, mineralization, diagenesis, mineral formation and destruction. Biotic mineralization is one of the most fascinating examples of how microbes have been influencing geological processes. Iron oxidizing and reducing bacteria are capable of precipitating wide varieties of iron oxides (magnetite), carbonates (siderite) and sulphides (greigite) via controlled or induced mineralization processes. Microbes have also been considered to play an important role in the history of evolution of sedimentary rocks on Earth from the formation of banded iron formations during the Archean to modern biotic bog iron and ochre deposits. Here, we discuss the role that microbes have been playing in precipitation of iron and the role and importance of interdisciplinary studies in the field of geology and biology in solving some of the major geological mysteries. PMID:25320452

  19. Iron studies in hemophilia

    SciTech Connect

    Lottenberg, R.; Kitchens, C.S.; Roessler, G.S.; Noyes, W.D.

    1981-12-01

    Although iron deficiency is not recognized as a usual complication of hemophilia, we questioned whether intermittent occult loss of blood in urine or stool might predispose hemophiliacs to chronic iron deficiency. Seven men with factor VII and one with factor IX deficiency were studied. Blood studied, bone marrow aspirates, urine and stool samples, and ferrokinetics with total-body counting up to five months were examined. These data showed no excessive loss of blood during the study period; however, marrow iron stores were decidedly decreased, being absent in four subjects. We suggest that in some hemophiliacs, iron deposits in tissues such as synovial membranes may form a high proportion of the body's total iron stores.

  20. USER'S GUIDE TO THE PERSONAL COMPUTER VERSION OF THE BIOGENIC EMISSIONS INVENTORY SYSTEM (PC-BEIS2)

    EPA Science Inventory

    The document is a user's guide for an updated Personal Computer version of the Biogenic Emissions Inventory System (PC-BEIS2), allowing users to estimate hourly emissions of biogenic volatile organic compounds (BVOCs) and soil nitrogen oxide emissions for any county in the contig...

  1. Formation and destruction of biogenic amines in Chunjang (a black soybean paste) and Jajang (a black soybean sauce).

    PubMed

    Bai, Xuezhi; Byun, Bo Young; Mah, Jae-Hyung

    2013-11-15

    Chunjang and Jajang samples were analysed for biogenic amine contents by using HPLC equipped with a UV-Vis detector. Chunjang samples contained relatively large amounts of histamine (up to 273mg/kg) and tyramine (up to 131mg/kg), whereas Jajang samples had relatively small amounts of biogenic amines (mostly less than 40mg/kg). There appeared to be a strong relationship between biogenic amine contents in Chunjang and Jajang, and the biogenic amines in Chunjang were found to be pyrolysed during frying thereof to prepare Jajang. Meanwhile, the total plate counts of Chunjang samples ranged from 5 to 8logcfu/g, and most strains that were isolated from Chunjang samples were identified to be Bacillus subtilis (91.0%). The strains isolated from a sample in which relatively small amounts of biogenic amines were detected showed significantly weak abilities to produce biogenic amines. This indicates that biogenic amine contents in Chunjang are primarily attributed to bacterial abilities to produce biogenic amines. PMID:23790882

  2. Separation of biogenic materials by electrophoresis under zero gravity (L-3)

    NASA Technical Reports Server (NTRS)

    Kuroda, Masao

    1993-01-01

    Electrophoresis separates electrically charged materials by imposing a voltage between electrodes. Though free-flow electrophoresis is used without carriers such as colloids to separate and purify biogenic materials including biogenic cells and proteins in blood, its resolving power and separation efficiency is very low on Earth due to sedimentation, flotation, and thermal convection caused by the specific gravity differences between separated materials and buffer solutions. The objective of this experiment is to make a comparative study of various electrophoresis conditions on the ground and in zero-gravity in order to ultimately develop a method for separating various important 'vial' components which are difficult to separate on the ground.

  3. A search for biogenic trace gases in the atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Mckay, Christopher P.

    1989-01-01

    The detection of certain trace gases in the atmosphere of Mars may serve as a possible indicator of microbial life on the surface of Mars. Candidate biogenic gases include methane CH4, ammonia NH3, nitrous oxide N2O, and several reduced sulfur species. Chemical thermodynamic equilibrium and photochemical calculations preclude the presence of these gases in any measurable concentrations in the atmosphere of Mars in the absence of biogenic production. A search for these gases utilizing either high resolution (spectral and spatial) spectroscopy from a Mars orbiter, such as the Observer, and or in situ measurements from a Mars lander or rover, is proposed.

  4. Biogenic or Abiogenic Origin of Carbonate-Magnetite-Sulfide Assemblages in Martian Meteorite Allan Hills 84001

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.

    1998-01-01

    It has been suggested that the carbonates and submicrometer grains of magnetite, pyrrhotite, and an Fe-S phase identified as "probably griegite" were all biogenic in origin. Their arguments were based on similarities in the compositions, structures, shapes, and sizes of these minerals with terrestrial bio-minerals and the apparent absence of plausible abiogenic origins. Here we compare the carbonate assemblages to possible martian, terrestrial, and meteoritic analogs and discuss new and published arguments for and against abiogenic and biogenic origins for these minerals.

  5. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    NASA Technical Reports Server (NTRS)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  6. Volcanic ash as an oceanic iron source and sink

    NASA Astrophysics Data System (ADS)

    Rogan, Nicholas; Achterberg, Eric P.; Le Moigne, Frédéric A. C.; Marsay, Chris M.; Tagliabue, Alessandro; Williams, Richard G.

    2016-03-01

    Volcanic ash deposition to the ocean forms a natural source of iron (Fe) to surface water microbial communities. Inputs of lithogenic material may also facilitate Fe removal through scavenging. Combining dissolved Fe (dFe) and thorium-234 observations alongside modeling, we investigate scavenging of Fe in the North Atlantic following the Eyjafjallajökull volcanic eruption. Under typical conditions biogenic particles dominate scavenging, whereas ash particles dominate during the eruption. The size of particles is important as smaller scavenging particles can become saturated with surface-associated ions. Model simulations indicate that ash deposition associated with Eyjafjallajökull likely led to net Fe removal. Our model suggests a threefold greater stimulation of biological activity if ash deposition had occurred later in the growing season when the region was Fe limited. The implications of ash particle scavenging, eruption timing, and particle saturation need to be considered when assessing the impact of ash deposition on the ocean Fe cycle and productivity.

  7. Characterization of biogenic elements in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.

    1986-01-01

    Those particles that were designated cometary are aggregates of amorphous materials including carbon, iron-magnesium silicates, sulfides, metal and trace amounts of unusual phases. Most aggregates are carbon-rich with major and minor element abundances similar to a fine grained matrix of carbonaceous chondrites. Several particles were analyzed by a laser microprobe. The negative ionic species identified to date include carbon clusters, protonated carbon clusters, CN-, HCN-, CNO-, PO2-, PO3-, S-, S2- asnd OH-. These species are similar to those observed in cometary spectra and they support the assumption that organic materials are present. The occurance of phosphate ions suggests the presence of apatite or whitlockite. Cometary particle characteristics may indicate that the component grains represent primitive unaltered dust whose overall properties are extremely similar to altered primitive dust in carbonaceous chondrites.

  8. Biogenic silica records from the BDP93 drill site and adjacent areas of the Selenga Delta, Lake Baikal, Siberia

    USGS Publications Warehouse

    Colman, Steven M.; Peck, J.A.; Hatton, J.; Karabanov, E.B.; King, J.W.

    1999-01-01

    Biogenic silica contents of sediments on the lower Selenga Delta and Buguldeika saddle in Lake Baikal show distinct fluctuations that reflect changes in diatom productivity, and ultimately, climate. The pattern of the upper 50 m of the section, dating from about 334 ka, is similar to that of the marine oxygen-isotope record, increasingly so as the younger sediments become progressively finer grained and less locally derived with time. The last two interglaciations are marked by biogenic silica abundances similar to those of the Holocene. The equivalent of marine oxygen-isotope stage 3 is distinctly intermediate in character between full glacial and full interglacial biogenic silica values. Following near-zero values during the last glacial maximum, biogenic silica began to increase at about 13 ka. The rise in biogenic silica to Holocene values was interrupted by an abrupt decrease during Younger Dryas time, about 11 to 10 14C ka.

  9. Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite

    SciTech Connect

    Kocar, B.; Borch, T; Fendorf, S

    2010-01-01

    Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II){sub (aq)} concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III){sub (s)} depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.

  10. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite

    SciTech Connect

    Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott

    2012-04-30

    Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)(aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III)(s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.

  11. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite

    NASA Astrophysics Data System (ADS)

    Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott

    2010-02-01

    Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II) (aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III) (s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.

  12. Iron economy in Chlamydomonas reinhardtii

    PubMed Central

    Glaesener, Anne G.; Merchant, Sabeeha S.; Blaby-Haas, Crysten E.

    2013-01-01

    While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast and preferential retention of some pathways and key iron-dependent proteins in response to suboptimal iron supply. This review presents our current understanding of iron homeostasis in Chlamydomonas, with specific attention on characterized responses to changes in iron supply, like iron-deficiency. An overview of frequently used methods for the investigation of iron-responsive gene expression, physiology and metabolism is also provided, including preparation of media, the effect of cell size, cell density and strain choice on quantitative measurements and methods for the determination of metal content and assessing the effect of iron supply on photosynthetic performance. PMID:24032036

  13. Recrystallization of biogenic carbonates in soils: consequences for palaeological studies

    NASA Astrophysics Data System (ADS)

    Zamanian, Kazem; Pustovoytov, Konstantin; Kuzyakov, Yakov

    2015-04-01

    The isotopic signatures of biogenic carbonate (BC) in fossils are commonly used to assess environmental conditions during the life time of organisms, their diets and extinction periods. As a proxy, BC represents in many cases the only alternative to organic matter. However, BC in fossils may dissolve in embedded matrix and recrystallize with CO2 respired by roots and microorganisms. Consequently, isotopic composition of BC can be re-equilibrated and the original paleoenvironmental signal may be lost. The dynamics of these processes still remains poorly understood. Here the results of BC recrystallization under controlled conditions have been presented. We aimed 1) To determine the recrystallization amounts of BC as a function of time, 2) To investigate the effects of geogenic carbonates (GC) availability in embedded matrix on recrystallization rate of BC and 3) To evaluate the effects of organic matter (OM) presence in the BC structure on its recrystallization. Loess and a loamy soil were selected as carbonate containing and carbonate free matrixes, respectively. Shells of 'Pacific little-neck clams (Protothaca staminea)' were selected as BC. To evaluate the role of OM presence in the BC structure, heated (550?C) and not heated shells were used. The shells were washed by means of ultrasonic and crashed to a size of 2-2.5 mm. The 14C labeled CO2 (pCO2= 2%) was injected into the airtight bottles. The samples were incubated at room temperature and water content of 60% of water holding capacity of matrixes for 1, 3, 10, 21 and 56 days. At each time the 14C activity was measured in bottle air, dissolved organic and inorganic carbon, matrixes and the shells. The recrystallization of shells started even after one day of incubation. However, the amounts of recrystallization were increased by the time. The recrystallization of CaCO3 was higher in shells without OM. Elimination of OM probably increases the porosity of shell structure and led to better water penetration into

  14. Biogenic arsenic volatilisation from an acidic wetland soil

    NASA Astrophysics Data System (ADS)

    Ilgen, Gunter; Huang, Jen-How; Lu, Shipeng; Tian, Liyan; Alewell, Christine

    2014-05-01

    Biogenic arsenic (As) volatilisation was budgeted at 26000 t yr-1as the largest input of the global As release into the atmosphere, thereby playing an important role in the biogeochemical cycle of As in the surface environment. In order to quantify As volatilisation from wetland soils and to elucidate the geochemical and microbiological factors governing As volatilisation, a series of incubations with an acidic wetland soil collected in NE-Bavaria in Germany were performed at 15oC for 4 months with addition of NaN3, arsenite (As(III)), FeCl3, NaSO4 and NaOAc with N2 and air in the headspace. Speciation of gaseous As in the headspace using GC-ICP-MS/ ESI-MS coupling showed the predominance of either arsine (AsH3) or trimethylarsine ((CH3)3As) in all treatments during the time course of incubation. Monomethylarsine ((CH3)AsH2) and dimethylarsine ((CH3)2AsH) could be only detected in trace amounts. Arsenic speciation in porewater with HPLC-ICP-MS revealed the predominance of As(III) and methylated As was never detectable. Arsenic volatilisation summed to 2.3 ng As (88% as AsH3) in the control incubations, which accounted for ~0.25 % of the total As storage in the wetland soil. Treatments with 10 mM NaN3 resulted in emission of only 0.03 ng As. In contrast, addition of 10 mM NaOAc stimulated microbial activities in wetland soils and subsequently rose As volatilisation to 8.5 ng As. It could be therefore concluded that As volatilisation from the wetland soils was mainly biological. Spiking 67 μM As(III) increased 10 times of As volatilisation and the proportion of methylated arsines increased to 66%, which is supposed to be caused by the largely enhanced As availability in porewater for microbes (480 ppb, ~65 times higher than those in the controls). Adding 10 mM FeCl3 stimulated microbial Fe(III) reducing activities but suppressed other microbial activities by lowering soil pH from 5 to 3.6, decreasing consequently As volatilisation to 0.3 ng As. The much lower redox

