Science.gov

Sample records for biological control agent

  1. An Introduced Insect Biological Control Agent Preys on an Introduced Weed Biological Control Agent.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biotic interference, especially by generalist predators, has been implicated in preventing establishment or limiting the impact of introduced weed biological control agents. Boreioglycaspis melaleucae Moore (Homoptera: Psyllidae) was released into Florida in 2002 as part of a classical biological c...

  2. Biological control agents elevate hantavirus by subsidizing deer mouse populations.

    PubMed

    Pearson, Dean E; Callaway, Ragan M

    2006-04-01

    Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents (Urophora spp.), widely established in North America for spotted knapweed (Centaurea maculosa) control, to indirectly elevate Sin Nombre hantavirus by providing food subsidies to populations of deer mice (Peromyscus maniculatus), the primary reservoir for the virus. We show that seropositive deer mice (mice testing positive for hantavirus) were over three times more abundant in the presence of the biocontrol food subsidy. Elevating densities of seropositive mice may increase risk of hantavirus infection in humans and significantly alter hantavirus ecology. Host specificity alone does not ensure safe biological control. To minimize indirect risks to non-target species, biological control agents must suppress pest populations enough to reduce their own numbers. PMID:16623730

  3. Biological Agents

    MedlinePlus

    ... to Z Index Contact Us FAQs What's New Biological Agents This page requires that javascript be enabled ... and Health Topics A-Z Index What's New Biological agents include bacteria, viruses, fungi, other microorganisms and ...

  4. Functional Agents to Biologically Control Deoxynivalenol Contamination in Cereal Grains

    PubMed Central

    Tian, Ye; Tan, Yanglan; Liu, Na; Liao, Yucai; Sun, Changpo; Wang, Shuangxia; Wu, Aibo

    2016-01-01

    Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains and pose a serious threat to human and animal health around the globe. Deoxynivalenol (DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to high exposure levels and contamination frequency in the food chain. Biological control is emerging as a promising technology for the management of DON contamination. Functional biological control agents (BCAs), which include antagonistic microbes, natural fungicides derived from plants and detoxification enzymes, can be used to control DON contamination at different stages of grain production. In this review, studies regarding different biological agents for DON control in recent years are summarized for the first time. Furthermore, this article highlights the significance of BCAs for controlling DON contamination, as well as the need for more practical and efficient BCAs concerning food safety. PMID:27064760

  5. DISCOVERY AND DEVELOMENT OF BIOLOGICAL AGENTS TO CONTROL CROP PESTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    "Biological control" refers to the reduction of crop pests or their deleterious activities by one or more antagonistic organisms present in the environment. Thousands of potential microbial biocontrol agents have been isolated from agricultural fields and crops during research over the last 80 year...

  6. 75 FR 64984 - Availability of an Environmental Assessment for a Biological Control Agent for Hawkweeds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... Assessment for a Biological Control Agent for Hawkweeds AGENCY: Animal and Plant Health Inspection Service... States as a biological control agent to reduce the severity of infestations of hawkweeds. We are making... subterminalis, into the continental United States for the biological control of hawkweeds (Hieracium...

  7. An abundant biological control agent does not provide a significant predator subsidy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical weed biological control agents, regardless of their effectiveness, may provide subsidies to predators and parasites. The chemically defended weevil Oxyops vitiosa Pascoe is a successful agent that was introduced to control the invasive tree Melaleuca quinquenervia. Two consecutive small ...

  8. Insect pathogens as biological control agents: Back to the future.

    PubMed

    Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S

    2015-11-01

    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 1years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for control of medically important pests including dipteran vectors. These pathogens

  9. 77 FR 46373 - Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Animal and Plant Health Inspection Service Availability of an Environmental Assessment for a Biological... of Symnus coniferarum into the eastern United States for use as a biological control agent to reduce... as a biological control agent to reduce the severity of hemlock woolly adelgid (Adelges...

  10. High-throughput assay for optimising microbial biological control agent production and delivery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lack of technologies to produce and deliver effective biological control agents (BCAs) is a major barrier to their commercialization. A myriad of variables associated with BCA cultivation, formulation, drying, storage, and reconstitution processes complicates agent quality maximization. An efficie...

  11. Anti-tick biological control agents: assessment and future perspectives

    USGS Publications Warehouse

    Samish, M., H.; Ginsberg, H.S.; Glazer, I.

    2008-01-01

    Widespread and increasing resistance to most available acaracides threatens both global livestock industries and public health. This necessitates better understanding of ticks and the diseases they transmit in the development of new control strategies. Ticks: Biology, Disease and Control is written by an international collection of experts and covers in-depth information on aspects of the biology of the ticks themselves, various veterinary and medical tick-borne pathogens, and aspects of traditional and potential new control methods. A valuable resource for graduate students, academic researchers and professionals, the book covers the whole gamut of ticks and tick-borne diseases from microsatellites to satellite imagery and from exploiting tick saliva for therapeutic drugs to developing drugs to control tick populations. It encompasses the variety of interconnected fields impinging on the economically important and biologically fascinating phenomenon of ticks, the diseases they transmit and methods of their control.

  12. Compatability of a Biological Control Agent with Herbicides for Control of Invasive Plant Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kudzu, Pueraria montana var lobata, is an exotic invasive weed that is difficult to control with available products and management practices. The fungal pathogen, Myrothecium verrucaria, is being developed as a bioherbicide for kudzu and other invasive vines. This biological control agent might be...

  13. Insect pathogens as biological control agents: back to the future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past 15 years a number of successes and setbacks have taken place regarding development and use of microbial control agents. In this Forum paper we present current information on development, use and future directions of entomopathogenic virus, bacteria, fungi and nematodes as components of i...

  14. Probiotic Bacteria as Biological Control Agents in Aquaculture

    PubMed Central

    Verschuere, Laurent; Rombaut, Geert; Sorgeloos, Patrick; Verstraete, Willy

    2000-01-01

    There is an urgent need in aquaculture to develop microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and trade and since the development of antibiotic resistance has become a matter of growing concern. One of the alternatives to antimicrobials in disease control could be the use of probiotic bacteria as microbial control agents. This review describes the state of the art of probiotic research in the culture of fish, crustaceans, mollusks, and live food, with an evaluation of the results obtained so far. A new definition of probiotics, also applicable to aquatic environments, is proposed, and a detailed description is given of their possible modes of action, i.e., production of compounds that are inhibitory toward pathogens, competition with harmful microorganisms for nutrients and energy, competition with deleterious species for adhesion sites, enhancement of the immune response of the animal, improvement of water quality, and interaction with phytoplankton. A rationale is proposed for the multistep and multidisciplinary process required for the development of effective and safe probiotics for commercial application in aquaculture. Finally, directions for further research are discussed. PMID:11104813

  15. Probiotic bacteria as biological control agents in aquaculture.

    PubMed

    Verschuere, L; Rombaut, G; Sorgeloos, P; Verstraete, W

    2000-12-01

    There is an urgent need in aquaculture to develop microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and trade and since the development of antibiotic resistance has become a matter of growing concern. One of the alternatives to antimicrobials in disease control could be the use of probiotic bacteria as microbial control agents. This review describes the state of the art of probiotic research in the culture of fish, crustaceans, mollusks, and live food, with an evaluation of the results obtained so far. A new definition of probiotics, also applicable to aquatic environments, is proposed, and a detailed description is given of their possible modes of action, i.e., production of compounds that are inhibitory toward pathogens, competition with harmful microorganisms for nutrients and energy, competition with deleterious species for adhesion sites, enhancement of the immune response of the animal, improvement of water quality, and interaction with phytoplankton. A rationale is proposed for the multistep and multidisciplinary process required for the development of effective and safe probiotics for commercial application in aquaculture. Finally, directions for further research are discussed. PMID:11104813

  16. Indirect ecological effects in invaded landscapes: Spillover and spillback from biological control agents to native analogues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control remains an effective option for managing large-scale weed problems in natural areas. The predation or parasitism of biological control agents by other species present in the introduced range (biotic resistance) is well studied and is often cited as the cause for a lack of establis...

  17. Plant-mediated interactions: considerations for agent selection in weed biological control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-mediated indirect interactions among herbivores (arthropods and pathogens) are common and extensively reported in the ecological literature. However, they are not well-documented with respect to weed biological control. Such interactions between biological control agents can have net positive...

  18. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents.

    PubMed

    Card, Stuart; Johnson, Linda; Teasdale, Suliana; Caradus, John

    2016-08-01

    Endophytes associate with the majority of plant species found in natural and managed ecosystems. They are regarded as extremely important plant partners that provide improved stress tolerance to the host compared with plants that lack this symbiosis. Fossil records of endophytes date back more than 400 million years, implicating these microorganisms in host plant adaptation to habitat transitions. However, it is only recently that endophytes, and their bioactive products, have received meaningful attention from the scientific community. The benefits some endophytes can confer on their hosts include plant growth promotion and survival through the inhibition of pathogenic microorganisms and invertebrate pests, the removal of soil contaminants, improved tolerance of low fertility soils, and increased tolerance of extreme temperatures and low water availability. Endophytes are extremely diverse and can exhibit many different biological behaviours. Not all endophyte technologies have been successfully commercialised. Of interest in the development of the next generation of plant protection products is how much of this is due to the biology of the particular endophytic microorganism. In this review, we highlight selected case studies of endophytes and discuss their lifestyles and behavioural traits, and discuss how these factors contribute towards their effectiveness as biological control agents. PMID:27222223

  19. Episodic positive selection at mitochondrial genome in an introduced biological control agent.

    PubMed

    Li, Hao-Sen; Liang, Xin-Yu; Zou, Shang-Jun; Liu, Yang; De Clercq, Patrick; Ślipiński, Adam; Pang, Hong

    2016-05-01

    Artificial introduction in classical biological control provides a unique opportunity to understand mitochondrial evolution driving adaptation to novel environments. We studied mitochondrial genomes of a world-wide introduced agent, Cryptolaemus montrouzieri. We detected positive selection in complex I genes (ND5 and ND4) against a background of widespread negative selection. We further detected significant signals in neutrality tests within 11 populations at ND5 gene, indicating a recent selective sweep/positive selection. Our results imply that these candidate mutations may contribute local adaptation of exotic biological control agents and these provide new insights into the improvement of classical biological control programs. PMID:26994640

  20. MATING BIOLOGY OF AUSTROMUSOTIMA CAMPTOZONALE (LEPIDOPTERA: CRAMBIDAE) - A POTENTIAL BIOLOGICAL CONTROL AGENT OF OLD WORLD CLIMBING FERN, LYGODIUM MICROPHYLLUM (SCHIZAEACEAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Austromusotima camptozonale (Hampson) is under investigation as a potential biological control agent of Old World Climbing fern, Lygodium microphyllum (Cav.) R. Br., which is a serious invasive weed in southern Florida. Studies were conducted to investigate aspects of the mating biology of A. campto...

  1. Microsporidia Biological Control Agents and Pathogens of Beneficial Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsporidian infections of insects are generally chronic, causing subtle pathologies of reduced fecundity and shorter lifespans. The lack of acute infections that cause rapid mortality, make microsporida ill-suited as biopesticides for arthropod control. Instead, they are considered to be more use...

  2. Biology of the galling wasp, Tetramesa romana, a biological control agent of giant reed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biology of the gall-forming wasp, Tetramesa romana Walker (Hymenoptera: Eurytomidae), from southern France and Spain was studied for biological control of giant reed (Arundo donax L.), an exotic and invasive riparian weed in the U.S. Females developed eggs parthenogenetically and deposited them...

  3. Enhancement of biological control agents for use against forest insect pests and diseases through biotechnology

    NASA Technical Reports Server (NTRS)

    Slavicek, James M.

    1991-01-01

    Research and development efforts in our research group are focused on the generation of more efficacious biological control agents through the techniques of biotechnology for use against forest insect pests and diseases. Effective biological controls for the gypsy moth and for tree fungal wilt pathogens are under development. The successful use of Gypchek, a formulation of the Lymantria dispar nuclear polyhedrosis virus (LdNPV), in gypsy moth control programs has generated considerable interest in that agent. As a consequence of its specificity, LdPNV has negligible adverse ecological impacts compared to most gypsy moth control agents. However, LdNPV is not competitive with other control agents in terms of cost and efficacy. We are investigating several parameters of LdNPV replication and polyhedra production in order to enhance viral potency and efficacy thus mitigating the current disadvantages of LdNPV for gypsy moth control, and have identified LdNPV variants that will facilitate these efforts. Tree endophytic bacteria that synthesize antifungal compounds were identified and an antibiotic compound from one of these bacteria was characterized. The feasibility of developing tree endophytes as biological control agents for tree vascular fungal pathogens is being investigated.

  4. 75 FR 69396 - Availability of an Environmental Assessment for a Biological Control Agent for Arundo donax

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ...; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service Availability of an Environmental Assessment for a Biological Control Agent for Arundo donax AGENCY: Animal and Plant Health Inspection Service... the Animal and Plant Health Inspection Service has prepared an environmental assessment relative...

  5. Acquired natural enemies of the weed biological control agent Oxyops vitiosa (Coleoptera: Curculionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Australian curculionid Oxyops vitiosa Pascoe was introduced into Florida during 1997 as a biological control agent of the invasive tree Melaleuca quinquenervia (Cav.) S.T. Blake. Populations of the weevil increased rapidly and became widely distributed throughout much of the invasive tree’s adve...

  6. Larval dispersal of the weed biological control agent Oxyops vitiosa (Coleoptera: Curculionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Australian weevil Oxyops vitiosa is a biological control agent of the exotic tree Melaleuca quinquenervia in Florida, USA. Evidence suggests that the last instar drops from the canopy to the forest floor to pupate in the soil or leaf litter. This dispersal method preempts weevil population persi...

  7. POTENTIAL OF ENTOMOPATHOGENIC FUNGI AS BIOLOGICAL CONTROL AGENTS AGAINST THE FORMOSAN SUBTERRANEAN TERMITE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tolerance, pathogenicity and transmission studies of the fungi Metarhizium and Beauveria, show that biological control agents can enhance termite treatment flexibility. Subterranean termites cause significant damage to wood structures and trees, especially in the Gulf of Mexico region of the United ...

  8. Microarray Analysis and Mutagenesis of the Biological Control Agent Pseudomonas fluorescens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological control agent Pseudomonas fluorescens Pf-5 suppresses seedling emergence diseases caused by soilborne fungi and Oomycetes. Pf-5 produces at least ten secondary metabolites. These include hydrogen cyanide, pyrrolnitrin, pyoluteorin and 2,4-diacetylphloroglucinol, which have known funct...

  9. Establishment of the armored scale, Rhizaspidiotus donacis, a biological control agent of Arundo donax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The armored scale biological control agent, Rhizaspidiotus donacis (Leonardi) (Hemiptera; Diaspididae) has established populations on the invasive weed, Arundo donax L. (Poaceae; Arundinoideae) in Del Rio (Val Verde, Co.) and in field plots at the USDA-APHIS-PPQ-Moore Airbase, Edinburg (Hidalgo Co.)...

  10. Trichogramma spp. as biological control agents in the Philippines: history and current practice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichogramma parasitoids have long been recognized as important and viable biological control agents against lepidopteran pests of rice, corn and sugarcane in the Philippines. We describe the history of research and use of Trichogramma spp. in the Philippines in three main areas: 1) field surveys – ...

  11. Trichogramma spp. (Hymenoptera: Trichogrammatidae) as biological control agents in the Philippines: history and current practice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichogramma parasitoids have long been recognized as important and viable biological control agents against lepidopteran pests of rice, corn and sugarcane in the Philippines. We describe the history of research and use of Trichogramma spp. in the Philippines in three main areas: 1) field surveys – ...

  12. Effects of a biological control agent on the use of saltcedar habitat by passerine birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasion of native riparian habitats by saltcedar (Tamarix spp.) in the southwestern United States, has caused declines in population density of birds. The saltcedar leaf beetle (Diorhabda elongata) has been released at several sites as a biological control agent. At two northern Nevada locations,...

  13. Use of pupal parasitoids as biological control agents of filth flies on equine facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), (Diptera: Muscidae), are common pests on horse farms. The use of pupal parasitoids as biological control agents for filth flies is becoming more popular on equine facilities; however, there is a lack of information on the e...

  14. Evaluation of Serangium parcesetosum (Coleoptera: Coccinellidae) as a biological control agent of the silverleaf whitefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The coccinellid predator from India, Serangium parcesetosum Sicard, was studied as a potential biological control agent of the silverleaf whitefly, Bemisia argentifolii Bellows & Perring [also known as the sweetpotato whitefly, B. tahaci (Gennadius) Biotype B]. Studies were performed on prey prefere...

  15. Physiological host range of Ceratapion basicorne, a prospective biological control agent of Centaurea solstitialis (Asteraceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ceratapion basicorne (Coleoptera: Apionidae) is a weevil native to Europe and western Asia has been proposed as a prospective classical biological control agent of yellow starthistle (Centaurea solstitialis), which is an important invasive alien weed in the western United States. Host plant specifi...

  16. Search for fungi as potential biological control agents of Echinochloa crus-galli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cockspur dace, Echinochloa crus-galli (family Poaceae), is the most widespread and harmful weed in Russian rice production. Heavy infestations of the weed cause rice-crop losses up to 50 percent. With the purpose of discovering pathogenic fungi as potential agents for biological control of E. crus-g...

  17. Pheromone and host odor attractants for managing Diorhabda spp.: Biological control agents of saltcedar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent identification of the aggregation pheromone (Cossé et al., 2005, Journal of Chemical Ecology 26:1735-1748), and host odor attractant (Cossé et al., 2005, Journal of Chemical Ecology, in press) for the leaf beetle Diorhabda elongata, a biological control agent of saltcedar, allowed for a m...

  18. Pre-release efficacy test of the prospective biological control agent Arytinnis hakani on the invasive weed Genista monspessulana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In weed biological control, conducting a pre-release efficacy test can help ascertain if prospective biological control agents will be capable of controlling the target plant. Currently, the phloem-feeding psyllid, Arytinnis hakani, is being evaluated as a prospective agent for the exotic invasive w...

  19. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France

    PubMed Central

    Malausa, Thibaut; Delaunay, Mathilde; Fleisch, Alexandre; Groussier-Bout, Géraldine; Warot, Sylvie; Crochard, Didier; Guerrieri, Emilio; Delvare, Gérard; Pellizzari, Giuseppina; Kaydan, M. Bora; Al-Khateeb, Nadia; Germain, Jean-François; Brancaccio, Lisa; Le Goff, Isabelle; Bessac, Melissa; Ris, Nicolas; Kreiter, Philippe

    2016-01-01

    Pseudococcus comstocki (Hemiptera: Pseudococcidae) is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus) were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae) and Acerophagus malinus (Hymenoptera: Encyrtidae). The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids. PMID:27362639

  20. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France.

    PubMed

    Malausa, Thibaut; Delaunay, Mathilde; Fleisch, Alexandre; Groussier-Bout, Géraldine; Warot, Sylvie; Crochard, Didier; Guerrieri, Emilio; Delvare, Gérard; Pellizzari, Giuseppina; Kaydan, M Bora; Al-Khateeb, Nadia; Germain, Jean-François; Brancaccio, Lisa; Le Goff, Isabelle; Bessac, Melissa; Ris, Nicolas; Kreiter, Philippe

    2016-01-01

    Pseudococcus comstocki (Hemiptera: Pseudococcidae) is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus) were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae) and Acerophagus malinus (Hymenoptera: Encyrtidae). The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids. PMID:27362639

  1. Canada thistle biological control agents on two South Dakota wildlife refuges

    USGS Publications Warehouse

    Reed, C.C.; Larson, D.L.; Larson, J.L.

    2006-01-01

    We monitored populations of Canada thistle biocontrol agents Cassida rubiginosa, Ceutorhynchus litura, Larinus (= Hadroplantus) planus, Urophora cardui, Orellia (= Terellia) ruficauda, and Rhinocyllus conicus on Canada thistle (Cirsium arvense) at two national wildlife refuges in South Dakota from 1999 through 2003. C. litura, U. cardui, O. ruficauda, and R. conicus were present on both refuges. Agent populations were low except for C. litura, which was present in up to 90% of stems in some plots. C. litura infestation did not reduce thistle flowering, stem length, or over-winter survival. There was no change in thistle stem numbers over the study period and no difference in stem numbers in areas of high C. litura populations compared to areas of low C. litura populations. Our results suggest that insect biological control agents are inadequate for reduction of Canada thistle in southern South Dakota.

