Science.gov

Sample records for biological isru implications

  1. Developing Biological ISRU: Implications for Life Support and Space Exploration

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Allen, C. C.; Garrison, D. H.; Sarkisova, S. A.; Galindo, C.; Mckay, David S.

    2010-01-01

    Main findings: 1) supplementing very dilute media for cultivation of CB with analogs of lunar or Martian regolith effectively supported the proliferation of CB; 2) O2 evolution by siderophilic cyanobacteria cultivated in diluted media but supplemented with iron-rich rocks was higher than O2 evolution by same strain in undiluted medium; 3) preliminary data suggest that organic acids produced by CB are involved in iron-rich mineral dissolution; 4) the CB studied can accumulate iron on and in their cells; 4) sequencing of the cyanobacterium JSC-1 genome revealed that this strain possesses molecular features which make it applicable for the cultivation in special photoreactors on Moon and Mars. Conclusion: As a result of pilot studies, we propose, to develop a concept for semi-closed integrated system that uses CB to extract useful elements to revitalize air and produce valuable biomolecules. Such a system could be the foundation of a self-sustaining extraterrestrial outpost (Hendrickx, De Wever et al., 2005; Handford, 2006). A potential advantage of a cyanobacterial photoreactor placed between LSS and ISRU loops is the possibility of supplying these systems with extracted elements and compounds from the regolith. In addition, waste regolith may be transformed into additional products such as methane, biomass, and organic and inorganic soil enrichment for the cultivation of higher plants.

  2. The role of synthetic biology for in situ resource utilization (ISRU).

    PubMed

    Montague, Michael; McArthur, George H; Cockell, Charles S; Held, Jason; Marshall, William; Sherman, Louis A; Wang, Norman; Nicholson, Wayne L; Tarjan, Daniel R; Cumbers, John

    2012-12-01

    A persistent presence in space can either be supported from Earth or generate the required resources for human survival from material already present in space, so called "in situ material." Likely, many of these resources such as water or oxygen can best be liberated from in situ material by conventional physical and chemical processes. However, there is one critical resource required for human life that can only be produced in quantity by biological processes: high-protein food. Here, recent data concerning the materials available on the Moon and common asteroid types is reviewed with regard to the necessary materials to support the production of food from material in situ to those environments. These materials and their suitability as feedstock for the biological production of food are reviewed in a broad and general way such that terminology that is often a barrier to understanding such material by interdisciplinary readers is avoided. The waste products available as in situ materials for feasibility studies on the International Space Station are also briefly discussed. The conclusion is that food production in space environments from in situ material proven to exist there is quite feasible. PMID:23140229

  3. In-Situ Resource Utilization (ISRU) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Duke, Michael

    2005-01-01

    A progress review on In-Situ Resource Utilization (ISRU) capability is presented. The topics include: 1) In-Situ Resource Utilization (ISRU) Capability Roadmap: Level 1; 2) ISRU Emphasized Architecture Overview; 3) ISRU Capability Elements: Level 2 and below; and 4) ISRU Capability Roadmap Wrap-up.

  4. In-situ Resource Utilization (ISRU) and Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Sanders, Jerry; Larson, Bill; Sacksteder, Kurt

    2007-01-01

    This viewgraph presentation reviews the benefits of In-Situ Resource Utilization (ISRU) on the surface of the moon. Included in this review is the commercialization of Lunar ISRU. ISRU will strongly influence architecture and critical technologies. ISRU is a critical capability and key implementation of the Vision for Space Exploration (VSE). ISRU will strongly effects lunar outpost logistics, design and crew safety. ISRU will strongly effect outpost critical technologies. ISRU mass investment is minimal compared to immediate and long-term architecture delivery mass and reuse capabilities provided. Therefore, investment in ISRU constitutes a commitment to the mid and long term future of human exploration.

  5. Microchannel Reactors for ISRU Applications

    NASA Astrophysics Data System (ADS)

    Carranza, Susana; Makel, Darby B.; Blizman, Brandon; Ward, Benjamin J.

    2005-02-01

    Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. Successful in-situ resources utilization (ISRU) will require component technologies which provide optimal size, weight, volume, and power efficiency. Microchannel reactors enable the efficient chemical processing of in situ resources. The reactors can be designed for the processes that generate the most benefit for each mission. For instance, propellants (methane) can be produced from carbon dioxide from the Mars atmosphere using the Sabatier reaction and ethylene can be produced from the partial oxidation of methane. A system that synthesizes ethylene could be the precursor for systems to synthesize ethanol and polyethylene. Ethanol can be used as a nutrient for Astrobiology experiments, as well as the production of nutrients for human crew (e.g. sugars). Polyethylene can be used in the construction of habitats, tools, and replacement parts. This paper will present recent developments in miniature chemical reactors using advanced Micro Electro Mechanical Systems (MEMS) and microchannel technology to support ISRU of Mars and lunar missions. Among other applications, the technology has been demonstrated for the Sabatier process and for the partial oxidation of methane. Microchannel reactors were developed based on ceramic substrates as well as metal substrates. In both types of reactors, multiple layers coated with catalytic material are bonded, forming a monolithic structure. Such reactors are readily scalable with the incorporation of extra layers. In addition, this reactor structure minimizes pressure drop and catalyst settling, which are common problems in conventional packed bed reactors.

  6. Minimizing Launch Mass for ISRU Processes

    NASA Technical Reports Server (NTRS)

    England, C.; Hallinan, K. P.

    2004-01-01

    The University of Dayton and the Jet Propulsion Laboratory are developing a methodology for estimating the Earth launch mass (ELM) of processes for In-Situ Resource Utilization (ISRU) with a focus on lunar resource recovery. ISRU may be enabling for both an extended presence on the Moon, and for large sample return missions and for a human presence on Mars. To accomplish these exploration goals, the resources recovered by ISRU must offset the ELM for the recovery process. An appropriate figure of merit is the cost of the exploration mission, which is closely related to ELM. For a given production rate and resource concentration, the lowest ELM - and the best ISRU process - is achieved by minimizing capital equipment for both the ISRU process and energy production. ISRU processes incur Carnot limitations and second law losses (irreversibilities) that ultimately determine production rate, material utilization and energy efficiencies. Heat transfer, chemical reaction, and mechanical operations affect the ELM in ways that are best understood by examining the process's detailed energetics. Schemes for chemical and thermal processing that do not incorporate an understanding of second law losses will be incompletely understood. Our team is developing a methodology that will aid design and selection of ISRU processes by identifying the impact of thermodynamic losses on ELM. The methodology includes mechanical, thermal and chemical operations, and, when completed, will provide a procedure and rationale for optimizing their design and minimizing their cost. The technique for optimizing ISRU with respect to ELM draws from work of England and Funk that relates the cost of endothermic processes to their second law efficiencies. Our team joins their approach for recovering resources by chemical processing with analysis of thermal and mechanical operations in space. Commercial firms provide cost inputs for ELM and planetary landing. Additional information is included in the

  7. Plasma Assisted ISRU at Mars

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Kuhl, Christopher A.; Templeton, Justin D.

    2005-01-01

    NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization (ISRU) technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.

  8. Planetary Regolith Delivery Systems for ISRU

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Townsend, Ivan I., III

    2012-01-01

    The challenges associated with collecting regolith on a planetary surface and delivering it to an in-situ resource utilization system differ significantly from similar activities conducted on Earth. Since system maintenance on a planetary body can be difficult or impossible to do, high reliability and service life are expected of a regolith delivery system. Mission costs impose upper limits on power and mass. The regolith delivery system must provide a leak-tight interface between the near-vacuum planetary surface and the pressurized ISRU system. Regolith delivery in amounts ranging from a few grams to tens of kilograms may be required. Finally, the spent regolith must be removed from the ISRU chamber and returned to the planetary environment via dust tolerant valves capable of operating and sealing over a large temperature range. This paper will describe pneumatic and auger regolith transfer systems that have already been field tested for ISRU, and discuss other systems that await future field testing.

  9. Biological Implications of Gene-Environment Interaction

    ERIC Educational Resources Information Center

    Rutter, Michael

    2008-01-01

    Gene-environment interaction (G x E) has been treated as both a statistical phenomenon and a biological reality. It is argued that, although there are important statistical issues that need to be considered, the focus has to be on the biological implications of G x E. Four reports of G x E deriving from the Dunedin longitudinal study are used as…

  10. Biological Implications of Artificial Illumination.

    ERIC Educational Resources Information Center

    Wurtman, Richard J.

    1968-01-01

    Environmental lighting exerts profound biologic effects on humans and other mammals, in addition to providing the visual stimulus. Light acts on the skin to stimulate the synthesis of Vitamin D. It also acts, through the eyes, to control several glands and many metabolic processes. Light, or its absence, "induces" certain biologic functions. Light…

  11. ISRU Technologies for Mars Life Support

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Sridhar, K. R.

    2000-01-01

    The primary objectives of the Mars Exploration program are to collect data for planetary science in a quest to answer questions related to Origins, to search for evidence of extinct and extant life, and to expand the human presence in the solar system. The public and political engagement that is critical for support of a Mars exploration program is based on all of these objectives. In order to retain and to build public and political support, it is important for NASA to have an integrated Mars exploration plan, not separate robotic and human plans that exist in parallel or in sequence. The resolution stemming from the current architectural review and prioritization of payloads may be pivotal in determining whether NASA will have such a unified plan and retain public support. There are several potential scientific and technological links between the robotic-only missions that have been flown and planned to date, and the robotic + human missions that will come in the future. Taking advantage of and leveraging those links are central to the idea of a unified Mars exploration plan. One such link is in situ resource utilization (ISRU) as an enabling technology to provide consumables such as fuels, oxygen, sweep and utility gases from the Mars atmosphere. ISRU for propellant production and for generation of life support consumables is a key element of human exploration mission plans because of the tremendous savings that can be realized in terms of launch costs and reduction in overall risk to the mission. The Human Exploration and Development of Space (HEDS) Enterprise has supported ISRU technology development for several years, and is funding the MIP and PROMISE payloads that will serve as the first demonstrations of ISRU technology for Mars. In our discussion and presentation at the workshop, we will highlight how the PROMISE ISRU experiment that has been selected by HEDS for a future Mars flight opportunity can extend and enhance the science experiments on board.

  12. In-Situ Resource Utilization (ISRU) Development Program

    NASA Technical Reports Server (NTRS)

    Sanders, Jerry

    1998-01-01

    The question "Why In-Situ Resource Utilization (ISRU)?" is addressed in this presentation. The reasons given concentrate on Cost reduction, Mass reduction, Risk reduction, the expansion of human exploration and presence and the enabling of industrial exploitation. A review of the Martian and Lunar resources available for ISRU is presented. Other ISRU concepts (i.e., In-Situ Consumable production (ISCP) and In-Situ Propellant Production (ISPP)) are introduced and further explained. The objectives of a Mars ISRU System Technology (MIST) include (1) the characterization of technology and subsystem performance for mission modeling and technology funding planning, (2) reduce risk and concerns arising from sample return and human missions utilizing ISRU, and (3) demonstrate the environmental suitability of ISRU components/processes and systems. A proof of concept demonstration schedule and a facility overview for MIST is presented.

  13. Oxygen production System Models for Lunar ISRU

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo

    2007-01-01

    In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible; by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass' for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction. The ISRU program is currently developing system models of, the , abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume.of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.

  14. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU

    NASA Technical Reports Server (NTRS)

    Walton, Krista S.; LeVan, M. Douglas

    2004-01-01

    The atmosphere of Mars has many resources that can be processed to produce things such as oxygen, fuel, buffer gas, and water for support of human exploration missions. Successful manipulation of these resources is crucial for safe, cost-effective, and self-sufficient long-term human exploration of Mars. In our research, we are developing enabling technologies that require fundamental knowledge of adsorptive gas storage and separation processes. In particular, we are designing and constructing an innovative, low mass, low power separation device to recover carbon dioxide and carbon monoxide for Mars ISRU (in-situ resource utilization). The technology has broad implications for gas storage and separations for gas-solid systems that are ideally suited for reduced gravitational environments. This paper describes our separation process design and experimental procedures and reports results for the separation of CO2 and CO by a four-step adsorption cycle.

  15. A Nuclear Powered ISRU Mission to Mars

    NASA Astrophysics Data System (ADS)

    Finzi, Elvina; Davighi, Andrea; Finzi, Amalia

    2006-01-01

    Space exploration has always been drastically constrained by the masses that can be launched into orbit; Hence affordable planning and execution of prolonged manned space missions depend upon the utilization of local. Successful in-situ resources utilization (ISRU) is a key element to allow the human presence on Mars or the Moon. In fact a Mars ISRU mission is planned in the Aurora Program, the European program for the exploration of the solar system. Orpheus mission is a technological demonstrator whose purpose is to show the advantages of an In Situ Propellant Production (ISPP). Main task of this work is to demonstrate the feasibility of a nuclear ISPP plant. The mission designed has been sized to launch back form Mars an eventual manned module. The ISPP mission requires two different: the ISPP power plant module and the nuclear reactor module. Both modules reach the escape orbit thanks to the launcher upper stage, after a 200 days cruising phase the Martian atmosphere is reached thanks to small DV propelled manoeuvres, aerobreaking and soft landing. During its operational life the ISPP plant produces. The propellant is produced in one synodic year. 35000 kg of Ethylene are produced at the Martian equator. The resulting systems appear feasible and of a size comparable to other ISRU mission designs. This mission seems challenging not only for the ISPP technology to be demonstrated, but also for the space nuclear reactor considered; Though this seems the only way to allow a permanent human presence on Mars surface.

  16. A Nuclear Powered ISRU Mission to Mars

    SciTech Connect

    Finzi, Elvina; Davighi, Andrea; Finzi, Amalia

    2006-01-20

    Space exploration has always been drastically constrained by the masses that can be launched into orbit; Hence affordable planning and execution of prolonged manned space missions depend upon the utilization of local. Successful in-situ resources utilization (ISRU) is a key element to allow the human presence on Mars or the Moon. In fact a Mars ISRU mission is planned in the Aurora Program, the European program for the exploration of the solar system. Orpheus mission is a technological demonstrator whose purpose is to show the advantages of an In Situ Propellant Production (ISPP). Main task of this work is to demonstrate the feasibility of a nuclear ISPP plant. The mission designed has been sized to launch back form Mars an eventual manned module. The ISPP mission requires two different: the ISPP power plant module and the nuclear reactor module. Both modules reach the escape orbit thanks to the launcher upper stage, after a 200 days cruising phase the Martian atmosphere is reached thanks to small DV propelled manoeuvres, aerobreaking and soft landing. During its operational life the ISPP plant produces. The propellant is produced in one synodic year. 35000 kg of Ethylene are produced at the Martian equator. The resulting systems appear feasible and of a size comparable to other ISRU mission designs. This mission seems challenging not only for the ISPP technology to be demonstrated, but also for the space nuclear reactor considered; Though this seems the only way to allow a permanent human presence on Mars surface.

  17. ISRU Propellant Selection for Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, Timothy T.

    2013-01-01

    Chemical propulsion remains the only viable solution as technically matured technology for the near term human space transportation to Lunar and Mars. Current mode of space travel requires us to "take everything we will need", including propellant for the return trip. Forcing the mission designers to carry propellant for the return trip limits payload mass available for mission operations and results in a large and costly (and often unaffordable) design. Producing propellant via In-Situ Resource Utilization (ISRU) will enable missions with chemical propulsion by the "refueling" of return-trip propellant. It will reduce vehicle propellant mass carrying requirement by over 50%. This mass reduction can translates into increased payload to enhance greater mission capability, reduces vehicle size, weight and cost. It will also reduce size of launch vehicle fairing size as well as number of launches for a given space mission and enables exploration missions with existing chemical propulsion. Mars remains the ultimate destination for Human Space Exploration within the Solar System. The Mars atmospheric consist of 95% carbon dioxide (CO2) and the presence of Ice (water) was detected on Mars surfaces. This presents a basic chemical building block for the ISRU propellant manufacturing. However, the rationale for the right propellant to produce via ISRU appears to be limited to the perception of "what we can produce" as oppose to "what is the right propellant". Methane (CH4) is often quoted as a logical choice for Mars ISRU propellant, however; it is believed that there are better alternatives available that can result in a better space transportation architecture. A system analysis is needed to determine on what is the right propellant choice for the exploration vehicle. This paper examines the propellant selection for production via ISRU method on Mars surfaces. It will examine propellant trades for the exploration vehicle with resulting impact on vehicle performance, size

  18. Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the Art

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Paz, A.; Oryshchyn, L.; Araghi, K.; Muscatello, A.; Linne, D.; Kleinhenz, J.; Peters, T.

    2015-01-01

    with Mars ISRU systems further substantiated the preliminary results from the Mars DRA 5.0 study. This paper will provide an overview of Mars ISRU consumable production options, the analyses, results, and conclusions from the Mars DRA 5.0 (2007), Mars Collaborative (2013), and Mars ISRU Payload for the Supersonic Retro Propulsion (2014) mission studies, and the current state-of-the-art of Mars ISRU technologies and systems. The paper will also briefly discuss the mission architectural implications associated with Mars resource and ISRU processing options.

  19. Microgravity Materials Research and Code U ISRU

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Sibille, Laurent

    2004-01-01

    The NASA microgravity research program, simply put, has the goal of doing science (which is essentially finding out something previously unknown about nature) utilizing the unique long-term microgravity environment in Earth orbit. Since 1997 Code U has in addition funded scientific basic research that enables safe and economical capabilities to enable humans to live, work and do science beyond Earth orbit. This research has been integrated with the larger NASA missions (Code M and S). These new exploration research focus areas include Radiation Shielding Materials, Macromolecular Research on Bone and Muscle Loss, In Space Fabrication and Repair, and Low Gravity ISRU. The latter two focus on enabling materials processing in space for use in space. The goal of this program is to provide scientific and technical research resulting in proof-of-concept experiments feeding into the larger NASA program to provide humans in space with an energy rich, resource rich, self sustaining infrastructure at the earliest possible time and with minimum risk, launch mass and program cost. President Bush's Exploration Vision (1/14/04) gives a new urgency for the development of ISRU concepts into the exploration architecture. This will require an accelerated One NASA approach utilizing NASA's partners in academia, and industry.

  20. Aquaglyceroporins: implications in adipose biology and obesity.

    PubMed

    Madeira, Ana; Moura, Teresa F; Soveral, Graça

    2015-02-01

    Aquaporins (AQPs) are membrane water/glycerol channels that are involved in many physiological processes. Their primary function is to facilitate the bidirectional transfer of water and small solutes across biological membranes in response to osmotic gradients. Aquaglyceroporins, a subset of the AQP family, are the only mammalian proteins with the ability to permeate glycerol. For a long time, AQP7 has been the only aquaglyceroporin associated with the adipose tissue, which is the major source of circulating glycerol in response to the energy demand. AQP7 dysregulation was positively correlated with obesity onset and adipocyte glycerol permeation through AQP7 was appointed as a novel regulator of adipocyte metabolism and whole-body fat mass. Recently, AQP3, AQP9, AQP10 and AQP11 were additionally identified in human adipocytes and proposed as additional glycerol pathways in these cells. This review contextualizes the importance of aquaglyceroporins in adipose tissue biology and highlights aquaglyceroporins' unique structural features which are relevant for the design of effective therapeutic compounds. We also refer to the latest advances in the identification and characterization of novel aquaporin isoforms in adipose tissue. Finally, considerations on the actual progress of aquaporin research and its implications on obesity therapy are suggested. PMID:25359234

  1. Vacuum Pyrolysis and Related ISRU Techniques

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Pomeroy, Brian R.; Banks, Ian S.; Benz, Alexis

    2007-01-01

    A number of ISRU-related techniques have been developed at NASA Goddard Space Flight Center. The focus of the team has been on development of the vacuum pyrolysis technique for the production of oxygen from the lunar regolith. However, a number of related techniques have also been developed, including solar concentration, solar heating of regolith, resistive heating of regolith, sintering, regolith boiling, process modeling, parts manufacturing, and instrumentation development. An initial prototype system was developed to vaporize regolith simulants using a approx. l square meter Fresnel lens. This system was successfully used to vaporize quantities of approx. lg, and both mass spectroscopy of the gasses produced and Scanning Electron Microscopy (SEM) of the slag were done to show that oxygen was produced. Subsequent tests have demonstrated the use of a larger system With a 3.8m diameter reflective mirror to vaporize the regolith. These results and modeling of the vacuum pyrolysis reaction have indicated that the vaporization of the oxides in the regolith will occur at lower temperature for stronger vacuums. The chemical modeling was validated by testing of a resistive heating system that vaporized quantities of approx. 10g of MLS-1A. This system was also used to demonstrate the sintering of regolith simulants at reduced temperatures in high vacuum. This reduction in the required temperature prompted the development of a small-scale resistive heating system for application as a scientific instrument as well as a proof-of principle experiment for oxygen production.

  2. ISRU in the Context of Future European Human Mars Exploration

    NASA Astrophysics Data System (ADS)

    Baker, A. M.; Tomatis, C.

    2002-01-01

    ISRU or In-Situ Resource Utilisation is the use of Martian resources to manufacture, typically, life support consumables (e.g. water, oxygen, breathing buffer gases), and propellant for a return journey to Earth. European studies have shown that some 4kg of reaction mass must be launched to LEO to send 1kg payload to Mars orbit, with landing on the Mars surface reducing payload mass still further. This results in very high transportation costs to Mars, and still higher costs for returning payloads to Earth. There is therefore a major incentive to reduce payload mass for any form of Mars return mission (human or otherwise) by generating consumables on the surface. ESA through its GSTP programme has been investigating the system level design of a number of mission elements as potential European contributions to an international human Mars exploration mission intended for the 2020-2030 timeframe. One of these is an ISRU plant, a small chemical factory to convert feedstock brought from Earth (hydrogen), and Martian atmospheric gases (CO2 and trace quantities of nitrogen and argon) into methane and oxygen propellant for Earth return and life support consumables, in advance of the arrival of astronauts. ISRU technology has been the subject of much investigation around the world, but little detailed research or system level studies have been reported in Europe. Furthermore, the potential applicability of European expertise, technology and sub- system studies to Martian ISRU is not well quantified. Study work covered in this paper has compared existing designs (e.g. NASA's Design Reference Mission, DLR and Mars Society studies) with the latest ESA derived requirements for human Mars exploration, and has generated a system level ISRU design. This paper will review and quantify the baseline chemical reactions essential for ISRU, including CO2 collection and purification, Sabatier reduction of CO2 with hydrogen to methane and water, and electrolysis of water in the context of

  3. In Situ Resource Utilization (ISRU 3) Technical Interchange Meeting: Abstracts

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This volume contains abstracts that have been accepted for presentation at the In Situ Resource Utilization (ISRU III) Technical Interchange Meeting, February 11-12, 1999, hosted by the Lockheed Martin Astronautics Waterton Facility, Denver, Colorado. Administration and publication support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  4. Martian Atmospheric Dust Mitigation for ISRU Intakes via Electrostatic Precipitation

    NASA Technical Reports Server (NTRS)

    Phillips, James R., III; Pollard, Jacob R. S.; Johansen, Michael R.; Mackey, Paul J.; Clements, J. Sid; Calle, Carlos I.

    2016-01-01

    The Mars 2020 and Mars Sample Return missions expected to fly to Mars within the next ten years will each include an In Situ Resource Utilization (ISRU) system. They convert carbon dioxide in the Martian atmosphere into consumable oxygen at 1% and 20% of the rate required by a full scale human exploration Mars mission, respectively. The ISRU systems will need to draw in the surrounding atmosphere at a rate of 110L/min and 550L/min, respectively, in order to meet their oxygen production goals. Over the duration of each respective mission, a total atmospheric dust mass of 4.86g and 243g will be drawn into each system, respectively. Ingestion of large quantities of dust may interfere with ISRU operations, so a dust mitigation device will be required. The atmospheric volume and dust mass flow rates above will be utilized to simulate Martian environmental conditions in a laboratory electrostatic precipitator being developed to provide active dust mitigation support for atmospheric ISRU systems such as these.

  5. Risk Assessment: Implications for Biologic Education.

    ERIC Educational Resources Information Center

    Ost, David H.

    1995-01-01

    Discusses risk assessment, including risk assessment as a modeling process, models and social values, political decision making, the public, and risk assessment techniques in the biology classroom. (MKR)

  6. Biological Warfare: Implications for Antimicrobial Use.

    PubMed

    Rubinstein, Ethan; Levi, Itzhak

    2002-02-01

    Biological warfare is intended to incapacitate a large number of individuals at a single exposure, creating epidemic-type disease, death, and social chaos. The organisms with potential for immediate use as bacteriologic weapons are Bacillus anthracis, Brucella melitensis, Yersinia pestis, and Vibrio cholera, all necessitating antibiotic therapy for a cure. It is reasonable, therefore, to assume that a biological attack, or even a hoax, would requiure thousands of individuals over a large area to begin antibiotic therapy. Issues such as antibiotic availability, logistical problems in antibiotic distribution, development of drug resistance, side effects influencing the individual, and adverse effects on the community due to the impact of mass therapy on the ecology, make biological warfare the most apocalyptic scenario for the creation of a "postantibiotic era." PMID:11853654

  7. Implications of Big Data for cell biology

    PubMed Central

    Dolinski, Kara; Troyanskaya, Olga G.

    2015-01-01

    “Big Data” has surpassed “systems biology” and “omics” as the hottest buzzword in the biological sciences, but is there any substance behind the hype? Certainly, we have learned about various aspects of cell and molecular biology from the many individual high-throughput data sets that have been published in the past 15–20 years. These data, although useful as individual data sets, can provide much more knowledge when interrogated with Big Data approaches, such as applying integrative methods that leverage the heterogeneous data compendia in their entirety. Here we discuss the benefits and challenges of such Big Data approaches in biology and how cell and molecular biologists can best take advantage of them. PMID:26174066

  8. Metal nanoclusters: Protein corona formation and implications for biological applications.

    PubMed

    Shang, Li; Nienhaus, Gerd Ulrich

    2016-06-01

    Metal nanoclusters (NCs) are a new type of nanoprobe with great potential in various biological applications. For biocompatible and efficient utilization of NCs, a thorough understanding of their interactions with biological systems is highly important. Herein, we focus on recent studies addressing interactions between metal NCs and proteins as well as implications for their further biological application. These findings show that protein adsorption not only affects the photophysical properties of NCs, but also influences their subsequent biological behavior, i.e., cellular uptake and cytotoxicity. Moreover, specific protein-NC interactions have also been harnessed to develop novel protein discrimination strategies. PMID:26408503

  9. The Biology of Trauma: Implications for Treatment

    ERIC Educational Resources Information Center

    Solomon, Eldra P.; Heide, Kathleen M.

    2005-01-01

    During the past 20 years, the development of brain imaging techniques and new biochemical approaches has led to increased understanding of the biological effects of psychological trauma. New hypotheses have been generated about brain development and the roots of antisocial behavior. We now understand that psychological trauma disrupts homeostasis…

  10. The biology of trauma: implications for treatment.

    PubMed

    Solomon, Eldra P; Heide, Kathleen M

    2005-01-01

    During the past 20 years, the development of brain imaging techniques and new biochemical approaches has led to increased understanding of the biological effects of psychological trauma. New hypotheses have been generated about brain development and the roots of antisocial behavior. We now understand that psychological trauma disrupts homeostasis and can cause both short and long-term effects on many organs and systems of the body. Our expanding knowledge of the effects of trauma on the body has inspired new approaches to treating trauma survivors. Biologically informed therapy addresses the physiological effects of trauma, as well as cognitive distortions and maladaptive behaviors. The authors suggest that the most effective therapeutic innovation during the past 20 years for treating trauma survivors has been Eye Movement Desensitization and Reprocessing (EMDR), a therapeutic approach that focuses on resolving trauma using a combination of top-down (cognitive) and bottom-up (affect/body) processing. PMID:15618561

  11. In Situ Resource Utilization (ISRU) Technical Interchange Meeting

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This volume contains abstracts that have been accepted for presentation at the In Situ Resource Utilization (ISRU) Technical Interchange Meeting, February 4-5, 1997, at the Lunar and Planetary Institute, Houston, Texas. Abstracts are arranged in order of presentation at the meetings, with corresponding page numbers shown in the enclosed agenda. Logistics, administration, and publication support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  12. In Situ Resource Utilization (ISRU II) Technical Interchange Meeting

    NASA Technical Reports Server (NTRS)

    Kaplan, David (Compiler); Saunders, Stephen R. (Compiler)

    1997-01-01

    This volume contains extended abstracts that have been accepted for presentation at the In Situ Resource Utilization (ISRU II) Technical Interchange Meeting, November 18-19, 1997, at the Lunar and Planetary Institute, Houston, Texas. Included are topics which include: Extraterrestrial resources, in situ propellant production, sampling of planetary surfaces, oxygen production, water vapor extraction from the Martian atmosphere, gas generation, cryogenic refrigeration, and propellant transport and storage.

  13. Environment, Biology, and Culture: Implications for Adolescent Development.

    ERIC Educational Resources Information Center

    Zahn-Waxler, Carolyn

    1996-01-01

    Introduces this special theme issue examining the roles of socialization, biology, and culture as they affect adaptive and maladaptive developmental outcomes. Problems of adolescence addressed include antisocial behavior, depressive symptoms, substance abuse, low achievement, and eating problems. Considers factors implicated in successful…

  14. Local Citation Analysis of Graduate Biology Theses: Collection Development Implications

    ERIC Educational Resources Information Center

    Miller, Laura Newton

    2011-01-01

    This paper will focus on the citation analysis of graduate masters theses from Carleton University's Biology Department with implications for library collection management decisions. Twenty-five masters theses were studied to determine citation types and percentages, ranking of journals by frequency of citation and by number of authors citing, and…

  15. Topological implications of negative curvature for biological and social networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; DasGupta, Bhaskar; Mobasheri, Nasim

    2014-03-01

    Network measures that reflect the most salient properties of complex large-scale networks are in high demand in the network research community. In this paper we adapt a combinatorial measure of negative curvature (also called hyperbolicity) to parametrized finite networks, and show that a variety of biological and social networks are hyperbolic. This hyperbolicity property has strong implications on the higher-order connectivity and other topological properties of these networks. Specifically, we derive and prove bounds on the distance among shortest or approximately shortest paths in hyperbolic networks. We describe two implications of these bounds to crosstalk in biological networks, and to the existence of central, influential neighborhoods in both biological and social networks.

  16. Discussion of thermal extraction chamber concepts for Lunar ISRU

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Matthias; Hager, Philipp; Parzinger, Stephan; Dirlich, Thomas; Spinnler, Markus; Sattelmayer, Thomas; Walter, Ulrich

    The Exploration group of the Institute of Astronautics (LRT) of the Technische Universitüt a München focuses on long-term scenarios and sustainable human presence in space. One of the enabling technologies in this long-term perspective is in-situ resource utilization (ISRU). When dealing with the prospect of future manned missions to Moon and Mars the use of ISRU seems useful and intended. The activities presented in this paper focus on Lunar ISRU. This basically incorporates both the exploitation of Lunar oxygen from natural rock and the extraction of solar wind implanted particles (SWIP) from regolith dust. Presently the group at the LRT is examining possibilities for the extraction of SWIPs, which may provide several gaseous components (such as H2 and N2) valuable to a human presence on the Moon. As a major stepping stone in the near future a Lunar demonstrator/ verification experiment payload is being designed. This experiment, LUISE (LUnar ISru Experiment), will comprise a thermal process chamber for heating regolith dust (grain size below 500m), a solar thermal power supply, a sample distribution unit and a trace gas analysis. The first project stage includes the detailed design and analysis of the extraction chamber concepts and the thermal process involved in the removal of SWIP from Lunar Regolith dust. The technique of extracting Solar Wind volatiles from Regolith has been outlined by several sources. Heating the material to a threshold value seems to be the most reasonable approach. The present paper will give an overview over concepts for thermal extraction chambers to be used in the LUISE project and evaluate in detail the pros and cons of each concept. The special boundary conditions set by solar thermal heating of the chambers as well as the material properties of Regolith in a Lunar environment will be discussed. Both greatly influence the design of the extraction chamber. The performance of the chamber concepts is discussed with respect to the

  17. Opportunities for ISRU Applications in the Mars Reference Mission

    NASA Astrophysics Data System (ADS)

    Duke, Michael B.

    1998-01-01

    The NASA Mars Exploration Reference Mission envisions sending three crews of six astronauts to Mars, each for 500-day stays on the surface. In situ Resourse Unitlization (ISRU) has been baselined for the production of propellant for crews leaving the surface, as well as to create reservoirs of water and life-support consumables These applications improve performance (by reducing the mass of hardware and supplies that must be brought to Mars for the propulsion system) and reduce risk (by creating consumables as backups to stores brought from Earth). Similar applications of other types of ISRU-derived materials should be sought and selected if they similarly improve performance or reduce risk. Some possible concepts for consideration, based on a review of the components included in the Reference Mission, include (1) emplacement of a hardened landing pad; (2) construction of a roadway for transporting the nuclear power system to a safe distance from the habitat; (3) radiation shielding for inflatable structures; (4) tanks and plumbing for bioregenerative life-support system; (5) drilling rig; (6) additional access structures for equipment and personnel and unpressurized structures for vehicle storage; (7) utilitarian manufactured products (e.g., stools and benches) for habitat and laboratory; (8) thermal radiators; (9) photovoltaic devices and support structures; and ( 10) external structures for storage and preservation of Mars samples. These may be viewed principally as mission- enhancing concepts for the Reference Mission. Selection would require a clear rationale for performance improvement or risk reduction and a demonstration that the cost of developing and transporting the needed equipment would be recovered within the budget for the program. Additional work is also necessary to ascertain whether early applications of ISRU for these types of purposes could lead to the modification of later missions, allowing the replacement of infrastructure payloads currently

  18. Calculation of Excavation Force for ISRU on Lunar Surface

    NASA Technical Reports Server (NTRS)

    Zeng, Xiangwu (David); Burnoski, Louis; Agui, Juan H.; Wilkinson, Allen

    2007-01-01

    Accurately predicting the excavation force that will be encountered by digging tools on the lunar surface is a crucial element of in-situ resource utilization (ISRU). Based on principles of soil mechanics, this paper develops an analytical model that is relatively simple to apply and uses soil parameters that can be determined by traditional soil strength tests. The influence of important parameters on the excavation force is investigated. The results are compared with that predicted by other available theories. Results of preliminary soil tests on lunar stimulant are also reported.