  15. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  16. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  17. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  18. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  19. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  20. Biogenic inorganic crystalline phase formation as a result of biogeochemical interactions in between the chemolithotrophic archaeon Metallosphaera sedula and meteorite: implications for potential microbial biosignatures

    NASA Astrophysics Data System (ADS)

    Milojevic, Tetyana; Blazevic, Amir; Kutlucinar, Kaan Georg

    2016-04-01

    Chemolithotrophy has been indicated as the most primordial form of microbial metabolism on the early Earth and proposed as a possible metabolic form for other iron-mineral-rich planets like Mars. Rock-eating extremophiles represent an exciting field of research for the study of microbe-mineral interactions in order to find the unique biosignatures of life in the extreme conditions. Metallosphaera sedula is the chemolithotrophic archaeon, which thrives at 73°C and pH 2, using energy derived from metal oxidation at the edge of living limits. When given an access to extraterrestrial material (a stony meteorite H5 ordinary chondrite NWA1172), M. sedula releases soluble metal ions into the solution from NWA1172 due to its metal oxidizing metabolic activity. Here we report the formation of inorganic crystalline phase as a result of biogeochemical interactions in between M. sedula and extraterrestrial material. Inorganic ions released from meteorite as a result of M. sedula mediated leaching were trapped into crystalline material by solvent evaporation technique. Scanning Electron Microscopy observations and EDX analysis revealed that this crystalline phase is mainly composed of Ni, S, Mg and O elements. Biogenicity of this inorganic crystalline material was evaluated by comparing to abiotic conditions. Biological nature of Ni-, S-, Mg- and O -containing crystalline phase was established, since it was not mimicked in abiotic experimental conditions, allowing clearly to exclude abiogenic origin. Further investigations of exact mineralogical nature of biogenic of Ni-, S-, Mg- and O -crystalline material and its implication as a biosignature for detection of life are going to be investigated.

  1. Coal desulfurization. [using iron pentacarbonyl

    NASA Technical Reports Server (NTRS)

    Hsu, G. C. (Inventor)

    1979-01-01

    Organic sulfur is removed from coal by treatment with an organic solution of iron pentacarbonyl. Organic sulfur compounds can be removed by reaction of the iron pentacarbonyl with coal to generate CO and COS off-gases. The CO gas separated from COS can be passed over hot iron fillings to generate iron pentacarbonyl.

  2. Assessment of Undiscovered Biogenic Gas Resources, North-Central Montana Province

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    Application of a geology-based assessment methodology by the U.S. Geological Survey resulted in an estimated mean of 6,192 billion cubic feet of shallow biogenic (continuous) undiscovered gas in the North-Central Montana Province. Oil, gas, and natural gas liquids in conventional accumulations were not assessed.

  3. Biogenic acids produced on epoxy linings installed in sewer crown and tidal zones.

    PubMed

    Valix, M; Shanmugarajah, K

    2015-09-01

    In this study the biogenic acids generated by microbes on the surface of Bisphenol A epoxy mortar coupons were investigated for up to 30 months. The epoxy coupons were installed in six sewers in three city locations, Sydney, Melbourne and Perth. Coupons were installed in both the crown and the tidal zones of the sewers to capture the effect of location within the pipe on acid production. The coupons were retrieved approximately every 6 months to provide a dynamic analysis of the biogenic acid production. Our results reveal the colonisation of epoxy mortar by the more aggressive acidophilic bacteria occurred within six months to two years of their installation in the sewer pipes. Biogenic acid generation appear to occur homogeneously from the tidal zone to the crown of the sewer pipes. The reduction in the surface pH of the epoxy lining was supported by the successive growth of microbes beginning with fungi followed be neutrophilic and heterotrophic bacteria and finally by the acidophilic bacteria and the corresponding accumulation of organic and sulphuric acids attributed to these organisms. This study also revealed the potential inhibiting effects on the microbes induced by the accumulation of metabolic products on the epoxy surface. The accumulation of organic acids and H2S coincided with the growth and metabolism inhibition of fungi and acidophilic bacteria. These results provide insights into the microbial interaction and biogenic acids production that contribute to lining degradation and corrosion of concrete in sewer pipes. PMID:26005783

  4. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J. B.; Kuster, W. C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J. A.; Cahill, T. M.; Holzinger, R.

    2009-03-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments - a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) - and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μgCg-1 h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  5. Microbialites vs detrital micrites: Degree of biogenicity, parameter suitable for Mars analogues

    NASA Astrophysics Data System (ADS)

    Blanco, Armando; D'Elia, Marcella; Orofino, Vincenzo; Mancarella, Francesca; Fonti, Sergio; Mastandrea, Adelaide; Guido, Adriano; Tosti, Fabio; Russo, Franco

    2014-07-01

    In upcoming years several space missions will investigate the habitability of Mars and the possibility of extinct or extant life on the planet. In previous laboratory works we have investigated the infrared spectral modifications induced by thermal processing on different carbonate samples, in the form of recent shells and fossils of different ages, whose biogenic origin is indisputable. The goal was to develop a method able to discriminate biogenic carbonate samples from their abiogenic counterparts. The method has been successfully applied to microbialites, i.e. bio-induced microcrystalline carbonate deposits, and particularly to stromatolites, the laminated fabric of microbialites, some of which can be ascribed among the oldest traces of biological activity known on Earth. In this work we show that, by applying our method to different parts of the same carbonate rock, we are able to discriminate the presence, nature and biogenicity of various micrite types (i.e. detrital vs autochthonous) and to distinguish them from the skeletal grains. To test our methodology we preliminarily used the epifluorescence technique to select on polished samples, skeletal grains, autochthonous and allochthonous micrites, each one characterized by different organic matter content. The results on the various components show that, applying the infrared spectral modifications induced by thermal processing, it is possible to determine the degree of biogenicity of the different carbonate samples. The results are of valuable importance since such carbonates are linked to primitive living organisms that can be considered as good analogues for putative Martian life forms.

  6. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  7. Biogenic carbon in combustible waste: waste composition, variability and measurement uncertainty.

    PubMed

    Larsen, Anna W; Fuglsang, Karsten; Pedersen, Niels H; Fellner, Johann; Rechberger, Helmut; Astrup, Thomas

    2013-10-01

    Obtaining accurate data for the contents of biogenic and fossil carbon in thermally-treated waste is essential for determination of the environmental profile of waste technologies. Relations between the variability of waste chemistry and the biogenic and fossil carbon emissions are not well described in the literature. This study addressed the variability of biogenic and fossil carbon in combustible waste received at a municipal solid waste incinerator. Two approaches were compared: (1) radiocarbon dating ((14)C analysis) of carbon dioxide sampled from the flue gas, and (2) mass and energy balance calculations using the balance method. The ability of the two approaches to accurately describe short-term day-to-day variations in carbon emissions, and to which extent these short-term variations could be explained by controlled changes in waste input composition, was evaluated. Finally, the measurement uncertainties related to the two approaches were determined. Two flue gas sampling campaigns at a full-scale waste incinerator were included: one during normal operation and one with controlled waste input. Estimation of carbon contents in the main waste types received was included. Both the (14)C method and the balance method represented promising methods able to provide good quality data for the ratio between biogenic and fossil carbon in waste. The relative uncertainty in the individual experiments was 7-10% (95% confidence interval) for the (14)C method and slightly lower for the balance method. PMID:24008327

  8. UNITED STATES LAND USE INVENTORY FOR ESTIMATING BIOGENIC OZONE PRECURSOR EMISSIONS

    EPA Science Inventory

    The U.S. Geological Survey's (USGS) Earth Resources Observation System (EROS) Data Center's (EDC) 1-km classified land cover data are combined with other land use data using a Geographic Information System (GIS) to create the Biogenic Emissions Landcover Database (BELD). The land...

  9. TETHERED BALLOON MEASUREMENTS OF BIOGENIC VOCS IN THE ATMOSPHERIC BOUNDARY LAYER

    EPA Science Inventory

    Measurements of biogenic volatile organic compounds (BVOCs) have been made on a tethered balloon platform in eleven field deployments between 1985 and 1996. A series of balloon sampling packages have been developed for these campaigns and they have been used to describe boundary ...

  10. Measurement of biogenic hydrocarbon emissions from vegetation in the Lower Fraser Valley, British Columbia

    NASA Astrophysics Data System (ADS)

    Drewitt, G. B.; Curren, K.; Steyn, D. G.; Gillespie, T. J.; Niki, H.

    Biogenic volatile organic compounds (VOCs) participate in many chemical reactions in the atmosphere and in some cases, adversely affect air quality through increased production of photochemical ozone near urban sources of nitrogen oxides. In order to implement an effective control strategy, the relative role of these biogenic hydrocarbon emissions in producing ground-level ozone must be known. During the summers of 1995 and 1996, a field study was undertaken to determine fluxes of biogenic VOCs from both natural and agricultural surfaces in the Lower Fraser Valley located in southwestern British Columbia. Emissions from agricultural surfaces were measured using a flux gradient approach while emissions from the dominant tree species in the region were measured with a branch enclosure system. Results show very little biogenic VOC production from many agricultural crops such as pasture, Potatoes or Blueberries. Cranberries showed very high emissions during the summer of 1994 but failed to show similar results during the summer of 1995. Emissions of isoprene and monoterpenes from native tree species such as Western Red Cedar, Douglas Fir and Coastal Hemlock were quite low. Cottonwood trees on the other hand had fairly low emissions of monoterpenes but extremely high emissions of isoprene. Measurements provided here will be useful for improving our database of hydrocarbon emissions rates from vegetation for future emission inventories and model testing.

  11. Distinguishing black carbon from biogenic humic substances in soil clay fractions

    USGS Publications Warehouse

    Laird, D.A.; Chappell, M.A.; Martens, D.A.; Wershaw, R. L.; Thompson, M.

    2008-01-01

    Most models of soil humic substances include a substantial component of aromatic C either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. We physically separated coarse (0.2-2.0????m e.s.d.), medium (0.02-0.2????m e.s.d.), and fine (> 0.02????m e.s.d.) clay subfractions from three Midwestern soils and characterized the organic material associated with these subfractions using 13C-CPMAS-NMR, DTG, SEM-EDX, incubations, and radiocarbon age. Most of the C in the coarse clay subfraction was present as discrete particles (0.2-5????m as seen in SEM images) of black carbon (BC) and consisted of approximately 60% aromatic C, with the remainder being a mixture of aliphatic, anomeric and carboxylic C. We hypothesize that BC particles were originally charcoal formed during prairie fires. As the BC particles aged in soil their surfaces were oxidized to form carboxylic groups and anomeric and aliphatic C accumulated in the BC particles either by adsorption of dissolved biogenic compounds from the soil solution or by direct deposition of biogenic materials from microbes living within the BC particles. The biogenic soil organic matter was physically separated with the medium and fine clay subfractions and was dominated by aliphatic, anomeric, and carboxylic C. The results indicate that the biogenic humic materials in our soils have little aromatic C, which is inconsistent with the traditional heteropolymer model of humic substances.

  12. Foliar leaching, translocation, and biogenic emission of 35S in radiolabeled loblolly pines

    SciTech Connect

    Garten Jr, Charles T

    1990-02-01

    Foliar leaching, basipetal (downard) translocation, and biogenic emission of sulfur (S), as traced by {sup 35}S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of {sup 35}S in the MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO{sub 4}{sup 2-}-S) concentrations in net throughfall (throughfall SO{sub 4}{sup 2-}-S concentration minus that in incident precipitation) beneath all four trees was >90%. Calculations indicated that about half of the summertime SO{sub 2}2 dry deposition flux to the loblolly pines was fixes in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, {sup 35}S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 {micro}g/g dry needles. Translocation of {sup 35}S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment.

  13. Foliar leaching, translocation, and biogenic emission of sup 35 S in radiolabeled loblolly pines

    SciTech Connect

    Garten, C.T. Jr. )

    1990-02-01

    Foliar leaching, basipetal (downward) translocation, and biogenic emission of sulfur (S), as traced by {sup 35}S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of {sup 35}S in the 6-8 MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO{sub 4}{sup 2{minus}}-S) concentrations in net throughfall (throughfall SO{sub 4}{sup 2{minus}}-S concentration minus that in incident precipitation) beneath all four trees was > 90%. Calculations indicated that about half of the summertime SO{sub 2} dry deposition flux to the loblolly pines was fixed in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, {sup 35}S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 {mu}g/g dry needles. Translocation of {sup 35}S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment.

  14. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM DESERT VEGETATION OF THE SOUTHWESTERN U.S.

    EPA Science Inventory

    Thirteen common plant species in the Mojave and Sonoran Desert regions of the western United States were tested for emissions of biogenic non-methane volatile organic compounds (BVOCs). Only two of the species examined emitted isoprene at rates of 10 µgCg−1 ...