  2. Biological warfare agents

    PubMed Central

    Thavaselvam, Duraipandian; Vijayaraghavan, Rajagopalan

    2010-01-01

    The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies. PMID:21829313

  3. Prospects for the use of biological control agents against Anoplophora in Europe.

    PubMed

    Brabbs, Thomas; Collins, Debbie; Hérard, Franck; Maspero, Matteo; Eyre, Dominic

    2015-01-01

    This review summarises the literature on the biological control of Anoplophora spp. (Coleoptera: Cerambycidae) and discusses its potential for use in Europe. Entomopathogenic fungi: Beauveria brongniartii Petch (Hypocreales: Cordycipitaceae) has already been developed into a commercial product in Japan, and fungal infection results in high mortality rates. Parasitic nematodes: Steinernema feltiae Filipjev (Rhabditida: Steinernematidae) and Steinernema carpocapsae Weiser have potential for use as biopesticides as an alternative to chemical treatments. Parasitoids: a parasitoid of Anoplophora chinensis Forster, Aprostocetus anoplophorae Delvare (Hymenoptera: Eulophidae), was discovered in Italy in 2002 and has been shown to be capable of parasitising up to 72% of A. chinensis eggs; some native European parasitoid species (e.g. Spathius erythrocephalus) also have potential to be used as biological control agents. Predators: two woodpecker (Piciformis: Picidae) species that are native to Europe, Dendrocopos major Beicki and Picus canus Gmelin, have been shown to be effective at controlling Anoplophora glabripennis Motschulsky in Chinese forests. The removal and destruction of infested and potentially infested trees is the main eradication strategy for Anoplophora spp. in Europe, but biological control agents could be used in the future to complement other management strategies, especially in locations where eradication is no longer possible. PMID:25216358

  4. Efficiacy of bumble bee disseminated biological control agents for control of Botrytis Blossom blight of Rabbiteye Blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botrytis blossom blight caused by Botrytis cinerea may cause severe crop loss in rabbiteye blueberry, necessitating applications of expensive fungicides. Commercial bumble bees, Bombus impatiens, were tested as vectors of the fungicidal biological control agents (BCAs), Prestop® Gliocladium catenula...

  5. Saccharomyces cerevisiae: A novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest.

    PubMed

    Lopes, Marcos Roberto; Klein, Mariana Nadjara; Ferraz, Luriany Pompeo; da Silva, Aline Caroline; Kupper, Katia Cristina

    2015-06-01

    In this study, we evaluated the efficiency of six isolates of Saccharomyces cerevisiae in controlling Colletotrichum acutatum, the causal agent of postbloom fruit drop that occur in pre-harvest citrus. We analyzed the mechanisms of action involved in biological control such as: production of antifungal compounds, nutrient competition, detection of killer activity, and production of hydrolytic enzymes of the isolates of S. cerevisiae on C. acutatum and their efficiency in controlling postbloom fruit drop on detached citrus flowers. Our results showed that all six S. cerevisiae isolates produced antifungal compounds, competed for nutrients, inhibited pathogen germination, and produced killer activity and hydrolytic enzymes when in contact with the fungus wall. The isolates were able to control the disease when detached flowers were artificially inoculated, both preventively and curatively. In this work we identified a novel potential biological control agent for C. acutatum during pre-harvest. This is the first report of yeast efficiency for the biocontrol of postbloom fruit drop, which represents an important contribution to the field of biocontrol of diseases affecting citrus populations worldwide. PMID:25960430

  6. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    USGS Publications Warehouse

    Williams, Wyatt I.; Friedman, Jonathan M.; Gaskin, John F.; Norton, Andrew P.

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others.

  7. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    PubMed Central

    Williams, Wyatt I; Friedman, Jonathan M; Gaskin, John F; Norton, Andrew P

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others. PMID:24665340

  8. Lepidopterans as Potential Agents for the Biological Control of the Invasive Plant, Miconia calvescens

    PubMed Central

    Morais, Elisangela G.F.; Picanço, Marcelo C.; Semeão, Altair A.; Barreto, Robert W.; Rosado, Jander F.; Martins, Julio C.

    2012-01-01

    This work investigated eight species of Lepidoptera associated with Miconia calvescens DC. (Myrtales: Melastomataceae) in Brazil, including six defoliators, Salbia lotanalis Druce (Lepidoptera: Pyralidae), Druentia inscita Schaus (Mimallonidae), Antiblemma leucocyma Hampson (Noctuidae), three Limacodidae species, a fruit borer Carposina cardinata Meyrick (Carposinidae), and a damager of flowers Pleuroprucha rudimentaria Guenée (Geometridae). Based on host specificity and the damage caused to plants, S. lotanalis and D. inscita are the most promising species for biological control of M. calvescens. Furthermore, if C. cardinata and P. rudimentaria have host specificity in future tests, these caterpillars could also be considered as appropriate biocontrol agents. PMID:22938203

  9. Opportunities for improving risk communication during the permitting process for entomophagous biological control agents: A review of current systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerns about potentially irreversible non-target impacts from the importation and release of entomophagous biological control agents (BCAs) have resulted in increasingly stringent import requirements by National Plant Protection Organizations. Despite numerous scientific publications on the poten...

  10. Host plant oviposition preference of Ceratapion basicorne (Coleoptera:Apionidae), a potential biological control agent of yellow starthistle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ceratapion basicorne (Coleoptera: Apionidae) is a weevil native to Europe and western Asia that is being evaluated as a prospective classical biological control agent of Centaurea solstitialis (yellow starthistle) in the United States. Choice oviposition experiments were conducted under laboratory ...

  11. Natural history studies for the preliminary evaluation of a prospective biological control agent of yellow starthistle, Larinus filiformis (Coleoptera: Curculionidae).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted studies on the life history, behavior and ecology of Larinus filiformis (Coleoptera: Curculionidae) to determine if it is worthy of further evaluation as a classical biological control agent of yellow starthistle, Centaurea solstitialis (Asteraceae: Cardueae). Larinus filiformis occurs ...

  12. Viability and stability of biological control agents on cotton and snap bean seeds.

    PubMed

    Elliott, M L; Des Jardin, E A; Batson, W E; Caceres, J; Brannen, P M; Howell, C R; Benson, D M; Conway, K E; Rothrock, C S; Schneider, R W; Ownley, B H; Canaday, C H; Keinath, A P; Huber, D M; Sumner, D R; Motsenbocker, C E; Thaxton, P M; Cubeta, M A; Adams, P D; Backman, P A; Fajardo, J; Newman, M A; Pereira, R M

    2001-08-01

    Cotton and snap bean were selected for a multi-year, multi-state regional (south-eastern USA) research project to evaluate the efficacy of both commercial and experimental bacterial and fungal biological control agents for the management of damping-off diseases. The goal for this portion of the project was to determine the viability and stability of biological agents after application to seed. The biological seed treatments used included: (1) Bacillaceae bacteria, (2) non-Bacillaceae bacteria, (3) the fungus Trichoderma and (4) the fungus Beauveria bassiana. Seed assays were conducted to evaluate the following application factors: short-term (< or = 3 months) stability after seed treatment; quality (i.e. isolate purity); compatibility with chemical pesticides and other biocontrol agents; application uniformity between years and plant species. For the bacterial treatments, the Bacillaceae genera (Bacillus and Paenibacillus) maintained the greatest population of bacteria per seed, the best viability over time and the best application uniformity across years and seed type. The non-Bacillaceae genera Burkholderia and Pseudomonas had the least viability and uniformity. Although Beauveria bassiana was only evaluated one year, the seed fungal populations were high and uniform. The seed fungal populations and uniformity for the Trichoderma isolates were more variable, except for the commercial product T-22. However, this product was contaminated with a Streptomyces isolate in both the years that it was evaluated. The study demonstrated that Bacillaceae can be mixed with Trichoderma isolates or with numerous pesticides to provide an integrated pest control/growth enhancement package. PMID:11517723

  13. Multiple year effects of a biological control agent (Diorhabda carinulata) on Tamarix (saltcedar) ecosystem exchanges of carbon dioxide and water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control of Tamarix spp. (saltcedar) with Diorhabda carinulata (the northern tamarisk beetle) is currently underway in several western states U.S.A. through historical releases and the natural migration of this insect. Given the widespread dispersal of this biological control agent and its...

  14. Using our experiences with knapweeds and yellow starthistle to improve methods to evaluate new prospective biological control agents.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control projects for spotted, diffuse and squarrose knapweeds and yellow starthistle started 30 to 40 years ago. Twelve species of insects were introduced for the knapweeds and six for yellow starthistle. Less than half of these biological control agents have become widespread and abunda...

  15. Helobdella nilae and Alboglossiphonia conjugata leeches as biological agents for snails control.

    PubMed

    Abd-Allah, Karim F; Saleh, Mohamed H; El-Hamshary, Azza M S; Negm-Eldin, Mohsen M; El-Fakahany, Amany F; Abdel-Tawab, Ahmed H; Abdel-Maboud, Amina I; Aly, Nagwa S M

    2009-04-01

    The efficacy of leeches, as biological agents, in control of snail intermediate hosts of schistosomiasis (Bulinus truncatus, Biomphalaria alexandrina) and fascioliasis (Lymnaea natalensis) as well as their effect on the non-target snails Physa acuta, Melanioides tuberculata and Cleopatra bulimoides was evaluated. Two glossiphoniid snail leeches, Helobdella nilae and Alboglossiphonia conjugata were used. They destroyed egg masses and young snails more rapidly than adult ones. H. nilae showed a stronger destructive effect than A. conjugata. In a descending order, it preferred L. natalensis followed by B. truncatus, B. alexandrina, Ph. acuta, M. tuberculata and lastly C. bulimoides. But, A. conjugata preferred L. natalensis followed by B. truncatus, Ph. acuta, M. tuberculata, B. alexandrina and lastly C. bulimoides. The detailed diagnostic morphology and biology of the two leeches were given. PMID:19530628

  16. Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus

    PubMed Central

    Wattanachai, Pongnak; Kasem, Soytong; Poeaim, Supattra

    2015-01-01

    Thailand is one of the largest citrus producers in Southeast Asia. Pathogenic infection by Phytophthora, however, has become one of major impediments to production. This study identified a pathogenic oomycete isolated from rotted roots of pomelo (Citrus maxima) in Thailand as Phytophthora nicotianae by the internal transcribed spacer ribosomal DNA sequence analysis. Then, we examined the in vitro and in vivo effects of Chaetomium globosum, Chaetomium lucknowense, Chaetomium cupreum and their crude extracts as biological control agents in controlling this P. nicotianae strain. Represent as antagonists in biculture test, the tested Chaetomium species inhibited mycelial growth by 50~56% and parasitized the hyphae, resulting in degradation of P. nicotianae mycelia after 30 days. The crude extracts of these Chaetomium species exhibited antifungal activities against mycelial growth of P. nicotianae, with effective doses of 2.6~101.4 µg/mL. Under greenhouse conditions, application of spores and methanol extracts of these Chaetomium species to pomelo seedlings inoculated with P. nicotianae reduced root rot by 66~71% and increased plant weight by 72~85% compared to that in the control. The method of application of antagonistic spores to control the disease was simple and economical, and it may thus be applicable for large-scale, highly effective biological control of this pathogen. PMID:26539045

  17. Biology, host specificity tests, and risk assessment of the sawfly Heteroperreyia hubrichi, a potential biological control agent of Schinus terebinthifolius in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract. Heteroperreyia hubrichi Malaise (Hymenoptera: Pergidae), a foliage feeding sawfly of Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), was studied to assess its suitability as a classical biological control agent of this invasive weed in Hawaii. Nochoice host-specificity tests we...

  18. Lixus Cardui, a Biological Control Agent for Scotch Thistle (Onopordum acanthium): Safe for Australia but not USA?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive exotic plants are often weeds in more than one country. After a biological control agent for a weed has been developed for use in one country, it is reasonable to consider using the same agent against the same weed in another country. ‘Transfer Projects’ can save considerable time and mon...

  19. Ecological host-range of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of Dioscorea bulbifera L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open-field host-specificity testing assesses the host-range of a biological control agent in a setting that permits the agent to use its full complement of host-seeking behaviors. This form of testing, particularly when it includes a no-choice phase in which the target weed is killed, may provide th...

  20. Pre-release biological control agent recommendations for swallow-wort (Vincetoxicum spp.) informed by demographic matrix models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed biological control workers have advocated for the advance assessment of agent efficacy in order to minimize the release of host-specific but ineffective agents. One method involves demographic matrix modeling of target weed populations in order to identify plant life stage transitions that cont...

  1. Post-introduction evolution in the biological control agent Longitarsus jacobaeae (Coleoptera: Chrysomelidae).

    PubMed

    Szűcs, Marianna; Schaffner, Urs; Price, William J; Schwarzländer, Mark

    2012-12-01

    Rapid evolution has rarely been assessed in biological control systems despite the similarity with biological invasions, which are widely used as model systems. We assessed post-introduction climatic adaptation in a population of Longitarsus jacobaeae, a biological control agent of Jacobaea vulgaris, which originated from a low-elevation site in Italy and was introduced in the USA to a high-elevation site (Mt. Hood, Oregon) in the early 1980s. Life-history characteristics of beetle populations from Mt. Hood, from two low-elevation sites in Oregon (Italian origin) and from a high-elevation site from Switzerland were compared in common gardens. The performance of low- and high-elevation populations at a low- and a high-elevation site was evaluated using reciprocal transplants. The results revealed significant changes in aestival diapause and shifts in phenology in the Mt. Hood population, compared with the low-elevation populations. We found increased performance of the Mt. Hood population in its home environment compared with the low-elevation populations that it originated from. The results indicate that the beetles at Mt. Hood have adapted to the cooler conditions by life-history changes that conform to predictions based on theory and the phenology of the cold-adapted Swiss beetles. PMID:23346230

  2. Spillover of a biological control agent (Chrysolina quadrigemina) onto native St. Johnswort (Hypericum punctatum)

    PubMed Central

    Cook-Patton, Susan C.; Agrawal, Anurag A.

    2016-01-01

    Biological control agents may have unintended effects on native biota, particularly species that are closely related to the target invader. Here, we explored how Chrysolina quadrigemina, a beetle introduced to control the invasive weed Hypericum perforatum, impacts native H. punctatum in Tompkins County, New York, USA. Using a suite of complementary field surveys and experimental manipulations, we examined beetle preference for native and exotic Hypericum species and whether beetle herbivory influences the spatial distribution of H. punctatum. We found that the introduced beetle readily consumes native H. punctatum in addition to its intended target, and that H. punctatum at our field sites generally occurs along forest edges despite higher performance of experimental plants in more open habitats. However, we found no evidence that the beetle limits H. punctatum to forest edge habitats. PMID:27069816

  3. Spillover of a biological control agent (Chrysolina quadrigemina) onto native St. Johnswort (Hypericum punctatum).

    PubMed

    Tingle, Jessica L; Cook-Patton, Susan C; Agrawal, Anurag A

    2016-01-01

    Biological control agents may have unintended effects on native biota, particularly species that are closely related to the target invader. Here, we explored how Chrysolina quadrigemina, a beetle introduced to control the invasive weed Hypericum perforatum, impacts native H. punctatum in Tompkins County, New York, USA. Using a suite of complementary field surveys and experimental manipulations, we examined beetle preference for native and exotic Hypericum species and whether beetle herbivory influences the spatial distribution of H. punctatum. We found that the introduced beetle readily consumes native H. punctatum in addition to its intended target, and that H. punctatum at our field sites generally occurs along forest edges despite higher performance of experimental plants in more open habitats. However, we found no evidence that the beetle limits H. punctatum to forest edge habitats. PMID:27069816

  4. Can we forecast the effects of climate change on entomophagous biological control agents?

    PubMed

    Aguilar-Fenollosa, Ernestina; Jacas, Josep A

    2014-06-01

    The worldwide climate has been changing rapidly over the past decades. Air temperatures have been increasing in most regions and will probably continue to rise for most of the present century, regardless of any mitigation policy put in place. Although increased herbivory from enhanced biomass production and changes in plant quality are generally accepted as a consequence of global warming, the eventual status of any pest species will mostly depend on the relative effects of climate change on its own versus its natural enemies' complex. Because a bottom-up amplification effect often occurs in trophic webs subjected to any kind of disturbance, natural enemies are expected to suffer the effects of climate change to a greater extent than their phytophagous hosts/preys. A deeper understanding of the genotypic diversity of the populations of natural enemies and their target pests will allow an informed reaction to climate change. New strategies for the selection of exotic natural enemies and their release and establishment will have to be adopted. Conservation biological control will probably become the keystone for the successful management of these biological control agents. PMID:24254389

  5. Isolation, characterization, and identification of biological control agent for potato soft rot in Bangladesh.

    PubMed

    Rahman, M M; Ali, M E; Khan, A A; Akanda, A M; Uddin, Md Kamal; Hashim, U; Abd Hamid, S B

    2012-01-01

    A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacterium Erwinia carotovora subsp. carotovora (Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was tested in vitro against the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited the in vitro growth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genus Bacillus and the isolate E-45 as Lactobacillus sp. The stronger antagonistic activity against Ecc P-138 was found in E-65 in vitro screening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5-62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers. PMID:22645446

  6. Effect of host-plant genotypes on the performance of three candidate biological control agents of Schinus terebinthifolius in Florida.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brazilian pepper is a weed in Florida, California and Hawaii that originates from South America. In Florida we have found two distinct types of Brazilian pepper plant and a hybrid between these two types. To control this weed, three biological control agents are being evaluated from Brazil. These ar...

  7. Purpureocillium lilacinum, potential agent for biological control of the leaf-cutting ant Acromyrmex lundii.

    PubMed

    Goffré, D; Folgarait, P J

    2015-09-01

    Many leaf-cutter ant species are well known pests in Latin America, including species of the genera Acromyrmex and Atta. An environmentally friendly strategy to reduce the number of leafcutter ants and avoid indiscriminate use of chemical pesticides is biological control. In this work we evaluated the effectiveness of a strain of the entomopathogen Purpureocillium lilacinum, against worker ants from six Acromyrmex lundii field colonies, after immersions in pure suspensions at a concentration of 1×10(6)conidiaml(-1). Survival of ants treated with P. lilacinum was significantly lower than that recorded in controls, and median lethal time (LT50) was 6-7days. P. lilacinum was responsible for 85.6% (80.6-89.7) of the mortality in inoculated ants, in which we found that the percentage of other entomopathogens that naturally infected ants decreased also, suggesting a good competitive capability of the fungus. Horizontal transmission to non-inoculated ants was also evidenced, given that 58.5% (41.9-64.2) of them died because of P. lilacinum. Moreover, we tested pathogenicity for three concentrations of this strain (1.0×10(4), 10(6) and 10(8)conidiaml(-1)) and found a significantly faster mortality of ants and greater median percentage of infection at 10(8)conidiaml(-1) of P. lilacinum. CL50 value was 2.8×10(5)conidiaml(-1). We thus propose the use of P. lilacinum as a biological control agent of leafcutter ants in crops and plantations. PMID:26205173

  8. Fungal biological control agents for integrated management of Culicoides spp. (Diptera: Ceratopogonidae) of livestock

    PubMed Central

    Narladkar, B. W.; Shivpuje, P. R.; Harke, P. C.

    2015-01-01

    Aim: Entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana had wide host range against insects and hence these are being exploited as fungal bio-pesticide on a large scale. Both fungi are proved pesticides against many crop pests and farmers are well acquainted with their use on the field. Thus, research was aimed to explore the potency of these fungal spores against larval and adult Culicoides midges, a pest of livestock. Materials and Methods: In-vitro testing of both fungal biological control agents was undertaken in Petri dishes against field collected Culicoides larvae, while in plastic beakers against field collected blood-engorged female Culicoides midges. In-vivo testing was undertaken by spraying requisite concentration of fungal spores on the drainage channel against larvae and resting sites of adult Culicoides midges in the cattle shed. Lethal concentration 50 (LC50) values and regression equations were drawn by following probit analysis using SPSS statistical computerized program. Results: The results of this study revealed LC50 values of 2692 mg and 3837 mg (108 cfu/g) for B. bassiana and M. anisopliae, respectively, against Culicoides spp. larvae. Death of Culicoides larvae due to B. bassiana showed greenish coloration in the middle of the body with head and tail showed intense blackish changes, while infection of M. anisopliae resulted in death of Culicoides larvae with greenish and blackish coloration of body along with total destruction, followed by desquamation of intestinal channel. The death of adult Culicoides midges were caused by both the fungi and after death growth of fungus were very well observed on the dead cadavers proving the efficacy of the fungus. Conclusion: Preliminary trials with both funguses (M. anisopliae, B. bassiana) showed encouraging results against larvae and adults of Culicoides spp. Hence, it was ascertained that, these two fungal molecules can form a part of biological control and alternative to chemical

  9. Pochonia chlamydosporia: Advances and Challenges to Improve Its Performance as a Biological Control Agent of Sedentary Endo-parasitic Nematodes

    PubMed Central

    Manzanilla-López, Rosa H.; Esteves, Ivania; Finetti-Sialer, Mariella M.; Hirsch, Penny R.; Ward, Elaine; Devonshire, Jean; Hidalgo-Díaz, Leopoldo

    2013-01-01

    The nematophagous fungus Pochonia chlamydosporia var. chlamydosporia is one of the most studied biological control agents against plant (semi-) endo-parasitic nematodes of the genera Globodera, Heterodera, Meloidogyne, Nacobbus and, more recently, Rotylenchulus. In this paper we present highlights from more than three decades of worldwide research on this biological control agent. We cover different aspects and key components of the complex plant-fungus-nematode tri-trophic interaction, an interaction that needs to be addressed to ensure the efficient use of P. chlamydosporia as a biopesticide as part of an integrated pest management approach. PMID:23589653

  10. Pochonia chlamydosporia: Advances and Challenges to Improve Its Performance as a Biological Control Agent of Sedentary Endo-parasitic Nematodes.