  19. Resource Prospector: A lunar volatiles prospecting and ISRU demonstration mission

    NASA Astrophysics Data System (ADS)

    Colaprete, A.; Elphic, R. C.; Andrews, D. R.; Trimble, J.; Sanders, J.; Quinn, J.

    2014-12-01

    A variety of recent observations have indicated several possible reservoirs of water and other volatiles. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. NASA's Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) is supporting the development of Resource Prospector (RP) to explore the distribution and concentration of lunar volatiles prospecting and to demonstrate In-Situ Resource Utilization (ISRU). The mission includes the RESOLVE (Regolith and Environment Science and Oxygen & Lunar Volatile Extraction) payload, a NASA developed rover, and a lander will most likely be a contributed element by an international partner or the Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative. The RESOLVE payload is designed to: (1) locate near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. RP is being designed with thought given to its extensibility to resource prospecting and ISRU on other airless bodies and Mars. This presentation will describe the Resource Prospector mission, the payload and measurements, and concept of operations.

  20. Field Scale Testing of RESOLVE at 2010 ISRU Analog Test

    NASA Technical Reports Server (NTRS)

    Captain, Janine E.; Quinn, J. W.; Moss, T. J.; Weis, K. H.

    2010-01-01

    When mankind returns to the moon, there will be one aspect of the architecture that will totally change how we explore the solar system. For the first time in space exploration, we will take the initial steps towards breaking our reliance on Earth-supplied consumables by extracting resources from planetary bodies. Our first efforts in this area, known as In Situ Resource Utilization (ISRU), will be directed at extracting some of the abundant oxygen found in the lunar regolith. But the "holy grail" of lunar ISRU will be finding an exploitable source of lunar hydrogen. If we can find a source of hydrogen that can be reasonably extracted from the regolith, it would provide a foundation for true independence from Earth consumables. With in-situ hydrogen and oxygen (and/or water) we can produce many of the major consumables needed to travel to and operate on a sustainable lunar outpost. We would have water to drink, oxygen to breath, and rocket propellants and fuel cell reagents to enable extended access and operations across the moon. NASA initiated development of an experiment package named RESOLVE (Regolith & Environment Science and Oxygen & Lunar Volatile Extraction) that could be flown to the rim or into a permanently shadowed crater to answer the questions surrounding elevated hydrogen at the lunar poles.

  1. Resource Prospector: A Lunar Volatiles Prospecting and ISRU Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony

    2015-01-01

    A variety of recent observations have indicated several possible reservoirs of water and other volatiles. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. NASA's Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) is supporting the development of Resource Prospector (RP) to explore the distribution and concentration of lunar volatiles prospecting and to demonstrate In-Situ Resource Utilization (ISRU). The mission includes a NASA developed rover and payload, and a lander will most likely be a contributed element by an international partner or the Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative. The RP payload is designed to: (1) locate near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form. extractability and usefulness of the materials. RP is being designed with thought given to its extensibility to resource prospecting and ISRU on other airless bodies and Mars. This presentation will describe the Resource Prospector mission, the payload and measurements, and concept of operations

  2. Resource Prospector: A lunar volatiles prospecting and ISRU demonstration mission

    NASA Astrophysics Data System (ADS)

    Colaprete, A.

    2015-12-01

    A variety of recent observations have indicated several possible reservoirs of water and other volatiles. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. NASA's Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) is supporting the development of Resource Prospector (RP) to explore the distribution and concentration of lunar volatiles prospecting and to demonstrate In-Situ Resource Utilization (ISRU). The mission includes a NASA developed rover and payload, and a lander will most likely be a contributed element by an international partner or the Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative. The RP payload is designed to: (1) locate near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. RP is being designed with thought given to its extensibility to resource prospecting and ISRU on other airless bodies and Mars. This presentation will describe the Resource Prospector mission, the payload and measurements, and concept of operations

  3. College biology students' conceptions related to the nature of biological knowledge: Implications for conceptual change

    NASA Astrophysics Data System (ADS)

    Ameny, Gloria Millie Apio

    knowledge or course was found to have a statistically significant influence on students' conceptions related to scientific methods, the scope and limits of biological knowledge, the importance of evolution in biology, and students' understanding of homologous and analogous structural features as products of divergent and convergent evolutionary processes. Findings of this study have implications for college biology teaching, student learning, and conceptual change among college biology students.

  4. ISRU Production of Life Support Consumables for a Lunar Base

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Simon, Tom

    2007-01-01

    Similar to finding a home on Earth, location is important when selecting where to set up an exploration outpost. Essential considerations for comparing potential lunar outpost locations include: (1) areas nearby that would be useful for In-Situ Resource Utilization (ISRU) oxygen extraction from regolith for crew breathing oxygen as well as other potential uses; (2) proximity to a suitable landing site; (3) availability of sunlight; (4) capability for line-of-sight communications with Earth; (5) proximity to permanently-shadowed areas for potential in-situ water ice; and (6) scientific interest. The Mons Malapert1 (Malapert Mountain) area (85.5degS, 0degE) has been compared to these criteria, and appears to be a suitable location for a lunar outpost.

  5. ISRU System Model Tool: From Excavation to Oxygen Production

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Linne, Diane L.

    2007-01-01

    In the late 80's, conceptual designs for an in situ oxygen production plant were documented in a study by Eagle Engineering [1]. In the "Summary of Findings" of this study, it is clearly pointed out that: "reported process mass and power estimates lack a consistent basis to allow comparison." The study goes on to say: "A study to produce a set of process mass, power, and volume requirements on a consistent basis is recommended." Today, approximately twenty years later, as humans plan to return to the moon and venture beyond, the need for flexible up-to-date models of the oxygen extraction production process has become even more clear. Multiple processes for the production of oxygen from lunar regolith are being investigated by NASA, academia, and industry. Three processes that have shown technical merit are molten regolith electrolysis, hydrogen reduction, and carbothermal reduction. These processes have been selected by NASA as the basis for the development of the ISRU System Model Tool (ISMT). In working to develop up-to-date system models for these processes NASA hopes to accomplish the following: (1) help in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the excavation and oxygen production processes, and (4) provide estimates on energy and power requirements, mass and volume of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters. Also, as confidence and high fidelity is achieved with each component's model, new techniques and processes can be introduced and analyzed at a fraction of the cost of traditional hardware development and test approaches. A first generation ISRU System Model Tool has been used to provide inputs to the Lunar Architecture Team studies.

  6. MicroChannel Reactors for ISRU Applications Using Nanofabricated Catalysts

    NASA Astrophysics Data System (ADS)

    Carranza, Susana; Makel, Darby B.; Vander Wal, Randall L.; Berger, Gordon M.; Pushkarev, Vladimir V.

    2006-01-01

    With the new direction of NASA to emphasize the exploration of the Moon, Mars and beyond, quick development and demonstration of efficient systems for In-Situ Resources Utilization (ISRU) is more critical and timely than ever before. Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. This paper presents current development of miniaturized chemical processing systems that combine microchannel reactor design with nanofabricated catalysts. Carbon nanotubes (CNT) are used to produce a nanostructure within microchannel reactors, as support for catalysts. By virtue of their nanoscale dimensions, nanotubes geometrically restrict the catalyst particle size that can be supported upon the tube walls. By confining catalyst particles to sizes smaller than the CNT diameter, a more uniform catalyst particle size distribution may be maintained. The high dispersion permitted by the vast surface area of the nanoscale material serves to retain the integrity of the catalyst by reducing sintering or coalescence. Additionally, catalytic efficiency increases with decreasing catalyst particle size (reflecting higher surface area per unit mass) while chemical reactivity frequently is enhanced at the nanoscale. Particularly significant is the catalyst exposure. Rather than being confined within a porous material or deposited upon a 2-d surface, the catalyst is fully exposed to the reactant gases by virtue of the nanofabricated support structure. The combination of microchannel technology with nanofabricated catalysts provides a synergistic effect, enhancing both technologies with the potential to produce much more efficient systems than either technology alone. The development of highly efficient microchannel reactors will be applicable to multiple ISRU programs. By selection of proper nanofabricated catalysts, the microchannel reactors can be

  7. Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Romig, Kris A.; Larson, William E.; Johnson, Robert; Rapp, Don; Johnson, Ken R.; Sacksteder, Kurt; Linne, Diane; Curreri, Peter; Duke, Michael; Blair, Brad; Gertsch, Leslie; Boucher, Dale; Rice, Eric; Clark, Larry; McCullough, Ed; Zubrin, Robert

    2005-01-01

    On January 14, 2004, the President of the United States unveiled a new vision for robotic and human exploration of space entitled, "A Renewed Spirit of Discovery". As stated by the President in the Vision for Space Exploration (VSE), NASA must "... implement a sustained and affordable human and robotic program to explore the solar system and beyond " and ".. .develop new technologies and harness the moon's abundant resources to allow manned exploration of more challenging environments." A key to fulfilling the goal of sustained and affordable human and robotic exploration will be the ability to use resources that are available at the site of exploration to "live off the land" instead of bringing everything from Earth, known as In-Situ Resource Utilization (ISRU). ISRU can significantly reduce the mass, cost, and risk of exploration through capabilities such as: mission consumable production (propellants, fuel cell reagents, life support consumables, and feedstock for manufacturing & construction); surface construction (radiation shields, landing pads, walls, habitats, etc.); manufacturing and repair with in-situ resources (spare parts, wires, trusses, integrated systems etc.); and space utilities and power from space resources. On January 27th, 2004 the President's Commission on Implementation of U.S. Space Exploration Policy (Aldridge Committee) was created and its final report was released in June 2004. One of the report's recommendations was to establish special project teams to evaluate enabling technologies, of which "Planetary in situ resource utilization" was one of them. Based on the VSE and the commission's final report, NASA established fifteen Capability Roadmap teams, of which ISRU was one of the teams established. From Oct. 2004 to May 2005 the ISRU Capability Roadmap team examined the capabilities, benefits, architecture and mission implementation strategy, critical decisions, current state-of-the-art (SOA), challenges, technology gaps, and risks of

  8. Biology, detection, and clinical implications of circulating tumor cells

    PubMed Central

    Joosse, Simon A; Gorges, Tobias M; Pantel, Klaus

    2015-01-01

    Cancer metastasis is the main cause of cancer-related death, and dissemination of tumor cells through the blood circulation is an important intermediate step that also exemplifies the switch from localized to systemic disease. Early detection and characterization of circulating tumor cells (CTCs) is therefore important as a general strategy to monitor and prevent the development of overt metastatic disease. Furthermore, sequential analysis of CTCs can provide clinically relevant information on the effectiveness and progression of systemic therapies (e.g., chemo-, hormonal, or targeted therapies with antibodies or small inhibitors). Although many advances have been made regarding the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this important diagnostic approach. In this review, we discuss the biology of tumor cell dissemination, technical advances, as well as the challenges and potential clinical implications of CTC detection and characterization. PMID:25398926

  9. Pathologic and Therapeutic Implications for the Cell Biology of Parkin

    PubMed Central

    Charan, Rakshita A.; LaVoie, Matthew J.

    2015-01-01

    Mutations in the E3 ligase parkin are the most common cause of autosomal recessive Parkinson's disease (PD), but it is believed that parkin dysfunction may also contribute to idiopathic PD. Since its discovery, parkin has been implicated in supporting multiple neuroprotective pathways, many revolving around the maintenance of mitochondrial health quality control and governance of cell survival. Recent advances across the structure, biochemistry, and cell biology of parkin have provided great insights into the etiology of parkin-linked and idiopathic PD and may ultimately generate novel therapeutic strategies to slow or halt disease progression. This review describes the various pathways in which parkin acts and the mechanisms by which parkin may be targeted for therapeutic intervention. PMID:25697646

  10. NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth

    2008-01-01

    Since the Vision for Space Exploration (VSE) was released in 2004, NASA, in conjunction with international space agencies, industry, and academia, has continued to define and refine plans for sustained and affordable robotic and human exploration of the Moon and beyond. With the goal of establishing a lunar Outpost on the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, a change in how space exploration is performed is required. One area that opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to live off the land is In-Situ Resource Utilization (ISRU). ISRU, which involves the extraction and processing of space resources into useful products, can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. However, ISRU is an unproven capability for human lunar exploration and can not be put in the critical path of lunar Outpost success until it has been proven. Therefore, ISRU development and deployment needs to take incremental steps toward the desired end state. To ensure ISRU capabilities are available for pre-Outpost and Outpost deployment by 2020, and mission and architecture planners are confident that ISRU can meet initial and long term mission requirements, the ISRU Project is developing technologies and systems in three critical areas: (1) Regolith Excavation, Handling and Material Transportation; (2) Oxygen Extraction from Regolith; and (3) Volatile Extraction and Resource Prospecting, and in four development stages: (I) Demonstrate feasibility; (II) Evolve system w/ improved technologies; (III) Develop one or more systems to TRL 6 before start of flight development; and (IV) Flight development for

  11. In Situ Resource Utilization (ISRU) Experiments for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Marone, Matt

    2005-01-01

    In situ resource utilization can best be described as living off the land. In our case the land is the planet Mars. ISRU is based on the idea that some fraction of the consumables, life support and propellant materials do not have to be flown from earth. Rather, they can be manufactured or extracted from resources already present on Mars. The primary resources on Mars are the atmosphere, polar caps and regolith. The atmosphere of Mars is mostly carbon dioxide as shown in the table below. The proportion of oxygen on the other hand is quite small. Still, there is quite a bit of oxygen in the Martian atmosphere, but it is unfortunately tied up with carbon. Thus, one of the goals of ISRU is the separation of breathable oxygen from the carbon dioxide. Several means of separation have been proposed. We have begun experiments on another approach for production of oxygen with carbon monoxide as a useful by product. Our work on a CO2 separator is described later in this report. Regolith melting is another means of obtaining materials. Two materials of interest are iron and silicon. Iron oxide is plentiful on Mars and is of obvious importance for structural components. Silicon is the foundation of solid state devices. Power generation on Mars may be accomplished using silicon solar cells. There is discussion of the feasibility of in situ production of solar cells. This would require a means of extracting silicon from the regolith. We have conducted several experiments concerning melting and glassification of the Mars soil simulant. Other summer faculty fellows have tried various means of processing the stimulant material. These include furnace melting, microwave melting and laser ablation. We have conducted several furnace melting experiments in both air and carbon dioxide environments. We have also carried out experiments to test spark melting in a carbon dioxide atmosphere. These experiments suggest the possibility of using arc melting in a reducing atmosphere. It is

  12. ISRU Development Strategy and Recent Activities to Support Near and Far Term Missions

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald B.; Simon, Thomas M.

    2003-01-01

    The practical expansion of humans beyond low Earth orbit into near-Earth space and out into the solar system for exploration, commercialization, tourism, and colonization will require the effective utilization of whatever indigenous resources are available to make these endeavors economically feasible and capable of extended operations. This concept of ``living off the land'' is called In-Situ Resource Utilization (ISRU). The resources available for ISRU applications vary widely, depending upon the location. However, there are resources, technologies, and processes that are common to multiple destinations and ISRU-related applications. These resources range from carbon dioxide (CO2) and water vapor found in human habitats (surface & spacecraft) and in the Martian atmosphere, to water (ice and hydrated minerals) and various oxygen, carbon, and metal-bearing resources found on comets and asteroids, and in planetary surface materials at numerous destinations of interest (Moon, Mars, Titan, and Europa). Many parties are investigating the common technologies and processes to effectively extract and use these resources. This paper will discuss how ISRU is enabling for both near and far term human exploration missions, and present a summary of recent and on-going ISRU work sponsored by the NASA/Johnson Space Center. Technology development activities that will be described in detail include an advanced CO2 freezer acquisition system, a multi-fluid common bulkhead cryogenic storage tank, and a variety of microchannel chemical reactor concepts. Recent advanced Sabatier reactor concept development activities in preparation for later, end-to-end system testing will be described as well. This paper will also discuss an ISRU-based strategy to enable extensive robotic and human surface exploration operations and a related on-going demonstration program for a fuel cell based power plant for rover applications. Technology commonalities between ISRU, life support systems, and Extra

  13. Cassegrain Solar Concentrator System for ISRU Material Processing

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Macosko, Robert; Castle, Charles; Sacksteder, Kurt; Suzuki, Nantel H.; Mulherin, James

    2012-01-01

    A 0.5 m diameter Cassegrain concentrator was constructed as a means of providing highly concentrated sunlight for the demonstration processing of lunar simulated regolith and other NASA In-Situ Resource Utilization Project (ISRU) reaction processes. The concentrator is constructed of aluminum with a concentration ratio of approximately 3000 to 1. The concentrator focuses solar energy into a movable tray located behind the concentrator. This tray can hold simulated regolith or any other material and or device to be tested with concentrated solar energy. The tray is movable in one axis. A 2-axis extended optical system was also designed and fabricated. The extended optical system is added to the back of the primary concentrator in place of the moveable test tray and associated apparatus. With this optical system the focused sunlight can be extended from the back of the primary concentrator toward the ground with the added advantage of moving the focal point axially and laterally relative to the ground. This allows holding the focal point at a fixed position on the ground as the primary concentrator tracks the sun. Also, by design, the focal point size was reduced via the extended optics by a factor of 2 and results in a concentration ratio for the system of approximately 6,000 to 1.The designs of both optical systems are discussed. The results from simulated regolith melting tests are presented as well as the operational experience of utilizing the Cassegrain concentrator system.

  14. RESOLVE: Bridge between early lunar ISRU and science objectives

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Sanders, G.; Larson, W.; Johnson, K.

    2007-08-01

    THE NEED FOR RESOURCES: When mankind returns to the moon, there will be an aspect of the architecture that will totally change how we explore the solar system. We will take the first steps towards breaking our reliance on Earth supplied consumables by extracting resources from planetary bodies. Our first efforts in this area, known as In-Situ Resource Utilization (ISRU), will be to extract the abundant oxygen found in the lunar regolith. But the "holy grail" of lunar ISRU will be finding an exploitable source of lunar hydrogen. If we can find a source of extractable hydrogen, it would provide a foundation for true independence from Earth. With in-situ hydrogen (or water) and oxygen we can produce many of the major consumables needed to operate a lunar outpost. We would have water to drink, oxygen to breath, as well as rocket propellants and fuel cell reagents to enable extended access and operations on the moon. These items make up a huge percentage of the mass launched from the Earth. Producing them in-situ would significantly reduce the cost of operating a lunar outpost while increasing payload availability for science. PROSPECTING: The Lunar Prospector found evidence of elevated hydrogen at the lunar poles, and measurements made at these locations from the Clementine mission bistatic radar have been interpreted as correlating to water/ice concentrations. At the South Pole, there is reasonably strong correlation between the elevated areas of hydrogen and permanently shadowed craters. However, there is considerable debate on the form and concentration of this hydrogen since the orbiting satellites had limited resolution and their data can be interpreted in different ways. The varying interpretations are based on differing opinions and theories of lunar environment, evolution, and cometary bombardment within the lunar Science community. The only way to truly answer this question from both a Science and resource availability perspective is to go to the lunar poles

  15. Water Electrolysis for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Lee, Kristopher A.

    2016-01-01

    Sending humans to Mars for any significant amount of time will require capabilities and technologies that enable Earth independence. To move towards this independence, the resources found on Mars must be utilized to produce the items needed to sustain humans away from Earth. To accomplish this task, NASA is studying In Situ Resource Utilization (ISRU) systems and techniques to make use of the atmospheric carbon dioxide and the water found on Mars. Among other things, these substances can be harvested and processed to make oxygen and methane. Oxygen is essential, not only for sustaining the lives of the crew on Mars, but also as the oxidizer for an oxygen-methane propulsion system that could be utilized on a Mars ascent vehicle. Given the presence of water on Mars, the electrolysis of water is a common technique to produce the desired oxygen. Towards this goal, NASA designed and developed a Proton Exchange Membrane (PEM) water electrolysis system, which was originally slated to produce oxygen for propulsion and fuel cell use in the Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project. As part of the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) project, this same electrolysis system, originally targeted at enabling in situ propulsion and power, operated in a life-support scenario. During HESTIA testing at Johnson Space Center, the electrolysis system supplied oxygen to a chamber simulating a habitat housing four crewmembers. Inside the chamber, oxygen was removed from the atmosphere to simulate consumption by the crew, and the electrolysis system's oxygen was added to replenish it. The electrolysis system operated nominally throughout the duration of the HESTIA test campaign, and the oxygen levels in the life support chamber were maintained at the desired levels.

  16. Understanding the biological and environmental implications of nanomaterials

    NASA Astrophysics Data System (ADS)

    Lin, Sijie

    of Nano-Eco and Nano-Bio interactions at the cellular level. (6) Chapter 6: Conclusions and future work. The overarching goal of this research is to advance our understanding on the fate of nanomaterials in biological and ecological systems. Knowledge obtained from this dissertation is expected to benefit future research on the implications and applications of engineered nanomaterials.

  17. Tutorial in oral antithrombotic therapy: Biology and dental implications

    PubMed Central

    Fakhri, Hamid R.; Janket, Sok J.; Baird, Alison E.; Dinnocenzo, Richard; Meurman, Jukka H.

    2013-01-01

    Objectives: Recent developments of new direct oral anticoagulants that target specific clotting factors necessitate understanding of coagulation biology. The objective of this tutorial is to offer dental professionals a review of coagulation mechanisms and the pharmacodynamics of the conventional and new oral anticoagulants. Also, we summarized the dental implications of the conventional and new anticoagulants. Method: We searched Medline using search terms “antithrombotic”, “antihemostasis” or “anticoagulation” and combined them with the search results of “dental”, “oral surgery” or “periodontal”. We restricted the results to “human” and “English”. Results: The early coagulation cascade, the new cell-based coagulation model, the pharmacokinetics and pharmacodynamics of conventional antithrombotics, and new oral anticoagulants were reviewed. The new direct factor Xa inhibitors and the direct thrombin inhibitor (s), called direct oral anticoagulants (DOAs) have rapid onset of action, fast elimination on cessation, and fewer drug-drug or drug-food interactions than warfarin. However, the lack of antidotes raises concerns that some dental procedures may trigger serious hemorrhagic events. Additionally, careful perioperative withdrawal and resumption protocols for the DOAs are reviewed, because DOAs’ blood levels are dependent on renal function. Also, various reversal strategies in the event of excessive bleedings are summarized. Perioperative management of dental patients taking new DOAs and conventional oral anticoagulants are also discussed. However, the perioperative strategies for DOAs are yet to be validated in randomized trials. Key words:Coagulation cascade, cell-based coagulation model, factor Xa inhibitors, direct thrombin inhibitors, prothrombin complex concentrates. PMID:23524440

  18. Book review: Conservation biology of Hawaiian forest birds: Implications for island avifauna

    USGS Publications Warehouse

    Engstrom, R. Todd; van Riper, Charles, III

    2010-01-01

    Review info: Conservation Biology of Hawaiian Forest Birds: Implications for Island Avifauna. By Thane K. Pratt, Carter T. Atkinson, Paul C. Banko, James D. Jacobi, and Bethany L. Woodworth, Eds., 2009. ISBN 978-0300141085, 707 pp.

  19. Sustaining Human Presence on Mars Using ISRU and a Reusable Lander

    NASA Technical Reports Server (NTRS)

    Arney, Dale C.; Jones, Christopher A.; Klovstad, Jordan J.; Komar, D.R.; Earle, Kevin; Moses, Robert; Shyface, Hilary R.

    2015-01-01

    This paper presents an analysis of the impact of ISRU (In-Site Resource Utilization), reusability, and automation on sustaining a human presence on Mars, requiring a transition from Earth dependence to Earth independence. The study analyzes the surface and transportation architectures and compared campaigns that revealed the importance of ISRU and reusability. A reusable Mars lander, Hercules, eliminates the need to deliver a new descent and ascent stage with each cargo and crew delivery to Mars, reducing the mass delivered from Earth. As part of an evolvable transportation architecture, this investment is key to enabling continuous human presence on Mars. The extensive use of ISRU reduces the logistics supply chain from Earth in order to support population growth at Mars. Reliable and autonomous systems, in conjunction with robotics, are required to enable ISRU architectures as systems must operate and maintain themselves while the crew is not present. A comparison of Mars campaigns is presented to show the impact of adding these investments and their ability to contribute to sustaining a human presence on Mars.

  20. Evolution of Regolith Feed Systems for Lunar ISRU 02 Production Plants

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Townsend, Ivan I., III; Mantovani, James G.; Metzger, Philip T.

    2010-01-01

    The In-Situ Resource Utilization (ISRU) project of the NASA Constellation Program, Exploration Technology Development Program (ETDP) has been engaged in the design and testing of various Lunar ISRU O2 production plant prototypes that can extract chemically bound oxygen from the minerals in the lunar regolith. This work demands that lunar regolith (or simulants) shall be introduced into the O2 production plant from a holding bin or hopper and subsequently expelled from the ISRU O2 production plant for disposal. This sub-system is called the Regolith Feed System (RFS) which exists in a variety of configurations depending on the O2 production plant oxygen being used (e.g. Hydrogen Reduction, Carbothermal, Molten Oxide Electrolysis). Each configuration may use a different technology and in addition it is desirable to have heat recuperation from the spent hot regolith as an integral part of the RFS. This paper addresses the various RFS and heat recuperation technologies and system configurations that have been developed under the NASA ISRU project since 2007. In addition current design solutions and lessons learned from reduced gravity flight testing will be discussed.

  1. Optimized ISRU Propellants for Propulsion and Power Needs for Future Mars Colonization

    NASA Astrophysics Data System (ADS)

    Rice, Eric E.; Gustafson, Robert J.; Gramer, Daniel J.; Chiaverini, Martin J.; Teeter, Ronald R.; White, Brant C.

    2003-01-01

    In recent studies (Rice, 2000, 2002) conducted by ORBITEC for the NASA Institute for Advanced Concepts (NIAC), we conceptualized systems and an evolving optimized architecture for producing and utilizing Mars-based in-situ space resources utilization (ISRU) propellant combinations for future Mars colonization. The propellants are to be used to support the propulsion and power systems for ground and flight vehicles. The key aspect of the study was to show the benefits of ISRU, develop an analysis methodology, as well as provide guidance to propellant system choices in the future based upon what is known today about Mars. The study time frame included an early unmanned and manned exploration period (through 2040) and two colonization scenarios that are postulated to occur from 2040 to 2090. As part of this feasibility study, ORBITEC developed two different Mars colonization scenarios: a low case that ends with a 100-person colony (an Antarctica analogy) and a high case that ends with a 10,000-person colony (a Mars terraforming scenario). A population growth model, mission traffic model, and infrastructure model were developed for each scenario to better understand the requirements of future Mars colonies. Additionally, propellant and propulsion systems design concepts were developed. Cost models were also developed to allow comparison of the different ISRU propellant approaches. This paper summarizes the overall results of the study. ISRU proved to be a key enabler for these colonization missions. Carbon monoxide and oxygen, proved to be the most cost-effective ISRU propellant combination. The entire final reports Phase I and II) and all the details can be found at the NIAC website www.niac.usra.edu.

  2. Reassessing Biological Threats: Implications for Cooperative Mitigation Strategies

    PubMed Central

    Galloway, Summer Elise; Petzing, Stephanie Rachel; Young, Catharine Grace

    2015-01-01

    Multiple factors ranging from globalization to ecosystem disruption are presenting the global community with evolving biological threats to local, national, and global security that reach beyond the realm of traditional bioweapon threats. As a result, mitigation strategies have adapted necessarily to the increased diversity of biological threats. In general, response and preparedness strategies have largely shifted from being primarily reactive to traditional biological weapons to more proactive in nature. In this review, we briefly explore biological threats through a wider aperture, to embrace a greater appreciation of viral pathogens, antimicrobial resistance, and agricultural pathogens, and their potential to cause civil, economic, and political devastation. In addition, we discuss current mitigation strategies codified by the Global Health Security Agenda and the One Health paradigm as well as some of the available tools to assist with their sustainable implementation. PMID:26649289

  3. Self Organizing Systems and the Research Implications for Biological Systems

    NASA Astrophysics Data System (ADS)

    Denkins-Taffe, Lauren R.; Alfred, Marcus; Lindesay, James

    2008-03-01

    The knowledge gained from the human genome project, has provided an added opportunity to study the dynamical relationships within biological systems and can lead to an increased knowledge of diseases and subsequent drug discovery. Through computation, methods in which to rebuild these systems are being studied. These methods, which have first been applied to simpler systems: predator-prey, and self sustaining ecosystems can be applied to the study of microscopic biological systems.

  4. A Review of the Clinical Implications of Breast Cancer Biology

    PubMed Central

    Parsa, Yekta; Mirmalek, Seyed Abbas; Kani, Fatemeh Elham; Aidun, Amir; Salimi-Tabatabaee, Seyed Alireza; Yadollah-Damavandi, Soheila; Jangholi, Ehsan; Parsa, Tina; Shahverdi, Ehsan

    2016-01-01

    Background Histologically similar tumors may have different prognoses and responses to treatment. These differences are due to molecular differences. Hence, in this review, the biological interaction of breast cancer in several different areas is discussed. In addition, the performance and clinical application of the most widely-recognized biomarkers, metastasis, and recurrences from a biological perspective and current global advances in these areas are addressed. Objective This review provides the performance and clinical application of the most widely-recognized biomarkers, metastasis, and recurrences from the biological perspective and current global advances in these areas. Methods PubMed, Scopus, and Google Scholar were searched comprehensively with combinations of the following keywords: “breast cancer,” “biological markers,” and “clinical.” The definition of breast cancer, diagnostic methods, biological markers, and available treatment approaches were extracted from the literature. Results Estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2), and Ki-67 are the most well-known biological markers that have important roles in prognosis and response to therapeutic methods. Some studies showed the response of ER-positive and PR-negative tumors to anti-estrogenic treatment to be lower than ER-positive and PR-positive tumors. Patients with high expression of HER-2 and Ki-67 had a poor prognosis. In addition, recent investigations indicated the roles of new biomarkers, such as VEGF, IGF, P53 and P21, which are associated with many factors, such as age, race, and histological features. Conclusion The objective of scientists, from establishing a relationship between cancer biology infrastructures with clinical manifestations, is to find new ways of prevention and progression inhibition and then possible introduction of less dangerous and better treatments to resolve this dilemma of human society. PMID

  5. The Psychology of Schizophrenia: Implications for Biological and Psychotherapeutic Treatments.

    PubMed

    Dewan, Mantosh J

    2016-08-01

    The focus on recent advances in the neurobiology of schizophrenia has pushed aside the psychological understanding of the person with schizophrenia for several decades. However, a useful functional psychology of schizophrenia (in distinction to a psychological approach to symptoms) remains clinically important for several reasons: it is a core part of the bio-psycho-social formulation; it helps us understand and connect with persons with schizophrenia; and it provides a framework by which to organize our treatment efforts (both psychotherapeutic and particularly biological), which can improve adherence and outcomes. A coherent psychological model (the deficit model) based on object relations theory best explains all the biological, psychological, clinical, and sociocultural factors relevant to the understanding and treatment of persons with schizophrenia. A better understanding of a coherent psychology of persons with schizophrenia and provision of psychotherapies improves both the biological and psychotherapeutic treatment of persons with schizophrenia. PMID:27479611

  6. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU

  7. Component and System Sensitivity Considerations for Design of a Lunar ISRU Oxygen Production Plant

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Gokoglu, Suleyman; Hegde, Uday G.; Balasubramaniam, Ramaswamy; Santiago-Maldonado, Edgardo

    2009-01-01

    Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.

  8. Mode coupling in living systems: implications for biology and medicine.

    PubMed

    Swain, John

    2008-05-01

    Complex systems, and in particular biological ones, are characterized by large numbers of oscillations of widely differing frequencies. Various prejudices tend to lead to the assumption that such oscillators should generically be very weakly interacting. This paper reviews the basic ideas of linearity and nonlinearity as seen by a physicist, but with a view to biological systems. In particular, it is argued that large couplings between different oscillators of disparate frequencies are common, being present even in rather simple systems which are well-known in physics, although this issue is often glossed over. This suggests new experiments and investigations, as well as new approaches to therapies and human-environment interactions which, without the concepts described here, may otherwise seem unlikely to be interesting. The style of the paper is conversational with a minimum of mathematics, and no attempt at a complete list of references. PMID:18697625

  9. Biological Effects of Listeriolysin O: Implications for Vaccination

    PubMed Central

    Hernández-Flores, K. G.; Vivanco-Cid, H.

    2015-01-01

    Listeriolysin O (LLO) is a thiol-activated cholesterol-dependent pore-forming toxin and the major virulence factor of Listeria monocytogenes (LM). Extensive research in recent years has revealed that LLO exerts a wide array of biological activities, during the infection by LM or by itself as recombinant antigen. The spectrum of biological activities induced by LLO includes cytotoxicity, apoptosis induction, endoplasmic reticulum stress response, modulation of gene expression, intracellular calcium oscillations, and proinflammatory activity. In addition, LLO is a highly immunogenic toxin and the major target for innate and adaptive immune responses in different animal models and humans. Recently, the crystal structure of LLO has been published in detail. Here, we review the structure-function relationship for this fascinating microbial molecule, highlighting the potential uses of LLO in the fields of biomedicine and biotechnology, particularly in vaccination. PMID:25874208

  10. Biological Implications of Dynamical Phases in Non-equilibrium Networks

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2016-03-01

    Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.