  15. Assessment of Biogenic Terpenoid Emission Inventories in Asia using Remotely Sensed Spatial and Temporal Surrogate Data

    NASA Astrophysics Data System (ADS)

    Kim, H. K.; Woo, J. H.; Choi, K. C.; Lee, Y. M.; Kim, Y.

    2014-12-01

    Among biogenic volatile organic compound (BVOC) species, the most comprehensively studied species are isoprene and monoterpene (terpenoid) due to their significant impacts on global and regional total VOC emission budget and ozone and aerosol formation mechanisms. Biogenic terpenoid emission inventories have been often assessed on a global basis and consistently available on model grid system units to support climate and chemical transport modeling. However, little of these have been assessed based on the political units such as countries and provinces. On the basis of political boundaries in Asia, we assembled and compared a large number of terpenoid emission estimates including currently published or reported sources. We assessed these terpenoid emission estimates in the context of the spatial and temporal consistency. Since the biogenic terpenoid emission inventories commonly use leaf biomass density, solar radiation and temperature as driving variables, we used the MODIS Gross Primary Productivity (GPP) and Land Surface Temperature (LST) datasets as surrogates to correlate with the terpenoid emission estimates in Asia. Based on our current assessment, we will discuss about the current status of the biogenic terpenoid emission inventories in Asia.

  16. CHANGES TO THE BIOGENIC EMISSION INVENTORY SYSTEM VERSION 3 (BEIS3)

    EPA Science Inventory

    This extended abstract describes recent changes to the Biogenic Emissions Inventory System (BEIS3) that were completed in preparation for the 2005 release of the Community Multiscale Air Quality model. Changes to the model affect the calculated emissions of isoprene and monoterp...

  17. Biogenic amines determination in some traditional cheeses in West Azerbaijan province of Iran

    PubMed Central

    Razavi Rohani, Seyed Mehdi; Aliakbarlu, Javad; Ehsani, Ali; Hassanzadazar, Hassan

    2013-01-01

    Biogenic amines (BA) are nitrogenous compounds that possess biological activity. The source of production is the microbial decarboxylation of amino acids. This compounds are found in various types of cheese. The aim of this work was to evaluate the BA content of some traditional cheeses in West Azerbaijan province Iran. For this purpose, 70 samples of Koopeh, 10 samples of Lighvan and 5 samples of Red Salmas cheeses were obtained from local supermarkets of different cities of West Azerbaijan province. After preparation of samples, biogenic amines content was evaluated by modified HPLC method. The presence of histamine, cadaverine, putrescine and tyramine in tested cheeses were observed. Total amount of biogenic amines was highest in Red Salmas cheese with 1426.91 ppm. It followed by Lighvan cheese and Koopeh cheese with 1008.98 and 517.71 ppm, respectively. Putrescine, cadaverine, histamine and tyramine were detected in Koopeh cheese at levels up to 156.09, 282.34, 70.80, 8.48 ppm respectively. These amines were detected also in Lighvan cheese at levels up to 277.53, 342.74, 37.58, 351.12 ppm and in Red Salmas cheese samples at levels up to 438.03, 701.05, 105.21, 182.62 ppm, respectively. Large amounts of biogenic amines can indicate non hygienic conditions and contamination of used milk for cheese production. PMID:25653782

  18. Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in Pseudomonas aeruginosa.

    PubMed

    Mohanty, Anee; Kathawala, Mustafa Hussain; Zhang, Jianhua; Chen, Wei Ning; Loo, Joachim Say Chye; Kjelleberg, Staffan; Yang, Liang; Cao, Bin

    2014-05-01

    While antibiotic resistance in bacteria is rapidly increasing, the development of new antibiotics has decreased in recent years. Antivirulence drugs disarming rather than killing pathogens have been proposed to alleviate the problem of resistance inherent to existing biocidal antibiotics. Here, we report a nontoxic biogenic nanomaterial as a novel antivirulence agent to combat bacterial infections caused by Pseudomonas aeruginosa. We synthesized, in an environmentally benign fashion, tellurium nanorods (TeNRs) using the metal-reducing bacterium Shewanella oneidensis, and found that the biogenic TeNRs could effectively inhibit the production of pyoverdine, one of the most important virulence factors in P. aeruginosa. Our results suggest that amyloids and extracellular polysaccharides Pel and Psl are not involved in the interactions between P. aeruginosa and the biogenic TeNRs, while flagellar movement plays an important role in the cell-TeNRs interaction. We further showed that the TeNRs (up to 100 µg/mL) did not exhibit cytotoxicity to human bronchial epithelial cells and murine macrophages. Thus, biogenic TeNRs hold promise as a novel antivirulence agent against P. aeruginosa. PMID:24222554

  19. A ratiometric fluorescent probe for detection of biogenic primary amines with nanomolar sensitivity.

    PubMed

    Mallick, Suman; Chandra, Falguni; Koner, Apurba L

    2016-02-01

    An ultrasensitive ratiometric fluorescent sensor made of an N,N-dimethylaminonaphthalene anhydride moiety for detection of aliphatic primary amines is reported. Biogenic amines at nanomolar concentration is detected with the additional ability to discriminate between primary, secondary and tertiary amines by using both UV-Visible and fluorescence spectroscopy. PMID:26734688

  20. BIOGENIC HYDROCARBON EMISSION INVENTORY FOR THE U.S. USING A SIMPLE FOREST CANOPY MODEL

    EPA Science Inventory

    A biogenic hydrocarbon emission inventory system, developed for acid deposition and regional oxidant modeling, is described, and results for a U.S. emission inventory are presented. or deciduous and coniferous forests, scaling relationships are used to account for canopy effects ...

  1. APPLICATION OF COMPUTER-AIDED TOMOGRAPHY TO VISUALIZE AND QUANTIFY BIOGENIC STRUCTURES IN MARINE SEDIMENTS

    EPA Science Inventory

    We used computer-aided tomography (CT) for 3D visualization and 2D analysis of

    marine sediment cores from 3 stations (at 10, 75 and 118 m depths) with different environmental

    impact. Biogenic structures such as tubes and burrows were quantified and compared among st...

  2. The crystal structure of a biogenic aragonite from the nacre of an ammonite shell

    SciTech Connect

    Antao, S.M.

    2012-02-07

    The crystal structure of a biogenic aragonite from the nacre of an ammonite shell was obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinement. The well-preserved ammonite sample is from Alberta, Canada, and is from the Cretaceous period. The aragonite structure was refined in space group Pmcn, Z = 4, and the cell parameters obtained are a = 4.96265(2), b = 7.97016(4), c = 5.74474(3) {angstrom}, and V = 227.222(2) {angstrom}{sup 3}. The chemical analyses indicate a formula of [Ca{sub 0.995}Sr{sub 0.004}Ba{sub 0.001}]{Sigma} = 1.0(CO{sub 3}). The average and distances are 2.5281(3) and 1.2871(6) {angstrom}, respectively, and the average angle is 119.94(8){sup o}. The CO{sub 3} groups are non-planar. Based on crystal-structure data for biogenic and non-biogenic aragonite samples, aragonite from ammonite nacre has minimal structural distortions and is very similar to non-biogenic aragonite, in particular, a sample from Spain.

  3. Biogenic amine production by contaminating bacteria found in starter preparations used in winemaking.

    PubMed

    Costantini, Antonella; Vaudano, Enrico; Del Prete, Vincenzo; Danei, Milena; Garcia-Moruno, Emilia

    2009-11-25

    The aim of this work was to investigate if contaminating microorganisms, eventually present in bacteria and yeast preparations used as commercial starters in winemaking, have the ability to produce the biogenic amines histamine, putrescine and tyramine. Thirty commercial starters (14 yeasts Saccharomyces cerevisiae and 16 bacteria Oenococcus oeni) were cultured in synthetic broth and analyzed by TLC to detect amine production. Oenococcus oeni commercial preparations did not contain contaminants, but some yeast preparations resulted contaminated with amine-producing bacteria. Bacterial contaminants were isolated and analyzed for their ability to produce biogenic amines using HPLC and TLC. Decarboxylase genes were identified using PCR analysis followed by sequencing. Fermentations were performed in grape juice with two yeast commercial preparations containing bacterial contaminants to check if the potential biogenic amine production could happen also during winemaking. It was found that this production is possible; in particular, in the conditions used in this work, tyramine production was detected. Therefore, the results of this study have significance in relation to the risk of biogenic amines in wine. Moreover a novel species of Lactobacillus was found to be able to produce histamine. PMID:19919115

  4. Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications.

    PubMed

    Alshatwi, Ali A; Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan

    2015-02-01

    Synthetic forms of silica have low biocompatibility, whereas biogenic forms have myriad beneficial effects in current toxicological applications. Among the various sources of biogenic silica, rice husk is considered a valuable agricultural biomass material and a cost-effective resource that can provide biogenic silica for biomedical applications. In the present study, highly pure biogenic silica nanoparticles (bSNPs) were successfully harvested from rice husks using acid digestion under pressurized conditions at 120°C followed by a calcination process. The obtained bSNPs were subjected to phase identification analysis using X-ray diffraction, which revealed the amorphous nature of the bSNPs. The morphologies of the bSNPs were observed using transmission electron microscopy (TEM), which revealed spherical particles 10 to 30 nm in diameter. Furthermore, the biocompatibility of the bSNPs with human lung fibroblast cells (hLFCs) was investigated using a viability assay and assessing cellular morphological changes, intracellular ROS generation, mitochondrial transmembrane potential and oxidative stress-related gene expression. Our results revealed that the bSNPs did not have any significant incompatibility in these in vitro cell-based approaches. These preliminary findings suggest that bSNPs are biocompatible, could be the best alternative to synthetic forms of silica and are applicable to food additive and biomedical applications. PMID:25492167

  5. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    EPA Science Inventory

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  6. BIOGENIC SOURCES OF FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER AND WINTER CONDITIONS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  7. COMPARISON OF THREE WET-ALKALINE METHODS OF DIGESTION OF BIOGENIC SILICA IN WATER

    EPA Science Inventory

    Methods for determination of low levels of biogenic silica (0.2-0.4 mg SiO2) in aqueous samples after digestion with three wet-alkaline extraction procedures compared favourably in both precision of replicates and recovery of silica utilized by diatoms in budgeted cultures. Time-...

  8. Effect of biogenic amines on the mating and egg-laying behaviors in the stable fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stable fly Stomoxys calcitrans (L.) (Diptera: Muscidae), is one of the most significant biting fly pests affecting livestock.The annual economic damage to the U.S. cattle industry is estimated at over one billion US dollars. Biogenic amines are known to play critical roles in feeding and reprodu...

  9. Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature

    NASA Astrophysics Data System (ADS)

    Chang, Liao; Heslop, David; Roberts, Andrew P.; Rey, Daniel; Mohamed, Kais J.

    2016-01-01

    Magnetite occurs widely in natural environments in both inorganic and biogenic forms. Discrimination of the origin of magnetite has important implications, from searching for past microbial activity to interpreting paleomagnetic and environmental magnetic records in a wide range of settings. In this study, we present rock magnetic and electron microscopic analyses of marine sediments from the continental margin of Oman. Low-temperature magnetic data reveal two distinct Verwey transition (Tv) temperatures that are associated with the presence of biogenic and inorganic magnetite. This interpretation is consistent with room temperature magnetic properties and is confirmed by electron microscopic analyses. Our study justifies the use of two distinct Tv temperatures as a diagnostic signature for discriminating inorganic and biogenic magnetite. Simple low-temperature magnetic measurements, therefore, provide a tool to recognize rapidly the origin of magnetite within natural samples. In addition, our analyses reveal progressive down-core dissolution of detrital and biogenic magnetite, but with preservation of significant amounts of fine-grained magnetite within sediments that have been subjected to severe diagenetic alteration. We demonstrate that preservation of magnetite in such environments is due to protection of fine-grained magnetite inclusions within silicate hosts. Our results, therefore, also provide new insights into diagenetic processes in marine sediments.

  10. Radiocarbon AMS determination of the biogenic component in CO 2 emitted from waste incineration

    NASA Astrophysics Data System (ADS)

    Calcagnile, L.; Quarta, G.; D'Elia, M.; Ciceri, G.; Martinotti, V.

    2011-12-01

    The thermal utilization of waste for energy production is gaining importance in European countries. Nevertheless, the combustion of waste leads to significant CO 2 emissions in the atmosphere which, depending on the fraction of biogenic and fossil materials, have to be only partially accounted for the national greenhouse gas inventory. For this reason the development of proper methodologies for the measurement of the biogenic fraction in the combusted waste is an active research field. In fact the determination of the radiocarbon concentration in the carbon dioxide stack emissions allows to have a direct indication of the biogenic component in the burned fuel. We present the results of the AMS radiocarbon analyses carried out on carbon dioxide sampled at the stack of three power plants located in Northern Italy burning natural gas, landfill biogas and SRF (Solid Recovered Fuel) derived from MSW (Municipal Solid Waste). The sampling apparatus and the applied processing protocols are described together with the calculation procedures used to determine, from the measured radiocarbon concentrations, the proportion of biogenic and fossil component in the flue gas and in the combusted fuel. The results confirm the high potentialities of this approach in the analysis of industrial CO 2 emissions.