    PubMed

    Manzanilla-López, Rosa H; Esteves, Ivania; Finetti-Sialer, Mariella M; Hirsch, Penny R; Ward, Elaine; Devonshire, Jean; Hidalgo-Díaz, Leopoldo

    2013-03-01

    The nematophagous fungus Pochonia chlamydosporia var. chlamydosporia is one of the most studied biological control agents against plant (semi-) endo-parasitic nematodes of the genera Globodera, Heterodera, Meloidogyne, Nacobbus and, more recently, Rotylenchulus. In this paper we present highlights from more than three decades of worldwide research on this biological control agent. We cover different aspects and key components of the complex plant-fungus-nematode tri-trophic interaction, an interaction that needs to be addressed to ensure the efficient use of P. chlamydosporia as a biopesticide as part of an integrated pest management approach. PMID:23589653

  11. Risk assessment and stakeholder perceptions in novel biological control agent release: YST as a case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of risk assessment are to learn about whether a candidate agent would be safe to use in the environment where release is planned, and to present such information in a clear, understandable format to regulators, stakeholders, and the public. Plant pathogens evaluated for biological co...

  12. Life history of Parafreutreta regalis, (diptera:tephritidae), a candidate agent for biological control of delairea odorata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cape-ivy, Delairea odorata Lamaire, is an ornamental vine, native to the eastern part of South Africa, which has escaped into natural areas in many countries and become a serious pest. Exploratory surveys in South Africa located several potential biological control agents. One of these is Parafreu...

  13. Life history and host range of Oxydia vesulia transpeneus, an unsuitable biological control agent of Brazilian peppertree

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The suitability of Oxydia vesulia (Cramer) (Lepidoptera: Geometridae) was assessed as a potential biological control agent of the invasive weed Brazilian Peppertree Schinus terebinthifolia. Larvae were collected in Brazil feeding on the plant in its native range and colonized in quarantine where lif...

  14. Potential biological control agents for management of cogongrass [Imperata cylindrica 15 (Cyperales: Poaceae)] in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...

  15. Phenology and temperature-dependent development of Ceutorhynchus assimilis, a potential biological control agent for Lepidium draba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heart-podded hoary cress (Lepidium draba) is an alien weed that has invaded rangeland in the northwestern USA. A host race (i;e; host-specific biotype) of the weevil, Ceutorhynchus assimilis, is being evaluated as a prospective biological control agent. This biotype is only known from southern Eur...

  16. Are three colonies of Neostromboceros albicomus, a candidate biological control agent for Lygodium microphyllum, the same host biotype?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three colonies of Neostromboceros albicomus, a candidate biological control agent of Lygodium microphyllum, were barcoded using the D2 expansion domain, to determine which of two biotypes they represented. The first colony, collected in 2005 & 2007, was used for the initial host range testing. Colon...

  17. Laboratory Host Range of Parafreutreta regalis (Diptera: Tephritidae), a Candidate Agent for Biological Control of Cape-ivy.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cape-ivy (Delairea odorata Lamaire) is an ornamental vine that has escaped into natural areas in many countries and become a serious pest. It is native to the eastern part of South Africa, and surveys there located several potential biological control agents for this weed. One of these is Parafreu...

  18. Biology and host range of Heterapoderopsis bicallosicollis; a potential biological control agent for Chinese tallow Triadica sebifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chinese tallow, Triadica sebifera, is an invasive weed that infests natural and agricultural areas of the southeastern USA. A candidate for biological control of Chinese tallow has been studied under quarantine conditions. The biology and host range of a primitive leaf feeding beetle, Heterapoderops...

  19. Suppressive composts from organic wastes as agents of biological control of fusariosis in Tatartan Republic (Russia)

    NASA Astrophysics Data System (ADS)

    Gumerova, Raushaniya; Galitskaya, Polina; Beru, Franchesca; Selivanovskaya, Svetlana

    2015-04-01

    pepton agar, the composts and their water extracts were checked towards their ability to inhibit growth of F. oxysporum. It was shown that three composts - CD, FPM and RD - possessed suppressiveness towards the model phytopathogen. From these three wastes, 28 bacterial and fungal strains were isolated and, in their turn, checked towards their ability to inhibit F. oxysporum. It was demonstrated that five of the isolated strains are highly suppressive to model test-object (the growth area of F. oxysporum did not exceed 30%), six of the stains were moderate suppressive (the growth area of F. oxysporum ranged from 35% to 60%), and other strains did not cause negative effects for the model phytopathogen. Further, we will check the composts and the isolated strains using the model system "soil - tomato plant - phytopathogen". As a result, effective composts and strains will be recommended as agents for biological control of fungal diseases in the region. Besides, the structure of bacterial and fungal community of the composts with suppressive properties will be assessed using 454-pyrosequencing.

  20. Biologic agents in juvenile spondyloarthropathies.

    PubMed

    Katsicas, María Martha; Russo, Ricardo

    2016-01-01

    The juvenile spondyloarthropathies (JSpA) are a group of related rheumatic diseases characterized by involvement of peripheral large joints, axial joints, and entheses (enthesitis) that begin in the early years of life (prior to 16(th) birthday).The nomenclature and concept of spondyloarthropathies has changed during the last few decades. Although there is not any specific classification of JSpA, diseases under the spondyloarthropathy nomenclature umbrella in the younger patients include: the seronegative enthesitis and arthropathy (SEA) syndrome, juvenile ankylosing spondylitis, reactive arthritis, and inflammatory bowel disease-associated arthritis. Moreover, the ILAR criteria for Juvenile Idiopathic Arthritis includes two categories closely related to spondyloarthritis: Enthesitis-related arthritis and psoriatic arthritis.We review the pathophysiology and the use of biological agents in JSpA. JSpA are idiopathic inflammatory diseases driven by an altered balance in the proinflammatory cytokines. There is ample evidence on the role of tumor necrosis factor (TNF) and interleukin-17 in the physiopathology of these entities. Several non-biologic and biologic agents have been used with conflicting results in the treatment of these complex diseases. The efficacy and safety of anti-TNF agents, such as etanercept, infliximab and adalimumab, have been analysed in controlled and uncontrolled trials, usually showing satisfactory outcomes. Other biologic agents, such as abatacept, tocilizumab and rituximab, have been insufficiently studied and their role in the therapy of SpA is uncertain. Interleukin-17-blocking agents are promising alternatives for the treatment of JSpA patients in the near future. Recommendations for the treatment of patients with JSpA have recently been proposed and are discussed in the present review. PMID:26968522

  1. Early-season flood enhances native biological control agents in Wisconsin cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control is predicated on the concept that crop plants are protected when predators suppress herbivore populations. However, many factors, including concurrent crop protection strategies, may modify the effectiveness of a predator in a given agroecosystem. In Wisconsin commercial cranberry...

  2. Prospects for the use of biological control agents against Anoplophora in Europe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review summarises the literature on the biological control of Anoplophora spp. (Coleoptera: Cerambycidae) and discusses its potential for use in Europe. Entomopathogenic fungi: Beauveria brongniartii Petch (Hypocreales: Cordycipitaceae) has already been developed into a commercial product in Ja...

  3. Metabolic behavior of bacterial biological control agents in soil and plant rhizospheres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control provides an attractive alternative to chemical pesticides for the control of plant diseases. To date, however, few biocontrol products have been developed successfully at the commercial level. This stems largely from variability in disease control performance that is often obser...

  4. Laboratory evaluation of two native fishes from tropical North Queensland as biological control agents of subterranean Aedes aegypti.

    PubMed

    Russell, B M; Wang, J; Williams, Y; Hearnden, M N; Kay, B H

    2001-06-01

    The ability of 2 freshwater fishes, eastern rainbow fish Melanotaenia splendida splendida and fly-specked hardyhead Craterocephalus stercusmuscarum stercusmuscarum, native to North Queensland to prey on immature Aedes aegypti was evaluated under laboratory conditions. The predation efficiency of the 2 species was compared to the exotic guppy, Poecilia reticulata, which is commonly used as a biological control agent of mosquito larvae. Of the 3 fish species tested, M. s. splendida was shown to be the most promising agent for the biological control of Ae. aegypti that breed in wells. Melanotaenia s. splendida consumed significantly greater numbers of immature Ae. aegypti than P. reticulata, irrespective of developmental stage or light conditions. Unlike C s. stercusmuscarum, M. s. splendida could be handled, transported, and kept in captivity for extended periods with negligible mortality. However, M. s. splendida was also an efficient predator of Litoria caerulea tadpoles, a species of native frog found in wells during the dry season. This result may limit the usefulness of M. s. splendida as a biological control agent of well-breeding Ae. aegypti and suggests that predacious copepods, Mesocyclops spp., are more suitable. However, the use of M. s. splendida as a mosquito control agent in containers that are unlikely to support frog populations (e.g., aquaculture tanks and drinking troughs) should be given serious consideration. PMID:11480819

  5. Development of a Genetically-Modified Mixture of Biological Control Agents for Improved Disease Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adoption of bacterial antagonists for disease management is hampered by inconsistent performance. Intergeneric mixtures of antagonists may reduce variation in control by establishing a robust community on plant surfaces and greater competition to the pathogen during its critical epiphytic growth st...

  6. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the importation of highly specific inse...

  7. Predicting the host range of Nystalea ebalea: secondary plant chemistry and host selection by a surrogate biological control agent of Schinus terebinthifolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The safety of weed biological control depends upon the selection and utilization of the target weed by the agent while causing minimal harm to non-target species. Selection of weed species by biological control agents is determined by the presence of behavioral cues, generally host secondary plant c...

  8. Nucler Polyhedrosis Virus as a Biological Control Agent for Malacosoma americanum (Lepidoptera: Lasiocampidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to damaging trees, the eastern tent caterpillar, (Malacosoma americanum (F.)) is implicated in early fetal loss and late-term abortion in horses. In a field study, we evaluated the potential biological control of eastern tent caterpillar using eastern tent caterpillar nuclear polyhedros...

  9. Life cycle of Puccinia crupinae, a candidate fungal biological control agent for Crupina vulgaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crupina vulgaris (Common crupina, Asteraceae) is an introduced weed pest in the western United States. An isolate of the rust fungus Puccinia crupinae from the Greece is currently under evaluation as a candidate for biological control of C. crupina in a Biosafety Level 3 (BL-3) containment greenhou...

  10. DELIVERY SYSTEMS FOR BIOLOGICAL CONTROL AGENTS TO MANAGE AFLATOXIN CONTAMINATION OF PRE-HARVEST MAIZE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin is a potent group of toxic compounds produced by the fungi Aspergillus flavus and A. parasiticus. Maize (corn, Zea mays L.) and other crops are prone to aflatoxin contamination, which may cause severe health problems in humans and livestock. The pre-harvest biological control approach of...

  11. MICROBOTRYUM CARDUI, A POTENTIAL BIOLOGICAL CONTROL AGENT FOR CARDUUS THISTLES IN THE U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carduus species and the related thistles Silybum marianum (L.) Gaertn. and Onopordum acanthium L. are problematic invasive weeds in the USA and targets of classical biological control efforts. During a pathogen collection trip in June 2001, numerous smutted capitula of Silybum marianum (L.) Gaertn. ...

  12. Does phylogeny explain the host choice behaviour of potential biological control agents for Brassicaceae weeds?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four invasive Brassicaceae are currently being studied for biological control at the CABI Centre in Switzerland. A phylogenetic approach to host testing has so far been hampered by the fact that the evolutionary relationships of taxa within the Brassicaceae were unclear. Recently, a new phylogeny of...

  13. Life cycle of Uromyces salsolae, a candidate fungal biological control agent for Salsola tragus (Russian thistle)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salsola tragus (Russian thistle, Chenopodiaceae) is a major weed pest in the western United States. An isolate of the rust fungus Uromyces salsolae from the Yasensky Spit in Russia is currently under evaluation as a candidate for biological control of S. tragus in a Biosafety Level 3 (BL-3) contain...

  14. Optical recognition of biological agents

    NASA Astrophysics Data System (ADS)

    Baumgart, Chris W.; Linder, Kim Dalton; Trujillo, Josh J.

    2008-04-01

    Differentiation between particulate biological agents and non-biological agents is typically performed via a time-consuming "wet chemistry" process or through the use of fluorescent and spectroscopic analysis. However, while these methods can provide definitive recognition of biological agents, many of them have to be performed in a laboratory environment, or are difficult to implement in the field. Optical recognition techniques offer an additional recognition approach that can provide rapid analysis of a material in-situ to identify those materials that may be biological in nature. One possible application is to use these techniques to "screen" suspicious materials and to identify those that are potentially biological in nature. Suspicious materials identified by this screening process can then be analyzed in greater detail using the other, more definitive (but time consuming) analysis techniques. This presentation will describe the results of a feasibility study to determine whether optical pattern recognition techniques can be used to differentiate biological related materials from non-biological materials. As part of this study, feature extraction algorithms were developed utilizing multiple contrast and texture based features to characterize the macroscopic properties of different materials. In addition, several pattern recognition approaches using these features were tested including cluster analysis and neural networks. Test materials included biological agent simulants, biological agent related materials, and non-biological materials (suspicious white powders). Results of a series of feasibility tests will be presented along with a discussion of the potential field applications for these techniques.

  15. Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato.

    PubMed

    Ben Khedher, Saoussen; Kilani-Feki, Olfa; Dammak, Mouna; Jabnoun-Khiareddine, Hayfa; Daami-Remadi, Mejda; Tounsi, Slim

    2015-12-01

    The aim of this study is to evaluate the efficacy of the strain Bacillus subtilis V26, a local isolate from the Tunisian soil, to control potato black scurf caused by Rhizoctonia solani. The in vitro antifungal activity of V26 significantly inhibited R. solani growth compared to the untreated control. Microscopic observations revealed that V26 caused considerable morphological deformations of the fungal hyphae such as vacuolation, protoplast leakage and mycelia crack. The most effective control was achieved when strain V26 was applied 24h prior to inoculation (protective activity) in potato slices. The antagonistic bacterium V26 induced significant suppression of root canker and black scurf tuber colonization compared to untreated controls with a decrease in incidence disease of 63% and 81%, respectively, and promoted plant growth under greenhouse conditions on potato plants. Therefore, B. subtilis V26 has a great potential to be commercialized as a biocontrol agent against R. solani on potato crops. PMID:26563555

  16. Climate warming increases biological control agent impact on a non-target species.

    PubMed

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303

  17. Factors affecting the flight capacity of Tetrastichus planipennisi (Hymenoptera: Eulophidae), a classical biological control agent of Agrilus planipennis (Coleoptera: Buprestidae).

    PubMed

    Fahrner, Samuel J; Lelito, Jonathan P; Blaedow, Karen; Heimpel, George E; Aukema, Brian H

    2014-12-01

    The dispersal characteristics of a biological control agent can have direct implications on the ability of that agent to control populations of a target host. Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) is a parasitic wasp native to eastern Asia that has been introduced into the United States as part of a classical biological control program against the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). We used computer-monitored flight mills to investigate the role of age, feeding status, mating status, and size on the flight capacity of female T. planipennisi over a 24-h period. We also compared flight capacity between sexes. Flight distance of female T. planipennisi representative of populations released in the biological control program averaged 1.26 km in 24 h with a maximum flight of just over 7 km. Median flight distance, however, was 422 m. The flight capacity of females fed a honey-water solution was 41× that of females provided only water, who flew very little. Larger females were capable of flying farther distances, but age did not affect the flight capacity of females up to 70 d posteclosion. Females dispersed 6× farther than did their smaller, male counterparts. The implications of our findings to host-parasitoid interactions and release protocols for distributing T. planipennisi are discussed. PMID:25479199

  18. Ongoing ecological speciation in Cotesia sesamiae, a biological control agent of cereal stem borers

    PubMed Central

    Kaiser, Laure; Le Ru, Bruno Pierre; Kaoula, Ferial; Paillusson, Corentin; Capdevielle-Dulac, Claire; Obonyo, Julius Ochieng; Herniou, Elisabeth A; Jancek, Severine; Branca, Antoine; Calatayud, Paul-André; Silvain, Jean-François; Dupas, Stephane

    2015-01-01

    To develop efficient and safe biological control, we need to reliably identify natural enemy species, determine their host range, and understand the mechanisms that drive host range evolution. We investigated these points in Cotesia sesamiae, an African parasitic wasp of cereal stem borers. Phylogenetic analyses of 74 individual wasps, based on six mitochondrial and nuclear genes, revealed three lineages. We then investigated the ecological status (host plant and host insect ranges in the field, and host insect suitability tests) and the biological status (cross-mating tests) of the three lineages. We found that one highly supported lineage showed all the hallmarks of a cryptic species. It is associated with one host insect, Sesamia nonagrioides, and is reproductively isolated from the other two lineages by pre- and postmating barriers. The other two lineages had a more variable phylogenetic support, depending on the set of genes; they exhibited an overlapping and diversified range of host species and are not reproductively isolated from one another. We discuss the ecological conditions and mechanisms that likely generated this ongoing speciation and the relevance of this new specialist taxon in the genus Cotesia for biological control. PMID:26366198

  19. Selection of reference genes for RT-qPCR analysis in a predatory biological control agent, Coleomegilla maculata (Coleoptera: Coccinellidae)

    PubMed Central

    Yang, Chunxiao; Pan, Huipeng; Noland, Jeffrey Edward; Zhang, Deyong; Zhang, Zhanhong; Liu, Yong; Zhou, Xuguo

    2015-01-01

    Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for quantifying gene expression across various biological processes, of which requires a set of suited reference genes to normalize the expression data. Coleomegilla maculata (Coleoptera: Coccinellidae), is one of the most extensively used biological control agents in the field to manage arthropod pest species. In this study, expression profiles of 16 housekeeping genes selected from C. maculata were cloned and investigated. The performance of these candidates as endogenous controls under specific experimental conditions was evaluated by dedicated algorithms, including geNorm, Normfinder, BestKeeper, and ΔCt method. In addition, RefFinder, a comprehensive platform integrating all the above-mentioned algorithms, ranked the overall stability of these candidate genes. As a result, various sets of suitable reference genes were recommended specifically for experiments involving different tissues, developmental stages, sex, and C. maculate larvae treated with dietary double stranded RNA. This study represents the critical first step to establish a standardized RT-qPCR protocol for the functional genomics research in a ladybeetle C. maculate. Furthermore, it lays the foundation for conducting ecological risk assessment of RNAi-based gene silencing biotechnologies on non-target organisms; in this case, a key predatory biological control agent. PMID:26656102

  20. Selection of reference genes for RT-qPCR analysis in a predatory biological control agent, Coleomegilla maculata (Coleoptera: Coccinellidae).

    PubMed

    Yang, Chunxiao; Pan, Huipeng; Noland, Jeffrey Edward; Zhang, Deyong; Zhang, Zhanhong; Liu, Yong; Zhou, Xuguo

    2015-01-01

    Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for quantifying gene expression across various biological processes, of which requires a set of suited reference genes to normalize the expression data. Coleomegilla maculata (Coleoptera: Coccinellidae), is one of the most extensively used biological control agents in the field to manage arthropod pest species. In this study, expression profiles of 16 housekeeping genes selected from C. maculata were cloned and investigated. The performance of these candidates as endogenous controls under specific experimental conditions was evaluated by dedicated algorithms, including geNorm, Normfinder, BestKeeper, and ΔCt method. In addition, RefFinder, a comprehensive platform integrating all the above-mentioned algorithms, ranked the overall stability of these candidate genes. As a result, various sets of suitable reference genes were recommended specifically for experiments involving different tissues, developmental stages, sex, and C. maculate larvae treated with dietary double stranded RNA. This study represents the critical first step to establish a standardized RT-qPCR protocol for the functional genomics research in a ladybeetle C. maculate. Furthermore, it lays the foundation for conducting ecological risk assessment of RNAi-based gene silencing biotechnologies on non-target organisms; in this case, a key predatory biological control agent. PMID:26656102

  1. Biological agents database in the armed forces.

    PubMed

    Niemcewicz, Marcin; Kocik, Janusz; Bielecka, Anna; Wierciński, Michał

    2014-10-01

    Rapid detection and identification of the biological agent during both, natural or deliberate outbreak is crucial for implementation of appropriate control measures and procedures in order to mitigate the spread of disease. Determination of pathogen etiology may not only support epidemiological investigation and safety of human beings, but also enhance forensic efforts in pathogen tracing, collection of evidences and correct inference. The article presents objectives of the Biological Agents Database, which was developed for the purpose of the Ministry of National Defense of the Republic of Poland under the European Defence Agency frame. The Biological Agents Database is an electronic catalogue of genetic markers of highly dangerous pathogens and biological agents of weapon of mass destruction concern, which provides full identification of biological threats emerging in Poland and in locations of activity of Polish troops. The Biological Agents Database is a supportive tool used for tracing biological agents' origin as well as rapid identification of agent causing the disease of unknown etiology. It also provides support in diagnosis, analysis, response and exchange of information between institutions that use information contained in it. Therefore, it can be used not only for military purposes, but also in a civilian environment. PMID:25033774

  2. A foam formulation for the delivery of microbial biological control agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common surfactants and foaming agents are toxic to most microorganisms. To identify suitable foaming agents for use with microbes, several classes of surfactants/foaming agents were screened for compatibility with blastospores of Paecilomyces fumosoroseus. The surfactants were assayed to determine...

  3. Reproductive Requirements and Life Cycle of Iberorhyzobius rondensis (Coleoptera: Coccinellidae), Potential Biological Control Agent of Matsucoccus feytaudi (Hemiptera: Matsucoccidae).

