Science.gov

Sample records for biological electron microscopy

  1. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  2. Electron Microscopy of Biological Materials at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Kourkoutis, Lena Fitting; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2012-08-01

    Electron microscopy of biological matter uses three different imaging modalities: (a) electron crystallography, (b) single-particle analysis, and (c) electron tomography. Ideally, these imaging modalities are applied to frozen-hydrated samples to ensure an optimal preservation of the structures under scrutiny. Cryo-electron microscopy of biological matter has made important advances in the past decades. It has become a research tool that further expands the scope of structural research into unique areas of cell and molecular biology, and it could augment the materials research portfolio in the study of soft and hybrid materials. This review addresses how researchers using transmission electron microscopy can derive structural information at high spatial resolution from fully hydrated specimens, despite their sensitivity to ionizing radiation, despite the adverse conditions of high vacuum for samples that have to be kept in aqueous environments, and despite their low contrast resulting from weakly scattering building blocks.

  3. A national facility for biological cryo-electron microscopy

    SciTech Connect

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  4. Environmental scanning electron microscopy gold immunolabeling in cell biology.

    PubMed

    Rosso, Francesco; Papale, Ferdinando; Barbarisi, Alfonso

    2013-01-01

    Immunogold labeling (IGL) technique has been utilized by many authors in combination with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain the identification/localization of receptors and antigens, both in cells and tissues. Environmental scanning electron microscopy (ESEM) represents an important tool in biomedical research, since it does not require any severe processing of the sample, lowering the risk of generating artifacts and interfere with the IGL procedure. The absence of metal coating could yield further advantages for our purpose as the labeling detection is based on the atomic number difference between nanogold spheres and the biological material. Using the gaseous secondary electron detector, compositional contrast is easily revealed by the backscattered electron component of the signal. In spite of this fact, only few published papers present a combination of ESEM and IGL. Hereby we present our method, optimized to improve the intensity and the specificity of the labeling signal, in order to obtain a semiquantitative evaluation of the labeling signal.In particular, we used a combination of IGL and ESEM to detect the presence of a protein on the cell surface. To achieve this purpose, we chose as an experimental system 3T3 Swiss albino mouse fibroblasts and galectin-3. PMID:23027021

  5. Opportunities for electron microscopy in space radiation biology

    SciTech Connect

    Lett, J.T.

    1986-01-01

    Densely ionizing, particulate radiations in outer space are likely to cause to mammalian tissues biological damage that is particularly amenable to examination by the techniques of electron microscopy. This situation arises primarily from the fact that once the density of ionization along the particle track exceeds a certain value, small discrete lesions involving many adjacent cells may be caused in organized tissues. Tissue damage produced by ionization densities below the critical value also afford opportunities for electron microscopic evaluation, as is shown by the damage produced in optic and proximate tissues of the New Zealand white rabbit in terrestrial experiments. Late radiation sequelae in nondividing, or terminally differentiating, tissues, and in stem cell populations, are of special importance in these regards. It is probable that evaluations of the hazards posed to astronauts by galactic particulate radiations during prolonged missions in outer space will not be complete without adequate electron microscopic evaluation of the damage those radiations cause to organized tissues.

  6. Transmission electron microscopy in molecular structural biology: A historical survey.

    PubMed

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. PMID:25475529

  7. A national facility for biological cryo-electron microscopy

    PubMed Central

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback. PMID:25615867

  8. Three-Dimensional Scanning Transmission Electron Microscopy of Biological Specimens

    PubMed Central

    de Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2–3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. PMID:20082729

  9. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    EPA Science Inventory

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  10. Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples.

    PubMed

    McDowall, A W; Chang, J J; Freeman, R; Lepault, J; Walter, C A; Dubochet, J

    1983-07-01

    The preparation and high resolution observation of frozen hydrated thin sections has been studied by transmission electron microscopy (TEM and STEM) on model systems, including pure water, protein solutions, catalase crystals, myelin sheath and various tissues. The state of the ice is determined by electron diffraction. Mass measurement in the electron microscope is used to determine section thickness and control hydration. An adequate depth of vitrified material for sectioning can be obtained from many biological suspensions or untreated tissues. Frozen hydrated sections around 100 nm thick can be produced under optimal conditions from vitreous ice or from vitrified biological samples. Sectioning, transfer and observation in the electron microscope is feasible without alteration of the sample hydration or its initial vitrification. Biological structures can be preserved and observed down to 10 nm. Under favourable working conditions, specimen compression during sectioning and electron beam damage are the factors limiting high resolution observations. PMID:6350598

  11. The development of field-emission scanning electron microscopy for imaging biological surfaces.

    PubMed

    Pawley, J

    1997-08-01

    This article traces the important milestones in the development of high-resolution, field-emission, scanning electron microscopes (SEM). Such instruments are now capable of producing images of the surfaces of biological specimens that rival, in terms of resolution and contrast, those produced by conventional transmission electron microscopy (TEM). Even though one of the first instruments to produce a useful transmission electron microscope image was, in fact, an early scanning microscope, TEM reached its full potential for biological imaging almost 30 years sooner than did SEM. The main reason for this slow rate of development is the dependence of any scanning technique on source brightness. The only suitable electron source was the field-emission source, originally developed in the 1930's. Making this into a stable and reliable electron source for microscopy required many technical barriers to be overcome. An additional delay may have been caused by the great success that attended the introduction of early SEM instruments. These instruments which employed heated, tungsten hairpin cathodes, were inexpensive and reliable, but they that were also far from optimal in terms of optical performance. Their market success may have engendered the sense of inertia and complacency that further delayed the introduction of low aberrations objective lenses and field-emission sources for almost 20 years after they were first introduced to electron microscopy. In addition, the fact that these early SEMs accustomed users to operating with a much higher beam voltage than was either necessary or wise, lead many to assume that the SEM was incapable of producing high-resolution images of biological surfaces. This left them open to fascination with newer ahd slower techniques that, on balance, were less suitable than optimized SEM for most of their imaging needs. In parallel to these developments in instrumentation, major improvements were also made in the way that the specimen surface

  12. Use of fluorescence and scanning electron microscopy as tools in teaching biology

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Silva, Jessica; Vazquez, Aracely; Das, A. B.; Smith, Don W.

    2011-06-01

    Recent nationwide surveys reveal significant decline in students' interest in Math and Sciences. The objective of this project was to inspire young minds in using various techniques involved in Sciences including Scanning Electron Microscopy. We used Scanning Electron Microscope in demonstrating various types of Biological samples. An SEM Tabletop model in the past decade has revolutionized the use of Scanning Electron Microscopes. Using SEM Tabletop model TM 1000 we studied biological specimens of fungal spores, pollen grains, diatoms, plant fibers, dust mites, insect parts and leaf surfaces. We also used fluorescence microscopy to view, to record and analyze various specimens with an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, DP-70 digital camera with Image Pro 6.0 software. Micrographs were captured using bright field microscopy, the fluoresceinisothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. We used fluorescent microscopy to confirm the localization of sugar beet viruses in plant organs by viewing the vascular bundles in the thin sections of the leaves and other tissues. We worked with the REU summer students on sample preparation and observation on various samples utilizing the SEM. Critical Point Drying (CPD) and metal coating with the sputter coater was followed before observing some cultured specimen and the samples that were soft in textures with high water content. SEM Top allowed investigating the detailed morphological features that can be used for classroom teaching. Undergraduate and graduate researchers studied biological samples of Arthropods, pollen grains and teeth collected from four species of snakes using SEM. This project inspired the research students to pursue their career in higher studies in science and 45% of the

  13. Analysis of high quality monatomic chromium films used in biological high resolution scanning electron microscopy.

    PubMed

    Apkarian, R P

    1994-01-01

    During the recent employment of field emission (FE) in-lens scanning electron microscopes (SEMs), refractory metal deposition technology has co-evolved to provide enhanced contrast of 1-10 nm hydrocarbon based biological structures imaged at high magnifications (> 200,000 times). Pioneer development employing the Penning sputter system in a high vacuum chamber proved that imaging of chromium (Cr) coated biological specimens contained enriched secondary electron (SE)-(I) contrasts. Single nanometer size fibrillar and particulate ectodomains within the context of complex biological membranes were accurately imaged without significant enlargement using the high resolution SE-I mode (HRSEM). This paper reports the transmission electron microscopy (TEM) testing of ultrathin (0.5-2.0 nm) Cr films deposited by planar magnetron sputter coating (PMSC). Essential parameters necessary to reproduce quality sputtered films of refractory metals used in HRSEM studies were described for the vacuum system and target operation conditions (current, voltage, and target distance). HRSEM imaging of biological specimens is presented to assess contrast attained from ultrathin fine grain Cr films deposited by PMSC. High magnification images were recorded to illustrate high quality contrasts attainable by HRSEM at low (1-5 kV) and high (10-30 kV) voltages. Dispersed molecules on formvar coated grids were sputter coated with a 1 nm thick Cr film before employing scanning transmission (STEM)/SEM modes of the FESEM to establish non-decorative image accuracy in the transmitted electron mode. PMID:7701300

  14. Investigation of resins suitable for the preparation of biological sample for 3-D electron microscopy.

    PubMed

    Kizilyaprak, Caroline; Longo, Giovanni; Daraspe, Jean; Humbel, Bruno M

    2015-02-01

    In the last two decades, the third-dimension has become a focus of attention in electron microscopy to better understand the interactions within subcellular compartments. Initially, transmission electron tomography (TEM tomography) was introduced to image the cell volume in semi-thin sections (∼ 500 nm). With the introduction of the focused ion beam scanning electron microscope, a new tool, FIB-SEM tomography, became available to image much larger volumes. During TEM tomography and FIB-SEM tomography, the resin section is exposed to a high electron/ion dose such that the stability of the resin embedded biological sample becomes an important issue. The shrinkage of a resin section in each dimension, especially in depth, is a well-known phenomenon. To ensure the dimensional integrity of the final volume of the cell, it is important to assess the properties of the different resins and determine the formulation which has the best stability in the electron/ion beam. Here, eight different resin formulations were examined. The effects of radiation damage were evaluated after different times of TEM irradiation. To get additional information on mass-loss and the physical properties of the resins (stiffness and adhesion), the topography of the irradiated areas was analysed with atomic force microscopy (AFM). Further, the behaviour of the resins was analysed after ion milling of the surface of the sample with different ion currents. In conclusion, two resin formulations, Hard Plus and the mixture of Durcupan/Epon, emerged that were considerably less affected and reasonably stable in the electron/ion beam and thus suitable for the 3-D investigation of biological samples. PMID:25433274

  15. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    SciTech Connect

    Brian G. Trewyn

    2006-05-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  16. Biological applications and transmission electron microscopy investigation of mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Trewyn, Brian G.

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both HeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the antioxidant dependent release was measured. Finally, the biological interaction of the material was determined along with TEM measurements. An electron microscopy investigation proved that the pore openings of the MSN were indeed blocked by the Fe 3O4 nanoparticles. The biological interaction investigation demonstrated Fe3O4-capped MSN

  17. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments.

    PubMed

    Chen, S; Goode, A E; Skepper, J N; Thorley, A J; Seiffert, J M; Chung, K F; Tetley, T D; Shaffer, M S P; Ryan, M P; Porter, A E

    2016-02-01

    Electron microscopy has been applied widely to study the interaction of nanomaterials with proteins, cells and tissues at nanometre scale. Biological material is most commonly embedded in thermoset resins to make it compatible with the high vacuum in the electron microscope. Room temperature sample preparation protocols developed over decades provide contrast by staining cell organelles, and aim to preserve the native cell structure. However, the effect of these complex protocols on the nanomaterials in the system is seldom considered. Any artefacts generated during sample preparation may ultimately interfere with the accurate prediction of the stability and reactivity of the nanomaterials. As a case study, we review steps in the room temperature preparation of cells exposed to silver nanomaterials (AgNMs) for transmission electron microscopy imaging and analysis. In particular, embedding and staining protocols, which can alter the physicochemical properties of AgNMs and introduce artefacts thereby leading to a misinterpretation of silver bioreactivity, are scrutinized. Recommendations are given for the application of cryogenic sample preparation protocols, which simultaneously fix both particles and diffusible ions. By being aware of the advantages and limitations of different sample preparation methods, compromises or selection of different correlative techniques can be made to draw more accurate conclusions about the data. PMID:25606708

  18. Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy.

    PubMed

    Park, Jungwon; Park, Hyesung; Ercius, Peter; Pegoraro, Adrian F; Xu, Chen; Kim, Jin Woong; Han, Sang Hoon; Weitz, David A

    2015-07-01

    Recent development of liquid phase transmission electron microscopy (TEM) enables the study of specimens in wet ambient conditions within a liquid cell; however, direct structural observation of biological samples in their native solution using TEM is challenging since low-mass biomaterials embedded in a thick liquid layer of the host cell demonstrate low contrast. Furthermore, the integrity of delicate wet samples is easily compromised during typical sample preparation and TEM imaging. To overcome these limitations, we introduce a graphene liquid cell (GLC) using multilayer graphene sheets to reliably encapsulate and preserve biological samples in a liquid for TEM observation. We achieve nanometer scale spatial resolution with high contrast using low-dose TEM at room temperature, and we use the GLC to directly observe the structure of influenza viruses in their native buffer solution at room temperature. The GLC is further extended to investigate whole cells in wet conditions using TEM. We also demonstrate the potential of the GLC for correlative studies by TEM and fluorescence light microscopy imaging. PMID:26065925

  19. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology

    PubMed Central

    Thompson, Rebecca F.; Walker, Matt; Siebert, C. Alistair; Muench, Stephen P.; Ranson, Neil A.

    2016-01-01

    Transmission electron microscopy (EM) is a versatile technique that can be used to image biological specimens ranging from intact eukaryotic cells to individual proteins >150 kDa. There are several strategies for preparing samples for imaging by EM, including negative staining and cryogenic freezing. In the last few years, cryo-EM has undergone a ‘resolution revolution’, owing to both advances in imaging hardware, image processing software, and improvements in sample preparation, leading to growing number of researchers using cryo-EM as a research tool. However, cryo-EM is still a rapidly growing field, with unique challenges. Here, we summarise considerations for imaging of a range of specimens from macromolecular complexes to cells using EM. PMID:26931652

  20. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology.

    PubMed

    Thompson, Rebecca F; Walker, Matt; Siebert, C Alistair; Muench, Stephen P; Ranson, Neil A

    2016-05-01

    Transmission electron microscopy (EM) is a versatile technique that can be used to image biological specimens ranging from intact eukaryotic cells to individual proteins >150kDa. There are several strategies for preparing samples for imaging by EM, including negative staining and cryogenic freezing. In the last few years, cryo-EM has undergone a 'resolution revolution', owing to both advances in imaging hardware, image processing software, and improvements in sample preparation, leading to growing number of researchers using cryo-EM as a research tool. However, cryo-EM is still a rapidly growing field, with unique challenges. Here, we summarise considerations for imaging of a range of specimens from macromolecular complexes to cells using EM. PMID:26931652

  1. Scanning transmission electron microscopy through-focal tilt-series on biological specimens.

    PubMed

    Trepout, Sylvain; Messaoudi, Cédric; Perrot, Sylvie; Bastin, Philippe; Marco, Sergio

    2015-10-01

    Since scanning transmission electron microscopy can produce high signal-to-noise ratio bright-field images of thick (≥500 nm) specimens, this tool is emerging as the method of choice to study thick biological samples via tomographic approaches. However, in a convergent-beam configuration, the depth of field is limited because only a thin portion of the specimen (from a few nanometres to tens of nanometres depending on the convergence angle) can be imaged in focus. A method known as through-focal imaging enables recovery of the full depth of information by combining images acquired at different levels of focus. In this work, we compare tomographic reconstruction with the through-focal tilt-series approach (a multifocal series of images per tilt angle) with reconstruction with the classic tilt-series acquisition scheme (one single-focus image per tilt angle). We visualised the base of the flagellum in the protist Trypanosoma brucei via an acquisition and image-processing method tailored to obtain quantitative and qualitative descriptors of reconstruction volumes. Reconstructions using through-focal imaging contained more contrast and more details for thick (≥500 nm) biological samples. PMID:26093182

  2. Review on electron microscopy in taxonomy and biology of parasitic Nemathelminthes.

    PubMed

    Jamjoom, Manal B

    2007-04-01

    Electron microscopy (EM) proved a very helpful means that solved a lot of information in different scientific aspects. EM is a very good tool in the hospitals and research centers. It was aimed to pile up available information on the biology in the descriptive morphology of nematodes and their immature stages by scanning (SEM) and transmission (TEM) electron microscopy. Watson (1965a, b) studied Euchromadora vulgaris and Ascaris sp. by using TEM respectively. Lee (1969) investigated the ultra-structure of Nippostrongylus brasiliensis by SEM & TEM, as well as some nematodes by TEM (Lee, 1972). The topography of the adult Baylisascaris procyonis caudal end was illustrated by Snyder (1989). Male tail relatively long, smoothly attenuated, with a small button-like or mucronate termination. Pre-anal papillae situated ventrally in 2 slightly divergent and somewhat irregularly spaced rows. Anterior and posterior to anus 2 slightly raised roughened patches consisting of several rows of small spines. Just anterior to anus along outer margin of pre-anal roughened patch, a large double medio-ventral papilla. Five pairs of post-anal papillae with first pair just posterior to anus doubled and 4 pairs more closely associated in a group near tail end. Second pair with doubled papillae; but, in a few specimens fused as if 2 single closely associated papillae. Three pair single. Fourth pair of caudal papillae phasmids and in centers of each a ringed pore-like opening. Male spicules with a highly sculptured surface with a pincher-like terminal end. PMID:17580570

  3. The use of light- and electron microscopy for studies on the cell- and molecular biology of parasites and parasitic diseases.

    PubMed

    Hehl, A B; Hemphill, A

    2006-09-01

    Lightmicroscopical (LM) and electron microscopi cal (EM) techniques, have had a major influence on the development and direction of cell biology, and particularly also on the investigation of complex host-parasite relationships. Earlier, microscopy has been rather descriptive, but new technical and scientific advances have changed the situation. Microscopy has now become analytical, quantitative and three-dimensional, with greater emphasis on analysis of live cells with fluorescent markers. The new or improved techniques that have become available include immunocytochemistry using immunogold labeling techniques or fluorescent probes, cryopreservation and cryosectioning, in situ hybridization, fluorescent reporters for subcellular localization, micro-analytical methods for elemental distribution, confocal laser scanning microscopy, scanning tunneling microscopy and live-imaging. Taken together, these tools are providing both researchers and students with a novel and multidimensional view of the intricate biological processes during parasite development in the host. PMID:17024976

  4. Extraction of proteins and membrane lipids during low temperature embedding of biological material for electron microscopy.

    PubMed

    Weibull, C; Christiansson, A

    1986-04-01

    The extraction of proteins and membrane lipids from biological materials during embedding procedures for electron microscopy carried out at temperatures down to 223 K was studied. Glutaraldehyde-fixed cells of Acholeplasma laidlawii mainly served as test material. More than 99% of the protein and 88% of the lipid of these cells were retained after dehydration with ethanol or acetone between 277 and 223 K and infiltration with methacrylate at 223 K. When methanol was used for dehydration, only 54% of the lipid was retained. The amount of extracted lipid was essentially independent of the ratio between volume of extraction liquid and amount of material subjected to extraction. The cytoplasmic membrane of sectioned Acholeplasma-cells dehydrated and infiltrated as described above appeared more diffuse than that of cells fixed with glutaraldehyde and osmium tetroxide in epoxy resin at room temperature. Glutaraldehyde-fixed erythrocyte ghosts retained 85% of their phospholipid content when dehydrated with ethanol between 277 and 223 K and infiltrated with methacrylate at 223 K. Spinach chloroplasts and thylakoid vesicles retained 61% and 35%, respectively, of their chlorophyll content. PMID:3712423

  5. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    PubMed Central

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2015-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  6. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    PubMed

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  7. Dynamic Transmission Electron Microscopy

    SciTech Connect

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  8. New and unconventional approaches for advancing resolution in biological transmission electron microscopy by improving macromolecular specimen preparation and preservation.

    SciTech Connect

    Massover, W.; Materials Science Division

    2011-02-01

    Resolution in transmission electron microscopy (TEM) now is limited by the properties of specimens, rather than by those of instrumentation. The long-standing difficulties in obtaining truly high-resolution structure from biological macromolecules with TEM demand the development, testing, and application of new ideas and unconventional approaches. This review concisely describes some new concepts and innovative methodologies for TEM that deal with unsolved problems in the preparation and preservation of macromolecular specimens. The selected topics include use of better support films, a more protective multi-component matrix surrounding specimens for cryo-TEM and negative staining, and, several quite different changes in microscopy and micrography that should decrease the effects of electron radiation damage; all these practical approaches are non-traditional, but have promise to advance resolution for specimens of biological macromolecules beyond its present level of 3-10 {angstrom} (0.3-1.0 nm). The result of achieving truly high resolution will be a fulfillment of the still unrealized potential of transmission electron microscopy for directly revealing the structure of biological macromolecules down to the atomic level.

  9. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    SciTech Connect

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  10. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy

    SciTech Connect

    Nair, R. R.; Anissimova, S.; Novoselov, K. S.; Blake, P.; Blake, J. R.; Geim, A. K.; Zan, R.; Bangert, U.; Golovanov, A. P.; Morozov, S. V.; Latychevskaia, T.