  11. 77 FR 21772 - Notification of Two Public Teleconferences of the Science Advisory Board Biogenic Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... of Air and Radiation requested SAB review of EPA's draft accounting framework. As noticed in 76 FR... Stationary Sources (September 2011). As noticed in 76 FR 80368-80369, the Panel discussed its draft reports... AGENCY Notification of Two Public Teleconferences of the Science Advisory Board Biogenic Carbon...

  12. POOLS AND FLUXES OF BIOGENIC CARBON IN THE FORMER SOVIET UNION

    EPA Science Inventory

    The former Soviet union (FSU) was the largest country in the world. t occupied one-sixth of the land surface of the Earth. n understanding of the pools and f luxes of biogenic carbon in the FSU is essential to the development of international strategies aimed at mitigation of the...

  13. EARLY EUTROPHICATION IN THE LOWER GREAT LAKES: NEW EVIDENCE FROM BIOGENIC SILICA IN SEDIMENTS

    EPA Science Inventory

    New evidence from studies of biogenic silica and diatoms in sediment cores indicates that eutrophication in the lower Great Lakes resulted from nutrient enrichment associated with early settlement and forest clearance. Diatom production peaked from 1820 to 1850 in Lake Ontario, a...

  14. Differential behavioral responses of two plant-parasitic nematodes to biogenic amines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hatching and infective juvenile (J2) behavior in two species of plant-parasitic nematodes, Heterodera glycines and Meloidogyne incognita, were affected by in vitro treatment with the biogenic amines dopamine, octopamine, and serotonin. While the overall responses of each species to amine exposures w...

  15. Inhibitory Effects of Spices on Biogenic Amine Accumulation during Fish Sauce Fermentation.

    PubMed

    Zhou, Xuxia; Qiu, Mengting; Zhao, Dandan; Lu, Fei; Ding, Yuting

    2016-04-01

    The presence of high levels of biogenic amines is detrimental to the quality and safety of fish sauce. This study investigated the effects of ethanol extracts of spices, including garlic, ginger, cinnamon, and star anise extracts, in reducing the accumulation of biogenic amines during fish sauce fermentation. The concentrations of biogenic amines, which include histamine, putrescine, tyramine, and spermidine, all increased during fish sauce fermentation. When compared with the samples without spices, the garlic and star anise extracts significantly reduced these increases. The greatest inhibitory effect was observed for the garlic ethanolic extracts. When compared with controls, the histamine, putrescine, tyramine, and spermidine contents and the overall biogenic amine levels of the garlic extract-treated samples were reduced by 30.49%, 17.65%, 26.03%, 37.20%, and 27.17%, respectively. The garlic, cinnamon, and star anise extracts showed significant inhibitory effects on aerobic bacteria counts. Furthermore, the garlic and star anise extracts showed antimicrobial activity against amine producers. These findings may be helpful for enhancing the safety of fish sauce. PMID:26953496

  16. Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States.

    PubMed

    Pun, Betty K; Wu, Shiang-Yuh; Seigneur, Christian

    2002-08-15

    As anthropogenic emissions of ozone (O3) precursors, fine particulate matter (PM2.5), and PM2.5 precursors continue to decrease in the United States, the fraction of O3 and PM2.5 attributable to natural sources may become significant in some locations, reducing the efficacy that can be expected from future controls of anthropogenic sources. Modeling studies were conducted to estimate the contribution of biogenic emissions to the formation of O3 and PM2.5 in Nashville/TN and the northeastern United States. Two approaches were used to bound the estimates. In an anthropogenic simulation, biogenic emissions and their influence at the domain boundaries were eliminated. Contributions of biogenic compounds to the simulated concentrations of O3 and PM2.5 were determined by the deviation of the concentrations in the anthropogenic case from those in the base case. A biogenic simulation was used to assess the amounts of O3 and PM2.5 produced in an environment free from anthropogenic influences in emissions and boundary conditions. In both locations, the contribution of biogenic emissions to O3 was small (<23%) on a domain-wide basis, despite significant biogenic volatile organic compounds (VOC) emissions (65-89% of total VOC emissions). However, the production of O3 was much more sensitive to biogenic emissions in urban areas (22-34%). Therefore, the effects of biogenic emissions on O3 manifested mostly via their interaction with anthropogenic emissions of NOx. In the anthropogenic simulations, the average contribution of biogenic and natural sources to PM2.5 was estimated at 9% in Nashville/TN and 12% in the northeast domain. Because of the long atmospheric lifetimes of PM2.5, the contribution of biogenic/natural PM2.5 from the boundary conditions was higher than the contribution of biogenic aerosols produced within the domain. The elimination of biogenic emissions also affected the chemistry of other secondary PM2.5 components. Very little PM2.5 was formed in the biogenic

  17. Biogenic smectite clay formation in subsurface granitic environments

    NASA Astrophysics Data System (ADS)

    Tuck, V.; Edyvean, R.; West, J.; Bateman, K.; Coombs, P.; Milodowski, A.

    2003-04-01

    Many bacteria and biofilms in groundwater environments are able to adsorb and accumulate soluble components from an aqueous environment and exert a strong influence on the attenuation and transport of a significant range of dissolved species including many pollutants. They can also act as catalysts or nucleation sites for authigenic mineral phases such as metal sulphides or complex silicates. The processes involved are not well defined, but appear to range from large-scale interactions altering bulk groundwater chemistry to very small-scale interactions involving geochemical and physical alterations within biofilms and at the mineral surface. The purpose of this research program is to investigate biologically-induced and unusually rapid formation of smectite and chlorite clays. The work expands on experiments conducted by the British Geological Survey designed to simulate rock-water/microbial interactions, radionuclide mobility and groundwater redox-buffering capacity in the vicinity of the Äspö Underground Research Laboratory (URL) in Sweden. Packed-columns were set up containing crushed Äspö granodiorite, saline groundwater (simulating Äspö’s) and either single or combined inoculations of two bacteria species isolated from the Äspö URL, an iron-reducer Shewanella putrefaciens and a sulphate-reducer Desulfovibrio aespoeensis. Flow was maintained at 12ml/day to mimic that in the Äspö region, and strict anaerobic/reducing conditions were maintained throughout the experiments. Results showed that the iron-reducing bacteria S. putrefaciens quickly attached to surfaces and formed extensive filamentous biofilm meshes across porespaces. Neoformed smectite and chlorite clays also appeared on or near the biofilaments along with a calcium sulphate precipitate. Both of these processes (clay formation and the production of a mesh-like biofilm) served to cause total blockage of the pores, rendering the aggregate impermeable and thus cutting off the flow of

  18. Iron in diet

    MedlinePlus

    ... Some foods reduce iron absorption. For example, commercial black or pekoe teas contain substances that bind to ... nih.gov/pubmed/19297463 . Mason JB. Vitamins, trace minerals, and other micronutrients. In: Goldman L, Schafer AI, ...

  19. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhad, Roghayeh; Norman, Ann-Lise; Abbatt, Jonathan P. D.; Levasseur, Maurice; Thomas, Jennie L.

    2016-04-01

    Size-segregated aerosol sulfate concentrations were measured on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic during July 2014. The objective of this study was to utilize the isotopic composition of sulfate to address the contribution of anthropogenic and biogenic sources of aerosols to the growth of the different aerosol size fractions in the Arctic atmosphere. Non-sea-salt sulfate is divided into biogenic and anthropogenic sulfate using stable isotope apportionment techniques. A considerable amount of the average sulfate concentration in the fine aerosols with a diameter < 0.49 µm was from biogenic sources (> 63 %), which is higher than in previous Arctic studies measuring above the ocean during fall (< 15 %) (Rempillo et al., 2011) and total aerosol sulfate at higher latitudes at Alert in summer (> 30 %) (Norman et al., 1999). The anthropogenic sulfate concentration was less than that of biogenic sulfate, with potential sources being long-range transport and, more locally, the Amundsen's emissions. Despite attempts to minimize the influence of ship stack emissions, evidence from larger-sized particles demonstrates a contribution from local pollution. A comparison of δ34S values for SO2 and fine aerosols was used to show that gas-to-particle conversion likely occurred during most sampling periods. δ34S values for SO2 and fine aerosols were similar, suggesting the same source for SO2 and aerosol sulfate, except for two samples with a relatively high anthropogenic fraction in particles < 0.49 µm in diameter (15-17 and 17-19 July). The high biogenic fraction of sulfate fine aerosol and similar isotope ratio values of these particles and SO2 emphasize the role of marine organisms (e.g., phytoplankton, algae, bacteria) in the formation of fine particles above the Arctic Ocean during the productive summer months.

  20. Bioassay for estimating the biogenic methane-generating potential of coal samples

    USGS Publications Warehouse

    Jones, E.J.P.; Voytek, M.A.; Warwick, P.D.; Corum, M.D.; Cohn, A.; Bunnell, J.E.; Clark, A.C.; Orem, W.H.

    2008-01-01

    Generation of secondary biogenic methane in coal beds is likely controlled by a combination of factors such as the bioavailability of coal carbon, the presence of a microbial community to convert coal carbon to methane, and an environment supporting microbial growth and methanogenesis. A set of treatments and controls was developed to bioassay the bioavailability of coal for conversion to methane under defined laboratory conditions. Treatments included adding a well-characterized consortium of bacteria and methanogens (enriched from modern wetland sediments) and providing conditions to support endemic microbial activity. The contribution of desorbed methane in the bioassays was determined in treatments with bromoethane sulfonic acid, an inhibitor of microbial methanogenesis. The bioassay compared 16 subbituminous coal samples collected from beds in Texas (TX), Wyoming (WY), and Alaska (AK), and two bituminous coal samples from Pennsylvania (PA). New biogenic methane was observed in several samples of subbituminous coal with the microbial consortium added, but endemic activity was less commonly observed. The highest methane generation [80????mol methane/g coal (56??scf/ton or 1.75??cm3/g)] was from a south TX coal sample that was collected from a non-gas-producing well. Subbituminous coals from the Powder River Basin, WY and North Slope Borough, AK contained more sorbed (original) methane than the TX coal sample and generated 0-23????mol/g (up to 16??scf/ton or 0.5??cm3/g) new biogenic methane in the bioassay. Standard indicators of thermal maturity such as burial depth, nitrogen content, and calorific value did not explain differences in biogenic methane among subbituminous coal samples. No original methane was observed in two bituminous samples from PA, nor was any new methane generated in bioassays of these samples. The bioassay offers a new tool for assessing the potential of coal for biogenic methane generation, and provides a platform for studying the

  1. Photocatalytic oxidation of chloroform using immobilized-biogenic TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Cho, Y.; Yoo, H.

    2011-12-01

    Although commercial titanium dioxide (TiO2) nanoparticles as a suspension in water are one of the most popular photocatalysts for treatment of chlorinated organic compounds, the reuse and recovery of the nanoscale phtocatalyst is a practical challenge for application in water and groundwater treatment system. As part of efforts to overcome this practical limitation, development of immobilized TiO2 is needed. Diatom Pinnularia sp. were found to be capable of producing nanoscale TiO2 in their microscale silica shells. In order to obtain biogenic TiO2 nanoparticles from Pinnularia sp., soluble Ti was fed to the silicon-starved cells, resulting in deposition of titanium on the microscale features of the silica shells. After thermal treatment at 720 oC for 2 hr, the titanium was eventually converted to nanoscale TiO2. In order to determine the physical and chemical properties of the immobilized TiO2, material characterization such as TEM, STEM-EDS, BET and XRD analysis was carried out. In this study, a novel type of immobilized photocatalytic nanoparticles, biogenic TiO2 on silica shells was used for the mineralization of chloroform in water. Batch tests were conducted to evaluate the chloroform removal efficiency of biogenic and commercial TiO2 nanoparticles. Also, the amount of Cl- ions in water during the mineralization was measured to check mineralization of chloroform by biogenic TiO2 nanoparticles. Kinetic models were used to determine the rate of chloroform mineralization. In addition, the effect of UVA (ultraviolet-A) intensity on chloroform mineralization was investigated. The results obtained from this study could provide useful information for practical application of biogenic TiO2 in the groundwater treatment contaminated with some chlorinated organic compounds.

  2. Understanding Biogenic and Anthropogenic Trace Gas Variations Measured Near Cool, CA in June 2010

    NASA Astrophysics Data System (ADS)

    Klein, B. Z.; Flowers, B. A.; Gorkowski, K.; Dubey, M. K.; Knighton, W. B.; Floerchinger, C.; Herndon, S. C.; Fast, J. D.; Zaveri, R. A.

