Science.gov

Sample records for biological materials final

  1. Biological materials by design.

    PubMed

    Qin, Zhao; Dimas, Leon; Adler, David; Bratzel, Graham; Buehler, Markus J

    2014-02-19

    In this topical review we discuss recent advances in the use of physical insight into the way biological materials function, to design novel engineered materials 'from scratch', or from the level of fundamental building blocks upwards and by using computational multiscale methods that link chemistry to material function. We present studies that connect advances in multiscale hierarchical material structuring with material synthesis and testing, review case studies of wood and other biological materials, and illustrate how engineered fiber composites and bulk materials are designed, modeled, and then synthesized and tested experimentally. The integration of experiment and simulation in multiscale design opens new avenues to explore the physics of materials from a fundamental perspective, and using complementary strengths from models and empirical techniques. Recent developments in this field illustrate a new paradigm by which complex material functionality is achieved through hierarchical structuring in spite of simple material constituents. PMID:24451343

  2. Active Biological Materials

    PubMed Central

    Fletcher, Daniel A.; Geissler, Phillip L.

    2011-01-01

    Cells make use of dynamic internal structures to control shape and create movement. By consuming energy to assemble into highly organized systems of interacting parts, these structures can generate force and resist compression, as well as adaptively change in response to their environment. Recent progress in reconstituting cytoskeletal structures in vitro has provided an opportunity to characterize the mechanics and dynamics of filament networks formed from purified proteins. Results indicate that a complex interplay between length scales and timescales underlies the mechanical responses of these systems and that energy consumption, as manifested in molecular motor activity and cytoskeletal filament growth, can drive transitions between distinct material states. This review discusses the basic characteristics of these active biological materials that set them apart from conventional materials and that create a rich array of unique behaviors. PMID:18999991

  3. Electrophoresis of biological materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The selection of biological products was studied for electrophoresis in space. Free flow electrophoresis, isoelectric focusing, and isotachophoresis are described. The candidates discussed include: immunoglobulins and gamma globulins; isolated islet of langerhans from pancreas; bone marrow; tumor cells; kidney cells, cryoprecipitate; and column separated cultures.

  4. Freshwater Biological Traits Database (Final Report)

    EPA Science Inventory

    Cover of the Freshwater <span class=Biological Traits Database Final Report"> This final report discusses the development of a database of freshwater biolo...

  5. 37 CFR 1.801 - Biological material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Biological material. 1.801... Biological Material § 1.801 Biological material. For the purposes of these regulations pertaining to the deposit of biological material for purposes of patents for inventions under 35 U.S.C. 101, the...

  6. 37 CFR 1.801 - Biological material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Biological material. 1.801... Biological Material § 1.801 Biological material. For the purposes of these regulations pertaining to the deposit of biological material for purposes of patents for inventions under 35 U.S.C. 101, the...

  7. Biologically inspired dynamic material systems.

    PubMed

    Studart, André R

    2015-03-01

    Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems. PMID:25583299

  8. Biological materials for dynamic holography

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Nikolai M.

    1997-02-01

    Intrinsic properties of biological materials making them outstanding candidates for technical applications are briefly summarized in the paper. The origin of the light- driven optical non-linearity of bacteriorhodopsin (BR) is demonstrated. The fields of the most effective application of BR are analyzed on the basis of the last year's scientific publications. Attention is attracted to adaptive measuring interferometers with dynamic holographic beamscouplers based on BR. Several examples of such interferometers are discussed introducing one of the most promising BR application.

  9. 78 FR 16472 - Deposit of Biological Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... United States Patent and Trademark Office Deposit of Biological Materials ACTION: Proposed collection....'' SUPPLEMENTARY INFORMATION: I. Abstract The deposit of biological materials as part of a patent application is... use the invention as specified by 35 U.S.C. 112. The term ``biological material'' is defined by 37...

  10. 75 FR 6348 - Deposit of Biological Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... Patent and Trademark Office Deposit of Biological Materials ACTION: Proposed collection; comment request....Fawcett@uspto.gov . Include ``0651-0022 Deposit of Biological Materials comment'' in the subject line of....Hanlon@uspto.gov . SUPPLEMENTARY INFORMATION: I. Abstract The deposit of biological materials as part...

  11. Final Report of “Collaborative research: Fundamental science of low temperature plasma-biological material interactions” (Award# DE-SC0005105)

    SciTech Connect

    Oehrlein, Gottlieb S.; Seog, Joonil; Graves, David; Chu, J. -W.

    2014-09-24

    temperature plasma sources with modified geometry where radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. In these conditions we demonstrated the importance of environmental interactions of plasma species when APP sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complex reactions of reactive species with the atmosphere which determine the composition of reactive fluxes and atomistic changes in biomolecules. Overall, this work elucidated a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular, for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to study the interaction of plasma with bio-molecules in a systemic and rigorous manner. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled us to correlate atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will lay a fundamental foundation to enhance our understanding of the effect of plasma on biological systems. be helpful in many future studies.

  12. Bioinspired materials: Boosting plant biology

    NASA Astrophysics Data System (ADS)

    Scholes, Gregory D.; Sargent, Edward H.

    2014-04-01

    Chloroplasts with extended photosynthetic activity beyond the visible absorption spectrum, and living leaves that perform non-biological functions, are made possible by localizing nanoparticles within plant organelles.

  13. UC Merced Center for Computational Biology Final Report

    SciTech Connect

    Colvin, Michael; Watanabe, Masakatsu

    2010-11-30

    Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformation of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs

  14. Thermoelectric materials development. Final report

    SciTech Connect

    Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

    1998-09-01

    A systematic search for advanced thermoelectric materials was initiated at JPL several years ago to evaluate candidate materials which includes consideration of the following property attributes: (1) semiconducting properties; (2) large Seebeck coefficient; (3) high carrier mobility and high electrical conductivity; (4) low lattice thermal conductivity; and (5) chemical stability and low vapor pressure. Through this candidate screening process, JPL identified several families of materials as promising candidates for improved thermoelectric materials including the skutterudite family. There are several programs supporting various phases of the effort on these materials. As part of an ongoing effort to develop skutterudite materials with lower thermal conductivity values, several solid solutions and filled skutterudite materials were investigated under the effort sponsored by DOE. The efforts have primarily focused on: (1) study of existence and properties of solid solutions between the binary compounds CoSb{sub 3} and IrSb{sub 3}, and RuSb{sub 2}Te, and (2) CeFe{sub 4{minus}x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} filled compositions, the reduction would be caused by the rattling of Ce atoms located in the empty voids of the skutterudite structure and the substitution of Fe for Ru. The details of the sample preparation and characterization of their thermoelectric properties are reported in this report.

  15. Hazardous material replacement. Final report

    SciTech Connect

    Guttridge, A.H.

    1993-09-01

    Methyl dianiline (MDA) is one of the components used in potting of electronic assemblies at Allied Signal Inc., Kansas City Division (KCD). MDA is a liver toxin and a suspected carcinogen. The KCD has made a commitment to eliminate the use of hazardous materials as much as technically feasible. This project was initiated to find alternatives to the MDA foam system. The project plan was to verify that the new materials developed by expert groups within the DOE nuclear weapons complex, such as the Organic Materials Group, would meet the unique requirements of the assemblies fabricated in the Electronic Products Manufacturing Building (EPMB) at KCD. The work was discontinued when associates assigned to the project were transferred to higher priority projects.

  16. Immune Response to Biologic Scaffold Materials

    PubMed Central

    Badylak, Stephen F.; Gilbert, Thomas W.

    2008-01-01

    Biologic scaffold materials composed of mammalian extracellular matrix are commonly used in regenerative medicine and in surgical procedures for the reconstruction of numerous tissue and organs. These biologic materials are typically allogeneic or xenogeneic in origin and are derived from tissues such as small intestine, urinary bladder, dermis, and pericardium. The innate and acquired host immune response to these biologic materials and the effect of the immune response upon downstream remodeling events has been largely unexplored. Variables that affect the host response include manufacturing processes, the rate of scaffold degradation, and the presence of cross species antigens. This manuscript provides an overview of studies that have evaluated the immune response to biologic scaffold materials and variables that affect this response. PMID:18083531

  17. Dielectric constant microscopy for biological materials

    NASA Astrophysics Data System (ADS)

    Valavade, A. V.; Kothari, D. C.; Löbbe, C.

    2013-02-01

    This paper describes the work on the development of Dielectric Constant Microscopy for biological materials using double pass amplitude modulation method. The dielectric constant information can be obtained at nanometer scales using this technique. Electrostatic force microscopy images of biological materials are presented. The images obtained from the EFM technique mode clearly show inversion contrast and gives the spatial variation of tip-sample capacitance. The EFM images are further processed to obtain dielectric constant information at nanometer scales.

  18. Liquid Crystalline Materials for Biological Applications

    PubMed Central

    Lowe, Aaron M.; Abbott, Nicholas L.

    2012-01-01

    Liquid crystals have a long history of use as materials that respond to external stimuli (e.g., electrical and optical fields). More recently, a series of investigations have reported the design of liquid crystalline materials that undergo ordering transitions in response to a range of biological interactions, including interactions involving proteins, nucleic acids, viruses, bacteria and mammalian cells. A central challenge underlying the design of liquid crystalline materials for such applications is the tailoring of the interface of the materials so as to couple targeted biological interactions to ordering transitions. This review describes recent progress toward design of interfaces of liquid crystalline materials that are suitable for biological applications. Approaches addressed in this review include the use of lipid assemblies, polymeric membranes containing oligopeptides, cationic surfactant-DNA complexes, peptide-amphiphiles, interfacial protein assemblies and multi-layer polymeric films. PMID:22563142

  19. New laser materials: Final report

    SciTech Connect

    Not Available

    1986-10-01

    In the Interim Report No. 1, it was reported that the fluorescence lifetime (greater than or equal to 750..mu..s) in Nd doped Y(PO/sub 3/)/sub 3/ was longer by a factor of three as compared to YAG. This means potentially three times as much energy storage and consequently more efficient for flashlamp pumping. It also makes diode pumping easier. In addition, since the Y site is octahedrally coordinated, there is a possibility of energy transfer using Cr as the sensitizing element. As suggested by W. Krupke, we decided to explore the trivalent cation metaphosphates systematically. The compounds investigated can be represented by the general formula A(PO/sub 3/)/sub 3/ where A = Y, Lu, In, Sc, GA and Al. The object is to study the fluorescence characteristics of Nd and Cr as well as the effectiveness of energy transfer from Cr to Nd. In addition, we also investigated other possible laser host crystals, notably CaMgSi/sub 2/O/sub 6/ (diopside), LaBO/sub 3/ and La(BO/sub 2/)/sub 3/. Results on these materials will also be discussed.

  20. Additive manufacturing of biologically-inspired materials.

    PubMed

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities. PMID:26750617

  1. Biological Potential of Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.; Conner, Anthony J.; Killham, Kenneth; Deamer, David W.

    1997-09-01

    Meteoritic materials are investigated as potential early planetary nutrients. Aqueous extracts of the Murchison C2 carbonaceous meteorite are utilized as a sole carbon source by microorganisms, as demonstrated by the genetically modifiedPseudomonas fluorescenceequipped with theluxgene. Nutrient effects are observed also with the soil microorganismsNocardia asteroidesandArthrobacter pascensthat reach populations up to 5 × 107CFU/ml in meteorite extracts, similar to populations in terrestrial soil extracts. Plant tissue cultures ofAsparagus officinalisandSolanum tuberosum(potato) exhibit enhanced pigmentation and some enhanced growth when meteorite extracts are added to partial nutrient media, but inhibited growth when added to full nutrient solution. The meteorite extracts lead to large increases in S, Ca, Mg, and Fe plant tissue contents as shown by X-ray fluorescence, while P, K, and Cl contents show mixed effects. In both microbiological and plant tissue experiments, the nutrient and inhibitory effects appear to be best balanced for growth at about 1:20 (extracted solid:H2O) ratios. The results suggest that solutions in cavities in meteorites can provide efficient concentrated biogenic and early nutrient environments, including high phosphate levels, which may be the limiting nutrient. The results also suggest that carbonaceous asteroid resources can sustain soil microbial activity and provide essential macronutrients for future space-based eco- systems.

  2. Verbal Final Exam in Introductory Biology Yields Gains in Student Content Knowledge and Longitudinal Performance

    ERIC Educational Resources Information Center

    Luckie, Douglas B.; Rivkin, Aaron M.; Aubry, Jacob R.; Marengo, Benjamin J.; Creech, Leah R.; Sweeder, Ryan D.

    2013-01-01

    We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge,…

  3. Biological warfare in the littorals. Final report

    SciTech Connect

    Larsen, R.W.

    1997-05-01

    Biological warfare (BW) has emerged as a significant threat to military operations and is particularly challenging at the operational level of warfare in a littoral environment. There are compelling reasons why an operational commander should be concerned about BW: global proliferation of biotechnology and biological weapons capabilities; suitability of BW for disrupting force projection across the littorals; and the vulnerability of American, allied and coalition forces to BW. The threat of facing an adversary capable and willing to use biological weapons will influence the commander`s application of the operational art across the six operational functions. Degradation of operational tempo, effects of psychological responses among the force, and stress on the organizational structure may challenge the command and control process. Operational intelligence will demand robust integration of technical analysis, intentions and warnings, meteorological information, and medical intelligence. The maneuver and movement processes will be taxed to function effectively when ports and airfields offer such lucrative BW targets. Biological weapons may dictate the location of operational fires assets as well as the make-up of the target lists. Operational logistics assumes great importance in the medical functions, decontamination processes, and troop replacement and unit reconstitution. Operational protection encompasses nearly every aspect of BW defense and will demand a balance between what is necessary and what is possible to protect. As daunting as the challenges appear, the operational-level commander has at his disposal many tools necessary to prepare for biological warfare in the littorals. Ultimately, the commander must convince his force, his allies, and his enemies that the command can fight effectively in a BW environment, on land and sea.

  4. An Experimental Evaluation of the Effectiveness of the Biological Sciences Curriculum Study Special Materials Approach to Teaching Biology to the Slow Learner.

    ERIC Educational Resources Information Center

    Welford, John Mack

    Students (comparable in intelligence and ability) in slow-learning classes using either "Biological Sciences Curriculum Study (BSCS) Special Materials" or some other slow-learner biology materials, were compared on the basis of scores on the "Nelson Biology Test", the "Biological Sciences; Patterns and Processes Final Examination", and two short…

  5. 37 CFR 1.801 - Biological material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Biological material. 1.801 Section 1.801 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES Biotechnology Invention Disclosures Deposit...

  6. 37 CFR 1.801 - Biological material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Biological material. 1.801 Section 1.801 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES Biotechnology Invention Disclosures Deposit...

  7. 37 CFR 1.801 - Biological material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Biological material. 1.801 Section 1.801 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES Biotechnology Invention Disclosures Deposit...

  8. Using Raman spectroscopy to characterize biological materials.

    PubMed

    Butler, Holly J; Ashton, Lorna; Bird, Benjamin; Cinque, Gianfelice; Curtis, Kelly; Dorney, Jennifer; Esmonde-White, Karen; Fullwood, Nigel J; Gardner, Benjamin; Martin-Hirsch, Pierre L; Walsh, Michael J; McAinsh, Martin R; Stone, Nicholas; Martin, Francis L

    2016-04-01

    Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation; biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer. As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis. PMID:26963630

  9. Structure and mechanics of interfaces in biological materials

    NASA Astrophysics Data System (ADS)

    Barthelat, Francois; Yin, Zhen; Buehler, Markus J.

    2016-04-01

    Hard biological materials — for example, seashells, bone or wood — fulfil critical structural functions and display unique and attractive combinations of stiffness, strength and toughness, owing to their intricate architectures, which are organized over several length scales. The size, shape and arrangement of the ‘building blocks’ of which these materials are made are essential for defining their properties and their exceptional performance, but there is growing evidence that their deformation and toughness are also largely governed by the interfaces that join these building blocks. These interfaces channel nonlinear deformations and deflect cracks into configurations in which propagation is more difficult. In this Review, we discuss comparatively the composition, structure and mechanics of a set of representative biological interfaces in nacre, bone and wood, and show that these interfaces possess unusual mechanical characteristics, which can encourage the development of advanced bioinspired composites. Finally, we highlight recent examples of synthetic materials inspired from the mechanics and architecture of natural interfaces.

  10. Structural biological materials: Overview of current research

    NASA Astrophysics Data System (ADS)

    Chen, P.-Y.; Lin, A. Y.-M.; Stokes, A. G.; Seki, Y.; Bodde, S. G.; McKittrick, J.; Meyers, M. A.

    2008-06-01

    Through specific biological examples this article illustrates the complex designs that have evolved in nature to address strength, toughness, and weight optimization. Current research is reviewed, and the structure of some shells, bones, antlers, crab exoskeletons, and avian feathers and beaks is described using the principles of materials science and engineering by correlating the structure with mechanical properties. In addition, the mechanisms of deformation and failure are discussed.

  11. Quantification of DNA in Biologic Scaffold Materials

    PubMed Central

    Gilbert, Thomas W.; Freund, John; Badylak, Stephen F.

    2009-01-01

    Biologic scaffold materials composed of extracellular matrix (ECM) are routinely used for a variety of clinical applications ranging from the treatment of chronic skin ulcers to hernia repair and orthopaedic soft tissue reconstruction. The tissues and species from which the ECM is harvested vary widely as do the methods used to remove the cellular component of the source tissues. The efficacy of decellularization procedures can be quantified by examination of the DNA that remains in the ECM. The objective of the present study was to determine the DNA content and fragment length in both laboratory produced and commercially available ECM scaffold materials. Results showed that the majority of DNA is removed from ECM devices but that small amounts remained in most tested materials. PMID:18619621

  12. Learning from systems biology: An ``Omics'' approach to materials design

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2008-03-01

    An understanding of systems biology provides an excellent paradigm for the materials scientist. Ultimately one would like to take an “atoms-applications” approach to materials design. This paper describes how the concepts of genomics, proteomics, and other biological behavior which form the foundations of modern biology can be applied to materials design through materials informatics.

  13. Viscoelastic characterization of soft biological materials

    NASA Astrophysics Data System (ADS)

    Nayar, Vinod Timothy

    Progressive and irreversible retinal diseases are among the primary causes of blindness in the United States, attacking the cells in the eye that transform environmental light into neural signals for the optic pathway. Medical implants designed to restore visual function to afflicted patients can cause mechanical stress and ultimately damage to the host tissues. Research shows that an accurate understanding of the mechanical properties of the biological tissues can reduce damage and lead to designs with improved safety and efficacy. Prior studies on the mechanical properties of biological tissues show characterization of these materials can be affected by environmental, length-scale, time, mounting, stiffness, size, viscoelastic, and methodological conditions. Using porcine sclera tissue, the effects of environmental, time, and mounting conditions are evaluated when using nanoindentation. Quasi-static tests are used to measure reduced modulus during extended exposure to phosphate-buffered saline (PBS), as well as the chemical and mechanical analysis of mounting the sample to a solid substrate using cyanoacrylate. The less destructive nature of nanoindentation tests allows for variance of tests within a single sample to be compared to the variance between samples. The results indicate that the environmental, time, and mounting conditions can be controlled for using modified nanoindentation procedures for biological samples and are in line with averages modulus values from previous studies but with increased precision. By using the quasi-static and dynamic characterization capabilities of the nanoindentation setup, the additional stiffness and viscoelastic variables are measured. Different quasi-static control methods were evaluated along with maximum load parameters and produced no significant difference in reported reduced modulus values. Dynamic characterization tests varied frequency and quasi-static load, showing that the agar could be modeled as a linearly

  14. The cutting edge: Sharp biological materials

    NASA Astrophysics Data System (ADS)

    Meyers, M. A.; Lin, A. Y. M.; Lin, Y. S.; Olevsky, E. A.; Georgalis, S.

    2008-03-01

    Through hundreds of millions of years of evolution, organisms have developed a myriad of ingenious solutions to ensure and optimize survival and success. Biological materials that comprise organisms are synthesized at ambient temperature and pressure and mostly in aqueous environments. This process, mediated by proteins, limits the range of materials at the disposal of nature and therefore the design plays a pivotal role. This article focuses on sharp edges and serrations as important survival and predating mechanisms in a number of plants, insects, fishes, and mammals. Some plants have sharp edges covered with serrations. The proboscis of mosquitoes and stinger of bees are examples in insects. Serrations are a prominent feature in many fish teeth, and rodents have teeth that are sharpened continuously, ensuring their sharpness and efficacy. Some current bioinspired applications will also be reviewed.