    2010-10-11

    We demonstrate the application of graphene as a support for imaging individual biological molecules in transmission electron microscope (TEM). A simple procedure to produce free-standing graphene membranes has been designed. Such membranes are extremely robust and can support practically any submicrometer object. Tobacco mosaic virus has been deposited on graphene samples and observed in a TEM. High contrast has been achieved even though no staining has been applied.

  11. A New Approach to Studying Biological and Soft Materials Using Focused Ion Beam Scanning Electron Microscopy (FIB SEM)

    NASA Astrophysics Data System (ADS)

    Stokes, D. J.; Morrissey, F.; Lich, B. H.

    2006-02-01

    Over the last decade techniques such as confocal light microscopy, in combination with fluorescent labelling, have helped biologists and life scientists to study biological architectures at tissue and cell level in great detail. Meanwhile, obtaining information at very small length scales is possible with the combination of sample preparation techniques and transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM). Scanning electron microscopy (SEM) is well known for the determination of surface characteristics and morphology. However, the desire to understand the three dimensional relationships of meso-scale hierarchies has led to the development of advanced microscopy techniques, to give a further complementary approach. A focused ion beam (FIB) can be used as a nano-scalpel and hence allows us to reveal internal microstructure in a site-specific manner. Whilst FIB instruments have been used to study and verify the three-dimensional architecture of man made materials, SEM and FIB technologies have now been brought together in a single instrument representing a powerful combination for the study of biological specimens and soft materials. We demonstrate the use of FIB SEM to study three-dimensional relationships for a range of length scales and materials, from small-scale cellular structures to the larger scale interactions between biomedical materials and tissues. FIB cutting of heterogeneous mixtures of hard and soft materials, resulting in a uniform cross-section, has proved to be of particular value since classical preparation methods tend to introduce artefacts. Furthermore, by appropriate selection, we can sequentially cross-section to create a series of 'slices' at specific intervals. 3D reconstruction software can then be used to volume-render information from the 2D slices, enabling us to immediately see the spatial relationships between microstructural components.

  12. Scanning electron microscopy at macromolecular resolution in low energy mode on biological specimens coated with ultra thin metal films.

    PubMed

    Peters, K R

    1979-01-01

    In this report, conditions for attaining high resolution in scanning electron microscopy with soft biological specimens are described using the currently available high resolution scanning electron microscopes in emission mode of low energy electrons (secondary and charging electrons). Retinal rod outer segments, red blood cells, intestinal mucosa, and ferritin molecules were all used as biological test specimens. From uncoated specimens a new source of signal, referred to as a discharge signal, can provide a high yield of low energy electrons from an excitation area approximately the size of the beam's cross section. Additionally, under these conditions sufficient topographic contrast can be achieved by applying ultra thin metal coatins. A 0.5 nm thick gold film is found sufficient for generating the total signal, whereas increased coating thickness causes additional topographic background signal. However, a 2.0 nm film is needed for imaging surface details with the present instrument. Ultra thin, even, and grainless tantalum films have been found effective in eliminating the charging artifacts caused by external fields, and the decoration artifacts caused by crystal growth as seen in gold films. To improve, in high magnification work on ultra thin coated specimen, signal-to-noise ratio, methods for obtaining saturation of the signal with discharge electrons are shown. The necessity of confirming the information obtained in SEM by independent techniques (TEM of stereo-replicas or ultra thin sections) is discussed. PMID:392703

  13. Correlative Fluorescence and Electron Microscopy

    PubMed Central

    Schirra, Randall T.; Zhang, Peijun

    2014-01-01

    Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associate with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology have led to rapid improvement in the protocols and have ushered in a new generation of instruments to reach the next level of correlation – integration. PMID:25271959

  14. Four-dimensional electron microscopy.

    PubMed

    Zewail, Ahmed H

    2010-04-01

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope's ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy. PMID:20378810

  15. Four-Dimensional Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Zewail, Ahmed H.

    2010-04-01

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope’s ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.

  16. SYSTEMATIC SCANNING ELECTRON MICROSCOPY FOR EVALUATING COMBINED BIOLOGICAL/GRANULAR ACTIVATED CARBON TREATMENT PROCESSES

    EPA Science Inventory

    A semi-quantitative scanning electron microscope (SEK) analytical technique has been developed to examine granular activated carbon (GAC) utilized as media for biomass attachment in liquid waste treatment (combined processes). he procedure allows for the objective monitoring, com...

  17. Four-dimensional ultrafast electron microscopy

    PubMed Central

    Lobastov, Vladimir A.; Srinivasan, Ramesh; Zewail, Ahmed H.

    2005-01-01

    Electron microscopy is arguably the most powerful tool for spatial imaging of structures. As such, 2D and 3D microscopies provide static structures with subnanometer and increasingly with ångstrom-scale spatial resolution. Here we report the development of 4D ultrafast electron microscopy, whose capability imparts another dimension to imaging in general and to dynamics in particular. We demonstrate its versatility by recording images and diffraction patterns of crystalline and amorphous materials and images of biological cells. The electron packets, which were generated with femtosecond laser pulses, have a de Broglie wavelength of 0.0335 Å at 120 keV and have as low as one electron per pulse. With such few particles, doses of few electrons per square ångstrom, and ultrafast temporal duration, the long sought after but hitherto unrealized quest for ultrafast electron microscopy has been realized. Ultrafast electron microscopy should have an impact on all areas of microscopy, including biological imaging. PMID:15883380

  18. Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules.

    PubMed

    Han, Bong-Gyoon; Watson, Zoe; Kang, Hannah; Pulk, Arto; Downing, Kenneth H; Cate, Jamie; Glaeser, Robert M

    2016-08-01

    We describe a rapid and convenient method of growing streptavidin (SA) monolayer crystals directly on holey-carbon EM grids. As expected, these SA monolayer crystals retain their biotin-binding function and crystalline order through a cycle of embedding in trehalose and, later, its removal. This fact allows one to prepare, and store for later use, EM grids on which SA monolayer crystals serve as an affinity substrate for preparing specimens of biological macromolecules. In addition, we report that coating the lipid-tail side of trehalose-embedded monolayer crystals with evaporated carbon appears to improve the consistency with which well-ordered, single crystals are observed to span over entire, 2μm holes of the support films. Randomly biotinylated 70S ribosomes are used as a test specimen to show that these support films can be used to obtain a high-resolution cryo-EM structure. PMID:27320699

  19. From electron microscopy to molecular cell biology, molecular genetics and structural biology: intracellular transport and kinesin superfamily proteins, KIFs: genes, structure, dynamics and functions.

    PubMed

    Hirokawa, Nobutaka

    2011-01-01

    Cells transport and sort various proteins and lipids following synthesis as distinct types of membranous organelles and protein complexes to the correct destination at appropriate velocities. This intracellular transport is fundamental for cell morphogenesis, survival and functioning not only in highly polarized neurons but also in all types of cells in general. By developing quick-freeze electron microscopy (EM), new filamentous structures associated with cytoskeletons are uncovered. The characterization of chemical structures and functions of these new filamentous structures led us to discover kinesin superfamily molecular motors, KIFs. In this review, I discuss the identification of these new structures and characterization of their functions using molecular cell biology and molecular genetics. KIFs not only play significant roles by transporting various cargoes along microtubule rails, but also play unexpected fundamental roles on various important physiological processes such as learning and memory, brain wiring, development of central nervous system and peripheral nervous system, activity-dependent neuronal survival, development of early embryo, left-right determination of our body and tumourigenesis. Furthermore, by combining single-molecule biophysics with structural biology such as cryo-electrom microscopy and X-ray crystallography, atomic structures of KIF1A motor protein of almost all states during ATP hydrolysis have been determined and a common mechanism of motility has been proposed. Thus, this type of studies could be a good example of really integrative multidisciplinary life science in the twenty-first century. PMID:21844601

  20. Electron microscopy of biological macromolecules: Bridging the gapbetween what physics allows and what we currently can get

    SciTech Connect

    Typke, Dieter; Downing, Kenneth H.; Glaeser, Robert M.

    2003-04-30

    The resolution achieved in low-dose electron microscopy of biological macromolecules is significantly worse than what can be obtained on the same microscopes with more robust specimens. When two-dimensional crystals are used, it is also apparent that the high-resolution image contrast is much less than what it could be if the images were perfect. Since specimen charging is one factor that might limit the contrast and resolution achieved with biological specimens, we have investigated the use of holey support films that have been coated with a metallic film before depositing specimens onto a thin carbon film that is suspended over the holes. Monolayer crystals of paraffin (C44H90) are used as a test specimen for this work because of the relative ease in imaging Bragg spacings at {approx}0.4 nm resolution, the relative ease of measuring the contrast in these images, and the similar degree of radiation sensitivity of these crystals when compared to biological macromolecules. A metallic coating on the surrounding support film does, indeed, produce a significant improvement in the high-resolution contrast for a small fraction of the images. The majority of images show little obvious improvement, however, and even the coated area of the support film continues to show a significant amount of beam-induced movement under low-dose conditions. The fact that the contrast in the best images can be as much as 25 percent-35 percent of what it would be in a perfect image is nevertheless encouraging, demonstrating that it should be possible, in principle, to achieve the same performance for every image. Routine data collection of this quality would make it possible to determine the structure of large, macromolecular complexes without the need to grow crystals of these difficult specimen materials.

  1. Liquid Cell Transmission Electron Microscopy.

    PubMed

    Liao, Hong-Gang; Zheng, Haimei

    2016-05-27

    Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM. PMID:27215823

  2. Liquid Cell Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Hong-Gang; Zheng, Haimei

    2016-05-01

    Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.

  3. Spectroscopic imaging in electron microscopy

    SciTech Connect

    Pennycook, Stephen J; Colliex, C.

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  4. Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: Implications for the limits of biological control over the growth mode of abalone sea shells

    PubMed Central

    2012-01-01

    Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM) [Gilbert et al., Journal of the American Chemical Society 2008, 130

  5. Phase-shifting by means of an electronically tunable lens: quantitative phase imaging of biological specimens with digital holographic microscopy.

    PubMed

    Trujillo, Carlos; Doblas, Ana; Saavedra, Genaro; Martínez-Corral, Manuel; García-Sucerquia, Jorge

    2016-04-01

    The use of an electronically tunable lens (ETL) to produce controlled phase shifts in interferometric arrangements is shown. The performance of the ETL as a phase-shifting device is experimentally validated in phase-shifting digital holographic microscopy. Quantitative phase maps of a section of the thorax of a Drosophila melanogaster fly and of human red blood cells have been obtained using our proposal. The experimental results validate the possibility of using the ETL as a reliable phase-shifter device. PMID:27192250

  6. Electron microscopy and forensic practice

    NASA Astrophysics Data System (ADS)

    Kotrlý, Marek; Turková, Ivana

    2013-05-01

    Electron microanalysis in forensic practice ranks among basic applications used in investigation of traces (latents, stains, etc.) from crime scenes. Applying electron microscope allows for rapid screening and receiving initial information for a wide range of traces. SEM with EDS/WDS makes it possible to observe topography surface and morphology samples and examination of chemical components. Physical laboratory of the Institute of Criminalistics Prague use SEM especially for examination of inorganic samples, rarely for biology and other material. Recently, possibilities of electron microscopy have been extended considerably using dual systems with focused ion beam. These systems are applied mainly in study of inner micro and nanoparticles , thin layers (intersecting lines in graphical forensic examinations, analysis of layers of functional glass, etc.), study of alloys microdefects, creating 3D particles and aggregates models, etc. Automated mineralogical analyses are a great asset to analysis of mineral phases, particularly soils, similarly it holds for cathode luminescence, predominantly colour one and precise quantitative measurement of their spectral characteristics. Among latest innovations that are becoming to appear also at ordinary laboratories are TOF - SIMS systems and micro Raman spectroscopy with a resolution comparable to EDS/WDS analysis (capable of achieving similar level as through EDS/WDS analysis).

  7. Working at higher magnifications in scanning electron microscopy with secondary and backscattered electrons on metal coated biological specimens and imaging macromolecular cell membrane structures.

    PubMed

    Peters, K R

    1985-01-01

    Membrane structures of macromolecular dimensions were imaged with high resolution secondary electron type I (SE-I) signal contrasts on metal coated biological specimens. The quality of the surface information was strongly dependent on the signal used for microscopy and on the properties of metal films, i.e., thickness, continuity, structure and decoration effects. Films of 10 nm thickness produced so much type II electrons that identical images were obtained with the conventional SE-II and BSE-II signals. In such images, the type I SE signal was so low that only very weak contrasts were recognizable. If the films--continuous or discontinuous--were composed of large metal aggregates (gold and platinum) a strong micro-roughness contrast was produced by the type II signal. At high magnifications (100,000 x) this background signal greatly reduced the S/N ratio of the SE-I signal. A similar effect was previously shown to be produced by the type III background signal. The type II background signal minimized when continuous films of small aggregates (tantalum and chromium) were applied. SE-I contrast dominated in the image if the film thickness was limited to 1 nm. Additionally, it was found that gold and platinum decorated membrane surface structures, less than 20 nm in size, and did not reveal all the topographic information available (size, shape, orientation spacing of small surface features) but merely displayed center-to-center distances. These decoration effects were avoided and extensive topographic information was obtained through surface coating with Ta or Cr. PMID:4095499

  8. Soil microstructure and electron microscopy

    NASA Technical Reports Server (NTRS)

    Smart, P.; Fryer, J. R.

    1988-01-01

    As part of the process of comparing Martian soils with terrestial soils, high resolution electron microscopy and associated techniques should be used to examine the finer soil particles, and various techniques of electron and optical microscopy should be used to examine the undisturbed structure of Martian soils. To examine the structure of fine grained portions of the soil, transmission electron microscopy may be required. A striking feature of many Martian soils is their red color. Although the present-day Martian climate appears to be cold, this color is reminiscent of terrestial tropical red clays. Their chemical contents are broadly similar.

  9. Electronic Blending in Virtual Microscopy

    ERIC Educational Resources Information Center

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  10. Nuclear microscopy of biological specimens

    NASA Astrophysics Data System (ADS)

    Watt, F.; Grime, G. W.; Brook, A. J.; Gadd, G. M.; Perry, C. C.; Pearce, R. B.; Turnau, K.; Watkinson, S. C.

    1991-03-01

    Recent developments in technology have enabled the scanning proton microprobe to scan at submicron spatial resolution on a routine basis. The use of the powerful combination of techniques PIXE (proton induced X-ray emission), nuclear (or Rutherford) backscattering (RBS), and secondary electron detection operating at this resolution will open up new areas in many scientific disciplines. This paper describes some of the work carried out in the biological sciences over the last year, using the Oxford SPM facility. Collaborations with biological scientists have drawn attention to the wealth of information that can be derived when these techniques are applied to micro-organisms, cells and plant tissue. Briefly described here are investigations into the uptake of heavy metals by the alga Pandorina morum, the structure of the diatom Stephanopyxis turris, the presence of various types of crystal structures within the cells of Spirogyra, the heavy metal uptake of a mycorrhizal fungus present in the bracken ( Pteridium aquilinum) root, the role of sphagnum moss in the absorption of inorganic elements, the measurement of heavy metals in environmentally-adapted cells of the yeast Saccharomyces cerevisiae, and the elemental distribution in the growing tip of a spore from the plant Equisetum arvense, with special emphasis placed on the visual interpretation of the elemental and secondary-electron maps provided by the nuclear microscopical techniques.

  11. Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy.

    PubMed

    Takayama, Yuki; Yonekura, Koji

    2016-03-01

    Coherent X-ray diffraction imaging at cryogenic temperature (cryo-CXDI) allows the analysis of internal structures of unstained, non-crystalline, whole biological samples in micrometre to sub-micrometre dimensions. Targets include cells and cell organelles. This approach involves preparing frozen-hydrated samples under controlled humidity, transferring the samples to a cryo-stage inside a vacuum chamber of a diffractometer, and then exposing the samples to coherent X-rays. Since 2012, cryo-coherent diffraction imaging (CDI) experiments have been carried out with the X-ray free-electron laser (XFEL) at the SPring-8 Ångstrom Compact free-electron LAser (SACLA) facility in Japan. Complementary use of cryo-electron microscopy and/or light microscopy is highly beneficial for both pre-checking samples and studying the integrity or nature of the sample. This article reports the authors' experience in cryo-XFEL-CDI of biological cells and organelles at SACLA, and describes an attempt towards reliable and higher-resolution reconstructions, including signal enhancement with strong scatterers and Patterson-search phasing. PMID:26919369

  12. Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy.

    PubMed

    Stark, Holger; Chari, Ashwin

    2016-02-01

    Single particle cryo-EM has recently developed into a powerful tool to determine the 3D structure of macromolecular complexes at near-atomic resolution, which allows structural biologists to build atomic models of proteins. All technical aspects of cryo-EM technology have been considerably improved over the last two decades, including electron microscopic hardware, image processing software and the ever growing speed of computers. This leads to a more widespread use of the technique, and it can be anticipated that further automation of electron microscopes and image processing tools will soon fully shift the focus away from the technological aspects, onto biological questions that can be answered. In single particle cryo-EM, no crystals of a macromolecule are required. In contrast to X-ray crystallography, this significantly facilitates structure determination by cryo-EM. Nevertheless, a relatively high level of biochemical control is still essential to obtain high-resolution structures by cryo-EM, and it can be anticipated that the success of the cryo-EM technology goes hand in hand with further developments of sample purification and preparation techniques. This will allow routine high-resolution structure determination of the many macromolecular complexes of the cell that until now represent evasive targets for X-ray crystallographers. Here we discuss the various biochemical tools that are currently available and the existing sample purification and preparation techniques for cryo-EM grid preparation that are needed to obtain high-resolution images for structure determination. PMID:26671943

  13. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. PMID:27463670

  14. Electron microscopy of electromagnetic waveforms

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Baum, P.

    2016-07-01

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample’s oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available.

  15. The future of electron microscopy

    DOE PAGESBeta

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifiesmore » to the importance of modern microscopy.« less

  16. The future of electron microscopy

    SciTech Connect

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifies to the importance of modern microscopy.

  17. Dynamic imaging with electron microscopy

    SciTech Connect

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-02-20

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  18. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  19. Electron Diffraction Using Transmission Electron Microscopy

    PubMed Central

    Bendersky, Leonid A.; Gayle, Frank W.

    2001-01-01

    Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy.

  20. ESR Microscopy for Biological and Biomedical Applications

    PubMed Central

    Shin, C. S.; Dunnam, C. R.; Borbat, P. P.; Dzikovski, B.; Barth, E. D.; Halpern, H. J.; Freed, J. H.

    2011-01-01

    We report on electron-spin resonance microscopy (ESRM) providing sub-micron resolution (~700nm) with a high spin concentration sample, i.e. lithium phthalocyanine (LiPc) crystal. For biomedical applications of our ESRM, we have imaged samples containing rat basophilic leukemia (RBL) cells as well as cancerous tissue samples with a resolution of several microns using a water soluble spin probe, Trityl_OX063_d24. Phantom samples with the nitroxide spin label, 15N PDT, were also imaged to demonstrate that nitroxides, which are commonly used as spin labels, may also be used for ESRM applications. ESRM tissue imaging would therefore be valuable for diagnostic or therapeutic purposes. Also, ESRM can be used to study the motility or the metabolism of cells in various environments. With further modification and/or improvement of imaging probe and spectrometer instrumentation sub-micron biological images should be obtainable, thereby providing a useful tool for various biomedical applications. PMID:21984955

  1. Dielectric constant microscopy for biological materials

    NASA Astrophysics Data System (ADS)

    Valavade, A. V.; Kothari, D. C.; Löbbe, C.

    2013-02-01

    This paper describes the work on the development of Dielectric Constant Microscopy for biological materials using double pass amplitude modulation method. The dielectric constant information can be obtained at nanometer scales using this technique. Electrostatic force microscopy images of biological materials are presented. The images obtained from the EFM technique mode clearly show inversion contrast and gives the spatial variation of tip-sample capacitance. The EFM images are further processed to obtain dielectric constant information at nanometer scales.

  2. Light and Electron Microscopy of the European Beaver (Castor fiber) Stomach Reveal Unique Morphological Features with Possible General Biological Significance

    PubMed Central

    Petryński, Wojciech; Palkowska, Katarzyna; Prusik, Magdalena; Targońska, Krystyna; Giżejewski, Zygmunt; Przybylska-Gornowicz, Barbara

    2014-01-01

    Anatomical, histological, and ultrastructural studies of the European beaver stomach revealed several unique morphological features. The prominent attribute of its gross morphology was the cardiogastric gland (CGG), located near the oesophageal entrance. Light microscopy showed that the CGG was formed by invaginations of the mucosa into the submucosa, which contained densely packed proper gastric glands comprised primarily of parietal and chief cells. Mucous neck cells represented <0.1% of cells in the CGG gastric glands and 22–32% of cells in the proper gastric glands of the mucosa lining the stomach lumen. These data suggest that chief cells in the CGG develop from undifferentiated cells that migrate through the gastric gland neck rather than from mucous neck cells. Classical chief cell formation (i.e., arising from mucous neck cells) occurred in the mucosa lining the stomach lumen, however. The muscularis around the CGG consisted primarily of skeletal muscle tissue. The cardiac region was rudimentary while the fundus/corpus and pyloric regions were equally developed. Another unusual feature of the beaver stomach was the presence of specific mucus with a thickness up to 950 µm (in frozen, unfixed sections) that coated the mucosa. Our observations suggest that the formation of this mucus is complex and includes the secretory granule accumulation in the cytoplasm of pit cells, the granule aggregation inside cells, and the incorporation of degenerating cells into the mucus. PMID:24727802

  3. Direct Detectors for Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Clough, R. N.; Moldovan, G.; Kirkland, A. I.

    2014-06-01

    There is interest in improving the detectors used to capture images in transmission electron microscopy. Detectors with an improved modulation transfer function at high spatial frequencies allow for higher resolution in images at lower magnification, which leads to an increased effective field of view. Detectors with improved detective quantum efficiency are important for low dose applications. One way in which these performance enhancements can be achieved is through direct detection, where primary electrons are converted directly into suitable electrical signals by the detector rather than relying on an indirect electron to photon conversion before detection. In this paper we present the characterisation of detector performance for a number of different direct detection technologies, and compare these technologies to traditional indirect detectors. Overall our results show that direct detection enables a significant improvement in all aspects of detector performance.