    2011-12-01

    Trace gas signatures produced by forested and urban areas differ greatly. Forested areas are dominated by gases produced during photosynthesis and respiration: CO2 and volatile organic compounds (VOCs) including terpenes and isoprene. Urban areas are heavily influenced by vehicle exhaust emissions and have elevated levels of CO, NOx and aromatic hydrocarbons such as benzene. Ozone is produced as a byproduct of both of these sources; it is produced when NOx from urban areas reacts with either anthropogenic or biogenic hydrocarbons. The Carbonaceous Aerosol and Radiative Effects Study (CARES) campaign was conducted during June 2010, in part to observe the evolution of urban air masses as they mix into rural locations and to better understand anthropogenic-biogenic photochemical interactions. The campaign included two ground-based sampling sites, one in Sacramento, CA (T0) and one downwind, approximately 70km NE, rurally located near Cool, CA (T1). In situ measurements of CO2, CO, O3, NO and multiple different VOCs were performed at the T1 site during the study, and are analyzed here to gain insights into the chemistry and transport of these trace gases. Comparisons between these trace gases coupled with transport modeling is used to delineate biogenic and anthropogenic sources. Additionally, comparisons between trace gases produced predominately by biogenic sources provide valuable information on how meteorology affects their production. Two atmospheric models (HYSPLIT back-trajectories and WRF forecasts) are used to predict transport episodes, where polluted air masses from the Sacramento or more distant San Francisco areas are transported to Cool. The two models display significant overlap for eleven different transport episodes during the study period. Both models also agree on two transport-free multiple-day periods. By examining the periods during which the models are in agreement, we are able to characterize with high certainty the trace gas signatures of local

  3. Molecular- and Nano-Scale Structure and Reactivity of Biogenic Uranium(IV) Oxide

    NASA Astrophysics Data System (ADS)

    Schofield, E. J.; Bargar, J. R.; Veeramani, H.; Sharp, J. O.; Bernier-Latmani, R.; Survova, E.; Giammar, D. E.; Ulrich, K.; Mehta, A.; Webb, S. M.; Conradson, S. D.; Clark, D. L.; Ilton, E. S.

    2008-12-01

    Bioremediation has been proposed and extensively researched as an in-situ immobilization strategy for uranium contamination in the subsurface with nanoparticulate uraninite (UO2) being the commonly reported product. Little detail is known about the structure and reactivity of this material, but based on comparison to its closest abiotic analog, UO2+x (0 < x < 0.25), we expect that it is complex and disordered and capable of structurally incorporating common groundwater cations. In addition, it has been predicted that the nanoparticulate form would induce strain and increase the solubility, and therefore reduce the effectiveness of this method as a remediation technology. In this study, the local-, intermediate- and long-range atomic and nano-scale structure of biogenic UO2 (formed at varying pH and divalent cation concentration, using Shewanella oneidensis strain MR-1) was characterized using EXAFS, SR-based powder diffraction and TEM. The lattice parameter of the nanoparticulate phase is seen to be consistent with bulk UO2. There is no evidence for hyperstoichiometry or strain of the UO2 particles, the latter indicating that surface energy is relatively modest. Similar results were obtained for biogenic UO2 particles produced by other metal reducing bacteria indicating that biological variability may play a minimal role in structure. In agreement with the structural analysis, the surface area-normalized dissolution rate of the biogenic UO2 was found to be comparable to that of coarser, synthetic UO2.00. Mn2+ was found to attenuate the particle size of biogenic UO2+xand to be structurally incorporated. This finding suggests that groundwater composition can have a pronounced impact on the structure and properties of biogenic uraninite.

  4. Mixing of biogenic siliceous and terrigenous clastic sediments: South Belridge field and Beta field, California

    SciTech Connect

    Schwartz, D.E. )

    1990-05-01

    The intermixing and interbedding of biogenically derived siliceous sediment with terrigenous clastic sediment in reservoirs of upper Miocene age provides both reservoir rock and seal and influences productivity by affecting porosity and permeability. Miocene reservoirs commonly contain either biogenic-dominated cyclic diatomite, porcelanite, or chert (classic Monterey Formation) or clastic-dominated submarine fan sequences with interbedded or intermixed siliceous members of biogenic origin. Biogenic-clastic cycles, 30-180 ft thick, at South Belridge field were formed by episodic influx of clastic sediment from distant submarine fans mixing with slowly accumulating diatomaceous ooze. The cycles consist of basal silt and pelletized massive diatomaceous mudstone, overlain by burrowed, faintly bedded clayey diatomite and topped by laminated diatomite. Cycle tops have higher porosity and permeability, lower grain density, and higher oil saturation than clay and silt-rich portions of the cycles. Submarine fan sediments forming reservoirs at the Beta field are comprised of interbedded sands and silts deposited in a channelized middle fan to outer fan setting. Individual turbidites display fining-upward sequences, with oil-bearing sands capped by wet micaceous silts. Average sands are moderately to poorly sorted, fine- to medium-grained arkosic arenites. Sands contain pore-filling carbonate and porcelaneous cements. Porcelaneous cement consists of a mixture of opal-A, opal-CT, and chert with montmorillonite and minor zeolite. This cement is an authigenic material precipitated in intergranular pore space. The origin of the opal is biogenic, with recrystallization of diatom frustules (opal-A) into opal-CT lepispheres and quartz crystals. Porcelaneous cement comprises 4-21% of the bulk volume of the rock. Seventy percent of the bulk volume of the cement is micropore space.

  5. Iron-Air Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  6. Iron deficiency in pregnancy

    PubMed Central

    McMahon, Lawrence P

    2010-01-01

    Iron deficiency (ID) and related anaemia (IDA) during pregnancy are highly prevalent worldwide in both developed and developing nations although the causes are often different. At conception, many women lack sufficient iron stores to meet the increased requirements of pregnancy, which are calculated at approximately 1200 mg. Appraisal of iron status in pregnant women is problematic, however the most reliable available diagnostic test is a serum ferritin < 20 µg/L. ID is often associated with other nutritional disorders, and there is frequently a secondary cause or association. A greater oral intake is usually insufficient to meet the increased demands of pregnancy, however regular oral supplements (given either daily or intermittently) can often meet maternal needs and avoid associated neonatal complications of IDA. Over-treatment with iron should be avoided, but intravenous administration is useful when deficiency is discovered late, is severe, or if the woman is intolerant of oral formulations. This paper reviews the current literature, and addresses differences in the prevalence and causes of ID betwen developed and developing nations. It examines gestational iron requirements, distinguishes between ID and IDA, and highlights difficulties in diagnostic testing. Finally, it appraises the evidence for and against different treatment regimens, ranging from food fortification to intravenous iron infusions, according to availability and to need.

  7. An update on iron physiology

    PubMed Central

    Muñoz, Manuel; Villar, Isabel; García-Erce, José Antonio

    2009-01-01

    Iron is an essential micronutrient, as it is required for adequate erythropoietic function, oxidative metabolism and cellular immune responses. Although the absorption of dietary iron (1-2 mg/d) is regulated tightly, it is just balanced with losses. Therefore, internal turnover of iron is essential to meet the requirements for erythropoiesis (20-30 mg/d). Increased iron requirements, limited external supply, and increased blood loss may lead to iron deficiency (ID) and iron-deficiency anemia. Hepcidin, which is made primarily in hepatocytes in response to liver iron levels, inflammation, hypoxia and anemia, is the main iron regulatory hormone. Once secreted into the circulation, hepcidin binds ferroportin on enterocytes and macrophages, which triggers its internalization and lysosomal degradation. Thus, in chronic inflammation, the excess of hepcidin decreases iron absorption and prevents iron recycling, which results in hypoferremia and iron-restricted erythropoiesis, despite normal iron stores (functional ID), and anemia of chronic disease (ACD), which can evolve to ACD plus true ID (ACD + ID). In contrast, low hepcidin expression may lead to iron overload, and vice versa. Laboratory tests provide evidence of iron depletion in the body, or reflect iron-deficient red cell production. The appropriate combination of these laboratory tests help to establish a correct diagnosis of ID status and anemia. PMID:19787824

  8. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Iron, elemental. 184.1375 Section 184.1375 Food... GRAS § 184.1375 Iron, elemental. (a) Iron, elemental (CAS Reg. No. 7439-89-6) is metallic iron obtained by any of the following processes: reduced iron, electrolytic iron, and carbonyl iron. (1)...

  9. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  10. Iron absorption in Drosophila melanogaster.

    PubMed

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-05-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  11. Iron isotope biosignatures

    NASA Technical Reports Server (NTRS)

    Beard, B. L.; Johnson, C. M.; Cox, L.; Sun, H.; Nealson, K. H.; Aguilar, C.

    1999-01-01

    The (56)Fe/(54)Fe of Fe-bearing phases precipitated in sedimentary environments varies by 2.5 per mil (delta(56)Fe values of +0.9 to -1. 6 per mil). In contrast, the (56)Fe/(54)Fe of Fe-bearing phases in igneous rocks from Earth and the moon does not vary measurably (delta(56)Fe = 0.0 +/- 0.3 per mil). Experiments with dissimilatory Fe-reducing bacteria of the genus Shewanella algae grown on a ferrihydrite substrate indicate that the delta(56)Fe of ferrous Fe in solution is isotopically lighter than the ferrihydrite substrate by 1.3 per mil. Therefore, the range in delta(56)Fe values of sedimentary rocks may reflect biogenic fractionation, and the isotopic composition of Fe may be used to trace the distribution of microorganisms in modern and ancient Earth.

  12. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  13. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  14. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  15. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  16. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris.

    PubMed

    Zhou, Chen; Vannela, Raveender; Hayes, Kim F; Rittmann, Bruce E

    2014-05-15

    Sulfate-reducing bacteria (SRB) can produce iron sulfide (FeS) solids with mineralogical characteristics that may be beneficial for a variety of biogeochemical applications, such as long-term immobilization of uranium. In this study, the growth and metabolism of Desulfovibrio vulgaris, one of the best-studied SRB species, were comprehensively monitored in batch studies, and the biogenic FeS solids were characterized by X-ray diffraction. Controlling the pH by varying the initial pH, the iron-to-sulfate ratio, or the electron donor - affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH (from initial conditions or a decrease caused by less sulfate reduction, FeS precipitation, or using pyruvate as the electron donor) produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and particularly stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3mM. Furthermore, sufficient free Fe(2+) led to the additional formation of vivianite [Fe3(PO4)2·8(H2O)]. Thus, microbially relevant conditions (initial pH, choice of electron donor, and excess or deficiency of sulfide) are tools to generate biogenic FeS solids of different characteristics. PMID:24675611

  17. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    NASA Astrophysics Data System (ADS)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  18. Biogenic isoprene and implications for oxidant levels in Beijing during the 2008 Olympic Games

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chung; Shao, Min; Chou, Charles C. K.; Liu, Shaw-Chen; Zhu, Tong; Lee, Kun-Zhang; Lai, Cheng-Hsun; Lin, Po-Hsiung; Wang*, Jia-Lin

    2014-05-01

    As the host of the 2008 Summer Olympic Games, Beijing implemented a series of stringent, short-term air quality control measures to reduce the emissions of anthropogenic air pollutants. Large reductions in the daily average concentrations of primary pollutants, e.g., non-methane hydrocarbons (NMHCs) and nitrogen oxides (NOx) of approximately 50% were observed at the air quality observatory of Peking University. Nevertheless, high levels of ozone were present during the control period. Although anthropogenic precursors were greatly reduced, the meteorological conditions in summer, including high temperature and light flux, are conducive to the production of large amounts of biogenic isoprene, which is extremely reactive. The diurnal pattern of isoprene showed daily maximum mixing ratios of 0.83 ppbv at noon and a minimum at night, reflecting its primarily biogenic properties. Using the ratio of isoprene to vehicle exhaust tracers, approximately 92% of the daytime isoprene was estimated from biogenic sources, and only 8% was attributed to vehicular emissions. In terms of OH reactivity and the ozone formation potential (OFP), biogenic isoprene with its midday surge can contribute approximately 20% of the total OFPs and 40-50% of the total OH reactivities of the 65 measured NMHCs during the midday hours. The discrepancy between decreased precursor levels and the observed high ozone was most likely caused by a combination of many factors. The changes in the partition among the components of oxidation products (O3, NO2 and NOz) and the contribution of air pollutants from regional sources outside Beijing should be two primary reasons. Furthermore, the influences of biogenic isoprene as well as the non-linearity of O3-VOC-NOx chemistry are other major concerns that can reduce the effectiveness of the control measures for decreasing ozone formation. Although anthropogenic precursors were greatly reduced during the Olympic Games, the presence of sufficient biogenic isoprene

  19. Biogenic isoprene and implications for oxidant levels in Beijing during the 2008 Olympic Games

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Shao, M.; Chou, C. C. K.; Liu, S.-C.; Wang, J.-L.; Lee, K.-Z.; Lai, C.-H.; Zhu, T.; Lin, P.-H.