  15. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  16. Final recommendations for reference materials in black carbon analysis

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael W. I.; Masiello, Caroline A.; Skjemstad, Jan O.

    Last summer, a symposium was held to discuss aspects of global biogeochemical cycles, including organic matter cycling in soils, rivers, and marine environments; black carbon particle fluxes and the biological pump; dissolved organic matter; and organic matter preservation. Seventy scientists from various disciplines, including oceanography, soil science, geology, and chemistry attended the 3-day meeting at the Friday Harbor Laboratories, a research station of the University of Washington.“New Approaches in Marine Organic Biogeochemistry” commemorated the life and science of a colleague and friend, John I. Hedges, who was also involved in several groups developing chemical reference materials. Part of this symposium included a workshop on chemical reference materials, where final recommendations of the Steering Committee for Black Carbon Reference Materials were presented.

  17. Solid freeform fabrication of biological materials

    NASA Astrophysics Data System (ADS)

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  18. Femtosecond laser patterning of biological materials

    NASA Astrophysics Data System (ADS)

    Grigoropoulos, Costas P.; Jeon, Hojeong; Hidai, Hirofumi; Hwang, David J.

    2011-03-01

    This paper aims at presenting a review of work at the Laser Thermal Laboratory on the microscopic laser modification of biological materials using ultrafast laser pulses. We have devised a new method for fabricating high aspect ratio patterns of varying height by using two-photon polymerization process in order to study contact guidance and directed growth of biological cells. Studies using NIH-3T3 and MDCK cells indicate that cell morphology on fiber scaffolds is influenced by the pattern of actin microfilament bundles. Cells experienced different strength of contact guidance depending on the ridge height. Cell morphology and motility was investigated on micronscale anisotropic cross patterns and parallel line patterns having different aspect ratios. A significant effect on cell alignment and directionality of migration was observed. Cell morphology and motility were influenced by the aspect ratio of the cross pattern, the grid size, and the ridge height. Cell contractility was examined microscopically in order to measure contractile forces generated by individual cells on self-standing fiber scaffolds.

  19. Programmable temperature control system for biological materials

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  20. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    concentrations of particles. The lipid bilayer allowed the particle to interface with particle without resulting in haemolysis. It was observed however, that spiculation (damage) of the RBCs still occurred despite the lack of cell lysis. During the course of the study, the composition of the outer leaflet of the lipid bilayer was altered to more closely match that of the outer leaflet of RBCs. This alteration proved to make the LB-l-MSN particle extremely compatible with RBCs in that spiculation of the cells was reduced by more than 50 % according to observations by scanning electron microscopy. A new synthetic route to mesoporous silica nanoparticles (MSNs) was developed using water in oil (W/O) emulsions was developed. This method relies on the presence of an amphiphilic stabilizer molecule to control the size and quality of the spherical morphology of the particles. Partitioning of the oil phase into cetyltrimethylammonium bromide surfactant molecules is implicated in expanding the size of the mesopores from the standard 3 nm pore to 7 nm. This material is extensively characterized using X-ray diffraction techniques and TEM microscopy. Chapter 3 also outlines the synthesis of a new periodic mesoporous organosilica (PMO) in which the bridging organic group is a benzobisoxazole molecule synthesized in the research group of Dr. Malika Jeffries-EL. While no immediate application of this new particle was proven, we propose this structure as the basis for a new class of light harvesting or light emitting diode material based on the performance of the polymers containing these benzobisoxazole moieties and functionalized dyes. The final project was the initial development of an N-heterocyclic carbene ligand based on an imidazole framework. This project represents significant synthetic challenges in that the pattern of substitution on the imidazole framework has not been reported in the literature to the best of our knowledge. Despite the synthetic challenges, significant progress has

  1. Method and apparatus for biological material separation

    DOEpatents

    Robinson, Donna L.

    2005-05-10

    There has been invented an apparatus comprising a separation barrier for excluding denser cell materials from less dense cell materials after centrifuging of the cells so that selected materials can be withdrawn from the less dense cell materials without inclusion of the denser cell materials or clogging of sampling equipment with denser cell materials. Cells from which selected material is to be withdrawn are centrifuged, either as cells or cells in media. Once the denser cell materials are isolated in a layer by centrifugal force, an invention screen or seive is submerged in the less dense cell material to a level above the layer of denser cell materials to isolate the denser cell materials from the less dense cell materials, preventing mixing of the denser cell materials back into the less dense cell materials when the cells or the cells in media are no longer being centrifuged and to prevent clogging of sampling equipment with denser cell materials. In a particularly useful application of the invention method and apparatus, plasmid DNA can be withdrawn from less dense cell materials without contamination or interference with denser cell materials.

  2. Reversibly immobilized biological materials in monolayer films on electrodes

    DOEpatents

    Weaver, Paul F.; Frank, Arthur J.

    1993-01-01

    Methods and techniques are described for reversibly binding charged biological particles in a fluid medium to an electrode surface. The methods are useful in a variety of applications. The biological materials may include microbes, proteins, and viruses. The electrode surface may consist of reversibly electroactive materials such as polyvinylferrocene, silicon-linked ferrocene or quinone.

  3. Reversibly immobilized biological materials in monolayer films on electrodes

    DOEpatents

    Weaver, P.F.; Frank, A.J.

    1993-05-04

    Methods and techniques are described for reversibly binding charged biological particles in a fluid medium to an electrode surface. The methods are useful in a variety of applications. The biological materials may include microbes, proteins, and viruses. The electrode surface may consist of reversibly electroactive materials such as polyvinylferrocene, silicon-linked ferrocene or quinone.

  4. 28 CFR 22.25 - Final disposition of identifiable materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RESEARCH AND STATISTICAL INFORMATION § 22.25 Final disposition of identifiable materials. Upon completion of a research or statistical project the security of identifiable research or statistical...

  5. 28 CFR 22.25 - Final disposition of identifiable materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RESEARCH AND STATISTICAL INFORMATION § 22.25 Final disposition of identifiable materials. Upon completion of a research or statistical project the security of identifiable research or statistical...

  6. 28 CFR 22.25 - Final disposition of identifiable materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RESEARCH AND STATISTICAL INFORMATION § 22.25 Final disposition of identifiable materials. Upon completion of a research or statistical project the security of identifiable research or statistical...

  7. 28 CFR 22.25 - Final disposition of identifiable materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RESEARCH AND STATISTICAL INFORMATION § 22.25 Final disposition of identifiable materials. Upon completion of a research or statistical project the security of identifiable research or statistical...

  8. 28 CFR 22.25 - Final disposition of identifiable materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RESEARCH AND STATISTICAL INFORMATION § 22.25 Final disposition of identifiable materials. Upon completion of a research or statistical project the security of identifiable research or statistical...

  9. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    concentrations of particles. The lipid bilayer allowed the particle to interface with particle without resulting in haemolysis. It was observed however, that spiculation (damage) of the RBCs still occurred despite the lack of cell lysis. During the course of the study, the composition of the outer leaflet of the lipid bilayer was altered to more closely match that of the outer leaflet of RBCs. This alteration proved to make the LB-l-MSN particle extremely compatible with RBCs in that spiculation of the cells was reduced by more than 50 % according to observations by scanning electron microscopy. A new synthetic route to mesoporous silica nanoparticles (MSNs) was developed using water in oil (W/O) emulsions was developed. This method relies on the presence of an amphiphilic stabilizer molecule to control the size and quality of the spherical morphology of the particles. Partitioning of the oil phase into cetyltrimethylammonium bromide surfactant molecules is implicated in expanding the size of the mesopores from the standard 3 nm pore to 7 nm. This material is extensively characterized using X-ray diffraction techniques and TEM microscopy. Chapter 3 also outlines the synthesis of a new periodic mesoporous organosilica (PMO) in which the bridging organic group is a benzobisoxazole molecule synthesized in the research group of Dr. Malika Jeffries-EL. While no immediate application of this new particle was proven, we propose this structure as the basis for a new class of light harvesting or light emitting diode material based on the performance of the polymers containing these benzobisoxazole moieties and functionalized dyes. The final project was the initial development of an N-heterocyclic carbene ligand based on an imidazole framework. This project represents significant synthetic challenges in that the pattern of substitution on the imidazole framework has not been reported in the literature to the best of our knowledge. Despite the synthetic challenges, significant progress has

  10. The acquisition of dangerous biological materials :

    SciTech Connect

    Aceto, Donato Gonzalo; Astuto-Gribble, Lisa M.; Gaudioso, Jennifer M.

    2007-11-01

    Numerous terrorist organizations have openly expressed interest in producing and deploying biological weapons. However, a limiting factor for many terrorists has been the acquisition of dangerous biological agents, as evidenced by the very few successful instances of biological weapons use compared to the number of documented hoaxes. Biological agents vary greatly in their ability to cause loss of life and economic damage. Some agents, if released properly, can kill many people and cause an extensive number of secondary infections; other agents will sicken only a small number of people for a short period of time. Consequently, several biological agents can potentially be used to perpetrate a bioterrorism attack but few are likely capable of causing a high consequence event. It is crucial, from a US national security perspective, to more deeply understand the likelihood that terrorist organizations can acquire the range of these agents. Few studies have attempted to comprehensively compile the technical information directly relevant to the acquisition of dangerous bacteria, viruses and toxins. In this report, technical fact sheets were assembled for 46 potentially dangerous biological agents. Much of the information was taken from various research sources which could ultimately and significantly expedite and improve bioterrorism threat assessments. By systematically examining a number of specific agent characteristics included in these fact sheets, it may be possible to detect, target, and implement measures to thwart future terrorist acquisition attempts. In addition, the information in these fact sheets may be used as a tool to help laboratories gain a rudimentary understanding of how attractive a method laboratory theft is relative to other potential acquisition modes.

  11. Producing Dissemination Materials. Final Draft Version.

    ERIC Educational Resources Information Center

    Degener, David, Comp.; And Others

    This manual is intended to help projects approved by the Joint Dissemination Review Panel produce materials that will support their dissemination activities. Specifically directed toward career education projects, it should be equally useful for other projects. Section 1 discusses diffusion/adoption and these topics regarding materials: purpose,…

  12. Improved radiant burner material. Final report

    SciTech Connect

    Milewski, J.V.; Shoultz, R.A.; Bourque, M.M.; Milewski, E.B.

    1998-01-01

    Under DOE/ERIP funds were made available to Superkinetic, Inc. for the development of an improved radiant burner material. Three single crystal ceramic fibers were produced and two fiber materials were made into felt for testing as radiant burner screens. The materials were alpha alumina and alpha silicon nitride. These fibers were bonded with a high temperature ceramic and made into a structurally sound trusswork like screen composed of million psi fiber members. These screens were about 5% solid for 95 porosity as needed to permit the flow of combustable natural gas and air mixture. Combustion test proved that they performed very satisfactory and better than the current state of art screen and showed no visable degrade after testing. It is recommended that more time and money be put into expanding this technology and test these new materials for their maximum temperature and durability for production applications that require better burner material.

  13. Management of Biological Materials in Wastewater from Research & Development Facilities

    SciTech Connect

    Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

    2011-04-01

    PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

  14. Functionalized apertures for the detection of chemical and biological materials

    DOEpatents

    Letant, Sonia E.; van Buuren, Anthony W.; Terminello, Louis J.; Thelen, Michael P.; Hope-Weeks, Louisa J.; Hart, Bradley R.

    2010-12-14

    Disclosed are nanometer to micron scale functionalized apertures constructed on a substrate made of glass, carbon, semiconductors or polymeric materials that allow for the real time detection of biological materials or chemical moieties. Many apertures can exist on one substrate allowing for the simultaneous detection of numerous chemical and biological molecules. One embodiment features a macrocyclic ring attached to cross-linkers, wherein the macrocyclic ring has a biological or chemical probe extending through the aperture. Another embodiment achieves functionalization by attaching chemical or biological anchors directly to the walls of the apertures via cross-linkers.

  15. LDRD final report on nonflammable deterrent materials

    SciTech Connect

    Ulibarri, T.A.; Rand, P.B.; Shepodd, T.

    1997-05-01

    Dispensable materials, such as sticky foams and rigid polyurethane foams, have been used as access deterrent systems by DOE security since the 1970`s. While these have been very effective systems, they also have some intrinsic problems such as toxicity, flammability and a limited range of temperature in which they remain functional. Current trends to use less-than-lethal methods to gain advantage in military and civilian conflict scenarios demand that new and better deterrent materials be designed. The most effective sticky foam is a hydrocarbon-based material which is composed of high molecular weight polymers, low molecular weight tackifying agents, fire retardants and foam stabilizing surfactants. In order to expand and fully utilize sticky foam technology, a truly nonflammable analog is required. To this end, this work involves first generation development of silicone-based deterrent systems. Two basic types of silicone systems were evaluated. First, systems based on commercial resins were prepared using a variety of thixotropic materials, plasticizers and formulation strategies. Second, systems were prepared using in situ sol-gel techniques to rapidly promote gelation in blends of functionalized silicone polymers. The resulting materials were evaluated for their foamability using non-CFC foaming agents and found to be suitable for foam formation. The properties of these sticky materials can be tailored by virtue of the formulation flexibility; thus, they represent a new class of nontoxic, nonflammable deterrents with a wide temperature range of use.

  16. Energy Materials Center at Cornell: Final Report

    SciTech Connect

    Abruña, Héctor; Mutolo, Paul F

    2015-01-02

    The mission of the Energy Materials Center at Cornell (emc2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for; the development and improved performance of materials for both electrodes at which storage or conversion occurs; understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods for structuring them to enable high mass transport as well as high ionic and electronic conductivity; development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed; and development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.

  17. Materiomics: biological protein materials, from nano to macro

    PubMed Central

    Cranford, Steven; Buehler, Markus J

    2010-01-01

    Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature’s materials have been hindered by our lack of fundamental understanding of these materials’ intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties

  18. Cryocycling of energetic materials. Final report

    SciTech Connect

    Griffiths, S.; Nilson, R.; Handrock, J.; Revelli, V.; Weingarten, L.

    1997-08-01

    The Cryocycling of Energetic Materials Project was executed in the period FY`94-96 as a Life Cycle Engineering activity in the Memorandum of Understanding (MOU) on advanced conventional munitions. This MOU is an agreement between the Departments of Energy and Defense (Office of Munitions) that facilitates the development of technologies of mutual interest to the two Departments. The cryocycling process is a safe, environmentally friendly, and cost effective means of rubblizing bulk energetic materials so that they can be easily reused in a variety of new products. For this reason, cryocycling of excess solid energetic materials is one of the recycle/reuse strategies under study for demilitarized munitions in the Departments of Energy and Defense. These strategies seek to minimize the environmental damage associated with disposal of decommissioned energetic materials. In addition, they encourage technologies that can be used to derive economic benefit from reuse/reapplication of materials that would otherwise be treated as hazardous wastes. 45 refs., 38 figs., 7 tabs.

  19. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    SciTech Connect

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

  20. Cadmium (materials flow). Information circular/1994 (Final)

    SciTech Connect

    Llewellyn, T.O.

    1994-01-01

    This U.S. Bureau of Mines (USBM) report presents a concise review on sources, processes, supply, and historical use patterns of domestic cadmium. It also covers a preliminary estimated cadmium material flow for the year 1989. This preliminary study contains information on cadmium and cadmium-bearing products in the United States. The data in this report were obtained from both published and/or unpublished sources of information. However, in order to estimate the fate of cadmium in each operation or application stage, some assumptions, judgments, and correlations were made by the USBM in an attempt to determine the material flows and losses.

  1. Interim storage of recyclable materials. Final report

    SciTech Connect

    1998-11-01

    The purpose of this study was to investigate long-term, economical, outdoor storage of a variety of postconsumer recyclable materials. Field investigations and laboratory analysis were performed to examine how protected and unprotected storage would affect marketability and product quality of baled plastics, papers, and other miscellaneous potentially recyclable materials. Baled materials were stored and evaluated over a period of approximately two years. Evaluation of the stored paper products was undertaken using handsheets to perform tests as published by the Technical Association of the Pulp and Paper Industry (TAPPI). A beater curve analysis of selected stored papers, a pilot-scale papermaking run on a Number 2 Fourdrinier Paper machine, and two microbial analysis of the paper materials were also undertaken. Plastic samples obtained from the field were evaluated for oxidation using an Infrared Spectrophotometer (IR), and a controlled `blackbox` IR study was completed. Liquid run-off from bales was analyzed on a quarterly basis. The authors` investigations show that inexpensive outdoor storage for some paper and plastic products is potentially viable as some postconsumer paper and plastic products can be stored outdoors for long periods of time, 300 days or more, without protection. Few potential negative environmental impacts of such storage were found.

  2. Evaluation of advanced materials. Final report

    SciTech Connect

    Wright, I.G.; Clauer, A.H.; Shetty, D.K.; Tucker, T.R.; Stropki, J.T.

    1982-11-18

    Cemented tungsten carbides with a binder level in the range of 5 to 6 percent exhibited the best resistance to erosion for this class of materials. Other practical cermet meterials were diamond - Si/SiC, Al/sub 2/O/sub 3/-B/sub 4/C-Cr, and B/sub 4/C-Co. SiAlON exhibited erosion resistance equivalent to the best WC-cermet. The only coating system to show promise of improved erosion resistance was CVD TiB/sub 2/ on cemented TiB/sub 2/-Ni. Cracking and/or spalling of a TiC coating and a proprietary TMT coating occurred in the standard slurry erosion test. Ranking of cemented tungsten carbide materials in the laboratory erosion test was the same as that found in service in the Wilsonville pilot plant. Specimens from the Fort Lewis pilot plant which performed well in service exhibited low erosion in the laboratory test. A substitute slurry, was found to be 2 to 4 times more erosive than the coal-derived slurry 8 wt% solids. Ranking of materials in the substitute slurry was nearly identical to that in the coal-derived slurry. Three modes of erosion were: ductile cutting; elastic-plastic indentation and fracture; and intergranular fracture. Erosion of a given material was closely related to its microstructure. In the substitute slurry, the angle-dependence of erosion of two forms of SiC, hot-pressed and sintered, were similar, but the sintered material eroded slower. Laser fusing of preplaced powder mixtures can produce cermet-like structures with potential for erosive and sliding wear resistance. TiC particles in Stellite 6 matrix proved less prone to cracking than WC particles in the same matrix. 74 figures, 14 tables.

  3. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  4. Survey of techniques used to preserve biological materials

    NASA Technical Reports Server (NTRS)

    Feinler, E. J.; Hubbard, R. W.

    1972-01-01

    The techniques used to preserve biological materials are documented and summarized. The report is presented in a handbook format that categorizes the most important preservation techniques available, and includes a representative sampling of the thousands of applications of these techniques to biological materials and organisms. Details of the information coverage and method of approach are outlined. Data are given in tabular form, and an index and extensive bibliography are included.

  5. Ceramic materials for solar collectors. Final report

    SciTech Connect

    Ankeny, A.E.

    1982-09-29

    The purpose of this project was to identify ceramic materials which exhibit solar absorption properties which are appropriate for flat plate solar collectors. To accomplish this, various glaze formulations and clay combinations were produced and evaluated for their potential as solar absorbers. For purposes of comparison a black coated copper sheet was also tested concurrently with the ceramic materials. Thirty-five different coatings were prepared on fifty-six tiles. Two different clays, a porcelain and a stoneware clay, were used to make the tiles. From the tiles prepared, thirty of the most promising coatings were chosen for evaluation. The test apparatus consisted of a wooden frame which enclosed four mini-collectors. Each mini-collector was a rectangular ceramic heat exchanger on which a test tile could be mounted. The working fluid, water, was circulated into the collector, passed under the test tile where it gained heat, and then was discharged out of the collector. Thermometers were installed in the inlet and discharge areas to indicate the temperature increase of the water. The quantity of heat absorbed was determined by measuring the water flow (pounds per minute) and multiplying it by the temperature increase (/sup 0/F). The control sample, a copper wheet painted flat black, provided a base by which to compare the performance of the test tiles installed in the other three mini-collectors. Testing was conducted on various days during August and September, 1982. The test results indicate that coatings with very satisfactory solar absorbing properties can be made with ceramic materials. The results suggest that an economically viable ceramic solar collector could be constructed if engineered to minimize the effects of relatively low thermal conductivity of clay.

  6. Material for Point Design (final summary of DIME material)

    SciTech Connect

    Bradley, Paul A.