  11. Biological bases and clinical implications of tumor radioresistence

    SciTech Connect

    Fletcher, G.H.; Nerri, C.; Withers, R.

    1983-01-01

    International experts discuss the relevance of biology and radiation therapy, offer critical evaluations of therapeutic procedures and make recommendations for future development of methods of cancer treatment. Topics include the limitations of normal tissue tolerance, attempts to improve the therapeutic ratio by manipulation of the time factor, and a review of the present state-of-the-art giving the results of conventional irradiation and describing some of the ways of maximizing the effectiveness of existing means of treatment.

  12. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine☆

    PubMed Central

    Zhang, Xue-Qing; Xu, Xiaoyang; Bertrand, Nicolas; Pridgen, Eric; Swami, Archana; Farokhzad, Omid C.

    2012-01-01

    The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials. PMID:22917779

  13. Biological weapons control. Prospects and implications for the future.

    PubMed

    Kadlec, R P; Zelicoff, A P; Vrtis, A M

    1997-08-01

    The Biological and Toxin Weapons Convention (BWC), which prohibits the acquisition of biological materials for hostile purposes and armed conflict, entered into force in 1975 and now has the participation of 140 nations (158 nations have signed the BWC, but only 140 of these have also ratified it). However, there is no monitoring mechanism associated with the BWC. Diplomatic efforts are now under way to create a supplemental, legally binding protocol to strengthen the convention. Measures to strengthen the BWC are analogous to the diagnostic processes familiar to physicians; the problem facing negotiators is to identify procedures with high positive and negative predictive value. Few proposed measures meet these criteria. However, the investigation of unusual disease outbreaks and allegations of use are highly diagnostic of illicit activities while avoiding false-positive accusations. At the same time, such information generated by the BWC can contribute to worldwide efforts to improve public health, control emergent disease, and establish an international norm against biological weapons proliferation. PMID:9244311

  14. Vascular biology of ageing—Implications in hypertension

    PubMed Central

    Harvey, Adam; Montezano, Augusto C.; Touyz, Rhian M.

    2015-01-01

    Ageing is associated with functional, structural and mechanical changes in arteries that closely resemble the vascular alterations in hypertension. Characteristic features of large and small arteries that occur with ageing and during the development of hypertension include endothelial dysfunction, vascular remodelling, inflammation, calcification and increased stiffness. Arterial changes in young hypertensive patients mimic those in old normotensive individuals. Hypertension accelerates and augments age-related vascular remodelling and dysfunction, and ageing may impact on the severity of vascular damage in hypertension, indicating close interactions between biological ageing and blood pressure elevation. Molecular and cellular mechanisms underlying vascular alterations in ageing and hypertension are common and include aberrant signal transduction, oxidative stress and activation of pro-inflammatory and pro-fibrotic transcription factors. Strategies to suppress age-associated vascular changes could ameliorate vascular damage associated with hypertension. An overview on the vascular biology of ageing and hypertension is presented and novel molecular mechanisms contributing to these processes are discussed. The complex interaction between biological ageing and blood pressure elevation on the vasculature is highlighted. This article is part of a Special Issue entitled: CV Ageing. PMID:25896391

  15. Biological framework for soil aggregation: Implications for ecological functions.

    NASA Astrophysics Data System (ADS)

    Ghezzehei, Teamrat; Or, Dani

    2016-04-01

    Soil aggregation is heuristically understood as agglomeration of primary particles bound together by biotic and abiotic cementing agents. The organization of aggregates is believed to be hierarchical in nature; whereby primary particles bond together to form secondary particles and subsequently merge to form larger aggregates. Soil aggregates are not permanent structures, they continuously change in response to internal and external forces and other drivers, including moisture, capillary pressure, temperature, biological activity, and human disturbances. Soil aggregation processes and the resulting functionality span multiple spatial and temporal scales. The intertwined biological and physical nature of soil aggregation, and the time scales involved precluded a universally applicable and quantifiable framework for characterizing the nature and function of soil aggregation. We introduce a biophysical framework of soil aggregation that considers the various modes and factors of the genesis, maturation and degradation of soil aggregates including wetting/drying cycles, soil mechanical processes, biological activity and the nature of primary soil particles. The framework attempts to disentangle mechanical (compaction and soil fragmentation) from in-situ biophysical aggregation and provides a consistent description of aggregate size, hierarchical organization, and life time. It also enables quantitative description of biotic and abiotic functions of soil aggregates including diffusion and storage of mass and energy as well as role of aggregates as hot spots of nutrient accumulation, biodiversity, and biogeochemical cycles.

  16. Understanding the biological and environmental implications of nanomaterials

    NASA Astrophysics Data System (ADS)

    Lin, Sijie

    The last two decades have witnessed the discovery, development, and large-scale manufacturing of novel nanomaterials. While nanomaterials bring in exciting and extraordinary properties in all areas of materials, electronics, mechanics, and medicine, they also could generate potential adverse effects in biological systems and in the environment. The currently limited application of nanomaterials in biological and ecological systems results from the insufficient and often controversial data on describing the complex behaviors of nanomaterials in living systems. The purpose of this dissertation intends to fill such a knowledge void with methodologies from the disciplines of biophysics, biology, and materials science and engineering. Chapter 1 of this dissertation provides a comprehensive review on the structures and properties of carbon nanomaterials (CBNMs), metal oxides, and quantum dots (QDs). This chapter also details the state-of-the-art on the biological applications, ecological applications, and toxicity of nanomaterials. With Chapter 1 serving as a background, Chapters 2-5 present my PhD research, an inquiry on the fate of nanomaterials in biological and ecological systems, on the whole organism and cellular levels. Specifically, CBNMs are introduced to rice plant seedlings and the uptake, translocation and generational transfer of fullerene C70 in the plant compartments are imaged and characterized. The interactions between CBNMs and rice plants on the whole organism level are initiated by the binding between CBNMs and natural organic matter (NOM), driven by the transpiration of water from the roots to the leaves of the plants and mediated by both the physiochemical properties of the CBNMs and plant physiology. In Chapter 3, semiconducting nanocrystals quantum dots (QDs) are introduced to green algae Chlamydomonas to probe the interactions of nanomaterials with ecological systems on the cellular level. The adsorption of QDs onto the algal cell wall is

  17. Biological implications of polydimethylsiloxane-based microfluidic cell culture†

    PubMed Central

    Regehr, Keil J.; Domenech, Maribella; Koepsel, Justin T.; Carver, Kristopher C.; Ellison-Zelski, Stephanie J.; Murphy, William L.; Schuler, Linda A.; Alarid, Elaine T.; Beebe, David J.

    2009-01-01

    Polydimethylsiloxane (PDMS) has become a staple of the microfluidics community by virtue of its simple fabrication process and material attributes, such as gas permeability, optical transparency, and flexibility. As microfluidic systems are put toward biological problems and increasingly utilized as cell culture platforms, the material properties of PDMS must be considered in a biological context. Two properties of PDMS were addressed in this study: the leaching of uncured oligomers from the polymer network into microchannel media, and the absorption of small, hydrophobic molecules (i.e. estrogen) from serum-containing media into the polymer bulk. Uncured PDMS oligomers were detectable via MALDI-MS in microchannel media both before and after Soxhlet extraction of PDMS devices in ethanol. Additionally, PDMS oligomers were identified in the plasma membranes of NMuMG cells cultured in PDMS microchannels for 24 hours. Cells cultured in extracted microchannels also contained a detectable amount of uncured PDMS. It was shown that MCF-7 cells seeded directly on PDMS inserts were responsive to hydrophilic prolactin but not hydrophobic estrogen, reflecting its specificity for absorbing small, hydrophobic molecules; and the presence of PDMS floating in wells significantly reduced cellular response to estrogen in a serum-dependent manner. Quantification of estrogen via ELISA revealed that microchannel estrogen partitioned rapidly into the surrounding PDMS to a ratio of approximately 9:1. Pretreatments such as blocking with serum or pre-absorbing estrogen for 24 hours did not affect estrogen loss from PDMS-based microchannels. These findings highlight the importance of careful consideration of culture system properties when determining an appropriate environment for biological experiments. PMID:19606288

  18. Multiple biological properties of macelignan and its pharmacological implications.

    PubMed

    Paul, Saswati; Hwang, Jae Kwan; Kim, Hahn Young; Jeon, Won Kyung; Chung, ChiHye; Han, Jung-Soo

    2013-03-01

    Macelignan found in the nutmeg mace of Myristica fragrans obtains increasing attention as a new avenue in treating various diseases. Macelignan has been shown to possess a spectrum of pharmacological activities, including anti-bacterial, anti-inflammatory, anti-cancer, anti-diabetes, and hepatoprotective activities; recently, it has also been shown to have neuroprotective activities. This review summarizes the current research on the biological effects of macelignan derived from M. fragrans, with emphasis on the importance in understanding and treating complex diseases such as cancer and Alzheimer's disease. PMID:23435944

  19. Experimental Testing and Modeling of a Pneumatic Regolith Delivery System for ISRU

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Dominquez, Jesus A.; Mantovani, James G.

    2011-01-01

    Excavating and transporting planetary regolith are examples of surface activities that may occur during a future space exploration mission to a planetary body. Regolith, whether it is collected on the Moon, Mars or even an asteroid, consists of granular minerals, some of which have been identified to be viable resources that can be mined and processed chemically to extract useful by-products, such as oxygen, water, and various metals and metal alloys. Even the depleted "waste" material from such chemical processes may be utilized later in the construction of landing pads and protective structures at the site of a planetary base. One reason for excavating and conveying planetary regolith is to deliver raw regolith material to in-situ resource utilization (ISRU) systems. The goal of ISRU is to provide expendable supplies and materials at the planetary destination, if possible. An in-situ capability of producing mission-critical substances such as oxygen will help to extend the mission and its success, and will greatly lower the overall cost of a mission by either eliminating, or significantly reducing, the need to transport the same expendable materials from the Earth. In order to support the goals and objectives of present and future ISRU projects, NASA seeks technology advancements in the areas of regolith conveying. Such systems must be effective, efficient and provide reliable performance over long durations while being exposed to the harsh environments found on planetary surfaces. These conditions include contact with very abrasive regolith particulates, exposure to high vacuum or dry (partial) atmospheres, wide variations in temperature, reduced gravity, and exposure to space radiation. Regolith conveying techniques that combine reduced failure modes and low energy consumption with high material transfer rates will provide significant value for future space exploration missions to the surfaces of the moon, Mars and asteroids. Pneumatic regolith conveying has

  20. ISRU at a Lunar Outpost: Implementation and Opportunities for Partnerships and Commercial Development

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Simon, Thomas; Larson, William E.; Santiago-Maldonado, Edgardo; Sacksteder, Kurt; Linne, Diane; Caruso, John; Easter, Robert

    2007-01-01

    The NASA Lunar Architecture Team (LAT), which was commissioned to help answer the question "how" will humans return to the Moon, and the Synthesis Team and the recently released Global Exploration Strategy, which was commissioned to help answer the question "why" will humans return to the Moon and go on to Mars have identified the ability to extract and use in-situ resources as important to extending human frontiers, reduce dependence on Earth, and further economic and commercial expansion into space. The extraction and processing of space resources into useful products, known as In-Situ Resource Utilization (ISRU), can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. Potential lunar resources include solar wind implanted volatiles, vast quantities of metal and mineral oxides, possible water/ice at the poles, abundant solar energy, regions of permanent light and darkness, the vacuum of space itself, and even scavenging leftover descent propellants and/or trash and waste from human crew activities. Suitable processing can transform these raw resources into useful materials and products. The establishment of a human lunar Outpost, as proposed by NASA at the 2nd Space Exploration Conference in Houston in December 2006, opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to "live off the land". The ISRU phasing and capability incorporation strategy developed during LAT Phase I & II is based on the premise that while ISRU is a critical capability and key to successful implementation of the US Vision for Space Exploration, it is also an unproven capability for human lunar exploration and can not be put in the critical path of architecture success until it has been proven. Therefore, ISRU needs to take incremental

  1. Opportunities and Strategies for Testing and Infusion of ISRU in the Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Sibille, Laurent; Mantovani, James; Sanders, Gerald B.; Jones, Christopher A.

    2015-01-01

    HE Evolvable Mars Campaign (EMC) is developing the plans and systems needed for a robust, evolutionary strategy to explore cis-lunar space, the Mars sphere of influence (including the moons of Mars), and the surface of Mars. Recently, the emphasis of NASA's plans has changed to focus on the prolonged pioneering of space, rather than focusing on a single crewed mission as the ultimate goal. A sustainable, pioneering vision of space would include in-situ resource utilization (ISRU) in multiple forms and at multiple destinations: atmospheric capture of Mars CO2 and/or volatiles for consumables and propellants, regolith for bulk and refined materials, and in-situ manufacturing at the Moon, Mars, and other bodies. These resources would enable a reduction in the logistical needs from Earth for future missions, thus preparing the way for a sustained presence on Mars. Although the EMC initially relies only on propellant production for the Mars ascent vehicle via ISRU, one of its primary objectives is to prospect at every EMC destination to understand the potential for ISRU; this will permit true pioneering to be enabled after the first crew arrives at Mars. Recent and ongoing analysis has considered the possible prospecting measurements that can be performed at the asteroid returned to cis-lunar space by the Asteroid Robotic Redirect Mission (ARRM), at the lunar surface, at Phobos and Deimos, and on the surface of Mars to identify available resources for future use. These opportunities will be available on missions currently in the Evolvable Mars Campaign construct, and will also facilitate the testing and demonstration of resource acquisition, processing, storage, and useage technologies that can play a role in later missions. This analysis has also led to the identification of several objectives that should be targeted during the missions building up to and including the initial crewed missions. These objectives are mapped to strategies for incorporating ISRU to support

  2. Angiogenesis in Spontaneous Tumors and Implications for Comparative Tumor Biology

    PubMed Central

    Benazzi, C.; Al-Dissi, A.; Chau, C. H.; Figg, W. D.; Sarli, G.; de Oliveira, J. T.; Gärtner, F.

    2014-01-01

    Blood supply is essential for development and growth of tumors and angiogenesis is the fundamental process of new blood vessel formation from preexisting ones. Angiogenesis is a prognostic indicator for a variety of tumors, and it coincides with increased shedding of neoplastic cells into the circulation and metastasis. Several molecules such as cell surface receptors, growth factors, and enzymes are involved in this process. While antiangiogenic therapy for cancer has been proposed over 20 years ago, it has garnered much controversy in recent years within the scientific community. The complex relationships between the angiogenic signaling cascade and antiangiogenic substances have indicated the angiogenic pathway as a valid target for anticancer drug development and VEGF has become the primary antiangiogenic drug target. This review discusses the basic and clinical perspectives of angiogenesis highlighting the importance of comparative biology in understanding tumor angiogenesis and the integration of these model systems for future drug development. PMID:24563633

  3. Differential transmission of sunlight on Mars - Biological implications

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Pollack, J. B.

    1974-01-01

    A euphotic zone seems to exist at about 1 cm subsurface in the Martian epilith. At this depth, visible light is still intense enough to be utilized by conceivable photosynthetic organisms; but the germicidal ultraviolet intensities at the Martian surface have been reduced to values manageable by terrestrial life. Such euphotic zone organisms would experience moderately high Martian temperatures at equatorial latitudes and can be dispersed readily during global dust storms. During such storms the Martian euphotic zone may reach the surface. The aerosol content of the Martian atmosphere can be monitored by multiband single-line scans of the sun at large zenith angles by the Viking lander camera; and the postulated euphotic zone organisms can be searched for with the Viking lander sample arm and biology experiments.

  4. Trends and implications of biological analyses for agricultural operations

    SciTech Connect

    Ash, D.H.; Salladay, D.G.

    1994-10-01

    State and federal legislatures, regulatory agencies, the agricultural community, and the public at large have increasing concerns about groundwater contamination and other environmental issues. The U.S. Congress has requested all federal agencies working with agriculture to address these issues. Even with current pressures to {open_quotes}cut government spending,{close_quotes} public pressure prevails to clean up polluted sites and to prevent future contamination. Farmers, agrichemical dealers and producers, and related trade associations have voiced concern about regulations affecting their industries. Over the last three decades positive changes have evolved in the disposal or final resolution of agricultural wastes from indiscriminate disposal on land and in water, through regulated land filling and incineration to a point where biological treatment/remediation strategies are coming to the forefront. These biological strategies bring with them different requirements for analytical methods. In March of this year the Environmental Protection Agency (EPA) and ARA organized a work group which met in Cincinnati, Ohio, to discuss the bioremediation of pesticide-laden soil. This work group consisted of EPA researchers, regulators, and administrators; state ag-environmental technologists and program directors; ag-chemical producer, remediation program managers, university ag researchers, USDA researchers, and TVA technologists. Consensus was quickly obtained on the utter unaffordability of current chemical and thermal treatment schemes for agricultural wastes, contaminated soils, and rinsewaters. Consensus was also reached that conventional analytical methods are too expensive and complicated for use in the field demonstration/application of the bioremediation-type processes. Thus the group recommended and supported field agrichemical dealer demonstrations of landfarming and composting with an emphasis on the need to develop low cost, easy toxicological measurements.

  5. The implications of the precautionary principle for biological monitoring

    NASA Astrophysics Data System (ADS)

    Macgarvin, M.

    1995-03-01

    Marine biological monitoring programmes frequently attempt to determine “safe” levels of contamination, based on assumptions about the assimilative capacity of the environment. This paper argues that such assumptions lack scientific rigour, and do not form the basis upon which a precautionary policy can be built. It notes the problems associated with assessing toxicological effects, but centres its attention on the crucial (yet far less discussed) weaknesses in theoretical ecology that make it extremely unlikely that biological monitoring can determine safe levels of contamination that leave ecosystems unaffected. It is argued that many marine biologists, if pressed, would concede these shortcomings but believe that, in the face of the technical difficulties and high costs of pollution prevention, we have no choice but to use such methods. This paper argues, with examples, that pollution prevention, often with considerable economic savings, is becoming a reality for even the most problematic substances. The difficulty is that the development of “clean production” methods lie outside the sphere of interest of those carrying out monitoring, so that measures that attempt to determine safe levels of contamination continue to be advocated. This gulf needs to be bridged so that the continuation of monitoring programmes that are part of dilute and disperse policies become regarded as inappropriate, indeed unethical. The paper concludes that this does not mean the end of marine monitoring. Instead, reliable methods for assessing physical levels of contamination will be required to determine whether the reduction targets set—as part of the introduction of clean production—are being met. Formidable difficulties will remain, requiring a precautious approach. Nevertheless, monitoring will no longer carry the burden of attempting to demonstrate that a particular level of environmental contamination is safe, which is currently destroying its scientific credibility.

  6. Ocean Biological Pump Sensitivities and Implications for Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Romanou, Anastasia

    2013-01-01

    The ocean is one of the principal reservoirs of CO2, a greenhouse gas, and therefore plays a crucial role in regulating Earth's climate. Currently, the ocean sequesters about a third of anthropogenic CO2 emissions, mitigating the human impact on climate. At the same time, the deeper ocean represents the largest carbon pool in the Earth System and processes that describe the transfer of carbon from the surface of the ocean to depth are intimately linked to the effectiveness of carbon sequestration.The ocean biological pump (OBP), which involves several biogeochemical processes, is a major pathway for transfer of carbon from the surface mixed layer into the ocean interior. About 75 of the carbon vertical gradient is due to the carbon pump with only 25 attributed to the solubility pump. However, the relative importance and role of the two pumps is poorly constrained. OBP is further divided to the organic carbon pump (soft tissue pump) and the carbonate pump, with the former exporting about 10 times more carbon than the latter through processes like remineralization.Major uncertainties about OBP, and hence in the carbon uptake and sequestration, stem from uncertainties in processes involved in OBP such as particulate organicinorganic carbon sinkingsettling, remineralization, microbial degradation of DOC and uptakegrowth rate changes of the ocean biology. The deep ocean is a major sink of atmospheric CO2 in scales of hundreds to thousands of years, but how the export efficiency (i.e. the fraction of total carbon fixation at the surface that is transported at depth) is affected by climate change remains largely undetermined. These processes affect the ocean chemistry (alkalinity, pH, DIC, particulate and dissolved organic carbon) as well as the ecology (biodiversity, functional groups and their interactions) in the ocean. It is important to have a rigorous, quantitative understanding of the uncertainties involved in the observational measurements, the models and the

  7. Matrix metalloproteinases: their biological functions and clinical implications.

    PubMed

    Hijova, E

    2005-01-01

    Matrix metalloproteinases (MMPs), which are also known as matrixins, are proteinases that participate in extracellular matrix remodelling and degradation. Under normal physiological conditions, the activities of MMPs are precisely regulated at the level of transcription, at that of activation of the pro-MMP precursor zymogenes as well as at that of inhibition by endogenous inhibitors (tissue inhibitors of metalloproteinases, TIMPs). Alterations in the regulation of MMP activity are implicated in diseases such as cancer, fibrosis, arthritis and atherosclerosis. The pathological effects of MMPs and TIMPs in cardiovascular diseases involve vascular remodelling, atherosclerotic plaque instability and cardiac remodelling in congestive heart failure or after myocardial infarction. Since excessive tissue remodelling and increased matrix metalloproteinases activity have been demonstrated during atherosclerotic lesion progression (including plaque disruption), MMPs represent a potential target for therapeutic intervention aimed at the modification of vascular pathology by restoring the physiological balance between MMPs and TIMPs. Recent findings suggest that MMPs are also involved in cancer initiation, invasion and metastasis; MMP inhibitors could be considered for evaluation as cancer chemopreventive molecules. This review describes the members of MMP and TIMP families and discusses the structure, function and regulation of MMP activity. (Tab. 1, Ref: 45.) PMID:16026148

  8. The Microbiome of Animals: Implications for Conservation Biology.

    PubMed

    Bahrndorff, Simon; Alemu, Tibebu; Alemneh, Temesgen; Lund Nielsen, Jeppe

    2016-01-01

    In recent years the human microbiome has become a growing area of research and it is becoming clear that the microbiome of humans plays an important role for human health. Extensive research is now going into cataloging and annotating the functional role of the human microbiome. The ability to explore and describe the microbiome of any species has become possible due to new methods for sequencing. These techniques allow comprehensive surveys of the composition of the microbiome of nonmodel organisms of which relatively little is known. Some attention has been paid to the microbiome of insect species including important vectors of pathogens of human and veterinary importance, agricultural pests, and model species. Together these studies suggest that the microbiome of insects is highly dependent on the environment, species, and populations and affects the fitness of species. These fitness effects can have important implications for the conservation and management of species and populations. Further, these results are important for our understanding of invasion of nonnative species, responses to pathogens, and responses to chemicals and global climate change in the present and future. PMID:27195280

  9. The Microbiome of Animals: Implications for Conservation Biology

    PubMed Central

    Bahrndorff, Simon; Alemu, Tibebu; Alemneh, Temesgen; Lund Nielsen, Jeppe

    2016-01-01

    In recent years the human microbiome has become a growing area of research and it is becoming clear that the microbiome of humans plays an important role for human health. Extensive research is now going into cataloging and annotating the functional role of the human microbiome. The ability to explore and describe the microbiome of any species has become possible due to new methods for sequencing. These techniques allow comprehensive surveys of the composition of the microbiome of nonmodel organisms of which relatively little is known. Some attention has been paid to the microbiome of insect species including important vectors of pathogens of human and veterinary importance, agricultural pests, and model species. Together these studies suggest that the microbiome of insects is highly dependent on the environment, species, and populations and affects the fitness of species. These fitness effects can have important implications for the conservation and management of species and populations. Further, these results are important for our understanding of invasion of nonnative species, responses to pathogens, and responses to chemicals and global climate change in the present and future. PMID:27195280

  10. The biology and medical implications of interleukin-6.

    PubMed

    Tanaka, Toshio; Kishimoto, Tadamitsu

    2014-04-01

    Cytokines are soluble mediators, which aid cell-to-cell communication in immune responses, and interleukin-6 (IL-6) is a prototypical cytokine featuring redundant and pleiotropic activity. The complete elucidation of the IL-6-mediated signal transduction system has provided a molecular basis for the characteristic features of cytokines. When tissue damage or inflammation due to infections or injuries occurs, IL-6 synthesis is promptly induced, contributing to the host defense through the stimulation of acute-phase immune reactions and hematopoiesis. The production of IL-6 is terminated when tissue homeostasis is restored. The synthesis of IL-6 is tightly regulated transcriptionally and posttranscriptionally. However, the dysregulated continual synthesis of IL-6 has been implicated in the development of various diseases, including autoimmune and chronic inflammatory diseases and cancers. Clinical trials using the humanized anti-IL-6 receptor monoclonal antibody tocilizumab have demonstrated the efficacy of IL-6 blockade for the treatment of refractory inflammatory diseases, such as rheumatoid arthritis, systemic juvenile idiopathic arthritis, and Castleman disease. Moreover, favorable results from the off-label use of tocilizumab strongly suggest that it may be applicable for the treatment of other refractory immune-mediated diseases, including cancer. Therefore, the mechanisms for the dysregulated synthesis of IL-6 need to be elucidated to understand the pathogenesis of the resultant diseases and to facilitate the development of effective therapeutic strategies. PMID:24764575

  11. Biological maturation of youth athletes: assessment and implications.

    PubMed

    Malina, Robert M; Rogol, Alan D; Cumming, Sean P; Coelho e Silva, Manuel J; Figueiredo, Antonio J

    2015-07-01

    The search for talent is pervasive in youth sports. Selection/exclusion in many sports follows a maturity-related gradient largely during the interval of puberty and growth spurt. As such, there is emphasis on methods for assessing maturation. Commonly used methods for assessing status (skeletal age, secondary sex characteristics) and estimating timing (ages at peak height velocity (PHV) and menarche) in youth athletes and two relatively recent anthropometric (non-invasive) methods (status-percentage of predicted near adult height attained at observation, timing-predicted maturity offset/age at PHV) are described and evaluated. The latter methods need further validation with athletes. Currently available data on the maturity status and timing of youth athletes are subsequently summarised. Selection for sport and potential maturity-related correlates are then discussed in the context of talent development and associated models. Talent development from novice to elite is superimposed on a constantly changing base-the processes of physical growth, biological maturation and behavioural development, which occur simultaneously and interact with each other. The processes which are highly individualised also interact with the demands of a sport per se and with involved adults (coaches, trainers, administrators, parents/guardians). PMID:26084525

  12. Triactome: Neuro–Immune–Adipose Interactions. Implication in Vascular Biology

    PubMed Central

    Chaldakov, George Nikov; Fiore, Marco; Ghenev, Peter I.; Beltowski, Jerzy; Ranćić, Gorana; Tunçel, Neşe; Aloe, Luigi

    2014-01-01

    Understanding how the precise interactions of nerves, immune cells, and adipose tissue account for cardiovascular and metabolic biology is a central aim of biomedical research at present. A long standing paradigm holds that the vascular wall is composed of three concentric tissue coats (tunicae): intima, media, and adventitia. However, large- and medium-sized arteries, where usually atherosclerotic lesions develop, are consistently surrounded by periadventitial adipose tissue (PAAT), we recently designated tunica adiposa (in brief, adiposa like intima, media, and adventitia). Today, atherosclerosis is considered an immune-mediated inflammatory disease featured by endothelial dysfunction/intimal thickening, medial atrophy, and adventitial lesions associated with adipose dysfunction, whereas hypertension is characterized by hyperinnervation-associated medial thickening due to smooth muscle cell hypertrophy/hyperplasia. PAAT expansion is associated with increased infiltration of immune cells, both adipocytes and immunocytes secreting pro-inflammatory and anti-inflammatory (metabotrophic) signaling proteins collectively dubbed adipokines. However, the role of vascular nerves and their interactions with immune cells and paracrine adipose tissue is not yet evaluated in such an integrated way. The present review attempts to briefly highlight the findings in basic and translational sciences in this area focusing on neuro–immune–adipose interactions, herein referred to as triactome. Triactome-targeted pharmacology may provide a novel therapeutic approach in cardiovascular disease. PMID:24782857

  13. Biological targets for isatin and its analogues: Implications for therapy

    PubMed Central

    Medvedev, Alexei; Buneeva, Olga; Glover, Vivette

    2007-01-01

    Isatin and its metabolites are constituents of many natural substances. They are also components of many synthetic compounds exhibiting a wide range of effects, including antiviral activity, antitumor and antiangiogenic activity, antibacterial, antitubercular, antifungal, antiaptotic, anticonvulsant and anxyolytic activities. Isatin itself is an endogenous oxidized indole with a wide spectrum of behavioral and metabolic effects. It has a distinct and discontinuous distribution in the brain, peripheral tissues and body fluids and isatin binding sites are widely distributed also. Its output is increased during stress. Its most potent known in vitro actions are as an antagonist of atrial natriuretic peptide (ANP) function and NO signaling. As we understand more about its function and sites of action we may be able to develop new pharmacological agents to mimic or counteract its activity. We consider here the most promising biological targets for various isatin analogues and/or metabolites, which are employed for the development of various groups of therapeutics. It is also possible that the level of endogenous isatin may influence the in vivo pharmacological activity of compounds possessing the isatin moiety. PMID:19707325

  14. A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications

    NASA Astrophysics Data System (ADS)

    Anand, M.; Crawford, I. A.; Balat-Pichelin, M.; Abanades, S.; van Westrenen, W.; Péraudeau, G.; Jaumann, R.; Seboldt, W.

    2012-12-01

    In situ resource utilization (ISRU) refers to the in situ generation of consumables for autonomous or human activities from raw materials found on the Moon or other planetary bodies. The use of ISRU on the Moon may provide a means of reducing the cost and risk of human exploration of the Moon and beyond, and an impetus for commercial contributions to lunar exploration. Potential products include O2 and H2O for life support, H2 and O2 for fuel and propellant, and other elements and compounds for metallurgic and chemical production processes. If ISRU is to be applied successfully on the Moon, it is important that landing site selection, surface operations and suitable ISRU technologies are identified using knowledge of the availability and distribution of lunar resources and detailed understanding of the workings of the various processes available. Here, we review current knowledge of chemical and mineralogical resources on the Moon which can be used in the development of ISRU as a realistic component of future lunar exploration.

  15. Heme-nitrosyls: electronic structure implications for function in biology.

    PubMed

    Hunt, Andrew P; Lehnert, Nicolai

    2015-07-21

    The question of why mammalian systems use nitric oxide (NO), a potentially hazardous and toxic diatomic, as a signaling molecule to mediate important functions such as vasodilation (blood pressure control) and nerve signal transduction initially perplexed researchers when this discovery was made in the 1980s. Through extensive research over the past two decades, it is now well rationalized why NO is used in vivo for these signaling functions, and that heme proteins play a dominant role in NO signaling in mammals. Key insight into the properties of heme-nitrosyl complexes that make heme proteins so well poised to take full advantage of the unique properties of NO has come from in-depth structural, spectroscopic, and theoretical studies on ferrous and ferric heme-nitrosyls. This Account highlights recent findings that have led to greater understanding of the electronic structures of heme-nitrosyls, and the contributions that model complex studies have made to elucidate Fe-NO bonding are highlighted. These results are then discussed in the context of the biological functions of heme-nitrosyls, in particular in soluble guanylate cyclase (sGC; NO signaling), nitrophorins (NO transport), and NO-producing enzymes. Central to this Account is the thermodynamic σ-trans effect of NO, and how this relates to the activation of the universal mammalian NO sensor sGC, which uses a ferrous heme as the high affinity "NO detection unit". It is shown via detailed spectroscopic and computational studies that the strong and very covalent Fe(II)-NO σ-bond is at the heart of the strong thermodynamic σ-trans effect of NO, which greatly weakens the proximal Fe-NHis (or Fe-SCys) bond in six-coordinate ferrous heme-nitrosyls. In sGC, this causes the dissociation of the proximally bound histidine ligand upon NO binding to the ferrous heme, inducing a significant conformational change that activates the sGC catalytic domain for the production of cGMP. This, in turn, leads to vasodilation and

  16. Lunar Contour Crafting: A Novel Technique for ISRU-Based Habitat Development

    NASA Technical Reports Server (NTRS)

    Khoshnevis, Behrokh; Bodiford, Melanie P.; Burks, Kevin H.; Ethridge, Ed; Tucker, Dennis; Kim, Won; Toutanji, Houssam; Fiske, Michael R.

    2005-01-01

    1. Habitat Structures at MSFC is one element of the In-Situ Fabrication and Repair (ISFR) Program: ISFR develops technologies for fabrication, repair and recycling of tools, parts, and habitats/structures using in-situ resources. ISRU - based habitat structures are considered Class III. 2. Habitat Structure Purpose: Develop Lunar and/or Martian habitat structures for manned missions that maximize the use of in-situ resources to address the following agency topics: bioastronautics critical path roadmap; strategic technical challenges defined in H&RT formulation plan: margins and redundancy; modularity, robotic network, space resource utilization; autonomy, affordable logistics pre-positioning.