    2013-10-01

    As the host of the 2008 Summer Olympic Games, Beijing implemented a series of stringent, short-term air quality control measures to reduce the emissions of anthropogenic air pollutants. Large reductions in the daily average concentrations of primary pollutants, e.g., non-methane hydrocarbons (NMHCs) and nitrogen oxides (NOx) of approximately 50% were observed at the air quality observatory of Peking University. Nevertheless, high levels of ozone were present during the control period. Although anthropogenic precursors were greatly reduced, the meteorological conditions in summer, including high temperature and light flux, are conducive to the production of large amounts of biogenic isoprene, which is extremely reactive. The diurnal pattern of isoprene showed daily maximum mixing ratios of 0.83 ppbv at noon and a minimum at night, reflecting its primarily biogenic properties. Using the ratio of isoprene to vehicle exhaust tracers, approximately 92% of the daytime isoprene was estimated from biogenic sources, and only 8% was attributed to vehicular emissions. In terms of OH reactivity and the ozone formation potential (OFP), biogenic isoprene with its midday surge can contribute approximately 20% of the total OFPs and 40-50% of the total OH reactivities of the 65 measured NMHCs during the midday hours. The discrepancy between decreased precursor levels and the observed high ozone was most likely caused by a combination of many factors. The changes in the partition among the components of oxidation products (O3, NO2 and NOz) and the contribution of air pollutants from regional sources outside Beijing should be two primary reasons. Furthermore, the influences of biogenic isoprene as well as the non-linearity of O3-VOC-NOx chemistry are other major concerns that can reduce the effectiveness of the control measures for decreasing ozone formation. Although anthropogenic precursors were greatly reduced during the Olympic Games, sufficient biogenic isoprene and moderate NOx

  20. Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign

    SciTech Connect

    Shilling, John E.; Zaveri, Rahul A.; Fast, Jerome D.; Kleinman, Lawrence I.; Alexander, M. L.; Canagaratna, Manjula R.; Fortner, Edward; Hubbe, John M.; Jayne, John T.; Sedlacek, Art; Setyan, Ari; Springston, S.; Worsnop, Douglas R.; Zhang, Qi

    2013-02-21

    The CARES campaign was conducted during June, 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS), an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS), and trace gas detectors (CO, NO, NOx) deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA) (85% on average) with smaller concentrations of sulfate (5%), nitrate (6%) and ammonium (3%) observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs), with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e., ΔOA/ΔCO), we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.9 μg/m3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg/m3 and ΔOA/ΔCO ratios of 35 - 44 μg/m3ppmv. When biogenic and anthropogenic emissions mix, OA levels are dramatically enhanced with median OA concentrations of 11.4 μg/m3 and ΔOA/ΔCO ratios of 77 - 157 μg/m3ppmv. Taken together, our observations show that production of OA is enhanced when anthropogenic emissions from Sacramento mix with isoprene-rich air from the foothills. A strong, non-linear dependence of SOA yield from isoprene is the mechanistic explanation for this enhancement most consistent with both the gas- and particle-phase data. If these observations are found to be robust

  1. Mammalian iron metabolism and its control by iron regulatory proteins☆

    PubMed Central

    Anderson, Cole P.; Shen, Lacy; Eisenstein, Richard S.; Leibold, Elizabeth A.

    2013-01-01

    Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP–IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22610083

  2. Iron-sensitive fluorescent probes: monitoring intracellular iron pools.

    PubMed

    Ma, Yongmin; Abbate, V; Hider, R C

    2015-02-01

    Several iron-sensitive fluorophores have been investigated in a range of cell types in order to quantify iron(II) levels in the cytosol and the cytoplasm. Both iron(II) and iron(III) cause fluorescence quenching of these probes and changes in cytosolic iron levels can be monitored in a reproducible manner. However the precise quantification of iron(II) in the cytosol is complicated by the uncertainty of the structure of many of the quenched species that exist under in vivo conditions. Precise knowledge of these structures is essential for quantitative purposes. The lysosomal and mitochondrial iron pools have only been the subject of relatively few studies at the time of writing. Calcein-AM has been widely adopted for the monitoring of changes in iron levels in a range different cell types. PMID:25315476

  3. Iron-magnesium silicate bioweathering on Earth (and Mars?).

    PubMed

    Fisk, M R; Popa, R; Mason, O U; Storrie-Lombardi, M C; Vicenzi, E P

    2006-02-01

    We examined the common, iron-magnesium silicate minerals olivine and pyroxene in basalt and in mantle rocks to determine if they exhibit textures similar to bioweathering textures found in glass. Our results show that weathering in olivine may occur as long, narrow tunnels (1-3 microm in diameter and up to 100 microm long) and as larger irregular galleries, both of which have distinctive characteristics consistent with biological activity. These weathering textures are associated with clay mineral by-products and nucleic acids. We also examined olivine and pyroxene in martian meteorites, some of which experienced preterrestrial aqueous alteration. Some olivines and pyroxenes in the martian meteorite Nakhla were found to contain tunnels that are similar in size and shape to tunnels in terrestrial iron-magnesium silicates that contain nucleic acids. Though the tunnels found in Nakhla are similar to the biosignatures found in terrestrial minerals, their presence cannot be used to prove that the martian alteration features had a biogenic origin. The abundance and wide distribution of olivine and pyroxene on Earth and in the Solar System make bioweathering features in these minerals potentially important new biosignatures that may play a significant role in evaluating whether life ever existed on Mars. PMID:16551226

  4. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS (BVOCS) II. LANDSCAPE FLUX POTENTIALS FROM THREE CONTINENTAL SITES IN THE U.S.

    EPA Science Inventory

    Landscape flux potentials for biogenic volatile organic compounds (BVOCs) were derived for three ecosystems in the continental U. S. (Fernbank Forest, Atlanta, GA; Willow Creek, Rhinelander, WI; Temple Ridge, CO). Analytical data from branch enclosure measurements reported in a ...

  5. BIOGENIC HYDROCARBON CONTRIBUTION TO THE AMBIENT AIR OF SELECTED AREAS - TULSA; GREAT SMOKY MOUNTAINS; RIO BLANCO COUNTY, COLORADO

    EPA Science Inventory

    Estimates of volatile hydrocarbon emissions to the atmosphere indicate that biogenic sources are much greater on a global basis than anthropogenic sources. Many assumptions inherent in these estimates, however, introduce a large degree of uncertainty about both inventories. A cri...

  6. EARTH, WIND AND FIRE: BUILDING METEOROLOGICALLY-SENSITIVE BIOGENIC AND WILDLAND FIRE EMISSION ESTIMATES FOR AIR QUALITY MODELS

    EPA Science Inventory

    Emission estimates are important for ensuring the accuracy of atmospheric chemical transport models. Estimates of biogenic and wildland fire emissions, because of their sensitivity to meteorological conditions, need to be carefully constructed and closely linked with a meteorolo...

  7. Earth's core iron

    NASA Astrophysics Data System (ADS)

    Geophysicist J. Michael Brown of Texas A & M University noted recently at the Spring AGU Meeting in Baltimore that the structure and phase of metallic iron at pressures of the earth's inner core (approximately 3.3 Mbar) could have great significance in defining geometrical aspects of the core itself. Brown worked at the Los Alamos Scientific Laboratory with R.B. McQueen to redetermine the phase relations of metallic iron in a series of new shock-wave experiments. They found the melting point of iron at conditions equal to those at the boundary of the earth's outer (liquid) and inner (solid) cores to be 6000°±500°C (Geophysical Research Letters, 7, 533-536, 1980).

  8. [Biogenic amines in food: effects of histamine, tyramine and phenylethylamine in the human].

    PubMed

    Lüthy, J; Schlatter, C

    1983-01-01

    The effect of 25 mg histamine, 25 mg tyramine and 5 mg phenylethylamine resp. in apple juice on 27 healthy volunteers was studied using a randomized placebo-controlled double-blind procedure. No statistically significant effect was found with histamine and tyramine, but phenylethylamine produced symptoms like headache, dizziness and discomfort in some volunteers. In a second experiment the effect of four different wines (2 dl) containing naturally several biogenic amines in various amounts (histamine n.d. - 21 ppm; tyramine 1-23 ppm; phenylethylamine n.d. - 6 ppm; putrescine 2-55 ppm) on 20 volunteers was recorded. The percentage of volunteers experiencing symptoms was of the same order of magnitude as in the first experiment. No correlation was found to exist in this second experiment between the occurrence of symptoms and the concentration of biogenic amines in the wine samples. PMID:6364621

  9. Preliminary evaluation of nanoscale biogenic magnetite-based ferromagnetic transduction mechanisms for mobile phone bioeffects.

    PubMed

    Cranfield, Charles; Wieser, Heinz Gregor; Al Madan, Jaffar; Dobson, Jon

    2003-03-01

    Ferromagnetic transduction models have been proposed as a potential mechanism for mobile phone bioeffects. These models are based on the coupling of RF and pulsed electromagnetic emissions to biogenic magnetite (Fe3O4) present in the human brain via either ferromagnetic resonance or mechanical activation of cellular ion channels. We have tested these models experimentally for the first time using a bacterial analogue (Magnetospirillum magnetotacticum) which produces intracellular biogenic magnetite similar to that present in the human brain. Experimental evaluation revealed that exposure to mobile phone emissions resulted in a consistent and significantly higher proportion of cell death in exposed cultures versus sham exposure (p = 0.037). Though there appears to be a repeatable trend toward higher cell mortality in magnetite-producing bacteria exposed to mobile phone emissions, it is not yet clear that this would extrapolate to a deleterious health effect in humans. PMID:15382422

  10. Biogenic 2-methyl-3-buten-2-ol increases regional ozone and HOx sources

    NASA Astrophysics Data System (ADS)

    Steiner, Allison L.; Tonse, Shaheen; Cohen, Ronald C.; Goldstein, Allen H.; Harley, Robert A.

    2007-08-01

    We present the first regional-scale chemistry simulation investigating the effects of biogenic 2-methyl-3-buten-2-ol (MBO) emissions on air quality. In a central California model domain, MBO emissions have a distinctly different regional pattern than isoprene but have similar daily maxima of about 5 mg m-2 hr-1. MBO oxidation causes an increase in ozone, formaldehyde, acetone and consequently hydrogen radical production (PHOx). The addition of MBO increases the daily maximum ozone as much as 3 ppb near source regions (2-5% in rural areas) and as much as 1 ppb in the Central Valley. Formaldehyde concentrations increase by as much as 1 ppb (40%) over the Sierra Nevada Mountains, increasing the production of HOx by 10-20% and accelerating local chemistry. This indicates that inclusion of MBO and other biogenic oxygenated emissions in regional simulations in the western and southeastern United States is essential for accurate representation of ozone and HOx.

  11. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    SciTech Connect

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B.; Worsnop, Douglas R.; Kulmala, M.; Ehn, Mikael K.; Sipila, Mikko

    2015-06-09

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework shows that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.

  12. Conjugation of chitosan nanoparticles with biogenic and synthetic polyamines: A delivery tool for antitumor polyamine analogues.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2016-11-01

    We report the conjugation of chitosan nanoparticles with biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) in aqueous solution. Multiple spectroscopic methods, thermodynamic parameters and molecular modeling were used to analyse polyamine bindings to chitosan nanoparticles. Thermodynamic parameters ΔS, ΔH and ΔG showed that polyamines bind protein through H-bonding and hydrophobic contacts with biogenic polyamines form more stable conjugates than synthetic polyamines. As polymer size increases the stability of polyamine-chitosan conjugate increases. The loading efficacy was 40-50% for polyamine-chitosan conjugates. Modeling showed that polyamine-protein interaction is spontaneous and chitosan nanoparticles can be used for delivery of antitumor polyamine analogues. PMID:27516317

  13. On biogenicity criteria for endolithic microborings on early Earth and beyond.

    PubMed

    McLoughlin, Nicola; Brasier, Martin D; Wacey, David; Green, Owen R; Perry, Randall S

    2007-02-01

    Micron-sized cavities created by the actions of rock-etching microorganisms known as euendoliths are explored as a biosignature for life on early Earth and perhaps Mars. Rock-dwelling organisms can tolerate extreme environmental stresses and are excellent candidates for the colonization of early Earth and planetary surfaces. Here, we give a brief overview of the fossil record of euendoliths in both sedimentary and volcanic rocks. We then review the current understanding of the controls upon the distribution of euendolithic microborings and use these to propose three lines of approach for testing their biogenicity: first, a geological setting that demonstrates a syngenetic origin for the euendolithic microborings; second, microboring morphologies and distributions that are suggestive of biogenic behavior and distinct from ambient inclusion trails; and third, elemental and isotopic evidence suggestive of biological processing. We use these criteria and the fossil record of terrestrial euendoliths to outline potential environments and techniques to search for endolithic microborings on Mars. PMID:17407401

  14. Refined estimates of biogenic hydrocarbon emissions for Atlanta. Interim report, January 1992-November 1993

    SciTech Connect

    Pierce, T.E.; Coventry, D.H.; Van Meter, A.R.; Geron, C.D.

    1993-11-01

    Biogenic emissions of volatile organic compounds (VOCs) reportedly play an important role in ozone non-attainment for Atlanta. To better understand this problem, the Southern Oxidant Study participated in an intensive field experiment around Atlanta during the summer of 1992. This paper compares estimates from three different inventories. The first inventory uses the existing Biogenic Emissions Inventory System (BEIS) in the Urban Airshed Model (UAM). UAM-BEIS relies on county-aggregated land use patterns and emission factors dating back to the 1970's. A second inventory incorporates recent (circa 1990) satellite data. Information from the U.S. Forest Service (USFS) is used to increase the coverage of trees in urban areas from 20% to 30%. The third inventory uses USFS forest inventory statistics to compute leaf biomass and tree species composition for about 1 acre forest survey plots, which are extrapolated to about 2000 hectares forest areas as delineated by aerial photography.