  4. Electron microscopy of pharmaceutical systems.

    PubMed

    Klang, Victoria; Valenta, Claudia; Matsko, Nadejda B

    2013-01-01

    During the last decades, the focus of research in pharmaceutical technology has steadily shifted towards the development and optimisation of nano-scale drug delivery systems. As a result, electron microscopic methods are increasingly employed for the characterisation of pharmaceutical systems such as nanoparticles and microparticles, nanoemulsions, microemulsions, solid lipid nanoparticles, different types of vesicles, nanofibres and many more. Knowledge of the basic properties of these systems is essential for an adequate microscopic analysis. Classical transmission and scanning electron microscopic techniques frequently have to be adapted for an accurate analysis of formulation morphology, especially in case of hydrated colloidal systems. Specific techniques such as environmental scanning microscopy or cryo preparation are required for their investigation. Analytical electron microscopic techniques such as electron energy-loss spectroscopy or energy-dispersive X-ray spectroscopy are additional assets to determine the elemental composition of the systems, but are not yet standard tools in pharmaceutical research. This review provides an overview of pharmaceutical systems of interest in current research and strategies for their successful electron microscopic analysis. Advantages and limitations of the different methodological approaches are discussed and recent findings of interest are presented. PMID:22921788

  5. Tomographic phase microscopy and its biological applications

    NASA Astrophysics Data System (ADS)

    Choi, Wonshik

    2012-12-01

    Conventional interferometric microscopy techniques such as digital holographic microscopy and quantitative phase microscopy are often classified as 3D imaging techniques because a recorded complex field image can be numerically propagated to a different depth. In a strict sense, however, a single complex field image contains only 2D information on a specimen. The measured 2D image is only a subset of the 3D structure. For the 3D mapping of an object, multiple independent 2D images are to be taken, for example at multiple incident angles or wavelengths, and then combined by the so-called optical diffraction tomography (ODT). In this Letter, tomographic phase microscopy (TPM) is reviewed that experimentally realizes the concept of the ODT for the 3D mapping of biological cells in their native state, and some of its interesting biological and biomedical applications are introduced. [Figure not available: see fulltext.

  6. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    PubMed Central

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  7. Atomic force microscopy of biological samples.

    PubMed

    Allison, David P; Mortensen, Ninell P; Sullivan, Claretta J; Doktycz, Mitchel J

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH). PMID:20672388

  8. Atomic force microscopy of biological samples

    SciTech Connect

    Doktycz, Mitchel John

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).

  9. Nonlinear vibrational microscopy applied to lipid biology.

    PubMed

    Zumbusch, Andreas; Langbein, Wolfgang; Borri, Paola

    2013-10-01

    Optical microscopy is an indispensable tool that is driving progress in cell biology. It still is the only practical means of obtaining spatial and temporal resolution within living cells and tissues. Most prominently, fluorescence microscopy based on dye-labeling or protein fusions with fluorescent tags is a highly sensitive and specific method of visualizing biomolecules within sub-cellular structures. It is however severely limited by labeling artifacts, photo-bleaching and cytotoxicity of the labels. Coherent Raman Scattering (CRS) has emerged in the last decade as a new multiphoton microscopy technique suited for imaging unlabeled living cells in real time with high three-dimensional spatial resolution and chemical specificity. This technique has proven to be particularly successful in imaging unstained lipids from artificial membrane model systems, to living cells and tissues to whole organisms. In this article, we will review the experimental implementations of CRS microscopy and their application to imaging lipids. We will cover the theoretical background of linear and non-linear vibrational micro-spectroscopy necessary for the understanding of CRS microscopy. The different experimental implementations of CRS will be compared in terms of sensitivity limits and excitation and detection methods. Finally, we will provide an overview of the applications of CRS microscopy to lipid biology. PMID:24051337

  10. PLS photoemission electron microscopy beamline

    NASA Astrophysics Data System (ADS)

    Kang, Tai-Hee; Kim, Ki-jeong; Hwang, C. C.; Rah, S.; Park, C. Y.; Kim, Bongsoo

    2001-07-01

    The performance of a recently commissioned beamline at the Pohang Light Source (PLS) is described. The beamline, which is located at 4B1 at PLS, is a Varied Line Spacing (VLS) Plane Grating Monochromator (PGM) beamline. VLS PGM has become very popular because of the simple scanning mechanism and the fixed exit slit. The beamline which takes 3 mrad horizontal beam fan from bending magnet, covers the energy range 200-1000 eV for Photoemission Electron Microscopy (PEEM), X-ray Photoelectron Spectroscopy (XPS) and Magnetic Circular Dichroism (MCD) experiments. Simplicity of the optics and high flux with medium resolution were the design goals for these applications. The beamline consists of a horizontal focusing mirror, a vertical focusing mirror, VLS plane grating and exit slit. The source of PLS could be used as a virtual entrance slit because of its small size and stability. The flux and the resolution of the beamline at the experimental station have been measured using an ion chamber and a calibrated photodiode. Test images of PEEM from a standard sample were taken to illustrate the further performance of the beamline and PEEM station.

  11. Immunogold Labeling for Scanning Electron Microscopy.

    PubMed

    Goldberg, Martin W; Fišerová, Jindřiška

    2016-01-01

    Scanning electron microscopes are useful biological tools that can be used to image the surface of whole organisms, tissues, cells, cellular components, and macromolecules. Processes and structures that exist at surfaces can be imaged in pseudo, or real 3D at magnifications ranging from about 10× to 1,000,000×. Therefore a whole multicellular organism, such as a fly, or a single protein embedded in one of its cell membranes can be visualized. In order to identify that protein at high resolution, or to see and quantify its distribution at lower magnifications, samples can be labeled with antibodies. Any surface that can be exposed can potentially be studied in this way. Presented here is a generic method for immunogold labeling for scanning electron microscopy, using two examples of specimens: isolated nuclear envelopes and the cytoskeleton of mammalian culture cells. Various parameters for sample preparation, fixation, immunogold labeling, drying, metal coating, and imaging are discussed so that the best immunogold scanning electron microscopy results can be obtained from different types of specimens. PMID:27515090

  12. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells

    PubMed Central

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-01-01

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results. PMID:26066680

  13. Silicon Nitride Windows for Electron Microscopy of Whole Cells

    PubMed Central

    Ring, E. A.; Peckys, D. B.; Dukes, M. J.; Baudoin, J. P.; de Jonge, N.

    2012-01-01

    Summary Silicon microchips with thin electron transparent silicon nitride windows provide a sample support that accommodates both light-, and electron microscopy of whole eukaryotic cells in vacuum or liquid, with minimum sample preparation steps. The windows are robust enough that cellular samples can be cultured directly onto them, with no addition of a supporting film, and no need to embed or section the sample, as is typically required in electron microscopy. By combining two microchips, a microfluidic chamber can be constructed for the imaging of samples in liquid in the electron microscope. We provide microchip design specifications, a fabrication outline, instructions on how to prepare them for biological samples, and examples of images obtained using different light-, and electron microscopy modalities. The use of these microchips is particularly advantageous for correlative light-, and electron microscopy. PMID:21770941

  14. Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function

    PubMed Central

    Begemann, Isabell; Galic, Milos

    2016-01-01

    Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that allow correlating functional fluorescence microscopy data and ultrastructural information from electron micrographs from a singular biological event. As correlative light electron microscopy (CLEM) approaches become increasingly accessible, long-standing neurobiological questions regarding structure-function relation are being revisited. In this review, we will survey what developments in electron and light microscopy have spurred the advent of correlative approaches, highlight the most relevant CLEM techniques that are currently available, and discuss its potential and limitations with respect to neuronal and synapse-specific applications. PMID:27601992

  15. Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function.

    PubMed

    Begemann, Isabell; Galic, Milos

    2016-01-01

    Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that allow correlating functional fluorescence microscopy data and ultrastructural information from electron micrographs from a singular biological event. As correlative light electron microscopy (CLEM) approaches become increasingly accessible, long-standing neurobiological questions regarding structure-function relation are being revisited. In this review, we will survey what developments in electron and light microscopy have spurred the advent of correlative approaches, highlight the most relevant CLEM techniques that are currently available, and discuss its potential and limitations with respect to neuronal and synapse-specific applications. PMID:27601992

  16. Analytical transmission electron microscopy in materials science

    SciTech Connect

    Fraser, H.L.

    1980-01-01

    Microcharacterization of materials on a scale of less than 10 nm has been afforded by recent advances in analytical transmission electron microscopy. The factors limiting accurate analysis at the limit of spatial resolution for the case of a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy are examined in this paper.

  17. Atomic Force Microscopy of Biological Membranes

    PubMed Central

    Frederix, Patrick L.T.M.; Bosshart, Patrick D.; Engel, Andreas

    2009-01-01

    Abstract Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes. PMID:19167286

  18. Study of nanoscale structural biology using advanced particle beam microscopy

    NASA Astrophysics Data System (ADS)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  19. The CryoCapsule: Simplifying correlative light to electron microscopy

    PubMed Central

    Heiligenstein, Xavier; Heiligenstein, Jérôme; Delevoye, Cédric; Hurbain, Ilse; Bardin, Sabine; Paul-Gilloteaux, Perrine; Sengmanivong, Lucie; Régnier, Gilles; Salamero, Jean; Antony, Claude; Raposo, Graca

    2014-01-01

    Correlating complementary multiple scale images of the same object is a straightforward means to decipher biological processes. Light and electron microscopy are the most commonly used imaging techniques, yet despite their complementarity, the experimental procedures available to correlate them are technically complex. We designed and manufactured a new device adapted to many biological specimens, the CryoCapsule, that simplifies the multiple sample preparation steps, which at present separate live cell fluorescence imaging from contextual high-resolution electron microscopy, thus opening new strategies for full correlative light to electron microscopy. We tested the biological application of this highly optimized tool on three different specimens: the in-vitro Xenopus laevis mitotic spindle, melanoma cells over-expressing YFP-langerin sequestered in organized membranous subcellular organelles and a pigmented melanocytic cell in which the endosomal system was labeled with internalized fluorescent transferrin. PMID:24533564

  20. Multimodal dyes: toward correlative two-photon and electron microscopy

    NASA Astrophysics Data System (ADS)

    Bolze, Frédéric; Ftouni, Hussein; Nicoud, Jean-François; Leoni, Piero; Schwab, Yannick; Rehspringer, Jean-Luc; Mafouana, Rodrigues R.

    2013-03-01

    Nowadays, many crucial biological questions involve the observation of biological samples at different scales. Thus, optical microscopy can be associated to magnetic nuclear imaging allowing access to data from the cellular to the organ level, or can be associated to electron microscopy to reach the sub cellular level. We will describe here the design, synthesis and characterization of new bimodal probes, which can be used as dye in two-photon excited microscopy (TPEM) and electron dense markers in scanning and transmission electron microscopy (EM). In a first part, we will describe new molecular dyes with small organic systems grafted on metal atoms (Pt, Au). Such systems show good twophoton induced fluorescence and two-photon images of HeLa cells will be presented. In a second part, we will present hybrid organic-inorganic fluorescent systems with diketopyrrolopyrole-based dye grafted on iron oxide-silica core shell nanoparticles by peptide bond. Such systems present high two-photon absorption cross sections and good fluorescence quantum yields. These nanoparticles are rapidly internalized in HeLa cells and high quality two-photon images were performed with low laser power. Then we will present our results on correlative light-electron microscopy were twophoton and electron microscopy (both scanning and transmission) images were obtained on the same biological sample.

  1. Fast electron microscopy via compressive sensing

    SciTech Connect

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  2. Entanglement-assisted electron microscopy based on a flux qubit

    SciTech Connect

    Okamoto, Hiroshi; Nagatani, Yukinori

    2014-02-10

    A notorious problem in high-resolution biological electron microscopy is radiation damage caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio-frequency superconducting quantum interference device, inserted in a transmission electron microscope. The scheme significantly improves the prospect of realizing a quantum-enhanced electron microscope for radiation-sensitive specimens.

  3. Fibreoptic fluorescent microscopy in studying biological objects

    SciTech Connect

    Morozov, A N; Turchin, Il'ya V; Kamenskii, V A; Fiks, I I; Lazutkin, A A; Bezryadkov, D V; Ivanova, A A; Toptunov, D M; Anokhin, K V

    2010-11-13

    The method of fluorescent microscopy is developed based on employment of a single-mode fibreoptic channel to provide high spatial resolution 3D images of large cleared biological specimens using the 488-nm excitation laser line. The transverse and axial resolution of the setup is 5 and 13 {mu}m, respectively. The transversal sample size under investigation is up to 10 mm. The in-depth scanning range depends on the sample transparency and reaches 4 mm in the experiment. The 3D images of whole mouse organs (heart, lungs, brain) and mouse embryos obtained using autofluorescence or fluorescence of exogenous markers demonstrate a high contrast and cellular-level resolution.

  4. Acoustic impedance microscopy for biological tissue characterization.

    PubMed

    Kobayashi, Kazuto; Yoshida, Sachiko; Saijo, Yoshifumi; Hozumi, Naohiro

    2014-09-01

    A new method for two-dimensional acoustic impedance imaging for biological tissue characterization with micro-scale resolution was proposed. A biological tissue was placed on a plastic substrate with a thickness of 0.5mm. A focused acoustic pulse with a wide frequency band was irradiated from the "rear side" of the substrate. In order to generate the acoustic wave, an electric pulse with two nanoseconds in width was applied to a PVDF-TrFE type transducer. The component of echo intensity at an appropriate frequency was extracted from the signal received at the same transducer, by performing a time-frequency domain analysis. The spectrum intensity was interpreted into local acoustic impedance of the target tissue. The acoustic impedance of the substrate was carefully assessed prior to the measurement, since it strongly affects the echo intensity. In addition, a calibration was performed using a reference material of which acoustic impedance was known. The reference material was attached on the same substrate at different position in the field of view. An acoustic impedance microscopy with 200×200 pixels, its typical field of view being 2×2 mm, was obtained by scanning the transducer. The development of parallel fiber in cerebella cultures was clearly observed as the contrast in acoustic impedance, without staining the specimen. The technique is believed to be a powerful tool for biological tissue characterization, as no staining nor slicing is required. PMID:24852259

  5. Photoemission electron microscopy of graphene

    NASA Astrophysics Data System (ADS)

    Saliba, Sebastian; Wardini, Jenna; Fitzgerald, J. P. S.; Word, Robert C.; Kevek, Josh; Minot, Ethan; Koenenkamp, Rolf

    2012-10-01

    A study of chemical vapor deposited graphene on copper foil is conducted using an aberration-corrected photoemission electron microscope (PEEM). We demonstrate the efficacy such a PEEM has in identifying multi-layer graphene, defects and cracking. A model is developed to describe the observed reduction in photoemission rate where electrons originate from the copper foil and scatter through the graphene. A survey of several multi-layer feature line profiles demonstrates the reduced photoemission rate as the number of graphene layers increases. A mean-free-path length of l=3.8±0.8 nm is inferred assuming the layer spacing in graphene is δz=0.35 nm. The PEEM's high spatial resolution and surface sensitivity combined with no electron beam damage are promising for characterizing biosensors and other nanoscale graphene devices.

  6. Correlated light and electron microscopy: ultrastructure lights up!

    PubMed

    de Boer, Pascal; Hoogenboom, Jacob P; Giepmans, Ben N G

    2015-06-01

    Microscopy has gone hand in hand with the study of living systems since van Leeuwenhoek observed living microorganisms and cells in 1674 using his light microscope. A spectrum of dyes and probes now enable the localization of molecules of interest within living cells by fluorescence microscopy. With electron microscopy (EM), cellular ultrastructure has been revealed. Bridging these two modalities, correlated light microscopy and EM (CLEM) opens new avenues. Studies of protein dynamics with fluorescent proteins (FPs), which leave the investigator 'in the dark' concerning cellular context, can be followed by EM examination. Rare events can be preselected at the light microscopy level before EM analysis. Ongoing development-including of dedicated probes, integrated microscopes, large-scale and three-dimensional EM and super-resolution fluorescence microscopy-now paves the way for broad CLEM implementation in biology. PMID:26020503

  7. Image simulation for biological microscopy: microlith

    PubMed Central

    Mehta, Shalin B.; Oldenbourg, Rudolf

    2014-01-01

    Image simulation remains under-exploited for the most widely used biological phase microscopy methods, because of difficulties in simulating partially coherent illumination. We describe an open-source toolbox, microlith (https://code.google.com/p/microlith), which accurately predicts three-dimensional images of a thin specimen observed with any partially coherent imaging system, as well as images of coherently illuminated and self-luminous incoherent specimens. Its accuracy is demonstrated by comparing simulated and experimental bright-field and dark-field images of well-characterized amplitude and phase targets, respectively. The comparison provides new insights about the sensitivity of the dark-field microscope to mass distributions in isolated or periodic specimens at the length-scale of 10nm. Based on predictions using microlith, we propose a novel approach for detecting nanoscale structural changes in a beating axoneme using a dark-field microscope. PMID:24940543

  8. Resolution measures in molecular electron microscopy

    PubMed Central

    Penczek, Pawel A.

    2011-01-01

    Resolution measures in molecular electron microscopy provide means to evaluate quality of macromolecular structures computed from sets of their two-dimensional line projections. When the amount of detail in the computed density map is low there are no external standards by which the resolution of the result can be judged. Instead, resolution measures in molecular electron microscopy evaluate consistency of the results in reciprocal space and present it as a one-dimensional function of the modulus of spatial frequency. Here we provide description of standard resolution measures commonly used in electron microscopy. We point out that the organizing principle is the relationship between these measures and the Spectral Signal-to-Noise Ratio of the computed density map. Within this framework it becomes straightforward to describe the connection between the outcome of resolution evaluations and the quality of electron microscopy maps, in particular, the optimum filtration, in the Wiener sense, of the computed map. We also provide a discussion of practical difficulties of evaluation of resolution in electron microscopy, particularly in terms of its sensitivity to data processing operations used during structure determination process in single particle analysis and in electron tomography. PMID:20888958

  9. Electron Microscopy of Natural and Epitaxial Diamond

    NASA Technical Reports Server (NTRS)

    Posthill, J. B.; George, T.; Malta, D. P.; Humphreys, T. P.; Rudder, R. A.; Hudson, G. C.; Thomas, R. E.; Markunas, R. J.

    1993-01-01

    Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. Ultimately, it is preferable to use low-defect-density single crystal diamond for device fabrication. We have previously investigated polycrystalline diamond films with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and homoepitaxial films with SEM-based techniques. This contribution describes some of our most recent observations of the microstructure of natural diamond single crystals and homoepitaxial diamond thin films using TEM.

  10. Electron Microscopy Characterization of Hybrid Metallic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Shindo, Daisuke; Akase, Zentaro

    In order to understand the excellent properties of nanoscale hybridized materials, it is very important to investigate the microstructures and interfaces of these materials at the nanometer scale. In this chapter, we present the basic principles of transmission electron microscopy and its applications to these materials. In addition to high-resolution transmission electron microscopy (HREM) and high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM), analytical electron microscopy, including energy dispersive X-ray spectroscopy (EDS) and electron energyloss spectroscopy (EELS) as well as elemental mapping methods using these spectroscopy techniques will be presented. Also, the electron holographic technique for characterization of magnetic fields of nanohybridized materials will be explained. In addition to electron microscopic observation techniques, recently developed specimen preparation techniques, which are indispensable for obtaining homogeneous and thin films of nanohybridized materials, will be presented. In particular, a focused ion beam (FIB) method will be emphasized. The nanohybridized materials discussed in this chapter include carbon-based core-shell structure, nanocrystalline soft magnetic materials, nanocomposite magnets, and high-T c superconducting oxides. Application data will be provided in order to explain the usefulness of these analytical techniques for characterization of nanohybridized materials.

  11. Electron Microscopy of the Cell

    PubMed Central

    Leeson, T. S.