  17. RNA interference in Entamoeba histolytica: implications for parasite biology and gene silencing

    PubMed Central

    Zhang, Hanbang; Pompey, Justine M; Singh, Upinder

    2011-01-01

    Entamoeba histolytica is a major health threat to people in developing countries, where it causes invasive diarrhea and liver abscesses. The study of this important human pathogen has been hindered by a lack of tools for genetic manipulation. Recently, a number of genetic approaches based on variations of the RNAi method have been successfully developed and cloning of endogenous small-interfering RNAs from E. histolytica revealed an abundant population of small RNAs with an unusual 5′-polyphosphate structure. However, little is known about the implications of these findings to amebic biology or the mechanisms of gene silencing in this organism. In this article we review the literature relevant to RNAi in E. histolytica, discuss its implications for advances in gene silencing in this organism and outline potential future directions towards understanding the repertoire of RNAi and its impact on the biology of this deep-branching eukaryotic parasite. PMID:21162639

  18. ISRU 3D printing for habitats and structures on the Moon

    NASA Astrophysics Data System (ADS)

    Cowley, Aidan

    2016-07-01

    In-situ-resource utilisation (ISRU) in combination with 3D printing may evolve into a key technology for future exploration. Setting up a lunar facility could be made much simpler by using additive manufacturing techniques to build elements from local materials - this would drastically reduce mission mass requirements and act as an excellent demonstrator for ISRU on other planetary bodies. Fabricating structures and components using Lunar regolith is an area of interest for ESA, as evidenced by past successful General Studies Program (GSP) and ongoing technology development studies. In this talk we detail a number of projects looking into the behavior of Lunar regolith simulants, their compositional variants and approaches to sintering such material that are under-way involving EAC, ESTEC and DLR. We report on early studies into utilizing conventional thermal sintering approaches of simulants as well as microwave sintering of these compositions. Both techniques are candidates for developing a 3D printing methodology using Lunar regolith. It is known that the differences in microwave effects between the actual lunar soil and lunar simulants can be readily ascribed to the presence of nanophase metallic Fe, native to Lunar regolith but lacking in simulants. In compostions of simulant with increased Illmenite (FeTiO3) concentrations, we observe improved regolith response to microwave heating, and the readily achieved formation of a glassy melt in ambient atmosphere. The improved response relative to untreated simulant is likely owing to the increased Fe content in the powder mix.

  19. Trade Study of Excavation Tools and Equipment for Lunar Outpost Development and ISRU

    NASA Astrophysics Data System (ADS)

    Mueller, R. P.; King, R. H.

    2008-01-01

    The NASA Lunar Architecture Team (LAT) has developed a candidate architecture to establish a lunar outpost that includes in-situ resource utilization (ISRU). Outpost development requires excavation for landing and launch sites, roads, trenches, foundations, radiation and thermal shielding, etc. Furthermore, ISRU requires excavation as feed stock for water processing and oxygen production plants. The design environment for lunar excavation tools and equipment including low gravity, cost of launching massive equipment, limited power, limited size, high reliability, and extreme temperatures is significantly different from terrestrial excavation equipment design environment. Consequently, the lunar application requires new approaches to developing excavation tools and equipment in the context of a systems engineering approach to building a Lunar Outpost. Several authors have proposed interesting and innovative general excavation approaches in the literature, and the authors of this paper will propose adaptations and/or new excavation concepts specific to the Lunar Outpost. The requirements for excavation from the LAT architecture will be examined and quantified with corresponding figures of merit and evaluation criteria. This paper will evaluate the proposed approaches using traditional decision making with uncertainty techniques.

  20. Asteroid and Lava Tube In Situ Resource Utilization (ISRU) Prospecting Free Flyer Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Mueller, Robert; Dupuis, Michael

    2015-01-01

    This project seeks to develop a small free flyer that can be used to safely and effectively prospect on an Asteroid while being controlled by the crew. This will enable the characterization of the Asteroid for the In Situ Resource Utilization (ISRU). Lava tubes can be explored remotely from the outside Asteroids can contain vast amounts of resources such as water for propellants and metals for feed stocks. Lava Tubes on Mars and the Moon may contain frozen volatile resources. Before the resources can be used, they must be found with a prospecting method. The NASA Agency Asteroid Grand Challenge seeks new ideas for Asteroid retrieval mission technologies for exploration and utilization of asteroids in a Distant Retrograde Orbit (DRO). This project will develop a small free flying platform that can be used to safely and effectively prospect on an Asteroid with limited autonomy while being controlled by the crew. This will enable the characterization of the Asteroid for ISRU. Lava tubes can be explored remotely from the outside as well using this same technology.

  1. Resource Prospector (RP: )A Lunar Volatiles Prospecting and In-Situ Resource Utilization (ISRU) Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Andrews, Daniel

    2016-01-01

    Efficient expansion of human presence beyond low-Earth orbit to asteroids and Mars will require the maximum possible use of local materials, so-called in-situ resources. The moon presents a unique destination to conduct robotic investigations that advance ISRU capabilities, as well as provide significant exploration and science value. Since the moons polar regions have confirmed the presence of volatiles, as revealed by the LCROSS and LRO missions, the next step is to understand the nature and distribution of those candidate resources and how they might be extracted. Recent studies have even indicated that if those volatiles are practically available for harvesting, they could be processed into propellants and human life-support resources, significantly reducing the cost of human missions to Mars maybe by as much as 50!Resource Prospector (RP) is an in-situ resource utilization (ISRU) technology demonstration mission under study by the NASA Human Exploration and Operations Mission Directorates (HEOMD). This clever mission is currently planned to launch as early as 2021 and will demonstrate extraction of oxygen, water and other volatiles, as well measure mineralogical content such as silicon and light metals from lunar regolith.

  2. In-situ Resource Utilization (ISRU) to Support the Lunar Outpost and the Rationale for Precursor Missions

    NASA Technical Reports Server (NTRS)

    Simon, Thomas M.

    2008-01-01

    One of the ways that the Constellation Program can differ from Apollo is to employ a live-off-the-land or In-Situ Resource Utilization (ISRU) supported architecture. The options considered over the past decades for using indigenous materials have varied considerably in terms of what resources to attempt to acquire, how much to acquire, and what the motivations are to acquiring these resources. The latest NASA concepts for supporting the lunar outpost have considered many of these plans and compared these options to customers requirements and desires. Depending on the architecture employed, ISRU technologies can make a significant contribution towards a sustainable and affordable lunar outpost. While extensive ground testing will reduce some mission risk, one or more flight demonstrations prior to the first crew's arrival will build confidence and increase the chance that outpost architects will include ISRU as part of the early outpost architecture. This presentation includes some of the options for using ISRU that are under consideration for the lunar outpost, the precursor missions that would support these applications, and a notional timeline to allow the lessons learned from the precursor missions to support outpost hardware designs.

  3. Preface: Terrestrial Fieldwork to Support in situ Resource Utilization (ISRU) and Robotic Resource Prospecting for Future Activities in Space

    NASA Astrophysics Data System (ADS)

    Sanders, Gerald B.

    2015-05-01

    Finding, extracting, and using resources at the site of robotic and human exploration activities holds the promise of enabling sustainable and affordable exploration of the Moon, Mars, and asteroids, and eventually allow humans to expand their economy and habitation beyond the surface of the Earth. Commonly referred to as in situ Resource Utilization (ISRU), mineral and volatile resources found in space can be converted into oxygen, water, metals, fuels, and manufacturing and construction materials (such as plastics and concrete) for transportation, power, life support, habitation construction, and part/logistics manufacturing applications. For every kilogram of payload landed on the surface of the Moon or Mars, 7.5-11 kg of payload (mostly propellant) needs to be launched into low Earth orbit. Therefore, besides promising long-term self-sufficiency and infrastructure growth, ISRU can provide significant reductions in launch costs and the number of launches required. Key to being able to use space resources is knowing where they are located, how much is there, and how the resources are distributed. While ISRU holds great promise, it has also never been demonstrated in an actual space mission. Therefore, operations and hardware associated with each ISRU prospecting, excavation, transportation, and processing step must be examined, tested, and finally integrated to enable the end goal of using space resources in future human space missions.

  4. Understanding Schizophrenia as a Disorder of Consciousness: Biological Correlates and Translational Implications from Quantum Theory Perspectives

    PubMed Central

    Venkatasubramanian, Ganesan

    2015-01-01

    From neurophenomenological perspectives, schizophrenia has been conceptualized as “a disorder with heterogeneous manifestations that can be integrally understood to involve fundamental perturbations in consciousness”. While these theoretical constructs based on consciousness facilitate understanding the ‘gestalt’ of schizophrenia, systematic research to unravel translational implications of these models is warranted. To address this, one needs to begin with exploration of plausible biological underpinnings of “perturbed consciousness” in schizophrenia. In this context, an attractive proposition to understand the biology of consciousness is “the orchestrated object reduction (Orch-OR) theory” which invokes quantum processes in the microtubules of neurons. The Orch-OR model is particularly important for understanding schizophrenia especially due to the shared ‘scaffold’ of microtubules. The initial sections of this review focus on the compelling evidence to support the view that “schizophrenia is a disorder of consciousness” through critical summary of the studies that have demonstrated self-abnormalities, aberrant time perception as well as dysfunctional intentional binding in this disorder. Subsequently, these findings are linked with ‘Orch-OR theory’ through the research evidence for aberrant neural oscillations as well as microtubule abnormalities observed in schizophrenia. Further sections emphasize the applicability and translational implications of Orch-OR theory in the context of schizophrenia and elucidate the relevance of quantum biology to understand the origins of this puzzling disorder as “fundamental disturbances in consciousness”. PMID:25912536

  5. Age-by-disease biological interactions: implications for late-life depression

    PubMed Central

    McKinney, Brandon C.; Oh, Hyunjung; Sibille, Etienne

    2012-01-01

    Onset of depressive symptoms after the age of 65, or late-life depression (LLD), is common and poses a significant burden on affected individuals, caretakers, and society. Evidence suggests a unique biological basis for LLD, but current hypotheses do not account for its pathophysiological complexity. Here we propose a novel etiological framework for LLD, the age-by-disease biological interaction hypothesis, based on the observations that the subset of genes that undergoes lifelong progressive changes in expression is restricted to a specific set of biological processes, and that a disproportionate number of these age-dependent genes have been previously and similarly implicated in neurodegenerative and neuropsychiatric disorders, including depression. The age-by-disease biological interaction hypothesis posits that age-dependent biological processes (i) are “pushed” in LLD-promoting directions by changes in gene expression naturally occurring during brain aging, which (ii) directly contribute to pathophysiological mechanisms of LLD, and (iii) that individual variability in rates of age-dependent changes determines risk or resiliency to develop age-related disorders, including LLD. We review observations supporting this hypothesis, including consistent and specific age-dependent changes in brain gene expression and their overlap with neuropsychiatric and neurodegenerative disease pathways. We then review preliminary reports supporting the genetic component of this hypothesis. Other potential biological mediators of age-dependent gene changes are proposed. We speculate that studies examining the relative contribution of these mechanisms to age-dependent changes and related disease mechanisms will not only provide critical information on the biology of normal aging of the human brain, but will inform our understanding of age-dependent diseases, in time fostering the development of new interventions for prevention and treatment of age-dependent diseases, including

  6. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    SciTech Connect

    1994-12-31

    The ocean plays an important role in regulating the earth`s climate, sustains a large portion of the earth`s biodiversity, is a tremendous reservoir of commercially important substances, and is used for a variety of often conflicting purposes. In recent decades marine scientists have discovered much about the ocean and its organisms, yet many important fundamental questions remain unanswered. Human populations have increased, particularly in coastal regions. As a result, the marine environment in these areas is increasingly disrupted by human activities, including pollution and the depletion of some ecologically and commercially important species. There is a sense of urgency about reducing human impacts on the ocean and a need to understand how altered ecosystems and the loss of marine species and biodiversity could affect society. During the past two decades, the development of sophisticated technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. While some of these technologies have been readily incorporated into the study of marine organisms as models for understanding basic biology, the value of molecular techniques for addressing problems in marine biology and biological oceanography has only recently begun to be appreciated. This report defines critical scientific questions in marine biology and biological oceanography, describes the molecular technologies that could be used to answer these questions, and discusses some of the implications and economic opportunities that might result from this research which could potentially improve the international competitive position of the United States in the rapidly growing area of marine biotechnology. The committee recommends that the federal government provide the infrastructure necessary to use the techniques of molecular biology in the marine sciences.

  7. Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.

    2014-01-01

    A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.

  8. Development and Testing of an ISRU Soil Mechanics Vacuum Test Facility

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie E.; Wilkinson, R. Allen

    2014-01-01

    For extraterrestrial missions, earth based testing in relevant environments is key to successful hardware development. This is true for both early component level development and system level integration. For In-Situ Resource Utilization (ISRU) on the moon, hardware must interface with the surface material, or regolith, in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, properly conditioned bed of lunar regolith simulant. However, in earth-based granular media, such as lunar regolith simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. A mid-size chamber (3.66 m tall, 1.5 m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64 m deep by 0.914 m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types were used. Data obtained from an electric cone penetrometer can be used to determine strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off-gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5 Torr, regardless of the pump rate. The slow off-gassing of the soil at low pressure lead to long test times; a full week to reach 10(exp -5) Torr. Robotic soil manipulation would enable multiple ISRU hardware test within the same vacuum cycle. The feasibility of a robotically controlled auger and tamper was explored at vacuum conditions.

  9. Environmental and biological applications and implications of soft and condensed nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Pengyu

    Recent innovations and growth of nanotechnology have spurred exciting technological and commercial developments of nanomaterails. Their appealing physical and physicochemical properties offer great opportunities in biological and environmental applications, while in the meantime may compromise human health and environmental sustainability through either unintentional exposure or intentional discharge. Accordingly, this dissertation exploits the physicochemical behavior of soft dendritic polymers for environmental remediation and condensed nano ZnO tetrapods for biological sensing (Chapter two-four), and further delineate the environmental implications of such nanomaterials using algae- the major constituent of the aquatic food chain-as a model system (Chapter five). This dissertation is presented as follows. Chapter one presents a general review of the characteristic properties, applications, forces dictating nanomaterials, and their biological and environmental implications of the most produced and studied soft and condensed nanomaterials. In addition, dendritic polymers and ZnO nanomaterials are thoroughly reviewed separately. Chapter two investigates the physicochemical properties of poly(amidoamine)-tris(hydroxymethyl)amidomethane- dendrimer for its potential applications in water purification. The binding mechanisms and capacities of this dendrimer in hosting major environmental pollutants including cationic copper, anionic nitrate, and polyaromatic phenanthrene are discussed. Chapter three exploits a promising use of dendrimers for removal of potentially harmful discharged nanoparticles (NPs). Specifically, fullerenols are used as a model nanomaterial, and their interactions with two different generations of dendrimers are studied using spectrophotometry and thermodynamics methods. Chapter four elucidates two novel optical schemes for sensing environmental pollutants and biological compounds using dendrimer-gold nanowire complex and gold-coated ZnO tetrapods

  10. Propositions of Schroedinger and Dyson: Implications for program development in secondary school biology

    NASA Astrophysics Data System (ADS)

    Kaiser-Antonowich, Roxanne

    The purpose of this study is to ascertain whether there is a linkage between the special case of New Jersey Core Curriculum Content Standards for Science as they represent biology, and the propositions of Schrodinger and Dyson. The aim of the study is to derive implications for program development in secondary school biology. Critical review reveals that the New Jersey Core Curriculum Content Standards for Science do not provide linkage to biology and the propositions of Erwin Schrodinger and Freeman Dyson. If life is characterized by replication and metabolism, then Schrodinger and Dyson present a plausible argument toward describing life as reciprocal forms and functions that characterize a living system. Examination revealed that Schrodinger, in stating that life can be characterized by the processes of replication and metabolism, emphasized replication and virtually ignored metabolism. Dyson also acknowledges the relationship of metabolism to replication. Examination of Dyson revealed that rather than describing metabolism as a characterization of life, he advances the origin of metabolism and its connection to the origin of life. If metabolism and replication characterize life and if the origin of life is within the domain of biology, then Schrodinger's and Dyson's propositions are central to the characterization of biology. If program development for secondary school biology requires accurate description of its domain, then it is necessary to acknowledge the complexity of life forms. There is as yet no universally accepted general description of life and no reasonable consensus for something to be termed living. If the conditions for something to be termed living are the capacity to reproduce self as maintained by Schrodinger, and the capacity for self-organization preserved through natural selection as proposed by Dyson, then these conditions form the basis for program development.

  11. Social origins, biological treatments: The public health implications of common mental disorders in India

    PubMed Central

    Patel, Vikram

    2005-01-01

    Common mental disorders (CMD) is a term used to describe depressive and anxiety disorders. It replaces the old term ‘neuroses’ and is widely used because of the high level of co-morbidity of depression and anxiety, which limits the validity of categorical models of classification of neurotic disorders, particularly in primary care settings. The global public health significance of CMD is highlighted by the fact that in developing countries, depression is the leading cause of years lived with disability in both men and women aged 15–44 years. This oration brings together research evidence, mostly from South Asia, to show that although the aetiology of CMD may lie in the socioeconomic circumstances faced by many patients, biological treatments such as antidepressants may be among the most cost-effective treatments in resource-poor settings. The oration demonstrates the public health implications of CMD by briefly reviewing the burden of CMD in the region and presents evidence linking the risk for CMD associated with two of the region's most important public health risk factors—poverty and gender disadvantage. The oration also presents recent evidence to establish the association of CMD with some of the region's most important public health issues: maternal and child health; and reproductive and sexual health. Next, the evidence for the efficacy of treatments for CMD in developing countries is presented, focusing on a series of recent trials that show that both psychosocial and biological treatments are effective. Finally, the implications for policy and future research are considered.

  12. Nitroxyl (HNO) reacts with molecular oxygen and forms peroxynitrite at physiological pH. Biological Implications.

    PubMed

    Smulik, Renata; Dębski, Dawid; Zielonka, Jacek; Michałowski, Bartosz; Adamus, Jan; Marcinek, Andrzej; Kalyanaraman, Balaraman; Sikora, Adam

    2014-12-19

    Nitroxyl (HNO), the protonated one-electron reduction product of NO, remains an enigmatic reactive nitrogen species. Its chemical reactivity and biological activity are still not completely understood. HNO donors show biological effects different from NO donors. Although HNO reactivity with molecular oxygen is described in the literature, the product of this reaction has not yet been unambiguously identified. Here we report that the decomposition of HNO donors under aerobic conditions in aqueous solutions at physiological pH leads to the formation of peroxynitrite (ONOO(-)) as a major intermediate. We have specifically detected and quantified ONOO(-) with the aid of boronate probes, e.g. coumarin-7-boronic acid or 4-boronobenzyl derivative of fluorescein methyl ester. In addition to the major phenolic products, peroxynitrite-specific minor products of oxidation of boronate probes were detected under these conditions. Using the competition kinetics method and a set of HNO scavengers, the value of the second order rate constant of the HNO reaction with oxygen (k = 1.8 × 10(4) m(-1) s(-1)) was determined. The rate constant (k = 2 × 10(4) m(-1) s(-1)) was also determined using kinetic simulations. The kinetic parameters of the reactions of HNO with selected thiols, including cysteine, dithiothreitol, N-acetylcysteine, captopril, bovine and human serum albumins, and hydrogen sulfide, are reported. Biological and cardiovascular implications of nitroxyl reactions are discussed. PMID:25378389

  13. Field Testing of a Pneumatic Regolith Feed System During a 2010 ISRU Field Campaign on Mauna Kea, Hawaii

    NASA Technical Reports Server (NTRS)

    Craft, Jack; Zacny, Kris; Chu, Philip; Wilson, Jack; Santoro, Chris; Carlson, Lee; Maksymuk, Michael; Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.

    2010-01-01

    Lunar In Situ Resource Utilization (ISRU) consists of a number of tasks starting with mining of lunar regolith, followed by the transfer of regolith to an oxygen extraction reactor and finally processing the regolith and storing of extracted oxygen. The transfer of regolith from the regolith hopper at the ground level to an oxygen extraction reactor many feet above the surface could be accomplished in different ways, including using a mechanical auger, bucket ladder system or a pneumatic system. The latter system is commonly used on earth when moving granular materials since it offers high reliability and simplicity of operation. In this paper, we describe a pneumatic regolith feed system, delivering feedstock to a Carbothermal reactor and lessons learned from deploying the system during the 2010 ISRU field campaign on the Mauna Kea, Hawaii.

  14. Long-Term Biological Monitoring of an Impaired Stream: Synthesis and Environmental Management Implications

    NASA Astrophysics Data System (ADS)

    Peterson, Mark J.; Efroymson, Rebecca A.; Adams, S. Marshall

    2011-06-01

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream in Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.

  15. Long-Term Biological Monitoring of an Impaired Stream: Implications for Environmental Management [Special Issue

    SciTech Connect

    Adams, Marshall; Brandt, Craig C; Christensen, Sigurd W; Efroymson, Rebecca Ann; Greeley Jr, Mark Stephen; Ham, Kenneth; Kszos, Lynn A; Loar, James M; McCracken, Kitty; Morris, Gail Wright; Peterson, Mark J; Ryon, Michael G; Smith, John G; Southworth, George R; Stewart, Arthur J

    2011-01-01

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream in Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.

  16. Long-term Biological Monitoring of an Impaired Stream: Synthesis and Environmental Management Implications

    SciTech Connect

    Peterson, Mark J; Efroymson, Rebecca Ann; Adams, Marshall

    2011-01-01

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream in Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.

  17. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology.

    PubMed

    Wang, Yuling; Irudayaraj, Joseph

    2013-02-01

    Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemistry and engineering, along with a significant thrust in applications constituting areas in medicine, biology, environment and agriculture among others. In this review, we will attempt to provide a quick snapshot of the basics of SM-SERS, nanostructures and devices that can enable SM Raman measurement. We will conclude with a discussion on SERS implications in biomedical sciences. PMID:23267180

  18. A fractal model for nuclear organization: current evidence and biological implications

    PubMed Central

    Bancaud, Aurélien; Lavelle, Christophe; Huet, Sébastien; Ellenberg, Jan

    2012-01-01

    Chromatin is a multiscale structure on which transcription, replication, recombination and repair of the genome occur. To fully understand any of these processes at the molecular level under physiological conditions, a clear picture of the polymorphic and dynamic organization of chromatin in the eukaryotic nucleus is required. Recent studies indicate that a fractal model of chromatin architecture is consistent with both the reaction-diffusion properties of chromatin interacting proteins and with structural data on chromatin interminglement. In this study, we provide a critical overview of the experimental evidence that support a fractal organization of chromatin. On this basis, we discuss the functional implications of a fractal chromatin model for biological processes and propose future experiments to probe chromatin organization further that should allow to strongly support or invalidate the fractal hypothesis. PMID:22790985

  19. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology

    PubMed Central

    Wang, Yuling; Irudayaraj, Joseph

    2013-01-01

    Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemistry and engineering, along with a significant thrust in applications constituting areas in medicine, biology, environment and agriculture among others. In this review, we will attempt to provide a quick snapshot of the basics of SM-SERS, nanostructures and devices that can enable SM Raman measurement. We will conclude with a discussion on SERS implications in biomedical sciences. PMID:23267180

  20. Occurrence, pathways and implications of biological production of reactive oxygen species in natural waters

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Hansel, C. M.; Voelker, B. M.; Lamborg, C. H.

    2014-12-01

    Reactive oxygen species (ROS), such as superoxide (O2-) and hydrogen peroxide (H2O2) play a critical role in the redox cycling of both toxic (e.g., Hg) and nutrient (e.g., Fe) metals. Despite the discovery of extracellular ROS production in various microbial cultures, including fungi, algae and bacteria, photo-dependent processes are generally considered as the predominant source of ROS in natural waters. Here we show that biological production of ROS is ubiquitous and occurs at a significant rate in freshwater and brackish water environments. Water samples were collected from three freshwater and one brackish water ponds in Cape Cod, Massachusetts, USA, periodically from 2012 to 2014. Production of O2- and H2O2 were measured in dark incubations of natural water using a chemiluminescent and a colorimetric probe, respectively. Rates of biological ROS production were obtained by comparing unfiltered with 0.2-μm filtered samples. The role of biological activity in ROS production was confirmed by the cessation of ROS production upon addition of formaldehyde. In surface water, production rates of O2- ranged from undetectable to 96.0 ± 30.0 nmol L-1 h-1, and production rates of H2O2 varied between 9.9 ± 1.3 nmol L-1 h-1 and 145.6 ± 11.2 nmol L-1 h-1. The maximum production rates of both ROS were observed in mid-summer 2013, which coincides with peak biological activity. ROS production in the water from aphotic zone was greater than in the water from photic zone. Thus, non-light dependent biological processes are likely the major contributors to ROS production in this system. Moreover, O2- production appeared to be enhanced by NADH and inhibited by proteinase-K, suggesting the possible involvement of NADH oxidoreductases in this process. The potential role of different microbial communities in ROS production, and the implications of biological ROS production for mercury speciation will also be discussed.

  1. Subject-specific pedagogical content knowledge: Implications for alternatively and traditionally trained biology teachers

    NASA Astrophysics Data System (ADS)

    Ravgiala, Rebekah Rae

    Theories regarding the development of expertise hold implications for alternative and traditional certification programs and the teachers they train. The literature suggests that when compared to experts in the field of teaching, the behaviors of novices differ in ways that are directly attributed to their pedagogical content knowledge. However, few studies have examined how first and second year biology teachers entering the profession from traditional and alternative training differ in their demonstration of subject-specific pedagogical content knowledge. The research problem in this multicase, naturalistic inquiry investigated how subject-specific pedagogical content knowledge was manifested among first and second year biology teachers in the task of transforming subject matter into forms that are potentially meaningful to students when explicit formal training has been and has not been imparted to them as preservice teachers. Two first year and two second year biology teachers were the subjects of this investigation. Allen and Amber obtained their certification through an alternative summer training institute in consecutive years. Tiffany and Tricia obtained their certification through a traditional, graduate level training program in consecutive years. Both programs were offered at the same northeastern state university. Participants contributed to six data gathering techniques including an initial semi-structured interview, responses to the Conceptions of Teaching Science questionnaire (Hewson & Hewson, 1989), three videotaped biology lessons, evaluation of three corresponding lesson plans, and a final semi-structured interview conducted at the end of the investigation. An informal, end-of-study survey intended to offer participants an opportunity to disclose their thoughts and needs as first year teachers was also employed. Results indicate that while conceptions of teaching science may vary slightly among participants, there is no evidence to suggest that

  2. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications. NASA is investigating the use of In-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes

  3. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU-Concepts

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.; Sridhar, K. R.

    2000-01-01

    Solid oxide electrolyzers, such as electrolysis cells utilizing yttria-stabilized zirconia, can produce oxygen from Mars atmospheric carbon dioxide and reject carbon monoxide and unreacted carbon dioxide in a separate stream. The oxygen-production process has been shown to be far more efficient if the high-pressure, unreacted carbon dioxide can be separated and recycled back into the feed stream. Additionally, the mass of the adsorption compressor can be reduced. Also, the carbon monoxide by-product is a valuable fuel for space exploration and habitation, with applications from fuel cells to production of hydrocarbons and plastics. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU. Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, respectively. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU, Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, Research needs for the design shown are as follows: (1) The best adsorbent

  4. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Technical Reports Server (NTRS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications, NASA is investigating the use of in-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes

  5. The biological effects and clinical implications of BRCA mutations: where do we go from here?

    PubMed

    Stoppa-Lyonnet, Dominique

    2016-09-01

    BRCA1 and BRCA2 are tumour-suppressor genes encoding proteins that are essential for the repair of DNA double-strand breaks by homologous recombination (HR). Cells that lack either BRCA1 or BRCA2 repair these lesions by alternative, more error-prone mechanisms. Individuals carrying germline pathogenic mutations in BRCA1 or BRCA2 are at highly elevated risk of developing breast and/or ovarian cancer. Genetic testing for germline pathogenic mutations in BRCA1 and BRCA2 has proved to be a valuable tool for determining eligibility for cancer screening and prevention programmes. In view of increasing evidence that the HR DNA repair pathway can also be disrupted by sequence variants in other genes, screening for other BRCA-like defects has potential implications for patient care. Additionally, there is a growing argument for directly testing tumours for pathogenic mutations in BRCA1, BRCA2 and other genes involved in HR-DNA repair as inactivation of these genes may be strictly somatic. Tumours in which HR-DNA repair is altered are most likely to respond to emerging targeted therapies, such as inhibitors of poly-ADP ribose polymerase. This review highlights the biological role of pathogenic BRCA mutations and other associated defects in DNA damage repair mechanisms in breast and ovarian cancer, with particular focus on implications for patient management strategies. PMID:27514841

  6. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications

    NASA Astrophysics Data System (ADS)

    Benza, Vincenzo G.; Bassetti, Bruno; Dorfman, Kevin D.; Scolari, Vittore F.; Bromek, Krystyna; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2012-07-01

    Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.

  7. Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications

    PubMed Central

    Garidel, Patrick; Kaconis, Yani; Heinbockel, Lena; Wulf, Matthias; Gerber, Sven; Munk, Ariane; Vill, Volkmar; Brandenburg, Klaus

    2015-01-01

    Glycolipids are amphiphilic molecules which bear an oligo- or polysaccharide as hydrophilic head group and hydrocarbon chains in varying numbers and lengths as hydrophobic part. They play an important role in life science as well as in material science. Their biological and physiological functions are quite diverse, ranging from mediators of cell-cell recognition processes, constituents of membrane domains or as membrane-forming units. Glycolipids form an exceptional class of liquid-crystal mesophases due to the fact that their self-organisation obeys more complex rules as compared to classical monophilic liquid-crystals. Like other amphiphiles, the supra-molecular structures formed by glycolipids are driven by their chemical structure; however, the details of this process are still hardly understood. Based on the synthesis of specific glycolipids with a clearly defined chemical structure, e.g., type and length of the sugar head group, acyl chain linkage, substitution pattern, hydrocarbon chain lengths and saturation, combined with a profound physico-chemical characterisation of the formed mesophases, the principles of the organisation in different aggregate structures of the glycolipids can be obtained. The importance of the observed and formed phases and their properties are discussed with respect to their biological and physiological relevance. The presented data describe briefly the strategies used for the synthesis of the used glycolipids. The main focus, however, lies on the thermotropic as well as lyotropic characterisation of the self-organised structures and formed phases based on physico-chemical and biophysical methods linked to their potential biological implications and relevance. PMID:26464591

  8. Human Lunar Mission Capabilities Using SSTO, ISRU and LOX-Augmented NTR Technologies: A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1995-01-01

    The feasibility of conducting human missions to the Moon is examined assuming the use of three 'high leverage' technologies: (1) a single-stage-to-orbit (SSTO) launch vehicle, (2) 'in-situ' resource utilization (ISRU)--specifically 'lunar-derived' liquid oxygen (LUNOX), and (3) LOX-augmented nuclear thermal rocket (LANTR) propulsion. Lunar transportation system elements consisting of a LANTR-powered lunar transfer vehicle (LTV) and a chemical propulsion lunar landing/Earth return vehicle (LERV) are configured to fit within the 'compact' dimensions of the SSTO cargo bay (diameter: 4.6 m/length: 9.0 m) while satisfying an initial mass in low Earth orbit (IMLEO) limit of approximately 60 t (3 SSTO launches). Using approximately 8 t of LUNOX to 'reoxidize' the LERV for a 'direct return' flight to Earth reduces its size and mass allowing delivery to LEO on a single 20 t SSTO launch. Similarly, the LANTR engine's ability to operate at any oxygen/ hydrogen mixture ratio from 0 to 7 with high specific impulse (approximately 940 to 515 s) is exploited to reduce hydrogen tank volume, thereby improving packaging of the LANTR LTV's 'propulsion' and 'propellant modules'. Expendable and reusable, piloted and cargo missions and vehicle designs are presented along with estimates of LUNOX production required to support the different mission modes. Concluding remarks address the issue of lunar transportation system costs from the launch vehicle perspective.

  9. Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Klenhenz, Julie; Linne, Diane

    2013-01-01

    In-Situ Resource Utilization (ISRU) systems and components have undergone extensive laboratory and field tests to expose hardware to relevant soil environments. The next step is to combine these soil environments with relevant pressure and temperature conditions. Previous testing has demonstrated how to incorporate large bins of unconsolidated lunar regolith into sufficiently sized vacuum chambers. In order to create appropriate depth dependent soil characteristics that are needed to test drilling operations for the lunar surface, the regolith simulant bed must by properly compacted and frozen. While small cryogenic simulant beds have been created for laboratory tests, this scale effort will allow testing of a full 1m drill which has been developed for a potential lunar prospector mission. Compacted bulk densities were measured at various moisture contents for GRC-3 and Chenobi regolith simulants. Vibrational compaction methods were compared with the previously used hammer compaction, or "Proctor", method. All testing was done per ASTM standard methods. A full 6.13 m3 simulant bed with 6 percent moisture by weight was prepared, compacted in layers, and frozen in a commercial freezer. Temperature and desiccation data was collected to determine logistics for preparation and transport of the simulant bed for thermal vacuum testing. Once in the vacuum facility, the simulant bed will be cryogenically frozen with liquid nitrogen. These cryogenic vacuum tests are underway, but results will not be included in this manuscript.

  10. Multirobot Lunar Excavation and ISRU Using Artificial-Neural-Tissue Controllers

    SciTech Connect

    Thangavelautham, Jekanthan; Smith, Alexander; Abu El Samid, Nader; Ho, Alexander; D'Eleuterio, Gabriele M. T.; Boucher, Dale; Richard, Jim

    2008-01-21

    Automation of site preparation and resource utilization on the Moon with teams of autonomous robots holds considerable promise for establishing a lunar base. Such multirobot autonomous systems would require limited human support infrastructure, complement necessary manned operations and reduce overall mission risk. We present an Artificial Neural Tissue (ANT) architecture as a control system for autonomous multirobot excavation tasks. An ANT approach requires much less human supervision and pre-programmed human expertise than previous techniques. Only a single global fitness function and a set of allowable basis behaviors need be specified. An evolutionary (Darwinian) selection process is used to 'breed' controllers for the task at hand in simulation and the fittest controllers are transferred onto hardware for further validation and testing. ANT facilitates 'machine creativity', with the emergence of novel functionality through a process of self-organized task decomposition of mission goals. ANT based controllers are shown to exhibit self-organization, employ stigmergy (communication mediated through the environment) and make use of templates (unlabeled environmental cues). With lunar in-situ resource utilization (ISRU) efforts in mind, ANT controllers have been tested on a multirobot excavation task in which teams of robots with no explicit supervision can successfully avoid obstacles, interpret excavation blueprints, perform layered digging, avoid burying or trapping other robots and clear/maintain digging routes.