  15. First find of biogenic activity in the Palaeoproterozoic of the Singhbhum craton (E India)

    NASA Astrophysics Data System (ADS)

    Loon, A. J. van; Mazumder, R.

    2013-09-01

    The Palaeoproterozoic succession of the Singhbhum craton in E. India was hitherto considered as almost entirely siliciclastic and partly volcanogenic. Here we describe, from the fine-grained, tidally influenced shale facies of the Palaeoproterozoic Chaibasa Formation (2.1-1.6 Ga), a fine, originally more or less horizontal, wavy to strongly undulating (later locally deformed) lamination. Investigation of these laminae shows that they must be ascribed to the accumulation of fine particles on microbial mats that covered a sandy substrate. The structures must therefore be considered as stromatolites, features that are accepted as proof of the presence of micro-organisms, in this case most probably cyanobacteria. The interpretation of biogenic activity is supported by microscopic analysis. It is the first description of traces left by biogenic activity that took place in the Palaeoproterozoic of the Singhbhum craton.

  16. INTERIOR VIEW OF IRON TREATMENT (DESULPHURIZATION) AREA. MOLTEN IRON PROCEEDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF IRON TREATMENT (DESULPHURIZATION) AREA. MOLTEN IRON PROCEEDS FROM CUPOLA TO IRON TREATMENT AREAS BEFORE BEING TRANSFERRED TO PIPE CASTING MACHINES. - United States Pipe & Foundry Company Plant, Melting & Treatment Areas, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  17. Anemia caused by low iron - children

    MedlinePlus

    Anemia - iron deficiency - children ... able to absorb iron well, even though the child is eating enough iron Slow blood loss over ... bleeding in the digestive tract Iron deficiency in children can also be related to lead poisoning .

  18. Silver-iron batteries

    NASA Astrophysics Data System (ADS)

    Lindstroem, O.

    1980-04-01

    Production methods for iron electrodes were studied. It was found that a sintering temperature of 700 C gave the best strength and capacity. Production methods and additions for silver electrodes were also studied. The capacity of the produced iron and silver electrodes were 1100 mAh/cu cm. Different separators were investigated. Cellophane I and II from Du Pont was found to be the best. In tests open cells achieved 60 percent of the calculated capacity. In order to minimize the increase of the pressure in closed cells different additions to the electrodes were studied.

  19. Iron Meteorite on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Opportunity has found an iron meteorite on Mars, the first meteorite of any type ever identified on another planet. The pitted, basketball-size object is mostly made of iron and nickel. Readings from spectrometers on the rover determined that composition. Opportunity used its panoramic camera to take the images used in this approximately true-color composite on the rover's 339th martian day, or sol (Jan. 6, 2005). This composite combines images taken through the panoramic camera's 600-nanometer (red), 530-nanometer (green), and 480-nanometer (blue) filters.

  20. Environmental significance of biogenic elements in surface sediments of the Changjiang Estuary and its adjacent areas.

    PubMed

    Yu, Yu; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Duan, Liqin

    2013-11-01

    Biogenic elements and six phosphorus (P) fractions in surface sediments from the Changjiang Estuary and adjacent waters were determined to investigate the governing factors of these elements, and further to discuss their potential uses as paleo-environment proxies and risks of P release from sediment. Total organic carbon (TOC) and leachable organic P (Lea-OP) showed high concentrations in the estuary, Zhejiang coast and offshore upwelling area. They came from both the Changjiang River and marine biological input. Biogenic silicon (BSi) exhibited a high concentration band between 123 and 124 degree E. BSi mainly came from diatom production and its concentration in the inshore area was diluted by river sediment. Total nitrogen (TN) was primarily of marine biogenic origin. Seaward decreasing trends of Fe-bound P and Al-bound P revealed their terrestrial origins. Influenced by old Huanghe sediment delivered by the Jiangsu coastal current, the maximum concentration of detrital P (Det-P) was observed in the area north of the estuary. Similar high concentrations of carbonate fluorapatite (CFA-P) and CaCO3in the southern study area suggested marine calcium-organism sources of CFA-P. TOC, TN and non-apatite P were enriched in fine sediment, and Det-P partially exhibited coarse-grain enrichment, but BSi had no correlation with sediment grain size. Different sources and governing factors made biogenic elements and P species have distinct potential uses in indicating environmental conditions. Transferable P accounted for 14%-46% of total P. In an aerobic environment, there was low risk of P release from sediment, attributed to excess Fe oxides in sediments. PMID:24552046

  1. Quantitative laboratory measurements of biogeochemical processes controlling biogenic calcite carbon sequestration.

    SciTech Connect

    Zendejas, Frank; Lane, Todd W.; Lane, Pamela D.

    2011-01-01

    The purpose of this LDRD was to generate data that could be used to populate and thereby reduce the uncertainty in global carbon cycle models. These efforts were focused on developing a system for determining the dissolution rate of biogenic calcite under oceanic pressure and temperature conditions and on carrying out a digital transcriptomic analysis of gene expression in response to changes in pCO2, and the consequent acidification of the growth medium.

  2. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J. B.; Kuster, W. C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J. A.; Cahill, T. M.; Holzinger, R.

    2008-11-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) and found to be abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4 68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72 10.2 μgCg-1h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  3. Charge dependence of ligand release and monolayer stability of gold nanoparticles by biogenic thiols.

    PubMed

    Chompoosor, Apiwat; Han, Gang; Rotello, Vincent M

    2008-07-01

    The effect of surface charge on the stability of gold nanoparticles (AuNPs) to the biogenic thiols glutathione (GSH), dihydrolipoic acid (DHLA), and cysteine was quantified. It was observed that the rate of release of fluorescein-tagged ligand was determined by the surface charge of the AuNPs, with cationic particles much more labile than anionic analogues. This ability to tune stability is significant for the design of both delivery vehicles and intracellular probes. PMID:18553895

  4. Incremental Reactivity Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Kacarab, M.; Li, L.; Carter, W. P. L.; Cocker, D. R., III

    2015-12-01

    Two surrogate reactive organic gas (ROG) mixtures were developed to create a controlled reactivity environment simulating different urban atmospheres with varying levels of anthropogenic (e.g. Los Angeles reactivity) and biogenic (e.g. Atlanta reactivity) influences. Traditional chamber experiments focus on the oxidation of one or two volatile organic compound (VOC) precursors, allowing the reactivity of the system to be dictated by those compounds. Surrogate ROG mixtures control the overall reactivity of the system, allowing for the incremental aerosol formation from an added VOC to be observed. The surrogate ROG mixtures were developed based on that used to determine maximum incremental reactivity (MIR) scales for O3 formation from VOC precursors in a Los Angeles smog environment. Environmental chamber experiments were designed to highlight the incremental aerosol formation in the simulated environment due to the addition of an added anthropogenic (aromatic) or biogenic (terpene) VOC. All experiments were conducted in the UC Riverside/CE-CERT dual 90m3 environmental chambers. It was found that the aerosol precursors behaved differently under the two altered reactivity conditions, with more incremental aerosol being formed in the anthropogenic ROG system than in the biogenic ROG system. Further, the biogenic reactivity condition inhibited the oxidation of added anthropogenic aerosol precursors, such as m-xylene. Data will be presented on aerosol properties (density, volatility, hygroscopicity) and bulk chemical composition in the gas and particle phases (from a SYFT Technologies selected ion flow tube mass spectrometer, SIFT-MS, and Aerodyne high resolution time of flight aerosol mass spectrometer, HR-ToF-AMS, respectively) comparing the two controlled reactivity systems and single precursor VOC/NOx studies. Incremental aerosol yield data at different controlled reactivities provide a novel and valuable insight in the attempt to extrapolate environmental chamber

  5. Absorption of Visible and Long-wave Radiation by Primary and Secondary Biogenic Aerosols.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.

    2008-12-01

    Field results for the 14C content of carbonaceous aerosols are presented that indicate significant biogenic sources of both primary and secondary aerosols in urban and regional environments. Samples collected in Mexico City and downwind of the urban area during the MILAGRO field study are compared with results reported previously in the literature indicating a significant amount of biogenic aerosols from both biomass burning and secondary photochemical production (e.g. terpene oxidations) are contributing to the overall carbonaceous aerosols in the optically active region of 0.1 to 1.0 micron. Samples in this size range collected on quartz fiber filters were also examined using an integrating sphere and FTIR diffuse reflectance techniques to obtain absorption spectra from 280 to the mid-IR. These data clearly indicate that the biogenic derived primary aerosols from agricultural and trash-burning, as well as secondary organic aerosols from isoprene and terpene oxidations will produce both UV-Visible (short-wave) absorbing substances as well as IR (long-wave) absorbing compounds including humic-like-substances (HULIS). With the anticipated increases in growing seasons (i.e. earlier springs and longer summers) the likely hood of increased fires (forest and grassland) as well as the continuing growth in agricultural burning activities, these primary sources are expected to increase and may play a role in heating of the atmosphere. The compound effects of these primary and secondary biogenic sources of absorbing aerosols to the total aerosol loading and regional climate will be discussed. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 as part of the Atmospheric Science Program.

  6. Age and Gender-Related Changes in Biogenic Amine Metabolites in Cerebrospinal Fluid in Children.

    PubMed

    Kuśmierska, Katarzyna; Szymańska, Krystyna; Rokicki, Dariusz; Kotulska, Katarzyna; Jóźwiak, Sergiusz; Sykut-Cegielska, Jolanta; Mierzewska, Hanna; Szczepanik, Elzbieta; Pronicka, Ewa; Demkow, Urszula

    2016-01-01

    Metabolites of cerebrospinal biogenic amines (dopamine and serotonin)are an important tool in clinical research and diagnosis of children with neurotransmitter disorders. In this article we focused on finding relationships between the concentration of biogenic amine metabolites, age, and gender. We analyzed 148 samples from children with drug resistant seizures of unknown etiology and children with mild stable encephalopathy aged 0-18 years. A normal profile of biogenic amineswas found in 107 children and those children were enrolled to the study group. The CSF samples were analyzed by HPLC with an electrochemical detector. The concentrations of the dopamine and serotonin metabolites homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), respectively, were high at birth, gradually decreasing afterward until the 18 years of age. Nevertheless, the HVA/5-HIAA ratio did not vary with age, except in the children below 1 year of age. In the youngest group we observed a strong relationship between the HVA/5-HIAA ratio and age (r = 0.69, p < 0.001). There were no statistical differences in the level of both dopamine and serotonin metabolites between boys and girls, although a tread toward lower HVA and 5-HIAA in the boys was noticeable. Significant inter-gender differences in the level of HVA and 5-HIAA were noted only in the age-group of 1-4 years, with 5-HIAA being higher in the girls than boys (p = 0.004). In conclusion, the study revealed that the concentration of biogenic amine metabolites is age and sex dependent. PMID:26453071

  7. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks

    SciTech Connect

    Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F.

    2008-08-19

    Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to the lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.

  8. Modelling approach to the assessment of biogenic fluxes at a selected Ross Sea site, Antarctica

    NASA Astrophysics Data System (ADS)

    Vichi, M.; Coluccelli, A.; Ravaioli, M.; Giglio, F.; Langone, L.; Azzaro, M.; Azzaro, F.; La Ferla, R.; Catalano, G.; Cozzi, S.

    2009-07-01

    Several biogeochemical data have been collected in the last 10 years of Italian activity in Antarctica (ABIOCLEAR, ROSSMIZE, BIOSESO-I/II). A comprehensive 1-D biogeochemical model was implemented as a tool to link observations with processes and to investigate the mechanisms that regulate the flux of biogenic material through the water column. The model is ideally located at station B (175° E-74° S) and was set up to reproduce the seasonal cycle of phytoplankton and organic matter fluxes as forced by the dominant water column physics over the period 1990-2001. Austral spring-summer bloom conditions are assessed by comparing simulated nutrient drawdown, primary production rates, bacterial respiration and biomass with the available observations. The simulated biogenic fluxes of carbon, nitrogen and silica have been compared with the fluxes derived from sediment traps data. The model reproduces the observed magnitude of the biogenic fluxes, especially those found in the bottom sediment trap, but the peaks are markedly delayed in time. Sensitivity experiments have shown that the characterization of detritus, the choice of the sinking velocity and the degradation rates are crucial for the timing and magnitude of the vertical fluxes. An increase of velocity leads to a shift towards observation but also to an overestimation of the deposition flux which can be counteracted by higher bacterial remineralization rates. Model results suggest that the timing of the observed fluxes depends first and foremost on the timing of surface production and on a combination of size-distribution and quality of the autochtonous biogenic material. It is hypothesized that the bottom sediment trap collects material originated from the rapid sinking of freshly-produced particles and also from the previous year's production period.