    1965-01-01

    The use of the electron microscope has added much to our knowledge of the cell. The fine structure of the component parts of the nucleus and the cytoplasm is described, and their functions are indicated. The nature and structural modifications of the plasma membrane are illustrated with particular reference to function. To illustrate the interrelationships of the nucleus and cytoplasm, the theory of protein secretion is discussed, the secretion of a particular protein or polypeptide being determined by a particular nucleotide sequence in the desoxyribonucleic acid of a chromosome, that is, by a gene. This information is transferred from nucleus to cytoplasm. It is in the cytoplasm that the majority of the work is performed while the nucleus directs the work of the cell. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 20Fig. 21Fig. 22Fig. 23Fig. 24Fig. 25Fig. 26 PMID:5829410

  12. Optical microscopy versus scanning electron microscopy in urolithiasis.

    PubMed

    Marickar, Y M Fazil; Lekshmi, P R; Varma, Luxmi; Koshy, Peter

    2009-10-01

    Stone analysis is incompletely done in many clinical centers. Identification of the stone component is essential for deciding future prophylaxis. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM) still remains a distant dream for routine hospital work. It is in this context that optical microscopy is suggested as an alternate procedure. The objective of this article was to assess the utility of an optical microscope which gives magnification of up to 40x and gives clear picture of the surface of the stones. In order to authenticate the morphological analysis of urinary stones, SEM and elemental distribution analysis were performed. A total of 250 urinary stones of different compositions were collected from stone clinic, photographed, observed under an optical microscope, and optical photographs were taken at different angles. Twenty-five representative samples among these were gold sputtered to make them conductive and were fed into the SEM machine. Photographs of the samples were taken at different angles at magnifications up to 4,000. Elemental distribution analysis (EDAX) was done to confirm the composition. The observations of the two studies were compared. The different appearances of the stones under optical illuminated microscopy were mostly standardized appearances, namely bosselations of pure whewellite, spiculations of weddellite, bright yellow colored appearance of uric acid, and dirty white amorphous appearance of phosphates. SEM and EDAX gave clearer pictures and gave added confirmation of the stone composition. From the references thus obtained, it was possible to confirm the composition by studying the optical microscopic pictures. Higher magnification capacity of the SEM and the EDAX patterns are useful to give reference support for performing optical microscopy work. After standardization, routine analysis can be performed with optical microscopy. The advantage of the optical microscope is that, it

  13. Photon-induced near-field electron microscopy.

    PubMed

    Barwick, Brett; Flannigan, David J; Zewail, Ahmed H

    2009-12-17

    In materials science and biology, optical near-field microscopies enable spatial resolutions beyond the diffraction limit, but they cannot provide the atomic-scale imaging capabilities of electron microscopy. Given the nature of interactions between electrons and photons, and considering their connections through nanostructures, it should be possible to achieve imaging of evanescent electromagnetic fields with electron pulses when such fields are resolved in both space (nanometre and below) and time (femtosecond). Here we report the development of photon-induced near-field electron microscopy (PINEM), and the associated phenomena. We show that the precise spatiotemporal overlap of femtosecond single-electron packets with intense optical pulses at a nanostructure (individual carbon nanotube or silver nanowire in this instance) results in the direct absorption of integer multiples of photon quanta (nhomega) by the relativistic electrons accelerated to 200 keV. By energy-filtering only those electrons resulting from this absorption, it is possible to image directly in space the near-field electric field distribution, obtain the temporal behaviour of the field on the femtosecond timescale, and map its spatial polarization dependence. We believe that the observation of the photon-induced near-field effect in ultrafast electron microscopy demonstrates the potential for many applications, including those of direct space-time imaging of localized fields at interfaces and visualization of phenomena related to photonics, plasmonics and nanostructures. PMID:20016598

  14. Active Pixel Sensors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Denes, P.; Bussat, J.-M.; Lee, Z.; Radmillovic, V.

    2007-09-01

    The technology used for monolithic CMOS imagers, popular for cell phone cameras and other photographic applications, has been explored for charged particle tracking by the high-energy physics community for several years. This technology also lends itself to certain imaging detector applications in electron microscopy. We have been developing such detectors for several years at Lawrence Berkeley National Laboratory, and we and others have shown that this technology can offer excellent point-spread function, direct detection and high readout speed. In this paper, we describe some of the design constraints peculiar to electron microscopy and summarize where such detectors could play a useful role.

  15. Contributed Review: Review of integrated correlative light and electron microscopy

    NASA Astrophysics Data System (ADS)

    Timmermans, F. J.; Otto, C.

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  16. Contributed Review: Review of integrated correlative light and electron microscopy

    SciTech Connect

    Timmermans, F. J.; Otto, C.

    2015-01-15

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  17. [Pili annulati. A scanning electron microscopy study].

    PubMed

    Lalević-Vasić, B; Polić, D

    1988-01-01

    A case of ringed hair studied by light and electron microscopy is reported. The patient, a 20-year old girl, had been presenting with the hair abnormality since birth. At naked eye examination the hairs were dry, 6 to 7 cm long, and they showed dull and shining areas giving the scalp hair a scintillating appearance (fig. 1). Several samples of hair were taken and examined by light microscopy under white and polarized light. Hair shafts and cryo-fractured surfaces were examined by scanning electron microscopy. RESULTS. 1. Light microscopy. Lesions were found in every hair examined. There were abnormal, opaque and fusiform areas alternating with normal areas all along the hair shaft (fig. 2). The abnormal areas resulted from intracortical air-filled cavities. Fractures similar to those of trichorrhexis nodosa were found in the opaque areas of the distal parts of the hairs. 2. Scanning electron microscopy. A. Hair shaft surface. The abnormal areas showed a longitudinal, "curtain-like" folding of the cuticular cells which had punctiform depressions on their surface and worn free edges (fig. 4, 5, 6); trichorrhexis-type fractures were seen in the distal parts of the hair shafts (fig. 7, 8). Normal areas regularly presented with longitudinal, superficial, short and non-systematized depressions (fig. 9); the cuticular cells were worn, and there were places where the denuded cortex showed dissociated cortical fibres (fig. 10).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3415147

  18. Wet electron microscopy with quantum dots.

    PubMed

    Timp, Winston; Watson, Nicki; Sabban, Alon; Zik, Ory; Matsudaira, Paul

    2006-09-01

    Wet electron microscopy (EM) is a new imaging method with the potential to allow higher spatial resolution of samples. In contrast to most EM methods, it requires little time to perform and does not require complicated equipment or difficult steps. We used this method on a common murine macrophage cell line, IC-21, in combination with various stains and preparations, to collect high resolution images of the actin cytoskeleton. Most importantly, we demonstrated the use of quantum dots in conjunction with this technique to perform light/electron correlation microscopy. We found that wet EM is a useful tool that fits into a niche between the simplicity of light microscopy and the high spatial resolution of EM. PMID:16989089

  19. The rapidly changing face of electron microscopy

    NASA Astrophysics Data System (ADS)

    Thomas, John Meurig; Leary, Rowan K.; Eggeman, Alexander S.; Midgley, Paul A.

    2015-07-01

    This short but wide-ranging review is intended to convey to chemical physicists and others engaged in the interfaces between solid-state chemistry and solid-state physics the growing power and extensive applicability of multiple facets of the technique of electron microscopy.

  20. Photon gating in four-dimensional ultrafast electron microscopy

    PubMed Central

    Hassan, Mohammed T.; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H.

    2015-01-01

    Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon–electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a “single” light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a “second” optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM. PMID:26438835

  1. Photon-induced near field electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Tae; Zewail, Ahmed H.

    2013-09-01

    Ultrafast electron microscopy in the space and time domains utilizes a pulsed electron probe to directly map structural dynamics of nanomaterials initiated by an optical pump pulse, in imaging, di raction, spectroscopy, and their combinations. It has demonstrated its capability in the studies of phase transitions, mechanical vibrations, and chemical reactions. Moreover, electrons can directly interact with photons via the near eld component of light scattering by nanostructures, and either gain or lose light quanta discretely in energy. By energetically selecting those electrons that exchanged photon energies, we can map this photon-electron interaction, and the technique is termed photon-induced near eld electron microscopy (PINEM). Here, we give an account of the theoretical understanding of PINEM. Experimentally, nanostructures such as a sphere, cylinder, strip, and triangle have been investigated. Theoretically, time-dependent Schrodinger and Dirac equations for an electron under light are directly solved to obtain analytical solutions. The interaction probability is expressed by the mechanical work done by an optical wave on a traveling electron, which can be evaluated analytically by the near eld components of the Rayleigh scattering for small spheres and thin cylinders, and numerically by the discrete dipole approximation for other geometries. Application in visualization of plasmon elds is discussed.

  2. Chemistry of coal from electron microscopy measurements

    SciTech Connect

    Wert, C.A.; Hsieh, K.C.; Fraser, H.

    1986-04-01

    Well established techniques of analytical electron microscopy have applications to the chemistry of coal. The techniques use one or another of several interactions which occur when electrons are incident on a specimen. Two such interactions are discussed in this paper: 1: X-ray emission spectroscopy and 2: Electron energy loss spectroscopy. Both methods are used in the study of metallic and ceramic systems. The principles of the technique are illustrated by applications to metallic and ceramic systems; initial applications to coal are then described.

  3. A quick guide to light microscopy in cell biology

    PubMed Central

    Thorn, Kurt

    2016-01-01

    Light microscopy is a key tool in modern cell biology. Light microscopy has several features that make it ideally suited for imaging biology in living cells: the resolution is well-matched to the sizes of subcellular structures, a diverse range of available fluorescent probes makes it possible to mark proteins, organelles, and other structures for imaging, and the relatively nonperturbing nature of light means that living cells can be imaged for long periods of time to follow their dynamics. Here I provide a brief introduction to using light microscopy in cell biology, with particular emphasis on factors to be considered when starting microscopy experiments. PMID:26768859

  4. Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.

    2013-01-01

    Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024

  5. Experiments in electron microscopy: from metals to nerves

    NASA Astrophysics Data System (ADS)

    Unwin, Nigel

    2015-04-01

    Electron microscopy has advanced remarkably as a tool for biological structure research since the development of methods to examine radiation-sensitive unstained specimens and the introduction of cryo-techniques. Structures of biological molecules at near-atomic resolution can now be obtained from images of single particles as well as crystalline arrays. It has also become possible to analyze structures of molecules in their functional context, i.e. in their natural membrane or cellular setting, and in an ionic environment like that in living tissue. Electron microscopy is thus opening ways to answer definitively questions about physiological mechanisms. Here I recall a number of experiments contributing to, and benefiting from the technical advances that have taken place. I begin—in the spirit of this crystallography series—with some biographical background, and then sketch the path to an analysis by time-resolved microscopy of the opening mechanism of an ion channel (nicotinic acetylcholine receptor). This analysis illustrates how electron imaging can be combined with freeze-trapping to illuminate a transient biological event: in our case, chemical-to-electrical transduction at the nerve-muscle synapse.

  6. Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy.

    PubMed

    Liss, Viktoria; Barlag, Britta; Nietschke, Monika; Hensel, Michael

    2015-01-01

    Research in cell biology demands advanced microscopy techniques such as confocal fluorescence microscopy (FM), super-resolution microscopy (SRM) and transmission electron microscopy (TEM). Correlative light and electron microscopy (CLEM) is an approach to combine data on the dynamics of proteins or protein complexes in living cells with the ultrastructural details in the low nanometre scale. To correlate both data sets, markers functional in FM, SRM and TEM are required. Genetically encoded markers such as fluorescent proteins or self-labelling enzyme tags allow observations in living cells. Various genetically encoded tags are available for FM and SRM, but only few tags are suitable for CLEM. Here, we describe the red fluorescent dye tetramethylrhodamine (TMR) as a multimodal marker for CLEM. TMR is used as fluorochrome coupled to ligands of genetically encoded self-labelling enzyme tags HaloTag, SNAP-tag and CLIP-tag in FM and SRM. We demonstrate that TMR can additionally photooxidize diaminobenzidine (DAB) to an osmiophilic polymer visible on TEM sections, thus being a marker suitable for FM, SRM and TEM. We evaluated various organelle markers with enzymatic tags in mammalian cells labelled with TMR-coupled ligands and demonstrate the use as efficient and versatile DAB photooxidizer for CLEM approaches. PMID:26643905

  7. Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy

    PubMed Central

    Liss, Viktoria; Barlag, Britta; Nietschke, Monika; Hensel, Michael

    2015-01-01

    Research in cell biology demands advanced microscopy techniques such as confocal fluorescence microscopy (FM), super-resolution microscopy (SRM) and transmission electron microscopy (TEM). Correlative light and electron microscopy (CLEM) is an approach to combine data on the dynamics of proteins or protein complexes in living cells with the ultrastructural details in the low nanometre scale. To correlate both data sets, markers functional in FM, SRM and TEM are required. Genetically encoded markers such as fluorescent proteins or self-labelling enzyme tags allow observations in living cells. Various genetically encoded tags are available for FM and SRM, but only few tags are suitable for CLEM. Here, we describe the red fluorescent dye tetramethylrhodamine (TMR) as a multimodal marker for CLEM. TMR is used as fluorochrome coupled to ligands of genetically encoded self-labelling enzyme tags HaloTag, SNAP-tag and CLIP-tag in FM and SRM. We demonstrate that TMR can additionally photooxidize diaminobenzidine (DAB) to an osmiophilic polymer visible on TEM sections, thus being a marker suitable for FM, SRM and TEM. We evaluated various organelle markers with enzymatic tags in mammalian cells labelled with TMR-coupled ligands and demonstrate the use as efficient and versatile DAB photooxidizer for CLEM approaches. PMID:26643905

  8. Frontiers of in situ electron microscopy

    DOE PAGESBeta

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore » this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less

  9. Scanning electron microscopy of superficial white onychomycosis.

    PubMed

    Almeida, Hiram Larangeira de; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques E; Castro, Luis Antonio Suita de

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  10. Scanning electron microscopy of superficial white onychomycosis*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  11. Introduction to Atomic Force Microscopy (AFM) in Biology.

    PubMed

    Kreplak, Laurent

    2016-01-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc. PMID:27479503

  12. Breaking resolution limits in ultrafast electron diffraction and microscopy

    PubMed Central

    Baum, Peter; Zewail, Ahmed H.

    2006-01-01

    Ultrafast electron microscopy and diffraction are powerful techniques for the study of the time-resolved structures of molecules, materials, and biological systems. Central to these approaches is the use of ultrafast coherent electron packets. The electron pulses typically have an energy of 30 keV for diffraction and 100–200 keV for microscopy, corresponding to speeds of 33–70% of the speed of light. Although the spatial resolution can reach the atomic scale, the temporal resolution is limited by the pulse width and by the difference in group velocities of electrons and the light used to initiate the dynamical change. In this contribution, we introduce the concept of tilted optical pulses into diffraction and imaging techniques and demonstrate the methodology experimentally. These advances allow us to reach limits of time resolution down to regimes of a few femtoseconds and, possibly, attoseconds. With tilted pulses, every part of the sample is excited at precisely the same time as when the electrons arrive at the specimen. Here, this approach is demonstrated for the most unfavorable case of ultrafast crystallography. We also present a method for measuring the duration of electron packets by autocorrelating electron pulses in free space and without streaking, and we discuss the potential of tilting the electron pulses themselves for applications in domains involving nuclear and electron motions. PMID:17056711

  13. The Electron Microscopy eXchange (EMX) initiative.

    PubMed

    Marabini, Roberto; Ludtke, Steven J; Murray, Stephen C; Chiu, Wah; de la Rosa-Trevín, Jose M; Patwardhan, Ardan; Heymann, J Bernard; Carazo, Jose M

    2016-05-01

    Three-dimensional electron microscopy (3DEM) of ice-embedded samples allows the structural analysis of large biological macromolecules close to their native state. Different techniques have been developed during the last forty years to process cryo-electron microscopy (cryo-EM) data. Not surprisingly, success in analysis and interpretation is highly correlated with the continuous development of image processing packages. The field has matured to the point where further progress in data and methods sharing depends on an agreement between the packages on how to describe common image processing tasks. Such standardization will facilitate the use of software as well as seamless collaboration, allowing the sharing of rich information between different platforms. Our aim here is to describe the Electron Microscopy eXchange (EMX) initiative, launched at the 2012 Instruct Image Processing Center Developer Workshop, with the intention of developing a first set of standard conventions for the interchange of information for single-particle analysis (EMX version 1.0). These conventions cover the specification of the metadata for micrograph and particle images, including contrast transfer function (CTF) parameters and particle orientations. EMX v1.0 has already been implemented in the Bsoft, EMAN, Xmipp and Scipion image processing packages. It has been and will be used in the CTF and EMDataBank Validation Challenges respectively. It is also being used in EMPIAR, the Electron Microscopy Pilot Image Archive, which stores raw image data related to the 3DEM reconstructions in EMDB. PMID:26873784

  14. The New Electron Microscopy: Cells and Molecules in Three Dimensions | Poster

    Cancer.gov

    NCI recently announced the launch of the new National Cryo-Electron Microscopy Facility (NCEF) at the Frederick National Laboratory for Cancer Research (FNLCR). The launch comes while cryo-electron microscopy (cryo-EM) is enjoying the spotlight as a newly emerging, rapidly evolving technology with the potential to revolutionize the field of structural biology. Read more...

  15. Imaging metal oxide nanoparticles in biological structures with CARS microscopy.

    PubMed

    Moger, Julian; Johnston, Blair D; Tyler, Charles R

    2008-03-01

    Metal oxide nanomaterials are being used for an increasing number of commercial applications, such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and as drug delivery vehicles. The effects of these nanoparticles on the physiology of animals and in the environment are largely unknown and their potential associated health risks are currently a topic of hot debate. Information regarding the entry route of nanoparticles into exposed organisms and their subsequent localization within tissues and cells in the body are essential for understanding their biological impact. However, there is currently no imaging modality available that can simultaneously image these nanoparticles and the surrounding tissues without disturbing the biological structure. Due to their large nonlinear optical susceptibilities, which are enhanced by two-photon electronic resonance, metal oxides are efficient sources of coherent anti-Stokes Raman Scattering (CARS). We show that CARS microscopy can provide localization of metal oxide nanoparticles within biological structures at the cellular level. Nanoparticles of 20 - 70 nm in size were imaged within the fish gill; a structure that is a primary site of pollutant uptake into fish from the aquatic environment. PMID:18542432

  16. Biological imaging with coherent Raman scattering microscopy: a tutorial

    PubMed Central

    Alfonso-García, Alba; Mittal, Richa; Lee, Eun Seong; Potma, Eric O.

    2014-01-01

    Abstract. Coherent Raman scattering (CRS) microscopy is gaining acceptance as a valuable addition to the imaging toolset of biological researchers. Optimal use of this label-free imaging technique benefits from a basic understanding of the physical principles and technical merits of the CRS microscope. This tutorial offers qualitative explanations of the principles behind CRS microscopy and provides information about the applicability of this nonlinear optical imaging approach for biological research. PMID:24615671

  17. Biological oscillations: Fluorescence monitoring by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chattoraj, Shyamtanu; Bhattacharyya, Kankan

    2016-09-01

    Fluctuations play a vital role in biological systems. Single molecule spectroscopy has recently revealed many new kinds of fluctuations in biological molecules. In this account, we focus on structural fluctuations of an antigen-antibody complex, conformational dynamics of a DNA quadruplex, effects of taxol on dynamics of microtubules, intermittent red-ox oscillations at different organelles in a live cell (mitochondria, lipid droplets, endoplasmic reticulum and cell membrane) and stochastic resonance in gene silencing. We show that there are major differences in these dynamics between a cancer cell and the corresponding non-cancer cell.

  18. Scanning electron microscopy: preparation and imaging for SEM.

    PubMed

    Jones, Chris G

    2012-01-01

    Scanning electron microscopy (SEM) has been almost universally applied for the surface examination and characterization of both natural and man-made objects. Although an invasive technique, developments in electron microscopy over the years has given the microscopist a much clearer choice in how invasive the technique will be. With the advent of low vacuum SEM in the 1970s (The environmental cold stage, 1970) and environmental SEM in the late 1980s (J Microsc 160(pt. 1):9-19, 1989), it is now possible in some circumstances to examine samples without preparation. However, for the examination of biological tissue and cells it is still advisable to chemically fix, dehydrate, and coat samples for SEM imaging and analysis. This chapter aims to provide an overview of SEM as an imaging tool, and a general introduction to some of the methods applied for the preparation of samples. PMID:22907399

  19. Electron Microscopy of Young Candida albicans Chlamydospores

    PubMed Central

    Miller, Sara E.; Spurlock, Ben O.; Michaels, G. E.

    1974-01-01

    One- to three-day-old cultures of Candida albicans bearing chlamydospores were grown and harvested by a special technique, free of agar, and prepared for ultramicrotomy and electron microscopy. These young chlamydospores exhibited a subcellular structure similar to that of the yeast phase, e.g., cytoplasmic membrane, ribosomes, and mitochondria. Other structural characteristics unique to chlamydospores were a very thick, layered cell wall, the outer layer of which was continuous with the outer layer of the suspensor cell wall and was covered by hair-like projections; membrane bound organelles; and large lipoid inclusions. Only young chlamydospores less than 3 to 4 days old exhibited these ultrastructural characteristics. Images PMID:4368664

  20. Electron microscopy methods for studying plasma membranes.

    PubMed

    Beckett, Alison J; Prior, Ian A

    2015-01-01

    Electron microscopy allows direct visualization of the underlying organization of cell surface components on a nano-scale. Immuno-gold labelling of isolated plasma membranes generates point patterns that enable mapping of protein and lipid distributions. 2D spatial statistics reveals the extent to which these distributions are clustered or dispersed and allows the extent of co-localization between different cell surface components to be precisely determined. This approach has been successfully applied to the study of signalling network organization and the consequences of physiological changes in modulating cell surface function. PMID:25331134

  1. Feature Adaptive Sampling for Scanning Electron Microscopy.

    PubMed

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning. PMID:27150131

  2. Feature Adaptive Sampling for Scanning Electron Microscopy

    PubMed Central

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning. PMID:27150131

  3. Feature Adaptive Sampling for Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-05-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning.

  4. Electron Microscopy of Botrytis cinerea Conidia

    PubMed Central

    Buckley, Patricia M.; Sjaholm, Virginia E.; Sommer, N. F.