    2014-02-25

    These slides summarize the motivation of the Defect Induced Mix Experiment (DIME) project, the “point design” of the Polar Direct Drive (PDD) version of the NIF separated reactant capsule, the experimental requirements, technical achievements, and some useful backup material. These slides are intended to provide much basic material in one convenient location and will hopefully be of some use for subsequent experimental projects.

  7. Microwave processing of materials. Final report

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Garard, R.S.

    1997-11-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (LMES) and Lambda Technologies, Inc. (Lambda) of Raleigh, N.C., was initiated in May 1995. [Lockheed Martin Energy Research, Corp. (LMER) has replaced LMES]. The completion data for the Agreement was December 31, 1996. The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace (VFMF); and (2) microwave curing of polymer composites. The VFMF, whose initial conception and design was funded by the Advanced Industrial Concepts (AIC) Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies.

  8. [Constitution of a bank of biological material. Practical aspects].

    PubMed

    Henny, J

    2003-02-01

    A bank of biological materials (Biorepositories) aims to collect and preserve in a variable time period (from few days to several years) various biological samples (serum, plasma, cells, DNA, etc) with a view to make subsequent analysis associated with a powerful information management system, enabling the storage of data related to the biological specimens. The bioprocessing of Biorepositories is complex and include: specimen collection, processing issues, identification process, design equipment: liquid nitrogen and mechanical freezers, storage techniques, bioclinical information and biological specimens inventory management systems, quality assurance programs, ethical and legal problems. PMID:12684569

  9. Support of the IMA summer program molecular biology. Final report

    SciTech Connect

    Friedman, A.

    1995-08-01

    The revolutionary progress in molecular biology within the last 30 years opens the way to full understanding of the molecular structures and mechanisms of living organisms. The mathematical sciences accompany and support much of the progress achieved by experiment and computation, as well as provide insight into geometric and topological properties of biomolecular structure and processes. The 4 week program at the IMA brought together biologists and mathematicians leading researchers, postdocs, and graduate students. It focused on genetic mapping and DNA sequencing, followed by biomolecular structure and dynamics. High-resolution linkage maps of genetic marker were discussed extensively in relation to the human genome project. The next level of DNA mapping is physical mapping, consisting of overlapping clones spanning the genome. These maps are extremely useful for genetic analysis. They provide the material for less redundant sequencing and for detailed searches for a gene among other things. This topic was also extensively studied by the participants. From there, the program moved to consider protein structure and dynamics; this is a broad field with a large array of interesting topics. It is of key importance in answering basic scientific questions about the nature of all living organisms, and has practical biomedical applications. The major subareas of structure prediction and classification, techniques and heuristics for the simulation of protein folding, and molecular dynamics provide a rich problem domain where mathematics can be helpful in analysis, modeling, and simulation. One of the important problems in molecular biology is the three-dimensional structure of proteins, DNA and RNA in the cell, and the relationship between structure and function. The program helped increased the understanding of the topology of cellular DNA, RNA and proteins and the various life-sustaining mechanisms used by the cell which modify this molecular topology.

  10. Inorganic polymers and materials. Final report

    SciTech Connect

    Sneddon, Larry G.

    2001-01-01

    This DOE-sponsored project was focused on the design, synthesis, characterization, and applications of new types of boron and silicon polymers with a goal of attaining processable precursors to advanced ceramic materials of technological importance. This work demonstrated a viable design strategy for the systematic formation of polymeric precursors to ceramics based on the controlled functionalization of preformed polymers with pendant groups of suitable compositions and crosslinking properties. Both the new dipentylamine-polyborazylene and pinacolborane-hydridopolysilazane polymers, unlike the parent polyborazylene and other polyborosilazanes, are stable as melts and can be easily spun into polymer fibers. Subsequent pyrolyses of these polymer fibers then provide excellent routes to BN and SiNCB ceramic fibers. The ease of synthesis of both polymer systems suggests new hybrid polymers with a range of substituents appended to polyborazylene or polysilazane backbones, as well as other types of preceramic polymers, should now be readily achieved, thereby allowing even greater control over polymer and ceramic properties. This control should now enable the systematic tailoring of the polymers and derived ceramics for use in different technological applications. Other major recent achievements include the development of new types of metal-catalyzed methods needed for the polymerization and modification of inorganic monomers and polymers, and the modification studies of polyvinylsiloxane and related polymers with substituents that enable the formation of single source precursors to high-strength, sintered SiC ceramics.

  11. Wear and abrasion resistance selection maps of biological materials.

    PubMed

    Amini, Shahrouz; Miserez, Ali

    2013-08-01

    The mechanical design of biological materials has generated widespread interest in recent years, providing many insights into their intriguing structure-property relationships. A critical characteristic of load-bearing materials, which is central to the survival of many species, is their wear and abrasion tolerance. In order to be fully functional, protective armors, dentitious structures and dynamic appendages must be able to tolerate repetitive contact loads without significant loss of materials or internal damage. However, very little is known about this tribological performance. Using a contact mechanics framework, we have constructed materials selection charts that provide general predictions about the wear performance of biological materials as a function of their fundamental mechanical properties. One key assumption in constructing these selection charts is that abrasion tolerance is governed by the first irreversible damage at the contact point. The maps were generated using comprehensive data from the literature and encompass a wide range of materials, from heavily mineralized to fully organic materials. Our analysis shows that the tolerance of biological materials against abrasion depends on contact geometry, which is ultimately correlated to environmental and selective pressures. Comparisons with experimental data from nanoindentation experiments are also drawn in order to verify our predictions. With the increasing amount of data available for biological materials also comes the challenge of selecting relevant model systems for bioinspired materials engineering. We suggest that these maps will be able to guide this selection by providing an overview of biological materials that are predicted to exhibit the best abrasion tolerance, which is of fundamental interest for a wide range of applications, for instance in restorative implants and protective devices. PMID:23643608

  12. [Species and group classification of putrefied biological material].

    PubMed

    Kulhányová, V

    1994-05-01

    The author analyzes some experience in serological examinations of biological material which undergoes putrefaction. The aim of the examinations was to evaluate how long is it possible to assess species and group specific properties in material altered by putrefaction. PMID:8023197

  13. Benefit evaluation of space processing of biological materials

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A rational analytical basis for the evaluation of potential benefits of space processing of biological materials is described. A preliminary evaluation of three candidate space processed biological materials was accomplished. Materials investigated were human lymphocytes, urokinase, and Beta cells. Separation of lymphocyte groups was considered in order to improve the matching of donors and recipients for kidney transplantation, while urokinase was examined in regard to treatment of thromboembolic diseases. Separation of Beta cells was studied since it could provide a highly effective means for the treatment of juvenile-onset diabetes.

  14. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.

    PubMed

    Buehler, Markus J; Ackbarow, Theodor

    2008-12-01

    Biological protein materials (BPMs), intriguing hierarchical structures formed by assembly of chemical building blocks, are crucial for critical functions of life. The structural details of BPMs are fascinating: They represent a combination of universally found motifs such as alpha-helices or beta-sheets with highly adapted protein structures such as cytoskeletal networks or spider silk nanocomposites. BPMs combine properties like strength and robustness, self-healing ability, adaptability, changeability, evolvability and others into multi-functional materials at a level unmatched in synthetic materials. The ability to achieve these properties depends critically on the particular traits of these materials, first and foremost their hierarchical architecture and seamless integration of material and structure, from nano to macro. Here, we provide a brief review of this field and outline new research directions, along with a review of recent research results in the development of structure-property relationships of biological protein materials exemplified in a study of vimentin intermediate filaments. PMID:18803059

  15. FY05 LDRD Final Report, A Revolution in Biological Imaging

    SciTech Connect

    Chapman, H N; Bajt, S; Balhorn, R; Barty, A; Barsky, D; Bogan, M; Chung, S; Frank, M; Hau-Riege, S; Ishii, H; London, R; Marchesini, S; Noy, A; Segelke, B; Szoke, A; Szoke, H; Trebes, J; Wootton, A; Hajdu, J; Bergh, M; Caleman, C; Huldt, G; Lejon, S; der Spoel, D v; Howells, M; He, H; Spence, J; Nugent, K; Ingerman, E

    2006-01-20

    X-ray free-electron lasers (XFELs) are currently under development and will provide a peak brightness more than 10 orders of magnitude higher than modern synchrotrons. The goal of this project was to perform the fundamental research to evaluate the possibility of harnessing these unique x-ray sources to image single biological particles and molecules at atomic resolution. Using a combination of computational modeling and experimental verification where possible, they showed that it should indeed be possible to record coherent scattering patterns from single molecules with pulses that are shorter than the timescales for the degradation of the structure due to the interaction with those pulses. They used these models to determine the effectiveness of strategies to allow imaging using longer XFEL pulses and to design validation experiments to be carried out at interim ultrafast sources. They also developed and demonstrated methods to recover three-dimensional (3D) images from coherent diffraction patterns, similar to those expected from XFELs. The images of micron-sized test objects are the highest-resolution 3D images of any noncrystalline material ever formed with x-rays. The project resulted in 14 publications in peer-reviewed journals and four records of invention.

  16. Biological production of ethanol from coal. Final report

    SciTech Connect

    Not Available

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  17. The host response to allogeneic and xenogeneic biological scaffold materials.

    PubMed

    Keane, Timothy J; Badylak, Stephen F

    2015-05-01

    The clinical use of biological scaffold materials has become commonplace. Such scaffolds are composed of extracellular matrix (ECM), or components of ECM, derived from allogeneic or xenogeneic tissues. Such scaffold materials vary widely in their source tissue, processing methods and sterilization methods. The success or failure of an ECM scaffold for a given application is dependent on the host response following implantation; a response that is largely mediated by the innate immune system and which is influenced by a numerous factors, including the processing methods used in the preparation of biological scaffolds. The present paper reviews various aspects of the host response to biological scaffolds and factors that affect this response. In addition, some of the logistical, regulatory and reconstructive implications associated with the use of biological scaffolds are discussed. PMID:24668694

  18. Flexible Organic Electronics in Biology: Materials and Devices.

    PubMed

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-01

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. PMID:25393596

  19. Materials Manufactured from 3D Printed Synthetic Biology Arrays

    NASA Technical Reports Server (NTRS)

    Gentry, Diana; Micks, Ashley

    2013-01-01

    Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.

  20. Near-Infrared Fluorescent Materials for Sensing of Biological Targets

    PubMed Central

    Amiot, Carrie L.; Xu, Shuping; Liang, Song; Pan, Lingyun; Zhao, Julia Xiaojun

    2008-01-01

    Near-infrared fluorescent (NIRF) materials are promising labeling reagents for sensitive determination and imaging of biological targets. In the near-infrared region biological samples have low background fluorescence signals, providing high signal to noise ratio. Meanwhile, near-infrared radiation can penetrate into sample matrices deeply due to low light scattering. Thus, in vivo and in vitro imaging of biological samples can be achieved by employing the NIRF probes. To take full advantage of NIRF materials in the biological and biomedical field, one of the key issues is to develop intense and biocompatible NIRF probes. In this review, a number of NIRF materials are discussed including traditional NIRF dye molecules, newly developed NIRF quantum dots and single-walled carbon nanotubes, as well as rare earth metal compounds. The use of some NIRF materials in various nanostructures is illustrated. The enhancement of NIRF using metal nanostructures is covered as well. The fluorescence mechanism and bioapplications of each type of the NIRF materials are discussed in details.

  1. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    PubMed

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments. PMID:27214690

  2. Electron Microscopy of Biological Materials at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Kourkoutis, Lena Fitting; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2012-08-01

    Electron microscopy of biological matter uses three different imaging modalities: (a) electron crystallography, (b) single-particle analysis, and (c) electron tomography. Ideally, these imaging modalities are applied to frozen-hydrated samples to ensure an optimal preservation of the structures under scrutiny. Cryo-electron microscopy of biological matter has made important advances in the past decades. It has become a research tool that further expands the scope of structural research into unique areas of cell and molecular biology, and it could augment the materials research portfolio in the study of soft and hybrid materials. This review addresses how researchers using transmission electron microscopy can derive structural information at high spatial resolution from fully hydrated specimens, despite their sensitivity to ionizing radiation, despite the adverse conditions of high vacuum for samples that have to be kept in aqueous environments, and despite their low contrast resulting from weakly scattering building blocks.

  3. Occupational Orientation: Applied Biological and Agricultural Occupations. Experimental Curriculum Materials.

    ERIC Educational Resources Information Center

    Illinois State Office of Education, Springfield.

    These experimental curriculum materials, from one of five clusters developed for the occupational orientation program in Illinois, include a series of learning activity packages (LAPs) designed to acquaint the student with the wide range of occupational choices available in the applied biological and agricultural occupations. The 30 LAPs, each…

  4. Reversibly immobilized biological materials in monolayer films on electrodes

    SciTech Connect

    Weaver, P.F.; Frank, A.J.

    1991-04-08

    A method is provided for reversibly binding charged biological particles in a fluid medium to an electrode surface. The method comprises treating (e.g., derivatizing) the electrode surface with an electrochemically active material; connecting the electrode to an electrical potential; and exposing the fluid medium to the electrode surface in a manner such that the charged particles become adsorbed on the electrode surface.

  5. Overview of light interaction with food and biological materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents the basic phenomena occurring during the interaction of light with biological and food materials, which form the foundation for different light scattering techniques that have been developed for property, quality and safety assessment of food and agricultural products. We first...

  6. Theory of light transfer in food and biological materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this chapter, we first define the basic radiometric quantities that are needed for describing light propagation in food and biological materials. Radiative transfer theory is then derived, according to the principle of the conservation of energy. Because the radiative transfer theory equation is ...

  7. Quantitation and detection of vanadium in biologic and pollution materials

    NASA Technical Reports Server (NTRS)

    Gordon, W. A.

    1974-01-01

    A review is presented of special considerations and methodology for determining vanadium in biological and air pollution materials. In addition to descriptions of specific analysis procedures, general sections are included on quantitation of analysis procedures, sample preparation, blanks, and methods of detection of vanadium. Most of the information presented is applicable to the determination of other trace elements in addition to vanadium.

  8. Potential for composting energetic material production wastes. Final report

    SciTech Connect

    Adrian, N.R.; Stratta, J.M.; Donahue, B.A.

    1995-09-01

    U.S. Army installations that manufacture munitions generate large quantities of energetic material (EM) and solid waste contaminated with energetic material (energetic material-contaminated waste, or EMCW). Disposal of EM and EMCW by open burning or open detonation (OB/OD) has been the practice for many years, but increasingly stringent environmental regulations are curtailing OB/OD operations. Although composting has been used in some instances for explosive-contaminated soils, it has not been examined for use with munitions production wastes. A literature search showed that many explosives are biodegradable and that some explosive-contaminated soils can also be treated by composting. A potential exists to treat munition production wastes by composting or other biological treatment processes. This study concluded that further investigation is needed to determine and test: (1) the energetic compounds that can be biodegraded, and (2) the conditions under which biological treatment processes can occur.

  9. On optimal hierarchy of load-bearing biological materials

    PubMed Central

    Zhang, Zuoqi; Zhang, Yong-Wei; Gao, Huajian

    2011-01-01

    Load-bearing biological materials such as shell, mineralized tendon and bone exhibit two to seven levels of structural hierarchy based on constituent materials (biominerals and proteins) of relatively poor mechanical properties. A key question that remains unanswered is what determines the number of hierarchical levels in these materials. Here we develop a quasi-self-similar hierarchical model to show that, depending on the mineral content, there exists an optimal level of structural hierarchy for maximal toughness of biocomposites. The predicted optimal levels of hierarchy and cooperative deformation across multiple structural levels are in excellent agreement with experimental observations. PMID:20810437

  10. Aluminum analysis in biological reference material by nondestructive methods

    SciTech Connect

    Landsberger, S.; Arendt, A.; Keck, B.; Glascock, M.

    1988-01-01

    In recent years, the determination of aluminum in biological materials has become the subject of many research projects. This interest stems from an increasing knowledge of the toxicity of aluminum to both aquatic and human life. Unfortunately, the detection of aluminum in biological materials has proven troublesome. The use of traditional chemical determinations has been shown to be very long and somewhat complicated. Several attempts have been made using neutron activation analysis, but an interfering reaction must be taken into account. In this experiment the rabbit irradiation facilities at the University of Missouri Research Reactor were used. The aluminum concentrations for eight certified reference materials are shown. When US National Bureau of Standards (NBS) value is given as certified or as an information value, results agree very well. The results for NBS 1572 citrus leaves agree, and NBS 1577 results agree very well with that of Glascock et al.

  11. Synthetic Self-Assembled Materials in Biological Environments.

    PubMed

    Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2016-06-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA, proteins), until recently the self-assembly of synthetic molecules has mainly been investigated ex vivo. The past few years however, have witnessed the emergence of a research field in which synthetic, self-assembling systems are used that are capable of operating as bioactive materials in biological environments. Here, this up-and-coming field, which has the potential of becoming a key area in chemical biology and medicine, is reviewed. Two main categories of applications of self-assembly in biological environments are identified and discussed, namely therapeutic and imaging agents. Within these categories key concepts, such as triggers and molecular constraints for in vitro/in vivo self-assembly and the mode of interaction between the assemblies and the biological materials will be discussed. PMID:27042774

  12. Biologically-Derived Photonic Materials for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Squire, Thomas H.; Lawson, John W.; Gusman, Michael; Lau, K.-H.; Sanjurjo, Angel

    2014-01-01

    Space vehicles entering a planetary atmosphere at high velocity can be subject to substantial radiative heating from the shock layer in addition to the convective heating caused by the flow of hot gas past the vehicle surface. The radiative component can be very high but of a short duration. Approaches to combat this effect include investigation of various materials to reflect the radiation. Photonic materials can be used to reflect radiation. The wavelengths reflected depend on the length scale of the ordered microstructure. Fabricating photonic structures, such as layers, can be time consuming and expensive. We have used a biologically-derived material as the template for forming a high temperature photonic material that could be incorporated into a heatshield thermal protection material.

  13. Dosimetry using environmental and biological materials. Final report

    SciTech Connect

    Haskell, E.; Kenner, G.; Hayes, R.

    1998-02-01

    This report summarizes a five year effort to improve the sensitivity and reliability of retrospective dosimetry methods, to collaborate with laboratories engaged in related research and to share the technology with startup laboratories seeking similar capabilities. This research program has focused on validation of electron paramagnetic resonance (EPR) as a dosimetry tool and on optimization of the technique by reducing the lower limits of detection, simplifying the process of sample preparation and analysis and speeding analysis to allow greater throughput in routine measurement situations. The authors have investigated the dosimetric signal of hard tissues in enamel, deorganified dentin, synthetic carbonated apatites and synthetic hydroxyapatite. This research has resulted in a total of 27 manuscripts which have been published, are in press, or have been submitted for publication. Of these manuscripts, 14 are included in this report and were indexed separately for inclusion in the data base.

  14. Dosimetry using environmental and biological materials. Final report

    SciTech Connect

    Haskell, E.; Kenner, G.; Hayes, R.

    1996-09-01

    Although theoretical models have been the traditional tool for assessment of doses delivered by nuclear accidents, their use is now accompanied by increasing political and scientific demand for physical measurements which provide site specific dose information related directly to the original events, can be used to verify and augment the theoretical models, and can be performed and reflicated by independent laboratories. This report details a four year effort to improve the sensitivity and reliability of retrospective methods, to collaborate with laboratories engaged in related research, and to share the technology with startup laboratories seeking similar capabilities.

  15. Biological upgrading of coal-derived synthesis gas: Final report

    SciTech Connect

    Barik, S.; Johnson, E.R.; Ko, C.W.; Clausen, E.C.; Gaddy, J.L.

    1986-10-01

    The technical feasibility of the biological conversion of coal synthesis gas to methane has been demonstrated in the University of Arkansas laboratories. Cultures of microorganisms have been developed which achieve total conversion in the water gas shift and methanation reactions in either mixed or pure cultures. These cultures carry out these conversions at ordinary temperatures and pressures, without sulfur toxicity. Several microorganisms have been identified as having commercial potential for producing methane. These include a mixed culture of unidentified bacteria; P. productus which produces acetate, a methane precursor; and Methanothrix sp., which produces methane from acetate. These cultures have been used in mixed reactors and immobilized cell reactors to achieve total CO and H/sub 2/ conversion in a retention time of less than two hours, quite good for a biological reactor. Preliminary economic projections indicate that a biological methanation plant with a size of 5 x 10/sup 10/ Btu/day can be economically attractive. 42 refs., 26 figs., 86 tabs.