    PubMed

    Tavares, C; Jactel, H; van Halder, I; Branco, M

    2015-06-01

    Several pine bast scales (Hemiptera: Matsucoccidae) are important pests of pine trees in the Northern Hemisphere. Some species are invasive and cause significant economic and environmental impacts. Such is the case with Matsucoccus feytaudi Ducasse, an invasive pest of maritime pine forests in Southeastern France, Italy, and Corsica. The ladybird Iberorhyzobius rondensis (Eizaguirre) is a recently described species that is endemic to the Iberian Peninsula and is a potential candidate for the biological control of M. feytaudi. However, little is known of the biology of I. rondensis. As part of the risk assessment study for a classical biological control program, the phenology and reproductive mechanisms of the beetle were analyzed. I. rondensis is univoltine and is seasonally synchronized with the phenology of the prey M. feytaudi, which is also univoltine. An obligatory reproductive diapause of 5-6 mo and the need to feed on the eggs of the prey to begin oviposition emerged as the two primary mechanisms that assure life cycle synchronization of the ladybird with its prey. Female fecundity was also higher when the ladybirds were fed M. feytaudi eggs. Life cycle synchronization with M. feytaudi and reproduction triggered by consumption of prey eggs indicate that I. rondensis is a promising biological control agent of the pine bast scale. PMID:26313991

  4. First report of an egg parasitoid reared from Neomusotima conspurcatalis (Lepidoptera: Crambidae) a biological control agent of Lygodium microphyllum (Schizaeales: Lygodiaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neomusotima conspurcatalis (Lepidoptera: Crambidae) was first released in Florida as a biological control agent of Lygodium microphyllum (Polypodiales: Lygodiaceae), Old World climbing fern, in 2008. The first egg parasitoid, a Trichogramma sp. (Hymenoptera: Trichogrammatidae), was reared from N. co...

  5. Fundamental Host Range of Leptoypha hospita (Hemiptera: Tingidae), a Potential Biological Control Agent of Chinese Privet.

    PubMed

    Zhang, Yanzhuo; Hanula, James L; Horn, Scott; Jones, Cera; Kristine Braman, S; Sun, Jianghua

    2016-08-01

    Chinese privet, Ligustrum sinense Lour., is an invasive shrub within riparian areas of the southeastern United States. Biological control is considered the most suitable management option for Chinese privet. The potential host range of the lace bug, Leptoypha hospita Drake et Poor, was evaluated on the basis of adult feeding and oviposition, combined oviposition-nymphal development no-choice tests, nymphal development no-choice tests, multiple generation comparison on Forestiera pubescens Nutt. and L. sinense no-choice tests, and multiple-choice tests with 45 plant species in 13 families. No-choice tests showed that the host range of L. hospita was restricted to the tribe Oleeae. In adult feeding and oviposition no-choice tests, the bug fed and oviposited significantly more on Chinese privet than all other test plant species except for three native Forestiera spp., two nonnative Syringa spp., and another exotic Ligustrum sp. Among those, only F. pubescens supported complete development in numbers comparable to Chinese privet. However, when reared for multiple generations lace bugs reared on F. pubescens were smaller and had lower fecundity than those reared on L. sinense, suggesting F. pubescens is not an optimal host. In multiple-choice tests, L. hospita displayed a strong preference for feeding and ovipositing on Chinese privet over other test plant species, with the exception of the closely related nonnative Syringa spp. and its congenic species Ligustrum vulgare. The results of this study suggest that the risk to nontarget plant species in North America is minimal, and L. hospita would be a promising candidate for Chinese privet biological control. PMID:27325627

  6. Regulation of invertebrate biological control agents in Australia, New Zealand, Canada, and the USA: recommendations for Europe in its pursuit of a harmonised regulatory system.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Countries such as Australia, New Zealand, Canada, and the USA have established regulation for the import and release of exotic invertebrate biological control agents (IBCAs). The importance of IBCA specificity for the safety of biological control programmes was recognized during the relatively early...

  7. Area-wide biological control of disease vectors and agents affecting wildlife.

    PubMed

    Reichard, R E

    2002-04-01

    Two examples of area-wide programmes, employing the sterile insect technique (SIT), which have eradicated a parasite and a disease vector common to domestic and wild animals are described. New World screwworm (NWS), Cochliomyia hominivorax, caused significant morbidity and mortality of livestock and wild mammals in tropical and subtropical areas of America before eradication was achieved in North America using the SIT and other components of an integrated pest management (IPM) programme. Movement of wild as well as domestic animals from an area which is infested with screwworm to a free area requires prophylactic treatment. Tsetse fly-borne trypanosomosis has an immense influence on the distribution of people and livestock in Africa. The immunotolerance of wildlife to the parasites is an important factor in maintaining some areas livestock free as wildlife refuges. Slaughter has ceased of wild hoofstock species considered to be disease reservoirs for control purposes. The SIT, combined with other IPM measures, has resulted in the eradication of the tsetse fly and trypanosomosis from Zanzibar. Other programmes in Africa are underway. Microbial 'biopesticides' have also been employed successfully against plant insect pests and some vectors of human disease. It seems likely that for the immediate future, wildlife may benefit from area-wide biological control programmes, intended mainly to protect humans and/or domestic animals. PMID:11974628

  8. Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures?

    PubMed Central

    Li, Shu; Tan, Xiaoling; Desneux, Nicolas; Benelli, Giovanni; Zhao, Jing; Li, Xinhai; Zhang, Fan; Gao, Xiwu; Wang, Su

    2015-01-01

    Predator-prey interactions form the core of biological control of arthropod pests. Which tools can be used to monitor and collect carnivorous arthropods in natural habitats and targeted crops? Eco-friendly and effective field lures are urgently needed. In this research, we carried out olfactometer experiments assess innate positive chemotaxis to pollen of seven crop and banker plant by two important predatory biological control agents: the coccinellid Propylea japonica (Thunberg) and the anthocorid Orius sauteri (Poppius). We compared the attractiveness of pollens from crops and banker plants to that of common prey homogenates (aphids and thrips, respectively). Attractiveness of the tested odor sources was checked via field trapping experiments conducted in organic apple orchards and by release-recapture assays in organic greenhouse tomato crops. Maize and canola pollen were attractive to both P. japonica and O. sauteri, in laboratory and field assays. P. japonica was highly attracted by balm mint pollen, whereas O. sauteri was attracted by alfalfa pollen. Our results encourage the use of pollen from crops and banker plants as low-cost and eco-friendly attractors to enhance the monitoring and attraction of arthropod predators in biological control programs. PMID:26235136

  9. Biochemistry of Anhydrobiosis in Beddingia siricidicola, a Biological Control Agent of Sirex noctilio

    PubMed Central

    Lacey, Michael J.; Bedding, Robin A.

    2015-01-01

    Proto-anhydrobiosis of the nematode, Beddingia siricidicola, was achieved by incubation in polyethylene glycol or various concentrations up to 4 M of glycerol. The associated changes in the levels of glycerol, unbound proline, trehalose, lipids, and glycogen were determined by alkylation strategies, followed by gas chromatography or gas chromatography/mass spectrometry. The level of glycerol reached 8.9% of dry weight, proline 2.4% of dry weight, and trehalose 8.0% of dry weight within B. siricidicola that were incubated in 1.5 M glycerol over 6 d, while glycerol reached 17.9% of dry weight after incubation for the same period in 4 M glycerol. Movement was thereby reduced but the nematodes from 1.5 M glycerol revived after a few minutes upon rehydrating and they were able to avoid osmotic damage by rapidly excreting the glycerol, much of it being expelled within the first hour. The potential for storage and transport of this nematode for the biological control of the pine-killing wasp, Sirex noctilio, was greatly improved when nematode suspensions were maintained in 1.5 M glycerol under refrigeration. PMID:26170473

  10. Differences in seasonal variation between two biotypes of Megamelus scutellaris (Hemiptera: Delphacidae), a biological control agent for Eichhornia crassipes in Florida.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate matching between the native and adventive ranges of insects used for biological control is a generally accepted strategy for both increasing the likelihood of establishing an agent, as well as improving its overall performance, thereby maximizing the potential utility of an agent across the...

  11. The importance of molecular tools in classical biological control of weeds: Two case studies with yellow starthistle candidate biological agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular analyses may play a primary role in the process of host-specificity evaluation at species and population levels; here are reported two examples of their application with new candidate biocontrol agents for yellow starthistle (YST). Ceratapion basicorne is a root-crown boring weevil that sh...

  12. Evaluation of the rosette weevil, Ceratapion basicorne, a new biological control agent of yellow starthistle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow starthistle is an invasive alien weed from the Mediterranean region that infests about 20 million acres in the western U.S. This noxious weed displaces native plants, elevates the risk of wildfire, and diminishes the value of rangeland for grazing and recreational use. A classical biological ...

  13. Heterapoderopsis bicallosicollis (Coleoptera: Attelabidae): A Potential Biological Control Agent for Triadeca sebifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native to China, Chinese tallow, Triadica sebifera (L.) Small (Euphorbiaceae), is an invasive plant in the southeastern United States of America. The leaf-rolling weevil, Apoderus bicallosicollis Voss is a common herbivore attacking the plant in China. To evaluate its potential as a biological contr...

  14. Differential performance of tropical soda apple and its biological control agent Gratiana boliviana (Coleoptera: Chrysomelidae) in open and shaded habitats.

    PubMed

    Diaz, Rodrigo; Aguirre, Carlos; Wheeler, Gregory S; Lapointe, Stephen L; Rosskopf, Erin; Overholt, William A

    2011-12-01

    The leaf feeding beetle Gratiana boliviana Spaeth has been released since 2003 in the southeastern United States for biological control of tropical soda apple, Solanum viarum Dunal. In Florida, G. boliviana can be found on tropical soda apple growing in open pastures as well as in shady wooded areas. The objectives of this study were to determine the effect of light intensity on the performance of tropical soda apple and G. boliviana under greenhouse conditions, and to determine the abundance and mortality of G. boliviana in open and shaded habitats. Leaves growing in the shade were less tough, had higher water and nitrogen content, lower soluble sugars, and less dense and smaller glandular trichomes compared with leaves growing in the open. Plants grew slightly taller and wider under shaded conditions but total biomass was significantly reduced compared with plants grown in the open. In the greenhouse, G. boliviana had higher immature survival, greater folivory, larger adult size, and higher fecundity when reared on shaded plants compared with open plants. Sampling of field populations revealed that the overall abundance of G. boliviana was lower but leaf feeding damage was higher in shaded habitats compared with the open habitats. The percentage of eggs surviving to adult was greater in shaded compared with open habitats. The abundance of predators was higher in the open pasture and was positively correlated with the abundance of G. boliviana. These results indicate that not only plant quality but also habitat structure are important to the performance of weed biological control agents. PMID:22217759

  15. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens.

    PubMed

    Evangelista-Martínez, Zahaed

    2014-05-01

    The use of antagonist microorganisms against fungal plant pathogens is an attractive and ecologically alternative to the use of chemical pesticides. Streptomyces are beneficial soil bacteria and potential candidates for biocontrol agents. This study reports the isolation, characterization and antagonist activity of soil streptomycetes from the Los Petenes Biosphere Reserve, a Natural protected area in Campeche, Mexico. The results showed morphological, physiological and biochemical characterization of six actinomycetes and their inhibitory activity against Curvularia sp., Aspergillus niger, Helminthosporium sp. and Fusarium sp. One isolate, identified as Streptomyces sp. CACIS-1.16CA showed the potential to inhibit additional pathogens as Alternaria sp., Phytophthora capsici, Colletotrichum sp. and Rhizoctonia sp. with percentages ranging from 47 to 90 %. This study identified a streptomycete strain with a broad antagonist activity that could be used for biocontrol of plant pathogenic fungi. PMID:24310522

  16. Screening Spanish isolates of steinernematid nematodes for use as biological control agents through laboratory and greenhouse microcosm studies.

    PubMed

    Campos-Herrera, Raquel; Gutiérrez, Carmen

    2009-02-01

    Entomopathogenic nematodes (EPNs) are one of the best non-chemical alternatives for insect pest control, with native EPN strains that are adapted to local conditions considered to be ideal candidates for regional biological control programs. Virulence screening of 17 native Mediterranean EPN strains was performed to select the most promising strain for regional insect pest control. Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) Rioja strain produced 7%, 91% and 33% larval mortality for the insects Agriotes sordidus (Illiger) (Coleoptera: Elateridae), Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), respectively, and was selected as the most promising strain. The S. feltiae Rioja strain-S. littoralis combination was considered the most suitable to develop the Rioja strain as a biocontrol agent for soil applications. The effect of soil texture on the virulence of the Rioja strain against S. littoralis was determined through dose-response experiments. The estimated LC(90) to kill larvae in two days was 220, 753 and 4178 IJs/cm(2) for soils with a clay content of 5%, 14% and 24%, respectively, which indicates that heavy soils produced negative effects on the virulence of the Rioja strain. The nematode dose corresponding to the LC(90) for soils with a 5% and 14% clay content reduced insect damage to Capsicum annuum Linnaeus (Solanales: Solanaceae) plants under greenhouse microcosm conditions. The results of this research suggest that an accurate characterization of new EPN strains to select the most suitable combination of insect, nematode and soil texture might provide valuable data to obtain successful biological control under different ecological scenarios in future field applications. PMID:19073191

  17. Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens.

    PubMed Central

    Grondona, I; Hermosa, R; Tejada, M; Gomis, M D; Mateos, P F; Bridge, P D; Monte, E; Garcia-Acha, I

    1997-01-01

    Monoconidial cultures of 15 isolates of Trichoderma harzianum were characterized on the basis of 82 morphological, physiological, and biochemical features and 99 isoenzyme bands from seven enzyme systems. The results were subjected to numerical analysis which revealed four distinct groups. Representative sequences of the internal transcribed spacer 1 (ITS 1)-ITS 2 region in the ribosomal DNA gene cluster were compared between groups confirming this distribution. The utility of the groupings generated from the morphological, physiological, and biochemical data was assessed by including an additional environmental isolate in the electrophoretic analysis. The in vitro antibiotic activity of the T. harzianum isolates was assayed against 10 isolates of five different soilborne fungal plant pathogens: Aphanomyces cochlioides, Rhizoctonia solani, Phoma betae, Acremonium cucurbitacearum, and Fusarium oxysporum f. sp. radicis lycopersici. Similarities between levels and specificities of biological activity and the numerical characterization groupings are both discussed in relation to antagonist-specific populations in known and potential biocontrol species. PMID:9251205

  18. Evaluation of mortality factors using life table analysis of Gratiana boliviana, a biological control agent of tropical soda apple in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soda apple (TSA), Solanum viarum Dunal (Solanaceae), has invaded many pastures and natural areas in Florida. The biological control agent Gratiana boliviana Spaeth (Coleoptera: Chrysomelidae) is providing adequate control of TSA stands in South and Central Florida. However, poor or no es...

  19. Chemical crowd control agents.

    PubMed

    Menezes, Ritesh G; Hussain, Syed Ather; Rameez, Mansoor Ali Merchant; Kharoshah, Magdy A; Madadin, Mohammed; Anwar, Naureen; Senthilkumaran, Subramanian

    2016-03-01

    Chemical crowd control agents are also referred to as riot control agents and are mainly used by civil authorities and government agencies to curtail civil disobedience gatherings or processions by large crowds. Common riot control agents used to disperse large numbers of individuals into smaller, less destructive, and more easily controllable numbers include chloroacetophenone, chlorobenzylidenemalononitrile, dibenzoxazepine, diphenylaminearsine, and oleoresin capsicum. In this paper, we discuss the emergency medical care needed by sufferers of acute chemical agent contamination and raise important issues concerning toxicology, safety and health. PMID:26658556

  20. Livestock as a potential biological control agent for an invasive wetland plant

    PubMed Central

    Mozdzer, Thomas; Angelini, Christine; Brundage, Jennifer E.; Esselink, Peter; Bakker, Jan P.; Gedan, Keryn B.; van de Koppel, Johan; Baldwin, Andrew H.

    2014-01-01

    Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in marshes. Here, we reveal that Phragmites may potentially be controlled by employing an affordable measure from its native European range: livestock grazing. Experimental field tests demonstrate that rotational goat grazing (where goats have no choice but to graze Phragmites) can reduce Phragmites cover from 100 to 20% and that cows and horses also readily consume this plant. These results, combined with the fact that Europeans have suppressed Phragmites through seasonal livestock grazing for 6,000 years, suggest Phragmites management can shift to include more economical and effective top-down control strategies. More generally, these findings support an emerging paradigm shift in conservation from high-cost eradication to economically sustainable control of dominant invasive species. PMID:25276502

  1. Scale-up and formulation of Mycoleptodiscus terrestris: A biological control agent of Hydrilla

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycoleptodiscus terrestris is a natural plant pathogen of the invasive aquatic weed, Hydrilla verticillata. In aquarium and field assays, it has been shown to be effective in controlling the pervasive weed. The development of M. terrestris into a commercially viable bioherbicide requires developin...

  2. Leptotrachelus dorsalis (F.) (Coleoptera: Carabidae): A candidate biological control agent of the sugarcane borer in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the registration and wide-spread use of insect growth regulators (e.g. tebufenozide and novaluron) for control of sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae) in Louisiana, larvae of the ground beetle, Leptotrachelus dorsalis (F.) (Coleoptera: Carabidae) have become appar...

  3. Preparation for the introduction of a new yellow starthistle biological control agent into California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow starthistle populations were monitored at six locations in California. At each location, two sites were selected with the intention of using one as a future release site and one as a control site. Permanent transects were established and data were collected on plant density, plant size, num...

  4. Duddingtonia flagrans, Monacrosporium thaumasium and Pochonia chlamydosporia as possible biological control agents of Oxyuris equi and Austroxyuris finlaysoni.

    PubMed

    Braga, F R; Araújo, J V; Silva, A R; Araujo, J M; Carvalho, R O; Campos, A K; Tavela, A O; Ferreira, S R; Frassy, L N; Alves, C D F

    2010-03-01

    The action of four fungal isolates of the species Duddingtonia flagrans (AC001), Monacrosporium thaumasium (NF34a) and Pochonia chlamydosporia (VC1 and VC4) on eggs of Oxyuris equi and Austroxyuris finlaysoni was evaluated in two assays (A and B). Eggs of O. equi (Test A) and A. finlaysoni (Test B) were plated on Petri dishes with 2% water-agar with grown fungal isolates and control without fungus. After 5, 10 and 15 days, 100 eggs were collected and classified according to the following parameters: type 1 effect, physiological and biochemical effect without morphological damage to the eggshell; type 2 effect, lytic effect with morphological alteration of the eggshell and embryo; and type 3 effect, lytic effect with morphological alteration of the eggshell and embryo, hyphal penetration and internal egg colonization. Pochonia chlamydosporia isolates VC1 and VC4 showed ovicidal activity for type 1, 2 and 3 effects on eggs of O. equi and eggs of A. finlaysoni. In vitro assays A and B showed that P. chlamydosporia had a negative influence on eggs of O. equi and A. finlaysoni and can be considered as a potential biological control agent of nematodes. PMID:19570314

  5. Isolation and evaluation of bacteria and fungi as biological control agents against Rhizoctonia solani.

    PubMed

    Lahlali, R; Bajii, M; Jijakli, M H

    2007-01-01

    Rhizoctonia solani is one of the most important limiting factors for potato production and storage in Belgium and worldwide. Its management is still strongly dependent on chemical treatments. The aim of this work was to evaluate the possibility of exploiting bacteria and fungi in order to control this pathogen. Among a collection of 220 bacterial strains isolated from different organs of healthy potato plants and rhizospheric soils, 25 isolates were selected using screening methods based on in vitro dual culture assays. The mycelial growth inhibition rate of the pathogen was ranged from 59.4 to 95.0%. Also seven fungal strains isolated from the rhizospheric soil and potato roots showed a highly mycelial growth inhibition of R. solani. The mycelial growth inhibition rate obtained with these fungi was included between 60.0 and 99.4%. From this preliminary study, the further investigations will be planned to determine the bacterial isolates systematic, species of fungal strains by using molecular tools and to assess their efficacy against R. solani in greenhouse trials. PMID:18396837

  6. Biological control agents for suppression of post-harvest diseases of potatoes: strategies on discovery and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As used in plant pathology, the term "biological control" or its short form “biocontrol” commonly refers to the decrease in the inoculum or the disease-producing activity of a pathogen accomplished through one or more organisms, including the host plant but excluding man. Biological control of plant...

  7. In vivo rearing of Thripinema nicklewoodi (Tylenchida: Allantonematidae) and prospects as a biological control agent of Frankliniella occidentalis (Thysanoptera: Thripidae).