    1966-01-01

    Buckley, Patricia M. (University of California, Davis), Virginia E. Sjaholm, and N. F. Sommer. Electron microscopy of Botrytis cinerea conidia. J. Bacteriol. 91:2037–2044. 1966.—Sections of germinating and nongerminating Botrytis cinerea conidia were examined with an electron microscope. Uranyl acetate or lead citrate provided contrast between membranes and cytoplasm. Membrane-bounded, dense inclusions previously unreported in dormant spores were termed “storage bodies.” Whorled structures, spherules, granules, and membrane loops were seen within these inclusions. The various forms assumed by the enclosed materials closely resemble phospholipid inclusions described for other cells. It is suggested that the inclusions provide material for the assembly of membranous organelles during germination. Utilization of the stored material apparently results in extensive vacuolization in advanced germinants. Images PMID:5949251

  5. Scanning electron microscopy studies of bacterial cultures

    NASA Astrophysics Data System (ADS)

    Swinger, Tracy; Blust, Brittni; Calabrese, Joseph; Tzolov, Marian

    2012-02-01

    Scanning electron microscopy is a powerful tool to study the morphology of bacteria. We have used conventional scanning electron microscope to follow the modification of the bacterial morphology over the course of the bacterial growth cycle. The bacteria were fixed in vapors of Glutaraldehyde and ruthenium oxide applied in sequence. A gold film of about 5 nm was deposited on top of the samples to avoid charging and to enhance the contrast. We have selected two types of bacteria Alcaligenes faecalis and Kocuria rhizophila. Their development was carefully monitored and samples were taken for imaging in equal time intervals during their cultivation. These studies are supporting our efforts to develop an optical method for identification of the Gram-type of bacterial cultures.

  6. Development and biological applications of high-resolution ion beam induced fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Zhaohong, Mi

    High-resolution fluorescence microscopy has become an essential tool in both biological and biomedical sciences, to directly visualize biological processes at the cellular and subcellular levels through specific fluorescence labeling. Among the fluorescence microscopy techniques, mega-electron-volt (MeV) ion-induced fluorescence microscopy has unique advantages because MeV ions can penetrate through biological cells with little deflection in their trajectories. The state-of-the-art bioimaging facility in the Centre for Ion Beam Applications, National University of Singapore can achieve sub-30 nm spatial resolutions for structural imaging of biological cells, which is well below the diffraction limits imposed by optical microscopy. Our aim is to achieve similar spatial resolutions for Ion Beam Induced Fluorescence Imaging. (Abstract shortened by UMI.).

  7. Electron microscopy of compound oxide laser materials

    NASA Astrophysics Data System (ADS)

    Eakins, Daniel E.; LeBret, Joel B.; Norton, M. G.; Bahr, David F.; Dumm, John Q.

    2003-06-01

    Oxide single crystals, such as yttrium aluminum garnet (YAG) and yttrium orthovanadate (YVO4), are important host crystals for solid-state laser applications. These crystals are often grown by the Czochralski process and are doped with neodymium during growth. The microstructure of the resultant crystal affects the overall laser performance and it is necessary to be able to characterize grown-in defects in the material. Scanning electron microscopy has been used to examine the fracture surfaces of YAG and has shown the presence of microscopic voids, which act as stress concentrators and in some cases appear to be the cause of fracture. Transmission electron microscopy (TEM) has been used to characterize various defects in both YAG and YVO4 crystals. The defects found depend on the growth conditions, specifically the Nd concentration in the crystal and the position within the boule. One of the most common defects identified in both materials were microscopic spherical particles. In YAG these particles appeared to be located primarily in the core regions and analysis of high resolution images indicate that they are due to regions that are both compositionally and orientationally different from the matrix phase. Direct observation of dislocations in YVO4 was made using TEM. In YAG only indirect evidence for dislocations could be found from the observation of river marks on fracture surfaces.

  8. From high symmetry to high resolution in biological electron microscopy: a commentary on Crowther (1971) ‘Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs’

    PubMed Central

    Rosenthal, Peter B.

    2015-01-01

    Elucidation of the structure of biological macromolecules and larger assemblies has been essential to understanding the roles they play in living processes. Methods for three-dimensional structure determination of biological assemblies from images recorded in the electron microscope were therefore a key development. In his paper published in Philosophical Transactions B in 1971, Crowther described new computational procedures applied to the first three-dimensional reconstruction of an icosahedral virus from images of virus particles preserved in negative stain. The method for determining the relative orientation of randomly oriented particles and combining their images for reconstruction exploited the high symmetry of the virus particle. Computational methods for image analysis have since been extended to include biological assemblies without symmetry. Further experimental advances, combined with image analysis, have led to the method of cryomicroscopy, which is now used by structural biologists to study the structure and dynamics of biological machines and assemblies in atomic detail. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750240

  9. From high symmetry to high resolution in biological electron microscopy: a commentary on Crowther (1971) 'Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs'.

    PubMed

    Rosenthal, Peter B

    2015-04-19

    Elucidation of the structure of biological macromolecules and larger assemblies has been essential to understanding the roles they play in living processes. Methods for three-dimensional structure determination of biological assemblies from images recorded in the electron microscope were therefore a key development. In his paper published in Philosophical Transactions B in 1971, Crowther described new computational procedures applied to the first three-dimensional reconstruction of an icosahedral virus from images of virus particles preserved in negative stain. The method for determining the relative orientation of randomly oriented particles and combining their images for reconstruction exploited the high symmetry of the virus particle. Computational methods for image analysis have since been extended to include biological assemblies without symmetry. Further experimental advances, combined with image analysis, have led to the method of cryomicroscopy, which is now used by structural biologists to study the structure and dynamics of biological machines and assemblies in atomic detail. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750240

  10. Cryo electron microscopy to determine the structure of macromolecular complexes.

    PubMed

    Carroni, Marta; Saibil, Helen R

    2016-02-15

    Cryo-electron microscopy (cryo-EM) is a structural molecular and cellular biology technique that has experienced major advances in recent years. Technological developments in image recording as well as in processing software make it possible to obtain three-dimensional reconstructions of macromolecular assemblies at near-atomic resolution that were formerly obtained only by X-ray crystallography or NMR spectroscopy. In parallel, cryo-electron tomography has also benefitted from these technological advances, so that visualization of irregular complexes, organelles or whole cells with their molecular machines in situ has reached subnanometre resolution. Cryo-EM can therefore address a broad range of biological questions. The aim of this review is to provide a brief overview of the principles and current state of the cryo-EM field. PMID:26638773

  11. Electron Microscopy of Chromatophores of Rhodopseudomonas spheroides

    PubMed Central

    Gibson, K. D.

    1965-01-01

    Gibson, K. D. (St. Mary's Hospital Medical School, London, England). Electron microscopy of Rhodopseudomonas spheroides. J. Bacteriol. 90:1059–1072. 1965.—Fixed and stained chromatophores and whole cells of anaerobically grown Rhodopseudomonas spheroides were examined in thin sections in the electron microscope. Both purified chromatophores and intracellular membrane-bound vesicles had exactly the same appearance, namely that of spheres or ellipsoids with a thin electron-dense shell surrounding an electron-lucent interior. The distribution of diameters in the two types of structure was also found to be the same, and was compatible with a normal distribution, with a mean of 570 A and a standard deviation 40 A. Negatively stained chromatophores appeared like discs or collapsed spheres. The presence of invaginations of the cytoplasmic membrane in this species was confirmed, and a new structure resembling a twin chromatophore was observed. The bearing of these results on theories of the origin of chromatophores is discussed, and it is concluded that they offer some support for each one of the three main theories about the origin of particulate organelles. Images PMID:5847796

  12. Quantitative characterization of electron detectors for transmission electron microscopy

    PubMed Central

    Ruskin, Rachel S.; Yu, Zhiheng; Grigorieff, Nikolaus

    2013-01-01

    A new generation of direct electron detectors for transmission electron microscopy (TEM) promises significant improvement over previous detectors in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE). However, the performance of these new detectors needs to be carefully monitored in order to optimize imaging conditions and check for degradation over time. We have developed an easy-to-use software tool, FindDQE, to measure MTF and DQE of electron detectors using images of a microscope’s built-in beam stop. Using this software, we have determined the DQE curves of four direct electron detectors currently available: the Gatan K2 Summit, the FEI Falcon I and II, and the Direct Electron DE-12, under a variety of total dose and dose rate conditions. We have additionally measured the curves for the Gatan US4000 and TVIPS F416 scintillator-based cameras. We compare the results from our new method with published curves. PMID:24189638

  13. The origins and evolution of freeze-etch electron microscopy

    PubMed Central

    Heuser, John E.

    2011-01-01

    The introduction of the Balzers freeze-fracture machine by Moor in 1961 had a much greater impact on the advancement of electron microscopy than he could have imagined. Devised originally to circumvent the dangers of classical thin-section techniques, as well as to provide unique en face views of cell membranes, freeze-fracturing proved to be crucial for developing modern concepts of how biological membranes are organized and proved that membranes are bilayers of lipids within which proteins float and self-assemble. Later, when freeze-fracturing was combined with methods for freezing cells that avoided the fixation and cryoprotection steps that Moor still had to use to prepare the samples for his original invention, it became a means for capturing membrane dynamics on the millisecond time-scale, thus allowing a deeper understanding of the functions of biological membranes in living cells as well as their static ultrastructure. Finally, the realization that unfixed, non-cryoprotected samples could be deeply vacuum-etched or even freeze-dried after freeze-fracturing opened up a whole new way to image all the other molecular components of cells besides their membranes and also provided a powerful means to image the interactions of all the cytoplasmic components with the various membranes of the cell. The purpose of this review is to outline the history of these technical developments, to describe how they are being used in electron microscopy today and to suggest how they can be improved in order to further their utility for biological electron microscopy in the future. PMID:21844598

  14. High voltage electron microscopy of lunar samples

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1973-01-01

    Lunar pyroxenes from Apollo 11, 12, 14, and 15 were investigated. The iron-rich and magnesium-rich pyroxene specimens were crushed to a grain size of ca. 50 microns and studied by a combination of X-ray and electron diffraction, electron microscopy, 57 Fe Mossbauer spectroscopy and X-ray crystallography techniques. Highly ordered, uniform electron-dense bands, corresponding to exsolution lamellae, with average widths of ca. 230A to 1000A dependent on the source specimen were observed. These were?qr separated by wider, less-dense interband spacings with average widths of ca. 330A to 3100A. In heating experiments, splitting of the dense bands into finer structures, leading finally to obliteration of the exsolution lamellae was recorded. The extensive exsolution is evidence for significantly slower cooling rates, or possibly annealing, at temperatures in the subsolidus range, adding evidence that annealing of rock from the surface of the moon took place at ca. 600 C. Correlation of the band structure with magnetic ordering at low temperatures and iron clustering within the bands was studied.

  15. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  16. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  17. Hexamethyldisilazane for scanning electron microscopy of Gastrotricha.

    PubMed

    Hochberg, R; Litvaitis, M K

    2000-01-01

    We evaluated treatment with hexamethyldisilazane (HMDS) as an alternative to critical-point drying (CPD) for preparing microscopic Gastrotricha for scanning electron microscopy (SEM). We prepared large marine (2 mm) and small freshwater (100 microm) gastrotrichs using HMDS as the primary dehydration solvent and compared the results to earlier investigations using CPD. The results of HMDS dehydration are similar to or better than CPD for resolution of two important taxonomic features: cuticular ornamentation and patterns of ciliation. The body wall of both sculpted (Lepidodermella) and smooth (Dolichodasys) gastrotrichs retained excellent morphology as did the delicate sensory and locomotory cilia. The only unfavorable result of HMDS dehydration was an occasional coagulation of gold residue when the solvent had not fully evaporated before sputter-coating. We consider HMDS an effective alternative for preparing of gastrotrichs for SEM because it saves time and expense compared to CPD. PMID:10810982

  18. Scanning electron microscopy of tinea nigra*

    PubMed Central

    Guarenti, Isabelle Maffei; de Almeida, Hiram Larangeira; Leitão, Aline Hatzenberger; Rocha, Nara Moreira; Silva, Ricardo Marques e

    2014-01-01

    Tinea nigra is a rare superficial mycosis caused by Hortaea werneckii. This infection presents as asymptomatic brown to black maculae mostly in palmo-plantar regions. We performed scanning electron microscopy of a superficial shaving of a tinea nigra lesion. The examination of the outer surface of the sample showed the epidermis with corneocytes and hyphae and elimination of fungal filaments. The inner surface of the sample showed important aggregation of hyphae among keratinocytes, which formed small fungal colonies. The ultrastructural findings correlated with those of dermoscopic examination - the small fungal aggregations may be the dark spicules seen on dermoscopy - and also allowed to document the mode of dissemination of tinea nigra, showing how hyphae are eliminated on the surface of the lesion. PMID:24770516

  19. Electric fields in Scanning Electron Microscopy simulations

    NASA Astrophysics Data System (ADS)

    Arat, K. T.; Bolten, J.; Klimpel, T.; Unal, N.

    2016-03-01

    The electric field distribution and charging effects in Scanning Electron Microscopy (SEM) were studied by extending a Monte-Carlo based SEM simulator by a fast and accurate multigrid (MG) based 3D electric field solver. The main focus is on enabling short simulation times with maintaining sufficient accuracy, so that SEM simulation can be used in practical applications. The implementation demonstrates a gain in computation speed, when compared to a Gauss-Seidel based reference solver is roughly factor of 40, with negligible differences in the result (~10-6 𝑉). In addition, the simulations were compared with experimental SEM measurements using also complex 3D sample, showing that i) the modelling of e-fields improves the simulation accuracy, and ii) multigrid method provide a significant benefit in terms of simulation time.

  20. Biological applications of confocal fluorescence polarization microscopy

    NASA Astrophysics Data System (ADS)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine

  1. Ultrahigh Voltage Electron Microscopy Links Neuroanatomy and Neuroscience/Neuroendocrinology

    PubMed Central

    Sakamoto, Hirotaka; Kawata, Mitsuhiro

    2012-01-01

    The three-dimensional (3D) analysis of anatomical ultrastructures is extremely important in most fields of biological research. Although it is very difficult to perform 3D image analysis on exact serial sets of ultrathin sections, 3D reconstruction from serial ultrathin sections can generally be used to obtain 3D information. However, this technique can only be applied to small areas of a specimen because of technical and physical difficulties. We used ultrahigh voltage electron microscopy (UHVEM) to overcome these difficulties and to study the chemical neuroanatomy of 3D ultrastructures. This methodology, which links UHVEM and light microscopy, is a useful and powerful tool for studying molecular and/or chemical neuroanatomy at the ultrastructural level. PMID:22567316

  2. Soft x-ray holography and microscopy of biological cells

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Gao, Hongyi; Xie, Honglan; Li, Ruxin; Xu, Zhizhan

    2003-10-01

    Some experimental results on soft X-ray microscopy and holography imaging of biological specimens are presented in the paper. As we know, due to diffraction effects, there exists a resolution limit determined by wavelength λ and numerical aperture NA in conventional optical microscopy. In order to improve resolution, the num erical aperture should be made as large as possible and the wavelength as short as possible. Owing to the shorter wavelength, X-rays provide the potential of higher resolution in X-ray microscopy, holography image and allow for exam ination the interior structures of thicker specimens. In the experiments, we used synchrotron radiation source in Hefei as light source. Soft X-rays come from a bending magnet in 800 M eV electron storage ring with characteristic wavelength of 2.4 nm. The continuous X-ray spectrums are monochromatized by a zone-plate and a pinhole with 300 m diameter. The experimental set-up is typical contact microscopic system, its main advantage is simplicity and no special optical element is needed. The specimens used in the experiments of microscopic imaging are the colibacillus, the gingko vascular hundle and the fritillaries ovary karyon. The specimen for holographic imaging is the spider filam ents. The basic structures of plant cells such as the cell walls, the cytoplasm and the karyon especially the joint structures between the cells are observed clearly. An experimental study on a thick biological specimen that is a whole sporule w ith the thickness of about 30 μm is performed. In the holographic experiments, the experimental setup is typical Gabor in-line holography. The specimen is placed in line with X-ray source, which provides both the reference w aves and specimen illum ination. The specimen is some spider filament, which adhere to a Si3N4 film. The recording medium is PM M A, which is placed at recording distance of about 400 μm from the specimen. The hologram s were reconstructed by digital method with 300 nm

  3. Image restoration in cryo-electron microscopy.

    PubMed

    Penczek, Pawel A

    2010-01-01

    Image restoration techniques are used to obtain, given experimental measurements, the best possible approximation of the original object within the limits imposed by instrumental conditions and noise level in the data. In molecular electron microscopy (EM), we are mainly interested in linear methods that preserve the respective relationships between mass densities within the restored map. Here, we describe the methodology of image restoration in structural EM, and more specifically, we will focus on the problem of the optimum recovery of Fourier amplitudes given electron microscope data collected under various defocus settings. We discuss in detail two classes of commonly used linear methods, the first of which consists of methods based on pseudoinverse restoration, and which is further subdivided into mean-square error, chi-square error, and constrained based restorations, where the methods in the latter two subclasses explicitly incorporates non-white distribution of noise in the data. The second class of methods is based on the Wiener filtration approach. We show that the Wiener filter-based methodology can be used to obtain a solution to the problem of amplitude correction (or "sharpening") of the EM map that makes it visually comparable to maps determined by X-ray crystallography, and thus amenable to comparative interpretation. Finally, we present a semiheuristic Wiener filter-based solution to the problem of image restoration given sets of heterogeneous solutions. We conclude the chapter with a discussion of image restoration protocols implemented in commonly used single particle software packages. PMID:20888957

  4. Coherent Raman Scattering Microscopy in Biology and Medicine

    PubMed Central

    Zhang, Chi; Zhang, Delong; Cheng, Ji-Xin

    2016-01-01

    Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemical information available from CRS images. In this article, we review recent achievements in CRS microscopy, focusing on the theory of the CRS signal-to-noise ratio, imaging speed, technical developments, and applications of CRS imaging in bioscience and clinical settings. In addition, we present possible future directions that the use of this technology may take. PMID:26514285

  5. Surface Biology of DNA by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hansma, Helen G.

    2001-10-01

    The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.

  6. Electron microscopy study of antioxidant interaction with bacterial cells

    NASA Astrophysics Data System (ADS)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  7. Light microscopy applications in systems biology: opportunities and challenges

    PubMed Central

    2013-01-01

    Biological systems present multiple scales of complexity, ranging from molecules to entire populations. Light microscopy is one of the least invasive techniques used to access information from various biological scales in living cells. The combination of molecular biology and imaging provides a bottom-up tool for direct insight into how molecular processes work on a cellular scale. However, imaging can also be used as a top-down approach to study the behavior of a system without detailed prior knowledge about its underlying molecular mechanisms. In this review, we highlight the recent developments on microscopy-based systems analyses and discuss the complementary opportunities and different challenges with high-content screening and high-throughput imaging. Furthermore, we provide a comprehensive overview of the available platforms that can be used for image analysis, which enable community-driven efforts in the development of image-based systems biology. PMID:23578051

  8. Advanced electron microscopy characterization of multimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna Raj

    Research in noble metal nanoparticles has led to exciting progress in a versatile array of applications. For the purpose of better tailoring of nanoparticles activities and understanding the correlation between their structures and properties, control over the composition, shape, size and architecture of bimetallic and multimetallic nanomaterials plays an important role on revealing their new or enhanced functions for potentials application. Advance electron microscopy techniques were used to provide atomic scale insights into the structure-properties of different materials: PtPd, Au-Au3Cu, Cu-Pt, AgPd/Pt and AuCu/Pt nanoparticles. The objective of this work is to understand the physical and chemical properties of nanomaterials and describe synthesis, characterization, surface properties and growth mechanism of various bimetallic and multimetallic nanoparticles. The findings have provided us with novel and significant insights into the physical and chemical properties of noble metal nanoparticles. Different synthesis routes allowed us to synthesize bimetallic: Pt-Pd, Au-Au3Cu, Cu-Pt and trimetallic: AgPd/Pt, AuCu/Pt, core-shell and alloyed nanoparticles with monodispersed sizes, controlled shapes and tunable surface properties. For example, we have synthesized the polyhedral PtPd core-shell nanoparticles with octahedral, decahedral, and triangular plates. Decahedral PtPd core-shell structures are novel morphologies for this system. For the first time we fabricated that the Au core and Au3Cu alloyed shell nanoparticles passivated with CuS2 surface layers and characterized by Cs-corrected scanning transmission electron microscopy. The analysis of the high-resolution micrographs reveals that these nanoparticles have decahedral structure with shell periodicity, and that each of the particles is composed by Au core and Au3Cu ordered superlattice alloyed shell surrounded by CuS 2 surface layer. Additionally, we have described both experimental and theoretical methods of

  9. Electron microscopy imaging of proteins on gallium phosphide semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Hjort, Martin; Bauer, Mikael; Gunnarsson, Stefan; Mårsell, Erik; Zakharov, Alexei A.; Karlsson, Gunnel; Sanfins, Elodie; Prinz, Christelle N.; Wallenberg, Reine; Cedervall, Tommy; Mikkelsen, Anders

    2016-02-01

    We have imaged GaP nanowires (NWs) incubated with human laminin, serum albumin (HSA), and blood plasma using both cryo-transmission electron microscopy and synchrotron based X-ray photoemission electron microscopy. This extensive imaging methodology simultaneously reveals structural, chemical and morphological details of individual nanowires and the adsorbed proteins. We found that the proteins bind to NWs, forming coronas with thicknesses close to the proteins' hydrodynamic diameters. We could directly image how laminin is extending from the NWs, maximizing the number of proteins bound to the NWs. NWs incubated with both laminin and HSA show protein coronas with a similar appearance to NWs incubated with laminin alone, indicating that the presence of HSA does not affect the laminin conformation on the NWs. In blood plasma, an intermediate sized corona around the NWs indicates a corona with a mixture of plasma proteins. The ability to directly visualize proteins on nanostructures in situ holds great promise for assessing the conformation and thickness of the protein corona, which is key to understanding and predicting the properties of engineered nanomaterials in a biological environment.We have imaged GaP nanowires (NWs) incubated with human laminin, serum albumin (HSA), and blood plasma using both cryo-transmission electron microscopy and synchrotron based X-ray photoemission electron microscopy. This extensive imaging methodology simultaneously reveals structural, chemical and morphological details of individual nanowires and the adsorbed proteins. We found that the proteins bind to NWs, forming coronas with thicknesses close to the proteins' hydrodynamic diameters. We could directly image how laminin is extending from the NWs, maximizing the number of proteins bound to the NWs. NWs incubated with both laminin and HSA show protein coronas with a similar appearance to NWs incubated with laminin alone, indicating that the presence of HSA does not affect the

  10. X-ray microscopy of live biological micro-organisms

    NASA Astrophysics Data System (ADS)

    Raja Al-Ani, Ma'an Nassar

    Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.