  16. Curriculum and course materials for a forensic DNA biology course.

    PubMed

    Elkins, Kelly M

    2014-01-01

    The Forensic Science Education Programs Accreditation Commission (FEPAC) requires accredited programs offer a "coherent curriculum" to ensure each student gains a "thorough grounding of the natural…sciences." Part of this curriculum includes completion of a minimum of 15 semester-hours forensic science coursework, nine of which can involve a class in forensic DNA biology. Departments that have obtained or are pursuing FEPAC accreditation can meet this requirement by offering a stand-alone forensic DNA biology course; however, materials necessary to instruct students are often homegrown and not standardized; in addition, until recently, the community lacked commercially available books, lab manuals, and teaching materials, and many of the best pedagogical resources were scattered across various peer-reviewed journals. The curriculum discussed below is an attempt to synthesize this disparate information, and although certainly not the only acceptable methodology, the below discussion represents "a way" for synthesizing and aggregating this information into a cohesive, comprehensive whole. PMID:24591042

  17. Final Report: Imaging of Buried Nanoscale Optically Active Materials

    SciTech Connect

    Appelbaum, Ian

    2011-07-05

    This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

  18. Grays River Watershed and Biological Assessment, 2006 Final Report.

    SciTech Connect

    May, Christopher; Geist, David

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  19. Grays River Watershed and Biological Assessment Final Report 2006.

    SciTech Connect

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R.; Abbe, Timothy; Barton, Chase

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  20. Accurate determination of cobalt traces in several biological reference materials.

    PubMed

    Dybczyński, R; Danko, B

    1994-01-01

    A newly devised, very accurate ("definitive") method for the determination of trace amounts of cobalt in biological materials was validated by the analysis of several certified reference materials. The method is based on a combination of neutron activation and selective and quantitative postirradiation isolation of radiocobalt from practically all other radionuclides by ion-exchange and extraction chromatography followed by gamma-ray spectrometric measurement. The significance of criteria that should be fulfilled in order to accept a given result as obtained by the "definitive method" is emphasized. In view of the demonstrated very good accuracy of the method, it is suggested that our values for cobalt content in those reference materials in which it was originally not certified (SRM 1570 spinach, SRM 1571 orchard leaves, SRM 1577 bovine liver, and Czechoslovak bovine liver 12-02-01) might be used as provisional certified values. PMID:7710879

  1. Microdosimetry of fast neutrons in selected biological materials

    SciTech Connect

    Wallace, R.E.

    1987-01-01

    Microdosimetric quantities for selected neutron beams have been determined in muscle, brain, bone, and fat tissue equivalent materials. The quantities of interest were the dose distribution in lineal energy, frequency average lineal energy, dose average lineal energy, and dose average quality factor. A dose response factor was defined to combine the lineal energy dose spectrum with a response function per unit KERMA for an acute biological endpoint in prototype cells in vitro. The dependence of each quantity on material composition and neutron energy was investigated by theoretical calculation and separated into primary and scatter neutron fluence components. Neutron fluences in phantoms were calculated using a standard Monte Carlo code (MCNP). The charged particle fluences and lineal energy dose spectra were obtained using the continuous slowing-down approximation. Calculated microdosimetric spectra agreed with those measured in muscle-equivalent materials. The microdosimetry of primary and scattered neutrons in a large tissue phantom was calculated for three representative uncollimated neutron sources.

  2. Verbal Final Exam in Introductory Biology Yields Gains in Student Content Knowledge and Longitudinal Performance

    PubMed Central

    Luckie, Douglas B.; Rivkin, Aaron M.; Aubry, Jacob R.; Marengo, Benjamin J.; Creech, Leah R.; Sweeder, Ryan D.

    2013-01-01

    We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) questions (66.4% [n = 160] and 62% [n = 285], respectively; p < 0.001);. The higher-achieving students performed better on MCAT questions in all topic categories tested; the greatest gain occurred on the topic of cellular respiration. Because the VF focused on a conceptually parallel topic, photosynthesis, there may have been authentic knowledge transfer. In longitudinal tracking studies, passing the VF also correlated with higher performance in a range of upper-level science courses, with greatest significance in physiology, biochemistry, and organic chemistry. Participation had a wide range but not equal representation in academic standing, gender, and ethnicity. Yet students nearly unanimously (92%) valued the option. Our findings suggest oral exams at the introductory level may allow instructors to assess and aid students striving to achieve higher-level learning. PMID:24006399

  3. Biological potential of methane generation from poultry wastes. Final report

    SciTech Connect

    Shih, J.C.H.

    1981-06-20

    Anaerobic digestion of animal waste is an attractive process because it degrades organic matter for pollution control and simultaneously produces methane gas for an alternate energy source. The biological potentials of methane generation from the two major kinds of poultry wastes, the litter of broiler chickens and the manure of laying hens have been systematically investigated. Using these wastes to prepare media for bacterial growth, thermophilic anaerobic cultures were initiated by inoculations of bacteria from different natural environments. After a period of acclimation, they were then challenged with various combinations of operational variables such as retention times, volatile solid concentrations, temperatures, and pH values. The most efficient culture and conditions were selected based on the highest gas rate. The results have demonstrated that the broiler litter is a substrate of very low potential. This seems due to the high content of wood shavings resistant to bacterial degradation. On the other hand, the layer manure is a high-potential substrate, which supported both a high methane rate (3.5 1/1/day) and a high methane yield (250 1/kg VS) under the selected conditions. Compared with other types of animal wastes, the manure of laying hens is one of the best substrates for methane production. Based on the data obtained in the laboratory, an anaerobic digester is under construction on the University research farm. A large digester will help answer other questions such as energy balance, economic evaluation and engineering design.

  4. Molecular biological enhancement of coal biodesulfurization. Final technical report

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravarty, L.; Tuovinen, O.H.

    1992-10-08

    Progress is reported in understanding Thiobacillus molecular biology, specifically in the area of vector development. At the initiation of this program, the basic elements needed for performing genetic engineering in T. ferrooxidans were either not yet developed. Improved techniques are described which will make it easier to construct and analyze the genetic structure and metabolism of recombinant T. ferrooxidans. The metabolism of the model organic sulfur compound dibenzothiophene (DBT) by certain heterotrophic bacteria was confirmed and characterized. Techniques were developed to analyze the metabolites of DBT, so that individual 4S pathway metabolites could be distinguished. These techniques are expected to be valuable when engineering organic sulfur metabolism in Thiobacillus. Strain isolation techniques were used to develop pure cultures of T. ferrooxidans seven of which were assessed as potential recombinant hosts. The mixotrophic strain T. coprinus was also characterized for potential use as an electroporation host. A family of related Thiobacillus plasmids was discovered in the seven strains of P. ferrooxidans mentioned above. One of these plasmids, pTFI91, was cloned into a pUC-based plasmid vector, allowing it to propagate in E. coli. A key portion of the cloned plasmid was sequenced. This segment, which is conserved in all of the related plasmids characterized, contains the vegetative origin of DNA replication, and fortuitously, a novel insertion sequence, designated IS3091. The sequence of the DNA origin revealed that these Thiobacillus plasmids represent a unique class of replicons not previously described. The potentially useful insertion sequence IS3091 was identified as a new member of a previously undefined family of insertion sequences which include the E. coli element IS30.

  5. Classification of organic and biological materials with deep ultraviolet excitation.

    PubMed

    Bhartia, Rohit; Hug, Willam F; Salas, Everett C; Reid, Ray D; Sijapati, Kripa K; Tsapin, Alexandre; Abbey, William; Nealson, Kenneth H; Lane, Arthur L; Conrad, Pamela G

    2008-10-01

    We show that native fluorescence can be used to differentiate classes or groups of organic molecules and biological materials when excitation occurs at specific excitation wavelengths in the deep ultraviolet (UV) region. Native fluorescence excitation-emission maps (EEMs) of pure organic materials, microbiological samples, and environmental background materials were compared using excitation wavelengths between 200-400 nm with emission wavelengths from 270 to 500 nm. These samples included polycyclic aromatic hydrocarbons (PAHs), nitrogen- and sulfur-bearing organic heterocycles, bacterial spores, and bacterial vegetative whole cells (both Gram positive and Gram negative). Each sample was categorized into ten distinct groups based on fluorescence properties. Emission spectra at each of 40 excitation wavelengths were analyzed using principal component analysis (PCA). Optimum excitation wavelengths for differentiating groups were determined using two metrics. We show that deep UV excitation at 235 (+/-2) nm optimally separates all organic and biological groups within our dataset with >90% confidence. For the specific case of separation of bacterial spores from all other samples in the database, excitation at wavelengths less than 250 nm provides maximum separation with >6sigma confidence. PMID:18926014

  6. DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research

    PubMed Central

    Seiler, Catherine Y.; Park, Jin G.; Sharma, Amit; Hunter, Preston; Surapaneni, Padmini; Sedillo, Casey; Field, James; Algar, Rhys; Price, Andrea; Steel, Jason; Throop, Andrea; Fiacco, Michael; LaBaer, Joshua

    2014-01-01

    The mission of the DNASU Plasmid Repository is to accelerate research by providing high-quality, annotated plasmid samples and online plasmid resources to the research community through the curated DNASU database, website and repository (http://dnasu.asu.edu or http://dnasu.org). The collection includes plasmids from grant-funded, high-throughput cloning projects performed in our laboratory, plasmids from external researchers, and large collections from consortia such as the ORFeome Collaboration and the NIGMS-funded Protein Structure Initiative: Biology (PSI:Biology). Through DNASU, researchers can search for and access detailed information about each plasmid such as the full length gene insert sequence, vector information, associated publications, and links to external resources that provide additional protein annotations and experimental protocols. Plasmids can be requested directly through the DNASU website. DNASU and the PSI:Biology-Materials Repositories were previously described in the 2010 NAR Database Issue (Cormier, C.Y., Mohr, S.E., Zuo, D., Hu, Y., Rolfs, A., Kramer, J., Taycher, E., Kelley, F., Fiacco, M., Turnbull, G. et al. (2010) Protein Structure Initiative Material Repository: an open shared public resource of structural genomics plasmids for the biological community. Nucleic Acids Res., 38, D743–D749.). In this update we will describe the plasmid collection and highlight the new features in the website redesign, including new browse/search options, plasmid annotations and a dynamic vector mapping feature that was developed in collaboration with LabGenius. Overall, these plasmid resources continue to enable research with the goal of elucidating the role of proteins in both normal biological processes and disease. PMID:24225319

  7. Combustion method for assay of biological materials labeled with carbon-14 or tritium, or double-labeled

    NASA Technical Reports Server (NTRS)

    Huebner, L. G.; Kisieleski, W. E.

    1969-01-01

    Dry catalytic combustion at high temperatures is used for assaying biological materials labeled carbon-14 and tritium, or double-labeled. A modified oxygen-flask technique is combined with standard vacuum-line techniques and includes convenience of direct in-vial collection of final combustion products, giving quantitative recovery of tritium and carbon-14.

  8. Inverse Algorithm Optimization for Determining Optical Properties of Biological Materials from Spatially-Resolved Diffuse Reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical characterization of biological materials is useful in many scientific and industrial applications like biomedical diagnosis and nondestructive quality evaluation of food and agricultural products. However, accurate determination of the optical properties from intact biological materials base...

  9. Analytical chemistry at the interface between materials science and biology

    NASA Astrophysics Data System (ADS)

    O'Brien, Janese Christine

    This work describes several research efforts that lie at the new interfaces between analytical chemistry and other disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry's newest forays into these disciplines. This dissertation is divided into six chapters. Chapter 1 is an introductory chapter that provides background information pertinent to several key aspects of the work contained in this dissertation. Chapter 2 describes the synthesis and characterization of electrically conductive sol-gels derived from the acid-catalyzed hydrolysis of a vanadium alkoxide. Specifically, this chapter describes our attempts to increase the conductivity of vanadium sol-gels by optimizing the acidic and drying conditions used during synthesis. Chapter 3 reports the construction of novel antigenic immunosensing platforms of increased epitope density using Fab'-SH antibody fragments on gold. Here, X-ray photoelectron spectroscopy (XPS), thin-layer cell (TLC) and confocal fluorescence spectroscopies, and scanning force microscopy (SFM) are employed to characterize the fragment-substrate interaction, to quantify epitope density, and to demonstrate fragment viability and specificity. Chapter 4 presents a novel method for creating and interrogating double-stranded DNA (dsDNA) microarrays suitable for screening protein:dsDNA interactions. Using the restriction enzyme ECoR1, we demonstrate the ability of the atomic force microscope (AFM) to detect changes in topography that result from the enzymatic cleavage of dsDNA microarrays

  10. NASA Sponsored Research Involving Crystallization of Biological Materials

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2000-01-01

    An overview of NASA's plans for the performing experiments involving the crystallization of biological materials on the International Space Station (ISS) is presented. In addition, a brief overview of past work is provided as background. Descriptions of flight hardware currently available for use on the ISS are given and projections of future developments are discussed. In addition, experiment selection and funding is described. As of the flight of STS-95, these crystallization projects have proven to be some of the most successful in the history of microgravity research. The NASA Microgravity Research Division alone has flown 185 different proteins, nucleic acids, viruses, and complexes on 43 different missions. 37 of the 185 have resulted, in, diffraction patterns with higher resolution than was obtained in all previous ground based experiments. This occurred despite the fact that an average of only 41 samples per protein were flown. A number of other samples have shown improved signal to noise characteristics, i.e. relative Wilson plots, when compared to the best ground experiments. In addition, a number of experiments investigating the effects of microgravity conditions on the crystallization of biological material have been conducted.

  11. Biology Teacher and Expert Opinions about Computer Assisted Biology Instruction Materials: A Software Entitled Nucleic Acids and Protein Synthesis

    ERIC Educational Resources Information Center

    Hasenekoglu, Ismet; Timucin, Melih

    2007-01-01

    The aim of this study is to collect and evaluate opinions of CAI experts and biology teachers about a high school level Computer Assisted Biology Instruction Material presenting computer-made modelling and simulations. It is a case study. A material covering "Nucleic Acids and Protein Synthesis" topic was developed as the "case". The goal of the…

  12. Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials

    SciTech Connect

    Gruner, Sol

    2012-01-20

    The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derived from block co-polymers.

  13. The High-Strain Rate Loading of Structural Biological Materials

    NASA Astrophysics Data System (ADS)

    Proud, W. G.; Nguyen, T.-T. N.; Bo, C.; Butler, B. J.; Boddy, R. L.; Williams, A.; Masouros, S.; Brown, K. A.

    2015-10-01

    The human body can be subjected to violent acceleration as a result of explosion caused by military ordinance or accident. Blast waves cause injury and blunt trauma can be produced by violent impact of objects against the human body. The long-term clinical manifestations of blast injury can be significantly different in nature and extent to those suffering less aggressive insult. Similarly, the damage seen in lower limbs from those injured in explosion incidents is in general more severe than those falling from height. These phenomena increase the need for knowledge of the short- and long-term effect of transient mechanical loading to the biological structures of the human body. This paper gives an overview of some of the results of collaborative investigation into blast injury. The requirement for time-resolved data, appropriate mechanical modeling, materials characterization and biological effects is presented. The use of a range of loading platforms, universal testing machines, drop weights, Hopkinson bars, and bespoke traumatic injury simulators are given.

  14. [Analysis of etofenamate. Particular determination in biological material (author's transl)].

    PubMed

    Dell, H D; Fiedler, J; Wäsche, B

    1977-01-01

    The determination of 2-(2-hydroxyethoxy)-ethyl-N-(a,a,a-trifluoro-m-tolyl)-anthranilate (etofenamate, active principle of Rheumon gel) following its isolation from biological material is reported. Depending on the method of extraction etofenamate, free and alkali-labile conjugated flufenamic acid, total conjugates or the sum of CF3-containing compounds (sum of metabolites) are isolated. Separation is achieved by TLC, quantitative determination is made by degradation to flufenamic acid and fluorimetric measurement in CCl4/trichloracetic acid at 372/445 nm. Etofenamate can be identified by TLC, derivatisation, UV- and fluorescence spectroscopy and differentiated from its metabolites. It is demonstrated that etofenamate is the main component of fenamates in inflamed tissue. PMID:579119

  15. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  16. Research and Teaching: Midterm and First-Exam Grades Predict Final Grades in Biology Courses

    ERIC Educational Resources Information Center

    Jensen, Philip A.; Barron, James N.

    2014-01-01

    Students routinely ignore negative feedback regarding their performances early in college science courses. In this study we analyzed the extent to which two standard forms of feedback, midterm and first-exam grades, correlated with final grades in several biology courses. The courses ranged from an introductory course for nonmajors to upper…

  17. CLIMATE CHANGE EFFECTS ON STREAM AND RIVER BIOLOGICAL INDICATORS: A PRELIMINARY ANALYSIS (FINAL REPORT)

    EPA Science Inventory

    This final report is a preliminary assessment that describes how biological indicators are likely to respond to climate change, how well current sampling schemes may detect climate-driven changes, and how likely it is that these sampling schemes will continue to detect impairmen...

  18. Federal program for regulating highly hazardous materials finally takes off

    SciTech Connect

    Lessard, P.C.

    1996-11-01

    The Risk Management Program (RMP) rule, Section 112(r) of the Clean Air Act (CAA), was signed on May 24 and finalized on June 20. RMP is one of the most comprehensive, technically based regulatory programs for preventing, detecting and responding to accidental hazardous materials releases to have been issued in recent times. Although facilities have three years to comply, EPA estimates that the rule will affect an estimated 66,000 facilities that store highly hazardous or acutely toxic materials. The 1990 CAA Amendments are designed to prevent accidental releases of highly hazardous chemicals from stationary sources. Two significant regulatory programs that have emerged from the revised CAA are the Process Safety Management (PSM) standard and RMP. PSM is designed to protect employees and regulated by the Occupational Safety and Health Administration. RMP`s purpose is to protect the public and the environment from highly hazardous chemicals. It authorizes EPA to create a list of substances (distinct from the list generated under PSM) known to cause serious adverse effects and to implement a program for accidental chemical release prevention.

  19. New Method for Monitoring the Process of Freeze Drying of Biological Materials.

    PubMed

    Alkeev, Nikolay; Averin, Stanislav; von Gratowski, Svetlana

    2015-12-01

    A capacitive sensor was proposed and tested for the monitoring and control of a freeze drying process of a vaccine against the Newcastle disease of birds. The residual moisture of the vaccine was measured by the thermogravimetric method. The vaccine activity was determined by titration in chicken embryos. It was shown that, at the stages of freezing and primary drying, a capacitive sensor measured the fraction of unfrozen liquid phase in a material and allowed one to control the sublimation stage of drying in an optimal way. This prevented the foaming of the material and shortened the total drying time approximately twice. The control range at the sublimation stage of drying expanded up to -70°C. It was found at the final stage of drying that the signal of a capacitive sensor passed through a maximum value. We supposed that this maximum corresponds to the minimum of intramolecular mobility of biological macromolecules and hence to the optimal residual moisture of the material, which ensures long-term preservation of its activity. We also suppose that using the capacitive sensor at the final stage of drying allows one to more precisely detect the time when the residual moisture of dried material reaches the optimal value. PMID:26022547

  20. Imaging of nonthrombotic pulmonary embolism: biological materials, nonbiological materials, and foreign bodies.

    PubMed

    Bach, Andreas Gunter; Restrepo, Carlos Santiago; Abbas, Jasmin; Villanueva, Alberto; Lorenzo Dus, María José; Schöpf, Reinhard; Imanaka, Hideaki; Lehmkuhl, Lukas; Tsang, Flora Hau Fung; Saad, Fathinul Fikri Ahmad; Lau, Eddie; Rubio Alvarez, Jose; Battal, Bilal; Behrmann, Curd; Spielmann, Rolf Peter; Surov, Alexey

    2013-03-01

    Nonthrombotic pulmonary embolism is defined as embolization to the pulmonary circulation caused by a wide range of substances of endogenous and exogenous biological and nonbiological origin and foreign bodies. It is an underestimated cause of acute and chronic embolism. Symptoms cover the entire spectrum from asymptomatic patients to sudden death. In addition to obstruction of the pulmonary vasculature there may be an inflammatory cascade that deteriorates vascular, pulmonary and cardiac function. In most cases the patient history and radiological imaging reveals the true nature of the patient's condition. The purpose of this article is to give the reader a survey on pathophysiology, typical clinical and radiological findings in different forms of nonthrombotic pulmonary embolism. The spectrum of forms presented here includes pulmonary embolism with biological materials (amniotic fluid, trophoblast material, endogenous tissue like bone and brain, fat, Echinococcus granulosus, septic emboli and tumor cells); nonbiological materials (cement, gas, iodinated oil, glue, metallic mercury, radiotracer, silicone, talc, cotton, and hyaluronic acid); and foreign bodies (lost intravascular objects, bullets, catheter fragments, intraoperative material, radioactive seeds, and ventriculoperitoneal shunts). PMID:23102488

  1. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    SciTech Connect

    Sumption, Mike D.; Collings, Edward W.