  11. Multirobot Lunar Excavation and ISRU Using Artificial-Neural-Tissue Controllers

    NASA Astrophysics Data System (ADS)

    Thangavelautham, Jekanthan; Smith, Alexander; Abu El Samid, Nader; Ho, Alexander; Boucher, Dale; Richard, Jim; D'Eleuterio, Gabriele M. T.

    2008-01-01

    Automation of site preparation and resource utilization on the Moon with teams of autonomous robots holds considerable promise for establishing a lunar base. Such multirobot autonomous systems would require limited human support infrastructure, complement necessary manned operations and reduce overall mission risk. We present an Artificial Neural Tissue (ANT) architecture as a control system for autonomous multirobot excavation tasks. An ANT approach requires much less human supervision and pre-programmed human expertise than previous techniques. Only a single global fitness function and a set of allowable basis behaviors need be specified. An evolutionary (Darwinian) selection process is used to `breed' controllers for the task at hand in simulation and the fittest controllers are transferred onto hardware for further validation and testing. ANT facilitates `machine creativity', with the emergence of novel functionality through a process of self-organized task decomposition of mission goals. ANT based controllers are shown to exhibit self-organization, employ stigmergy (communication mediated through the environment) and make use of templates (unlabeled environmental cues). With lunar in-situ resource utilization (ISRU) efforts in mind, ANT controllers have been tested on a multirobot excavation task in which teams of robots with no explicit supervision can successfully avoid obstacles, interpret excavation blueprints, perform layered digging, avoid burying or trapping other robots and clear/maintain digging routes.

  12. Application of an Artificial Neural Tissue Controller to Multirobot Lunar ISRU Operations

    NASA Astrophysics Data System (ADS)

    Thangavelautham, Jekanthan; Smith, Alexander; Boucher, Dale; Richard, Jim; D'Eleuterio, Gabriele M. T.

    2007-01-01

    Automation of mining and resource utilization processes on the Moon with teams of autonomous robots holds considerable promise for establishing a lunar base. We present an Artificial Neural Tissue (ANT) architecture as a control system for autonomous multirobot tasks. An Artificial Neural Tissue (ANT) approach requires much less human supervision and pre-programmed human expertise than previous techniques. Only a single global fitness function and a set of allowable basis behaviors need be specified. An evolutionary (Darwinian) selection process is used to train controllers for the task at hand in simulation and is verified on hardware. This process results in the emergence of novel functionality through the task decomposition of mission goals. ANT based controllers are shown to exhibit self-organization, employ stigmergy (communication mediated through the environment) and make use of templates (unlabeled environmental cues). With lunar in-situ resource utilization (ISRU) efforts in mind, ANT controllers have been tested on a multirobot resource gathering task in which teams of robots with no explicit supervision can successfully avoid obstacles, explore terrain, locate resource material and collect it in a designated area by using a light beacon for reference and interpreting unlabeled perimeter markings.

  13. Cellular and Developmental Biology of TRPM7 Channel-Kinase: Implicated Roles in Cancer

    PubMed Central

    Yee, Nelson S.; Kazi, Abid A.; Yee, Rosemary K.

    2014-01-01

    The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed cation-permeable ion channel with intrinsic kinase activity that plays important roles in various physiological functions. Biochemical and electrophysiological studies, in combination with molecular analyses of TRPM7, have generated insights into its functions as a cellular sensor and transducer of physicochemical stimuli. Accumulating evidence indicates that TRPM7 channel-kinase is essential for cellular processes, such as proliferation, survival, differentiation, growth, and migration. Experimental studies in model organisms, such as zebrafish, mouse, and frog, have begun to elucidate the pleiotropic roles of TRPM7 during embryonic development from gastrulation to organogenesis. Aberrant expression and/or activity of the TRPM7 channel-kinase have been implicated in human diseases including a variety of cancer. Studying the functional roles of TRPM7 and the underlying mechanisms in normal cells and developmental processes is expected to help understand how TRPM7 channel-kinase contributes to pathogenesis, such as malignant neoplasia. On the other hand, studies of TRPM7 in diseases, particularly cancer, will help shed new light in the normal functions of TRPM7 under physiological conditions. In this article, we will provide an updated review of the structural features and biological functions of TRPM7, present a summary of current knowledge of its roles in development and cancer, and discuss the potential of TRPM7 as a clinical biomarker and therapeutic target in malignant diseases. PMID:25079291

  14. Trypanosome species in neo-tropical bats: biological, evolutionary and epidemiological implications.

    PubMed

    Ramírez, Juan David; Tapia-Calle, Gabriela; Muñoz-Cruz, Geissler; Poveda, Cristina; Rendón, Lina M; Hincapié, Eduwin; Guhl, Felipe

    2014-03-01

    Bats (Chiroptera) are the only mammals naturally able to fly. Due to this characteristic they play a relevant ecological role in the niches they inhabit. These mammals spread infectious diseases from enzootic to domestic foci. Rabbies, SARS, fungi, ebola and trypanosomes are the most common pathogens these animals may host. We conducted intensive sampling of bats from the phyllostomidae, vespertilionidae and emballonuridae families in six localities from Casanare department in eastern Colombia. Blood-EDTA samples were obtained and subsequently submitted to analyses of mitochondrial and nuclear genetic markers in order to conduct barcoding analyses to discriminate trypanosome species. The findings according to the congruence of the three molecular markers suggest the occurrence of Trypanosoma cruzi cruzi (51%), T. c. marinkellei (9%), T. dionisii (13%), T. rangeli (21%), T. evansi (4%) and T. theileri (2%) among 107 positive bat specimens. Regarding the T. cruzi DTUs, we observed the presence of TcI (60%), TcII (15%), TcIII (7%), TcIV (7%) and TcBAT (11%) being the first evidence to our concern of the foreseen genotype TcBAT in Colombia. These results allowed us to propose reliable hypotheses regarding the ecology and biology of the bats circulating in the area including the enigmatic question whether TcBAT should be considered a novel DTU. The epidemiological and evolutionary implications of these findings are herein discussed. PMID:23831017

  15. 'Biologizing' Psychopathy: Ethical, Legal, and Research Implications at the Interface of Epigenetics and Chronic Antisocial Conduct.

    PubMed

    Tamatea, Armon J

    2015-10-01

    Epigenetics, a field that links genetics and environmental influences on the expression of phenotypic traits, offers to increase our understanding of the development and trajectory of disease and psychological disorders beyond that thought of traditional genetic research and behavioural measures. By extension, this new perspective has implications for risk and risk management of antisocial behaviour where there is a biological component, such as psychopathy. Psychopathy is a personality disorder associated with repeat displays of antisocial behaviour, and is associated with the disproportionate imposition of harm on communities. Despite advances in our knowledge of psychopathic individuals, the construct remains complex and is hampered by a lack of integration across a range of fundamental domains. The clinical and forensic research on psychopathy is brought into conversation with the emerging field of epigenetics to highlight critical issues of (1) clinical definition and diagnosis, (2) assessment, (3) aetiology of psychopathic phenotypes, and (4) treatment and rehabilitation approaches. Broader ethical and legal questions of the role of epigenetic mechanisms in the management of psychopathy beyond the criminal justice arena are also outlined. PMID:26364988

  16. Molecular biology of anal squamous cell carcinoma: implications for future research and clinical intervention.

    PubMed

    Bernardi, Maria-Pia; Ngan, Samuel Y; Michael, Michael; Lynch, A Craig; Heriot, Alexander G; Ramsay, Robert G; Phillips, Wayne A

    2015-12-01

    Anal squamous cell carcinoma is a human papillomavirus-related disease, in which no substantial advances in treatment have been made in over 40 years, especially for those patients who develop disease relapse and for whom no surgical options exist. HPV can evade the immune system and its role in disease progression can be exploited in novel immunotherapy platforms. Although several studies have investigated the expression and inactivation (through loss of heterozygosity) of tumour suppressor genes in the pathways to cancer, no clinically valuable biomarkers have emerged. Regulators of apoptosis, including survivin, and agents targeting the PI3K/AKT pathway, offer opportunities for targeted therapy, although robust data are scarce. Additionally, antibody therapy targeting EGFR may prove effective, although its safety profile in combination with standard chemoradiotherapy has proven to be suboptimal. Finally, progress in the treatment of anal cancer has remained stagnant due to a lack of preclinical models, including cell lines and mouse models. In this Review, we discuss the molecular biology of anal squamous cell carcinoma, clinical trials in progress, and implications for novel therapeutic targets. Future work should focus on preclinical models to provide a resource for investigation of new molecular pathways and for testing novel targets. PMID:26678214

  17. Glutathione in Cerebral Microvascular Endothelial Biology and Pathobiology: Implications for Brain Homeostasis

    PubMed Central

    Li, Wei; Busu, Carmina; Circu, Magdalena L.; Aw, Tak Yee

    2012-01-01

    The integrity of the vascular endothelium of the blood-brain barrier (BBB) is central to cerebrovascular homeostasis. Given the function of the BBB as a physical and metabolic barrier that buffers the systemic environment, oxidative damage to the endothelial monolayer will have significant deleterious impact on the metabolic, immunological, and neurological functions of the brain. Glutathione (GSH) is a ubiquitous major thiol within mammalian cells that plays important roles in antioxidant defense, oxidation-reduction reactions in metabolic pathways, and redox signaling. The existence of distinct GSH pools within the subcellular organelles supports an elegant mode for independent redox regulation of metabolic processes, including those that control cell fate. GSH-dependent homeostatic control of neurovascular function is relatively unexplored. Significantly, GSH regulation of two aspects of endothelial function is paramount to barrier preservation, namely, GSH protection against oxidative endothelial cell injury and GSH control of postdamage cell proliferation in endothelial repair and/or wound healing. This paper highlights our current insights and hypotheses into the role of GSH in cerebral microvascular biology and pathobiology with special focus on endothelial GSH and vascular integrity, oxidative disruption of endothelial barrier function, GSH regulation of endothelial cell proliferation, and the pathological implications of GSH disruption in oxidative stress-associated neurovascular disorders, such as diabetes and stroke. PMID:22745639

  18. The Mars Oxygen ISRU Experiment (MOXIE) on the yet-to-be-named Mars 2020 Lander

    NASA Astrophysics Data System (ADS)

    Hecht, M. H.; Hoffman, J.; Rapp, D.; Voecks, G.; Lackner, K. S.; Hartvigsen, J.; Yildiz, B.; Smith, P. H.; Pike, W. T.; Graves, C.; De La Torre Juarez, M.; Schreiner, S.; Madsen, M. B.

    2014-12-01

    A major challenge to sample return is the transport to Mars of an adequate supply of fuel and oxidizer (the heavier component) for the return trip. A possible novel architecture would be for the Mars Ascent Vehicle (MAV) to share a platform with a device that would manufacture the oxidizer in situ. Far from fanciful, that hypothetical platform would look very much like the Mars 2020 rover. The Mars Oxygen In Situ Resource Utilization (ISRU) Experiment, MOXIE, will produce 22 g/hr oxygen from atmospheric carbon dioxide using solid oxide electrolysis (SOXE). With proper refrigeration, it could readily fill a MAV tank with high Isp LOx while waiting for rendezvous with a sample acquisition rover. The immediate motivation for MOXIE, however, is as a prototype for a 100:1 scale unit that would serve the same function on an eventual human expedition. If optimistic plans for a crewed mission are realized, it may well carry the second, and far more bountiful, Mars sample return. To make 22 g/hr oxygen from the CO2 in the martian atmosphere, MOXIE must first collect and compress that CO2, while purging other atmospheric components (4-5 vol%) that would otherwise build up and choke the process. Two distinct technologies are under consideration for that function; a batch-process based on condensation by conventional cryocoolers, and an Advanced Technology Option mechanical compressor that would allow more efficient, continuous operation. The SOXE itself derives from solid oxide fuel cell (SOFC) technology, essentially running the fuel cell process in reverse by feeding in electricity and CO2 to produce O2and CO. MOXIE development is supported by the NASA HEOMD and STMD offices. We are particularly grateful to support from JPL and MIT, as well as our partners Ceramatec and Creare, in the preparation of the MOXIE proposal.

  19. ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Wilkinson, Allen

    2012-01-01

    Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.

  20. Compositional and Microtextural Analysis of Basaltic Feedstock Materials Used for the 2010 ISRU Field Tests, Mauna Kea, Hawaii

    NASA Astrophysics Data System (ADS)

    Marin, N.; Farmer, J. D.; Zacny, K.; Sellar, R. G.; Nunez, J.

    2011-12-01

    This study seeks to understand variations in composition and texture of basaltic pyroclastic materials used in the 2010 International Lunar Surface Operation-In-Situ Resource Utilization Analogue Test (ILSO-ISRU) held on the slopes of Mauna Kea Volcano, Hawaii (1). The quantity and quality of resources delivered by ISRU depends upon the nature of the materials processed (2). We obtained a one-meter deep auger cuttings sample of a basaltic regolith at the primary site for feed stock materials being mined for the ISRU field test. The auger sample was subdivided into six, ~16 cm depth increments and each interval was sampled and characterized in the field using the Multispectral Microscopic Imager (MMI; 3) and a portable X-ray Diffractometer (Terra, InXitu Instruments, Inc.). Splits from each sampled interval were returned to the lab and analyzed using more definitive methods, including high resolution Powder X-ray Diffraction and Thermal Infrared (TIR) spectroscopy. The mineralogy and microtexture (grain size, sorting, roundness and sphericity) of the auger samples were determined using petrographic point count measurements obtained from grain-mount thin sections. NIH Image J (http://rsb.info.nih.gov/ij/) was applied to digital images of thin sections to document changes in particle size with depth. Results from TIR showed a general predominance of volcanic glass, along with plagioclase, olivine, and clinopyroxene. In addition, thin section and XRPD analyses showed a down core increase in the abundance of hydrated iron oxides (as in situ weathering products). Quantitative point count analyses confirmed the abundance of volcanic glass in samples, but also revealed olivine and pyroxene to be minor components, that decreased in abundance with depth. Furthermore, point count and XRD analyses showed a decrease in magnetite and ilmenite with depth, accompanied by an increase in Fe3+phases, including hematite and ferrihydrite. Image J particle analysis showed that the

  1. Observing and diagnosing biological fluxes and canopy mechanisms with implications for climate change and ecosystem disturbance

    NASA Astrophysics Data System (ADS)

    Reed, David E.

    Improving our predictions of ecosystem responses is an important challenge in ecological science due to the increasing number of stresses applied to biological systems. The assumption that ecosystems are operating in steady-state conditions at annual and longer time scales is far too simple of a model as ecosystems are an integral part of the earth system. Anthropogenic and non-anthropogenic forces acting on ecosystems within the earth system are numerous and include broad external factors such as climate change to specific internal factors such as infestations causing disturbance. This research quantifies changes in biogeochemical cycling and increases understanding of the mechanisms that control these cycles across two major ecosystems of the intermountain west with the broad goal of better predictive power of ecosystem responses. Eddy covariance methods were used to quantify carbon, water and energy fluxes at two different field sites in sagebrush ecosystems and one field site in a lodgepole pine ecosystem, in south-east Wyoming and northern Colorado. These measurements were supported with environmental and micrometeorological measurements in order to better understand physical mechanisms and canopy processes that control these biological fluxes. Results from the sagebrush component of this dissertation show how semi-arid sagebrush canopies interact with the lower atmosphere in ways that can alter environmental control of water loss with changing leaf area. This feedback has large implications combined with the large land area of these ecosystems and predictions of a dryer and more variable precipitation regime in the future. At the higher elevation lodgepole pine site, the ecosystem is undergoing a major mortality disturbance due to native bark beetles. Interestingly, even with ˜80% mortality of the canopy, few changes are observed to carbon and water cycling, as well as water use efficiency and energy cycling at the ecosystem scale. This calls into question

  2. Diverse Basis of β-Catenin Activation in Human Hepatocellular Carcinoma: Implications in Biology and Prognosis

    PubMed Central

    Okabe, Hirohisa; Kinoshita, Hiroki; Imai, Katsunori; Nakagawa, Shigeki; Higashi, Takaaki; Arima, Kota; Uchiyama, Hideaki; Ikegami, Toru; Harimoto, Norifumi; Itoh, Shinji; Ishiko, Takatoshi; Yoshizumi, Tomoharu; Beppu, Toru; Monga, Satdarshan P. S.; Baba, Hideo; Maehara, Yoshihiko

    2016-01-01

    Aim β-catenin signaling is a major oncogenic pathway in hepatocellular carcinoma (HCC). Since β-catenin phosphorylation by glycogen synthase kinase 3β (GSK3β) and casein kinase 1ε (CK1ε) results in its degradation, mutations affecting these phosphorylation sites cause β-catenin stabilization. However, the relevance of missense mutations in non-phosphorylation sites in exon 3 remains unclear. The current study explores significance of such mutations in addition to addressing the clinical and biological implications of β-catenin activation in human HCC. Methods Gene alteration in exon3 of CTNNB1, gene expression of β-catenin targets such as glutamate synthetase (GS), axin2, lect2 and regucalcin (RGN), and protein expression of β-catenin were examined in 125 human HCC tissues. Results Sixteen patients (12.8%) showed conventional missense mutations affecting codons 33, 37, 41, and 45. Fifteen additional patients (12.0%) had other missense mutations in codon 32, 34, and 35. Induction of exon3 mutation caused described β-catenin target gene upregulation in HCC cell line. Interestingly, conventional and non-phosphorylation site mutations were equally associated with upregulation of β-catenin target genes. Nuclear localization of β-catenin was associated with poor overall survival (p = 0.0461). Of these patients with nuclear β-catenin localization, loss of described β-catenin target gene upregulation showed significant poorer overall survival than others (p = 0.0001). Conclusion This study suggests that both conventional and other missense mutations in exon 3 of CTNNB1 lead to β-catenin activation in human HCC. Additionally, the mechanism of nuclear β-catenin localization without upregulation of described β-catenin target genes might be of clinical importance depending on distinct mechanism. PMID:27100093

  3. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Barber, David G.; Hop, Haakon; Mundy, Christopher J.; Else, Brent; Dmitrenko, Igor A.; Tremblay, Jean-Eric; Ehn, Jens K.; Assmy, Philipp; Daase, Malin; Candlish, Lauren M.; Rysgaard, Søren

    2015-12-01

    The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean-sea ice-atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underlying water column. Changes in the Arctic MIZ were interpreted for the period 1979-2010, based on best-fit regressions for each month. Trends of increasingly open water were statistically significant for each month, with quadratic fit for August-November, illustrating particularly strong seasonal feedbacks in sea-ice formation and decay. Geographic interpretations of physical and biological changes were based on comparison of regions with significant changes in sea ice: (1) The Pacific Sector of the Arctic Ocean including the Canada Basin and the Beaufort, Chukchi and East Siberian seas; (2) The Canadian Arctic Archipelago; (3) Baffin Bay and Hudson Bay; and (4) the Barents and Kara seas. Changes in ice conditions in the Barents sea/Kara sea region appear to be primarily forced by ocean heat fluxes during winter, whereas changes in the other sectors appear to be more summer-autumn related and primarily atmospherically forced. Effects of seasonal and regional changes in OSA-system with regard to increased open water were summarized for photosynthetically available radiation, nutrient delivery to the euphotic zone, primary production of ice algae and phytoplankton, ice-associated fauna and zooplankton, and gas exchange of CO2. Changes in the physical factors varied amongst regions, and showed direct effects on organisms linked to sea ice. Zooplankton species appear to be more flexible and likely able to adapt to variability in the onset of primary production. The major changes identified for the ice-associated ecosystem are with regard to production timing and abundance or biomass of ice flora and fauna, which are related to

  4. Long-term subcutaneous recombinant interleukin-2 as maintenance therapy: biological effects and clinical implications.

    PubMed

    Guida, M; Abbate, I; Casamassima, A; Musci, M D; Latorre, A; Lorusso, V; Correale, M; De Lena, M

    1995-01-01

    Several trials have evaluated the therapeutic efficacy of rIL-2 combined with more traditional treatments such as chemotherapy and radiotherapy, but the use of IL-2 as adjuvant therapy for minimal residual disease or to maintain clinical response obtained with other standard treatments has yet to be investigated. The aim of the present trial was to study the biological effects of maintenance long-term treatment (6 months) with subcutaneous low-dose IL-2 in 16 patients with different neoplasms previously treated with chemo-immuno therapeutic regimens or with surgery (7 metastatic renal cancers, 5 locally advanced renal cancers previously subjected to radical nephrectomy, 2 metastatic breast cancers, 1 small cell lung cancer, and 1 metastatic melanoma). Clinical tolerability, feasibility and therapeutic implications are also discussed. The IL-2 schedule was as follows: 4.5 million IU/day, 3 times weekly for 6 months. A total of 14 patients completed therapy without requiring dose modifications and are free of progression after a median duration of 8+ months (range: 7+ to 34+) while two patients progressed during therapy (one inflammatory breast cancer and one renal cancer). Important and persistent hemato-immunostimulating effects in both soluble (IL-2, sIL-2R, IL-6) and cellular (lymphocyte subsets, monocytes, eosinophils) parameters were noted during the entire treatment. The IL-2 related toxicity was quite low. Moreover, this long-term IL-2 therapy could control neoplastic growth and thus prolong clinical response obtained with standard treatments. Prospective randomized studies regarding the clinical efficacy have been initiated. PMID:8547958

  5. Seed preferences by rodents in the agri-environment and implications for biological weed control.

    PubMed

    Fischer, Christina; Türke, Manfred

    2016-08-01

    Post-dispersal seed predation and endozoochorous seed dispersal are two antagonistic processes in relation to plant recruitment, but rely on similar preconditions such as feeding behavior of seed consumers and seed traits. In agricultural landscapes, rodents are considered important seed predators, thereby potentially providing regulating ecosystem services in terms of biological weed control. However, their potential to disperse seeds endozoochorously is largely unknown. We exposed seeds of arable plant species with different seed traits (seed weight, nutrient content) and different Red List status in an experimental rye field and assessed seed removal by rodents. In a complementary laboratory experiment, consumption rates, feeding preferences, and potential endozoochory by two vole species (Microtus arvalis and Myodes glareolus) were tested. Seed consumption by rodents after 24 h was 35% in the field and 90% in the laboratory. Both vole species preferred nutrient-rich over nutrient-poor seeds and M. glareolus further preferred light over heavy seeds and seeds of common over those of endangered plants. Endozoochory by voles could be neglected for all tested plant species as no seeds germinated, and only few intact seeds could be retrieved from feces. Synthesis and applications. Our results suggest that voles can provide regulating services in agricultural landscapes by depleting the seed shadow of weeds, rather than facilitating plant recruitment by endozoochory. In the laboratory, endangered arable plants were less preferred by voles than noxious weeds, and thus, our results provide implications for seed choice in restoration approaches. However, other factors such as seed and predator densities need to be taken into account to reliably predict the impact of rodents on the seed fate of arable plants. PMID:27547355

  6. Biological variation in musculoskeletal injuries: current knowledge, future research and practical implications.

    PubMed

    Collins, Malcolm; September, Alison V; Posthumus, Michael

    2015-12-01

    Evidence from familial and genetic association studies have reported that DNA sequence variants play an important role, together with non-genetic factors, in the aetiology of both exercise-associated and occupational-associated acute and chronic musculoskeletal soft tissue injuries. The associated variants, which have been identified to date, may contribute to the interindividual variation in the structure and, by implication, mechanical properties of the collagen fibril and surrounding matrix within musculoskeletal soft tissues, as well as their response to mechanical loading and other stimuli. Future work should focus on the establishment of multidisciplinary international consortia for the identification of biologically relevant variants involved in modulating injury risk. These consortia will improve the limitations of the published hypothesis-driven genetic association studies, since they will allow resources to be pooled in recruiting large well-characterised cohorts required for whole-genome screening. Finally, clinicians and coaches need to be aware that many direct-to-consumer companies are currently marketing genetic tests directly to athletes without it being requested by an appropriately qualified healthcare professional, and without interpretation alongside other clinical indicators or lifestyle factors. These specific genetic tests are premature and are not necessarily required to evaluate susceptibility to musculoskeletal soft tissue injury. Current practice should rather consider susceptibility through known risk factors such as a positive family history of a specific injury, a history of other tendon and/or ligament injuries and participation in activities associated with the specific musculoskeletal injuries. Potential susceptible athletes may then be individually managed to reduce their risk profile. PMID:26504180

  7. Software Architecture to Support the Evolution of the ISRU RESOLVE Engineering Breadboard Unit 2 (EBU2)

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Nurge, Mark; Perusich, Stephen

    2011-01-01

    The In-Situ Resource Utilization (ISRU) Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) software provides operation of the physical plant from a remote location with a high-level interface that can access and control the data from external software applications of other subsystems. This software allows autonomous control over the entire system with manual computer control of individual system/process components. It gives non-programmer operators the capability to easily modify the high-level autonomous sequencing while the software is in operation, as well as the ability to modify the low-level, file-based sequences prior to the system operation. Local automated control in a distributed system is also enabled where component control is maintained during the loss of network connectivity with the remote workstation. This innovation also minimizes network traffic. The software architecture commands and controls the latest generation of RESOLVE processes used to obtain, process, and quantify lunar regolith. The system is grouped into six sub-processes: Drill, Crush, Reactor, Lunar Water Resource Demonstration (LWRD), Regolith Volatiles Characterization (RVC) (see example), and Regolith Oxygen Extraction (ROE). Some processes are independent, some are dependent on other processes, and some are independent but run concurrently with other processes. The first goal is to analyze the volatiles emanating from lunar regolith, such as water, carbon monoxide, carbon dioxide, ammonia, hydrogen, and others. This is done by heating the soil and analyzing and capturing the volatilized product. The second goal is to produce water by reducing the soil at high temperatures with hydrogen. This is done by raising the reactor temperature in the range of 800 to 900 C, causing the reaction to progress by adding hydrogen, and then capturing the water product in a desiccant bed. The software needs to run the entire unit and all sub-processes; however

  8. An Advanced In-Situ Resource Utilization (ISRU) Production Plant Design for Robotic and Human Mars Missions

    NASA Astrophysics Data System (ADS)

    Simon, T.; Baird, R. S.; Trevathan, J.; Clark, L.

    2002-01-01

    The ability to produce the necessary consumables, rather than relying solely on what is brought from Earth decreases the launch mass, cost, and risk associated with a Mars mission while providing capabilities that enable the commercial development of space. The idea of using natural resources, or "living off the land", is termed In-Situ Resource Utilization (ISRU). Trade studies have shown that producing and utilizing consumables such as water, breathing oxygen, and propellant can reduce the launch mass for a human or robotic mission to Mars by 20-45%. The Johnson Space Center and Lockheed Martin Astronautics are currently designing and planning assembly of a complete collection-to-storage production plant design for producing methane (fuel), oxygen, and water from carbon dioxide (Martian atmosphere) and hydrogen (electrolyzed Martian water or Earth-originated), based on lessons learned and design enhancements from a 1st generation testbed. The design and testing of the major subsystems incorporated in the 2nd generation system, including a carbon dioxide freezer, Sabatier reactor, water electrolysis unit, and vacuum-jacketed, cryogenic, common-bulkhead storage tank, will be presented in detail with the goal of increasing the awareness of the readiness level of these technologies. These technologies are mass and power efficient as well as fundamentally simple and reliable. These technologies also have potential uses in Environmental Control and Life Support System (ECLSS) applications for removing and recycling crew-exhaled carbon dioxide. Each subsystem is sized for an ISRU-assisted sample return mission, producing in an 8-hour period 0.56 kg water and 0.26 kg methane from the Sabatier reactor and 0.50 kg oxygen from electrolyzed water. The testing of these technologies to date will be discussed as well as plans for integrating the subsystems for a complete end-to-end demonstration at Mars conditions. This paper will also address the history of these subsystem

  9. Formation of Nanophase Iron in Lunar Soil Simulant for Use in ISRU Studies

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Taylor, Lawrence A.; Hill, Eddy; Day, James D. M.

    2005-01-01

    discovered the presence of abundant np-Fe(sup 0) particles in the glass patinas coating most soil particles. Therefore, the correlation of glass content and magnetic susceptibility can be explained by the presence of the np-Feo particles in glass: small particles contain relatively more np-Fe(sup 0) as glass coatings because the surface area versus mass ratio of the grain size is so increased. The magnetic properties of lunar soil are important in dust mitigation on the Moon (Taylor et al. 2005). Thus material simulating this property is important for testing mitigation methods using electromagnetic field. This np- Fe(sup 0) also produces a unique energy coupling to normal microwaves, such as present in kitchen microwave ovens. Effectively, a portion of lunar soil placed in a normal 2.45 GHz oven will melt at greater than 1200 C before your tea will boil at 100 C, a startling and new discovery reported by Taylor and Meek (2004, 2005). Several methods have been investigated in attempts to make nanophase-sized Feo dispersed within silicate glass; like in the lunar glass. We have been successful in synthesizing such a product and continue to improve on our recipe. We have performed extensive experimentation on this subject to date. Ultimately it will probably be necessary to add this np-Fe(sup 0) bearing silicate glass to lunar soil stimulant, like JSC-1, to actually produce the desired magnetic and microwave coupling properties for use in appropriate ISRU experimentation.

  10. "McLean v. Arkansas" (1982) and Beyond: Implications for Biology Professors

    ERIC Educational Resources Information Center

    Bland, Mark W.; Moore, Randy

    2011-01-01

    To assess current trends of evolution instruction in high schools of the mid-South, we invited Arkansas high school biology teachers from across the state to respond to a survey designed to address this issue. We also asked students enrolled in a freshman-level, nonmajors biology course at a midsize public Arkansas university to recall their…

  11. Biological Contributions to Addictions in Adolescents and Adults: Prevention, Treatment and Policy Implications

    PubMed Central

    Potenza, Marc N.

    2012-01-01

    Purpose Despite significant advances in our understanding of the biological bases of addictions, these disorders continue to represent a huge public health burden that is associated with substantial personal suffering. Efforts to target addictions require consideration of how the improved biological understanding of addictions may lead to improved prevention, treatment and policy initiatives. Method In this article, we provide a narrative review of current biological models for addictions with a goal of placing existing data and theories within a translational and developmental framework targeting the advancement of prevention, treatment and policy strategies. Results Data regarding individual differences, intermediary phenotypes, and main and interactive influences of genetic and environmental contributions in the setting of developmental trajectories that may be influenced by addictive drugs or behavior indicate complex underpinnings of addictions. Conclusions Consideration and further elucidation of the biological etiologies of addictions hold significant potential for making important gains and reducing the public health impact of addictions. PMID:23332567

  12. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    NASA Astrophysics Data System (ADS)

    Graves, David B.

    2012-07-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well.

  13. Recent Advances in Molecular Biology of Thyroid Cancer and Their Clinical Implications

    PubMed Central

    Xing, Mingzhao

    2009-01-01

    Synopsis Thyroid cancer is the most common endocrine malignancy with a rapid rising incidence in recent years. Novel efficient management strategies are increasingly needed for this cancer. Remarkable advances have occurred in recent years in understanding the molecular biology of thyroid cancer. This is reflected in several major biological areas of thyroid cancer, including the molecular alterations for the loss of radioiodine avidity of thyroid cancer, the pathogenic role of the MAP kinase and PI3K/Akt pathways and their related genetic alterations, and the aberrant methylation of functionally important genes in thyroid tumorigenesis and pathogenesis. These exciting advances in molecular biology of thyroid cancer provide unprecedented opportunities for the development of molecular-based novel diagnostic, prognostic, and therapeutic strategies for this cancer. PMID:19040974

  14. Population biology of coral trout species in eastern Torres Strait: Implications for fishery management

    NASA Astrophysics Data System (ADS)

    Williams, Ashley J.; Currey, Leanne M.; Begg, Gavin A.; Murchie, Cameron D.; Ballagh, Aaron C.

    2008-09-01

    Coral trout ( Plectropomus spp.) are the main target species for commercial fishers in the eastern Torres Strait Reef Line Fishery (ETS RLF). The four species of coral trout known to occur in Torres Strait: Plectropomus leopardus, Plectropomus maculatus, Plectropomus areolatus and Plectropomus laevis are currently managed as a single species in Torres Strait, as there is no species-specific biological information available for the region which could be used to assess whether species differ in their response to fishing pressure. The aim of our study was to determine whether it is appropriate (biologically) to manage coral trout in the ETS RLF as a single species group or whether different management arrangements are required for some species. We used catch data and biological data from samples collected by commercial fishers to examine the distribution within Torres Strait and estimate a range of biological parameters for P. leopardus, P. maculatus and P. areolatus. Insufficient P. laevis samples were collected to reliably examine this species. Results indicated that the population biology, particularly the reproductive biology, of P. areolatus was substantially different to both P. leopardus and P. maculatus. Although it is difficult to predict the response to fishing, P. areolatus may be more vulnerable to fishing than P. leopardus and P. maculatus, due to the larger size at sex change observed for this species and the very low proportion of males protected by the current minimum size limit. Therefore, while the common management arrangements for P. leopardus and P. maculatus appear to be adequate for these species, separate management arrangements are needed for the sustainable harvest of P. areolatus populations in the ETS. Specifically, we recommend the introduction of a maximum size limit for P. areolatus, in addition to the current minimum size limit, which may allow a proportion of males some protection from fishing.