    PubMed

    Arthurs, Steven; Heinz, Kevin M

    2002-08-01

    Methods are described for the in vivo production of the nematode Thripinema nicklewoodi (Siddiqi), an obligate parasite and potential biological control agent of western flower thrips Frankliniella occidentalis (Pergande). Nematode infection is not lethal but causes sterilization of adult female hosts. Both fertilization and horizontal transmission of T. nicklewoodi is achieved in 1.5-ml microcentrifuge tubes (infection arenas), in the presence of 100% humidity, a temporary food source and preferably a damp substrate. Following exposure to infection arenas, F. occidentalis are reared on excised bean leaves Phaseolus vulgaris (L.) in polypropylene containers for 2 wk at 25 degrees C to allow the reproduction and development of a single generation of nematodes within infected hosts's abdominal cavity. To identify infected hosts after this incubation period, thrips are isolated in microcentrifuge tubes and monitored for free-living nematodes being released along with frass. Infected thrips are reintroduced back into infection arenas to inoculate further thrips to maintain the culture. We documented the output of the rearing procedure using a standard method and following simple manipulation of several individual parameters of the infection technique. The standard method was the most efficient, and resulted in an increased (output/input) ratio of infected thrips of approximately 2; i.e., the number of infected thrips approximately doubles each generation. Monitoring infected thrips revealed that nematodes were first released between 12-14 d postinfection and for an average of 7.9 d at 25 degrees C; highlighting the potential to reuse infective thrips between infection arenas. The possibility of using T. nicklewoodi as an inoculative agent against F. occidentalis infesting floricultural crops is discussed. PMID:12216805

  8. Biologic agents in the treatment of glomerulonephritides.

    PubMed

    Yeo, See Cheng; Liew, Adrian

    2015-11-01

    Current immunosuppression strategies in the treatment of glomerulonephritides remain unsatisfactory, especially in glomerular diseases that are frequently relapsing or are resistant to treatment. Toxicities associated with the use of drugs with non-specific targets for the immune response result in treatment non-compliance, and increase morbidity and mortality in these patients. Advances in our understanding of the immunopathogenesis of glomerulonephritis and the availability of biologics have led to their successful use in the treatment of immune-mediated glomerular diseases. Biologics are usually very large complex molecules, often produced using recombinant DNA technology and manufactured in a living system such as a microorganism, or plant or animal cells. They are novel agents that can target specific immune cell types, cytokines or immune pathways involved in the pathogenesis of these disorders. It is attractive to consider that, given their specific mode of action, these agents can potentially offer a more directed and effective immunosuppression, with side-effect profiles that are much more desirable. However, there have been few randomized controlled trials comparing biologic agents to conventional immunosuppression, and in many of these studies the side-effect profiles have been disappointingly similar. In this review, we will examine the rationale, efficacy and safety of some commonly used biologics in the treatment of primary and secondary glomerulonephritides. We will also discuss some of the key challenges that may be encountered with the use of biologics in treating glomerulonephritis in the future. PMID:26040770

  9. Stantonia pallida (Ashmead)(Hymenoptera: Braconidae) reared from Neomusotima conspurcatalis Warren (Lepidoptera: Crambidae), a classical biological control agent of Lygodium microphyllum (Cav.)R.Br.(Polypodiales: Lygodiaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stantonia pallida (Ashmead) sensu Braet and Quicke (2004) and an undetermined species of Cotesia are reported from Neomusotima conspurcatalis Warren, a classical biological control agent of Lygodium microphyllum (Cav.) R. Br. in Florida. They are the first reported parasitoids of N. conspurcatalis. ...

  10. Population establishment of and promising early results with the brown lygodium moth, Neomusotima conspurcatalis - a candidate biological control agent of Old World climbing fern, Lygodium microphyllum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Old World climbing fern, Lygodium microphyllum is one of the most serious invasive, weeds affecting southern and central Florida. Management of this weed using traditional strategies has proved difficult and expensive, with limited long-term success. In early 2008, a new biological control agent cal...

  11. Review of invertebrate biological control agent regulation in Australia, New Zealand, Canada and the USA: recommendations for a harmonized European system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Europe lags far behind Australia, New Zealand, Canada and the USA in terms of implementing regulatory procedures for the import and release of invertebrate biological control agents (IBCAs). A number of standards, documents and guidelines have been produced over recent years in an attempt to harmon...

  12. Influence of Seed Head-attacking Biological Control Agents on Spotted Knapweed Reproductive Potential in Western Montana over a 30-year Period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted in 2006 to measure the direct impact of seed-feeding insects that were previously introduced as classical biological control agents. The results indicate that Larinus minutus, L. obtusus, Urophora affinis and U. quadrifasciata reduced seed production by 84%. Additi...

  13. Pre-release assessment of Gadirtha inexacta a proposed biological control agent of Chinese tallow (Triadica sebifera) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native to China, Chinese tallow, Triadica sebifera (Euphorbiaceae) is an aggressive woody invader in the southeastern United States. The noctuid, Gadirtha inexacta, is a multivoltine herbivore attacking this plant in China. To evaluate its potential as a biological control agent in the United States...

  14. Post-establishment assessment of host plant specificity of Arytainilla spartiophila (Hemiptera: Psyllidae), an adventive biological control agent of Scotch broom, Cytisus scoparius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scotch broom, Cytisus scoparius (Fabaceae), is a shrub native to Europe that is invasive in the USA, New Zealand and Australia. The psyllid Arytainilla spartiophila has been purposely introduced to Australia and New Zealand as a biological control agent of C. scoparius, but is an accidental introduc...

  15. Dispersal and establishment of new populations of the biological control agent Floracarus perrepae (Acariformes: Eriophyidae) on Old World climbing fern, Lygodium microphyllum (Polypodiales: Lygodiaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mite Floracarus perrepae, a biological control agent of Lygodium microphyllum, Old World climbing fern, was released in south Florida from 2008 to 2010 but did not readily establish in the field. The original release sites were resurveyed in 2013 and the mite has established within Jonathan Dick...

  16. Influence of Temperature, Humidity, and Plant Terpenoid Profiles on Life History Characteristics of Boreioglycaspis melaleucae (Hemiptera: Psyllidae), a Biological Control Agent of the Invasive Tree Melaleuca quinquenervia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the introduced weed biological control agent Boreioglycaspis melaleucae Moore is widely established among stands of its host Melaleuca quinquenervia (Cav.) Blake (Myrtaceae) in south Florida, it’s population densities decline markedly during summer months. We investigated the hypothesis tha...

  17. Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds, which is necessary for avoiding possible damage to nontarget plants. Volatile organic compounds (VOC) emitted by plants likely play an important role in determining which plant...

  18. A new species of Gadirtha Walker (Nolidae: Collomeninae): a proposed biological control agent of Chinese tallow (Triadica sebifera (L.) Small) (Euphorbiaceae) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gadirtha fusca, new species, is described from Hong Kong. Adult, male and female genitalia, larva, and pupa are described, illustrated, and compared with Gadirtha impingens Walker. Species is a possible biological control agent for Chinese tallow (Triadica sebifera (L.) Small, Euphorbiaceae) in the ...

  19. HYDRILLA STEMS AND TUBERS AS HOSTS FOR THREE BAGOUS SPECIES: TWO INTRODUCED BIOLOGICAL CONTROL AGENTS (BAGOUS HYDRILLAE AND B. AFFINIS) AND ONE NATIVE SPECIES (B. RESTRICTUS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field observations suggested that the introduced Hydrilla verticillata (L.f.) Royle biological control agent, a stem weevil Bagous hydrillae O’Brien would feed on dioecious hydrilla tubers as well as stems and a native species, Bagous restrictus LeConte would feed on hydrilla stems. In choice tests...

  20. Natural enemies of balloon vine, Cardiospermum grandiflorum Swartz (Sapindaceae), in Argentina and their potential use as biological control agents in South Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exploratory field surveys of the natural enemies associated with balloon vine, Cardiospermum grandiflorum (Sapindaceae), an environmental weed in South Africa, Australia and other countries, were conducted in northern Argentina from 2005 to 2009, to search for suitable biological control agents. The...

  1. Pseudacteon spp. (Diptera: Phoridae) biological control agents of Solenopsis spp. (Hymenoptera: Formicidae) in Louisiana: statewide distribution and Kneallhazia solenopsae (Microsporidia: Thelohaniidae) prevalence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phorid flies, Pseudacteon spp. (Diptera: Phoridae), have been released in the United States since 1996 as biological control agents for imported fire ant, Solenopsis invicta Buren, Solenopsis richteri Forel, and their hybrid (Hymenoptera: Formicidae), management. A statewide survey was conducted in ...

  2. Cultural and chemical pest control methods alter habitat suitability for biological control agents: An example from Wisconsin commercial cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An integrated pest control program requires an in-depth understanding of the compatibility of all control strategies used. In Wisconsin commercial cranberry production, early-season control strategies may include either a broad-spectrum insecticide application or a corresponding spring flood, along ...

  3. Native natural enemies of native woodborers: Potential as biological control agents for the Asian longhorned beetle, Anoplophora glabripennis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian Longhorned Beetle, Anoplophora glabripennis (ALB), is among high risk invasive species that recently invaded the U.S. from China. ALB has attacked 25 deciduous tree species in 13 genera in N.A., most notable seven maple species. Biological control represents an alternative approach for control...

  4. Research Update: Natural Enemies of Native Woodborers and their Potential as Biological Control Agents for Asian Longhorned Beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian Longhorned Beetle, Anoplophora glabripennis (ALB), is among high risk invasive species that recently invaded the U.S. from China. ALB has attacked 25 deciduous tree species in 13 genera in N.A., most notable seven maple species. Biological control represents an alternative approach for control...

  5. Egg Parasitoids from Pakistan as possible classical biological control agents of the invasive pest, Bagrada hilaris (Heteroptera: Pentatomidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The newly invasive pest stink bug, Bagrada hilaris, threatens the cole crop industry and certain ornamentals in the U.S. Without its co-evolved natural enemies, it is likely to spread from the Southwest U.S. to the east coast, requiring millions more dollars to control it. If key biological control ...

  6. Differential performance of tropical soda apple and its biological control agent Gratiana boliviana (Coleoptera: Chrysomelidae) in open and shaded habitats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leaf feeding beetle Gratiana boliviana Spaeth has been released since 2003 in the southeastern United States for biological control of tropical soda apple, Solanum viarum Dunal. In Florida, G. boliviana can be found on tropical soda apple growing in open pastures as well as in shady wooded areas...

  7. Preliminary host range assessment of Asian Chrysochus spp. (Coleoptera: Chrysomelidae), potential biological control agents of Vincetoxicum spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The European herbaceous perennials pale swallow-wort (Vincetoxicum rossicum) and black swallow-wort (V. nigrum; Apocynaceae, subfamily Asclepiadoideae) have been the subject of classical biological control efforts, due to their invasion of various natural areas and managed habitats in the northeaste...

  8. Laboratory and field experimental evaluation of host plant specificity of Aceria solstitialis, a prospective biological control agent of yellow starthistle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow starthistle (Centaurea solstitialis) is an invasive annual weed in the western USA that is native to the Mediterranean Region and is a target for classical biological control. Aceria solstitialis is an eriophyid mite that has been found exclusively in association with yellow starthistle in I...

  9. Bacterial endophytes: Bacillus spp. from vegetable crops as potential biological control agents of black pod rot of cacao

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diseases are the most important factors limiting the production of Theobroma cacao in South America. Because of high disease pressure and environmental concerns, biological control is a pertinent area of research for cacao disease management. In this work, we evaluated the ability of four Bacillus s...

  10. Release and distribution of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of air potato (Dioscorea bulbilfera: Dioscoreaceae), in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From 2012 to 2015, 429,668 Lilioceris cheni Gressit and Kimoto (Coleoptera: Chrysomelidae) were released in Florida for biological control of air potato [Dioscorea bulbilfera L. (Dioscoreaceae)]. The spatial distribution of releases was highly aggregated, with several areas of high density releases ...

  11. Host range determination of Colletotrichum gloeosporioides f. sp. salsolae, a biological control agent of tumbleweed: from BLUPs to biomass loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host range tests were conducted with Colletotrichum gloeosporioides f. sp. salsolae (CGS) in quarantine to determine whether the fungus is safe to release in N. America for biological control of tumbleweed (Salsola tragus L., Chenopodiaceae). Ninety-two accessions were analyzed from 19 families and...

  12. The Phylogenetic Relationships of Introduced Aphelinus (Hymenoptera: aphelinidae), Biological Control Agents of the Russian Wheat Aphid (Homoptera: aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several species of Aphelinus have been introduced to the United States from the Old World for biological control of the Russian wheat aphid, Diuraphis noxia (Modvilko). Reproductive incompatibility has been observed among populations collected from different geographic areas. We examined whether or ...

  13. Biology and host range of Tecmessa elegans (Lepidoptera:Notodontidae) a leaf-feeding moth evaluated as a potential biological control agent for Schinus terebinthifolius (Sapindales: Anacardiaceae) in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During surveys for natural enemies that could potentially be used as classical biological control agents of Schinus terebinthifolius Raddi (Brazilian pepper) which is invasive in the USA, the caterpillar, Tecmessa elegans Schaus (Lepidoptera: Notodontidae), was recorded feeding on the leaves of the ...

  14. Mobility control agent

    SciTech Connect

    Argabright, P.A.; Phillips, B.L.; Rhudy, J.S.

    1983-05-17

    Polymer mobility control agents useful in supplemental oil recovery processes, which give improved reciprocal relative mobilities, are prepared by initiating the polymerization of a monomer containing a vinyl group with a catalyst comprising a persulfate and ferrous ammonium sulfate. The vinyl monomer is an acrylyl, a vinyl cyanide, a styryl and water soluble salts thereof.

  15. Software agents in molecular computational biology.

    PubMed

    Keele, John W; Wray, James E

    2005-12-01

    Progress made in applying agent systems to molecular computational biology is reviewed and strategies by which to exploit agent technology to greater advantage are investigated. Communities of software agents could play an important role in helping genome scientists design reagents for future research. The advent of genome sequencing in cattle and swine increases the complexity of data analysis required to conduct research in livestock genomics. Databases are always expanding and semantic differences among data are common. Agent platforms have been developed to deal with generic issues such as agent communication, life cycle management and advertisement of services (white and yellow pages). This frees computational biologists from the drudgery of having to re-invent the wheel on these common chores, giving them more time to focus on biology and bioinformatics. Agent platforms that comply with the Foundation for Intelligent Physical Agents (FIPA) standards are able to interoperate. In other words, agents developed on different platforms can communicate and cooperate with one another if domain-specific higher-level communication protocol details are agreed upon between different agent developers. Many software agent platforms are peer-to-peer, which means that even if some of the agents and data repositories are temporarily unavailable, a subset of the goals of the system can still be met. Past use of software agents in bioinformatics indicates that an agent approach should prove fruitful. Examination of current problems in bioinformatics indicates that existing agent platforms should be adaptable to novel situations. PMID:16420735

  16. Native range assessment of classical biological control agents: impact of inundative releases as pre-introduction evaluation.

    PubMed

    Jenner, W H; Mason, P G; Cappuccino, N; Kuhlmann, U

    2010-08-01

    Diadromus pulchellus Wesmael (Hymenoptera: Ichneumonidae) is a pupal parasitoid under consideration for introduction into Canada for the control of the invasive leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae). Since study of the parasitoid outside of quarantine was not permitted in Canada at the time of this project, we assessed its efficacy via field trials in its native range in central Europe. This was done by simulating introductory releases that would eventually take place in Canada when a permit for release is obtained. In 2007 and 2008, experimental leek plots were artificially infested with pest larvae to mimic the higher pest densities common in Canada. Based on a preliminary experiment showing that leek moth pupae were suitable for parasitism up to 5-6 days after pupation, D. pulchellus adults were mass-released into the field plots when the first host cocoons were observed. The laboratory-reared agents reproduced successfully in all trials and radically reduced leek moth survival. Taking into account background parasitism caused by naturally occurring D. pulchellus, the released agents parasitized at least 15.8%, 43.9%, 48.1% and 58.8% of the available hosts in the four release trials. When this significant contribution to leek moth mortality is added to previously published life tables, in which pupal parasitism was absent, the total pupal mortality increases from 60.1% to 76.7%. This study demonstrates how field trials involving environmental manipulation in an agent's native range can yield predictions of the agent's field efficacy once introduced into a novel area. PMID:19814849

  17. Approaches to detection of airborne biological agents

    NASA Astrophysics Data System (ADS)

    Chang, An-Cheng; Tabacco, Mary Beth

    2009-05-01

    Three approaches to detection of biological agents based on biological processes will be presented. The first example demonstrates the use of dendrimers to deliver a membrane-impermeable fluorescent dye into live bacteria, similar to viral infection and delivery of DNA/RNA into a bacterial cell. The second example mimics collection and capture of airborne biological particles by the respiratory mucosa through the use of a hygroscopic sensing membrane. The third example is based on the use of multiple fluorescent probes with diverse functionalities to detect airborne biological agents in a manner similar to the olfactory receptors in the nasal tract.

  18. Biological control of ticks

    USGS Publications Warehouse

    Samish, M.; Ginsberg, H.; Glazer, I.

    2004-01-01

    Ticks have numerous natural enemies, but only a few species have been evaluated as tick biocontrol agents (BCAs). Some laboratory results suggest that several bacteria are pathogenic to ticks, but their mode of action and their potential value as biocontrol agents remain to be determined. The most promising entomopathogenic fungi appear to be Metarhizium anisopliae and Beauveria bassiana, strains of which are already commercially available for the control of some pests. Development of effective formulations is critical for tick management. Entomopathogenic nematodes that are pathogenic to ticks can potentially control ticks, but improved formulations and selection of novel nematode strains are needed. Parasitoid wasps of the genus Ixodiphagus do not typically control ticks under natural conditions, but inundative releases show potential value. Most predators of ticks are generalists, with a limited potential for tick management (one possible exception is oxpeckers in Africa). Biological control is likely to play a substantial role in future IPM programmes for ticks because of the diversity of taxa that show high potential as tick BCAs. Considerable research is required to select appropriate strains, develop them as BCAs, establish their effectiveness, and devise production strategies to bring them to practical use.

  19. History of chemical and biological warfare agents.

    PubMed

    Szinicz, L

    2005-10-30

    Chemical and biological warfare agents constitute a low-probability, but high-impact risk both to the military and to the civilian population. The use of hazardous materials of chemical or biological origin as weapons and for homicide has been documented since ancient times. The first use of chemicals in terms of weapons of mass destruction goes back to World War I, when on April 22, 1915 large amounts of chlorine were released by German military forces at Ypres, Belgium. Until around the 1970s of the 20th century, the awareness of the threat by chemical and biological agents had been mainly confined to the military sector. In the following time, the development of increasing range delivery systems by chemical and biological agents possessors sensitised public attention to the threat emanating from these agents. Their proliferation to the terrorists field during the 1990s with the expanding scale and globalisation of terrorist attacks suggested that these agents are becoming an increasing threat to the whole world community. The following article gives a condensed overview on the history of use and development of the more prominent chemical and biological warfare agents. PMID:16111798

  20. Method For Detecting Biological Agents

    DOEpatents

    Chen, Liaohai; McBranch, Duncan W.; Wang, Hsing-Lin; Whitten, David G.

    2005-12-27

    A sensor is provided including a polymer capable of having an alterable measurable property from the group of luminescence and electrical conductivity, the polymer having an intermediate combination of a recognition element, a tethering element and a property-altering element bound thereto and capable of altering the measurable property, the intermediate combination adapted for subsequent separation from the polymer upon exposure to an agent having an affinity for binding to the recognition element whereupon the separation of the intermediate combination from the polymer results in a detectable change in the alterable measurable property, and, detecting said detectable change in the alterable measurable property.

  1. Delphastus catalinae and Coleomegilla maculata lengi (Coleoptera: Coccinellidae) as biological control agents of the greenhouse whitefly, trialeurodes vaporariorum (Homoptera: Aleyrodidae).

    PubMed

    Lucas, Eric; Labrecque, Claude; Coderre, Daniel

    2004-11-01

    Predation efficacy and compatibility of the predatory lady beetles Coleomegilla maculata lengi Timberlake and Delphastus catalinae (Horn) against the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) were studied in laboratory on glabrous fuchsia (Fuchsia hybrida Voss cv Lena Corolla) and pubescent poinsettia plants (Euphorbia pulcherrima Willd ex Klotzch cv Dark Red Annette Hegg). On glabrous plants (fuchsia), fourth-instar and adults of C maculata were the most efficient, both against whitefly eggs and pupae. On pubescent plants (poinsettia), the larger stages of C maculata were negatively affected and less efficient than adults of D catalinae. The presence of plant structure did not affect the voracity of either predator species. Finally, the simultaneous use of both predator species generated inter-specific competition. These results provide recommendations for biological control of whitefly in horticultural greenhouses. PMID:15532680

  2. Isolation of Secondary Metabolites from the Soil-Derived Fungus Clonostachys rosea YRS-06, a Biological Control Agent, and Evaluation of Antibacterial Activity.

    PubMed

    Zhai, Ming-Ming; Qi, Feng-Ming; Li, Jie; Jiang, Chun-Xiao; Hou, Yue; Shi, Yan-Ping; Di, Duo-Long; Zhang, Ji-Wen; Wu, Quan-Xiang

    2016-03-23

    The fungus Clonostachys rosea is widely distributed all over the world. The destructive force of this fungus, as a biological control agent, is very strong to lots of plant pathogenic fungi. As part of the ongoing search for antibiotics from fungi obtained from soil samples, the secondary metabolites of C. rosea YRS-06 were investigated. Through efficient bioassay-guided isolation, three new bisorbicillinoids possessing open-ended cage structures, tetrahydrotrichodimer ether (1) and dihydrotrichodimer ether A and B (2 and 3), and 12 known compounds were obtained. Their structures were determined via extensive NMR, HR-ESI-MS, and CD spectroscopic analyses and X-ray diffraction data. Compounds 1-3 are rare bisorbicillinoids with a γ-pyrone moiety. The biological properties of 1-15 were evaluated against six different Gram-positive and Gram-negative bacteria. Bisorbicillinoids, 2-5, and TMC-151 C and E, 14 and 15, showed potent antibacterial activity. PMID:26974009

  3. Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes.