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  2. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling—the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field—is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams—which, for instance, may be used in stretchable electronics—we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  3. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology.

    PubMed

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling-the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field-is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams-which, for instance, may be used in stretchable electronics-we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism. PMID:24229099

  4. Commission on Undergraduate Education in the Biological Sciences News, CUEBS, 1963-1972: Its History and Final Report.

    ERIC Educational Resources Information Center

    Kormondy, Edward J.

    This publication of the Commission on Undergraduate Education in the Biological Sciences contains the final report of activities of the Commission during the years 1963-1972. The Commission was established to narrow the gap between current biological research and undergraduate biology teaching. In keeping with this objective, the report is divided…

  5. 45 CFR 1606.7 - Corrective action, informal conference, review of written materials, and final decision.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... final decision need not engage in a detailed analysis of the failure to resolve the substantial... presented in any written materials. The draft final decision need not engage in a detailed analysis of all... written materials, and final decision. 1606.7 Section 1606.7 Public Welfare Regulations Relating to...

  6. 45 CFR 1606.7 - Corrective action, informal conference, review of written materials, and final decision.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... final decision need not engage in a detailed analysis of the failure to resolve the substantial... presented in any written materials. The draft final decision need not engage in a detailed analysis of all... written materials, and final decision. 1606.7 Section 1606.7 Public Welfare Regulations Relating to...

  7. Thermoelectric needle probe for temperature measurements in biological materials.

    PubMed

    Korn, U; Rav-Noy, Z; Shtrikman, S; Zafrir, M

    1980-04-01

    In certain biological and medical applications it is important to measure and follow temperature changes inside a body or tissue. Any probe inserted into a tissue causes damage to tissue and distortion to the initial temperature distribution. To minimize this interference, a fine probe is needed. Thus, thin film technology is advantageous and was utilized by us to produce sensitive probes for these applications. The resulting probe is a small thermocouple at the tip of a thin needle (acupuncture stainless steel needle, approximately 0.26 mm in diameter and length in the range 5-10 cm was used). The junction was produced at the needle's tip by coating the needle with thin layers of insulating and thermoelectric materials. The first layer is an insulating one and is composed of polyacrylonitrile (PAN) and polymide produced by plasma polymerization and dip-coating respectively. This layer covers all the needle except the tip. The second layer is a vacuum deposited thermoelectric thin layer of Bi-5% Sb alloy coating also the tip. The third layer is for insulation and protection and is composed of PAN and polyimide. In this arrangement the junction is at the needle's tip, the needle is one conductor, the thermoelectric layer is the other and they are isolated by the plastic layer. The probe is handy and mechanically sturdy. The sensitivity is typically 77 microV/degrees C at room temperature and is constant to within 2% up to 90 degrees C. The response is fast (less than 1 sec) the noise is small, (less than 0.05 degrees C) and because of the small dimension, damage to tissue and disturbance to the measured temperature field are minimal. PMID:7382928

  8. Organization and diffusion in biological and material fabrication problems

    NASA Astrophysics Data System (ADS)

    Mangan, Niall Mari

    This thesis is composed of two problems. The first is a systems level analysis of the carbon concentrating mechanism in cyanobacteria. The second presents a theoretical analysis of femtosecond laser melting for the purpose of hyperdoping silicon with sulfur. While these systems are very distant, they are both relevant to the development of alternative energy (production of biofuels and methods for fabricating photovoltaics respectively). Both problems are approached through analysis of the underlying diffusion equations. Cyanobacteria are photosynthetic bacteria with a unique carbon concentrating mechanism (CCM) which enhances carbon fixation. A greater understanding of this mechanism would offer new insights into the basic biology and methods for bioengineering more efficient biochemical reactions. The molecular components of the CCM have been well characterized in the last decade, with genetic analysis uncovering both variation and commonalities in CCMs across cyanobacteria strains. Analysis of CCMs on a systems level, however, is based on models formulated prior to the molecular characterization. We present an updated model of the cyanobacteria CCM, and analytic solutions in terms of the various molecular components. The solutions allow us to find the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) where carbon fixation is maximized and oxygenation is minimized. Saturation of RuBisCO, maximization of the ratio of CO2 to O2, and staying below or at the saturation level for carbonic anhydrase are all needed for maximum efficacy. These constraints limit the parameter regime where the most effective carbon fixation can occur. There is an optimal non-specific carboxysome shell permeability, where trapping of CO2 is maximized, but HCO3 - is not detrimentally restricted. The shell also shields carbonic anhydrase activity and CO2 → HCO3- conversion at the thylakoid and cell membrane from one another. Co-localization of carbonic

  9. Digital Learning Material for Model Building in Molecular Biology

    ERIC Educational Resources Information Center

    Aegerter-Wilmsen, Tinri; Janssen, Fred; Hartog, Rob; Bisseling, Ton

    2005-01-01

    Building models to describe processes forms an essential part of molecular biology research. However, in molecular biology curricula little attention is generally being paid to the development of this skill. In order to provide students the opportunity to improve their model building skills, we decided to develop a number of digital cases about…

  10. Distinguishability of Biological Material Using Ultraviolet Multi-Spectral Fluorescence

    SciTech Connect

    Gray, P.C.; Heinen, R.J.; Rigdon, L.D.; Rosenthal, S.E.; Shokair, I.R.; Siragusa, G.R.; Tisone, G.C.; Wagner, J.S.

    1998-10-14

    Recent interest in the detection and analysis of biological samples by spectroscopic methods has led to questions concerning the degree of distinguishability and biological variability of the ultraviolet (W) fluorescent spectra from such complex samples. We show that the degree of distinguishability of such spectra is readily determined numerically.

  11. Evolutionary Design in Biological Physics and Materials Science

    NASA Astrophysics Data System (ADS)

    Yang, M.; Park, J.-M.; Deem, M. W.

    In this chapter we provide a thorough discussion of the theoretical description of the multi-site approach to cancer vaccination. The discussion is somewhat demanding from a biological point of view. References to primary biological publications are given. A general reference on immunology is [1].

  12. Biological processes in the water column of the South Atlantic Bight: Phytoplankton response. Final progress report

    SciTech Connect

    Verity, P.G.; Yoder, J.A.

    1992-03-10

    This study addressed shelf-wide processes and nearshore (coastal boundary zone) processes occurring in the southeastern. Coastal boundary zone (CBZ) US continental shelf dynamics involve studies of circulation and of biological and chemical transformations. Continental shelf processes affect the removal of material from the coastal boundary zone into areas where the material no longer interacts with or influences concentrations in the CBZ. The two arbitrarily separate components are, in fact, unified. The CBZ typically extends about 300 km along-shore and about 20 km offshore from its center off Savannah, Georgia, where most runoff occurs. The rates of biological and chemical transformations are controlled by proximity to the bottom and the amounts of fine suspended organic matter originating from rivers and salt marshes. Once material is removed from this zone, either by a long-shelf or cross-shelf advection to regions where the materials are no longer in contact with the bottom, the suite of factors governing the rates of chemical and biological transformations changes. The determination of contrasting rates in these two environments was one of the central focuses of the South Atlantic Bight program.

  13. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  14. Trends in United States Biological Materials Oversight and Institutional Biosafety Committees

    ERIC Educational Resources Information Center

    Jenkins, Chris

    2014-01-01

    Biological materials oversight in life sciences research in the United States is a challenging endeavor for institutions and the scientific, regulatory compliance, and federal communities. In order to assess biological materials oversight at Institutional Biosafety Committees (IBCs) registered with the United States National Institutes of Health,…

  15. Patients’ Attitudes toward the Donation of Biological Materials for the Derivation of Induced Pluripotent Stem Cells

    PubMed Central

    Dasgupta, Ishan; Bollinger, Juli; Mathews, Debra J.H.; Neumann, Neil M.; Rattani, Abbas; Sugarman, Jeremy

    2016-01-01

    Although academics have raised ethical issues with iPSCs, patients’ perspectives on them and their attitudes toward donating biological materials for iPSC research are unclear. Here, we provide such information to aid in developing policies for consent, collection, and use of biological materials for deriving iPSCs based on patient focus groups. PMID:24388172

  16. Preparing Instructional Materials for Educational Developers. Final Report.

    ERIC Educational Resources Information Center

    Baker, Eva L.

    The report describes the development of a package of training materials to enable instructional product developers to prepare first-draft materials. Five instructional techniques, derived from laboratory research and selected through a survey of eminent instructional psychologists, comprised the substance of the materials. The techniques were…

  17. Demonstration of packaging materials alternatives to expanded polystyrene. Final report

    SciTech Connect

    Menke, D.M.

    1998-04-01

    The report presents information on the environmental, economical, and performance characteristics of alternative packaging materials. Three alternative cushioning materials were identified for evaluation within this research; starch-based foam planks, layered corrugated pads, and recycled polyethylene foam. Through some have been used as cushioning materials for some time, these materials are termed alternative because each offers unique features beyond their cushioning capabilities. These unique features include their manufacture from recycled materials, biodegradability, water solubility, recyclability, and reusability. The properties and cushioning characteristics of expanded polystyrene (EPS) represent the baseline for this research; evaluation results for each material are compared against those of EPS. Technical, environmental, and economic evaluations were completed to assess various characteristics and parameters concerning the cushioning materials.

  18. Conscious knowledge of learning: accessing learning strategies in a final year high school biology class

    NASA Astrophysics Data System (ADS)

    Conner, Lindsey; Gunstone, Richard

    2004-12-01

    This paper reports on a qualitative case study investigation of the knowledge and use of learning strategies by 16 students in a final year high school biology class to expand their conscious knowledge of learning. Students were provided with opportunities to engage in purposeful inquiry into the biological, social and ethical aspects of cancer. A constructivist approach was implemented to access prior content and procedural knowledge in various ways. Students were encouraged to develop evaluation of their learning skills independently through activities that promoted metacognition. Those students who planned and monitored their work produced essays of higher quality. The value and difficulties of promoting metacognitive approaches in this context are discussed, as well as the idea that metacognitive processes are difficult to research, because they have to be conscious in order to be identified by the learner, thereby making them accessible to the researcher.

  19. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RECORDS COMMISSION Grant Administration § 1206.86 What additional materials must I submit with the final narrative report? You must submit the materials required in the NHPRC grant announcements and in the...

  20. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RECORDS COMMISSION Grant Administration § 1206.86 What additional materials must I submit with the final narrative report? You must submit the materials required in the NHPRC grant announcements and in the...

  1. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RECORDS COMMISSION Grant Administration § 1206.86 What additional materials must I submit with the final narrative report? You must submit the materials required in the NHPRC grant announcements and in the...

  2. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RECORDS COMMISSION Grant Administration § 1206.86 What additional materials must I submit with the final narrative report? You must submit the materials required in the NHPRC grant announcements and in the...

  3. Organic materials for second harmonic generation. Final report

    SciTech Connect

    Twieg, R.J.

    1985-03-31

    Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs. (WRF)

  4. Standard Preparations, Limits of Potency, and Dating Period Limitations for Biological Products. Direct final rule.

    PubMed

    2016-05-01

    The Food and Drug Administration (FDA or Agency or we) is amending the general biological products standards relating to dating periods and also removing certain standards relating to standard preparations and limits of potency. FDA is taking this action to update outdated requirements, and accommodate new and evolving technology and testing capabilities, without diminishing public health protections. This action is part of FDA's retrospective review of its regulations in response to an Executive order. FDA is issuing these amendments directly as a final rule because the Agency believes they are noncontroversial and FDA anticipates no significant adverse comments. PMID:27192727

  5. Using near infrared measurement of water content as a cue for detecting biological materials.

    PubMed

    McGunnigle, Gerald

    2012-09-01

    This paper uses the spectral characteristics of water as a cue to detect biological materials in a scene. The spectra of a wide variety of materials were measured; most of the biological materials showed a spectral feature corresponding to the absorption peak of water at 962 nm. A machine vision system that used two narrowband near infrared light sources and a conventional CCD camera is described. The ability of the system to detect biological material is demonstrated in a series of examples. Water content is not an infallible indicator that a material is biological-wet inanimate surfaces will give a false positive, and some tissues are surrounded by highly scattering, impermeable layers that conceal internal water. Nonetheless, in this paper, we will show that many tissues do give a strong response to this feature and dry, nonbiological materials do not. PMID:22945156

  6. A paradigm for the integration of biology in materials science and engineering

    NASA Astrophysics Data System (ADS)

    Roeder, Ryan K.

    2010-07-01

    The integration of biology in materials science and engineering can be complicated by the lack of a common framework and common language between otherwise disparate disciplines. History may offer a valuable lesson as modern materials science and engineering itself resulted from the integration of traditionally disparate disciplines that were delineated by classes of materials. The integration of metallurgy, ceramics, and polymers into materials science and engineering was facilitated, in large part, by a unifying paradigm based upon processing-structure-property relationships that is now well-accepted. Therefore, a common paradigm might also help unify the vast array of perspectives and challenges present in the interdisciplinary study of biomaterials, biological materials, and biomimetic materials. The traditional materials science and engineering paradigm was modified to account for the adaptive and hierarchical nature of biological materials. Various examples of application to research and education are considered.

  7. EFFECT OF HAZARDOUS MATERIAL SPILLS ON BIOLOGICAL TREATMENT PROCESSES

    EPA Science Inventory

    The effects of over 250 chemical substances on biological treatment processes are presented in a format which permits its use as an operations handbook. The information, arranged in a matrix form with the chemical substances presented in alphabetical order, includes descriptions ...

  8. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOEpatents

    Weaver, Paul F.; Maness, Pin-Ching

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  9. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOEpatents

    Weaver, P.F.; Pinching Maness.

    1993-10-05

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

  10. Instructional Materials in Spanish for Agriculture. Final Report.

    ERIC Educational Resources Information Center

    Mainous, Bruce H.

    A federally funded project to develop Spanish for Agricultural Purposes, a set of instructional materials for agricultural specialists planning to work in Latin America, is reported. The materials are intended for use by individuals with at least a year's college-level study of Spanish. They include: a series of authentic readings, each with an…

  11. Thermal expansion of several materials for superconducting magnets. Final report

    SciTech Connect

    Clark, A.F.; Fujii, G.; Ranney, M.A.

    1981-09-01

    The thermal expansion of several materials used in the construction of high field superconducting magnets has been measured from 4 K to room temperature. The materials were a NbTi and two A15 multifilamentary conductors and several nonmetallic composites made from linen/phenolic, fiberglass/epoxy and superconducting wire/epoxy.

  12. Use of recycled materials in highway construction. Final report

    SciTech Connect

    Swearingen, D.L.; Jackson, N.C.; Anderson, K.W.

    1992-02-01

    The major objectives of this study were to examine: (1) the types of recycled materials that are appropriate and feasible as alternative paving materials, such as glass and tires; and (2) the types of recycled materials, such as mixed-plastics and compost, that can be utilized in all types of transportation applications other than pavements. Seven key products are investigated: (1) tires, (2) glass, (3) asphalt concrete, (4) fly ash, (5) compost, (6) mixed plastics, and (7) aluminum sign stock. Performance and cost data for rubber-asphalt pavements is documented for both in-state and nationwide applications. The national experience with the use of waste glass as an additive to asphalt concrete and its use in unbound base materials is also highlighted. Programs for experimental use of recycled materials are outlined. Recommendations for staffing and program changes to deal with recycling issues are also discussed.

  13. The BIOSCI electronic newsgroup network for the biological sciences. Final report, October 1, 1992--June 30, 1996

    SciTech Connect

    Kristofferson, D.; Mack, D.

    1996-10-01

    This is the final report for a DOE funded project on BIOSCI Electronic Newsgroup Network for the biological sciences. A usable network for scientific discussion, major announcements, problem solving, etc. has been created.

  14. Targeting the finite-deformation response of wavy biological tissues with bio-inspired material architectures.

    PubMed

    Tu, Wenqiong; Pindera, Marek-Jerzy

    2013-12-01

    The Particle Swarm Optimization algorithm driven by a homogenized-based model is employed to target the response of three types of heart-valve chordae tendineae with different stiffening characteristics due to different degrees of waviness of collagen fibril/fiber bundles. First, geometric and material parameters are identified through an extensive parametric study that produce excellent agreement of the simulated response based on simplified unit cell architectures with the actual response of the complex biological tissue. These include amplitude and wavelength of the crimped chordae microstructure, elastic moduli of the constituent phases, and degree of microstructural refinement of the stiff phase at fixed volume fraction whose role in the stiffening response is elucidated. The study also reveals potential non-uniqueness of bio-inspired wavy microstructures in attaining the targeted response of certain chordae tendineae crimp configurations. The homogenization-based Particle Swarm Optimization algorithm, whose predictions are validated through the parametric study, is then shown to be an excellent tool in identifying optimal unit cell architectures in the design space that exhibits very steep gradients. Finally, defect criticality of optimal unit cell architectures is investigated in order to assess their feasibility in replacing actual biological tendons with stiffening characteristics. PMID:24018396

  15. Nanostructured materials: A novel approach to enhanced performance. Final report

    SciTech Connect

    Korth, G.E.; Froes, F.H.; Suryanarayana, C.

    1996-05-01

    Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a view to increase their ductilities. The major findings of this project are reported.

  16. Sources of plant materials for land rehabilitation. Final report

    SciTech Connect

    Warren, S.D.; Howard, G.L.; White, S.J.

    1994-12-01

    Military land managers and trainers are charged with planning and implementing land rehabilitation and maintenance to minimize environmental degradation and improve the safety and realism of the training mission. One step in the rehabilitation and maintenance process is to purchase appropriate plant materials, particularly locally endemic or adapted species. This report contains a list of plant material vendors in each state. Managers and trainers can contact these vendors for solicitation of bids.

  17. Materials Technology Support for Radioisotope Power Systems Final Report

    SciTech Connect

    Daniel P. Kramer; Chadwick D. Barklay

    2008-10-07

    Over the period of this sponsored research, UDRI performed a number of materials related tasks that helped to facilitate increased understanding of the properties and applications of a number of candidate program related materials including; effects of neutron irradiation on tantalum alloys using a 500kW reactor, thermodynamic based modeling of the chemical species in weld pools, and the application of candidate coatings for increased oxidation resistance of FWPF (Fine Weave Pierced Fabric) modules.

  18. An outlook review: mechanochromic materials and their potential for biological and healthcare applications.

    PubMed

    Jiang, Ying

    2014-12-01

    Macroscopic mechanical perturbations have been observed to result in optical changes for certain compounds and composite materials. This phenomenon could originate from chemical and physical changes across various length scales, from the rearrangement of chemical bonds to alteration of molecular domains on the order of several hundred nanometers. This review classifies the mechanisms and surveys of how each class of mechanochromic materials has been, and can potentially be applied in biological and healthcare innovations. The study of cellular and molecular responses to mechanical forces in biological systems is an emerging field; there is potential in applying mechanochromic principles and material systems for probing biological systems. On the other hand, application of mechanochromic materials for medical and healthcare consumer products has been described in a wide variety of concepts and inventions. It is hopeful that further understanding of mechanochromism and material innovations would initiate concrete, impactful studies in biological systems soon. PMID:25491877

  19. Conscious Knowledge of Learning: Accessing Learning Strategies in a Final Year High School Biology Class. Research Report

    ERIC Educational Resources Information Center

    Conner, Lindsey; Gunstone, Richard

    2004-01-01

    This paper reports on a qualitative case study investigation of the knowledge and use of learning strategies by 16 students in a final year high school biology class to expand their conscious knowledge of learning. Students were provided with opportunities to engage in purposeful inquiry into the biological, social and ethical aspects of cancer. A…

  20. The Review of Nuclear Microscopy Techniques: An Approach for Nondestructive Trace Elemental Analysis and Mapping of Biological Materials

    PubMed Central

    Mulware, Stephen Juma

    2015-01-01

    The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented. PMID:26664356

  1. The Review of Nuclear Microscopy Techniques: An Approach for Nondestructive Trace Elemental Analysis and Mapping of Biological Materials.