  9. The Influence of Biogenic Emissions on Tropospheric Composition over Africa during 2006

    NASA Astrophysics Data System (ADS)

    Williams, J. E.; Scheele, R.; van Velthoven, P. F. J.; Cammas, J.-P.; Galy-Lacaux, C.; Thouret, V.

    2009-04-01

    Biogenic emissions of NO and Volatile Organic Compounds (BVOC's) play an important role in determining the oxidizing capacity of the troposphere near tropical regions which have sparse populations. Here we use a 3D global CTM (TM4) for the purpose of examining the effect of using a recent climatology of biogenic emissions from the ORCHIDEE model (Lathiére et al, 2006) on the distribution and concentrations of trace gas species over equatorial Africa during the AMMA measurement year of 2006. We compare the results against simulations which adopt an older biogenic inventory compiled during the POET project (Granier et al, 2005). Sensitivity studies are conducted to determine the effect of both NO emitted from soils and BVOC's emitted from vegetation (namely the cumulative effect of CO, HCHO, ethanol, acetic acid, acetone and CH3CHO) on tropospheric ozone, NOx and the nitrogen reservoir species PAN and HNO3. Comparisons with a host of measurements have been performed to assess the impact on model performance. Finally an analysis of the tropical O3 budget is performed to quantify differences introduced for the oxidizing capacity of the tropical troposphere. Granier, C., Guether, A., Lamarque, J. F., Mieville, A., Muller, J.F., Olivier, J., Orlando, J., Peters, J., Petron, G., Tyndall, G., amd Wallens, S., POET - a database of surface emissions of ozone precursors, available at: http://www.aero.jussieu.fr/project/ACCENT/POET.php, 2005. Lathiére, J., Hauglustaine, D. A., Friend, A. D., De Noblet-Ducoudré, N., Viovy, N., and Folberth, G. A., Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Atms. Chem. Phys., 6, 2129-2146, 2006.

  10. The three steps of the carbonate biogenic dissolution process by microborers in coral reefs (New Caledonia).

    PubMed

    Grange, J S; Rybarczyk, H; Tribollet, A

    2015-09-01

    Biogenic dissolution of carbonates by microborers is one of the main destructive forces in coral reefs and is predicted to be enhanced by eutrophication and ocean acidification by 2100. The chlorophyte Ostreobium sp., the main agent of this process, has been reported to be one of the most responsive of all microboring species to those environmental factors. However, very little is known about its recruitment, how it develops over successions of microboring communities, and how that influences rates of biogenic dissolution. Thus, an experiment with dead coral blocks exposed to colonization by microborers was carried out on a reef in New Caledonia over a year period. Each month, a few blocks were collected to study microboring communities and the associated rates of biogenic dissolution. Our results showed a drastic shift in community species composition between the 4th and 5th months of exposure, i.e., pioneer communities dominated by large chlorophytes such as Phaeophila sp. were replaced by mature communities dominated by Ostreobium sp. Prior the 4th month of exposure, large chlorophytes were responsible for low rates of biogenic dissolution while during the community shift, rates increased exponentially (×10). After 6 months of exposure, rates slowed down and reached a "plateau" with a mean of 0.93 kg of CaCO3 dissolved per m(2) of reef after 12 months of exposure. Here, we show that (a) Ostreobium sp. settled down in new dead substrates as soon as the 3rd month of exposure but dominated communities only after 5 months of exposure and (b) microbioerosion dynamics comprise three distinct steps which fully depend on community development stage and grazing pressure. PMID:25592911

  11. Early Eutrophication in the Lower Great Lakes: New Evidence from Biogenic Silica in Sediments

    NASA Astrophysics Data System (ADS)

    Schelske, Claire L.; Stoermer, Eugene F.; Conley, Daniel J.; Robbins, John A.; Glover, Rebecca M.

    1983-10-01

    New evidence from studies of biogenic silica and diatoms in sediment cores indicates that eutrophication in the lower Great Lakes resulted from nutrient enrichment associated with early settlement and forest clearance. Diatom production peaked from 1820 to 1850 in Lake Ontario, at about 1880 in Lake Erie, but not until 1970 in Lake Michigan. This is the first reported sediment record of the silica-depletion sequence for the Great Lakes.

  12. Estimation of Biogenic Gas Distribution in a Northern Peatland Using Surface and Borehole Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Comas, X.; Slater, L.; Reeve, A.

    2005-05-01

    A combination of borehole and surface ground penetrating radar (GPR), time domain reflectometry (TDR) and direct gas sampling was performed to detect biogenic gas accumulation areas in Caribou Bog, a multi-unit peatland in central Maine (Orono). Areas of electromagnetic (EM) signal scattering (or shadow zones, similar to those reported with the seismic reflection method) observed in the surface GPR coincide with sampled zones of high CH4 and CO2 concentration. Shadow zones also correlate with areas of high EM wave velocity detected in zero offset profiles (ZOP) conducted with the borehole GPR, and with areas of low water content inferred with TDR. Application of the Complex Refractive Index Model (CRIM) to the EM wave velocities implies that the anomalous high velocity zones results from a volumetric gas content of 7% and 10% for a peat soil porosity of 91% and 94% respectively. In the absence of gas, the CRIM model predicts a porosity value of only 84% to reach the maximum EM wave velocity recorded, a value not supported by our peat porosity measurements in the laboratory and inconsistent with the high porosity of peat recorded by others. Strong reflectors detected with the surface GPR are interpreted as confining layers acting as biogenic gas traps and inducing overpressurized biogenic gas pockets as postulated by others. Spatial gas distribution and volumetric gas content can be roughly estimated considering the areas affected by EM wave blanking. These findings also have implications for the monitoring of temporal behavior of biogenic gas emissions to the atmosphere from peatlands.

  13. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m‑Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts

  14. The chemistry of biogenic hydrocarbons at a rural site in eastern Canada

    NASA Astrophysics Data System (ADS)

    Biesenthal, T. A.; Bottenheim, J. W.; Shepson, P. B.; Li, S.-M.; Brickell, P. C.

    1998-10-01

    An intensive field study was undertaken in southern Nova Scotia, on the east coast of Canada, for several weeks during the summer of 1996 as part of the North American Research Strategy for Tropospheric Ozone - Canada East (NARSTO-CE) 1996 field measurement campaign. Clean air conditions prevailed during most of the study period, which allowed an examination of biogenic hydrocarbon chemistry with minimal influence from anthropogenic pollutants. Low NOx mixing ratios during the study had an impact on the ratio of isoprene's oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) to isoprene. The effects include changes to the fate of isoprene peroxy radicals and to the concentration of OH compared to conditions of higher [NOx]. Comparison to other studies indicate that there is a relationship between the ratio (MVK+MACR)/isoprene and the mixing ratio of NOx. Biogenic hydrocarbons were the dominant reactive volatile organic compound (VOC) precursors to ozone production in this region, although the net ozone production rate predicted by a box-model simulation of the measurement data was only <1 ppbv h-1. The evidence confirms that ozone production at this site is very NOx-sensitive. Model simulations indicated that the ozonolysis of biogenic hydrocarbons is an important source of the hydroxyl radical at this site and that OH was, in fact, the dominant oxidant during the nighttime under the observed low NOx conditions. Although the OH source did affect the nighttime mixing ratios of biogenic hydrocarbons, it could not fully explain the rapid nocturnal decay of isoprene observed on most evenings.

  15. Iron in Infection and Immunity

    PubMed Central

    Cassat, James E.; Skaar, Eric P.

    2013-01-01

    Iron is an essential nutrient for both humans and pathogenic microbes. Because of its ability to exist in one of two oxidation states, iron is an ideal redox catalyst for diverse cellular processes including respiration and DNA replication. However, the redox potential of iron also contributes to its toxicity, thus iron concentration and distribution must be carefully controlled. Given the absolute requirement for iron by virtually all human pathogens, an important facet of the innate immune system is to limit iron availability to invading microbes in a process termed nutritional immunity. Successful human pathogens must therefore possess mechanisms to circumvent nutritional immunity in order to cause disease. In this review, we discuss regulation of iron metabolism in the setting of infection and delineate strategies used by human pathogens to overcome iron-withholding defenses. PMID:23684303

  16. Protein degradation and iron homeostasis.

    PubMed

    Thompson, Joel W; Bruick, Richard K

    2012-09-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22349011

  17. Iron deficiency anemia in children.

    PubMed

    Subramaniam, Girish; Girish, Meenakshi

    2015-06-01

    Iron deficiency is not just anemia; it can be responsible for a long list of other manifestations. This topic is of great importance, especially in infancy and early childhood, for a variety of reasons. Firstly, iron need is maximum in this period. Secondly, diet in infancy is usually deficient in iron. Thirdly and most importantly, iron deficiency at this age can result in neurodevelopmental and cognitive deficits, which may not be reversible. Hypochromia and microcytosis in a complete blood count (CBC) makes iron deficiency anemia (IDA) most likely diagnosis. Absence of response to iron should make us look for other differential diagnosis like β thalassemia trait and anemia of chronic disease. Celiac disease is the most important cause of true IDA not responding to oral iron therapy. While oral ferrous sulphate is the cheapest and most effective therapy for IDA, simple nonpharmacological and pharmacological measures can go a long way in prevention of iron deficiency. PMID:25636824

  18. Postprandial Differences in the Amino Acid and Biogenic Amines Profiles of Impaired Fasting Glucose Individuals after Intake of Highland Barley

    PubMed Central

    Liu, Liyan; Wang, Xinyang; Li, Ying; Sun, Changhao

    2015-01-01

    The aim of this study was to measure the postprandial changes in amino acid and biogenic amine profiles in individuals with impaired fasting glucose (IFG) and to investigate the changes of postprandial amino acid and biogenic amine profiles after a meal of highland barley (HB). Firstly, 50 IFG and 50 healthy individuals were recruited for the measurement of 2 h postprandial changes of amino acid and biogenic amine profiles after a glucose load. Secondly, IFG individuals received three different loads: Glucose (GL), white rice (WR) and HB. Amino acid and biogenic amine profiles, glucose and insulin were assayed at time zero and 30, 60, 90 and 120 min after the test load. The results showed fasting and postprandial amino acid and biogenic amine profiles were different between the IFG group and the controls. The level of most amino acids and their metabolites decreased after an oral glucose tolerance test, while the postprandial level of γ-aminobutyric acid (GABA) increased significantly in IFG individuals. After three different test loads, the area under the curve for glucose, insulin, lysine and GABA after a HB load decreased significantly compared to GL and WR loads. Furthermore, the postprandial changes in the level of GABA between time zero and 120 min during a HB load were associated positively with 2 h glucose and fasting insulin secretion in the IFG individuals. Thus, the HB load produced low postprandial glucose and insulin responses, which induced changes in amino acid and biogenic amine profiles and improved insulin sensitivity. PMID:26184292

  19. Studies of levels of biogenic amines in meat samples in relation to the content of additives.

    PubMed

    Jastrzębska, Aneta; Kowalska, Sylwia; Szłyk, Edward

    2016-01-01

    The impact of meat additives on the concentration of biogenic amines and the quality of meat was studied. Fresh white and red meat samples were fortified with the following food additives: citric and lactic acids, disodium diphosphate, sodium nitrite, sodium metabisulphite, potassium sorbate, sodium chloride, ascorbic acid, α-tocopherol, propyl 3,4,5-trihydroxybenzoate (propyl gallate) and butylated hydroxyanisole. The content of spermine, spermidine, putrescine, cadaverine, histamine, tyramine, tryptamine and 2-phenylethylamine was determined by capillary isotachophoretic methods in meat samples (fresh and fortified) during four days of storage at 4°C. The results were applied to estimate the impact of the tested additives on the formation of biogenic amines in white and red meat. For all tested meats, sodium nitrite, sodium chloride and disodium diphosphate showed the best inhibition. However, cadaverine and putrescine were characterised by the biggest changes in concentration during the storage time of all the additives. Based on the presented data for the content of biogenic amines in meat samples analysed as a function of storage time and additives, we suggest that cadaverine and putrescine have a significant impact on meat quality. PMID:26515667

  20. Biogenic amine levels, reproduction and social dominance in the queenless ant Streblognathus peetersi

    NASA Astrophysics Data System (ADS)

    Cuvillier-Hot, Virginie; Lenoir, Alain

    2006-03-01

    Social harmony often relies on ritualised dominance interactions between society members, particularly in queenless ant societies, where colony members do not have developmentally predetermined castes but have to fight for their status in the reproductive and work hierarchy. In this behavioural plasticity, their social organisation resembles more that of vertebrates than that of the “classic” social insects. The present study investigates the neurochemistry of the queenless ant species, Streblognathus peetersi, to better understand the neural basis of the high behavioural plasticity observed in queenless ants. We report measurements of brain biogenic amines [octopamine, dopamine, serotonin] of S. peetersi ants; they reveal a new set of biogenic amine influences on social organisation with no common features with other “primitively organised societies” (bumble bees) and some common features with “highly eusocial” species (honey bees). This similarity to honey bees may either confirm the heritage of queenless species from their probably highly eusocial ancestors or highlight independent patterns of biogenic amine influences on the social organisation of these highly derived species.