    PubMed

    Jacobs, Helen; Gray, Simon N; Crump, David H

    2003-01-01

    The efficacies of three nematophagous fungi, Paecilomyces lilacinus, Plectosphaerella cucumerina and Pochonia chlamydosporia, for controlling potato cyst nematodes (PCN) as part of an Integrated Pest Management (IPM) regime were studied. The compatibility of the nematophagous fungi with commonly used chemical pesticides and their ability to compete with the soil fungi Rhizoctonia solani, Chaetomium globosum, Fusarium oxysporum, Penicillium bilaii and Trichoderma harzianum were tested in vitro. Paecilomyces lilacinus was the most successful competitor when the ability to grow and inhibit growth of an opposing colony at both 10 and 20 degrees C was considered. P. lilacinus also showed potential for control of the soil-borne fungal pathogen R. solani, releasing a diffusable substance in vitro which inhibited its growth and caused morphological abnormalities in its hyphae. Pochonia chlamydosporia was least susceptible to growth inhibition by other fungi at 20 degrees in vitro, but the isolate tested did not grow at 10 degrees. Plectosphaerella cucumerina was a poor saprophytic competitor. Radial growth of Paecilomyces lilacinus and Plectosphaerella cucumerina was slowed, but not prevented, when grown on potato dextrose agar incorporating the fungicides fenpiclonil and tolclofos-methyl, and was not inhibited by the addition of pencycuron or the nematicide oxamyl. Radial growth of Pochonia chlamydosporia was partially inhibited by all the chemical pesticides tested. The efficacy of Paecilomyces lilacinus as a control agent for R. solani was further investigated in situ. Treatment with P. lilacinus significantly reduced the symptoms of Rhizoctonia disease on potato stems in a pot trial. The effectiveness of P. lilacinus and P. cucumerina against PCN was also tested in situ. Three application methods were compared; incorporating the fungi into alginate pellets, Terra-Green inoculated with the fungi and applying conidia directly to the tubers. Both formulations containing P

  4. Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetles (Aphthona spp.) used as biological control agents

    USGS Publications Warehouse

    Larson, D.L.; Grace, J.B.

    2004-01-01

    The goal of this study was to evaluate the biological control program of leafy spurge (Euphorbia esula) in a large natural area, Theodore Roosevelt National Park, western North Dakota, USA. Aphthona lacertosa and Aphthona nigriscutis have been released at more than 1800 points in the 18,600-ha South Unit of the park beginning in 1989; most releases have occurred since 1994. We established permanent vegetation plots throughout the infested area of the park and determined stem counts and biomass of leafy spurge and abundance of the two flea beetle species at these plots each year from 1999 to 2001. Both biomass and stem counts declined over the 3 years of the study. Both species of flea beetle are well established within the park and have expanded into areas where they were not released. A. nigriscutis was more abundant than A. lacertosa in the grassland areas we surveyed, but in all other habitats abundances were similar. Using structural equation models, only A. lacertosa could be shown to have a significant effect on counts of mature stems of leafy spurge. A. nigriscutis numbers were positively correlated with stem counts of mature stems. Previous year's stem counts had the greatest influence on change in stem counts over each 2-year time step examined with structural equation models.

  5. Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetle (Aphthona spp.) used as biological control agents

    USGS Publications Warehouse

    Larson, D.L.; Grace, J.B.

    2004-01-01

    The goal of this study was to evaluate the biological control program of leafy spurge {Euphorbia esula) in a large natural area, Theodore Roosevelt National Park, western North Dakota, USA. Aphthona lacertosa and Aphthona nigriscutis have been released at more than 1800 points in the 18,600-ha South Unit of the park beginning in 1989; most releases have occurred since 1994. We established permanent vegetation plots throughout the infested area of the park and determined stem counts and biomass of leafy spurge and abundance of the two flea beetle species at these plots each year from 1999 to 2001. Both biomass and stem counts declined over the 3 years of the study. Both species of flea beetle are well established within the park and have expanded into areas where they were not released. A. nigriscutis was more abundant than A. lacertosa in the grassland areas we surveyed but in all other habitats abundances were similar. Using structural equation models, only A. lacertosa could be shown to have a significant effect on counts of mature stems of leafy spurge. A. nigriscutis numbers were positively correlated with stem counts of mature stems. Previous year's stem counts had the greatest influence on change in stem counts over each 2-year time step examined with structural equation models.

  6. Antipredator defense of biological control agent Oxyops vitiosa is mediated by plant volatiles sequestered from the host plant Melaleuca quinquenervia.

    PubMed

    Wheeler, G S; Massey, L M; Southwell, I A

    2002-02-01

    The weevil Oxyops vitiosa is an Australian species imported to Florida, USA, for the biological control of the invasive weed species Melaleuca quinquenervia. Larvae of this species feed on leaves of their host and produce a shiny orange secretion that covers the integument. When this secretion is applied at physiological concentrations to dog food bait, fire ant consumption and visitation are significantly reduced. Gas chromatographic analysis indicates that the larval secretion qualitatively and quantitatively resembles the terpenoid composition of the host foliage. When the combination of 10 major terpenoids from the O. vitiosa secretion was applied to dog food bait, fire ant consumption and visitation were reduced. When these 10 terpenoids were tested individually, the sesquiterpene viridiflorol was the most active component in decreasing fire ant consumption. Fire ant visitation was initially (15 min after initiation of the study) decreased for dog food bait treated with viridiflorol and the monoterpenes 1,8-cineole and alpha-terpineol. Fire ants continued to avoid the bait treated with viridiflorol at 18 microg/mg dog food for up to 6 hr after the initiation of the experiment. Moreover, ants avoided bait treated with 1.8 microg/mg for up to 3 hr. The concentrations of viridiflorol, 1,8-cineole, and alpha-terpineol in larval washes were about twice that of the host foliage, suggesting that the larvae sequester these plant-derived compounds for defense against generalist predators. PMID:11925069

  7. CLASSICAL BIOLOGICAL CONTROL OF WEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ceratapion basicorne (Coleoptera: Apionidae) is a univoltine weevil native to Eurasia whose larvae develop in root-crowns of Centaurea solstitialis (yellow starthistle, Asteraceae). This insect was "rejected" as a prospective biological control agent about 15 years ago after preliminary evaluation ...

  8. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis. PMID:19122437

  9. Efforts to establish a biological control agent against incipient infestations of Old World climbing fern in southwest Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When available, field-adapted insects should be selected for colonization and redistribution, because they appear to offer better prospects for establishment than lab-reared insects. Small founder populations of monophagous biocontrol agents that depend on a patchy, rare host plant are susceptible t...

  10. The effect of the combination of two biological control agents, Mirabilis jalapa and Bacillus thuringiensis, to Spodoptera litura's immune response and their mortality

    NASA Astrophysics Data System (ADS)

    Maulina, Dina; Anggraeni, Tjandra

    2014-03-01

    Biological control provides a safer alternative to reduce the population of agricultural pest. Mirabilis jalapa is one of many promising biopesticides which contains chemical substances that have a feeding deterrent property against insects. This biopesticide may not kill insect directly but will weaken their overall physiological condition. In this study, we investigated the immune response of common pestSpodoptera litura after exposure of M. jalapa extract. We also used Bacillus thuringiensis (Bt) delta endotoxin (LC50) on 3 hours after exposure of M. jalapa extract to see the synergism properties of both biopesticide agents. Microscopic observation revealed that at least 5 types of haemocyte were found in S. litura. In control group, plasmatocyte were found at 59.98%, prohaemocyte 20.73%, granullar cell 12.74%, oenocytoid 3.33% and spherule cell 3.20%. These proportion was differ significantly in the treatment group. Exposure to 0.1% and 0.2%(w/v) of M. jalapa extract increased the total number of haemocytes as much as 38.08% and 64.15% respectively. In contrast, exposure to 0.4% and 0.8%(w/v) reduced the number of haemocytes to 37.02% and 51.04% respectively. In term of phagocytic activity, the proportion of phagocytosing cells were 47.62% in control group, and in 0.1% and 0.2% (w/v) M. jalapa treatment group the proportion decreased to 28% and 26.88% respectively. In the concentration of 0.4% and 0.8%, phagocytic activity did not occur. Addition of biological agents Bt (LC50 concentration) to see mortality 3 hours after M. jalapa application did not show significant differences. S. litura mortality rate were found only 50%; this suggests that the combination of M. jalapa and Bt biopesticides in 3-hour intervals within 24 hours showed no increase in mortality.

  11. Biological agents as occupational hazards - selected issues.

    PubMed

    Dutkiewicz, Jacek; Cisak, Ewa; Sroka, Jacek; Wójcik-Fatla, Angelina; Zając, Violetta

    2011-01-01

    There are two main groups of biological agents regarded as occupational hazards: allergenic and/or toxic agents forming bioaerosols, and agents causing zoonoses and other infectious diseases. Bioaerosols occurring in the agricultural work environments comprise: bacteria, fungi, high molecular polymers produced by bacteria (endotoxin) or by fungi (β-glucans), low molecular secondary metabolites of fungi (mycotoxins, volatile organic compounds) and various particles of plant and animal origin. All these agents could be a cause of allergic and/or immunotoxic occupational diseases of respiratory organ (airways inflammation, rhinitis, toxic pneumonitis, hypersensitivity pneumonitis and asthma), conjunctivitis and dermatitis in exposed workers. Very important among zoonotic agents causing occupational diseases are those causing tick-borne diseases: Lyme borreliosis, anaplasmosis, babesiosis, bartonellosis. Agricultural workers in tropical zones are exposed to mosquito bites causing malaria, the most prevalent vector-borne disease in the world. The group of agents causing other, basically not vector-borne zoonoses, comprises those evoking emerging or re-emerging diseases of global concern, such as: hantaviral diseases, avian and swine influenza, Q fever, leptospiroses, staphylococcal diseases caused by the methicillin-resistant Staphylococcus aureus (MRSA) strains, and diseases caused by parasitic protozoa. Among other infectious, non-zoonotic agents, the greatest hazard for health care workers pose the blood-borne human hepatitis and immunodeficiency viruses (HBV, HCV, HIV). Of interest are also bacteria causing legionellosis in people occupationally exposed to droplet aerosols, mainly from warm water. PMID:22216801

  12. Riot Control Agents

    MedlinePlus

    ... your clothing, rapidly wash your entire body with soap and water, and get medical care as quickly ... agent from your skin with large amounts of soap and water. Washing with soap and water will ...

  13. Integrated Biological Control

    SciTech Connect

    JOHNSON, A.R.

    2002-09-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  14. Integrated Biological Control

    SciTech Connect

    JOHNSON, A.R.

    2003-10-09

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects, and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (a priori) or in response to existing contamination spread (a posteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and a priori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, a posteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  15. Detection and Quantification of Plectosphaerella cucumerina, a Potential Biological Control Agent of Potato Cyst Nematodes, by Using Conventional PCR, Real-Time PCR, Selective Media, and Baiting

    PubMed Central

    Atkins, S. D.; Clark, I. M.; Sosnowska, D.; Hirsch, P. R.; Kerry, B. R.

    2003-01-01

    Potato cyst nematodes (PCN) are serious pests in commercial potato production, causing yield losses valued at approximately $300 million in the European Community. The nematophagous fungus Plectosphaerella cucumerina has demonstrated its potential as a biological control agent against PCN populations by reducing field populations by up to 60% in trials. The use of biological control agents in the field requires the development of specific techniques to monitor the release, population size, spread or decline, and pathogenicity against its host. A range of methods have therefore been developed to monitor P. cucumerina. A species-specific PCR primer set (PcCF1-PcCR1) was designed that was able to detect the presence of P. cucumerina in soil, root, and nematode samples. PCR was combined with a bait method to identify P. cucumerina from infected nematode eggs, confirming the parasitic ability of the fungus. A selective medium was adapted to isolate the fungus from root and soil samples and was used to quantify the fungus from field sites. A second P. cucumerina-specific primer set (PcRTF1-PcRTR1) and a Taqman probe (PcRTP1) were designed for real-time PCR quantification of the fungus and provided a very sensitive means of detecting the fungus from soil. PCR, bait, and culture methods were combined to investigate the presence and abundance of P. cucumerina from two field sites in the United Kingdom where PCN populations were naturally declining. All methods enabled differences in the activity of P. cucumerina to be detected, and the results demonstrated the importance of using a combination of methods to investigate population size and activity of fungi. PMID:12902272

  16. Optimizing Nesidiocoris tenuis (Hemiptera: Miridae) as a biological control agent: mathematical models for predicting its development as a function of temperature.

    PubMed

    Martínez-García, Héctor; Román-Fernández, Luis R; Sáenz-Romo, María G; Pérez-Moreno, Ignacio; Marco-Mancebón, Vicente S

    2016-04-01

    For optimal application of Nesidiocoris tenuis as a biological control agent, adequate field management and programmed mass rearing are essential. Mathematical models are useful tools for predicting the temperature-dependent developmental rate of the predator. In this study, the linear model and nonlinear models Logan type III, Lactin and Brière were estimated at constant temperatures and validated at alternating temperatures and under field conditions. N. tenuis achieved complete development from egg to adult at constant temperatures between 15 and 35°C with high survivorship (>80%) in the range 18-32°C. The total developmental time decreased from a maximum at 15°C (76.74 d) to a minimum at 33°C (12.67 d) and after that, increased to 35°C (13.98 d). Linear and nonlinear developmental models all had high accuracy (R a 2 >0.86). The maximum developmental rate was obtained between 31.9°C (Logan type III and Brière model for N1) and 35.6°C (for the egg stage in the Brière model). Optimal survival and the highest developmental rate fell within the range 27-30°C. The field validation revealed that the Logan type III and Lactin models offered the best predictions (95.0 and 94.5%, respectively). The data obtained on developmental time and mortality at different temperatures are useful for mass rearing this predator, and the developmental models are valuable for using N. tenuis as a biological control agent. PMID:26700327

  17. Production, Quality Control and Biological Evaluation of 166Ho-PDTMP as a Possible Bone Palliation Agent

    PubMed Central

    Zolghadri, Samaneh; Jalilian, Amir Reza; Naseri, Zohreh; Yousefnia, Hassan; Bahrami-Samani, Ali; Ghannadi-Maragheh, Mohammad; Afarideh, Hossein

    2013-01-01

    Objective(s): In this study, 166Ho-1,2-propylene di-amino tetra(methy1enephosphonicAcid) (166Ho-PDTMP) complex was prepared as a bone palliation agent. Materials and Methods: The complex was successfully prepared using an in-house synthesized EDTMP ligand and 166HoCl3. Ho-166 chloride was obtained by thermal neutron irradiation (1 × 1013 n.cm-2.s-1) of natural Ho(NO3)3 samples followed by radiolabeling and stability studies. Biodistribution in wild type rats was also peformed. Results: The complex was prepared with the specific activity of 278 GBq/mg and high radiochemical purity (>99%, checked by ITLC). 166Ho-PDTMP complex was stabilized in the final preparation and in the presence of human serum (>90%) up to 72 hr. The biodistribution of 166Ho-PDTMP in wild-type rats demonstrated significant bone uptake was up to 48 hr compared to 166HoCl3. Conclusion: The produced 166Ho-PDTMP properties suggest a possible new bone palliative therapeutic to overcome the metastatic bone pains. PMID:23826495

  18. Evidence of establishment of Bagous hydrillae Coleoptera: Curculionidae), a biological control agent of Hydrilla verticillata (Hydrocharitales: Hydirocharitaceae) in North America?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The semi-aquatic weevil Bagous hydrillae was released during 1991-1996 at 19 sites in four states in attempts to control the aquatic weed hydrilla, Hydrilla verticillata. Fourteen of the sites were in Florida, two each in Texas and Georgia and one site in Alabama. Over 320,000 adult weevils were i...

  19. Diapause in the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent for tamarisk (Tamarix spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tamarisk leaf beetle Diorhabda elongata Brulle deserticola Chen was collected in Northwestern China and has been released in the Western U.S. to control tamarisk (Tamarix spp.). Characteristics of diapause and reproductive development in D. elongata were examined to improve management as a bioc...

  20. Biological Control of Pseudomonas syringae pv. syringae, the Causal Agent of Basal Kernel Blight of Barley, by Antagonistic Pantoea agglomerans.

    PubMed

    Braun-Kiewnick, A; Jacobsen, B J; Sands, D C

    2000-04-01

    ABSTRACT Strains of Pantoea agglomerans (synanamorph Erwinia herbicola) suppressed the development of basal kernel blight of barley, caused by Pseudomonas syringae pv. syringae, when applied to heads prior to the Pseudomonas syringae pv. syringae infection window at the soft dough stage of kernel development. Field experiments in 1994 and 1995 revealed 45 to 74% kernel blight disease reduction, whereas glasshouse studies resulted in 50 to 100% disease control depending on the isolate used and barley cultivar screened. The efficacy of biocontrol strains was affected by time and rate of application. Percentage of kernels infected decreased significantly when P. agglomerans was applied before pathogen inoculation, but not when coinoculated. A single P. agglomerans application 3 days prior to the pathogen inoculation was sufficient to provide control since populations of about 10(7) CFU per kernel were established consistently, while Pseudomonas syringae pv. syringae populations dropped 100-fold to 2.0 x 10(4) CFU per kernel. An application to the flag leaf at EC 49 (before heading) also reduced kernel infection percentages significantly. Basal blight decreased with increasing concentrations (10(3) to 10(7) CFU/ml) of P. agglomerans, with 10(7) CFU/ml providing the best control. For long-term preservation and marketability, the survival of bacterial antagonists in several wettable powder formulations was tested. Over all formulations tested, the survival declined between 10- to >100-fold over a period of 1.5 years (r = -0.7; P = 0.000). Although not significant, storage of most formulations at 4 degrees C was better for viability (90 to 93% survival) than was storage at 22 degrees C (73 to 79%). However, long-term preservation had no adverse effect on biocontrol efficacy. PMID:18944586

  1. Nematophagous fungi as a biological control agent for nematode parasites of small ruminants in Malaysia: a special emphasis on Duddingtonia flagrans.

    PubMed

    Chandrawathani, Panchacharam; Jamnah, Omar; Waller, Peter John; Höglund, Johan; Larsen, Michael; Zahari, Wan Mohammed

    2002-01-01

    Approximately 2,800 fresh dung samples from animals, mainly ruminant livestock, were screened for the presence of nematophagous fungi in Malaysia. Arthrobotrys spp. was noted on numerous occasions, but only one isolate of Duddingtonia flagrans was made. For the purposes of producing sufficient quantities of this fungus for feeding trials in sheep, various, commonly available, cheap plant materials were tested as possible growth substrates. This showed that cereal grains (wheat, millet and rice) were the best media for fungal growth. Pen feeding trials were carried out using sheep, both naturally and experimentally infected with nematode parasites (predominantely Haemonchus contortus), to test the efficiency of D. flagrans when administered either in a grain supplement, or incorporated into a feed block. These showed that the fungus survived gut passage in sheep and that dose rates of approximately 1 x 10(6) D. flagrans spores / animal / day, reduced the percentage of infective larvae developing in faecal cultures by more than 90%. These results indicate that using D. flagrans as a biological control agent of nematode parasites, is a promising alternative to nematode parasite control of small ruminants in Malaysia, where anthelmintic resistance is now a major problem. PMID:12498569

  2. Babybot: a biologically inspired developing robotic agent

    NASA Astrophysics Data System (ADS)

    Metta, Giorgio; Panerai, Francesco M.; Sandini, Giulio

    2000-10-01

    The study of development, either artificial or biological, can highlight the mechanisms underlying learning and adaptive behavior. We shall argue whether developmental studies might provide a different and potentially interesting perspective either on how to build an artificial adaptive agent, or on understanding how the brain solves sensory, motor, and cognitive tasks. It is our opinion that the acquisition of the proper behavior might indeed be facilitated because within an ecological context, the agent, its adaptive structure and the environment dynamically interact thus constraining the otherwise difficult learning problem. In very general terms we shall describe the proposed approach and supporting biological related facts. In order to further analyze these aspects from the modeling point of view, we shall demonstrate how a twelve degrees of freedom baby humanoid robot acquires orienting and reaching behaviors, and what advantages the proposed framework might offer. In particular, the experimental setup consists of five degrees-of-freedom (dof) robot head, and an off-the-shelf six dof robot manipulator, both mounted on a rotating base: i.e. the torso. From the sensory point of view, the robot is equipped with two space-variant cameras, an inertial sensor simulating the vestibular system, and proprioceptive information through motor encoders. The biological parallel is exploited at many implementation levels. It is worth mentioning, for example, the space- variant eyes, exploiting foveal and peripheral vision in a single arrangement, the inertial sensor providing efficient image stabilization (vestibulo-ocular reflex).

  3. Insecticides and Biological Control

    ERIC Educational Resources Information Center

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  4. Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum

    PubMed Central

    Chandrasekaran, Murugesan; Subramanian, Dharaneedharan; Yoon, Ee; Kwon, Taehoon; Chun, Se-Chul

    2016-01-01

    Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from −2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression. PMID:27298597

  5. Using phospholipid fatty acid technique to study short-term effects of the biological control agent Pseudomonas fluorescens DR54 on the microbial microbiota in barley rhizosphere.