  11. Quantitative biological imaging by ptychographic x-ray diffraction microscopy

    PubMed Central

    Giewekemeyer, Klaus; Thibault, Pierre; Kalbfleisch, Sebastian; Beerlink, André; Kewish, Cameron M.; Dierolf, Martin; Pfeiffer, Franz; Salditt, Tim

    2010-01-01

    Recent advances in coherent x-ray diffractive imaging have paved the way to reliable and quantitative imaging of noncompact specimens at the nanometer scale. Introduced a year ago, an advanced implementation of ptychographic coherent diffractive imaging has removed much of the previous limitations regarding sample preparation and illumination conditions. Here, we apply this recent approach toward structure determination at the nanoscale to biological microscopy. We show that the projected electron density of unstained and unsliced freeze-dried cells of the bacterium Deinococcus radiodurans can be derived from the reconstructed phase in a straightforward and reproducible way, with quantified and small errors. Thus, the approach may contribute in the future to the understanding of the highly disputed nucleoid structure of bacterial cells. In the present study, the estimated resolution for the cells was 85 nm (half-period length), whereas 50-nm resolution was demonstrated for lithographic test structures. With respect to the diameter of the pinhole used to illuminate the samples, a superresolution of about 15 was achieved for the cells and 30 for the test structures, respectively. These values should be assessed in view of the low dose applied on the order of ≃1.3·105 Gy, and were shown to scale with photon fluence. PMID:20018650

  12. Imaging Cytoskeleton Components by Electron Microscopy

    PubMed Central

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers—actin filaments, microtubules, and intermediate filaments—are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:26498781

  13. Electron microscopy of seed-storage globulins.

    PubMed

    Tulloch, P A; Blagrove, R J

    1985-09-01

    The quaternary structures of a range of seed globulins, including examples of both the so-called 7 S and 11 S types, have been examined by electron microscopy. The legume 7 S proteins, phaseolin (bean), beta-conglycinin (soybean), and vicilin (pea), appear as flat discs of diameter ca. 8.5 nm and thickness ca. 3.5 nm formed by association of three subunit domains. Phaseolin converts to an 18 S tetramer at acid pH, and images recorded under these conditions suggest that four of the 7 S protomer discs associate to form the faces of a regular tetrahedron. The classical 11 S seed globulins, cucurbitin (pumpkin) and legumin (pea), are approximately spherical molecules of diameter ca. 8.8 nm composed of six subunits. In contrast, the hexameric 10 S storage protein from lupin seed, conglutin gamma, appears toroidal in shape with outer diameter ca. 10.3 nm and thickness ca. 2.2 nm. These results indicate that constraints imposed on seed proteins by their role in sustaining the germinating plant may have allowed a variety of different globulin structures to accumulate in the protein-storage bodies of seeds. PMID:4037802

  14. Quantitative characterization of electron detectors for transmission electron microscopy.

    PubMed

    Ruskin, Rachel S; Yu, Zhiheng; Grigorieff, Nikolaus

    2013-12-01

    A new generation of direct electron detectors for transmission electron microscopy (TEM) promises significant improvement over previous detectors in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE). However, the performance of these new detectors needs to be carefully monitored in order to optimize imaging conditions and check for degradation over time. We have developed an easy-to-use software tool, FindDQE, to measure MTF and DQE of electron detectors using images of a microscope's built-in beam stop. Using this software, we have determined the DQE curves of four direct electron detectors currently available: the Gatan K2 Summit, the FEI Falcon I and II, and the Direct Electron DE-12, under a variety of total dose and dose rate conditions. We have additionally measured the curves for the Gatan US4000 and TVIPS TemCam-F416 scintillator-based cameras. We compare the results from our new method with published curves. PMID:24189638

  15. Visualizing Macromolecular Complexes with In Situ Liquid Scanning Transmission Electron Microscopy

    SciTech Connect

    Evans, James E.; Jungjohann, K. L.; Wong, Peony C. K.; Chiu, Po-Lin; Dutrow, Gavin H.; Arslan, Ilke; Browning, Nigel D.

    2012-11-01

    A central focus of biological research is understanding the structure/function relationship of macromolecular protein complexes. Yet conventional transmission electron microscopy techniques are limited to static observations. Here we present the first direct images of purified macromolecular protein complexes using in situ liquid scanning transmission electron microscopy. Our results establish the capability of this technique for visualizing the interface between biology and nanotechnology with high fidelity while also probing the interactions of biomolecules within solution. This method represents an important advancement towards allowing future high-resolution observations of biological processes and conformational dynamics in real-time.

  16. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy

    SciTech Connect

    Plemmons, DA; Suri, PK; Flannigan, DJ

    2015-05-12

    In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasize how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and

  17. Structural examination of lithium niobate ferroelectric crystals by combining scanning electron microscopy and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Efremova, P. V.; Ped'ko, B. B.; Kuznecova, Yu. V.

    2016-02-01

    The structure of lithium niobate single crystals is studied by a complex technique that combines scanning electron microscopy and atomic force microscopy. By implementing the piezoresponse force method on an atomic force microscope, the domain structure of lithium niobate crystals, which was not revealed without electron beam irradiation, is visualized

  18. Correlative video-light-electron microscopy of mobile organelles.

    PubMed

    Beznoussenko, Galina V; Mironov, Alexander A

    2015-01-01

    Correlative microscopy is a method when for the analysis of the very same cell or tissue area, several different methods of light microscopy (LM) and then electron microscopy (EM) are used consecutively. The combination of LM and EM allows researchers to study phenomena at a global scale and then to look for unique or rare events for their subsequent EM examination. Unfortunately, the observation of living cells under EM is still impossible. LM provides the possibility to examine quickly many live cells, whereas EM provides the high level of resolution. On the other side, the final goal of any morphological analysis of a biological sample, whether it is an organism, organ, tissue, cell, organelle, or molecule, is to get an averaged three-dimensional model of the structure examined and to determine the chemical composition of it. This chapter describes the methodology of imaging with the help of CVLEM. The guidelines presented herein enable researchers to analyze structure of organelles and to obtain the three-dimensional model of the structure examined, and in particular rare events captured by low-resolution imaging of a population or transient events captured by live imaging can now also be studied at high resolution by EM. PMID:25702127

  19. Ballistic-electron-emission Microscopy of Semiconductor Heterostructures

    NASA Technical Reports Server (NTRS)

    Bell, L. Douglas; Narayanamurti, Venkatesh

    1997-01-01

    Balistic-electron-emission microscopy has developed from its beginning as a probe of Schottky barriers into a powerful nanometer-scale method for characterizing semiconductor interfaces and hot-electron transport.

  20. Collaborative Computational Project for Electron cryo-Microscopy

    SciTech Connect

    Wood, Chris; Burnley, Tom; Patwardhan, Ardan; Scheres, Sjors; Topf, Maya; Roseman, Alan; Winn, Martyn

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  1. Imaging Bioorthogonal Groups in Their Ultrastructural Context with Electron Microscopy.

    PubMed

    van Elsland, Daphne M; van Kasteren, Sander I

    2016-08-01

    Spitting image: Herein a recent paper on the imaging of bioorthogonal groups using three-dimensional electron microscopy is discussed. The work has demonstrated electron microscopy imaging as a technique suitable for gaining structural information on bioorthogonal groups in their cellular context. PMID:27346592

  2. Invited Review Article: Advanced light microscopy for biological space research

    NASA Astrophysics Data System (ADS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  3. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy. PMID:25362364

  4. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  5. Perspective: 4D ultrafast electron microscopy--Evolutions and revolutions.

    PubMed

    Shorokhov, Dmitry; Zewail, Ahmed H

    2016-02-28

    In this Perspective, the evolutionary and revolutionary developments of ultrafast electron imaging are overviewed with focus on the "single-electron concept" for probing methodology. From the first electron microscope of Knoll and Ruska [Z. Phys. 78, 318 (1932)], constructed in the 1930s, to aberration-corrected instruments and on, to four-dimensional ultrafast electron microscopy (4D UEM), the developments over eight decades have transformed humans' scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the micrometer and second domains, and now reaching the space and time dimensions of atoms in matter. With these advances, it has become possible to follow the elementary structural dynamics as it unfolds in real time and to provide the means for visualizing materials behavior and biological functions. The aim is to understand emergent phenomena in complex systems, and 4D UEM is now central for the visualization of elementary processes involved, as illustrated here with examples from past achievements and future outlook. PMID:26931672

  6. Annular dark field transmission electron microscopy for protein structure determination.

    PubMed

    Koeck, Philip J B

    2016-02-01

    Recently annular dark field (ADF) transmission electron microscopy (TEM) has been advocated as a means of recording images of biological specimens with better signal to noise ratio (SNR) than regular bright field images. I investigate whether and how such images could be used to determine the three-dimensional structure of proteins given that an ADF aperture with a suitable pass-band can be manufactured and used in practice. I develop an approximate theory of ADF-TEM image formation for weak amplitude and phase objects and test this theory using computer simulations. I also test whether these simulated images can be used to calculate a three-dimensional model of the protein using standard software and discuss problems and possible ways to overcome these. PMID:26656466

  7. High Resolution Scanning Electron Microscopy of Cells Using Dielectrophoresis

    PubMed Central

    Tang, Shi-Yang; Zhang, Wei; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2014-01-01

    Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment. PMID:25089528

  8. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    SciTech Connect

    Zhu,Y.; Wall, J.

    2008-04-01

    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron

  9. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  10. Potential Role of Atomic Force Microscopy in Systems Biology

    PubMed Central

    Ramachandran, Srinivasan; Arce, Fernando Teran; Lal, Ratnesh

    2011-01-01

    Systems biology is a quantitative approach for understanding a biological system at its global level through systematic perturbation and integrated analysis of all its components. Simultaneous acquisition of information datasets pertaining to the system components (e.g., genome, proteome) is essential to implement this approach. There are limitations to such an approach in measuring gene expression levels and accounting for all proteins in the system. The success of genomic studies is critically dependent on PCR for its amplification, but PCR is very uneven in amplifying the samples, ineffective in scarce samples and unreliable in low copy number transcripts. On the other hand, lack of amplifying techniques for proteins critically limits their identification to only a small fraction of high concentration proteins. Atomic force microscopy (AFM), AFM cantilever sensors and AFM force spectroscopy in particular, could address these issues directly. In this article, we reviewed and assessed their potential role in systems biology. PMID:21766465

  11. Potential role of atomic force microscopy in systems biology.

    PubMed

    Ramachandran, Srinivasan; Teran Arce, Fernando; Lal, Ratnesh

    2011-01-01

    Systems biology is a quantitative approach for understanding a biological system at its global level through systematic perturbation and integrated analysis of all its components. Simultaneous acquisition of information data sets pertaining to the system components (e.g., genome, proteome) is essential to implement this approach. There are limitations to such an approach in measuring gene expression levels and accounting for all proteins in the system. The success of genomic studies is critically dependent on polymerase chain reaction (PCR) for its amplification, but PCR is very uneven in amplifying the samples, ineffective in scarce samples and unreliable in low copy number transcripts. On the other hand, lack of amplifying techniques for proteins critically limits their identification to only a small fraction of high concentration proteins. Atomic force microscopy (AFM), AFM cantilever sensors, and AFM force spectroscopy in particular, could address these issues directly. In this article, we reviewed and assessed their potential role in systems biology. PMID:21766465

  12. Ion-induced electron emission microscopy

    DOEpatents

    Doyle, Barney L.; Vizkelethy, Gyorgy; Weller, Robert A.

    2001-01-01

    An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

  13. Image Resolution in Scanning Transmission Electron Microscopy

    SciTech Connect

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  14. Plasma Cleaning and Its Applications for Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Isabell, Thomas C.; Fischione, Paul E.; O'Keefe, Catherine; Guruz, Murat U.; Dravid, Vinayak P.

    1999-03-01

    The effectiveness of applying a high-frequency, low-energy, reactive gas plasma for the removal of hydrocarbon contamination from specimens and components for electron microscopy has been investigated with a variety of analytical techniques. Transmission electron microscopy (TEM) analysis of specimens that have been plasma cleaned shows an elimination of the carbonaceous contamination from the specimen. With extended cleaning times the removal of existing carbon contamination debris due to previously conducted microanalysis is shown. Following plasma cleaning, specimens may be examined in the electron microscope for several hours without exhibiting evidence of recontamination. The effectiveness of plasma cleaning is not limited to applications for TEM specimens. Scanning electron microscopy (SEM) specimens that have been plasma cleaned likewise show an elimination of carbonaceous contamination. Furthermore, other electron microscopy parts and accessories, such as aperture strips, specimen clamping rings, and Wehnelts, among others, can benefit from plasma cleaning.

  15. Electron microscopy study of zeolite ZK-14; a synthetic chabazite

    NASA Astrophysics Data System (ADS)

    Cartlidge, S.; Wessicken, R.; Nissen, H.-U.

    1983-03-01

    The defect structure of zeolite (K+, TMA+) — ZK-14, a synthetic chabazite, has been studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM together with TEM bright field (BF) and dark field (DF) micrographs indicate that the hexagonal, platelet ZK-14 crystals are built up of crystalline blocks joined by twinning along (00.1). High resolution transmission electron microscopy (HRTEM) reveals faulting of the ideal AABBCC single 6-ring stacking sequence of ZK-14. This is consistent with an observed line broadening in its X-ray powder diffraction profile. Channel apertures are imaged, even for thick specimens.

  16. Correlative light and electron microscopy analysis of the centrosome: A step-by-step protocol.

    PubMed

    Kong, Dong; Loncarek, Jadranka

    2015-01-01

    Correlative light and electron microscopy harnesses the best from each of the two modalities of microscopy it utilizes; while light microscopy provides information about the dynamic properties of the cellular structure or fluorescently labeled protein, electron microscopy provides ultrastructural information in an unsurpassed resolution. However, tracing a particular cell and its rare and small structures such as centrosomes throughout numerous steps of the experiment is not a trivial task. In this chapter, we present the experimental workflow for combining live-cell fluorescence microscopy analysis with classical transmission electron microscopy, adapted for the studies of the centrosomes and basal bodies. We describe, in a step-by-step manner, an approach that can be affordably and successfully employed in any typical cell biology laboratory. The article details all key phases of the analysis starting from cell culture, live-cell microscopy, and sample fixation, through the steps of sample preparation for electron microscopy, to the identification of the target cell on the electron microscope. PMID:26175430

  17. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    PubMed

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells. PMID:23261400

  18. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  19. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGESBeta

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  20. Biological imaging by soft x-ray diffraction microscopy

    SciTech Connect

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; Sayre, D.

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  1. A practical guide to evaluating colocalization in biological microscopy

    PubMed Central

    Kamocka, Malgorzata M.; McDonald, John H.

    2011-01-01

    Fluorescence microscopy is one of the most powerful tools for elucidating the cellular functions of proteins and other molecules. In many cases, the function of a molecule can be inferred from its association with specific intracellular compartments or molecular complexes, which is typically determined by comparing the distribution of a fluorescently labeled version of the molecule with that of a second, complementarily labeled probe. Although arguably the most common application of fluorescence microscopy in biomedical research, studies evaluating the “colocalization” of two probes are seldom quantified, despite a diversity of image analysis tools that have been specifically developed for that purpose. Here we provide a guide to analyzing colocalization in cell biology studies, emphasizing practical application of quantitative tools that are now widely available in commercial and free image analysis software. PMID:21209361

  2. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy.

    PubMed

    Chou, Yi-Chia; Panciera, Federico; Reuter, Mark C; Stach, Eric A; Ross, Frances M

    2016-04-14

    We visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas. PMID:27041654

  3. [Electron microscopy study of artificial vitreous gel].

    PubMed

    Ehgartner, E M; Schmut, O; Hofmann, H

    1986-04-01

    Artificial gels prepared from Cu2+-ions and hyaluronic acid were studied in the electron microscope and compared with the native vitreous body. Additionally, the authors attempted to produce transparent gels from the native constituents of the vitreous body, namely collagen and hyaluronic acid. Mixing of solutions of these constituents formed no gels but white precipitates. The ultrastructure of these precipitates was also studied in the electron microscope. PMID:3723971

  4. Cryogenic X-ray Diffraction Microscopy for Biological Samples

    SciTech Connect

    E Lima; L Wiegart; P Pernot; M Howells; J Timmins; F Zontone; A Madsen

    2011-12-31

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  5. Chemical Force Microscopy of Chemical and Biological Interactions

    SciTech Connect

    Noy, A

    2006-01-02

    Interactions between chemical functionalities define outcomes of the vast majority of important events in chemistry, biology and materials science. Chemical Force Microscopy (CFM)--a technique that uses direct chemical functionalization of AFM probes with specific functionalities--allows researchers to investigate these important interactions directly. We review the basic principles of CFM, some examples of its application, and theoretical models that provide the basis for understanding the experimental results. We also emphasize application of modern kinetic theory of non-covalent interactions strength to the analysis of CFM data.

  6. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum’s magnetosome chains

    SciTech Connect

    Keutner, Christoph; von Bohlen, Alex; Berges, Ulf; Espeter, Philipp; Schneider, Claus M.; Westphal, Carsten

    2014-10-07

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.

  7. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. PMID:26206941

  8. Electron microscopy - A glimpse into the future.

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1972-01-01

    A forecast attempt is presented on future advances in electron microscopic studies of membrane systems. A review of recent advances and present trends is followed by a discussion of prerequisites to further progress. Special attention is given to research areas of particular promise.

  9. Quantitative Phase Retrieval in Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    McLeod, Robert Alexander

    Phase retrieval in the transmission electron microscope offers the unique potential to collect quantitative data regarding the electric and magnetic properties of materials at the nanoscale. Substantial progress in the field of quantitative phase imaging was made by improvements to the technique of off-axis electron holography. In this thesis, several breakthroughs have been achieved that improve the quantitative analysis of phase retrieval. An accurate means of measuring the electron wavefront coherence in two-dimensions was developed and pratical applications demonstrated. The detector modulation-transfer function (MTF) was assessed by slanted-edge, noise, and the novel holographic techniques. It was shown the traditional slanted-edge technique underestimates the MTF. In addition, progress was made in dark and gain reference normalization of images, and it was shown that incomplete read-out is a concern for slow-scan CCD detectors. Last, the phase error due to electron shot noise was reduced by the technique of summation of hologram series. The phase error, which limits the finest electric and magnetic phenomena which can be investigated, was reduced by over 900 % with no loss of spatial resolution. Quantitative agreement between the experimental root-mean-square phase error and the analytical prediction of phase error was achieved.

  10. Correlative light-ion microscopy for biological applications

    NASA Astrophysics Data System (ADS)

    Bertazzo, Sergio; von Erlach, Thomas; Goldoni, Silvia; Çandarlıoğlu, Pelin L.; Stevens, Molly M.

    2012-04-01

    Here we report a new technique, Correlative Light-Ion Microscopy (CLIM), to correlate SEM-like micrographs with fluorescence images. This technique presents significant advantages over conventional methods in enabling topographical and biochemical information to be correlated with nanoscale resolution without destroying the fluorescence signal. We demonstrate the utility of CLIM for a variety of investigations of cell substrate interactions validating its potential to become a routine procedure in biomedical research.Here we report a new technique, Correlative Light-Ion Microscopy (CLIM), to correlate SEM-like micrographs with fluorescence images. This technique presents significant advantages over conventional methods in enabling topographical and biochemical information to be correlated with nanoscale resolution without destroying the fluorescence signal. We demonstrate the utility of CLIM for a variety of investigations of cell substrate interactions validating its potential to become a routine procedure in biomedical research. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30431g

  11. Electron microscopy investigations of nanoparticles for cancer diagnostic applications

    NASA Astrophysics Data System (ADS)

    Koh, Ai Leen

    preserved after a chemical etch. Magnetic measurements show a slight decrease in magnetic moment after ion milling. From TEM characterization, the introduction of oxygen into the copper release layer, prior the film deposition process, can effectively control the topography of the oxidized-copper grains and, consequently, lead to the production of SAF nanoparticles with flatter layers. Size distribution studies performed on SAFs fabricated using self-assembled stamps show that it is possible to produce monodisperse nanoparticles with diameters from 70 nm up. Part Two of the dissertation describes structural characterization experiments performed on Composite Organic-Inorganic Nanoparticles (COINs), which are a novel type of SERS nanoclusters formed by aggregating silver nanoparticles with Raman molecules, and then encapsulating them with an organic coating that stabilizes the aggregates and promotes subsequent functionalization with antibodies. Part Three of this dissertation focuses on the development and application of electron microscopy-based techniques to characterize the nanomaterial-biology interactions, to assess how, or indeed whether, nanoparticles are attaching to the cancer cells. The technique of negative staining was applied to simultaneously visualize inorganic nanoparticles and their biofunctionalized entities under the TEM and to verify the successful functionalization of nanoparticles with antibodies. The interpretation of the negatively-stained COINs was consistent with the EFTEM data. Next, the localization and characterization of CD54-functionalized COINs on the apicolateral portions of U937 leukemia cell lines was determined using TEM, SEM and Scanning Auger Microscopy. The analyses show that CD54 antigens are localized at a specific region on U937 leukemia cell surfaces. SEM imaging and SER spectroscopy correlation studies of different antibody-conjugated COINs attached onto different cancer cell lines show a direct correlation between the number of

  12. Extended focus Fourier domain optical coherence microscopy assists developmental biology

    NASA Astrophysics Data System (ADS)

    Villiger, Martin L.; Beleut, Manfred; Brisken, Cathrin; Lasser, Theo; Leitgeb, Rainer A.