    PubMed

    Mulware, Stephen Juma

    2015-01-01

    The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented. PMID:26664356

  2. Third international conference on intelligent systems for molecular biology (ISMB-95): Summary. Final report

    SciTech Connect

    1995-12-31

    The specific aims of the Third International Conference on Intelligent Systems for Molecular Biology (ISMB-95) were to: convene a critical mass of researchers applying advanced computational techniques to problems in molecular biology; promote interchange of problems and solutions between computer scientists and molecular biologists; create education opportunities in this cross-disciplinary field for students and senior researchers wishing to either apply or benefit from these techniques; produce an archival proceedings as a forum for rapid dissemination of new results in a peer-reviewed manner; produce a set of tutorial materials for education and training of researchers interested in this field; maintain the momentum generated by the highly successful previous conferences in the series, and establish a regular event that will help to solidify the field; and foster the involvement of women and minorities in the field.

  3. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    PubMed

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls. PMID:24602907

  4. Hazardous material analysis and coding system (HAZMZCS). Final report

    SciTech Connect

    Bryant, J.W.

    1991-06-01

    A new hazardous material classification system is being implemented. It consists of 55 Hazardous Characteristic Codes (HCC). The HCC will provide critical information needed to effectively manage, store and ship hazardous materials such as poisons, pesticides, radioactive materials, oxidizers, corrosive liquids and explosives. With implementation of new automated Defense Logistics Agency (DLA) Warehousing and Shipping Procedures (DWASP), DLA depot receiving personnel will be required to assign the HCC if it it missing from pertinent documents. Without the HCC, the DWASP system will not assign a depot storage location. Because the new HCC must be assigned quickly and accurately, an expert systems approach offers a feasible and practical means for providing this support. Accordingly, the Hazardous Material Analysis and Coding System (HAZMACS) was developed. HAZMACS is a PC-based expert system which queries the user about the known characteristics of suspected hazardous material and assigns an HCC based on the user's responses. HAZMACS consists of a main knowledge base file which chains to any of 13 other hazard-specific knowledge base files.

  5. Processing and characterization of functionally gradient ceramic materials. Final report

    SciTech Connect

    O'Day, M.E.; Sengupta, L.C.; Ngo, E.; Stowell, S.; Lancto, R.

    1994-02-01

    Tape casting of ceramic materials offers the flexibility of gradually altering the electronic or structural properties of two dissimilar systems in order to improve their compatibility. This research outlines the processing and fabrication of two systems-of functionally gradient materials. The systems are both electronic ceramic composites consisting Ba(1-x)Sr(x)TiO3 (BSTO) and alumina or a second oxide additive. These composites would be used in phased array antenna systems, therefore, the electronic properties of the material have specific requirements in the microwave frequency regions. The composition of the tapes are varied to provide a graded dielectric constant, which gradually increases from that of air (dielectric constant = 1) to that of the ceramic (dielectric constant = 1500). This allows maximum penetration of incident microwave radiation as well as minimum energy dissipation and insertion loss into the entire phase shifting device.

  6. Using Fourier transform IR spectroscopy to analyze biological materials

    PubMed Central

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  7. Materials Degradation and Detection (MD2): Deep Dive Final Report

    SciTech Connect

    McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hu, Shenyang Y.; Li, Yulan; Henager, Charles H.; Johnson, Bradley R.

    2013-02-01

    An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas is discussed in the paper.

  8. Modulating material interfaces through biologically-inspired intermediates

    NASA Astrophysics Data System (ADS)

    Hazar, Melis; Steward, Robert L.; Chang, Chia-Jung; Orndoff, Cynthia J.; Zeng, Yukai; Ho, Mon-Shu; LeDuc, Philip R.; Cheng, Chao-Min

    2011-12-01

    This letter describes the control of molecular filament organization through biologically inspired intermediates, enabling us to obtain large-area regular nanopatterns. We first studied cultured single filamentous actins on an unmodified glass surface (hydrophilic surface) and introduced myosin-II to modify the control. We then utilized an inorganic salt crystallization approach on the response of these two proteins, actin filament and myosin-II, to analyze the resultant spatially localized patterns. Through the utilization of myosin-II and the salt crystallization approach, we were able to induce the filament orientation of 63°; while without myosin-II, we induced an orientation of 90°.

  9. Water regime of mechanical-biological pretreated waste materials under fast-growing trees.

    PubMed

    Rüth, Björn; Lennartz, Bernd; Kahle, Petra

    2007-10-01

    In this study mechanical-biological pre-treated waste material (MBP) was tested for suitability to serve as an alternative surface layer in combination with fast-growing and water-consumptive trees for final covers at landfill sites. The aim was to quantify evapotranspiration and seepage losses by numerical model simulations for two sites in Germany. In addition, the leaf area index (LAI) of six tree species over the growing season as the driving parameter for transpiration calculations was determined experimentally. The maximum LAI varied between 3.8 and 6.1 m2 m(-2) for poplar and willow clones, respectively. The evapotranspiration calculations revealed that the use of MBP waste material for re-cultivation enhanced evapotranspiration by 40 mm year(-1) (10%) over an 11 year calculation period compared to a standard mineral soil. Between 82% (for LAI(max) = 3.8) and 87% (for LAI(max) = 6.1) of the average annual precipitation (506 mm) could be retained from the surface layer assuming eastern German climate conditions, compared with a retention efficiency between 79 and 82% for a mineral soil. Although a MBP layer in conjunction with water-consumptive trees can reduce vertical water losses as compared to mineral substrates, the effect is not sufficient to meet legal regulations. PMID:17985666

  10. Agricultural biological reference materials for analytical quality control

    SciTech Connect

    Ihnat, M.

    1986-01-01

    Cooperative work is under way at Agriculture Canada, US Department of Agriculture, and US National Bureau of Standards in an attempt to fill some of the gaps in the world repertoire of reference materials and to provide much needed control materials for laboratories' day to day operations. This undertaking involves the preparation and characterization of a number of agricultural and food materials for data quality control for inorganic constituents. Parameters considered in the development of these materials were material selection based on importance in commerce and analysis; techniques of preparation, processing, and packaging; physical and chemical characterization; homogeneity testing and quantitation (certification). A large number of agricultural/food products have been selected to represent a wide range of not only levels of sought-for constituents (elements) but also a wide range of matrix components such as protein, carbohydrate, dietary fiber, fat, and ash. Elements whose concentrations are being certified cover some two dozen major, minor, and trace elements of nutritional, toxicological, and environmental significance.

  11. Textbooks and Learning Materials Program: Zambia. Final Report

    ERIC Educational Resources Information Center

    US Agency for International Development, 2009

    2009-01-01

    The Mississippi Consortium for International Development's (MCID's) intervention involved the development, publication and distribution of an Integrated Foundations of Learning Kit, focused on numeracy. This intervention was aligned with Zambia's priorities and strategies and matched the requirements of the Textbooks and Learning Materials Program…

  12. Materials support for HITAF. Final report for Phase 1

    SciTech Connect

    Breder, K.; Tennery, V.J.

    1995-03-01

    Improvements in coal-fired systems will require a change from steam turbines to gas turbines using air as working fluid; pressurized ceramic heat exchangers operating up to 1600 C will be needed. Leading candidate materials are SiC-based ceramics. Mechanical properties of 3 materials are compared in this work: NT230 Si/SiC from Saint Gobain Norton, {beta}-SiC from Coors Ceramics Co., and Lanxide DIMOX SiCp/Al{sub 2}O{sub 3} from Du Pont Lanxide Composites Inc. The first material is siliconized Si carbide, the second is sintered. They all were tested in 4-point flexure at RT and 1100 and 1400 C. Fast-fracture tests were carried out. Slow crack growth was investigated. Failure modes were studied using optical microscopy and SEM. Four materials were exposed to two coal ashes at two different temperatures. In the comparison, Coors {beta}-SiC stands out from a strength and reliability standpoint when exposed to air at high temperatures. Lanxide DIMOX withstood coal ash exposure well.

  13. Stress corrosion cracking of candidate waste container materials; Final report

    SciTech Connect

    Park, J.Y.; Maiya, P.S.; Soppet, W.K.; Diercks, D.R.; Shack, W.J.; Kassner, T.F.

    1992-06-01

    Six alloys have been selected as candidate container materials for the storage of high-level nuclear waste at the proposed Yucca mountain site in Nevada. These materials are Type 304L stainless steel (SS). Type 316L SS, Incoloy 825, phosphorus-deoxidized Cu, Cu-30%Ni, and Cu-7%Al. The present program has been initiated to determine whether any of these materials can survive for 300 years in the site environment without developing through-wall stress corrosion cracks. and to assess the relative resistance of these materials to stress corrosion cracking (SCC)- A series of slow-strain-rate tests (SSRTs) and fracture-mechanics crack-growth-rate (CGR) tests was performed at 93{degree}C and 1 atm of pressure in simulated J-13 well water. This water is representative, prior to the widespread availability of unsaturated-zone water, of the groundwater present at the Yucca Mountain site. Slow-strain-rate tests were conducted on 6.35-mm-diameter cylindrical specimens at strain rates of 10-{sup {minus}7} and 10{sup {minus}8} s{sup {minus}1} under crevice and noncrevice conditions. All tests were interrupted after nominal elongation strain of 1--4%. Scanning electron microscopy revealed some crack initiation in virtually all the materials, as well as weldments made from these materials. A stress- or strain-ratio cracking index ranks these materials, in order of increasing resistance to SCC, as follows: Type 304 SS < Type 316L SS < Incoloy 825 < Cu-30%Ni < Cu and Cu-7%Al. Fracture-mechanics CGR tests were conducted on 25.4-mm-thick compact tension specimens of Types 304L and 316L stainless steel (SS) and Incoloy 825. Crack-growth rates were measured under various load conditions: load ratios M of 0.5--1.0, frequencies of 10{sup {minus}3}-1 Hz, rise nines of 1--1000s, and peak stress intensities of 25--40 MPa{center_dot}m {sup l/2}.

  14. Glazing materials for solar and architectural applications. Final report

    SciTech Connect

    Lampert, C.M.

    1994-09-01

    This report summarizes five collaborative research projects on glazings performed by participants in Subtask C of IEA Solar Heating and Cooling Programme (SHC) Task 10, Materials Research and Testing. The projects include materials characterization, optical and thermal measurements, and durability testing of several types of new glazings Three studies were completed on electrochromic and dispersed liquid crystals for smart windows, and two were completed for low-E coatings and transparent insulation materials for more conventional window and wall applications. In the area of optical switching materials for smart windows, the group developed more uniform characterization parameters that are useful to determine lifetime and performance of electrochromics. The detailed optical properties of an Asahi (Japan) prototype electrochromic window were measured in several laboratories. A one square meter array of prototype devices was tested outdoors and demonstrated significant cooling savings compared to tinted static glazing. Three dispersed liquid crystal window devices from Taliq (USA) were evaluated. In the off state, these liquid crystal windows scatter light greatly. When a voltage of about 100 V ac is applied, these windows become transparent. Undyed devices reduce total visible light transmittance by only .25 when switched, but this can be increased to .50 with the use of dyed liquid crystals. A wide range of solar-optical and emittance measurements were made on low-E coated glass and plastic. Samples of pyrolytic tin oxide from Ford glass (USA) and multilayer metal-dielectric coatings from Interpane (Germany) and Southwall (USA) were evaluated. In addition to optical characterization, the samples were exposure-tested in Switzerland. The thermal and optimal properties of two different types of transparent insulation materials were measured.

  15. Utilization of waste tires in asphaltic materials. Final report

    SciTech Connect

    Amirkhanian, S.N.; Burati, J.L.

    1996-06-01

    The research project was divided into two sections: laboratory phase and field phase. In the laboratory phase the use of crumb rubber utilizing the `wet` method was investigated. A total of 360 laboratory-prepared Marshall specimens were made and tested. The materials used to prepare the specimens were typical of those used for Type 1A Surve mixtures used by SC DOT. The experimental design consisted of using three aggregate sources, three antistrip additives, and four rubber percentages (i.e., 0%, 12%, 15%, and 18% by weight of asphalt cement). The indirect tensile strengths, tensile strength ratio, visual strip rating, percent air voids, and bulk specific gravities were determined and statistically analyzed. The results indicated that, in general, as the rubber percentage increased, the strength decreased. However, the specimens containing antistrip additives had a higher increase in strength compared to that of the virgin materials. In addition, the optimum asphalt content generally increased as the rubber percentage increased.

  16. Materials compatibility with the volcanic environment. Final report

    SciTech Connect

    Htun, K.M.

    1984-03-08

    Attempts were made to run materials compatibility, volcanic gas collection, and heat transfer experiments during the 1977 Kilauea eruption. Preliminary results from the recovered samples showed that Fe, Ni, and Fe-Ni alloys were the most heavily oxidized. The Mo and W alloys showed some attack and only neglible reaction was seen on 310 stainless, Hastelloy C, Inconel 600, Inconel 718, Rene 41, and Nichrome. Results are qualitative only. (DLC)

  17. Fracture behavior of W based materials. Final report

    SciTech Connect

    Hack, J.E.

    1991-09-30

    This report describes the results of a program to investigate the fracture properties of tungsten based materials. In particular, the role of crack velocity on crack instability was determined in a W-Fe-Ni-Co ``heavy alloy`` and pure polycrystalline tungsten. A considerable effort was expended on the development of an appropriate crack velocity gage for use on these materials. Having succeeded in that, the gage technology was employed to determine the crack velocity response to the applied level of stress intensity factor at the onset of crack instability in pre-cracked specimens. The results were also correlated to the failure mode observed in two material systems of interest. Major results include: (1) unstable crack velocity measurements on metallic specimens which require high spatial resolution require the use of brittle, insulating substrates, as opposed to the ductile, polymer based substrates employed in low spatial resolution measurements; and (2) brittle failure modes, such as cleavage, are characterized by relatively slow unstable crack velocities while evidence of high degrees of deformation are associated with failures which proceed at high unstable crack velocities. This latter behavior is consistent with the predictions of the modeling of Hack et al and may have a significant impact on the interpretation of fractographs in general.

  18. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2000-11-21

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  19. Biological potential of extraterrestrial materials - 1. Nutrients in carbonaceous meteorites, and effects on biological growth

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.

    1997-06-01

    Soil nutrient analysis of the Murchison C2 carbonaceous chondrite shows biologically available S, P, Ca, Mg, Na, K and Fe and cation exchange capacity (CEC) at levels comparable with terrestrial agricultural soils. Weathering, and aqueous, hydrothermal (121°C, 15 min) and high-temperature (550°C, 3 h) processing increase the extractable nutrients. Extractable phosphorus (by 0.3 M NH 4F + 0.1 M HCl) content, which may be growth-limiting, is 6.3 μg g -1 in the unprocessed meteorite, but increases to 81 μg g -1 by hydrothermal processing and weathering, and to 130 μg g -1 by high temperature processing. The cation exchange capacity (CEC), attributed mainly to the organic fraction, corresponds responds to 345 meq per 100 g of the polymer, suggesting one ionizable COOH or OH group per 3-4 aromatic rings. The Allende C3(V) meteorite has low extractable Ca, Mg and K, in parallel to its low organic content and CEC, but high extractable P levels (160 μg g -1). Biological effects are observed on growth of the soil microorganisms Flavobacterium oryzihabitans and Nocardia asteroides in meteorite extracts, and the population levels suggest that P is the limiting nutrient. Effects on plant growth are examined on Solanum tuberosum (potato), where extracts of the Murchison meteorite lead to enhanced growth and pigmentation. The biologically available organic and inorganic nutrients in carbonaceous chondrites can provide concentrated solutions for prebiotic and early life processes, and serve as soils and fertilizers for future space-based biological expansion.

  20. Analysis of biological materials using a nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Mulware, Stephen Juma

    The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe(III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world's agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta ), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices ) for the improvement of lead phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.

  1. Educational Modules for Materials Science and Engineering. Final Report, December 1, 1977-November 30, 1983.

    ERIC Educational Resources Information Center

    Roy, Rustum; Knox, Bruce E.

    The major goal of the Educational Modules for Materials Science and Engineering (EMMSE) project is to experiment with a means for developing, indexing, and disseminating instructional materials in materials science and engineering. This document is the updated final report of the project. Key accomplishments discussed (presented in order of…

  2. Low cost materials of construction for biological processes: Proceedings

    SciTech Connect

    Not Available

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  3. Cueing Metacognition to Improve Researching and Essay Writing in a Final Year High School Biology Class

    NASA Astrophysics Data System (ADS)

    Conner, L. N.

    2007-03-01

    This paper reports on degrees of awareness and use of specific metacognitive strategies by 16 students in a final-year high school biology class in New Zealand. The aims of the intervention were to broaden students' thinking about bioethical issues associated with cancer and to enhance students' use of metacognition. Cues and prompts were used in this unit of work to help students use metacognitive strategies since students did not generally use metacognitive strategies spontaneously. Scaffolding was mediated through the teacher modelling, questioning, cueing or prompting students to evaluate their learning. The research reported here illustrates how teachers can cue students to be more self-directed in their learning. Three case studies illustrate how learning strategies were used differentially. Most students were aware of strategies that could help them to learn more effectively. It was found that those students who were not only aware of but also used strategies to plan, monitor and evaluate their work, produced essays of higher quality.

  4. Linking Biological Responses of Terrestrial N Eutrophication to the Final Ecosystem Goods and Services Classification System

    NASA Astrophysics Data System (ADS)

    Bell, M. D.; Clark, C.; Blett, T.

    2015-12-01

    The response of a biological indicator to N deposition can indicate that an ecosystem has surpassed a critical load and is at risk of significant change. The importance of this exceedance is often difficult to digest by policy makers and public audiences if the change is not linked to a familiar ecosystem endpoint. A workshop was held to bring together scientists, resource managers, and policy makers with expertise in ecosystem functioning, critical loads, and economics in an effort to identify the ecosystem services impacted by air pollution. This was completed within the framework of the Final Ecosystem Goods and Services (FEGS) Classification System to produce a product that identified distinct interactions between society and the effects of nitrogen pollution. From each change in a biological indicator, we created multiple ecological production functions to identify the cascading effects of the change to a measureable ecosystem service that a user interacts with either by enjoying, consuming, or appreciating the good or service, or using it as an input in the human economy. This FEGS metric was then linked to a beneficiary group that interacts with the service. Chains detailing the links from the biological indicator to the beneficiary group were created for aquatic and terrestrial acidification and eutrophication at the workshop, and here we present a subset of the workshop results by highlighting for 9 different ecosystems affected by terrestrial eutrophication. A total of 213 chains that linked to 37 unique FEGS metrics and impacted 15 beneficiary groups were identified based on nitrogen deposition mediated changes to biological indicators. The chains within each ecosystem were combined in flow charts to show the complex, overlapping relationships among biological indicators, ecosystem services, and beneficiary groups. Strength of relationship values were calculated for each chain based on support for the link in the scientific literature. We produced the

  5. Hazardous material minimization for radar assembly. Final report

    SciTech Connect

    Biggs, P.M.

    1997-03-01

    The Clean Air Act Amendment, enacted in November 1990, empowered the Environmental Protection Agency (EPA) to completely eliminate the production and usage of chlorofluorocarbons (CFCs) by January 2000. A reduction schedule for methyl chloroform beginning in 1993 with complete elimination by January 2002 was also mandated. In order to meet the mandates, the processes, equipment, and materials used to solder and clean electronic assemblies were investigated. A vapor-containing cleaning system was developed. The system can be used with trichloroethylene or d-Limonene. The solvent can be collected for recycling if desired. Fluxless and no-clean soldering were investigated, and the variables for a laser soldering process were identified.

  6. Fissile material disposition program final immobilization form assessment and recommendation

    SciTech Connect

    Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H.

    1997-10-03

    Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

  7. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    SciTech Connect

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at Purdue

  8. Effects of acid fog and dew on materials. Final report

    SciTech Connect

    Mansfeld, F.; Henry, R.; Vijayakumar, R.