    PubMed

    Johansen, A; Olsson, S

    2005-02-01

    The biological control agent (BCA) Pseudomonas fluorescens DR54 was applied to seeds (experiment 1) or roots (experiment 2) of barley growing in microcosms, while noninoculated plants served as controls. The fate of the BCA and its effects on the rhizosphere microbial community was evaluated in microcosms destructively sampled at days 2, 4, 6, and 9 after inoculation. In both experiments the number of P. fluorescens DR54 cells decreased immediately after application as enumerated by immunostaining and microscope direct counting. Substrate-induced respiration (SIR) was taken as a measurement of the active microbial biomass, while indicators of the total microbiota (and main taxonomic groups) were obtained using the phospholipid fatty acid (PLFA) technique. In experiment 1, these parameters were unaffected by the relatively small number of BCA cells applied, whereas in experiment 2, the larger BCA input resulted in an enhanced level of both SIR and PLFAs from Gram-negative bacteria (which included the BCA itself). However, at day 9 after inoculation, treatments with P. fluorescens DR54 and controls were similar in all measured parameters in both experiments. This was also illustrated very clearly by principal component analysis of the PLFA data, which in both experiments were able to discriminate between treatments in the first days after BCA inoculation, thus confirming the sensitivity of this method. Laccase activity has a potential as an indicator of fungal stress, e.g., when challenged with an antifungal BCA. This seemed to be supported in experiment 2, where the activity of this enzyme was enhanced four-fold in the BCA treatment at day 2. Our study shows that under the present conditions, P. fluorescens DR54 disappears from the soil and causes only transient effects on the soil microbiota. It also shows that the PLFA technique is a sensitive and reliable monitoring tool in in situ assessment of BCA nontarget effect on indigenous microorganisms in soil. PMID

  6. Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum.

    PubMed

    Chandrasekaran, Murugesan; Subramanian, Dharaneedharan; Yoon, Ee; Kwon, Taehoon; Chun, Se-Chul

    2016-06-01

    Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from -2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression. PMID:27298597

  7. Prediction of the geographic distribution of the psyllid, Arytinnis hakani (Hemoptera, Psyllidae), a prospective biological control agent of Genista monspessulana, based on the effect of temperature on development, fecundity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The psyllid, Arytinnis hakani, is a prospective biological control agent of Genista monspessulana (French broom), an invasive shrub originating from western Europe. It is a multivoltine species that is not known to diapause. The insect is established in Australia, where it appears to cause heavy d...

  8. Pre-release efficacy assessment of the leaf-mining moth Digitivalva delaireae (Lepidoptera: Glyphipterigidae), a potential biological control agent for Cape-ivy, Delairea odorata (Asteraceae), in western North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leaf-mining moth Digitivalva delaireae Gaedike & Kruger (Lepidoptera: Glyphipterigidae) is a potential biological control agent for the invasive vine Cape-ivy, Delairea odorata Lemaire (Asteraceae), in western North America, where two morphological varieties (stipulate and exstipulate) of Cape-i...

  9. Mass-rearing of the stem-galling wasp Tetramesa romana, a biological control agent of the invasive weed Arundo donax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass-rearing is not often used in biological weed control, despite the wealth of biological information available for insects that have been approved for field release, the utility of the inundative release approach using large numbers of insects to maximize establishment and impact, and the critica...

  10. Molecular characterization of Gonatocerus tuberculifemur (Ogloblin) (Hymenoptera: Mymaridae), a prospective Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) biological control candidate agent from South America:

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We genetically characterized the prospective South American egg parasitoid candidate, Gonatocerus tuberculifemur, of the glassy-winged sharsphooter (GWSS), Homalodisca vitripennis, for a neoclassical biological control program in California. Two molecular methods, inter-simple sequence repeat-polym...

  11. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential

    PubMed Central

    Chen, Z. X.; Dickson, D. W.

    1998-01-01

    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years. PMID:19274225

  12. Commercializing Biological Control

    ERIC Educational Resources Information Center

    LeLeu, K. L.; Young, M. A.

    1973-01-01

    Describes the only commercial establishment involved in biological control in Australia. The wasp Aphitis melinus, which parasitizes the insect Red Scale, is bred in large numbers and released in the citrus groves where Red Scale is causing damage to the fruit. (JR)

  13. Fundamental host range of Pseudophilothrips ichini s.l. (Thysanoptera: Phlaeothripidae): a candidate biological control agent of Schinus terebinthifolius (Sapindales: Anacardiaceae) in the United States.

    PubMed

    Cuda, J P; Medal, J C; Gillmore, J L; Habeck, D H; Pedrosa-Macedo, J H

    2009-12-01

    Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae) is a non-native perennial woody plant that is one of the most invasive weeds in Florida, Hawaii, and more recently California and Texas. This plant was introduced into Florida from South America as a landscape ornamental in the late 19th century, eventually escaped cultivation, and now dominates entire ecosystems in south-central Florida. Recent DNA studies have confirmed two separate introductions of S. terebinthifolius in Florida, and there is evidence of hybridization. A thrips, Pseudophilothrips ichini s.l. (Hood) (Thysanoptera: Phlaeothripidae), is commonly found attacking shoots and flowers of S. terebinthifolius in Brazil. Immatures and occasionally adults form large aggregations on young terminal growth (stems and leaves) of the plant. Feeding damage by P. ichini s.l. frequently kills new shoots, which reduces vigor and restricts growth of S. terebinthifolius. Greenhouse and laboratory host range tests with 46 plant species in 18 families and 10 orders were conducted in Paraná, Brazil, and Florida. Results of no-choice, paired-choice, and multiple-choice tests indicated that P. ichini s.l. is capable of reproducing only on S. terebinthifolius and possibly Schinus molle L., an ornamental introduced into California from Peru that has escaped cultivation and is considered invasive. Our results showed that P. ichini s.l. posed minimal risk to mature S. molle plants or the Florida native Metopium toxiferum L. Krug and Urb. In May 2007, the federal interagency Technical Advisory Group for Biological Control Agents of Weeds (TAG) concluded P. ichini s.l. was sufficiently host specific to recommend its release from quarantine. PMID:20021760

  14. Effects of temperature on survival, development, longevity, and fecundity of Ophraella communa (Coleoptera: Chrysomelidae), a potential biological control agent against Ambrosia artemisiifolia (Asterales: Asteraceae).

    PubMed

    Zhou, Zhong-Shi; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao

    2010-06-01

    Ophraella communa (Coleoptera: Chrysomelidae) is a leaf beetle that is unintentionally introduced in China. It is a potential biological control agent against common ragweed, Ambrosia artemisiifolia (Asterales: Asteraceae). The effects of temperature on the development and fecundity of O. communa were studied at eight constant temperature regimens (15, 20, 22, 25, 28, 30, 32, 36 degrees C) in the laboratory. The results showed that the developmental periods for egg, larva, pupa, and entire immature stages decreased in response to the increasing temperature, with the exception of 30 degrees C. The survival rates at different developmental stages were higher at 25 and 28 degrees C than at other temperatures. Ovipositional period and longevity of female shortened with the increasing temperature. The highest fecundity of female was observed to be 2,712.3 eggs/female at 28 degrees C. Life table of O. communa was constructed based on the data at 20-32 degrees C. The innate capacity for increase (r(m)), the net reproductive rate (R(0)), and the finite rate of increase (lambda) reached the maximum at 28 degrees C, with values of 0.247, 1,773.0, and 1.280, respectively. The shortest period of a generation (T) was 24.6 d at 32 degrees C, whereas the longest T value was recorded as 79.3 d at 20 degrees C. These results offer valuable insight on the establishment potential of O. communa in new environments with diverse temperature regimens and on its mass-rearing techniques in laboratory. PMID:20550818

  15. Biological agents in management of osteoporosis.

    PubMed

    Tella, Sri Harsha; Gallagher, J Christopher

    2014-11-01

    Osteoporosis is a skeletal disease associated with an imbalance between formation and resorption, leading to net loss of bone mass, loss of bone microarchitecture, and development of fractures. Bone resorption is primarily due to an activation of osteoclastogenesis and an increase in receptor activator of nuclear factor kappa-B ligand (RANKL) expression, a cytokine involved in the final pathway of the osteoclast cycle.Recent studies of genetic diseases led to the discovery of the wingless-type (Wnt) signaling pathway that plays a major role in bone formation. Further work showed that sclerostin produced by osteocytes and the Dickkopf (DKK1) protein secreted in bone were negative regulators of the Wnt signaling bone formation pathway that act directly by binding to the co-receptors LRP5 and LRP6 of WnT and thereby inhibiting the anabolic Wnt pathway. This understanding of the bone remodeling led to the discovery of new biological drugs that target these pathways and have been evaluated in clinical trials.The current article discusses the role of these newer "biological" agents in management of osteoporosis. Denosumab, a human monoclonal antibody that specifically binds RANKL, blocks the binding of RANK to its ligand markedly reducing bone resorption, increases bone density, and reduces fractures and is approved for osteoporosis. Parathyroid hormone PTH 1-34 (teriparatide) stimulates bone formation through inhibition of sclerostin, DKK1, and frizzled protein; increases BMD; improves microarchitecture; and decreases fractures and is approved for osteoporosis. The anti-sclerostin antibodies (romosozumab, blosozumab) increase bone mass by neutralizing the negative effects of sclerostin on the Wnt signaling pathway. These biologics are being evaluated now in a clinical trial and early data looks promising. Cathepsin K is a proteolytic enzyme that degrades bone matrix and inhibitors such as odanacatib show increasing bone density and perhaps decreased fractures. The

  16. Preliminary evaluation of the parasitoid wasp, Collyria catoptron, as a potential biological control agent against the wheat stem sawfly, Cephus cinctus, in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wheat stem sawfly, Cephus cinctus (Hymenoptera:Cephidae) is the major pest of wheat in the northern Great Plains of North America. The development of management tools, such as biological control, to complement traditional resistance breeding approaches will be critical to the successful control ...

  17. Molecular comparison of cattle fever ticks from native and introduced ranges with insights into optimal search areas for classical biological control agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical biological control using specialist parasitoids, predators and/or nematodes from the native ranges of cattle fever ticks could complement existing control strategies for this livestock pest in the transboundary region between Mexico and Texas. DNA fingerprinting tools were used to compare ...

  18. Management of plant pathogens and pests using microbial biological control agents. In: Trigiano, R.N. and Ownley, B.H., editors. Plant Pathology Concepts and Laboratory Exercises

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All parts of plants face continual attack by plant pathogens and insects. Some insects are vectors of pathogens. Plant pests can be controlled by a variety of methods including application of pesticides but one of the most stainable and environmentally friendly approaches is biological control. Mic...

  19. Spatial occurrence and hatch of field eggs of the tadpole shrimp Triops newberryi (Notostraca: Triopsidae), a potential biological control agent of immature mosquitoes.

    PubMed

    Su, Tianyun; Mulla, Mir S

    2002-06-01

    The tadpole shrimp (TPS), Triops newberryi (Packard) (Notostraca: Triopsidae) is a potential biological control agent for immature mosquitoes breeding in ephemeral habitats. The occurrence of TPS eggs in soil and their hatch were investigated in 11 flood-irrigated date gardens in the Coachella Valley of southern California in 1999. Each garden was sampled several times after the rows were recently irrigated. All these date gardens harbored from very few to a large number of eggs in the soil. Overall, the average density of total eggs on ranches with clay loam soil was significantly higher than that on ranches with silt loam soil. The average densities of total eggs were significantly lower on the ranches that were disked compared to those on the ranches that were undisked before sampling. Two types of eggs were found and designated as "fresh" (yellowish to brownish) and "old" (blackish) eggs. This is the first time that these dimorphic eggs have been reported. The density of fresh eggs was lower than that of old eggs in most soil samples. The date gardens with high egg densities were sampled for determination of vertical occurrence, where soil was sampled up to 38.5 cm deep. Fresh eggs were recovered from soil in depths up to 25.6 cm, but the densities progressively declined with depth. The old eggs, however, were recovered from all soil depths studied, and there was no obvious relationship between soil depth and their density. This pattern of vertical occurrence of TPS eggs is the result of frequent disking for weed control and fruit harvest. Hatch of TPS eggs in surface soil samples ranged from 0 to 7.2 per 100 g dried soil. Hatch of viable eggs had an inverse relationship with soil depth. No TPS hatched out from the soil samples taken deeper than 15.4 cm. Fresh and old eggs distinguished by color were subjected to hatching tests. Fresh eggs exhibited high hatch, with hatching rates of 35.5-45.0% and 40.2-60.3% for the 1st and 1st plus the 2nd hydrations

  20. Biomaterials for mediation of chemical and biological warfare agents.

    PubMed

    Russell, Alan J; Berberich, Jason A; Drevon, Geraldine F; Koepsel, Richard R

    2003-01-01

    Recent events have emphasized the threat from chemical and biological warfare agents. Within the efforts to counter this threat, the biocatalytic destruction and sensing of chemical and biological weapons has become an important area of focus. The specificity and high catalytic rates of biological catalysts make them appropriate for decommissioning nerve agent stockpiles, counteracting nerve agent attacks, and remediation of organophosphate spills. A number of materials have been prepared containing enzymes for the destruction of and protection against organophosphate nerve agents and biological warfare agents. This review discusses the major chemical and biological warfare agents, decontamination methods, and biomaterials that have potential for the preparation of decontamination wipes, gas filters, column packings, protective wear, and self-decontaminating paints and coatings. PMID:12704086

  1. MODELING AND BIOLOGICAL CONTROL OF MOSQUITOES

    PubMed Central

    Lord, Cynthia C.

    2009-01-01

    Models can be useful at many different levels when considering complex issues such as biological control of mosquitoes. At an early stage, exploratory models are valuable in exploring the characteristics of an ideal biological control agent and for guidance in data collection. When more data are available, models can be used to explore alternative control strategies and the likelihood of success. There are few modeling studies that explicitly consider biological control in mosquitoes; however, there have been many theoretical studies of biological control in other insect systems and of mosquitoes and mosquito-borne diseases in general. Examples are used here to illustrate important aspects of designing, using and interpreting models. The stability properties of a model are valuable in assessing the potential of a biological control agent, but may not be relevant to a mosquito population with frequent environmental perturbations. The time scale and goal of proposed control strategies are important considerations when analyzing a model. The underlying biology of the mosquito host and the biological control agent must be carefully considered when deciding what to include in a model. Factors such as density dependent population growth in the host, the searching efficiency and aggregation of a natural enemy, and the resource base of both have been shown to influence the stability and dynamics of the interaction. Including existing mosquito control practices into a model is useful if biological control is proposed for locations with current insecticidal control. The development of Integrated Pest Management (IPM) strategies can be enhanced using modeling techniques, as a wide variety of options can be simulated and examined. Models can also be valuable in comparing alternate routes of disease transmission and to investigate the level of control needed to reduce transmission. PMID:17853610

  2. Open-field host specificity test of Gratiana boliviana (Coleoptera:Chrysomelidae), a biological control agent of Tropical Soda Apple (Solanaceae) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An open-field experiment was conducted to asses the suitability of the South American leaf feeding beetle Gratiana boliviana Spaeth for biological control of Solanum viarum Dunal in the USA. An open-field test with eggplant, Solanum melongena L., was conducted on the campus of the University of Buen...

  3. F1 Sterile insect technique: a novel approach for risk assessment of Episimus unguiculus (Lepidoptera: Tortricidae), a candidate biological control agent of Schinus terebinthifolus in the Continental USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Federal regulations mandate that researchers in the field of classical weed biological control follow the precautionary principle when proposing the release of an organism that can affect our environment. However, the host range observed in traditional laboratory cage experiments typically is broad...

  4. Geographic distribution and regional impacts of Oxyops vitiosa (Coleoptera: Curculionidae) and Boreioglycaspis melaleucae (Hemiptera: Psyllidae), biological control agents of the invasive tree Melaleuca quinquenervia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive tree Melaleuca quinquenervia (Cav.) Blake is widely distributed throughout peninsular Florida, USA and poses a significant threat to species diversity in the wetland systems of the Everglades. Mitigation of this threat includes the areawide release campaign of the biological control age...

  5. The interactions of Tropical soda apple mosaic tobamovirus and Gratiana boliviana (Coleoptera: Chrysomelidae), an introduced biological control agent of tropical soda apple (Solanum viarum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soda apple (Solanum viarum Dunal (Solanaceae) (TSA) is a South American invasive plant of rangelands, pastures and natural areas in Florida. A chrysomelid beetle from South America, Gratiana boliviana Spaeth, has been released at >300 locations in Florida for biological control of TSA since...

  6. Establishment, population increase, spread, and ecological host range of Lophodiplosis trifida (Diptera: Cecidomyiidae), a biological control agent of the invasive tree Melaleuca quinquenervia (Myrtales:Myrtaceae).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Australian tree Melaleuca quinquenervia (Cav.) Blake is an invasive weed in wetland systems of Florida, USA. A biological control program targeting M. quinquenervia has culminated in the release of the gall forming midge Lophodiplosis trifida Gagné (Cecidomyiidae). Populations of the introduced ...

  7. Effect of nitrogen fertilization on growth of Arundo donax and on rearing of a biological control agent, the shoot gall-forming wasp Tetramesa romana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen augmentation often leads to increased feeding and/or reproduction by herbivorous insects, but little is known about the effects on insects that gall grasses. The shoot tip-galling wasp Tetramesa romana has been released for biological control of the giant grass arundo (Arundo donax) in the...

  8. Effect of water deficit on generation time and reproduction of the gall wasp, Tetramesa romana, a biological control agent of giant reed (Arundo donax)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water deficit stress can reduce the reproductive performance of galling insects, but its effects on a galling insect introduced for biological control of a perennial grass weed have not previously been examined. The effects of water deficit were examined for the wasp Tetramesa romana Walker (Hymeno...

  9. The interactions of Tropical soda apple mosaic tobamovirus and Gratiana boliviana (Coleoptera: Chrysomelidae), an introduced biological control agent of tropical soda apple (Solanum viarum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soda apple (Solanum viarum Dunal (Solanaceae) (TSA) is a South American invasive plant of rangelands, pastures and natural areas in Florida. A chrysomelid beetle from South America, Gratiana boliviana Spaeth, has been released at >300 locations in Florida for biological control of TSA sinc...

  10. Best linear unbiased prediction of host range of the facultative parasite Colletotrichum gloeosporioides f. sp. salsolae, a potential biological control agent of Russian thistle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tumbleweed or Russian thistle (Salsola tragus L.) is an introduced invasive weed in N. America. It is widely distributed in the U.S. and is a target of biological control efforts. The facultative parasitic fungus Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. in Penz. f. sp. salsolae is a po...

  11. Regarding the role of new host associations in the success of Cactoblastis cactorum as both a biological control agent and invasive species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A key theoretical basis for using classic biological control against invasive alien species (IAS) has been the enemy release hypothesis (ERH), which suggests that the increased vigor and invasiveness of IAS in the introduced range is strongly influenced by their release from co-evolved natural enemi...

  12. Releases, distribution and abundance of Gratiana boliviana (Coleoptera:Chrysomelidae), a biological control agent of tropical soda apple (Solanum viarum, Solanaceae), in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A biological control program against tropical soda apple (TSA) (Solanum viarum Dunal (Solanaceae)) released 176,643 Gratiana boliviana Spaeth (Coleoptera: Chrysomelidae) in Florida from 2003 to 2008. The spatial distribution of releases was clustered with more beetles released in south/central Flor...

  13. Challenges to obtaining APHIS approval to release classical biological control agents of weeds: the case of the yellow starthistle rosette weevil (Ceratapion basicorne)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The safety and effectiveness of classical biological control of weeds depends on the discovery and evaluation of species of arthropods that are highly host specific. Host specificity is typically evaluated using a combination of no-choice, choice and field experiments. The Technical Advisory Group...

  14. Laboratory host range testing of Neomusotima conspurcatalis (Lepidoptera: Crambidae) - a potential biological control agent of the invasive weed, Old World climbing fern, Lygodium microphyllum (Lygodiaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Old World climbing fern, Lygodium microphyllum, is a serious invasive weed in south Florida. Development of biological control is vital for sustainable management of L. microphyllum. Neomusotima conspurcatalis was discovered in Hong Kong in 1997 and was subsequently found causing feeding damage on L...

  15. Colletotrichum gloeosporioides, causing anthracnose of mile-a-minute (Persicaria perfoliata) in Turkey, is a potential biological control agent of this weed in the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mile-a-minute (Persicaria perfoliata (L.) H. Gross; family Polygonaceae) is an exotic annual barbed vine that has invaded the northeastern USA, Mississippi, and Oregon. In July of 2010, in a search for potential biological control pathogens, diseased P. perfoliata plants were found along the Firtina...

  16. Ecological Compatibility of GM Crops and Biological Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-resistant and herbicide-tolerant genetically modified (GM) crops pervade many modern cropping systems, and present challenges and opportunities for developing biologically-based pest management programs. Interactions between biological control agents (insect predators, parasitoids, and pathog...