  15. Export flux and stability as regulators of community composition in pelagic marine biological communities: Implications for regime shifts [review article

    NASA Astrophysics Data System (ADS)

    Laws, Edward

    2004-02-01

    Regime shifts occur when a system transitions from one stable configuration to another. Such abrupt changes in biological communities may reflect small changes in environmental conditions such as temperature, oxygen concentration, or irradiance. Although it seems clear that biological communities are not randomly organized with respect to their functional components, there is disagreement concerning the factors that control that organization. In this paper, I examine the implications of assuming that the composition of pelagic marine biological communities evolves to a condition of maximum stability or resilience. At temperatures of 25 °C or less, a model based on this hypothesis predicts abrupt and discontinuous transitions from configurations associated with low export ratios to configurations associated with high export ratios as the rate of primary production increases. Comparison between field data and model predictions shows very good agreement at low and high production rates, but the field data do not support a step-function transition from low to high export ratios at intermediate rates of production. Instead, the field data are consistent with the assumption that food webs effect the transition between high and low ef ratio modes by reconfiguring themselves in a more-or-less continuous manner. The configurations associated with these transitions are at least locally more resilient than any similar food web structure.

  16. Knowledge and Awareness Concerning Chemical and Biological Terrorism: Continuing Education Implications.

    ERIC Educational Resources Information Center

    Rose, Molly A.; Larrimore, Karen L.

    2002-01-01

    Nurses, physicians, and nursing and medical students (n=291) were surveyed about their awareness of chemical and biological terrorism. Infection control personnel and nurse educators (n=24) were surveyed about terrorism preparation. Fewer than one-quarter of questions were answered correctly, and only about 23% reported confidence in the ability…

  17. Dissertation Citations in Organismal Biology at Southern Illinois University at Carbondale: Implications for Collection Development

    ERIC Educational Resources Information Center

    Nabe, Jonathan; Imre, Andrea

    2008-01-01

    We report on a citation analysis of Ph.D. dissertations in plant biology and zoology at Southern Illinois University Carbondale, undertaken to test the common assumption that scientists favor current research to such an extent that journal backfiles can be de-emphasized in academic library collections. Results demonstrate otherwise. The study is…

  18. High School Biology Teachers' Views on Teaching Evolution: Implications for Science Teacher Educators

    ERIC Educational Resources Information Center

    Hermann, Ronald S.

    2013-01-01

    In the US, there may be few scientific concepts that students maintain preconceived ideas about as strongly and passionately as they do with regard to evolution. At the confluence of a multitude of social, religious, political, and scientific factors lies the biology teacher. This phenomenological study provides insight into the salient aspects of…

  19. THE INFLUENCE OF CATCHMENT LAND USE ON HYDROGRAPH DYNAMICS AND IMPLICATIONS FOR STREAM BIOLOGICAL ASSEMBLAGES

    EPA Science Inventory

    Catchment land use impacts the rise and fall dynamic of hydrographs, and may also help explain variation in biological assemblages known to be sensitive to flow regime. We collected continuous stream depth records for the 2002 water year (5 min. intervals) from eight streams dra...

  20. Developmental Changes in Children's Inductive Inferences for Biological Concepts: Implications for the Development of Essentialist Beliefs

    ERIC Educational Resources Information Center

    Farrar, M. Jeffrey; Boyer-Pennington, Michelle

    2011-01-01

    We examined developmental changes in children's inductive inferences about biological concepts as a function of knowledge of properties and concepts. Specifically, 4- to 5-year-olds and 9- to 10-year-olds were taught either familiar or unfamiliar internal, external, or functional properties about known and unknown target animals. Children were…

  1. Genetic control of chromosome behaviour: Implications in evolution, crop improvement, and human biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromosomes and chromosome pairing are pivotal to all biological sciences. The study of chromosomes helps unravel several aspects of an organism. Although the foundation of genetics occurred with the formulation of the laws of heredity in 1865, long before the discovery of chromosomes, their subsequ...

  2. Biological cost of fluoroquinolone resistance in Escherichia coli implicated in polyclonal infection.

    PubMed

    Bémer, P; Corvec, S; Guitton, C; Giraudeau, C; Le Gargasson, G; Espaze, E; Drugeon, H

    2007-07-01

    Polyclonal Escherichia coli strains were isolated in a transplanted patient who experienced successive septic shocks. Fluoroquinolone susceptible and resistant strains were corresponding to different PFGE fragment profiles. The gyrA S83L mutation was associated with a reduction in biological fitness. Resistant strain was selected by a long-term single use of ofloxacin. PMID:16884861

  3. Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.

    PubMed

    Miron, S D; Astărăstoae, V

    2014-01-01

    Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered. PMID:25341291

  4. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    SciTech Connect

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  5. Experimental determination of cloud influence on the spectral UV irradiance and implications for biological effects

    NASA Astrophysics Data System (ADS)

    Mateos, David; di Sarra, Alcide; Meloni, Daniela; di Biagio, Claudia; Sferlazzo, Damiano M.

    2011-08-01

    Measurements of UV spectra, total ozone, cloud cover, and cloud optical thickness, obtained at Lampedusa (central Mediterranean), are used to investigate the influence of clouds on the spectral UV irradiance, through the cloud modification factor (CMF), and on five biological processes. The CMF decreases with cloud optical thickness (COT), from about 0.5 for COT˜15 to 0.25 for COT˜45, and decreases with increasing wavelength above 315-320-nm. Observations display an increase in the CMF from 295 to 320-nm, which is related to enhanced absorption by tropospheric ozone due to the long photon path lengths under cloudy conditions. The use of a wavelength independent CMF instead of the experimentally determined spectral curves produces an overestimation of the biological effects of UV irradiance. The overestimation may be as large as 30% for the DNA damage, 20% for vitamin D synthesis, 12% for plant damage, and 8-10% for phytoplankton inhibition and erythema.

  6. Biology of hematopoietic stem cells and progenitors: implications for clinical application.

    PubMed

    Kondo, Motonari; Wagers, Amy J; Manz, Markus G; Prohaska, Susan S; Scherer, David C; Beilhack, Georg F; Shizuru, Judith A; Weissman, Irving L

    2003-01-01

    Stem cell biology is scientifically, clinically, and politically a current topic. The hematopoietic stem cell, the common ancestor of all types of blood cells, is one of the best-characterized stem cells in the body and the only stem cell that is clinically applied in the treatment of diseases such as breast cancer, leukemias, and congenital immunodeficiencies. Multicolor cell sorting enables the purification not only of hematopoietic stem cells, but also of their downstream progenitors such as common lymphoid progenitors and common myeloid progenitors. Recent genetic approaches including gene chip technology have been used to elucidate the gene expression profile of hematopoietic stem cells and other progenitors. Although the mechanisms that control self-renewal and lineage commitment of hematopoietic stem cells are still ambiguous, recent rapid advances in understanding the biological nature of hematopoietic stem and progenitor cells have broadened the potential application of these cells in the treatment of diseases. PMID:12615892

  7. High School Biology Teachers' Views on Teaching Evolution: Implications for Science Teacher Educators

    NASA Astrophysics Data System (ADS)

    Hermann, Ronald S.

    2013-06-01

    In the US, there may be few scientific concepts that students maintain preconceived ideas about as strongly and passionately as they do with regard to evolution. At the confluence of a multitude of social, religious, political, and scientific factors lies the biology teacher. This phenomenological study provides insight into the salient aspects of teaching evolution as viewed by public high school biology teachers. Transcribed interviews were coded, and data were sorted resulting in key themes regarding teachers' views of evolution education. These themes are presented against the backdrop of extant literature on the teaching and learning of evolution. Suggestions for science teacher educators are presented such that we can modify teacher preparation programs to better prepare science teachers to meet the challenges of teaching evolution.

  8. [Glutamate and malignant gliomas, from epilepsia to biological aggressiveness: therapeutic implications].

    PubMed

    Blecic, Serge; Rynkowski, Michal; De Witte, Olivier; Lefranc, Florence

    2013-09-01

    In this review article, we describe the unrecognized roles of glutamate and glutamate receptors in malignant glioma biology. The neurotransmitter glutamate released from malignant glioma cells in the extracellular matrix is responsible for seizure induction and at higher concentration neuronal cell death. This neuronal cell death will create vacated place for tumor growth. Glutamate also stimulates the growth and the migration of glial tumor cells by means of the activation of glutamate receptors on glioma cells in a paracrine and autocrine manner. The multitude of effects of glutamate in glioma biology supports the rationale for pharmacological targeting of glutamate receptors and transporters in the adjuvant treatment of malignant gliomas in neurology and neuro-oncology. Using the website www.clinicaltrials.gov/ as a reference - a service developed by the National Library of Medicine for the National Health Institute in USA - we have evoked the few clinical trials completed and currently ongoing with therapies targeting the glutamate receptors. PMID:23883552

  9. Adhesion control by inflation: implications from biology to artificial attachment device

    NASA Astrophysics Data System (ADS)

    Dening, Kirstin; Heepe, Lars; Afferrante, Luciano; Carbone, Giuseppe; Gorb, Stanislav N.

    2014-08-01

    There is an increasing demand for materials that incorporate advanced adhesion properties, such as an ability to adhere in a reversible and controllable manner. In biological systems, these features are known from adhesive pads of the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima. These species have convergently developed soft, hemispherically shaped pads that might be able to control their adhesion through active changing the curvature of the pad. Inspired by these biological systems, an artificial model system is developed here. It consists of an inflatable membrane clamped to the metallic cylinder and filled with air. Pull-off force measurements of the membrane surface were conducted in contact with the membrane at five different radii of curvature r c with (1) a smooth polyvinylsiloxane membrane and (2) mushroom-shaped adhesive microstructured membrane made of the same polymer. The hypothesis that an increased internal pressure, acting on the membrane, reduces the radius of the membrane curvature, resulting in turn in a lower pull-off force, is verified. Such an active control of adhesion, inspired by biological models, will lead to the development of industrial pick-and-drop devices with controllable adhesive properties.

  10. On the biological plausibility of grandmother cells: implications for neural network theories in psychology and neuroscience.

    PubMed

    Bowers, Jeffrey S

    2009-01-01

    A fundamental claim associated with parallel distributed processing (PDP) theories of cognition is that knowledge is coded in a distributed manner in mind and brain. This approach rejects the claim that knowledge is coded in a localist fashion, with words, objects, and simple concepts (e.g. "dog"), that is, coded with their own dedicated representations. One of the putative advantages of this approach is that the theories are biologically plausible. Indeed, advocates of the PDP approach often highlight the close parallels between distributed representations learned in connectionist models and neural coding in brain and often dismiss localist (grandmother cell) theories as biologically implausible. The author reviews a range a data that strongly challenge this claim and shows that localist models provide a better account of single-cell recording studies. The author also contrast local and alternative distributed coding schemes (sparse and coarse coding) and argues that common rejection of grandmother cell theories in neuroscience is due to a misunderstanding about how localist models behave. The author concludes that the localist representations embedded in theories of perception and cognition are consistent with neuroscience; biology only calls into question the distributed representations often learned in PDP models. PMID:19159155

  11. The ultraviolet environment of Mars: biological implications past, present, and future

    NASA Technical Reports Server (NTRS)

    Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P.

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  12. Application of fish index of biological integrity (FIBI) in the Sanmenxia Wetland with water quality implications.

    PubMed

    Zhang, Hong; Shan, Baoqing; Ao, Liang

    2014-08-01

    Long-term changes of fish biotic integrity in the Sanmenxia Wetland, North China, since the 1950s were assessed using the fish index of biological integrity (FIBI). The water and sediment quality was evaluated by the water quality index (WQI) and sediment pollution index (SPI). The results showed that FIBI continuously decreased from 46 to 20 during the past 5 decades, which indicated that the fish community state shifted from fair to very poor conditions, and damming by itself did not affect the fish biotic integrity. At the same time, WQI fell from 83 to 44.1, and SPI increased from 0.99 to 2.14 since the 1960s, resulting from fast regional socio-economic development and insufficient wastewater treatment. Correlation analysis suggested that water quality significantly affected biotic integrity (r=0.867, p<0.05) through direct effects on the fish community. As a representative example of many wetlands in North China, our study clearly demonstrated that the biological integrity was degraded, induced both by water quality deterioration and sediment pollution, further driven by the contradiction between rapid development of regional economy and lagging development of sewage treatment facilities, which were thought to be the main factor responsible for the degradation of biological integrity. PMID:25108715

  13. Chemical model for Viking biology experiments: implications for the composition of the martian regolith

    NASA Astrophysics Data System (ADS)

    Plumb, Robert C.; Tantayanon, Rewat; Libby, Mark; Xu, Wen Wen

    1989-04-01

    THE 1976 Mars Viking biology experiments were designed to detect life by observing the products of biochemical reactions. In the labelled-release (LR) experiments1-4, about 25 nmol of 14C-labelled gases evolved when regolith samples were moistened with nutrient solution. About 22% of the products reabsorbed upon second injection. As a biological test the LR results were positive, although the reabsorption was not readily explained. In the gas-exchange (GEX) experiments, up to 800 nmol of O2 gas was evolved when samples were humidified5,6, suggesting that the martian regolith might contain a strong chemical oxidant which caused the LR results. Several chemical models have been proposed7,8 but no self-consistent explanation of all of the observations has been achieved. Here we propose a chemical model for these biology experiments in which the reactants are an inorganic nitrate salt, which has been partly photolysed by ultraviolet light, and a sparingly soluble metal carbonate such as calcite. The model reproduces the main effects seen, indicating that nitrates are present in the martian regolith as well as calcite (or some other carbonate with similar solubility).

  14. The ultraviolet environment of Mars: biological implications past, present, and future.

    PubMed

    Cockell, C S; Catling, D C; Davis, W L; Snook, K; Kepner, R L; Lee, P; McKay, C P

    2000-08-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations. PMID:11543504

  15. Biological and chemical terrorism scenarios and implications for detection systems needs

    NASA Astrophysics Data System (ADS)

    Gordon, Susanna P.; Chumfong, Isabelle; Edwards, Donna M.; Gleason, Nathaniel J.; West, Todd; Yang, Lynn

    2007-04-01

    Terrorists intent on causing many deaths and severe disruption to our society could, in theory, cause hundreds to tens of thousands of deaths and significant contamination of key urban facilities by using chemical or biological (CB) agents. The attacks that have occurred to date, such as the 1995 Aum Shinrikyo CB attacks and the 2001 anthrax letters, have been very small on the scale of what is possible. In order to defend against and mitigate the impacts of large-scale terrorist attacks, defensive systems for protection of urban areas and high-value facilities from biological and chemical threats have been deployed. This paper reviews analyses of such scenarios and of the efficacy of potential response options, discusses defensive systems that have been deployed and detectors that are being developed, and finally outlines the detection systems that will be needed for improved CB defense in the future. Sandia's collaboration with San Francisco International Airport on CB defense will also be briefly reviewed, including an overview of airport facility defense guidelines produced in collaboration with Lawrence Berkeley National Laboratory. The analyses that will be discussed were conducted by Sandia National Laboratories' Systems Studies Department in support of the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, and include quantitative analyses utilizing simulation models developed through close collaboration with subject matter experts, such as public health officials in urban areas and biological defense experts.

  16. Differentially Expressed Genes Distributed Over Chromosomes and Implicated in Certain Biological Processes for Site Insertion Genetically Modified Rice Kemingdao

    PubMed Central

    Liu, Zhi; Li, Yunhe; Zhao, Jie; Chen, Xiuping; Jian, Guiliang; Peng, Yufa; Qi, Fangjun

    2012-01-01

    Release of genetically modified (GM) plants has sparked off intensive debates worldwide partly because of concerns about potential adverse unintended effects of GM plants to the agro system and the safety of foods. In this study, with the aim of revealing the molecular basis for unintended effects of a single site insertion GM Kemingdao (KMD) rice transformed with a synthetic cry1Ab gene, and bridging unintended effects of KMD rice through clues of differentially expressed genes, comparative transcriptome analyses were performed for GM KMD rice and its parent rice of Xiushui11 (XS11). The results showed that 680 differentially expressed transcripts were identified from 30-day old seedlings of GM KMD rice. The absolute majority of these changed expression transcripts dispersed and located over all rice chromosomes, and existed physical distance on chromosome from the insertion site, while only two transcripts were found to be differentially expressed within the 21 genes located within 100 kb up and down-stream of the insertion site. Pathway and biology function analyses further revealed that differentially expressed transcripts of KMD rice were involved in certain biological processes, and mainly implicated in two types of pathways. One type was pathways implicated in plant stress/defense responses, which were considerably in coordination with the reported unintended effects of KMD rice, which were more susceptible to rice diseases compared to its parent rice XS11; the other type was pathways associated with amino acids metabolism. With this clue, new unintended effects for changes in amino acids synthesis of KMD rice leaves were successfully revealed. Such that an actual case was firstly provided for identification of unintended effects in GM plants by comparative transciptome analysis. PMID:22811617

  17. The State, Potential Distribution, and Biological Implications of Methane in the Martian Crust

    NASA Technical Reports Server (NTRS)

    Max, Michael D.; Clifford, Stephen M.

    2000-01-01

    The search for life on Mars has recently focused on its potential survival in deep (>2 km) subpermafrost aquifers where anaerobic bacteria, similar to those found in deep subsurface ecosystems on Earth, may have survived in an environment that has remained stable for billions of years. An anticipated by-product of this biological activity is methane. The detection of large deposits of methane gas and hydrate in the Martian cryosphere, or as emissions from deep fracture zones, would provide persuasive evidence of indigenous life and confirm the presence of a valuable in situ resource for use by future human explorers.

  18. New Developments in Peritoneal Fibroblast Biology: Implications for Inflammation and Fibrosis in Peritoneal Dialysis

    PubMed Central

    Witowski, Janusz; Kawka, Edyta; Rudolf, Andras; Jörres, Achim

    2015-01-01

    Uraemia and long-term peritoneal dialysis (PD) can lead to fibrotic thickening of the peritoneal membrane, which may limit its dialytic function. Peritoneal fibrosis is associated with the appearance of myofibroblasts and expansion of extracellular matrix. The extent of contribution of resident peritoneal fibroblasts to these changes is a matter of debate. Recent studies point to a significant heterogeneity and complexity of the peritoneal fibroblast population. Here, we review recent developments in peritoneal fibroblast biology and summarize the current knowledge on the involvement of peritoneal fibroblasts in peritoneal inflammation and fibrosis. PMID:26495280

  19. Molecular biology of breast cancer metastasis: Clinical implications of experimental studies on metastatic inefficiency

    PubMed Central

    Chambers, Ann F; Naumov, George N; Vantyghem , Sharon A; Tuck, Alan B

    2000-01-01

    Recent technological advances have led to an increasing ability to detect isolated tumour cells and groups of tumour cells in patients' blood, lymph nodes or bone marrow. However, the clinical significance of these cells is unclear. Should they be considered as evidence of metastasis, necessitating aggressive treatment, or are they in some cases unrelated to clinical outcome? Quantitative experimental studies on the basic biology of metastatic inefficiency are providing clues that may help in understanding the significance of these cells. This understanding will be of use in guiding clinical studies to assess the significance of isolated tumour cells and micrometastases in cancer patients. PMID:11250733

  20. Reactions of oxidatively activated arylamines with thiols: reaction mechanisms and biologic implications. An overview.

    PubMed Central

    Eyer, P

    1994-01-01

    Aromatic amines belong to a group of compounds that exert their toxic effects usually after oxidative biotransformation, primarily in the liver. In addition, aromatic amines also undergo extrahepatic activation to yield free arylaminyl radicals. The reactive intermediates are potential promutagens and procarcinogens, and responsible for target tissue toxicity. Since thiols react with these intermediates at high rates, it is of interest to know the underlying reaction mechanisms and the toxicologic implications. Phenoxyl radicals from aminophenols and aminyl radicals from phenylenediamines quickly disproportionate to quinone imines and quinone diimines. Depending on the structure, Michael addition or reduction reactions with thiols may prevail. Products of sequential oxidation/addition reactions (e.g., S-conjugates of aminophenols) are occasionally more toxic than the parent compounds because of their higher autoxidizability and their accumulation in the kidney. Even after covalent binding of quinone imines to protein SH groups, the resulting thioethers are able to autoxidize. The quinoid thioethers can then cross-link the protein by addition to neighboring nucleophiles. The reactions of nitrosoarenes with thiols yield a so-called "semimercaptal" from which various branching reactions detach, depending on substituents. Compounds with strong pi-donors, like 4-nitrosophenetol, give a resonance-stabilized N-(thiol-S-yl)-arylamine cation that may lead to bicyclic products, thioethers, and DNA adducts. Examples of toxicologic implications of the interactions of nitroso compounds with thiols are given for nitrosoimidazoles, heterocyclic nitroso compounds from protein pyrolysates, and nitrosoarenes. These data indicate that interactions of activated arylamines with thiols may not be regarded exclusively as detoxication reactions. PMID:7889834

  1. A Theoretical Mechanism of Szilard Engine Function in Nucleic Acids and the Implications for Quantum Coherence in Biological Systems

    SciTech Connect

    Matthew Mihelic, F.

    2010-12-22

    Nucleic acids theoretically possess a Szilard engine function that can convert the energy associated with the Shannon entropy of molecules for which they have coded recognition, into the useful work of geometric reconfiguration of the nucleic acid molecule. This function is logically reversible because its mechanism is literally and physically constructed out of the information necessary to reduce the Shannon entropy of such molecules, which means that this information exists on both sides of the theoretical engine, and because information is retained in the geometric degrees of freedom of the nucleic acid molecule, a quantum gate is formed through which multi-state nucleic acid qubits can interact. Entangled biophotons emitted as a consequence of symmetry breaking nucleic acid Szilard engine (NASE) function can be used to coordinate relative positioning of different nucleic acid locations, both within and between cells, thus providing the potential for quantum coherence of an entire biological system. Theoretical implications of understanding biological systems as such 'quantum adaptive systems' include the potential for multi-agent based quantum computing, and a better understanding of systemic pathologies such as cancer, as being related to a loss of systemic quantum coherence.

  2. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems

    NASA Astrophysics Data System (ADS)

    Khandhar, Amit P.; Ferguson, R. Matthew; Krishnan, Kannan M.

    2011-04-01

    Magnetite (Fe3O4) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H0 = 13.4 kA/m) and subsequently transferred them to water using a biocompatible amphiphilic polymer. These MNPs (σavg. = 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W/g Fe3O4) for 16 nm (diameter) particles. For broader size distributions (σavg. = 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco's modified Eagle medium (DMEM) + 10% fetal bovine serum] show a significant drop for SLP (˜30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs.

  3. Parasitoid nutritional ecology in a community context: the importance of honeydew and implications for biological control.

    PubMed

    Tena, Alejandro; Wäckers, Felix L; Heimpel, George E; Urbaneja, Alberto; Pekas, Apostolos

    2016-04-01

    One focus of conservation biological control studies has been to improve the nutritional state and fitness of parasitoids by adding nectar and artificial sugars to agroecosystems. This approach has largely overlooked the presence of honeydew, which is likely the primary carbohydrate source available to parasitoids in many agroecosystems. Over the last decade, it has been demonstrated that parasitoids often utilize this sugar source and there is evidence that honeydew can indirectly impact the population dynamics of herbivores through its nutritional value for parasitoids. The consumption of honeydew by parasitoids can shape direct and indirect interactions with other arthropods. The strength of these effects will depend on: first, parasitoid biology, second, the presence of other sugar sources (mainly nectar), third, the quality and quantity of the honeydew, and fourth, the presence and competitive strength of other honeydew consumers such as ants. The combination of these four factors is expected to result in distinct scenarios that should be analyzed for each agroecosystem. This analysis can reveal opportunities to increase the biocontrol services provided by parasitoids. Moreover, honeydew can be a resource-rich habitat for insect pathogens; or contain plant secondary chemicals sequestered by hemipterans or systemic insecticides toxic for the parasitoid. Their presence and effect on parasitoid fitness will need to be addressed in future research. PMID:27436654

  4. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    SciTech Connect

    Not Available

    1994-12-31

    The ocean plays an important role in regulating the earth`s climate, sustains a large portion of the earth`s biodiversity, is a tremendous reservoir of commercially important substances, and is used for a variety of often conflicting purposes. In recent decades marine scientists have discovered much about the ocean and its organisms, yet many important fundamental questions remain unanswered. Human populations have increased, particularly in coastal regions. As a result, the marine environment in these areas is increasingly disrupted by human activities, including pollution and the depletion of some ecologically and commercially important species. There is a sense of urgency about reducing human impacts on the ocean and a need to understand how altered ecosystems and the loss of marine species and biodiversity could affect society. This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ground truthing at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously.

  5. Histopathology of growth anomaly affecting the coral, Montipora capitata: implications on biological functions and population viability.

    PubMed

    Burns, John H R; Takabayashi, Misaki

    2011-01-01

    Growth anomalies (GAs) affect the coral, Montipora capitata, at Wai'ōpae, southeast Hawai'i Island. Our histopathological analysis of this disease revealed that the GA tissue undergoes changes which compromise anatomical machinery for biological functions such as defense, feeding, digestion, and reproduction. GA tissue exhibited significant reductions in density of ova (66.1-93.7%), symbiotic dinoflagellates (38.8-67.5%), mesenterial filaments (11.2-29.0%), and nematocytes (28.8-46.0%). Hyperplasia of the basal body wall but no abnormal levels of necrosis and algal or fungal invasion was found in GA tissue. Skeletal density along the basal body wall was significantly reduced in GAs compared to healthy or unaffected sections. The reductions in density of the above histological features in GA tissue were collated with disease severity data to quantify the impact of this disease at the colony and population level. Resulting calculations showed this disease reduces the fecundity of M. capitata colonies at Wai'ōpae by 0.7-49.6%, depending on GA severity, and the overall population fecundity by 2.41±0.29%. In sum, GA in this M. capitata population reduces the coral's critical biological functions and increases susceptibility to erosion, clearly defining itself as a disease and an ecological threat. PMID:22205976

  6. Biologic Complexity in Sickle Cell Disease: Implications for Developing Targeted Therapeutics

    PubMed Central

    Gee, Beatrice E.

    2013-01-01

    Current therapy for sickle cell disease (SCD) is limited to supportive treatment of complications, red blood cell transfusions, hydroxyurea, and stem cell transplantation. Difficulty in the translation of mechanistically based therapies may be the result of a reductionist approach focused on individual pathways, without having demonstrated their relative contribution to SCD complications. Many pathophysiologic processes in SCD are likely to interact simultaneously to contribute to acute vaso-occlusion or chronic vasculopathy. Applying concepts of systems biology and network medicine, models were developed to show relationships between the primary defect of sickle hemoglobin (Hb S) polymerization and the outcomes of acute pain and chronic vasculopathy. Pathophysiologic processes such as inflammation and oxidative stress are downstream by-products of Hb S polymerization, transduced through secondary pathways of hemolysis and vaso-occlusion. Pain, a common clinical trials endpoint, is also complex and may be influenced by factors outside of sickle cell polymerization and vascular occlusion. Future sickle cell research needs to better address the biologic complexity of both sickle cell disease and pain. The relevance of individual pathways to important sickle cell outcomes needs to be demonstrated in vivo before investing in expensive and labor-intensive clinical trials. PMID:23589705

  7. Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine.

    PubMed

    Balestrini, Jenna L; Gard, Ashley L; Gerhold, Kristin A; Wilcox, Elise C; Liu, Angela; Schwan, Jonas; Le, Andrew V; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J; Mecham, Robert P; Schwartz, Martin A; Niklason, Laura E; White, Eric S

    2016-09-01

    Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. PMID:27344365

  8. Heart rate variability and biological age: implications for health and gaming.

    PubMed

    Russoniello, Carmen V; Zhirnov, Yevgeniy N; Pougatchev, Vadim I; Gribkov, Evgueni N

    2013-04-01

    Accurate and inexpensive psychophysiological equipment and software are needed to measure and monitor the autonomic nervous system for gaming and therapeutic purposes. The purpose of this study was to determine whether heart rate variability (HRV) derived from photoplethesmography (PPG) technology was predictive of autonomic nervous system (ANS) aging or biological age. Second, we sought to determine which HRV variable was most predictive of ANS change and aging. To test our hypotheses, we first conducted a criterion related validity study by comparing parameters of a 5 minute resting HRV test obtained from electrocardiography (ECG), the current "gold standard," with PPG technologies, and found them to be significantly correlated (r≥0.92) on all parameters during a resting state. PPG was strongly correlated to ECG on all HRV parameters during a paced six breaths per minute deep breathing test (r≥0.98). Further analysis revealed that maximum variation of heart rate had the highest negative correlation (r=-0.67) with age. We conclude that PPG is comparable to ECG in accuracy, and maximum variation of heart rate derived from a paced breathing test can be considered a marker of biological aging. Therapeutic interventions and games designed to reduce dysfunction in the ANS can now be developed using accurate physiological data. PMID:23574369

  9. Aluminum-induced entropy in biological systems: implications for neurological disease.

    PubMed

    Shaw, Christopher A; Seneff, Stephanie; Kette, Stephen D; Tomljenovic, Lucija; Oller, John W; Davidson, Robert M

    2014-01-01

    Over the last 200 years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living species to this naturally abundant metal. Because of its prevalence in the earth's crust, prior to its recent uses it was regarded as inert and therefore harmless. However, Al is invariably toxic to living systems and has no known beneficial role in any biological systems. Humans are increasingly exposed to Al from food, water, medicinals, vaccines, and cosmetics, as well as from industrial occupational exposure. Al disrupts biological self-ordering, energy transduction, and signaling systems, thus increasing biosemiotic entropy. Beginning with the biophysics of water, disruption progresses through the macromolecules that are crucial to living processes (DNAs, RNAs, proteoglycans, and proteins). It injures cells, circuits, and subsystems and can cause catastrophic failures ending in death. Al forms toxic complexes with other elements, such as fluorine, and interacts negatively with mercury, lead, and glyphosate. Al negatively impacts the central nervous system in all species that have been studied, including humans. Because of the global impacts of Al on water dynamics and biosemiotic systems, CNS disorders in humans are sensitive indicators of the Al toxicants to which we are being exposed. PMID:25349607

  10. Response of an invasive liana to simulated herbivory: implications for its biological control

    NASA Astrophysics Data System (ADS)

    Raghu, S.; Dhileepan, K.; Treviño, M.

    2006-05-01

    Pre-release evaluation of the efficacy of biological control agents is often not possible in the case of many invasive species targeted for biocontrol. In such circumstances simulating herbivory could yield significant insights into plant response to damage, thereby improving the efficiency of agent prioritisation, increasing the chances of regulating the performance of invasive plants through herbivory and minimising potential risks posed by release of multiple herbivores. We adopted this approach to understand the weaknesses herbivores could exploit, to manage the invasive liana, Macfadyena unguis-cati. We simulated herbivory by damaging the leaves, stem, root and tuber of the plant, in isolation and in combination. We also applied these treatments at multiple frequencies. Plant response in terms of biomass allocation showed that at least two severe defoliation treatments were required to diminish this liana's climbing habit and reduce its allocation to belowground tuber reserves. Belowground damage appears to have negligible effect on the plant's biomass production and tuber damage appears to trigger a compensatory response. Plant response to combinations of different types of damage did not differ significantly to that from leaf damage. This suggests that specialist herbivores in the leaf-feeding guild capable of removing over 50% of the leaf tissue may be desirable in the biological control of this invasive species.

  11. Aluminum-Induced Entropy in Biological Systems: Implications for Neurological Disease

    PubMed Central

    Shaw, Christopher A.; Seneff, Stephanie; Kette, Stephen D.; Tomljenovic, Lucija; Oller, John W.; Davidson, Robert M.

    2014-01-01

    Over the last 200 years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living species to this naturally abundant metal. Because of its prevalence in the earth's crust, prior to its recent uses it was regarded as inert and therefore harmless. However, Al is invariably toxic to living systems and has no known beneficial role in any biological systems. Humans are increasingly exposed to Al from food, water, medicinals, vaccines, and cosmetics, as well as from industrial occupational exposure. Al disrupts biological self-ordering, energy transduction, and signaling systems, thus increasing biosemiotic entropy. Beginning with the biophysics of water, disruption progresses through the macromolecules that are crucial to living processes (DNAs, RNAs, proteoglycans, and proteins). It injures cells, circuits, and subsystems and can cause catastrophic failures ending in death. Al forms toxic complexes with other elements, such as fluorine, and interacts negatively with mercury, lead, and glyphosate. Al negatively impacts the central nervous system in all species that have been studied, including humans. Because of the global impacts of Al on water dynamics and biosemiotic systems, CNS disorders in humans are sensitive indicators of the Al toxicants to which we are being exposed. PMID:25349607

  12. Initial Test Firing Results for Solid CO/GOX Cryogenic Hybrid Rocket Engine for Mars ISRU Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Rice, Eric E.; St. Clair, Christopher P.; Chiaverini, Martin J.; Knuth, William H.; Gustafson, Robert J.; Gramer, Daniel J.

    1999-01-01

    ORBITEC is developing methods for producing, testing, and utilizing Mars-based ISRU fuel/oxidizer combinations to support low cost, planetary surface and flight propulsion and power systems. When humans explore Mars we will need to use in situ resources that are available, such as: energy (solar); gases or liquids for life support, ground transportation, and flight to and from other surface locations and Earth; and materials for shielding and building habitats and infrastructure. Probably the easiest use of Martian resources to reduce the cost of human exploration activities is the use of the carbon and oxygen readily available from the CO2 in the Mars atmosphere. ORBITEC has conducted preliminary R&D that will eventually allow us to reliably use these resources. ORBITEC is focusing on the innovative use of solid CO as a fuel. A new advanced cryogenic hybrid rocket propulsion system is suggested that will offer advantages over LCO/LOX propulsion, making it the best option for a Mars sample return vehicle and other flight vehicles. This technology could also greatly support logistics and base operations by providing a reliable and simple way to store solar or nuclear generated energy in the form of chemical energy that can be used for ground transportation (rovers/land vehicles) and planetary surface power generators. This paper describes the overall concept and the test results of the first ever solid carbon monoxide/oxygen rocket engine firing.