    2007-07-01

    We present a novel detection scheme for Fourier domain optical coherence microscopy (FDOCM). A Bessel-like interference pattern with a strong central lobe was created with an axicon lens. This pattern was then imaged by a telescopic system into the sample space to obtain a laterally highly confined illumination needle, extending over a long axial range. For increased efficiency, the detection occurs decoupled from the illumination, avoiding a double pass through the axicon. Nearly constant transverse resolution of ~1.5μm along a focal range of 200μm with a maximum sensitivity of 105dB was obtained. A broad bandwidth Ti:Sapphire laser allowed for an axial resolution of 3μm in air, providing the nearly isotropic resolution necessary to access the microstructure of biological tissues. Together with the speed- and sensitivity-advantage of FDOCT, this system can perform in vivo measurements in a minimally invasive way. Tomograms of the mouse mammary gland and the mouse follicle, recorded in vitro, revealed biologically relevant structural details. Images acquired with classical microscopy techniques, involving stained and fluorescent samples, validate these structures and emphasize the high contrast of the tomograms. It is comparable to the contrast achieved with classical techniques, but employing neither staining, labeling nor slicing of the samples, stressing the high potential of FDOCM for minimally invasive in vivo small animal imaging.

  13. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    NASA Astrophysics Data System (ADS)

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by

  14. Transmission electron microscopy of mercury metal.

    PubMed

    Anjum, Dalaver H; Sougrat, Rachid

    2016-09-01

    Transmission electron microcopy (TEM) analysis of liquid metals, especially mercury (Hg), is difficult to carry out because their specimen preparation poses a daunting task due to the unique surface properties of these metals. This paper reports a cryoTEM study on Hg using a novel specimen preparation technique. Hg metal is mixed with water using sonication and quenched in liquid ethane cryogen. This technique permits research into the morphological, phase and structural properties of Hg at nanoscale dimensions. PMID:27018645

  15. Immuno-Electron Microscopy and Electron Microscopic In Situ Hybridization for Visualizing piRNA Biogenesis Bodies in Drosophila Ovaries.

    PubMed

    Shibata, Shinsuke; Murota, Yukiko; Nishimoto, Yoshinori; Yoshimura, Mana; Nagai, Toshihiro; Okano, Hideyuki; Siomi, Mikiko C

    2015-01-01

    Immuno-electron microscopy and electron microscopic in situ hybridization are powerful tools to identify the precise subcellular localization of specific proteins and RNAs at the ultramicroscopic level. Here we describe detailed procedures for how to detect the precise location of a specific target labeled with both fluorescence and gold particles. Although they have been developed for the analysis of Drosophila ovarian somatic cells, these techniques are suitable for a wide range of biological applications including human, primate, and rodent analysis. PMID:26324437

  16. Electron microscopy of biomaterials based on hydroxyapatite

    SciTech Connect

    Suvorova, E. I. Klechkovskaya, V. V.; Komarov, V. F.; Severin, A. V.; Melikhov, I. V.; Buffat, P. A.

    2006-10-15

    Three types of biomaterials based on hydroxyapatite are synthesized and investigated. Hydroxyapatite nanocrystals or microcrystals precipitated from low-temperature aqueous solutions serve as the initial material used for preparing spherical porous granules approximately 300-500 {mu}m in diameter. Sintering of hydroxyapatite crystals at a temperature of 870 deg. C for 2 h or at 1000 deg. C (for 3 h) + 1200 deg. C (for 2 h) brings about the formation of solid ceramics with different internal structures. According to the electron microscopic data, the ceramic material prepared at 870 deg. C is formed by agglomerated hydroxyapatite nanocrystals, whereas the ceramics sintered at 1200 deg. C (with a bending strength of the order of 100 MPa) are composed of crystal blocks as large as 2 {mu}m. It is established that all the biomaterials have a single-phase composition and consist of the hydroxyapatite with a structure retained up to a temperature of 1200 deg. C.

  17. Persistent misconceptions about incoherence in electron microscopy.

    PubMed

    Van Dyck, D

    2011-06-01

    Incoherence in electron microscopic imaging occurs when during the observation the microscope and the object are subject to fluctuations. In order to speed up the computer simulation of the images, approximations are used that are considered as valid. In this paper we will question the validity of these approximations and show that in specific cases they can lead to erroneous results. It is shown in particular in the case of one single vibrating atom that the thermal diffuse scattering that causes the signal in HAADF STEM is not only dependent on Z but also on the mean square displacement of the atom so that it can even be large for light atoms in soft matter, provided the right HAADF aperture is used. In HREM imaging the diffuse scattering leaks out of the coherent (elastic) wave and is redistributed in the background. This might explain the mismatch in elastic contrast (Stobbs factor) especially for crystals with a thickness beyond the extinction distance, where also the HAADF signal saturates and the elastic (coherent) component vanishes. PMID:21664551

  18. Electron microscopy of low iodinated thyroglobulin molecules.

    PubMed

    Berg, G; Ekholm, R

    1975-04-29

    Thyroglobulin molecules were studied in the electron microscope with negative staining technique. In a first series of experiments samples of thyroglobulin varying in iodine content from 0.5 to 0.03% were prepared from the thyroids of mice and rats kept on iodine-poor diets. All samples contained thyroglobulin molecules of the normal ovoid shape, not deviating in size or shape from molecules obtained from normal thyroids. However, in addition, another type of molecule having a cylindrical shape was observed in all samples. The proportion of these cylindrical molecules increased from a few per cent in the moderately iodine-poor thyroglobulin samples to more than 80% in the highly iodine-deficient thyroglobulin (0.03%). In a second series of experiments extremely iodine-poor thyroglobulin (smaller than 0.005%) was obtained from propylthiouracil-treated rats. In these preparations practically all molecules had a cylindrical shape. These samples also contained smaller particles interpreted to be dissociation products. The cylindrical molecules were of two types, one appearing compact and measuring 250 times 135 A (length times diameter) and the other appearing porous and having a length of 145 and a diameter of 205 A. It is concluded that the cylindrical molecules represent non- or low-iodinated thyroglobulin and it is suggested that the porous cylindrical molecule is an unfolded form of the compact cylinder. PMID:1138879

  19. Applications of Direct Detection Device in Transmission Electron Microscopy

    PubMed Central

    Jin, Liang; Milazzo, Anna-Clare; Kleinfelder, Stuart; Li, Shengdong; Leblanc, Philippe; Duttweiler, Fred; Bouwer, James C.; Peltier, Steven T.; Ellisman, Mark H.; Xuong, Nguyen-Huu

    2008-01-01

    A prototype Direct Detection Device (DDD) camera system has shown great promise in improving both the spatial resolution and the signal to noise ratio for electron microscopy at 120–400 keV beam energies (Xuong, et al., 2007. Methods in Cell Biology, 79, 721–739). Without the need for a resolution-limiting scintillation screen as in the charge coupled device (CCD), the DDD camera can outperform CCD based systems in terms of spatial resolution, due to its small pixel size (5 μm). In this paper, the modulation transfer function (MTF) of the DDD prototype is measured and compared with the specifications of commercial scientific CCD camera systems. Combining the fast speed of the DDD with image mosaic techniques, fast wide-area imaging is now possible. In this paper, the first large area mosaic image and the first tomography dataset from the DDD camera are presented, along with an image processing algorithm to correct the specimen drift utilizing the fast readout of the DDD system. PMID:18054249

  20. Statistical tests for measures of colocalization in biological microscopy.

    PubMed

    McDonald, John H; Dunn, Kenneth W

    2013-12-01

    Colocalization analysis is the most common technique used for quantitative analysis of fluorescence microscopy images. Several metrics have been developed for measuring the colocalization of two probes, including Pearson's correlation coefficient (PCC) and Manders' correlation coefficient (MCC). However, once measured, the meaning of these measurements can be unclear; interpreting PCC or MCC values requires the ability to evaluate the significance of a particular measurement, or the significance of the difference between two sets of measurements. In previous work, we showed how spatial autocorrelation confounds randomization techniques commonly used for statistical analysis of colocalization data. Here we use computer simulations of biological images to show that the Student's one-sample t-test can be used to test the significance of PCC or MCC measurements of colocalization, and the Student's two-sample t-test can be used to test the significance of the difference between measurements obtained under different experimental conditions. PMID:24117417

  1. Transmission Electron Microscopy of Itokawa Regolith Grains

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate

  2. Scanning Ion Conductance Microscopy for Studying Biological Samples

    PubMed Central

    Happel, Patrick; Thatenhorst, Denis; Dietzel, Irmgard D.

    2012-01-01

    Scanning ion conductance microscopy (SICM) is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate the topography of delicate samples such as living cells. SICM has shown its potential in various applications such as high resolution and long-time imaging of living cells or the determination of local changes in cellular volume. Furthermore, SICM has been combined with various techniques such as fluorescence microscopy or patch clamping to reveal localized information about proteins or protein functions. This review details the various advantages and pitfalls of SICM and provides an overview of the recent developments and applications of SICM in biological imaging. Furthermore, we show that in principle, a combination of SICM and ion selective micro-electrodes enables one to monitor the local ion activity surrounding a living cell. PMID:23202197

  3. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    SciTech Connect

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  4. Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy

    SciTech Connect

    Dohnalkova, Alice; Marshall, Matthew J.; Arey, Bruce W.; Williams, Kenneth H.; Buck, Edgar C.; Fredrickson, Jim K.

    2011-02-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryo-electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  5. Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy.

    PubMed

    Dohnalkova, Alice C; Marshall, Matthew J; Arey, Bruce W; Williams, Kenneth H; Buck, Edgar C; Fredrickson, James K

    2011-02-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigation of microscale associations. Electron microscopy has been used extensively for geomicrobial investigations, and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions by conventional electron microscopy approaches with imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding the nature of interactions between microbial extracellular polymers and their environment. PMID:21169451

  6. Experimental Approaches to Studying Biological Electron Transfer.

    ERIC Educational Resources Information Center

    Scott, Robert A.; And Others

    1985-01-01

    Provides an overview on biological electron-transfer reactions, summarizing what is known about how distance, spatial organization, medium, and other factors affect electron transfer. Experimental approaches, including studies of bimolecular electron transfer reactions (electrostatic effects and precursor complexes), are considered. (JN)

  7. Laboratory design for high-performance electron microscopy

    SciTech Connect

    O'Keefe, Michael A.; Turner, John H.; Hetherington, Crispin J.D.; Cullis, A.G.; Carragher, Bridget; Jenkins, Ron; Milgrim, Julie; Milligan,Ronald A.; Potter, Clinton S.; Allard, Lawrence F.; Blom, Douglas A.; Degenhardt, Lynn; Sides, William H.

    2004-04-23

    Proliferation of electron microscopes with field emission guns, imaging filters and hardware spherical aberration correctors (giving higher spatial and energy resolution) has resulted in the need to construct special laboratories. As resolutions improve, transmission electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs) become more sensitive to ambient conditions. State-of-the-art electron microscopes require state-of-the-art environments, and this means careful design and implementation of microscope sites, from the microscope room to the building that surrounds it. Laboratories have been constructed to house high-sensitive instruments with resolutions ranging down to sub-Angstrom levels; we present the various design philosophies used for some of these laboratories and our experiences with them. Four facilities are described: the National Center for Electron Microscopy OAM Laboratory at LBNL; the FEGTEM Facility at the University of Sheffield; the Center for Integrative Molecular Biosciences at TSRI; and the Advanced Microscopy Laboratory at ORNL.

  8. Microscopy with slow electrons: from LEEM to XPEEM

    ScienceCinema

    Bauer, Ernst [Arizona State University, Phoenix, Arizona, United States

    2010-01-08

    The short penetration and escape depth of electrons with energies below 1 keV make them ideally suited for the study of surfaces and ultrathin films. The combination of the low energy electrons and the high lateral resolution of a microscope produces a powerful method for the characterization of nanostructures on bulk samples, in particular if the microscope is equipped with an imaging energy filter and connected to a synchrotron radiation source. Comprehensive characterization by imaging, diffraction, and spectroscope of the structural, chemical, and magnetic properties is then possible. The Talk will describe the various imaging techniques in using reflected and emitted electrons in low-energy electron microscopy (LEEM) and x-ray photoemission electron microscopy (XPEEM), with an emphasis on magnetic materials with spin-polarized LEEM and x-ray magnetic circular dichroism PEEM. The talk with end with an outlook on future possibilities.

  9. Atomic Force Microscopy Application in Biological Research: A Review Study

    PubMed Central

    Vahabi, Surena; Nazemi Salman, Bahareh; Javanmard, Anahita

    2013-01-01

    Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010. PMID:23825885

  10. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    NASA Astrophysics Data System (ADS)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  11. Ultrastructural Analysis of Drosophila Ovaries by Electron Microscopy

    PubMed Central

    Hurd, Thomas R.; Sanchez, Carlos G.; Teixeira, Felipe K.; Petzold, Chris; Dancel-Manning, Kristen; Wang, Ju-Yu S.; Lehmann, Ruth; Liang, Feng-Xia A.

    2016-01-01

    i. Summary The Drosophila melanogaster ovary is a powerful, genetically tractable system through which one can elucidate the principles underlying cellular function and organogenesis in vivo. In order to understand the intricate process of oogenesis at the subcellular level, microscopic analysis with the highest possible resolution is required. In this chapter, we describe the preparation of ovaries for ultrastructural analysis using transmission electron microscopy and focused ion beam scanning electron microscopy. We discuss and provide protocols for chemical fixation of Drosophila ovaries that facilitate optimal imaging with particular attention paid to preserving and resolving mitochondrial membrane morphology and structure. PMID:26324436

  12. Ultrastructural Analysis of Drosophila Ovaries by Electron Microscopy.

    PubMed

    Hurd, Thomas R; Sanchez, Carlos G; Teixeira, Felipe K; Petzold, Chris; Dancel-Manning, Kristen; Wang, Ju-Yu S; Lehmann, Ruth; Liang, Feng-Xia A

    2015-01-01

    The Drosophila melanogaster ovary is a powerful, genetically tractable system through which one can elucidate the principles underlying cellular function and organogenesis in vivo. In order to understand the intricate process of oogenesis at the subcellular level, microscopic analysis with the highest possible resolution is required. In this chapter, we describe the preparation of ovaries for ultrastructural analysis using transmission electron microscopy and focused ion beam scanning electron microscopy. We discuss and provide protocols for chemical fixation of Drosophila ovaries that facilitate optimal imaging with particular attention paid to preserving and resolving mitochondrial membrane morphology and structure. PMID:26324436

  13. Surface morphology of Trichinella spiralis by scanning electron microscopy

    SciTech Connect

    Kim, C.W.; Ledbetter, M.C.

    1980-02-01

    The surface morphology of larval and adult Trichinella spiralis was studied by scanning electron microscopy (SEM) of fixed, dried, and metal-coated specimens. The results are compared with those found earlier by various investigators using light and transmission electron microscopy. Some morphological features reported here are revealed uniquely by SEM. These include the pores of the cephalic sense organs, the character of secondary cuticular folds, variations of the hypodermal gland cell openings or pores, and the presence of particles on the copulatory bell.

  14. Directed evolution of APEX2 for electron microscopy and proteomics

    PubMed Central

    Lam, Stephanie S.; Martell, Jeffrey D.; Kamer, Kimberli J.; Deerinck, Thomas J.; Ellisman, Mark H.; Mootha, Vamsi K.; Ting, Alice Y.

    2014-01-01

    APEX is an engineered peroxidase that functions both as an electron microscopy tag, and as a promiscuous labeling enzyme for live-cell proteomics. Because the limited sensitivity of APEX precludes applications requiring low APEX expression, we used yeast display evolution to improve its catalytic efficiency. Our evolved APEX2 is far more active in cells, enabling the superior enrichment of endogenous mitochondrial and endoplasmic reticulum membrane proteins and the use of electron microscopy to resolve the sub-mitochondrial localization of calcium uptake regulatory protein MICU1. PMID:25419960

  15. Transmission Electron Microscopy Characterization of Helium Bubbles in Aged Plutonium

    SciTech Connect

    Schwartz, A J; Wall, M A; Zocco, T G; Blobaum, K M

    2004-11-02

    The self-irradiation damage generated by alpha decay of plutonium results in the formation of lattice defects, helium, and uranium atoms. Over time, microstructural evolution resulting from the self-irradiation may influence the physical and mechanical properties of the material. In order to assess microstructural changes, we have developed and applied procedures for the specimen preparation, handling, and transmission electron microscopy characterization of Pu alloys. These transmission electron microscopy investigations of Pu-Ga alloys ranging in age up to 42-years old reveal the presence of nanometer-sized helium bubbles. The number density of bubbles and the average size have been determined for eight different aged materials.

  16. Three dimensional electron microscopy and in silico tools for macromolecular structure determination

    PubMed Central

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Khan, Mohammad Wahab; Murali, Ayaluru

    2013-01-01

    Recently, structural biology witnessed a major tool - electron microscopy - in solving the structures of macromolecules in addition to the conventional techniques, X-ray crystallography and nuclear magnetic resonance (NMR). Three dimensional transmission electron microscopy (3DTEM) is one of the most sophisticated techniques for structure determination of molecular machines. Known to give the 3-dimensional structures in its native form with literally no upper limit on size of the macromolecule, this tool does not need the crystallization of the protein. Combining the 3DTEM data with in silico tools, one can have better refined structure of a desired complex. In this review we are discussing about the recent advancements in three dimensional electron microscopy and tools associated with it. PMID:27092033

  17. Electron transfer in biological molecules

    SciTech Connect

    Gray, H.B.

    1995-12-01

    Electron-transfer reactions are key stemps in photosynthesis, respiration, drug metabolism, and many other biochemical processes. These reactions commonly occur between protein-bound prosthetic groups that are separated by large molecular distances (often greater than 10 {Angstrom}). Although the electron donors and acceptors are expected to be weakly coupled, the reactions are remarkably fast and proceed with high specificity. Recent work on structurally engineered iron and cooper proteins has shown that the chemical bonds in the intervening medium potentially can control the rates of these electron-transfer reactions.

  18. Transmission electron microscopy of polymer blends and block copolymers

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique Daniel

    Transmission electron microscopy (TEM) of soft matter is a field that warrants further investigation. Developments in sample preparation, imaging and spectroscopic techniques could lead to novel experiments that may further our understanding of the structure and the role structure plays in the functionality of various organic materials. Unlike most hard materials, TEM of organic molecules is limited by the amount of radiation damage the material can withstand without changing its structure. Despite this limitation, TEM has been and will be a powerful tool to study polymeric materials and other soft matter. In this dissertation, an introduction of TEM for polymer scientists is presented. The fundamentals of interactions of electrons with matter are described using the Schrodinger wave equation and scattering cross-sections to fully encompass coherent and incoherent scattering. The intensity, which is the product of the wave function and its complex conjugate, shows no perceptible change due to the sample. Instead, contrast is generated through the optical system of the microscope by removing scattered electrons or by generating interference due to material-induced phase changes. Perhaps the most challenging aspect of taking TEM images, however, is sample preparation, because TEM experiments require materials with approximately 50 nm thickness. Although ultramicrotomy is a well-established powerful tool for preparing biological and polymeric sections for TEM, the development of cryogenic Focused Ion Beam may enable unprecedented cross-sectional TEM studies of polymer thin films on arbitrary substrates with nanometer precision. Two examples of TEM experiments of polymeric materials are presented. The first involves quantifying the composition profile across a lamellar phase obtained in a multicomponent blend of saturated poly(butadiene) and poly(isobutylene), stabilized by a saturated poly(butadiene) copolymer serving as a surfactant, using TEM and self

  19. Attosecond electron pulses for 4D diffraction and microscopy

    PubMed Central

    Baum, Peter; Zewail, Ahmed H.

    2007-01-01

    In this contribution, we consider the advancement of ultrafast electron diffraction and microscopy to cover the attosecond time domain. The concept is centered on the compression of femtosecond electron packets to trains of 15-attosecond pulses by the use of the ponderomotive force in synthesized gratings of optical fields. Such attosecond electron pulses are significantly shorter than those achievable with extreme UV light sources near 25 nm (≈50 eV) and have the potential for applications in the visualization of ultrafast electron dynamics, especially of atomic structures, clusters of atoms, and some materials. PMID:18000040

  20. Nano-fEM: Protein Localization Using Photo-activated Localization Microscopy and Electron Microscopy

    PubMed Central

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J.; Davis, Wayne M.; Jorgensen, Erik M.