  17. Biologic agents-a panacea for inflammatory arthritis or not?

    PubMed

    Ninan, J; Smith, Malcolm D; Dugar, M; O'Brien, Karen; Ahern, Michael

    2009-01-01

    Aim. To describe the retention rates for biological therapies in patients with rheumatoid arthritis (RA), psoriatic arthritis (PsA), and ankylosing spondylitis (AS) in a clinical setting. Methods. All patients managed in a dedicated biological therapy clinic in a teaching hospital in Australia were assessed for continuation on biological treatments and reasons for switching to an alternative biological agent or cessation of treatment. Results. There was a lower retention rate for RA patients on biological therapies compared to PsA and AS patients and the retention rate for RA patients was lower than that reported in RCTs. Conclusions. The retention rate on biological therapies for RA patients was lower in the clinic setting than what is reported in RCTs. The reasons for the lower retention rate in the clinical setting are discussed but no clear determinants for nonresponse to biological agents were identifiable. These agents have very limited steroid sparing effects. PMID:20130798

  18. Susceptibility of the leaf-eating beetle, Galerucella calmariensis, a biological control agent for purple loosestrife (Lythrum salcaria), to three mosquito control larvicides

    USGS Publications Warehouse

    Lowe, T.P.; Hershberger, T.D.

    2004-01-01

    We evaluated the susceptibility of Galerucella calmariensis, a species used to control purple loosestrife (Lythrum salicaria), to three mosquito control larvicides. Larvae and adults were fed loosestrife cuttings dipped in Abate? (3.75 g?L-1) was reduced significantly and survival was significantly lower among larvae and adults eating cuttings dipped in Abate (>0.17 g?L-1 and >2.27 g?L-1, respectively). Hatching success of eggs dipped in Altosid (>2.52 g?L-1) was reduced significantly. With exposure to Altosid, larval survival to pupation and adult emergence was reduced significantly at concentrations of >2.92 g?L-1 and >0.63 g?L-1, respectively. Altosid (>0.23 g?L-1) also delayed the onset of pupation and adult emergence among larvae that survived to pupate. Larvae that survived with exposure to Altosid (>1.72 g?L-1) grew to 70% larger than those exposed to lower concentrations. Pupal survival was unaffected with exposure to Abate and Altosid and adult survival was unaffected with exposure to Altosid. Bacillus thuringiensis var israeliensis did not adversely affect any life stage of G. calmariensis. The mean Abate concentration on cuttings exposed to operational spraying was in the range that reduced egg hatchability and adult survival but was higher than concentrations that caused complete mortality of larvae. The mean Altosid concentration on cuttings exposed to operational spraying was in the range that reduced hatching success in eggs and delayed pupation and adult emergence of larvae.

  19. SURVIVABILITY OF BIOLOGICAL WARFARE AGENTS IN MUNICIPAL SOLID WASTE LANDFILLS

    EPA Science Inventory

    To tests and provide a comprehensive, integrated list of survival rates of biological warfare agents' survival of landfill conditions.
    Research into the permanence of the final disposal contaminated building debris of the inactivated or active agent of terrorism is being exam...

  20. Utilizing the assassin bug, Pristhesancus plagipennis (Hemiptera: Reduviidae), as a biological control agent within an integrated pest management programme for Helicoverpa spp. (Lepidoptera: Noctuidae) and Creontiades spp. (Hemiptera: Miridae) in cotton.

    PubMed

    Grundy, P R

    2007-06-01

    Helicoverpa spp. and mirids, Creontiades spp., have been difficult to control biologically in cotton due to their unpredictable temporal abundance combined with a cropping environment often made hostile by frequent usage of broad spectrum insecticides. To address this problem, a range of new generation insecticides registered for use in cotton were tested for compatibility with the assassin bug, Pristhesancus plagipennis (Walker), a potential biological control agent for Helicoverpa spp. and Creontiades spp. Indoxacarb, pyriproxifen, buprofezin, spinosad and fipronil were found to be of low to moderate toxicity on P. plagipennis whilst emamectin benzoate, abamectin, diafenthiuron, imidacloprid and omethaote were moderate to highly toxic. Inundative releases of P. plagipennis integrated with insecticides identified as being of low toxicity were then tested and compared with treatments of P. plagipennis and the compatible insecticides used alone, conventionally sprayed usage practice and an untreated control during two field experiments in cotton. The biological control provided by P. plagipennis nymphs when combined with compatible insecticides provided significant (P<0.001) reductions in Helicoverpa and Creontiades spp. on cotton and provided equivalent yields to conventionally sprayed cotton with half of the synthetic insecticide input. Despite this, the utilization of P. plagipennis in cotton as part of an integrated pest management programme remains unlikely due to high inundative release costs relative to other control technologies such as insecticides and transgenic (Bt) cotton varieties. PMID:17524159

  1. Biological studies and field observations in Europe of Lasioptera donacis potential biological control agent of giant reed, Arundo donax, an invasive weed of the Rio Grande Basin of Texas and Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Giant reed, Arundo donax L. (Poaceae; Arundinoideae), is a clonal reed grass that is native from the western Mediterranean to India and invasive in North America and other arid temperate/subtropical parts of the world, including the Rio Grande Basin of Texas and Mexico. A biological control of gian...

  2. Comparison and analysis of biological agent category lists based on biosafety and biodefense.

    PubMed

    Tian, Deqiao; Zheng, Tao

    2014-01-01

    Biological agents pose a serious threat to human health, economic development, social stability and even national security. The classification of biological agents is a basic requirement for both biosafety and biodefense. We compared and analyzed the Biological Agent Laboratory Biosafety Category list and the defining criteria according to the World Health Organization (WHO), the National Institutes of Health (NIH), the European Union (EU) and China. We also compared and analyzed the Biological Agent Biodefense Category list and the defining criteria according to the Centers for Disease Control and Prevention (CDC) of the United States, the EU and Russia. The results show some inconsistencies among or between the two types of category lists and criteria. We suggest that the classification of biological agents based on laboratory biosafety should reduce the number of inconsistencies and contradictions. Developing countries should also produce lists of biological agents to direct their development of biodefense capabilities.To develop a suitable biological agent list should also strengthen international collaboration and cooperation. PMID:24979754

  3. Comparison and Analysis of Biological Agent Category Lists Based On Biosafety and Biodefense

    PubMed Central

    Tian, Deqiao; Zheng, Tao

    2014-01-01

    Biological agents pose a serious threat to human health, economic development, social stability and even national security. The classification of biological agents is a basic requirement for both biosafety and biodefense. We compared and analyzed the Biological Agent Laboratory Biosafety Category list and the defining criteria according to the World Health Organization (WHO), the National Institutes of Health (NIH), the European Union (EU) and China. We also compared and analyzed the Biological Agent Biodefense Category list and the defining criteria according to the Centers for Disease Control and Prevention (CDC) of the United States, the EU and Russia. The results show some inconsistencies among or between the two types of category lists and criteria. We suggest that the classification of biological agents based on laboratory biosafety should reduce the number of inconsistencies and contradictions. Developing countries should also produce lists of biological agents to direct their development of biodefense capabilities.To develop a suitable biological agent list should also strengthen international collaboration and cooperation. PMID:24979754

  4. Fluorescence cross section measurements of biological agent simulants

    SciTech Connect

    Stephens, J.R.

    1996-11-01

    Fluorescence is a powerful technique that has potential uses in detection and characterization of biological aerosols both in the battlefield and in civilian environments. Fluorescence techniques can be used with ultraviolet (UV) light detection and ranging (LIDAR) equipment to detect biological aerosol clouds at a distance, to provide early warning of a biological attack, and to track an potentially noxious cloud. Fluorescence can also be used for detection in a point sensor to monitor biological materials and to distinguish agents from benign aerosols. This work is part of a continuing program by the Army`s Chemical and Biological Defense Command to characterized the optical properties of biological agents. Reported here are ultraviolet fluorescence measurements of Bacillus megaterium and Bacillus Globigii aerosols suspended in an electrodynamic particle trap. Fluorescence spectra of a common atmospheric aerosol, pine pollen, are also presented.

  5. Solid-water detoxifying reagents for chemical and biological agents

    DOEpatents

    Hoffman, Dennis M.; Chiu, Ing Lap

    2006-04-18

    Formation of solid-water detoxifying reagents for chemical and biological agents. Solutions of detoxifying reagent for chemical and biological agents are coated using small quantities of hydrophobic nanoparticles by vigorous agitation or by aerosolization of the solution in the presence of the hydrophobic nanoparticles to form a solid powder. For example, when hydrophobic fumed silica particles are shaken in the presence of IN oxone solution in approximately a 95:5-weight ratio, a dry powder results. The hydrophobic silica forms a porous coating of insoluble fine particles around the solution. Since the chemical or biological agent tends to be hydrophobic on contact with the weakly encapsulated detoxifying solution, the porous coating breaks down and the detoxifying reagent is delivered directly to the chemical or biological agent for maximum concentration at the point of need. The solid-water (coated) detoxifying solutions can be blown into contaminated ventilation ducting or other difficult to reach sites for detoxification of pools of chemical or biological agent. Once the agent has been detoxified, it can be removed by flushing the area with air or other techniques.

  6. A decontamination study of simulated chemical and biological agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies air with an airflow rate of 5000l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  7. A decontamination study of simulated chemical and biological agents

    SciTech Connect

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies air with an airflow rate of 5000 l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3 min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  8. Biocontrol: Fungi as Nematode Control Agents

    PubMed Central

    Mankau, R.

    1980-01-01

    The fungal antagonists of nematodes consist of a great variety of organisms belonging to widely divergent orders and families of fungi. They include the nematode-trapping fungi, endoparasitic fungi, parasites of nematode eggs and cysts, and fungi which produce metabolites toxic to nematodes. The diversity, adaptations, and distribution of nematode-destroying fungi and taxonomic problems encountered in their study are reviewed. The importance of nemato-phagous fungi in soil biology, with special emphasis on their relationship to populations of plant-parasitic nematodes, is considered. While predacious fungi have long been investigated as possible biocontrol agents and have often exhibited spectacular results in vitro, their performance in field studies has generated little enthusiasm among nematologists. To date no species has demonstrated control of any plant pest to a degree achieved with nematicides, but recent studies have provided a much clearer concept of possibilities and problems in the applied use of fungal antagonists. The discovery of new species, which appear to control certain pests effectively under specific conditions, holds out some promise that fungi may be utilized as alternatives to chemical control after a more thorough and expanded study of their biology and ecology. PMID:19300699

  9. El control biologico de plagas(Biological control of pests)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work some ecological principles that drive applied biocontrol and agent selection are discussed. Subjects such as specificity evaluations, host shifts and species invasiveness are analyzed under the light of ecological theory. The main assertions are: 1. biological control is a safe and bene...

  10. An Exercise in Biological Control.

    ERIC Educational Resources Information Center

    Lennox, John; Duke, Michael

    1997-01-01

    Discusses the history of the use of pesticides and biological control. Introduces the concept of biological control as illustrated in the use of the entomopathogenic bacterium Bacillus thuringiensis and highlights laboratory demonstrations of Koch's postulates. Includes an exercise that offers the student and teacher several integrated learning…

  11. Parasitoids attacking larvae of a recently introduced weed biological control agent, Neomusotima conspurcatalis Warren (Lepidoptera: Crambidae): key to species, natural history, and integrative taxonomy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extent to which introduced weed biocontrol agents are subject to attack by generalist natural enemies within the area of introduction is believed to be an important determinant of program success. We monitored larval populations of a recently introduced weed biocontrol agent, Neomusotima conspur...

  12. Biological control of chestnut blight.

    PubMed

    Anagnostakis, S L

    1982-01-29

    After 77 years of being attacked by the chestnut blight fungus, American chestnut trees continue to sprout from gradually declining root systems. The blight fungus in Italy is now associated with virus-like agents that limit its pathogenicity, and attempts have been made to introduce these controlling agents into the blight fungus in the United States. If a way can be found to help the spread here of strains of the fungus with controlling agents, it may be possible to save the American chestnut trees in our eastern forests. PMID:17771259

  13. Open-field host specificity test of Gratiana boliviana (Coleoptera: Chrysomelidae), a biological control agent of tropical soda apple (Solanaceae) in the United States

    SciTech Connect

    Gandolfo, D.; McKay, F.; Medal, J.C.; Cuda, J.P.

    2007-03-15

    An open-field experiment was conducted to assess the suitability of the South American leaf feeding beetle Gratiana boliviana Spaeth for biological control of Solanum viarum Dunal in the USA. An open-field test with eggplant, Solanum melongena L., was conducted on the campus of the University of Buenos Aires, Argentina, and a S. viarum control plot was established 40 km from the campus. One hundred adult beetles were released in each plot at the beginning of the experiment during the vegetative stage of the plants, and forty additional beetles were released in the S. melongena plot at the flowering stage. All the plants in each plot were checked twice a week and the number of adults, immatures, and eggs recorded. Results showed almost a complete rejection of eggplant by G. boliviana. No noticeable feeding damage was ever recorded on eggplant. The experiment was ended when the eggplants started to senesce or were severely damaged by whiteflies and spider mites. The results of this open-field experiment corroborate previous quarantine/laboratory host-specificity tests indicating that a host range expansion of G. boliviana to include eggplant is highly unlikely. Gratiana boliviana was approved for field release in May 2003 in the USA. To date, no non-target effects have been observed either on eggplant or native species of Solanum. (author) [Spanish] Una prueba de campo fue conducida para evaluar la especificidad del escarabajo suramericano defoliador Gratiana boliviana Spaeth para control biologico de Solanum viarum Dunal en los Estados Unidos. La prueba con berenjena se realizo en el campo experimental de la Universidad de Buenos Aires, Argentina, y una parcela control con S. viarum fue establecida a 40 km. Cien escarabajos adultos fueron liberados en cada parcela al inicio del experimento durante la fase vegetativa, y cuarenta escarabajos adicionales fueron liberados en la parcela de berenjena durante la floracion. Todas las plantas en cada parcela fueron

  14. Field-cage evaluation of parasitism, development, and overwintering of two recently introduced biological control agents of the emerald ash borer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field-cages were used to evaluate the abilities of Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius agrili Yang (Hymenoptera: Braconidae), biocontrol agents of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), to parasitize, develop and overwinter following three late-sea...

  15. Morphology of the female reproductive system and physiological age-grading of Megamelus scutellaris (Hemiptera: Delphacidae), a biological control agent of water hyacinth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The morphology of the female reproductive system in Megamelus scutellaris Berg (Hemiptera:Delphacidae), a biocontrol agent of Eichhornia crassipes (Mart.) Solms, was examined using standard light microscopy techniques. Ovaries extracted from individuals dissected in phosphate buffered saline were ex...

  16. Massive Multi-Agent Systems Control

    NASA Technical Reports Server (NTRS)

    Campagne, Jean-Charles; Gardon, Alain; Collomb, Etienne; Nishida, Toyoaki

    2004-01-01

    In order to build massive multi-agent systems, considered as complex and dynamic systems, one needs a method to analyze and control the system. We suggest an approach using morphology to represent and control the state of large organizations composed of a great number of light software agents. Morphology is understood as representing the state of the multi-agent system as shapes in an abstract geometrical space, this notion is close to the notion of phase space in physics.

  17. Biological agent detection and identification using pattern recognition

    NASA Astrophysics Data System (ADS)

    Braun, Jerome J.; Glina, Yan; Judson, Nicholas; Transue, Kevin D.

    2005-05-01

    This paper discusses a novel approach for the automatic identification of biological agents. The essence of the approach is a combination of gene expression, microarray-based sensing, information fusion, machine learning and pattern recognition. Integration of these elements is a distinguishing aspect of the approach, leading to a number of significant advantages. Amongst them are the applicability to various agent types including bacteria, viruses, toxins, and other, ability to operate without the knowledge of a pathogen's genome sequence and without the need for bioagent-speciific materials or reagents, and a high level of extensibility. Furthermore, the approach allows detection of uncatalogued agents, including emerging pathogens. The approach offers a promising avenue for automatic identification of biological agents for applications such as medical diagnostics, bioforensics, and biodefense.

  18. Decontamination of biological warfare agents by a microwave plasma torch

    SciTech Connect

    Lai, Wilson; Lai, Henry; Kuo, Spencer P.; Tarasenko, Olga; Levon, Kalle

    2005-02-01

    A portable arc-seeded microwave plasma torch running stably with airflow is described and applied for the decontamination of biological warfare agents. Emission spectroscopy of the plasma torch indicated that this torch produced an abundance of reactive atomic oxygen that could effectively oxidize biological agents. Bacillus cereus was chosen as a simulant of Bacillus anthracis spores for biological agent in the decontamination experiments. Decontamination was performed with the airflow rate of 0.393 l/s, corresponding to a maximum concentration of atomic oxygen produced by the torch. The experimental results showed that all spores were killed in less than 8 s at 3 cm distance, 12 s at 4 cm distance, and 16 s at 5 cm distance away from the nozzle of the torch.

  19. Advanced nanoelectronic architectures for THz-based biological agent detection

    NASA Astrophysics Data System (ADS)

    Woolard, Dwight L.; Jensen, James O.

    2009-02-01

    The U.S. Army Research Office (ARO) and the U.S. Army Edgewood Chemical Biological Center (ECBC) jointly lead and support novel research programs that are advancing the state-of-the-art in nanoelectronic engineering in application areas that have relevance to national defense and security. One fundamental research area that is presently being emphasized by ARO and ECBC is the exploratory investigation of new bio-molecular architectural concepts that can be used to achieve rapid, reagent-less detection and discrimination of biological warfare (BW) agents, through the control of multi-photon and multi-wavelength processes at the nanoscale. This paper will overview an ARO/ECBC led multidisciplinary research program presently under the support of the U.S. Defense Threat Reduction Agency (DTRA) that seeks to develop new devices and nanoelectronic architectures that are effective for extracting THz signatures from target bio-molecules. Here, emphasis will be placed on the new nanosensor concepts and THz/Optical measurement methodologies for spectral-based sequencing/identification of genetic molecules.

  20. Air monitoring and detection of chemical and biological agents

    SciTech Connect

    Leonelli, J.; Althouse, M.L.

    1999-06-01

    This volume contains the proceedings of SPIE`s remote sensing symposium which was held November 2--3, 1998 in Boston, Massachusetts. Topics of discussion include the following: system simulations, atmospheric modeling, and performance prediction studies of chemical warfare remote sensing technologies; ultraviolet laser-induced fluorescence and aerosol detection methods for remote sensing of biological warfare agents; passive detection methods for remote detection of chemical warfare agents; and lidar-based system performance assessments, demonstrations, and new concepts for chemical warfare/biological warfare detection.

  1. New Frontiers in the Biological Control of Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greening movement, food security and safety, climate change and expanding applications provide opportunities for growth of the biological control industry. Plant biofortification, cost of biocontrol agent production, regulatory restrictions and non-producer decision-making present challenges to...

  2. Oxidizer gels for detoxification of chemical and biological agents

    DOEpatents

    Hoffman, Dennis M.; McGuire, Raymond R.

    2002-01-01

    A gel composition containing oxidizing agents and thickening or gelling agents is used to detoxify chemical and biological agents by application directly to a contaminated area. The gelling agent is a colloidal material, such as silica, alumina, or alumino-silicate clays, which forms a viscous gel that does not flow when applied to tilted or contoured surfaces. Aqueous or organic solutions of oxidizing agents can be readily gelled with less than about 30% colloidal material. Gel preparation is simple and suitable for field implementation, as the gels can be prepared at the site of decontamination and applied quickly and uniformly over an area by a sprayer. After decontamination, the residue can be washed away or vacuumed up for disposal.

  3. Current laboratory methods for biological threat agent identification.

    PubMed

    Henchal, E A; Teska, J D; Ludwig, G V; Shoemaker, D R; Ezzell, J W

    2001-09-01

    The authors present an integrated approach for the identification of biological threat agents. The methods used have been used extensively in field exercises and during response to incidents of biological terrorism. A diagnostic system, which integrates the clinical diagnosis or medical intelligence with immunodiagnostic tests, rapid gene amplification assays, and standard culture, provides results of the highest quality and confidence. In the future, selected reagents and technologies will be distributed through a network of civilian and military laboratories. PMID:11572145

  4. CLASSICAL BIOLOGICAL CONTROL OF WEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical biological control of weeds is an important tool for managing invasive alien plants that have become too widespread to control by conventional methods. It involves the discovery and release of naturally occurring species of natural enemies (insects, mites or pathogens) to control a pest (...

  5. Biological agents with potential for misuse: a historical perspective and defensive measures.

    PubMed

    Bhalla, Deepak K; Warheit, David B

    2004-08-15

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  6. Formulating microbial agents for pest control applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial biological control is the use of beneficial microbes to control pests and pathogens. The development of biological control products for use in pest management requires technology to produce, handle, store, and disperse large amounts of microbial propagules. Production can be accomplished...

  7. The biological control of the malaria vector.

    PubMed

    Kamareddine, Layla

    2012-09-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979

  8. Potential of Biological Agents in Decontamination of Agricultural Soil.

    PubMed

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  9. Potential of Biological Agents in Decontamination of Agricultural Soil

    PubMed Central

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  10. A medicoeconomic review of early intervention with biologic agents in the treatment of inflammatory bowel diseases.

    PubMed

    Odes, Shmuel; Greenberg, Dan

    2014-01-01

    The treatment of inflammatory bowel disease with standard therapy fails to control the disease in many patients. Biologic therapy has an increasing role in altering the natural history of Crohn's disease and ulcerative colitis, and is improving patient prognosis. However, indications for treatment and issues with drug costs and value for money remain unclear. Also, when to perform early intervention with biologic agents is at present unclear. We performed an extensive literature search and review to address these issues. The biologics provide better care for many patients. The choice of biologic agent, the indications for its use, the switch between agents, and the considerations of cost are outlined, with a view to guiding the treating physician in managing these cases. Outstanding issues and anticipated future developments are defined. PMID:25336980