    1989-10-01

    Field exposure tests have been carried out in order to separate the effects of acidic fog on materials damage from those caused by rain, dew and natural weathering. The test sites were McKittrick and Visalia in the Central Valley and West Casitas Pass in Ventura County. The field tests have been supported by laboratory tests in which materials damage has been determined during exposure to carefully controlled fog water chemistry. Analysis of the field exposure results for galvanized steel and the paint samples shows that the corrosivity of the atmosphere at the three test sites have been very low. The result is confirmed by the ACRM data which show very low corrosion activity. Since corrosion rates were so low approaching those for natural weathering, it was not possible to determine the effects of acidic fog. Based on the aerometric data and the observed corrosion behavior, it is doubtful that acidic fog conditions prevailed for significant times during the exposure period of 1/87 - 3/88 at Visalia and McKittrick. The results of the laboratory tests show that exposure to HNO3 at low pH and to high pollutant concentration increased the corrosion rate of galvanized steel to over 10 micro m/year. Exposure to HNO3 caused serious corrosion damage to anodized aluminum and the paint.

  9. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    SciTech Connect

    Jiao, Zhujie; Was, Gary; Bartels, David

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  10. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    NASA Technical Reports Server (NTRS)

    Sun, Sam

    2002-01-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  11. Development of chemical vapor composites, CVC materials. Final report

    SciTech Connect

    1998-10-05

    Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult processing problems and greatly increase fabrication rates for composites. With CVC, the manufacturing process can control the composites` density, microstructure and composition during growth. The CVC process: can grow or deposit material 100 times faster than conventional techniques; does not require an expensive woven preform to infiltrate; can use high modulus fibers that cannot be woven into a preform; can deposit composites to tolerances of less than 0.025 mm on one surface without further machining.

  12. Nondestructive ultrasonic characterization of two-phase materials. Final report

    SciTech Connect

    Salama, K.

    1987-01-01

    The development of ultrasonic methods for the nondestructive characterization of mechanical properties of two phase engineering materials are described. The primary goal was to establish relationships between the nonlinearity parameter and the percentage of solid solution phase in two phase systems such as heat treatable aluminum alloys. The acoustoelastic constant was also measured on these alloys. A major advantage of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes the method more applicable to inservice nondestructive characterization. The results obtained on the heat treatable 7075 and the work hardenable 5086 and 5456 aluminum alloys show that both the acoustoelastic constant and the acoustic nonlinearity parameter change considerable with the volume fraction of second phase precipitates in these aluminum alloys. A mathematical model was also developed to relate the effective acoustic nonlinearity parameter to volume fraction of second phase precipitates in an alloy. The equation is approximated to within experimental error by a linear expression for volume fractions up to approx. 10%.

  13. Analysis of hazardous biological material by MALDI mass spectrometry

    SciTech Connect

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  14. Microchip electrophoresis for the analysis of biological materials

    SciTech Connect

    Jacobson, S.C.; Ramsey, J.M.

    1995-12-31

    Development of instrumentation for biological and chemical analyses is geared toward extracting more information in a shorter time period at a lower cost. One avenue to achieve these ends is the miniaturization of instrumentation using microfabrication techniques. The primary advantage of such miniaturized devices is the integration of multiple functions required for a complete analysis into a single monolithic unit. Also, by using microfabrication techniques, planar devices with compact geometries enable design of parallel architectures which would handle multiple samples and necessary redundancies. Microfabricated devices that have been demonstrated primarily involve electrically driven separation techniques including capillary electrophoresis, open channel electrochromatography, and capillary gel electrophoresis. Devices that integrate chemical reactions with analysis include capillary electrophoresis with pre- and postseparation derivatization, and restriction digestions of plasmid DNA followed by size analysis of the fragments. The most notable feature of these miniaturized chemical separation devices is the speed with which analyses are performed. These devices have precise fluid control of picoliter volumes simply by proper selection of applied potentials and without the use of mechanical valves. Further motivations for miniaturization and integration of chemical analysis procedures include low void volume connections, reduction of sample and reagent volumes, and rapid diffusional mixing of reagents.

  15. Cellular responses to implant materials: biological, physical and chemical factors.

    PubMed

    Kawahara, H

    1983-12-01

    Adhesion of bone and epithelial cells to the dental implant are vital to its retention in alveolar bone and to the prevention of infection via its 'gingival' margin. Studies of cytotoxicity, tissue irritability and carcinogenicity of implantable polymers, metals and ceramics and of tissue adhesion to them have been carried out in tissue culture and in animal experiments. The more similar the polymeric materials are chemically to living tissue the more easily are they dissolved and digested in the host. Therefore, implant materials having a molecular structure similar to protein or polysaccharide, e.g. Nylon, cannot be expected to function. On the other hand, silicones, polyethylene and Teflon (polytetrafluroethylene), which have molecular structures completely different from living substances, are generally more stable in the tissues. However, these polymers are hydrophobic and have little adhesion to living cells in spite of their high stability. They are not, therefore, suitable materials for the construction of implants. Studies on antithrombotic polymers have demonstrated the possibility of creating implantable polymers which have high stability as well as strong adhesion to the surrounding tissues. These properties may be conferred by grafting a hydrophilic polymer on to the surface of a hydrophobic polymer. Of the metals, Ti, Zr and Ta are fairly stable in living tissue, and allow cells to adhere strongly. Alloys of Co-Cr-Mo, Fe-Ni-Cr-Mo, Ti-Al-V, Ti-Mo, Ti-Pd and Ti-Pt deserve to be better evaluated because they are low in density, have high mechanical strength, stability and corrosion resistance in living tissue, and there is direct adhesion to the surrounding tissues. Biodegradable or bioactive ceramics which induce bone formation around the implant do not have sufficient mechanical strength. Implant ceramics have to be stable, e.g. crystal alumina, vitreous carbon, synthetic hydroxypatite and silicon nitrate. These exhibit high biocompatibility and

  16. A New Biology for the 21st Century; Ensuring the United States Leads the Coming Biology Revolution. Final committee report

    SciTech Connect

    None None

    2012-05-10

    In July, 2008, the National Institutes of Health (NIH), National Science Foundation (NSF), and Department of Energy (DOE) asked the National Research Council’s Board on Life Sciences to convene a committee to examine the current state of biological research in the United States and recommend how best to capitalize on recent technological and scientific advances that have allowed biologists to integrate biological research findings, collect and interpret vastly increased amounts of data, and predict the behavior of complex biological systems. From September 2008 through July of 2009, a committee of 16 experts from the fields of biology, engineering and computational science undertook to delineate those scientific and technological advances and come to a consensus on how the U.S. might best capitalize on them. This report, authored by the Committee on a New Biology for the 21st Century, describes the committee’s work and conclusions.

  17. Electronic processes in thin-film PV materials. Final report

    SciTech Connect

    Taylor, P.C.; Chen, D.; Chen, S.L.

    1998-07-01

    The electronic and optical processes in an important class of thin-film PV materials, hydrogenated amorphous silicon (a-Si:H) and related alloys, have been investigated using several experimental techniques designed for thin-film geometries. The experimental techniques include various magnetic resonance and optical spectroscopies and combinations of these two spectroscopies. Two-step optical excitation processes through the manifold of silicon dangling bond states have been identifies as important at low excitation energies. Local hydrogen motion has been studied using nuclear magnetic resonance techniques and found to be much more rapid than long range diffusion as measured by secondary ion mass spectroscopy. A new metastable effect has been found in a-Si:H films alloyed with sulfur. Spin-one optically excited states have been unambiguously identified using optically detected electron spin resonance. Local hydrogen bonding in microcrystalline silicon films has been studied using NMR.

  18. Fullerene-based materials research and development. LDRD final report

    SciTech Connect

    Cahill, P A; Henderson, C C; Rohlfing, C M; Loy, D A; Assink, R A; Gillen, K T; Jacobs, S J; Dugger, M T

    1995-05-01

    The chemistry and physical properties of fullerenes, the third, molecular allotrope of carbon, have been studied using both experimental and computational techniques. Early computational work investigated the stability of fullerene isomers and oxides, which was followed by extensive work on hydrogenated fullerenes. Our work led to the first synthesis of a polymer containing C{sub 60} and the synthesis of the simplest hydrocarbon derivatives of C{sub 60} and C{sub 70}. The excellent agreement between theory and experiment ({plus_minus} 0.1 kcal/mol in the relative stability of isomers) has provided insight into the chemical nature of fullerenes and has yielded a sound basis for prediction of the structure of derivatized fullerenes. Such derivatives are the key to the preparation of fullerene-based materials.

  19. Radiation effects on organic materials in nuclear plants. Final report

    SciTech Connect

    Bruce, M B; Davis, M V

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.

  20. Comparison of the biological NH3 removal characteristics among four inorganic packing materials.

    PubMed

    Hirai, M; Kamamoto, M; Yani, M; Shoda, M

    2001-01-01

    Four inorganic packing materials were evaluated in terms of their availability as a packing material of a packed tower deodorization apparatus (biofilter) from the viewpoints of biological NH3 removal characteristics and some physical properties. Porous ceramics (A), calcinated cristobalite (B), calcinated and formed obsidian (C), granulated and calculated soil (D) were used. The superiority of these packing materials determined based on the values of non-biological removal per unit weight or unit volume of packing material, complete removal capacity of NH3 per unit weight of packing material per day or unit volume of packing material per day and pressure drop of the packed bed was in the order of A approximately = C > B > or = D. Packing materials A and C with high porosity, maximum water content, and suitable mean pore diameter showed excellent removal capacity. PMID:16233018

  1. Model of heterogeneous material dissolution in simulated biological fluid

    NASA Astrophysics Data System (ADS)

    Knyazeva, A. G.; Gutmanas, E. Y.

    2015-11-01

    In orthopedic research, increasing attention is being paid to bioresorbable/biodegradable implants as an alternative to permanent metallic bone healing devices. Biodegradable metal based implants possessing high strength and ductility potentially can be used in load bearing sites. Biodegradable Mg and Fe are ductile and Fe possess high strength, but Mg degrades too fast and Fe degrades too slow, Ag is a noble metal and should cause galvanic corrosion of the more active metallic iron - thus, corrosion of Fe can be increased. Nanostructuring should results in higher strength and can result in higher rate of dissolution/degradation from grain boundaries. In this work, a simple dissolution model of heterogeneous three phase nanocomposite material is considered - two phases being metal Fe and Ag and the third - nanopores. Analytical solution for the model is presented. Calculations demonstrate that the changes in the relative amount of each phase depend on mass exchange and diffusion coefficients. Theoretical results agree with preliminary experimental results.

  2. The Effects of Linear and Modified Linear Programed Materials on the Achievement of Slow Learners in Tenth Grade BSCS Special Materials Biology.

    ERIC Educational Resources Information Center

    Moody, John Charles

    Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…

  3. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    NASA Astrophysics Data System (ADS)

    Ashrafuzzaman, Md; Lampson, M. A.; Greathouse, D. V.; Koeppe, R. E., II; Andersen, O. S.

    2006-07-01

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)—Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly—alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  4. Bioassays on Illinois waterway dredged material. Final report

    SciTech Connect

    Moore, D.W.; Gibson, A.B.; Dillon, T.M.

    1992-12-01

    Sediment from the Illinois Waterway navigation channel is hydraulically dredged by the US Army Engineer District, Rock Island, and placed in the nearshore environment via pipeline. Water returning to the river can have a high-suspended solids load approaching fluid mud consistency. There is a concern that this return water may exceed the State of Illinois water quality standards for ammonia and have adverse effects on aquatic life. To address these concerns, composite sediment samples and site water collected from selected sites in the Illinois Waterway were evaluated in toxicity tests. Acute (48-hr) toxicity tests were conducted with two species, Pimephales promelas (the fathead minnow) and Daphnia magna (a freshwater cladoceran). A chronic (21-day) toxicity test was also conducted using Daphnia magna. Animals were exposed separately to different concentrations of filtered and unfiltered elutriates prepared from Acute, Cadmium, Daphnia magna, Pimephales promela, Ammonia, Chronic, Elutriate, Sediment, Bioassay, Cladoceran, Fathead minnow. Illinois Waterway edged material. Total ammonia concentrations were measured in all tests and the un-ionized fraction was calculated by adjusting for temperature and pH. Tests were conducted at the US Army Engineer Waterways Experiment Station, Vicksburg, MS. In addition, as part of an interlaboratory effort, a 48-hr acute toxicity test with Pimephales pomelas fry was conducted concurrently by the Hygienic Laboratory of the University of Iowa, Des Moines, IA.

  5. A planar transmission-line sensor for measuring microwave permittivity of liquid and semisolid biological materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An accurate technique for determining the permittivity of biological materials with coplanar waveguide transmission line is presented. The technique utilizes closed-form approximations that relate the material permittivity to the line propagation constant. A thru-reflect-line calibration procedure i...

  6. Mechanics of dynamic needle insertion into a biological material.

    PubMed

    Mahvash, Mohsen; Dupont, Pierre E

    2010-04-01

    During needle-based procedures, transitions between tissue layers often lead to rupture events that involve large forces and tissue deformations and produce uncontrollable crack extensions. In this paper, the mechanics of these rupture events is described, and the effect of insertion velocity on needle force, tissue deformation, and needle work is analyzed. Using the J integral method from fracture mechanics, rupture events are modeled as sudden crack extensions that occur when the release rate J of strain energy concentrated at the tip of the crack exceeds the fracture toughness of the material. It is shown that increasing the velocity of needle insertion will reduce the force of the rupture event when it increases the energy release rate. A nonlinear viscoelastic Kelvin model is then used to predict the relationship between the deformation of tissue and the rupture force at different velocities. The model predicts that rupture deformation and work asymptotically approach minimum values as needle velocity increases. Consequently, most of the benefit of using a higher needle velocity can be achieved using a finite velocity that is inversely proportional to the relaxation time of the tissue. Experiments confirm the analytical predictions with multilayered porcine cardiac tissue. PMID:19932986

  7. Nano-FTIR chemical mapping of minerals in biological materials

    PubMed Central

    Amarie, Sergiu; Zaslansky, Paul; Kajihara, Yusuke; Griesshaber, Erika; Schmahl, Wolfgang W

    2012-01-01

    Summary Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR) spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM). On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon) resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies. PMID:22563528

  8. Nano-FTIR chemical mapping of minerals in biological materials.

    PubMed

    Amarie, Sergiu; Zaslansky, Paul; Kajihara, Yusuke; Griesshaber, Erika; Schmahl, Wolfgang W; Keilmann, Fritz

    2012-01-01

    Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR) spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM). On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon) resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies. PMID:22563528

  9. Neutron activation analysis for the determination of trace elements in biological materials.

    PubMed

    Versieck, J

    1994-01-01

    Neutron activation analysis, in both its radiochemical and instrumental forms, is a precious technique for the determination of trace elements in biological materials. Probably its most important advantage is its relative freedom from errors resulting from contamination of the samples. Invaluable characteristics are also its excellent sensitivity, outstanding selectivity, and remarkable multielement capability. It is, however, necessary to warn against uncritical expectations. This is best illustrated by the seriously inconsistent results obtained in several laboratories. Because of the necessity to have access to a nuclear research reactor, the stringent safety rules to be observed, the rather high costs of the analyses, the relatively low sample throughput, and the sometimes long delay between the taking of a sample and the obtaining the final result, the use of neutron activation analysis remained restricted to a few--essentially research--laboratories. It found its main application in solving arduous problems and in paving the way for other analytical techniques better suited to routine applications. PMID:7710855

  10. Ethical and legal considerations regarding the ownership and commercial use of human biological materials and their derivatives

    PubMed Central

    Petrini, Carlo

    2012-01-01

    This article considers some of the ethical and legal issues relating to the ownership and use – including for commercial purposes – of biological material and products derived from humans. The discussion is divided into three parts: after first examining the general notion of ownership, it moves to the particular case of possible commercial use, and finally reflects on the case in point in the light of the preceding considerations. Units of cord blood donated altruistically for transplantation and which are found unsuitable for storage and transplantation, or which become unsuitable while stored in biobanks, are taken as an example. These cord-blood units can be discarded together with other biological waste, or they can be used for research or the development of blood-derived products such as platelet gel. Several ethical questions (eg, informed consent, property, distribution of profits, and others) arise from these circumstances. In this regard, some criteria and limits to use are proposed. PMID:22977316

  11. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    SciTech Connect

    Buelow, S.J.; Allen, D.; Anderson, G.K.

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  12. Adverse reactions after cosmetic lip augmentation with permanent biologically inert implant materials.

    PubMed

    Hoffmann, C; Schuller-Petrovic, S; Soyer, H P; Kerl, H

    1999-01-01

    Augmentation of lips is a common aesthetic procedure that is mostly performed with alloplastic materials or autologous tissue. Various alloplastic injectable implants have been developed for soft tissue augmentation without surgery. Most biologic materials are resorbed within a few months, fluid silicone may migrate, and autologous fat is not ideal for fine contouring of the lips. The search for a biocompatible, permanent, nontoxic, and biologically inert filler material led to the development of some new materials for subdermal or intradermal implantation. Recently Bioplastique, Artecoll, and Gore-Tex have been well established and recommended by many authors. Although these materials meet most of the characteristics that constitute an ideal injectable prosthetic material, we describe 3 examples of adverse reactions after their implantation into lips. PMID:9922021

  13. Comparison of the biological H2S removal characteristics among four inorganic packing materials.

    PubMed

    Hirai, M; Kamamoto, M; Yani, M; Shoda, M

    2001-01-01

    Four inorganic packing materials were evaluated in terms of their availability as packing materials of a packed tower deodorization apparatus (biofilter) from the viewpoints of biological H2S removal characteristics and some physical properties. Among porous ceramics (A), calcinated cristobalite (B), calcinated and formed obsidian (C), granulated and calcinated soil (D), the superiority of these packing materials determined based on the values of non-biological removal per unit weight or unit volume of packing material, complete removal capacity of H2S per unit weight of packing material per day or unit volume of packing material per day and pressure drop of the packed bed was in the order of A approximately equal to C > D approximately equal to B, which is correlated with the maximum water content, porosity, and mean pore diameter. PMID:16233011

  14. Final LDRD report : development of advanced UV light emitters and biological agent detection strategies.

    SciTech Connect

    Figiel, Jeffrey James; Crawford, Mary Hagerott; Banas, Michael Anthony; Farrow, Darcie; Armstrong, Andrew M.; Serkland, Darwin Keith; Allerman, Andrew Alan; Schmitt, Randal L.

    2007-12-01

    We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.

  15. Ultrafast Spectroscopy in Conjugated Organic and Biological Materials

    NASA Astrophysics Data System (ADS)

    Yan, Ming

    The dynamics of two kinds of conjugated materials, the visual pigment rhodopsin and the organic polymer poly(p -phenylene vinylene), have been studied utilizing femtosecond spectroscopy. The 11-cis to all-trans torsional isomerization of the retinal chromophore in rhodopsin for both protonated and deuterated aqueous environments have been studied by time-resolved absorption measurements at room temperature. The kinetic results are well modeled by rate equations based on the scheme which involves the isomerization along the torsional coordinate of the 11-cis bond of the retinal chromophore. A metastable intermediate 90 degree twisted state is formed within 200 fs on the excited state surface by rotation around the C_{11} -C_{12} double bond, and it takes 3 ps to form the fully isomerized all -trans photoproduct known as bathorhodopsin and to repopulate the ground state rhodopsin. These results agree well with the semiempirical energy level and molecular dynamics calculations. The observed dynamics are insensitive to deuteration of the exchangeable protons which suggest that proton translocation is unimportant at physiological temperatures. The conjugated polymer, Poly(p-phenylene vinylene) (PPV) in a stretch oriented film, has been studied using polarized time-resolved absorption with subpicosecond resolution and transient luminescence measurements. Excitations are generated by photoexcitation near the band edge (500nm -540nm) with a 200 fs pulse and the resulting spectral changes are probed with a white light pulse. Lattice stabilized (singlet) self-trapped excitons are formed within 200 fs which are observed by measuring the stimulated gain in their emission band which decay at 10 ps. The agreement of the photoinduced exciton gain spectrum (<1ps), the transient luminescence spectrum (10 ps) and the steady state luminescence spectrum suggest that the singlet excitons are not further trapped after 200fs of their formation time. Excitation wavelength dependence

  16. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    SciTech Connect

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  17. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RECORDS COMMISSION Grant Administration § 1206.86 What additional materials must I submit with the final narrative report? You must submit the materials determined by the Commission as found in the NHPRC grant announcements or specified in the grant award....

  18. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    PubMed

    McDougall, Carmel; Woodcroft, Ben J; Degnan, Bernard M

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  19. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials

    PubMed Central

    McDougall, Carmel; Woodcroft, Ben J.

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  20. High-performance liquid chromatographic-fluorescence determination of traces of selenium in biological materials.