    2012-01-01

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated 1-3. However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated 4-7. However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot 8-10. We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged

  1. WHOLE CELL TOMOGRAPHY/MOLECULAR BIOLOGY/STRUCTURAL BIOLOGY: Affordable x-ray microscopy with nanoscale resolution

    SciTech Connect

    Evans, James E.; Blackborow, Paul; Horne, Stephen J.; Gelb, Jeff

    2013-03-01

    Biological research spans 10 orders of magnitude from angstroms to meters. While electron microscopy can reveal structural details at most of these spatial length scales, transmission electron tomography only reliably reconstructs three-dimensional (3-D) volumes of cellular material with a spatial resolution between 1-5 nm from samples less than 500 nm thick1. Most biological cells are 2-30 times thicker than this threshold, which means that a cell must be cut into consecutive slices with each slice reconstructed individually in order to approximate the contextual information of the entire cell. Fortunately, due to a larger penetration depth2, X-ray computed tomography bypasses the need to physically section a cell and enables imaging of intact cells and tissues on the micrometer or larger scale with tens to hundreds of nanometer spatial resolution. While the technique of soft x-ray microscopy has been extensively developed in synchrotron facilities, advancements in laboratory x-ray source designs now increase its accessibility by supporting commercial systems suitable for a standard laboratory. In this paper, we highlight a new commercial compact cryogenic soft x-ray microscope designed for a standard laboratory setting and explore its capabilities for mesoscopic investigations of intact prokaryotic and eukaryotic cells.

  2. Improved handling of embedding plastics for electron microscopy.

    PubMed

    Shannon, W A

    1982-08-01

    An improved, safer, rapid method for preparing embedding plastics for electron microscopy is described. The method consists of contained storage and dispensing of individual plastic components on an automatic tare balance. The proportions are based on weight measurements and may be calculated from volume or proportion recipes. The usual problems in and resulting from embedding plastic handling have been eliminated. PMID:6750130

  3. Collaboration at the Nanoscale: Exploring Viral Genetics with Electron Microscopy

    ERIC Educational Resources Information Center

    Duboise, S. Monroe; Moulton, Karen D.; Jamison, Jennifer L.

    2009-01-01

    The Maine Science Corps is a project sponsored by the National Science Foundation's (NSF) Graduate Teaching Fellows in K-12 Education (GK-12 ) program. Through this program, the University of Southern Maine's (USM) virology and transmission electron microscopy (TEM) research group provides high school teachers and students in rural areas with…

  4. Scanning electron microscopy analysis of corrosion degradation on tinplate substrates.

    PubMed

    Zumelzu, E; Cabezas, C; Vera, A

    2003-01-01

    The degradation of electrolytic tinplate used in food containers was analysed and evaluated, using scanning electron microscopy and electrochemical measurements of microcorrosion and ion dissolution by atomic absorption to prevent food contamination caused by metal traces and to increase the durability of such tinplates. PMID:12627896

  5. Electron microscopy of Mycoplasma pneumoniae microcolonies grown on solid surfaces.

    PubMed Central

    Kim, C K; Pfister, R M; Somerson, N L

    1977-01-01

    Mycoplasma pneumoniae sprain CL-8 was studied by using various surfaces for adherence and growth. Cells grown on Epon 812, Formvar, carbon, and glass were of similar morphology. Thin Epon pieces were good material for culturing the organisms and examining thin-sectioned microcolonies by transmission electron microscopy. Images PMID:931378

  6. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  7. 'GIARDIA MURIS': SCANNING ELECTRON MICROSCOPY OF IN VITRO EXCYSTATION

    EPA Science Inventory

    A recently developed in vitro excystation procedure results in almost total excystation of Giardia muris, an intestinal parasite of mice. The present experiment examines the G. muris cyst morphology by scanning electron microscopy and evaluates the efficacy of the excystation pro...

  8. DICHOTOMOUS SAMPLERS MODIFIED FOR USE WITH ELECTRON MICROSCOPY

    EPA Science Inventory

    Large sulfate artifacts up to 2 um in diameter were observed by scanning electron microscopy for the fine particle fraction collected in dichotomous samplers. he artifacts were attributed to small liquid particles that piled up on the filter, coalesced, and later dried as larger ...

  9. Detection of parvoviruses in wolf feces by electron microscopy

    USGS Publications Warehouse

    Muneer, M.A.; Farah, I.O.; Pomeroy, K.A.; Goyal, S.M.; Mech, L.D.

    1988-01-01

    One hundred fifteen wolf (Canis lupus) feces were collected between 1980 and 1984 from northeastern Minnesota and were examined for canine parvovirus by negative contrast electron microscopy. Of these, seven (6%) samples revealed the presence of parvovirus. Some of these viruses were able to grow in cell cultures forming intranuclear inclusion bodies and giant cells.

  10. Detective quantum efficiency of electron area detectors in electron microscopy

    PubMed Central

    McMullan, G.; Chen, S.; Henderson, R.; Faruqi, A.R.

    2009-01-01

    Recent progress in detector design has created the need for a careful side-by-side comparison of the modulation transfer function (MTF) and resolution-dependent detective quantum efficiency (DQE) of existing electron detectors with those of detectors based on new technology. We present MTF and DQE measurements for four types of detector: Kodak SO-163 film, TVIPS 224 charge coupled device (CCD) detector, the Medipix2 hybrid pixel detector, and an experimental direct electron monolithic active pixel sensor (MAPS) detector. Film and CCD performance was measured at 120 and 300 keV, while results are presented for the Medipix2 at 120 keV and for the MAPS detector at 300 keV. In the case of film, the effects of electron backscattering from both the holder and the plastic support have been investigated. We also show that part of the response of the emulsion in film comes from light generated in the plastic support. Computer simulations of film and the MAPS detector have been carried out and show good agreement with experiment. The agreement enables us to conclude that the DQE of a backthinned direct electron MAPS detector is likely to be equal to, or better than, that of film at 300 keV. PMID:19497671

  11. Biological applications of fluorescence lifetime imaging beyond microscopy

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Berezin, Mikhail Y.; Lee, Hyeran; Guo, Kevin; Almutairi, Adah; Fréchet, Jean M. J.; Fischer, Georg M.; Daltrozzo, Ewald; Achilefu, Samuel

    2010-02-01

    Fluorescence lifetime is a relatively new contrast mechanism for optical imaging in living subjects that relies on intrinsic properties of fluorophores rather than concentration dependent intensity. Drawing upon the success of fluorescence lifetime imaging microscopy (FLIM) for investigation of protein-protein interactions and intracellular physiology, in vivo fluorescence lifetime imaging (FLI) promises to dramatically increase the utility of fluorescencebased imaging in preclinical and clinical applications. Intrinsic fluorescence lifetime measurements in living tissues can distinguish pathologies such as cancer from healthy tissue. Unfortunately, intrinsic FLT contrast is limited to superficial measurements. Conventional intensity-based agents have been reported for measuring these phenomena in vitro, but translation into living animals is difficult due to optical properties of tissues. For this reason, contrast agents that can be detected in the near infrared (NIR) wavelengths are being developed by our lab and others to enhance the capabilities of this modality. FLT is less affected by concentration and thus is better for detecting small changes in physiology, as long as sufficient fluorescence signal can be measured. FLT can also improve localization of signals for improved deep tissue imaging. Examples of the utility of exogenous contrast agents will be discussed, including applications in monitoring physiologic functions, controlled drug release and cancer biology. Instrumentation for FLI will also be discussed, including planar and diffuse optical imaging in time and frequency domains. Future applications will also be discussed that are being developed in this exciting field that complement other optical modalities.

  12. Generation and application of bessel beams in electron microscopy.

    PubMed

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R; Frabboni, Stefano; Boyd, Robert W; Karimi, Ebrahim

    2016-07-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. PMID:27203186

  13. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    NASA Astrophysics Data System (ADS)

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-02-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.

  14. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    PubMed Central

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  15. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.

    PubMed

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  16. Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.

    PubMed

    Killingsworth, Murray C; Bobryshev, Yuri V

    2016-01-01

    A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region. PMID:27584907

  17. Reporting methods for processing and analysis of data from serial block face scanning electron microscopy.

    PubMed

    Borrett, S; Hughes, L

    2016-07-01

    Serial block face scanning electron microscopy is rapidly becoming a popular tool for collecting large three-dimensional data sets of cells and tissues, filling the resolution and volume gap between fluorescence microscopy and high-resolution electron microscopy. The automated collection of data within the instrument occupies the smallest proportion of the time required to prepare and analyse biological samples. It is the processing of data once it has been collected that proves the greatest challenge. In this review we discuss different methods that are used to process data. We suggest potential workflows that can be used to facilitate the transfer of raw image stacks into quantifiable data as well as propose a set of criteria for reporting methods for data analysis to enable replication of work. PMID:26800017

  18. Unexpected property of trehalose as observed by cryo-electron microscopy.

    PubMed

    De Carlo S; Adrian; Kälin; Mayer; Dubochet

    1999-10-01

    Trehalose is an agent useful in maintaining the integrity of many biological systems submitted to various stresses. It is also presumed to improve specimen preparation for electron microscopy and to reduce beam damage. Here we study the effect of trehalose on the preparation and observation by cryo-electron microscopy of thin vitrified films of biological suspensions. We observe that trehalose, as compared to sucrose, can indeed reduce electron beam damage to biological particles, as determined from the dose necessary for the onset of bubbling. Surprisingly, we also find that the contrast of biological particles is higher in a vitrified solution of trehalose than in one of sucrose. This effect can be explained if the water evaporation during the specimen preparation is less in the presence of trehalose than with sucrose, but we do not yet understand the underlying reasons since the evaporation properties of both sugars are similar at a macroscopic level. We conclude that trehalose is truly a remarkable substance and that more investigation is needed in order to fully understand its properties, and that the addition of ca. 3-5% trehalose to biological suspensions is a simple and useful method to reduce commonly arising drying artefacts and water evaporation in the thin film vitrification method. PMID:10540255

  19. Ballistic electron magnetic microscopy on epitaxial spin valves

    NASA Astrophysics Data System (ADS)

    Heindl, E.; Vancea, J.; Back, C. H.

    2007-02-01

    The tip of a scanning tunneling microscope has been used as an injector of hot electrons or hot holes into a spin valve epitaxially grown on n-GaAs67P33 . Spin-dependent transport of injected and hole excited electrons has been studied in an external magnetic field at room temperature. Significant variations in the collector current due to the spin-dependent inelastic decay of the hot charge carriers have been measured for parallel and antiparallel configurations of the magnetization of the individual layers. We found magnetocurrent effects on the order of 600% and relative large transmission values compared to other ballistic electron magnetic microscopy studies. In addition, we investigated the excitation of electron-hole pairs with its subsequent electron transport in the spin valve and found a magnetocurrent effect with positive sign.

  20. Ultrastructural and elemental imaging of biological specimens by soft x-ray contact microscopy

    SciTech Connect

    Panessa, B.J.; Hoffman, P. . Dept. of Orthopedics); Warren, J.B. ); Feder, R.; Sayre, D. . Thomas J. Watson Research Center)

    1980-01-01

    Soft X-ray contact microscopy offers a means of visualizing unstained as well as stained biological materials at better than 6 nm resolution. Soft X-ray imaging depends on differential absorption of incident soft (1--10nm wavelength) X-rays by the endogenous elements within a specimen. The advantages of using soft X-rays for imaging are: (1) reduced specimen damage during exposure; (2) ability to image hydrated specimens at atmospheric pressure; (3) ability to image specimens ranging in thickness from less than 40 nm to as much as 10{mu}m; and (4) ability to map the elemental composition of the specimen through observation of the differential absorption of properly chosen incident x-ray wavelengths. This paper explains the principles of image formation and demonstrates the use of soft X-ray contact microscopy with biological samples which could not readily be imaged in their natural form using conventional electron microscopy methods. Data are also presented on the recognition of compositional features in histochemically treated articular joint tissues. 30 refs., 15 figs.

  1. Immuno-electron microscopy of primary cell cultures from genetically modified animals in liquid by atmospheric scanning electron microscopy.

    PubMed

    Kinoshita, Takaaki; Mori, Yosio; Hirano, Kazumi; Sugimoto, Shinya; Okuda, Ken-ichi; Matsumoto, Shunsuke; Namiki, Takeshi; Ebihara, Tatsuhiko; Kawata, Masaaki; Nishiyama, Hidetoshi; Sato, Mari; Suga, Mitsuo; Higashiyama, Kenichi; Sonomoto, Kenji; Mizunoe, Yoshimitsu; Nishihara, Shoko; Sato, Chikara

    2014-04-01

    High-throughput immuno-electron microscopy is required to capture the protein-protein interactions realizing physiological functions. Atmospheric scanning electron microscopy (ASEM) allows in situ correlative light and electron microscopy of samples in liquid in an open atmospheric environment. Cells are cultured in a few milliliters of medium directly in the ASEM dish, which can be coated and transferred to an incubator as required. Here, cells were imaged by optical or fluorescence microscopy, and at high resolution by gold-labeled immuno-ASEM, sometimes with additional metal staining. Axonal partitioning of neurons was correlated with specific cytoskeletal structures, including microtubules, using primary-culture neurons from wild type Drosophila, and the involvement of ankyrin in the formation of the intra-axonal segmentation boundary was studied using neurons from an ankyrin-deficient mutant. Rubella virus replication producing anti-double-stranded RNA was captured at the host cell's plasma membrane. Fas receptosome formation was associated with clathrin internalization near the surface of primitive endoderm cells. Positively charged Nanogold clearly revealed the cell outlines of primitive endoderm cells, and the cell division of lactic acid bacteria. Based on these experiments, ASEM promises to allow the study of protein interactions in various complexes in a natural environment of aqueous liquid in the near future. PMID:24564988

  2. Electron microscopy of legionella and legionella-infected cells.

    PubMed

    Faulkner, Gary; Garduño, Rafael A

    2013-01-01

    Those investigators who study the morphology of Legionella and Legionella-infected cells have greatly benefited from the superior resolution afforded by electron microscopy (EM). It can also be said with confidence that EM will continue to reveal as yet to be discovered features of this fascinating intracellular pathogen. In this chapter we detail our practical experience in the application of three transmission electron microscopy (TEM) techniques to the study of Legionella: conventional ultrastructural analysis, immuno-gold labeling, and negative staining. Each of these techniques has particular, well-defined applications, which are discussed in the context of our in-house developed methods. We invite researchers to try the methods given here in the study of Legionella, and adopt TEM as part of their research tools arsenal. PMID:23150403

  3. Microfabricated high-bandpass foucault aperture for electron microscopy

    SciTech Connect

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  4. Practical aspects of monochromators developed for transmission electron microscopy

    PubMed Central

    Kimoto, Koji

    2014-01-01

    A few practical aspects of monochromators recently developed for transmission electron microscopy are briefly reviewed. The basic structures and properties of four monochromators, a single Wien filter monochromator, a double Wien filter monochromator, an omega-shaped electrostatic monochromator and an alpha-shaped magnetic monochromator, are outlined. The advantages and side effects of these monochromators in spectroscopy and imaging are pointed out. A few properties of the monochromators in imaging, such as spatial or angular chromaticity, are also discussed. PMID:25125333

  5. Studying localized corrosion using liquid cell transmission electron microscopy

    SciTech Connect

    Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; Duquette, David; Ross, Frances M.; Hull, Robert

    2014-11-07

    Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au+ ions, can modify the corrosion susceptibility of Al films. Likewise, a discussion on strategies to control the onset of pitting is also presented.

  6. In Situ Electron Microscopy of Lactomicroselenium Particles in Probiotic Bacteria

    PubMed Central

    Nagy, Gabor; Pinczes, Gyula; Pinter, Gabor; Pocsi, Istvan; Prokisch, Jozsef; Banfalvi, Gaspar

    2016-01-01

    Electron microscopy was used to test whether or not (a) in statu nascendi synthesized, and in situ measured, nanoparticle size does not differ significantly from the size of nanoparticles after their purification; and (b) the generation of selenium is detrimental to the bacterial strains that produce them. Elemental nano-sized selenium produced by probiotic latic acid bacteria was used as a lactomicroselenium (lactomicroSel) inhibitor of cell growth in the presence of lactomicroSel, and was followed by time-lapse microscopy. The size of lactomicroSel produced by probiotic bacteria was measured in situ and after isolation and purification. For these measurements the TESLA BS 540 transmission electron microscope was converted from analog (aTEM) to digital processing (dTEM), and further to remote-access internet electron microscopy (iTEM). Lactobacillus acidophilus produced fewer, but larger, lactomicroSel nanoparticles (200–350 nm) than Lactobacillus casei (L. casei), which generated many, smaller lactomicroSel particles (85–200 nm) and grains as a cloudy, less electrodense material. Streptococcus thermophilus cells generated selenoparticles (60–280 nm) in a suicidic manner. The size determined in situ in lactic acid bacteria was significantly lower than those measured by scanning electron microscopy after the isolation of lactomicroSel particles obtained from lactobacilli (100–500 nm), but higher relative to those isolated from Streptococcus thermopilus (50–100 nm). These differences indicate that smaller lactomicroSel particles could be more toxic to the producing bacteria themselves and discrepancies in size could have implications with respect to the applications of selenium nanoparticles as prebiotics. PMID:27376279

  7. In Situ Electron Microscopy of Lactomicroselenium Particles in Probiotic Bacteria.

    PubMed

    Nagy, Gabor; Pinczes, Gyula; Pinter, Gabor; Pocsi, Istvan; Prokisch, Jozsef; Banfalvi, Gaspar

    2016-01-01

    Electron microscopy was used to test whether or not (a) in statu nascendi synthesized, and in situ measured, nanoparticle size does not differ significantly from the size of nanoparticles after their purification; and (b) the generation of selenium is detrimental to the bacterial strains that produce them. Elemental nano-sized selenium produced by probiotic latic acid bacteria was used as a lactomicroselenium (lactomicroSel) inhibitor of cell growth in the presence of lactomicroSel, and was followed by time-lapse microscopy. The size of lactomicroSel produced by probiotic bacteria was measured in situ and after isolation and purification. For these measurements the TESLA BS 540 transmission electron microscope was converted from analog (aTEM) to digital processing (dTEM), and further to remote-access internet electron microscopy (iTEM). Lactobacillus acidophilus produced fewer, but larger, lactomicroSel nanoparticles (200-350 nm) than Lactobacillus casei (L. casei), which generated many, smaller lactomicroSel particles (85-200 nm) and grains as a cloudy, less electrodense material. Streptococcus thermophilus cells generated selenoparticles (60-280 nm) in a suicidic manner. The size determined in situ in lactic acid bacteria was significantly lower than those measured by scanning electron microscopy after the isolation of lactomicroSel particles obtained from lactobacilli (100-500 nm), but higher relative to those isolated from Streptococcus thermopilus (50-100 nm). These differences indicate that smaller lactomicroSel particles could be more toxic to the producing bacteria themselves and discrepancies in size could have implications with respect to the applications of selenium nanoparticles as prebiotics. PMID:27376279

  8. Preparation of gold nanocluster bioconjugates for electron microscopy.

    PubMed

    Heinecke, Christine L; Ackerson, Christopher J

    2013-01-01

    In this chapter, we describe types of gold nanoparticle-biomolecule conjugates and their use in electron microscopy. Included are two detailed protocols for labeling an IgG antibody with gold monolayer protected clusters. The first approach is a direct bonding approach that utilizes the ligand place exchange reaction. The second approach describes NHS-EDC coupling of Au(144)(pMBA)(60) with IgG. Also included are various characterization techniques for determining labeling efficiency. PMID:23086882

  9. Studying localized corrosion using liquid cell transmission electron microscopy

    DOE PAGESBeta

    Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; Duquette, David; Ross, Frances M.; Hull, Robert

    2014-11-07

    Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au+ ions, can modify the corrosion susceptibility of Al films. Likewise, a discussion on strategies to control the onset of pitting is also presented.

  10. Visualization of Microbial Biomarkers by Scanning Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wainwright, Norman R.; Allen, Carlton C.; Child, Alice

    2001-01-01

    . Fortunately, many antimicrobial defense systems of higher organisms require sensitive detection to combat microbial pathogens. We employ here the primitive immune system of the evolutionarily ancient horseshoe crab, Limulus polyphemus. This species relies on multi-enzyme signal amplification detection of cell wall molecules and they can be applied to the development of useful detectors of life. An extension of this work includes the visualization of microbial signatures by labeling LAL components with chromogenic or electron dense markers. The protein Limulus Anti-LPS Factor (LALF) has an extremely high affinity for LPS. By coupling LALF binding with colloidal gold labels we demonstrate a correlation of the structures visible by electron microscopy with biochemical evidence of microbial cell wall materials. Pure silica particles were mixed with cultures of E. coli (10(exp 6) cfu/mL). Samples were washed sequentially with buffered saline, LALF, antibody to LALF and finally colloidal gold-labeled Protein A. Negative controls were not exposed to E. coli but received identical treatment otherwise. Samples were coated with carbon and imaged on a JEOL JSM-840 scanning electron microscope with LaB6 source in the back scatter mode with the JEOL annular back scatter detector. 20 nm-scale black spots in this contrast-reversed image originate from electrons back-scattered by gold atoms. Negative controls did not give any signal. Future work will expand application of this technique to soil simulants and mineralized rock samples.