  13. Biology and clinical implications of CD133{sup +} liver cancer stem cells

    SciTech Connect

    Ma, Stephanie

    2013-01-15

    Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver, accounting for 80%–90% of all liver cancers. The disease ranks as the fifth most common cancer worldwide and is the third leading cause of all cancer-associated deaths. Although advances in HCC detection and treatment have increased the likelihood of a cure at early stages of the disease, HCC remains largely incurable because of late presentation and tumor recurrence. Only 25% of HCC patients are deemed suitable for curative treatment, with the overall survival at just a few months for inoperable patients. Apart from surgical resection, loco-regional ablation and liver transplantation, current treatment protocols include conventional cytotoxic chemotherapy. But due to the highly resistant nature of the disease, the efficacy of the latter regimen is limited. The recent emergence of the cancer stem cell (CSC) concept lends insight into the explanation of why treatment with chemotherapy often may seem to be initially successful but results in not only a failure to eradicate the tumor but also possibly tumor relapse. Commonly used anti-cancer drugs in HCC work by targeting the rapidly proliferating and differentiated liver cancer cells that constitute the bulk of the tumor. However, a subset of CSCs exists within the tumor, which are more resistant and are able to survive and maintain residence after treatment, thus, growing and self-renewing to generate the development and spread of recurrent tumors in HCC. In the past few years, compelling evidence has emerged in support of the hierarchic CSC model for solid tumors, including HCC. And in particular, CD133 has drawn significant attention as a critical liver CSC marker. Understanding the characteristics and function of CD133{sup +} liver CSCs has also shed light on HCC management and treatment, including the implications for prognosis, prediction and treatment resistance. In this review, a detailed summary of the recent progress

  14. Alternative Conceptions in Biology-Related Topics of Integrated Science Teachers and Implications for Teacher Education

    NASA Astrophysics Data System (ADS)

    Mak, Se Yuen; Yip, Din Yan; Chung, Choi Man

    1999-06-01

    This paper reports a study of the alternative conceptions held by junior secondary science teachers enrolled in an in-service teacher training program. The subjects completed a written instrument which probed their understanding of biological concepts in the integrated science curriculum. The subjects, particularly the nonbiology graduates, were found to show serious misunderstanding in concepts concerning diversity of life, photosynthesis and respiration, reproduction, and detecting the environment. This finding supports the assertion that our science teachers, being graduates in specific areas, are inadequately prepared to teach a broad and balanced junior science curriculum. To strengthen the subject matter knowledge and pedagogical skills of prospective and practicing junior science teachers, a number of provisions are suggested for teacher training programs, undergraduate science courses, and school-based activities.

  15. Rotational dynamics of water molecules near biological surfaces with implications for nuclear quadrupole relaxation.

    PubMed

    Braun, Daniel; Schmollngruber, Michael; Steinhauser, Othmar

    2016-09-21

    Based on Molecular Dynamics simulations of two different systems, the protein ubiquitin dissolved in water and an AOT reverse micelle, we present a broad analysis of the single particle rotational dynamics of water. A comprehensive connection to NQR, which is a prominent experimental method in this field, is developed, based on a reformulation of its theoretical framework. Interpretation of experimental NQR results requires a model which usually assumes that the NQR experiences retardation only in the first hydration shell. Indeed, the present study shows that this first-shell model is correct. Moreover, previous experimental retardation factors are quantitatively reproduced. All of this is seemingly contradicted by results of other methods, e.g., dielectric spectroscopy, responsible for a long-standing debate in this field. Our detailed analysis shows that NQR omits important information contained in overall water dynamics, most notably, the retardation of the water dipole axis in the electric field exerted by a biological surface. PMID:27546227

  16. Biological basis for space-variant sensor design II: implications for VLSI sensor design

    NASA Astrophysics Data System (ADS)

    Rojer, Alan S.; Schwartz, Eric L.

    1991-03-01

    We analyze the characteristics of a synthetic sensor comparable with respect to field width and resolution to the primate visual system. We estimate that 150 pixels are sufficient using a logarithmic sensor geometry and demonstrate that this calculation is consistent with known characteristics of biological vision e. g. the number of fibers in the optic nerve. To obtain the field width and resolution of the primate eye with a uniform sensor requires between iOiO'' times the number of pixels estimated for the comparable log sensor. Another interesting observation is that the field width and resolution of a conventional 512x512 sensor can be obtained with around 5000 pixels using the log geometry. We conclude with consideration of the prospects for achieving human-like performance with contemporary VLSI technology and briefly discuss progress on space-variant VLSI sensor design.

  17. Cancer-Specific Telomerase Reverse Transcriptase (TERT) Promoter Mutations: Biological and Clinical Implications.

    PubMed

    Liu, Tiantian; Yuan, Xiaotian; Xu, Dawei

    2016-01-01

    The accumulated evidence has pointed to a key role of telomerase in carcinogenesis. As a RNA-dependent DNA polymerase, telomerase synthesizes telomeric DNA at the end of linear chromosomes, and attenuates or prevents telomere erosion associated with cell divisions. By lengthening telomeres, telomerase extends cellular life-span or even induces immortalization. Consistent with its functional activity, telomerase is silent in most human normal somatic cells while active only in germ-line, stem and other highly proliferative cells. In contrast, telomerase activation widely occurs in human cancer and the enzymatic activity is detectable in up to 90% of malignancies. Recently, hotspot point mutations in the regulatory region of the telomerase reverse transcriptase (TERT) gene, encoding the core catalytic component of telomerase, was identified as a novel mechanism to activate telomerase in cancer. This review discusses the cancer-specific TERT promoter mutations and potential biological and clinical significances. PMID:27438857

  18. Cancer-Specific Telomerase Reverse Transcriptase (TERT) Promoter Mutations: Biological and Clinical Implications

    PubMed Central

    Liu, Tiantian; Yuan, Xiaotian; Xu, Dawei

    2016-01-01

    The accumulated evidence has pointed to a key role of telomerase in carcinogenesis. As a RNA-dependent DNA polymerase, telomerase synthesizes telomeric DNA at the end of linear chromosomes, and attenuates or prevents telomere erosion associated with cell divisions. By lengthening telomeres, telomerase extends cellular life-span or even induces immortalization. Consistent with its functional activity, telomerase is silent in most human normal somatic cells while active only in germ-line, stem and other highly proliferative cells. In contrast, telomerase activation widely occurs in human cancer and the enzymatic activity is detectable in up to 90% of malignancies. Recently, hotspot point mutations in the regulatory region of the telomerase reverse transcriptase (TERT) gene, encoding the core catalytic component of telomerase, was identified as a novel mechanism to activate telomerase in cancer. This review discusses the cancer-specific TERT promoter mutations and potential biological and clinical significances. PMID:27438857

  19. IL-13Rα2-Targeted Therapy Escapees: Biologic and Therapeutic Implications1

    PubMed Central

    Nguyen, Van; Conyers, Jesse M; Zhu, Dongqin; Gibo, Denise M; Dorsey, Jay F; Debinski, Waldemar; Mintz, Akiva

    2011-01-01

    Glioblastoma multiforme (GBM) overexpresses interleukin 13 receptor α2 (IL-13Rα2), a tumor-restricted receptor that is not present in normal brain. We and others have created targeted therapies that specifically eradicate tumors expressing this promising tumor-restricted biomarker. As these therapies head toward clinical implementation, it is critical to explore mechanisms of potential resistance. We therefore used a potent IL-13Rα2-targeted bacterial cytotoxin to select for naturally occurring “escapee” cells from three different IL-13Rα2-expressing GBM cell lines. We found that these side populations of escapee cells had significantly decreased IL-13Rα2 expression. We examined clinically relevant biologic characteristics of escapee cell lines compared to their parental cell lines and found that they had similar proliferation rates and equal sensitivity to temozolomide and radiation, the standard therapies given to GBM patients. In contrast, our escapee cell lines were less likely to form colonies in culture and migrated more slowly in wound healing assays. Furthermore, we found that escapee cells formed significantly less neurospheres in vitro, suggesting that IL-13Rα2-targeted therapy preferentially targeted the “stem-like” cell population and possibly indicating decreased tumorigenicity in vivo. We therefore tested escapee cells for in vivo tumorigenicity and found that they were significantly less tumorigenic in both subcutaneous and intracranial mouse models compared to matching parental cells. These data, for the first time, establish and characterize the clinically relevant biologic properties of IL-13Rα2-targeted therapy escapees and suggest that these cells may have less malignant characteristics than parental tumors. PMID:22191003

  20. IL-13Rα2-Targeted Therapy Escapees: Biologic and Therapeutic Implications.

    PubMed

    Nguyen, Van; Conyers, Jesse M; Zhu, Dongqin; Gibo, Denise M; Dorsey, Jay F; Debinski, Waldemar; Mintz, Akiva

    2011-12-01

    Glioblastoma multiforme (GBM) overexpresses interleukin 13 receptor α2 (IL-13Rα2), a tumor-restricted receptor that is not present in normal brain. We and others have created targeted therapies that specifically eradicate tumors expressing this promising tumor-restricted biomarker. As these therapies head toward clinical implementation, it is critical to explore mechanisms of potential resistance. We therefore used a potent IL-13Rα2-targeted bacterial cytotoxin to select for naturally occurring "escapee" cells from three different IL-13Rα2-expressing GBM cell lines. We found that these side populations of escapee cells had significantly decreased IL-13Rα2 expression. We examined clinically relevant biologic characteristics of escapee cell lines compared to their parental cell lines and found that they had similar proliferation rates and equal sensitivity to temozolomide and radiation, the standard therapies given to GBM patients. In contrast, our escapee cell lines were less likely to form colonies in culture and migrated more slowly in wound healing assays. Furthermore, we found that escapee cells formed significantly less neurospheres in vitro, suggesting that IL-13Rα2-targeted therapy preferentially targeted the "stem-like" cell population and possibly indicating decreased tumorigenicity in vivo. We therefore tested escapee cells for in vivo tumorigenicity and found that they were significantly less tumorigenic in both subcutaneous and intracranial mouse models compared to matching parental cells. These data, for the first time, establish and characterize the clinically relevant biologic properties of IL-13Rα2-targeted therapy escapees and suggest that these cells may have less malignant characteristics than parental tumors. PMID:22191003

  1. Grades and Withdrawal Rates in Cell Biology and Genetics Based upon Institution Type for General Biology and Implications for Transfer Articulation Agreements

    ERIC Educational Resources Information Center

    Regier, Kimberly Fayette

    2016-01-01

    General biology courses (for majors) are often transferred from one institution to another. These courses must prepare students for upper division courses in biology. In Colorado, a Biology Transfer Articulation Agreement that includes general biology has been created across the state. An evaluation was conducted of course grades in two upper…

  2. An Advanced Organometallic Lab Experiment with Biological Implications: Synthesis and Characterization of Fe[subscript 2](µ-S[subscript 2])(C0)[subscript 6

    ERIC Educational Resources Information Center

    Barrett, Jacob; Spentzos, Ariana; Works, Carmen

    2015-01-01

    The organometallic complex Fe[subscript 2](µ-S[subscript 2])(CO)[subscript 6] has interesting biological implications. The concepts of bio-organometallic chemistry are rarely discussed at the undergraduate level, but this experiment can start such a conversation and, in addition, teach valuable synthetic techniques. The lab experiment takes a…

  3. Differentiation between osteoarthritis and psoriatic arthritis: implications for pathogenesis and treatment in the biologic therapy era

    PubMed Central

    Hermann, Kay-Geert A.; Tan, Ai Lyn

    2015-01-01

    Rheumatologists have long considered OA and PsA as two completely distinct arthropathies. This review highlights how some forms of generalized OA and PsA may afflict the same entheseal-associated anatomical territories. While degeneration or inflammation may be clearly discernible at the two extremes, there may be a group of patients where differentiation is impossible. Misdiagnosis of a primary degeneration-related pathology as being part of the PsA spectrum could lead to apparent failure of disease-modifying agents, including apparent anti-TNF and apparent IL23/17 axis therapy failure. This is not a reflection of poor clinical acumen, but rather a failure to appreciate that the pathological process overlaps in the two diseases. Whether the category of OA–PsA overlap disease exists or whether it represents the co-occurrence of two common arthropathies that afflict the same anatomical territories has implications for the optimal diagnosis and management of both OA and PsA. PMID:25231177

  4. Cancer Stem Cells and Macrophages: Implications in Tumor Biology and Therapeutic Strategies

    PubMed Central

    Sainz, Bruno; Carron, Emily; Vallespinós, Mireia; Machado, Heather L.

    2016-01-01

    Cancer stem cells (CSCs) are a unique subset of cells within tumors with stemlike properties that have been proposed to be key drivers of tumor initiation and progression. CSCs are functionally defined by their unlimited self-renewal capacity and their ability to initiate tumor formation in vivo. Like normal stem cells, CSCs exist in a cellular niche comprised of numerous cell types including tumor-associated macrophages (TAMs) which provides a unique microenvironment to protect and promote CSC functions. TAMs provide pivotal signals to promote CSC survival, self-renewal, maintenance, and migratory ability, and in turn, CSCs deliver tumor-promoting cues to TAMs that further enhance tumorigenesis. Studies in the last decade have aimed to understand the molecular mediators of CSCs and TAMs, and recent advances have begun to elucidate the complex cross talk that occurs between these two cell types. In this review, we discuss the molecular interactions that define CSC-TAM cross talk at each stage of tumor progression and examine the clinical implications of targeting these interactions. PMID:26980947

  5. Developmental biology of the innate immune response: implications for neonatal and infant vaccine development

    PubMed Central

    Philbin, Victoria Jane; Levy, Ofer

    2009-01-01

    Molecular characterization of mechanisms by which human pattern recognition receptors (PRRs) detect danger signals has greatly expanded our understanding of the innate immune system. PRRs include Toll-like receptors (TLRs), nucleotide oligomerization domain-like receptors (NLRs), retinoic acid inducible gene-like receptors (RLRs) and C-type lectin receptors (CLRs). Characterization of the developmental expression of these systems in the fetus, newborn and infant is incomplete but has yielded important insights into neonatal susceptibility to infection. Activation of PRRs on antigen-presenting cells enhances co-stimulatory function, and thus PRRs agonists are potential vaccine adjuvants, some of which are already in clinical use. Thus study of PRRs has also revealed how previously mysterious immunomodulators are able to mediate their actions, including the vaccine adjuvant aluminum hydroxide (Alum) whose adjuvant activity depends on its ability to activate a cytosolic protein complex known as the Nacht Domain Leucine-Rich Repeat and PYD-Containing Protein 3 (NALP3) inflammasome leading to IL-1ß production. Progress in characterizing PRRs is thus informing and expanding the design of improved adjuvants. This review summarizes recent developments in the field of innate immunity with special emphasis on developmental expression in the fetus, newborn and infant and its implications for the design of more effective neonatal and infant vaccines. PMID:19918215

  6. Acute myeloid leukemia with the t(8;21) translocation: clinical consequences and biological implications.

    PubMed

    Reikvam, Håkon; Hatfield, Kimberley Joanne; Kittang, Astrid Olsnes; Hovland, Randi; Bruserud, Øystein

    2011-01-01

    The t(8;21) abnormality occurs in a minority of acute myeloid leukemia (AML) patients. The translocation results in an in-frame fusion of two genes, resulting in a fusion protein of one N-terminal domain from the AML1 gene and four C-terminal domains from the ETO gene. This protein has multiple effects on the regulation of the proliferation, the differentiation, and the viability of leukemic cells. The translocation can be detected as the only genetic abnormality or as part of more complex abnormalities. If t(8;21) is detected in a patient with bone marrow pathology, the diagnosis AML can be made based on this abnormality alone. t(8;21) is usually associated with a good prognosis. Whether the detection of the fusion gene can be used for evaluation of minimal residual disease and risk of leukemia relapse remains to be clarified. To conclude, detection of t(8;21) is essential for optimal handling of these patients as it has both diagnostic, prognostic, and therapeutic implications. PMID:21629739

  7. Acute Myeloid Leukemia with the t(8;21) Translocation: Clinical Consequences and Biological Implications

    PubMed Central

    Reikvam, Håkon; Hatfield, Kimberley Joanne; Kittang, Astrid Olsnes; Hovland, Randi; Bruserud, Øystein

    2011-01-01

    The t(8;21) abnormality occurs in a minority of acute myeloid leukemia (AML) patients. The translocation results in an in-frame fusion of two genes, resulting in a fusion protein of one N-terminal domain from the AML1 gene and four C-terminal domains from the ETO gene. This protein has multiple effects on the regulation of the proliferation, the differentiation, and the viability of leukemic cells. The translocation can be detected as the only genetic abnormality or as part of more complex abnormalities. If t(8;21) is detected in a patient with bone marrow pathology, the diagnosis AML can be made based on this abnormality alone. t(8;21) is usually associated with a good prognosis. Whether the detection of the fusion gene can be used for evaluation of minimal residual disease and risk of leukemia relapse remains to be clarified. To conclude, detection of t(8;21) is essential for optimal handling of these patients as it has both diagnostic, prognostic, and therapeutic implications. PMID:21629739

  8. Eco-evolutionary responses of Bromus tectorum to climate change: implications for biological invasions

    PubMed Central

    Zelikova, Tamara J; Hufbauer, Ruth A; Reed, Sasha C; Wertin, Timothy; Fettig, Christa; Belnap, Jayne

    2013-01-01

    implications for B. tectorum invasion dynamics on the Colorado Plateau. PMID:23762522

  9. Predicting Potential Global Distributions of Two Miscanthus Grasses: Implications for Horticulture, Biofuel Production, and Biological Invasions

    PubMed Central

    Hager, Heather A.; Sinasac, Sarah E.; Gedalof, Ze’ev; Newman, Jonathan A.

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models’ sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk. PMID:24945154

  10. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    PubMed

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk. PMID:24945154

  11. Biological implications of SNPs in signal peptide domains of human proteins.

    PubMed

    Jarjanazi, Hamdi; Savas, Sevtap; Pabalan, Noel; Dennis, James W; Ozcelik, Hilmi

    2008-02-01

    Proteins destined for secretion or membrane compartments possess signal peptides for insertion into the membrane. The signal peptide is therefore critical for localization and function of cell surface receptors and ligands that mediate cell-cell communication. About 4% of all human proteins listed in UniProt database have signal peptide domains in their N terminals. A comprehensive literature survey was performed to retrieve functional and disease associated genetic variants in the signal peptide domains of human proteins. In 21 human proteins we have identified 26 disease associated mutations within their signal peptide domains, 14 mutations of which have been experimentally shown to impair the signal peptide function and thus influence protein transportation. We took advantage of SignalP 3.0 predictions to characterize the signal peptide prediction score differences between the mutant and the wild-type alleles of each mutation, as well as 189 previously uncharacterized single nucleotide polymorphisms (SNPs) found to be located in the signal peptide domains of 165 human proteins. Comparisons of signal peptide prediction outcomes of mutations and SNPs, have implicated SNPs potentially impacting the signal peptide function, and thus the cellular localization of the human proteins. The majority of the top candidate proteins represented membrane and secreted proteins that are associated with molecular transport, cell signaling and cell to cell interaction processes of the cell. This is the first study that systematically characterizes genetic variation occurring in the signal peptides of all human proteins. This study represents a useful strategy for prioritization of SNPs occurring within the signal peptide domains of human proteins. Functional evaluation of candidates identified herein may reveal effects on major cellular processes including immune cell function, cell recognition and adhesion, and signal transduction. PMID:17680692

  12. Cell and molecular biology of simian virus 40: implications for human infections and disease

    NASA Technical Reports Server (NTRS)

    Butel, J. S.; Lednicky, J. A.

    1999-01-01

    Simian virus 40 (SV40), a polyomavirus of rhesus macaque origin, was discovered in 1960 as a contaminant of polio vaccines that were distributed to millions of people from 1955 through early 1963. SV40 is a potent DNA tumor virus that induces tumors in rodents and transforms many types of cells in culture, including those of human origin. This virus has been a favored laboratory model for mechanistic studies of molecular processes in eukaryotic cells and of cellular transformation. The viral replication protein, named large T antigen (T-ag), is also the viral oncoprotein. There is a single serotype of SV40, but multiple strains of virus exist that are distinguishable by nucleotide differences in the regulatory region of the viral genome and in the part of the T-ag gene that encodes the protein's carboxyl terminus. Natural infections in monkeys by SV40 are usually benign but may become pathogenic in immunocompromised animals, and multiple tissues can be infected. SV40 can replicate in certain types of simian and human cells. SV40-neutralizing antibodies have been detected in individuals not exposed to contaminated polio vaccines. SV40 DNA has been identified in some normal human tissues, and there are accumulating reports of detection of SV40 DNA and/or T-ag in a variety of human tumors. This review presents aspects of replication and cell transformation by SV40 and considers their implications for human infections and disease pathogenesis by the virus. Critical assessment of virologic and epidemiologic data suggests a probable causative role for SV40 in certain human cancers, but additional studies are necessary to prove etiology.

  13. Eco-evolutionary responses of Bromus tectorum to climate change: implications for biological invasions

    USGS Publications Warehouse

    Zelikova, Tamara J.; Hufbauer, Ruth A.; Reed, Sasha C.; Wertin, Timothy M.; Fettig, Christa; Belnap, Jayne

    2013-01-01

    implications for B. tectorum invasion dynamics on the Colorado Plateau.

  14. Germination biology of Hibiscus tridactylites in Australia and the implications for weed management

    PubMed Central

    Chauhan, Bhagirath Singh

    2016-01-01

    Hibiscus tridactylites is a problematic broadleaf weed in many crops in Australia; however, very limited information is available on seed germination biology of Australian populations. Experiments were conducted to evaluate the effect of environmental factors on germination and emergence of H. tridactylites. Germination was stimulated by seed scarification, suggesting the inhibition of germination in this species is mainly due to the hard seed coat. Germination was not affected by light conditions, suggesting that seeds of this species are not photoblastic. Germination was higher at alternating day/night temperatures of 30/20 °C (74%) and 35/25 °C (69%) than at 25/15 °C (63%). Moderate salinity and water stress did not inhibit germination of H. tridactylites. Seedling emergence of H. tridactylites was highest (57%) for the seeds buried at a 2 cm depth in the soil; 18% of seedlings emerged from seeds buried at 8 cm but no seedlings emerged below this depth. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence could serve an important tool for managing H. tridactylites. PMID:27174752

  15. Mesenchymal stem cells: Biology, patho-physiology, translational findings, and therapeutic implications for cardiac disease

    PubMed Central

    Williams, Adam R.; Hare, Joshua M.

    2013-01-01

    Mesenchymal stem cells (MSCs) are a prototypic adult stem cell with capacity for self-renewal and differentiation with a broad tissue distribution. Initially described in bone marrow, MSCs have the capacity to differentiate into mesodermal and non-mesodermal derived tissues. The endogenous role for MSCs is maintenance of stem cell niches (classically the hematopoietic), and as such MSCs participate in organ homeostasis, wound healing, and successful aging. From a therapeutic perspective, and facilitated by the ease of preparation and immunologic privilege, MSCs are emerging as an extremely promising therapeutic agent for tissue regeneration. Studies in animal models of myocardial infarction (MI) demonstrate the ability of transplanted MSCs to engraft and differentiate into cardiomyocytes and vasculature cells, recruit endogenous cardiac stem cells, and secrete a wide array of paracrine factors. Together these properties can be harnessed to both prevent and reverse remodeling in the ischemically injured ventricle. In proof-of-concept and phase I clinical trials, MSC therapy improve LV function, induces reverse remodeling, and decreases scar size. This article reviews the current understanding of MSC biology, mechanism of action in cardiac repair, translational findings, and early clinical trial data of MSC therapy for cardiac disease. PMID:21960725

  16. Emerging Understanding of Bcl-2 Biology: Implications for Neoplastic Progression and Treatment

    PubMed Central

    Correia, Cristina; Lee, Sun-Hee; Meng, X. Wei; Vincelette, Nicole D.; Knorr, Katherine L.B.; Ding, Husheng; Nowakowski, Grzegorz S.; Dai, Haiming; Kaufmann, Scott H.

    2015-01-01

    Bcl-2, the founding member of a family of apoptotic regulators, was initially identified as the protein product of a gene that is translocated and overexpressed in greater than 85% of follicular lymphomas (FLs). Thirty years later we now understand that Bcl-2 modulates the intrinsic apoptotic pathway by binding and neutralizing the mitochondrial permeabilizers Bax and Bak as well as a variety of pro-apoptotic proteins, including the cellular stress sensors Bim, Bid, Puma, Bad, Bmf and, under some conditions, Noxa. Despite extensive investigation of all of these proteins, important questions remain. For example, how Bax and Bak breach the outer mitochondrial membrane remains poorly understood. Likewise, how the functions of anti-apoptotic Bcl-2 family members such as eponymous Bcl-2 are affected by phosphorylation or cancer-associated mutations has been incompletely defined. Finally, whether Bcl-2 family members can be successfully targeted for therapeutic advantage is only now being investigated in the clinic. Here we review recent advances in understanding Bcl-2 family biology and biochemistry that begin to address these questions. PMID:25827952

  17. Skin of color: biology, structure, function, and implications for dermatologic disease.

    PubMed

    Taylor, Susan C

    2002-02-01

    People with skin of color constitute a wide range of racial and ethnic groups-including Africans, African Americans, African Caribbeans, Chinese and Japanese, Native American Navajo Indians, and certain groups of fair-skinned persons (eg, Indians, Pakistanis, Arabs), and Hispanics. It has been predicted that people with skin of color will constitute a majority of the United States and international populations in the 21st century. There is not a wealth of data on racial and ethnic differences in skin and hair structure, physiology, and function. What studies do exist involve small patient populations and often have methodologic flaws. Consequently, few definitive conclusions can be made. The literature does support a racial differential in epidermal melanin content and melanosome dispersion in people of color compared with fair-skinned persons. Other studies have demonstrated differences in hair structure and fibroblast size and structure between black and fair-skinned persons. These differences could at least in part account for the lower incidence of skin cancer in certain people of color compared with fair-skinned persons; a lower incidence and different presentation of photo aging; pigmentation disorders in people with skin of color; and a higher incidence of certain types of alopecia in Africans and African Americans compared with those of other ancestry. However, biologic or genetic factors are not the only ones impacting on these differences in dermatologic disorders. Cultural practices also can have a significant impact. Further studies are needed to help dermatologists optimally treat people with skin of color. PMID:11807469

  18. Germination biology of Hibiscus tridactylites in Australia and the implications for weed management.

    PubMed

    Chauhan, Bhagirath Singh

    2016-01-01

    Hibiscus tridactylites is a problematic broadleaf weed in many crops in Australia; however, very limited information is available on seed germination biology of Australian populations. Experiments were conducted to evaluate the effect of environmental factors on germination and emergence of H. tridactylites. Germination was stimulated by seed scarification, suggesting the inhibition of germination in this species is mainly due to the hard seed coat. Germination was not affected by light conditions, suggesting that seeds of this species are not photoblastic. Germination was higher at alternating day/night temperatures of 30/20 °C (74%) and 35/25 °C (69%) than at 25/15 °C (63%). Moderate salinity and water stress did not inhibit germination of H. tridactylites. Seedling emergence of H. tridactylites was highest (57%) for the seeds buried at a 2 cm depth in the soil; 18% of seedlings emerged from seeds buried at 8 cm but no seedlings emerged below this depth. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence could serve an important tool for managing H. tridactylites. PMID:27174752

  19. Degradation of biological weapons agents in the environment: implications for terrorism response.

    PubMed

    Stuart, Amy L; Wilkening, Dean A

    2005-04-15

    We investigate the impact on effective terrorism response of the viability degradation of biological weapons agents in the environment. We briefly review the scientific understanding and modeling of agent environmental viability degradation. In general, agent susceptibility to viability loss is greatest for vegetative bacteria, intermediate for viruses, and least for bacterial spores. Survival is greatest in soil and progressively decreases in the following environments: textiles, water, hard surfaces, and air. There is little detailed understanding of loss mechanisms. We analyze the time behavior and sensitivity of four mathematical models that are used to represent environmental viability degradation (the exponential, probability, and first- and second-order catastrophic decay models). The models behave similarly at short times (<30 min for our example case) but diverge to significantly different values at intermediate to long times. Hence, for a release event in which the majority of atmospheric exposure or deposition occurs oververy short times, the current response models likely provide a good representation of the hazard. For longer time phenomena, including decontamination, the current model capabilities are likely insufficient. Finally, we implement each model in a simple numerical integration of anthrax dispersion, viability degradation, and dose response. Decay models spanning the current knowledge of airborne degradation result in vastly different predicted hazard areas. This confounds attempts to determine necessary medical and decontamination measures. Hence,the current level of understanding and representation of environmental viability degradation in response models is inadequate to inform appropriate emergency response measures. PMID:15884371

  20. Lone-pair-π interactions: analysis of the physical origin and biological implications.

    PubMed

    Novotný, Jan; Bazzi, Sophia; Marek, Radek; Kozelka, Jiří

    2016-07-28

    Lone-pair-π (lp-π) interactions have been suggested to stabilize DNA and protein structures, and to participate in the formation of DNA-protein complexes. To elucidate their physical origin, we have carried out a theoretical multi-approach analysis of two biologically relevant model systems, water-indole and water-uracil complexes, which we compared with the structurally similar chloride-tetracyanobenzene (TCB) complex previously shown to contain a strong charge-transfer (CT) binding component. We demonstrate that the CT component in lp-π interactions between water and indole/uracil is significantly smaller than that stabilizing the Cl(-)-TCB reference system. The strong lp(Cl(-))-π(TCB) orbital interaction is characterized by a small energy gap and an efficient lp-π* overlap. In contrast, in lp-π interactions between water and indole or uracil, the corresponding energy gap is larger and the overlap less efficient. As a result, water-uracil and water-indole interactions are weak forces composed by smaller contributions from all energy components: electrostatics, polarization, dispersion, and charge transfer. In addition, indole exhibits a negative electrostatic potential at its π-face, making lp-π interactions less favorable than O-Hπ hydrogen bonding. Consequently, some of the water-tryptophan contacts observed in X-ray structures of proteins and previously interpreted as lp-π interactions [Luisi, et al., Proteins, 2004, 57, 1-8], might in fact arise from O-Hπ hydrogen bonding. PMID:27411074

  1. Toward the laboratory identification of [O,N,S,S] isomers: Implications for biological NO chemistry

    NASA Astrophysics Data System (ADS)

    Ayari, Tarek; Jaidane, Nejm-Eddine; Al Mogren, Muneerah Mogren; Francisco, Joseph S.; Hochlaf, Majdi

    2016-06-01

    Benchmark ab initio calculations are performed to investigate the stable isomers of [O,N,S,S]. These computations are carried out using coupled cluster (RCCSD(T)) and explicitly correlated coupled cluster methods (RCCSD(T)-F12). In addition to the already known cis isomer of SSNO, nine other stable forms are predicted. The most stable isomer is cis-OSNS. Nine structures are chain bent-bent with relatively large dipole moments which make them detectable, as cis-SSNO, by infrared, far-infrared, and microwave spectroscopies. We found also a C2v isomer (NS2O). Since these species are strongly suggested to play an important role as intermediates during the bioactive reaction products of the NO/H2S interaction, the rotational and vibrational spectroscopic parameters are presented to help aid the in vivo identification and assignment of these spectra. Results from this work show that [O,N,S,S] may play key roles during nitric oxide transport and deliver in biological media, as well as, provide an explanation for the weak characteristic of disulfide bridges within proteins.

  2. Death in the intestinal epithelium-basic biology and implications for inflammatory bowel disease.

    PubMed

    Blander, J Magarian

    2016-07-01

    Every 4-5 days, intestinal epithelial cells (IEC) are terminated as they reach the end of their life. This process ensures that the epithelium is comprised of the fittest cells that maintain an impermeable barrier to luminal contents and the gut microbiota, as well as the most metabolically able cells that conduct functions in nutrient absorption, digestion, and secretion of antimicrobial peptides. IEC are terminated by apical extrusion-or shedding-from the intestinal epithelial monolayer into the gut lumen. Whether death by apoptosis signals extrusion or death follows expulsion by younger IEC has been a matter of debate. Seemingly a minor detail, IEC death before or after apical extrusion bears weight on the potential contribution of apoptotic IEC to intestinal homeostasis as a consequence of their recognition by intestinal lamina propria phagocytes. In inflammatory bowel disease (IBD), excessive death is observed in the ileal and colonic epithelium. The precise mode of IEC death in IBD is not defined. A highly inflammatory milieu within the intestinal lamina propria, rich in the proinflammatory cytokine, TNF-α, increases IEC shedding and compromises barrier integrity fueling more inflammation. A milestone in the treatment of IBD, anti-TNF-α therapy, may promote mucosal healing by reversing increased and inflammation-associated IEC death. Understanding the biology and consequences of cell death in the intestinal epithelium is critical to the design of new avenues for IBD therapy. PMID:27250564

  3. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  4. Biologic sequelae of I{kappa}B kinase (IKK) inhibition in multiple myeloma: therapeutic implications.