    PubMed

    Hawkes, W C; Kutnink, M A

    1996-10-15

    An improved method for the determination of selenium in biological materials has been developed. This work both extends and validates the procedure of Vézina and Bleau (J. Chromatog. 426, 385-391, 1988) which is based on high-performance liquid chromatographic determination of the fluorophore formed by reaction of Se(IV) with 2,3-diaminonaphthalene. The mass detection limit is 48 pg selenium (3 sigma) and the concentration detection limits are 48 parts per trillion in biological fluids and 120 to 480 parts per trillion in dried biological materials. The linear dynamic range of the method has been extended up to approximately 800 ng. Relative standard deviations of 9.4 to 2.7% were observed in repeated analyses of standards in the range of 0.5 to 500 ng. The proposed method was validated with respect to 23 biological reference materials spanning an 1800-fold range of selenium concentrations and was found to be free of significant constant or proportional biases despite greatly different matrix compositions. This method offers an unsurpassed combination of sensitivity, accuracy, linear dynamic range, and freedom from matrix interferences and may be considered a reference method for the reliable determination of selenium in biological materials. PMID:8921189

  1. A chirality-based search for extraterrestrial biological and prebiological material

    NASA Astrophysics Data System (ADS)

    Kolokolova, Lioudmila; Sparks, William; Nagdimunov, Lev

    2013-04-01

    Important evidence relevant to extraterrestrial life is the existence in space of organic molecules of prebiological or biological significance. Such molecules are often characterized by a special type of asymmetry called "homochirality" (domination of molecules of a specific handedness). This results in optical activity of the material that contains those molecules. Due to optical activity, the light scattered by such materials is characterized by non-zero circular polarization. We review laboratory measurements of light scattered by biological (e.g. bacteria, leaves) and non-biological (minerals) samples. These have revealed distinctive features in the circular polarization spectra in absorption bands for the biological samples. We present theoretical simulations of light scattering by homochiral materials made with the superposition T-matrix code for clusters of optically-active spheres. This allowed us to simulate light scattering by biological objects, e.g. colonies of bacteria, and by materials of prebiological value, e.g. cometary dust. We explore how circular polarization depends on the porosity and size of aggregates. Based on this, we provide some recommendations for observing signs of life in space, specifically, on exoplanets. This study was supported by the NASA Exobiology and Astrobiology Program.

  2. Determination of organomercury in biological reference materials by inductively coupled plasma mass spectrometry using flow injection analysis

    SciTech Connect

    Beauchemin, D.; Siu, K.W.; Berman, S.S.

    1988-12-01

    Inductively coupled plasma mass spectrometry was used for the determination of organomercury in two marine biological standard reference materials for trace metals (dogfish muscle tissue DORM-1 and lobster hepatopancreas TORT-1). In most parts of this study, the organomercury was extracted as the chloride from the material with toluene and back extracted into an aqueous medium of cysteine acetate. Since the final extracts contained more than 4% sodium, isotope dilution and flow injection analysis were used to respectively counter the effect of concomitant elements and avoid clogging the interface. Comparison of results with gas chromatography shows that the only significant organomercury is methyl-mercury. At least 93% of mercury in DORM-1 and 39% of mercury in TORT-1 exist as methylmercury.

  3. The present and future of biologically inspired adhesive interfaces and materials.

    PubMed

    Brubaker, Carrie E; Messersmith, Phillip B

    2012-01-31

    The natural world provides many examples of robust, permanent adhesive platforms. Synthetic adhesive interfaces and materials inspired by mussels of genus Mytulis have been extensively applied, and it is expected that characterization and adaptation of several other biological adhesive strategies will follow the Mytilus edulis model. These candidate species will be introduced, along with a discussion of the adhesive behaviors that make them attractive for synthetic adaptation. While significant progress has been made in the development of biologically inspired adhesive interfaces and materials, persistent questions, current challenges, and emergent areas of research will be also be discussed. PMID:22224862

  4. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    NASA Astrophysics Data System (ADS)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  5. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    SciTech Connect

    Dickinson, J. T.

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  6. Invited review liquid crystal models of biological materials and silk spinning.

    PubMed

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. PMID:21994072

  7. New biological reference materials - in vivo incorporated toxic metals in water hyacinth tissues

    SciTech Connect

    Austin, J.R.; Simon, S.J.; Williams, L.R.; Beckert, W.F.

    1985-06-01

    The purpose of this study was to demonstrate that high-quality reference materials, containing high levels of multiple toxic elements, can be produced with in vivo incorporation procedures. The approach taken was to produce water hyacinth tissue materials - leaves and stems containing high levels of arsenic, cadmium, lead, and mercury - as follows: apply a hydroponic feeding procedure for the in vivo incorporation of toxic elements into water hyacinths; dry, blend, and homogenize the plant materials and determine the levels of the incorporated elements and the homogeneity of the generated plant material; demonstrate that low-level control materials can be successfully blended with high-level materials to yield a homogeneous material with intermediate toxicant levels; evaluate the precision of the analytical methods used to determine toxic element levels in the materials; and evaluate the stability of the resulting materials. Sufficient quantities of the parent materials were produced so that characterized reference materials can now be made available on request. Levels of the toxic elements incorporated in water hyacinth leaves were 100, 300, 60, and 27 times the levels present in the control leaves for arsenic, cadmium, lead, and mercury, respectively. Overall precision of sampling, subsampling, and digestion, and chemical analysis of the treated materials, ranged from 3 to 10% relative standard deviation and was generally comparable to that of three NBS biological reference materials tested. 3 references, 1 figure, 4 tables.

  8. A Rodent Model to Evaluate the Tissue Response to a Biological Scaffold When Adjacent to a Synthetic Material.

    PubMed

    Dearth, Christopher L; Keane, Timothy J; Scott, Jeffrey R; Daly, Kerry A; Badylak, Stephen F

    2015-10-01

    The use of biologic scaffold materials adjacent to synthetic meshes is commonplace. A prevalent clinical example is two-staged breast reconstruction, where biologic scaffolds are used to provide support and coverage for the inferior aspect of the synthetic expander. However, limited data exist regarding either the kinetics of biologic scaffold integration or the host tissue response to the biologic scaffold materials used for this application or other applications in which such scaffold materials are used. The present study evaluated the temporal host response to a biological scaffold when placed adjacent to a synthetic material. Evaluation criteria included quantification of material contracture and characterization of the host cell response and tissue remodeling events. Results show a decreased thickness of the collagenous tissue layer at biologic scaffold/silicone interface compared to the abdominal wall/silicone interface during the 12-week experimental time course. All test materials were readily incorporated into surrounding host tissue. PMID:26176992

  9. Environmental impacts of post-consumer material managements: recycling, biological treatments, incineration.

    PubMed

    Valerio, F

    2010-11-01

    The environmental impacts of recycling, mechanical biological treatments (MBT) and waste-to-energy incineration, the main management strategies to respond to the increasing production of post-consumer materials are reviewed and compared. Several studies carried out according to life-cycle assessment (LCA) confirm that the lowest environmental impact, on a global scale, is obtained by recycling and by biological treatments (composting and anaerobic fermentations) if compost is used in agriculture. The available air emission factors suggest that, on a local scale, mechanical biological treatments with energy recovery of biogas, may be intrinsically safer than waste-to-energy incinerators. Several studies confirm the capability of biological treatments to degrade many toxic xenobiotic contaminating urban wastes such as dioxins and polycyclic aromatic hydrocarbons, an important property to be improved, for safe agricultural use of compost. Further LCA studies to compare the environmental impact of MBTs and of waste-to-energy incinerators are recommended. PMID:20573498

  10. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    SciTech Connect

    Greenberg, R.R.

    1988-01-01

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the {sup 75}Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations.

  11. Measuring the complex permittivity tensor of uniaxial biological materials with coplanar waveguide transmission line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple and accurate technique is described for measuring the uniaxial permittivity tensor of biological materials with a coplanar waveguide transmission-line configuration. Permittivity tensor results are presented for several chicken and beef fresh meat samples at 2.45 GHz....

  12. Biological conversion of biomass to methane. Final report, June 1, 1976-January 31, 1980

    SciTech Connect

    Pfeffer, J T

    1980-02-01

    An experimental methane fermentation system was constructed for the purpose of evaluating the processng requirements and conversion efficiencies associated with production of methane from various organic feed stocks. The fermentation reactors had an operating volume 0.775 m/sup 3/. This permitted operation with an approximate continuous feed of milled organics including beef feedlot manure, corn stover, wheat straw and alfalfa hay. A thermochemical pretreatment was applied to the corn stover and wheat straw in order to increase the biodegradability of these substrates. Working with these large units provided sufficient volumes of fermented slurry for evaluation of the dewatering properties of these slurries. Kinetic data were obtained by operating four reactors at different retention times. These data were used to calculate a first order rate constant and the percent of substrate volatile solids that were biodegradable. These data were obtained on beef feed lot manure at 40/sup 0/C and 60/sup 0/C nominal fermentation temperatures. Data from the fermentation of corn stover showed that the biodegradability of the stover volatile solids was only 36 percent at the thermophilic fermentation temperature. The first order rate constant was found to be 0.25 day/sup -1/. Thermochemical pretreatment increased the biodegradability of stover volatile solids to 71 percent. The final substrate tested was a green crop that was field dried - alfalfa. Significant foaming problems were encountered with this material. The volatile solids were found to be 74 percent biodegradable at a fermentation temperature of 60/sup 0/C. (MHR)

  13. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    SciTech Connect

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  14. Design finalization and material qualification towards procurement of the ITER vacuum vessel

    NASA Astrophysics Data System (ADS)

    Ioki, K.; Barabash, V.; Bachmann, C.; Chappuis, P.; Choi, C. H.; Cordier, J.-J.; Giraud, B.; Gribov, Y.; Heitzenroeder, Ph.; Her, N.; Johnson, G.; Jones, L.; Jun, C.; Kim, B. C.; Kuzmin, E.; Loesser, D.; Martin, A.; Merola, M.; Pathak, H.; Readman, P.; Sugihara, M.; Terasawa, A.; Utin, Yu.; Wang, X.; Wu, S.; Yu, J.; ITER Organization; ITER Parties

    2011-10-01

    Procurement arrangements for ITER key components including the vacuum vessel (VV) have been signed and the ITER activities are now fully devoted towards construction. Final design reviews have been carried out for the main vessel and ports. One of the design review topics is the selection of materials, material procurement, and assessment of material performance during operation. The width of the inner shell splice plates was increased from 120 mm to 160 mm to minimize risk during the assembly of the Thermal shields and the VV. Instead of facet shaping, 3D shaping was introduced for the outboard inner shell. The material qualification procedures have been started for VV structural materials such as 316L(N) IG for licensing as a nuclear pressure equipment component. In accordance with the regulatory requirements and quality requirements for operation, common material specifications have been prepared in collaboration with the domestic agencies.

  15. Evaluation of a fungal collection as certified reference material producer and as a biological resource center.

    PubMed

    Forti, Tatiana; Souto, Aline da S S; do Nascimento, Carlos Roberto S; Nishikawa, Marilia M; Hubner, Marise T W; Sabagh, Fernanda P; Temporal, Rosane Maria; Rodrigues, Janaína M; da Silva, Manuela

    2016-01-01

    Considering the absence of standards for culture collections and more specifically for biological resource centers in the world, in addition to the absence of certified biological material in Brazil, this study aimed to evaluate a Fungal Collection from Fiocruz, as a producer of certified reference material and as Biological Resource Center (BRC). For this evaluation, a checklist based on the requirements of ABNT ISO GUIA34:2012 correlated with the ABNT NBR ISO/IEC17025:2005, was designed and applied. Complementing the implementation of the checklist, an internal audit was performed. An evaluation of this Collection as a BRC was also conducted following the requirements of the NIT-DICLA-061, the Brazilian internal standard from Inmetro, based on ABNT NBR ISO/IEC 17025:2005, ABNT ISO GUIA 34:2012 and OECD Best Practice Guidelines for BRCs. This was the first time that the NIT DICLA-061 was applied in a culture collection during an internal audit. The assessments enabled the proposal for the adequacy of this Collection to assure the implementation of the management system for their future accreditation by Inmetro as a certified reference material producer as well as its future accreditation as a Biological Resource Center according to the NIT-DICLA-061. PMID:26991280

  16. A Formative Evaluation of Biological Science: Patterns and Processes, Final Report.

    ERIC Educational Resources Information Center

    Mayer, William V.; And Others

    Reported is a formative evaluation of the Biological Science Curriculum Study "Biological Science: Patterns and Processes", designed for academically unsuccessful students. "Criterion referenced" tests were developed, with items selected to indicate the extent of students' learning rather than to discriminate between students. An alternate form,…

  17. Searching for biological traces on different materials using a forensic light source and infrared photography.

    PubMed

    Sterzik, V; Panzer, S; Apfelbacher, M; Bohnert, M

    2016-05-01

    Because biological traces often play an important role in the investigation process of criminal acts, their detection is essential. As they are not always visible to the human eye, tools like a forensic light source or infrared photography can be used. The intention of the study presented was to give advice how to visualize biological traces best. Which wavelengths and/or filters give the best results for different traces on different fabrics of different colors? Therefore, blood (undiluted and diluted), semen, urine, saliva, and perspiration have been examined on 29 different materials. PMID:26500091

  18. Remote time-resolved filament-induced breakdown spectroscopy of biological materials

    NASA Astrophysics Data System (ADS)

    Xu, H. L.; Liu, W.; Chin, S. L.

    2006-05-01

    We report, for what we believe to be the first time, on the feasibility of remote time-resolved filament-induced breakdown spectroscopy (FIBS) of biological materials. The fluorescence from egg white and yeast powder, induced by femtosecond laser pulse filamentation in air, was detected in the backward direction with targets located 3.5 m away from the detection system. The remarkably distinct spectra of egg white and yeast allow us to propose that this technique, time-resolved FIBS, could be potentially useful for remote detection and identification of harmful biological agents.

  19. [Constitution of a bank of biological material in the French Gazel cohort: logistical and practical aspects].

    PubMed

    Zins, M; Ozguler, A; Bonenfant, S; Henny, J; Goldberg, M

    2003-02-01

    The Gazel cohort was launched in January 1989 among workers of the French national electricity and gas company to form an open and general purpose epidemiological laboratory. More than 20.000 workers (15.000 men, 5.000 women), aged from 35 to 50 volunteered to participate. One of the objectives of this cohort was the constitution of a bank of biological material aiming to collect and preserve various biological samples (serum, plasma, DNA, etc). This paper details the organisation of the bank and presents a feasability study concerning 2.000 volunteers. PMID:12684571

  20. Nanoscale Imaging of Mineral Crystals inside Biological Composite Materials Using X-Ray Diffraction Microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Huaidong; Ramunno-Johnson, Damien; Song, Changyong; Amirbekian, Bagrat; Kohmura, Yoshiki; Nishino, Yoshinori; Takahashi, Yukio; Ishikawa, Tetsuya; Miao, Jianwei

    2008-01-01

    We for the first time applied x-ray diffraction microscopy to the imaging of mineral crystals inside biological composite materials—intramuscular fish bone—at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization. Based on the experimental results and biomineralization analyses, we suggested a dynamic model to account for the nucleation and growth of mineral crystals in the collagen matrix. The results obtained from this study not only further our understanding of the complex structure of bone, but also demonstrate that x-ray diffraction microscopy will become an important tool to study biological materials.

  1. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Final environmental impact statement-materials license. 51.97 Section 51.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION... enrichment facility. As provided in section 5(e) of the Solar, Wind, Waste, and Geothermal Power...

  2. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Final environmental impact statement-materials license. 51.97 Section 51.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION... enrichment facility. As provided in section 5(e) of the Solar, Wind, Waste, and Geothermal Power...

  3. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Final environmental impact statement-materials license. 51.97 Section 51.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION... enrichment facility. As provided in section 5(e) of the Solar, Wind, Waste, and Geothermal Power...

  4. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Final environmental impact statement-materials license. 51.97 Section 51.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION... enrichment facility. As provided in section 5(e) of the Solar, Wind, Waste, and Geothermal Power...

  5. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Final environmental impact statement-materials license. 51.97 Section 51.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION... enrichment facility. As provided in section 5(e) of the Solar, Wind, Waste, and Geothermal Power...

  6. Synchrotron Studies of Quantum Emergence in Non-Low Dimensional Materials Final Report

    SciTech Connect

    James W. Allen

    2011-08-26

    This document is the final report of research performed under U.S. DOE Award Number DE-FG02-07ER46379, entitled Synchrotron Studies of Quantum Emergence in Non-Low Dimensional Materials. It covers the full period of the award, from June 1, 2007 through May 31, 2011.

  7. Mid-Atlantic Region Special Education Instructional Materials Center. Final Technical Report.

    ERIC Educational Resources Information Center

    Cottrell, Raymond S.; Carter, Robert

    The final report of the Mid-Atlantic Region Special Education Instructional Materials Center (MAR-SEIMC) describes field services, information services, library services, and research and evaluation activities conducted from 1967 to August 1974. It is explained that 39 affiliate centers were established throughout Pennsylvania, New Jersey,…

  8. Indium arsenide as a material for biological applications: Assessment of surface modifications, toxicity, and biocompatibility

    NASA Astrophysics Data System (ADS)

    Jewett, Scott A.

    III-V semiconductors such as InAs have recently been employed in a variety of applications where the electronic and optical characteristics of traditional, silicon-based materials are inadequate. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it very attractive for high performance transistors, optical applications, and chemical sensing. However, InAs forms an unstable surface oxide layer in ambient conditions, which can corrode over time and leach toxic indium and arsenic components. Current research has gone into making InAs more attractive for biological applications through passivation of the surface by adlayer adsorption. In particular, wet-chemical methods are current routes of exploration due to their simplicity, low cost, and flexibility in the type of passivating molecule. This dissertation focuses on surface modifications of InAs using wet-chemical methods in order to further its use in biological applications. First, the adsorption of collagen binding peptides and mixed peptide/thiol adlayers onto InAs was assessed. X-ray photoelectron spectroscopy (XPS) along with atomic force microscopy (AFM) data suggested that the peptides successfully adsorbed onto InAs, but were only able to block oxide regrowth to a relatively low extent. This low passivation ability is due to the lack of covalent bonds of the peptide to InAs, which are necessary to effectively block oxide regrowth. The addition of a thiol, in the form of mixed peptide/thiol adlayers greatly enhanced passivation of InAs while maintaining peptide presence on the surface. Thiols form tight, covalent bonds with InAs, which prevents oxide regrowth. The presence of the collagen-binding peptide on the surface opens the door to subsequent modification with collagen or polyelectrolyte-based adlayers. Next, the stability and toxicity of modified InAs substrates were determined using inductively coupled plasma mass spectrometry (ICP-MS) and zebrafish

  9. FINAL REPORT. CONTROL OF BIOLOGICALLY ACTIVE DEGRADATION ZONES BY VERTICAL HETEROGENEITY: APPLICATIONS IN FRACTURED MEDIA

    EPA Science Inventory

    The key objective of this research was to determine the distribution of biologically active contaminant degradation zones in a fractured, subsurface medium with respect to vertical heterogeneities. Our expectation was that
    hydrogeological properties would determine the size, d...

  10. A general framework for application of prestrain to computational models of biological materials.

    PubMed

    Maas, Steve A; Erdemir, Ahmet; Halloran, Jason P; Weiss, Jeffrey A

    2016-08-01

    It is often important to include prestress in computational models of biological tissues. The prestress can represent residual stresses (stresses that exist after the tissue is excised from the body) or in situ stresses (stresses that exist in vivo, in the absence of loading). A prestressed reference configuration may also be needed when modeling the reference geometry of biological tissues in vivo. This research developed a general framework for representing prestress in finite element models of biological materials. It is assumed that the material is elastic, allowing the prestress to be represented via a prestrain. For prestrain fields that are not compatible with the reference geometry, the computational framework provides an iterative algorithm for updating the prestrain until equilibrium is satisfied. The iterative framework allows for enforcement of two different constraints: elimination of distortion in order to address the incompatibility issue, and enforcing a specified in situ fiber strain field while allowing for distortion. The framework was implemented as a plugin in FEBio (www.febio.org), making it easy to maintain the software and to extend the framework if needed. Several examples illustrate the application and effectiveness of the approach, including the application of in situ strains to ligaments in the Open Knee model (simtk.org/home/openknee). A novel method for recovering the stress-free configuration from the prestrain deformation gradient is also presented. This general purpose theoretical and computational framework for applying prestrain will allow analysts to overcome the challenges in modeling this important aspect of biological tissue mechanics. PMID:27131609