    PubMed

    Hideshima, Teru; Chauhan, Dharminder; Kiziltepe, Tanyel; Ikeda, Hiroshi; Okawa, Yutaka; Podar, Klaus; Raje, Noopur; Protopopov, Alexei; Munshi, Nikhil C; Richardson, Paul G; Carrasco, Ruben D; Anderson, Kenneth C

    2009-05-21

    Nuclear factor-kappaB (NF-kappaB) has an important role in multiple myeloma (MM) cell pathogenesis in the context of the bone marrow (BM) microenvironment. In NF-kappaB signaling cascades, IkappaB kinase alpha (IKKalpha) and IKKbeta are key molecules that predominantly mediate noncanonical and canonical pathways, respectively. In this study, we examined the biologic sequelae of the inhibition of IKKalpha versus IKKbeta in MM cell lines. All MM cell lines have constitutive canonical NF-kappaB activity, and a subset of MM cell lines shows noncanonical NF-kappaB activity. Adhesion to BM stromal cells further activates both canonical and noncanonical NF-kappaB activity. IKKbeta inhibitor MLN120B blocks canonical pathway and growth of MM cell lines but does not inhibit the noncanonical NF-kappaB pathway. Although IKKalpha knockdown induces significant growth inhibition in the cell lines with both canonical and noncanonical pathways, it does not inhibit NF-kappaB activation. Importantly, IKKalpha down-regulation decreases expression of beta-catenin and aurora-A, which are known to mediate MM cell growth and survival. Finally, IKKbeta inhibitor enhances the growth inhibition triggered by IKKalpha down-regulation in MM cells with both canonical and noncanonical NF-kappaB activity. Combination therapy targeting these kinases therefore represents a promising treatment strategy in MM. PMID:19270264

  5. HNS(+) and HSN(+) cations: Electronic states, spin-rovibronic spectroscopy with planetary and biological implications.

    PubMed

    Trabelsi, Tarek; Ben Yaghlane, Saida; Al Mogren, Muneerah Mogren; Francisco, Joseph S; Hochlaf, Majdi

    2016-08-28

    Ab initio methods in conjunction with a large basis set are used to compute the potential energy surfaces of the 12 lowest electronic states of the HNS(+) and HSN(+) isomeric forms. These potentials are used in discussions of the metastability of these cations and plausible mechanisms for the H(+)/H + SN(+)/SN, S/S(+) + NH(+)/NH, N/N(+) + SH(+)/SH ion-molecule reactions. Interestingly, the low rovibrational levels of HSN(+)(1(2)A″) and HNS(+)(1(2)A″) electronically excited ions are predicted to be long-lived. Both ions are suggested to be a suitable candidate for light-sensitive NO(⋅) donor in vivo and as a possible marker for the detection of intermediates in nitrites + H2S reactions at the cellular level. The full spin rovibronic levels of HNS(+) are presented, which may assist in the experimental identification of HNS(+) and HSN(+) ions and in elucidating their roles in astrophysical and biological media. PMID:27586922

  6. Toward the laboratory identification of [O,N,S,S] isomers: Implications for biological NO chemistry.

    PubMed

    Ayari, Tarek; Jaidane, Nejm-Eddine; Al Mogren, Muneerah Mogren; Francisco, Joseph S; Hochlaf, Majdi

    2016-06-21

    Benchmark ab initio calculations are performed to investigate the stable isomers of [O,N,S,S]. These computations are carried out using coupled cluster (RCCSD(T)) and explicitly correlated coupled cluster methods (RCCSD(T)-F12). In addition to the already known cis isomer of SSNO, nine other stable forms are predicted. The most stable isomer is cis-OSNS. Nine structures are chain bent-bent with relatively large dipole moments which make them detectable, as cis-SSNO, by infrared, far-infrared, and microwave spectroscopies. We found also a C2v isomer (NS2O). Since these species are strongly suggested to play an important role as intermediates during the bioactive reaction products of the NO/H2S interaction, the rotational and vibrational spectroscopic parameters are presented to help aid the in vivo identification and assignment of these spectra. Results from this work show that [O,N,S,S] may play key roles during nitric oxide transport and deliver in biological media, as well as, provide an explanation for the weak characteristic of disulfide bridges within proteins. PMID:27334171

  7. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits

    PubMed Central

    Karlström, Amanda; Calle, Fernando; Salazar, Sandra; Morante, Nelson; Dufour, Dominique; Ceballos, Hernán

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develop commercial cassava varieties with amylose-free starch. However, little information is available regarding the biological and agronomic implications of starch mutations in cassava, nor in other root and tuber crops. In this study, siblings from eight full-sib families, segregating for the waxy trait, were used to determine if the mutation has implications for yield, dry matter content (DMC) and harvest index in cassava. A total of 87 waxy and 87 wild-type starch genotypes from the eight families were used in the study. The only significant effect of starch type was on DMC (p < 0.01), with waxy clones having a 0.8% lower content than their wild type counterparts. There was no effect of starch type on fresh root yield (FRY), adjusted FRY and harvest index. It is not clear if lower DMC is a pleiotropic effect of the waxy starch mutation or else the result of linked genes introgressed along with the mutation. It is expected that commercial waxy cassava varieties will have competitive FRYs but special efforts will be required to attain adequate DMCs. This study contributes to the limited knowledge available of the impact of starch mutations on the agronomic performance of root and tuber crops. PMID:27242813

  8. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits.

    PubMed

    Karlström, Amanda; Calle, Fernando; Salazar, Sandra; Morante, Nelson; Dufour, Dominique; Ceballos, Hernán

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develop commercial cassava varieties with amylose-free starch. However, little information is available regarding the biological and agronomic implications of starch mutations in cassava, nor in other root and tuber crops. In this study, siblings from eight full-sib families, segregating for the waxy trait, were used to determine if the mutation has implications for yield, dry matter content (DMC) and harvest index in cassava. A total of 87 waxy and 87 wild-type starch genotypes from the eight families were used in the study. The only significant effect of starch type was on DMC (p < 0.01), with waxy clones having a 0.8% lower content than their wild type counterparts. There was no effect of starch type on fresh root yield (FRY), adjusted FRY and harvest index. It is not clear if lower DMC is a pleiotropic effect of the waxy starch mutation or else the result of linked genes introgressed along with the mutation. It is expected that commercial waxy cassava varieties will have competitive FRYs but special efforts will be required to attain adequate DMCs. This study contributes to the limited knowledge available of the impact of starch mutations on the agronomic performance of root and tuber crops. PMID:27242813

  9. An analysis of the transcriptome of Teladorsagia circumcincta: its biological and biotechnological implications

    PubMed Central

    2012-01-01

    Background Teladorsagia circumcincta (order Strongylida) is an economically important parasitic nematode of small ruminants (including sheep and goats) in temperate climatic regions of the world. Improved insights into the molecular biology of this parasite could underpin alternative methods required to control this and related parasites, in order to circumvent major problems associated with anthelmintic resistance. The aims of the present study were to define the transcriptome of the adult stage of T. circumcincta and to infer the main pathways linked to molecules known to be expressed in this nematode. Since sheep develop acquired immunity against T. circumcincta, there is some potential for the development of a vaccine against this parasite. Hence, we infer excretory/secretory molecules for T. circumcincta as possible immunogens and vaccine candidates. Results A total of 407,357 ESTs were assembled yielding 39,852 putative gene sequences. Conceptual translation predicted 24,013 proteins, which were then subjected to detailed annotation which included pathway mapping of predicted proteins (including 112 excreted/secreted [ES] and 226 transmembrane peptides), domain analysis and GO annotation was carried out using InterProScan along with BLAST2GO. Further analysis was carried out for secretory signal peptides using SignalP and non-classical sec pathway using SecretomeP tools. For ES proteins, key pathways, including Fc epsilon RI, T cell receptor, and chemokine signalling as well as leukocyte transendothelial migration were inferred to be linked to immune responses, along with other pathways related to neurodegenerative diseases and infectious diseases, which warrant detailed future studies. KAAS could identify new and updated pathways like phagosome and protein processing in endoplasmic reticulum. Domain analysis for the assembled dataset revealed families of serine, cysteine and proteinase inhibitors which might represent targets for parasite intervention. Inter

  10. Ontogeny of taste preferences: basic biology and implications for health12345

    PubMed Central

    Mennella, Julie A

    2014-01-01

    Health initiatives address childhood obesity in part by encouraging good nutrition early in life. This review highlights the science that shows that children naturally prefer higher levels of sweet and salty tastes and reject lower levels of bitter tastes than do adults. Thus, their basic biology does not predispose them to favor the recommended low-sugar, low-sodium, vegetable-rich diets and makes them especially vulnerable to our current food environment of foods high in salt and refined sugars. The good news is that sensory experiences, beginning early in life, can shape preferences. Mothers who consume diets rich in healthy foods can get children off to a good start because flavors are transmitted from the maternal diet to amniotic fluid and mother's milk, and breastfed infants are more accepting of these flavors. In contrast, infants fed formula learn to prefer its unique flavor profile and may have more difficulty initially accepting flavors not found in formula, such as those of fruit and vegetables. Regardless of early feeding mode, infants can learn through repeated exposure and dietary variety if caregivers focus on the child's willingness to consume a food and not just the facial expressions made during feeding. In addition, providing complementary foods low in salt and sugars may help protect the developing child from excess intake later in life. Early-life experiences with healthy tastes and flavors may go a long way toward promoting healthy eating, which could have a significant impact in addressing the many chronic illnesses associated with poor food choice. PMID:24452237

  11. Solar ultraviolet transfer in the Martian atmosphere: biological and geological implications

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, C.; Lara, L. M.; Mancho, A. M.; Márquez, A.; Rodrigo, R.

    2003-05-01

    The Martian environment has an exceedingly strong component of damaging solar far-ultraviolet radiation, including most of the UV-C range (190- 280 nm) because of the lack of an effective ozone shield. Two-stream radiative transfer modelling, including particulate aerosol content and surface albedo, indicates that the present abundance of SO 2 does not provide any surface protection of the UV radiation. However, larger abundances of sulfur dioxide (mixing ratio, q, comprised between 10 -5 and 10 -4) introduced in the present 6 mbar Martian atmosphere can partially protect the surface from the harmful solar UV radiation. Furthermore, Mie backscattering by dust and/or aerosols noticeably reduces the harmful solar UV radiation. Regardless of the ozone concentration, the required dust content for almost blocking this damaging radiation is such that the optical depth at 550 nm is τ=0.8-1.5 (for a given solar zenithal angle (SZA) of 38°), typical of a turbid atmosphere, and τ⩾1.6 more characteristic of dust storms. The required mass of SO 2 (i.e. 10 14- 10 15 gr) and/or ashes could have been easily provided by volcanic activity on Mars several times along the entire geologic history of the planet. In terms of DNA protection, volcanic ashes and SO 2 considerably reduced levels of UV radiation lead to a biological dose comparable to the existing on the present Earth, together with the possibility of a non-deterioration of the environment due to UV photo-oxidation. Therefore, preserving life forms on Mars surface at any past epoch cannot be completely ruled out.

  12. Aetiopathogenesis and pathophysiology of bulimia nervosa: biological bases and implications for treatment.

    PubMed

    Brambilla, F

    2001-01-01

    Bulimia nervosa is an eating disorder characterised by recurrent episodes of binge eating and associated efforts to purge the ingested calories through self-induced vomiting, laxative or diuretic abuse, fasting or intensive exercise. The aetiopathogenesis and pathophysiology of the disorder are currently unclear. Biological bases have been proposed repeatedly, based on several lines of evidence: hunger, satiety and food choice are regulated by neurotransmitters and neuropeptides, and impairment of eating habits may be related to alterations in the secretion of these chemicals; genetic studies suggest that these neurotransmitter systems are dysfunctional in individuals with bulimia nervosa; and the frequent comorbidity of bulimia nervosa with major depressive and obsessive-compulsive disorders, conditions in which multiple alterations of brain biochemical functions have been demonstrated. Data in the literature suggest that levels of noradrenaline (norepinephrine) and serotonin (5-hydroxytryptamine; 5-HT) are lower in individuals with bulimia nervosa than in healthy controls. Levels of dopamine are similar to, or lower than, those in controls. After remission of the disorder, noradrenergic function returns to that seen in controls, whereas dopaminergic and serotonergic function rebound to levels higher than in controls. Among the neuropeptides, alterations in the levels of neuropeptide Y, peptide YY, beta-endorphin, corticotrophin-releasing hormone, somatostatin, cholecystokinin and vasopressin have been found in the symptomatic phase of bulimia nervosa, with a return to levels seen in controls after remission. Pharmacological treatment of bulimia nervosa that is directed at correction of the neurochemical alterations observed is difficult because of the complexity of the impairments. However, such treatment is necessary and should be continued long after symptomatic remission to ensure reinstitution of cerebral biochemical homeostasis. PMID:11460890

  13. Unsaturated glycerophospholipids mediate heme crystallization: biological implications for hemozoin formation in the kissing bug Rhodnius prolixus.

    PubMed

    Stiebler, Renata; Majerowicz, David; Knudsen, Jens; Gondim, Katia C; Wright, David W; Egan, Timothy J; Oliveira, Marcus F

    2014-01-01

    Hemozoin (Hz) is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membranes (PMVM). Here, we investigated the role of commercial glycerophospholipids containing serine, choline and ethanolamine as headgroups and R. prolixus midgut lipids (RML) in heme crystallization. All commercial unsaturated forms of phospholipids, as well as RML, mediated fast and efficient β-hematin formation by means of two kinetically distinct mechanisms: an early and fast component, followed by a late and slow one. The fastest reactions observed were induced by unsaturated forms of phosphatidylethanolamine (uPE) and phosphatidylcholine (uPC), with half-lives of 0.04 and 0.7 minutes, respectively. β-hematin crystal morphologies were strikingly distinct among groups, with uPE producing homogeneous regular brick-shaped crystals. Interestingly, uPC-mediated reactions resulted in two morphologically distinct crystal populations: one less representative group of regular crystals, resembling those induced by uPE, and the other largely represented by crystals with numerous sharp edges and tapered ends. Heme crystallization reactions induced by RML were efficient, with a heme to β-hematin conversion rate higher than 70%, but clearly slower (t1/2 of 9.9-17.7 minutes) than those induced by uPC and uPE. Interestingly, crystals produced by RML were homogeneous in shape and quite similar to those mediated by uPE. Thus, β-hematin formation can be rapidly and efficiently induced by unsaturated glycerophospholipids, particularly uPE and uPC, and may play a role on biological heme crystallization in R. prolixus midgut. PMID:24586467

  14. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water.

    PubMed

    Blake, R W

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ( approximately 0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid

  15. Unsaturated Glycerophospholipids Mediate Heme Crystallization: Biological Implications for Hemozoin Formation in the Kissing Bug Rhodnius prolixus

    PubMed Central

    Stiebler, Renata; Majerowicz, David; Knudsen, Jens; Gondim, Katia C.; Wright, David W.; Egan, Timothy J.; Oliveira, Marcus F.

    2014-01-01

    Hemozoin (Hz) is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membranes (PMVM). Here, we investigated the role of commercial glycerophospholipids containing serine, choline and ethanolamine as headgroups and R. prolixus midgut lipids (RML) in heme crystallization. All commercial unsaturated forms of phospholipids, as well as RML, mediated fast and efficient β-hematin formation by means of two kinetically distinct mechanisms: an early and fast component, followed by a late and slow one. The fastest reactions observed were induced by unsaturated forms of phosphatidylethanolamine (uPE) and phosphatidylcholine (uPC), with half-lives of 0.04 and 0.7 minutes, respectively. β-hematin crystal morphologies were strikingly distinct among groups, with uPE producing homogeneous regular brick-shaped crystals. Interestingly, uPC-mediated reactions resulted in two morphologically distinct crystal populations: one less representative group of regular crystals, resembling those induced by uPE, and the other largely represented by crystals with numerous sharp edges and tapered ends. Heme crystallization reactions induced by RML were efficient, with a heme to β-hematin conversion rate higher than 70%, but clearly slower (t1/2 of 9.9–17.7 minutes) than those induced by uPC and uPE. Interestingly, crystals produced by RML were homogeneous in shape and quite similar to those mediated by uPE. Thus, β-hematin formation can be rapidly and efficiently induced by unsaturated glycerophospholipids, particularly uPE and uPC, and may play a role on biological heme crystallization in R. prolixus midgut. PMID:24586467

  16. Scavenging of photogenerated ROS by Oxicams. Possible biological and environmental implications.

    PubMed

    Ferrari, Gabriela V; Natera, José; Paulina Montaña, M; Muñoz, Vanesa; Gutiérrez, Eduardo L; Massad, Walter; Miskoski, Sandra; García, Norman A

    2015-12-01

    The profusely employed drugs Piroxicam (Piro), Tenoxicam (Teno) and Meloxicam (Melo) belonging to the non-steroidal antiinflammatory drug (NSAID) family of the Oxicams (Oxis) were studied in the frame of two specific conditions: (a) their ROS scavenging ability, in relation to a possible biological antioxidant action and (b) their photodegradability under environmental conditions, in the context of Oxi-contaminated waters. Singlet molecular oxygen (O2((1)Δg)) and superoxide radical anion (O2(-)) were photogenerated through Riboflavin (Rf, vitamin B2)-photosensitization in aqueous and aqueous-methanolic solutions in the presence of Oxi concentrations in the range 50-500 μM. The visible-light absorber vitamin is currently present in all types of natural waters and constitutes the most frequent endogenous photosensitizer in mammals. Hence, it was employed in order to mimic both natural sceneries of interest. All three Oxis quench O2((1)Δg) with rate constants in the order of 10(8)M(-1)s(-1) showing a significant photodegradation efficiency given by a dominant reactive fashion for deactivation of the oxidative species. Although this is not a desirable property in the context of photoprotection upon prolonged photoirradiation, constitutes in fact a promissory aspect for the degradation NSAIDs, in waste waters. Indirect evidence indicates that Melo is also oxidized through a O2(-)-mediated component. The simultaneous presence of Piro plus tryptophan or tyrosine under Rf-photosensitizing conditions, which has taken the amino acids as photooxidizable model residues in a proteinaceous environment, indicates that the NSAID induces a protection of the biomolecules against photodynamic degradation. PMID:26453988

  17. Transmitting biological effects of stress in utero: implications for mother and offspring.

    PubMed

    Reynolds, Rebecca M; Labad, Javier; Buss, Claudia; Ghaemmaghami, Pearl; Räikkönen, Katri

    2013-09-01

    The developing foetus makes adaptations to an adverse in utero environment which may lead to permanent changes in structure and physiology, thus 'programming' the foetus to risk of ill health in later life. Epidemiological studies have shown associations between low birth weight, a surrogate marker of an adverse intrauterine environment, and a range of diseases in adult life including cardiometabolic and psychiatric disease. These associations do not apply exclusively to low birth weight babies but also to newborns within the normal birth weight range. Early life stress, including stressors in the prenatal and early postnatal period, is a key factor that can have long-term effects on offspring health. Animal studies show this is mediated through changes in the maternal and foetal hypothalamic-pituitary-adrenal axes resulting in foetal exposure to excess glucocorticoids. Data in humans are more limited but support that the biological effects of stress in utero may be transmitted through changes in glucocorticoid action or metabolism. Common contemporary physical and social stressors of maternal obesity and socio-economic deprivation impact on the maternal response to pregnancy and the prevailing hormonal milieu that the developing foetus will be exposed to. Prenatal stress may also be compounded by early postnatal stresses such as childhood maltreatment with resultant adverse effects for the offspring. Understanding of the mechanisms whereby these stressors are transmitted from mother to foetus will not only improve our knowledge of normal foetal development but will also help identify novel pathways for early intervention either in the periconceptional, pregnancy or the early postpartum period. PMID:23810315

  18. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    SciTech Connect

    Cimpan, Ciprian Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat

  19. The ultraviolet history of the terrestrial planets - implications for biological evolution

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.

    2000-02-01

    A radiative transfer model is employed to investigate the comparative surface ultraviolet (UV) radiation histories of Earth, Mars and Venus from 4.5 Ga to the present and thus their comparative theoretical photobiological histories. Earth probably began with a period of higher ultraviolet radiation fluxes during the anoxic Archean. During the early Proterozoic UV fluxes declined as oxygen partial pressures and thus ozone column abundance rose, but the ozone column became subject to stochastic depletion events caused principally by impact events and possibly large-scale volcanism and less frequently, close cosmic events such as supernovae. In contrast Mars has been subject to a history dominated by a slow increase in solar luminosity and a reduction in partial pressures of CO 2, both of which have resulted in an increase in UV flux. The UV radiation history of Venus has been dominated by the greenhouse effect through which high partial pressures of CO 2 made the surface UV radiation environment clement. These distinct histories influence the potential comparative evolutionary photobiology of the three planets. On Earth, life transitioned from the Archean, when tolerance to UV radiation, particularly for exposed organisms, must have been high to a more photobiologically clement era. In this latter era the predominant evolutionary selection pressure is one that allows for tolerance of sudden and unpredictable increases in UVB radiation above seasonal and diurnal maxima caused by exogenous perturbation of the ozone column. In the case of Mars, the UV radiation flux has increased over time. Today the biologically effective irradiances to DNA are not considerably different from those that are calculated for Archean Earth. If the planet suffered an atmospheric collapse then it may have been subject to an ultraviolet crisis at some point in its past when DNA-weighted irradiance would have increased three to five-fold. Venus transitioned into a photobiologically clement era

  20. A Transcriptomic Analysis of Echinococcus granulosus Larval Stages: Implications for Parasite Biology and Host Adaptation

    PubMed Central

    Parkinson, John; Wasmuth, James D.; Salinas, Gustavo; Bizarro, Cristiano V.; Sanford, Chris; Berriman, Matthew; Ferreira, Henrique B.; Zaha, Arnaldo; Blaxter, Mark L.; Maizels, Rick M.; Fernández, Cecilia

    2012-01-01

    Background The cestode Echinococcus granulosus - the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide - is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages. Methodology/Principal Findings We generated ∼10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs) prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces), and pepsin/H+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i) a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep) that could either be active molecular species or represent precursors of small RNAs (like piRNAs); (ii) an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii) highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv) candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v) a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi) a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development. Conclusions/Significance This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome

  1. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.

    PubMed

    Cimpan, Ciprian; Wenzel, Henrik

    2013-07-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full

  2. Student learning style preferences in college-level biology courses: Implications for teaching and academic performance

    NASA Astrophysics Data System (ADS)

    Sitton, Jennifer Susan

    Education research has focused on defining and identifying student learning style preferences and how to incorporate this knowledge into teaching practices that are effective in engaging student interest and transmitting information. One objective was determining the learning style preferences of undergraduate students in Biology courses at New Mexico State University by using the online VARK Questionnaire and an investigator developed survey (Self Assessed Learning Style Survey, LSS). Categories include visual, aural, read-write, kinesthetic, and multimodal. The courses differed in VARK single modal learning preferences (p = 0.035) but not in the proportions of the number of modes students preferred (p = 0.18). As elsewhere, the majority of students were multimodal. There were similarities and differences between LSS and VARK results and between students planning on attending medical school and those not. Preferences and modalities tended not to match as expected for ratings of helpfulness of images and text. To detect relationships between VARK preferred learning style and academic performance, ANOVAs were performed using modality preferences and normalized learning gains from pre and post tests over material taught in the different modalities, as well as on end of semester laboratory and lecture grades. Overall, preference did not affect the performance for a given modality based activity, quiz, or final lecture or laboratory grades (p > 0.05). This suggests that a student's preference does not predict an improved performance when supplied with material in that modality. It is recommended that methods be developed to aid learning in a variety of modalities, rather than catering to individual learning styles. Another topic that is heavily debated in the field of education is the use of simulations or videos to replace or supplement dissections. These activities were compared using normalized learning gains from pre and post tests, as well as attitude surveys

  3. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications.

    PubMed

    Kornis, M S; Mercado-Silva, N; Vander Zanden, M J

    2012-02-01

    are presented; most pressing are evaluating the economic effects of N. melanostomus invasion, determining long-term population level effects of egg predation on game-fish recruitment and comparing several variables (density, ecological effects morphology and life history) among invaded ecosystems. This review provides a central reference as researchers continue studying N. melanostomus, often as examples for advancing basic ecology and invasion biology. PMID:22268429

  4. Mauna Kea, Hawaii as an Analogue Site for Future Planetary Resource Exploration: Results from the 2010 ILSO-ISRU Field-Testing Campaign

    NASA Technical Reports Server (NTRS)

    ten Kate, I. L.; Armstrong, R.; Bernhardt, B.; Blummers, M.; Boucher, D.; Caillibot, E.; Captain, J.; Deleuterio, G.; Farmer, J. D.; Glavin, D. P.; Hamilton, J. C.; Klingelhoefer, G.; Morris, R. V.; Nunez, J. I.; Quinn, J. W.; Sanders, G. B.; Sellar, R. G.; Sigurdson, L.; Taylor, R.; Zacny, K.

    2010-01-01

    Within the framework of the International Lunar Surface Operation - In-Situ Resource Utilization Analogue Test held on January 27 - February 11, 2010 on the Mauna Kea volcano in Hawaii, a number of scientific instrument teams collaborated to characterize the field site and test instrument capabilities outside laboratory environments. In this paper, we provide a geological setting for this new field-test site, a description of the instruments that were tested during the 2010 ILSO-ISRU field campaign, and a short discussion for each instrument about the validity and use of the results obtained during the test. These results will form a catalogue that may serve as reference for future test campaigns. In this paper we provide a description and regional geological setting for a new field analogue test site for lunar resource exploration, and discuss results obtained from the 2010 ILSO-ISRU field campaign as a reference for future field-testing at this site. The following instruments were tested: a multispectral microscopic imager, MMI, a Mossbauer spectrometer, an evolved gas analyzer, VAPoR, and an oxygen and volatile extractor called RESOLVE. Preliminary results show that the sediments change from dry, organic-poor, poorly-sorted volcaniclastic sand on the surface, containing basalt, iron oxides and clays, to more water- and organic-rich, fine grained, well-sorted volcaniclastic sand, primarily consisting of iron oxides and depleted of basalt and clays. Furthermore, drilling experiments showed a very close correlation between drilling on the Moon and drilling at the test site. The ILSO-ISRU test site was an ideal location for testing strategies for in situ resource exploration at the lunar or martian surface.

  5. Development of an Electrostatic Precipitator to Remove Martian Atmospheric Dust from ISRU Gas Intakes During Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Clements, J. Sidney; Thompson, Samuel M.; Cox, Nathan D.; Johansen, Michael R.; Williams, Blakeley S.; Hogue, Michael D.; Lowder, M. Loraine; Calle, Carlos I.

    2011-01-01

    Manned exploration missions to Mars will need dependable in situ resource utilization (ISRU) for the production of oxygen and other commodities. One of these resources is the Martian atmosphere itself, which is composed of carbon dioxide (95.3%), nitrogen (2.7%), argon (1.6%), oxygen (0.13%), carbon monoxide (0.07%), and water vapor (0.03%), as well as other trace gases. However, the Martian atmosphere also contains relatively large amounts of dust, uploaded by frequent dust devils and high Winds. To make this gas usable for oxygen extraction in specialized chambers requires the removal of most of the dust. An electrostatic precipitator (ESP) system is an obvious choice. But with an atmospheric pressure just one-hundredth of Earth's, electrical breakdown at low voltages makes the implementation of the electrostatic precipitator technology very challenging. Ion mobility, drag forces, dust particle charging, and migration velocity are also affected because the low gas pressure results in molecular mean free paths that are approximately one hundred times longer than those at Earth .atmospheric pressure. We report here on our efforts to develop this technology at the Kennedy Space Center, using gases with approximately the same composition as the Martian atmosphere in a vacuum chamber at 9 mbars, the atmospheric pressure on Mars. We also present I-V curves and large particle charging data for various versions of wire-cylinder and rod-cylinder geometry ESPs. Preliminary results suggest that use of an ESP for dust collection on Mars may be feasible, but further testing with Martian dust simulant is required.

  6. Reproductive biology of Ilisha elongata (Teleostei: Pristigasteridae) in Ariake Sound, Japan: Implications for estuarine fish conservation in Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Takita, Toru; Zhang, Chunguang

    2009-01-01

    Elongate ilisha ( Ilisha enlongata) is a commercially important species that contributes to clupeoid fisheries in Asian countries. In the present study, the reproductive biology of I. elongata in Ariake Sound, Japan is determined for the first time. Six maturity stages were described using ovarian and testicular histology throughout the annual cycle. The spawning season in Ariake Sound lasts from May to July, with peak spawning activity in May and June. Age at first maturity was estimated to be 2 years, with a few exceptions of 1 year in well-developed males. Ovaries that contained both tertiary yolk oocytes and postovulatory follicles occurred from late May to late July, indicating that I. elongata is a multiple spawner. The size-frequency distribution of oocytes provided evidence for its multiple spawning and accuracy of the fecundity estimates. The batch fecundity of this species was estimated at between 22,200 and 270,900 eggs per individual, increasing with age between two and six years. The present findings on the reproductive strategy of I. elongata in Ariake Sound are generally consistent with those in temperate or subtropical populations, but quite different from those of tropical population where first maturation occurs around 200 days and life spans are shorter, with a maximum age less than 3 years. The conservation implications of this reproductive strategy in a harsh, variable environment in Asian countries are also discussed.

  7. Characterization and reactivity of the weakly bound complexes of the [H, N, S]- anionic system with astrophysical and biological implications

    NASA Astrophysics Data System (ADS)

    Trabelsi, T.; Ajili, Y.; Ben Yaghlane, S.; Jaidane, N.-E.; Mogren Al-Mogren, M.; Francisco, J. S.; Hochlaf, M.

    2015-07-01

    We investigate the lowest electronic states of doublet and quartet spin multiplicity states of HNS- and HSN- together with their parent neutral triatomic molecules. Computations were performed using highly accurate ab initio methods with a large basis set. One-dimensional cuts of the full-dimensional potential energy surfaces (PESs) along the interatomic distances and bending angle are presented for each isomer. Results show that the ground anionic states are stable with respect to the electron detachment process and that the long range parts of the PESs correlating to the SH- + N, SN- + H, SN + H-, NH + S-, and NH- + S are bound. In addition, we predict the existence of long-lived weakly bound anionic complexes that can be formed after cold collisions between SN- and H or SH- and N. The implications for the reactivity of these species are discussed; specifically, it is shown that the reactions involving SH-, SN-, and NH- lead either to the formation of HNS- or HSN- in their electronic ground states or to autodetachment processes. Thus, providing an explanation for why the anions, SH-, SN-, and NH-, have limiting detectability in astrophysical media despite the observation of their corresponding neutral species. In a biological context, we suggest that HSN- and HNS- should be incorporated into H2S-assisted heme-catalyzed reduction mechanism of nitrites in vivo.

  8. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    USGS Publications Warehouse

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  9. Mars as the parent body of the CI carbonaceous chondrites and implications for Mars biological and climatic history

    NASA Astrophysics Data System (ADS)

    Brandenburg, John E.

    1997-07-01

    The hypothesis that CI meteorites have an origin on Mars is presented along with supporting data and implications. A Martian origin for the CI will support Martian biogenesis and effect assessments of Martian histories, suggesting Mars and Earth evolved in parallel in both biologic and geologic realms for a long period. The CI containing a Martian pattern of oxygen isotopes and mineralogy indicative of deposition by liquid water. The CI contain no evidence of hypervelocity impact, but contain space-exposed olivine grains and are thus regolith material, indicating their formation under a planetary atmosphere. They contain organic matter similar to that found in Martian meteorites, ALH84001 and EETA79001. A scenario of formation of CI meteorites as being water altered late planetary accretion material is proposed. The 4.5 Gyr age of the CI, matching ALH84001, and their high concentration of organic matter, including possible fossil bacteria, strongly supports the hypothesis of early Martian biogenesis. With CI plus ALH84001 being old, and the SNCs being young, the Martian crustal age dichotomy is now well reflected in Martian meteorite ages. This suggests Mars has a strongly bimodal pattern of crustal ages, either very old or very young with liquid water moving on the planets surface until late in the planets history.

  10. Molecular and cellular effects of multi-targeted cyclin-dependent kinase inhibition in myeloma: biological and clinical implications.

    PubMed

    McMillin, Douglas W; Delmore, Jake; Negri, Joseph; Buon, Leutz; Jacobs, Hannah M; Laubach, Jacob; Jakubikova, Jana; Ooi, Melissa; Hayden, Patrick; Schlossman, Robert; Munshi, Nikhil C; Lengauer, Christoph; Richardson, Paul G; Anderson, Kenneth C; Mitsiades, Constantine S

    2011-02-01

    Cell cycle regulators, such as cyclin-dependent kinases (CDKs), are appealing targets for multiple myeloma (MM) therapy given the increased proliferative rates of tumour cells in advanced versus early stages of MM. We hypothesized that a multi-targeted CDK inhibitor with a different spectrum of activity compared to existing CDK inhibitors could trigger distinct molecular sequelae with therapeutic implications for MM. We therefore studied the small molecule heterocyclic compound NVP-LCQ195/AT9311 (LCQ195), which inhibits CDK1, CDK2 and CDK5, as well as CDK3 and CDK9. LCQ195 induced cell cycle arrest and eventual apoptotic cell death of MM cells, even at sub-μmol/l concentrations, spared non-malignant cells, and overcame the protection conferred to MM cells by stroma or cytokines of the bone marrow milieu. In MM cells, LCQ195 triggered decreased amplitude of transcriptional signatures associated with oncogenesis, drug resistance and stem cell renewal, including signatures of activation of key transcription factors for MM cells e.g. myc, HIF-1α, IRF4. Bortezomib-treated MM patients whose tumours had high baseline expression of genes suppressed by LCQ195 had significantly shorter progression-free and overall survival than those with low levels of these transcripts in their MM cells. These observations provide insight into the biological relevance of multi-targeted CDK inhibition in MM. PMID:21223249